WorldWideScience

Sample records for thermal radiation validation

  1. Mathematical model validation of a thermal architecture system connecting east/west radiators by flight data

    International Nuclear Information System (INIS)

    Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik

    2014-01-01

    A novel satellite thermal architecture connecting the east and west radiators of a geostationary telecommunication satellite via loop heat pipes (LHPs) is flight tested on board the satellite Hispasat 1E. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). The flight data demonstrated the successful operation of the proposed concept. A transient numerical model specifically developed for the design of this system satisfactorily simulated the flight data. The validated mathematical model can be used to design and analyze the thermal behavior of more complex architectures. - Highlights: •A novel spacecraft thermal control architecture is presented. •The east–west radiators of a GEO communications satellite are connected using LHPs. •A transient mathematical model is validated with flight data. •The space flight data proved successful in-orbit operation of the novel architecture. •The model can be used to design/analyze LHP based complex thermal architectures

  2. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  3. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  4. Parity non-conserving effects in thermal neutron-deuteron radiative capture

    International Nuclear Information System (INIS)

    Desplanques, B.

    1985-01-01

    Predictions of parity non-conserving effects in thermal neutron-deuteron radiative capture are presented. The sensitivity of the results to models of the strong interaction as well as the validity of approximations made in previous calculations are discussed

  5. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Lin, E.I.

    1997-01-01

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before

  6. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  7. Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Justin Kamp, Carl [Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg (Sweden)], E-mail: carl.kamp@chalmers.se; Kawamura, Hinata [Yokoyama Junior High School, Sanda, Hachioji, Tokyo 193-0832 (Japan); Passaquieti, Roberto [Dipartimento di Fisica ' Enrico Fermi' and INFN Sezione di Pisa, Universita' di Pisa, Largo Bruno Pontecorvo, I-56127 Pisa (Italy); DeSalvo, Riccardo [LIGO Observatories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-08-21

    The concept of utilizing directional radiative cooling to correct the problem of thermal lensing in the mirrors of the LIGO/VIRGO gravitational wave detectors has been shown and has prospects for future use. Two different designs utilizing this concept, referred to as the baffled and parabolic mirror solutions, have been proposed with different means of controlling the cooling power. The technique takes advantage of the power naturally radiated by the mirror surfaces at room temperature to prevent their heating by the powerful stored laser beams. The baffled solution has been simulated via COMSOL Multiphysics as a design tool. Finally, the parabolic mirror concept was experimentally validated with the results falling in close agreement with theoretical cooling calculations. The technique of directional radiative thermal correction can be reversed to image heat rings on the mirrors periphery to remotely and dynamically correct their radius of curvature without subjecting the mirror to relevant perturbations.

  8. Processing of oil products using complex radiation-thermal treatment and radiation oxonolysis

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.

    2002-01-01

    compound due to disintegration of condensed polyarene nuclei included in molecules of pitches and asphaltenes. It also leads to considerable decrease in the mean molecular mass of the residue, elimination of the part of sulfur and nitrogen atoms, and enrichment of the heavy residue by oxygen. At the same time the degree of hydrogen deficiency becomes lower due to the opening of the part of aromatic rings. Splitting of pyrrol and thiophene cycles diminishes sulfur contents and simultaneously causes a rise in oxygen concentration. Data of infra-red spectroscopy confirm that radiation oxonolysis in the bubbling mode causes disintegration of aromatic nuclei and oxidation of sulfuric compounds. The results obtained open new opportunities for upgrading high-viscous oils and raising their potential fuel yields due to higher commercial validity of heavy residue after combined radiation-thermal processing and oxonolysis

  9. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  10. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  11. On various validity criteria for the configuration average in collisional-radiative codes

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M [Commissariat a l' Energie Atomique, Service ' Photons, Atomes et Molecules' , Centre d' Etudes de Saclay, F91191 Gif-sur-Yvette Cedex (France)

    2008-01-28

    The characterization of out-of-local-thermal-equilibrium plasmas requires the use of collisional-radiative kinetic equations. This leads to the solution of large linear systems, for which statistical treatments such as configuration average may bring considerable simplification. In order to check the validity of this procedure, a criterion based on the comparison between a partial-rate systems and the Saha-Boltzmann solution is discussed in detail here. Several forms of this criterion are discussed. The interest of these variants is that they involve each type of relevant transition (collisional or radiative), which allows one to check separately the influence of each of these processes on the configuration-average validity. The method is illustrated by a charge-distribution analysis in carbon and neon plasmas. Finally, it is demonstrated that when the energy dispersion of every populated configuration is smaller than the electron thermal energy, the proposed criterion is fulfilled in each of its forms.

  12. Structured thermal surface for radiative camouflage.

    Science.gov (United States)

    Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei

    2018-01-18

    Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.

  13. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  14. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    Science.gov (United States)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  15. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  16. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  17. Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model

    Directory of Open Access Journals (Sweden)

    Ophir Navea

    2011-06-01

    Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.

  18. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  19. Development of Thermal Radiation Experiments Kit Based on Data Logger for Physics Learning Media

    Science.gov (United States)

    Permana, H.; Iswanto, B. H.

    2018-04-01

    Thermal Radiation Experiments Kit (TREK) based on data logger for physics learning media was developed. TREK will be used as a learning medium on the subject of Temperature and Heat to explain the concept of emissivity of a material in grade XI so that it can add variations of experiments which are commonly done such as thermal expansion, transfer of thermal energy (conduction, convection, and radiation), and specific heat capacity. DHT11 sensor is used to measure temperature and microcontroller Arduino-uno used as data logger. The object tested are in the form of coated glass thin films and aluminum with different colors. TREK comes with a user manual and student worksheet (LKS) to make it easier for teachers and students to use. TREK was developed using the ADDIE Development Model (Analyze, Design, Development, Implementation, and Evaluation). And validated by experts, physics teachers, and students. Validation instrument is a questionnaire with a five-item Likert response scale with reviewed aspect coverage: appropriate content and concepts, design, and user friendly. The results showed that TREK was excellent (experts 88.13%, science teachers 95.68%, and students 85.77%).

  20. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    International Nuclear Information System (INIS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-01-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K.Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions

  1. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    Science.gov (United States)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  2. The contribution of thermal radiation to the thermal conductivity of porous UO2

    International Nuclear Information System (INIS)

    Bakker, K.; Kwast, H.; Cordfunke, E.H.P.

    1994-09-01

    The influence of cylindrical, spherical and ellipsoidal inclusions on the overall thermal conductivity was computed with the finite element technique. The results of these calculations were compared with equations that describe the effect of inclusions on the overall thermal conductivity. The analytical equation of Schulz that describes the effect of inclusions on the overall thermal conductivity is in good agreement with the results of the finite element computations. This good agreement shows that among a variety of porosity correction formulas, the equation of Schulz gives the best description of the effect of inclusions on the overall thermal conductivity. This equation and the results of finite element calculations allow us to compute the contribution of radiation to the overall thermal conductivity of UO 2 with oblate ellipsoidal porosity. The present radiation calculations show that Hayes and Peddicord overestimated the contribution of thermal radiation to the thermal conductivity. (orig.)

  3. The contribution of thermal radiation to the thermal conductivity of porous UO2

    International Nuclear Information System (INIS)

    Bakker, K.; Kwast, H.; Cordfunke, E.H.P.

    1995-01-01

    The influence of cylindrical, spherical and ellipsoidal inclusions on the overall thermal conductivity was computed with the finite element technique. The results of these calculations were compared with equations that describe the effect of inclusions on the overall thermal conductivity. The analytical equation of Schulz [B. Schulz, KfK-1988 (1974)] that describes the effect of inclusions on the overall thermal conductivity is in good agreement with the results of the finite element computations. This good agreement shows that among a variety of porosity correction formulas, the equation of Schulz gives the best description of the effect of inclusions on the overall thermal conductivity. This equation and the results of finite element calculations allow us to compute the contribution of radiation to the overall thermal conductivity of UO 2 with oblate ellipsoidal porosity. The present radiation calculations show that Hayes and Peddicord [S.L. Hayes and K.L. Peddicord, J. Nucl. Mater. 202 (1993) 87] overestimated the contribution of thermal radiation to the thermal conductivity. ((orig.))

  4. Thermodynamic limits of energy harvesting from outgoing thermal radiation.

    Science.gov (United States)

    Buddhiraju, Siddharth; Santhanam, Parthiban; Fan, Shanhui

    2018-04-17

    We derive the thermodynamic limits of harvesting power from the outgoing thermal radiation from the ambient to the cold outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. In particular, we derive the ultimate limit for harvesting outgoing thermal radiation, which is analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible. As an extension of our work, we also derive the ultimate limit of efficiency of thermophotovoltaic systems.

  5. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  6. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  7. Active Radiative Thermal Switching with Graphene Plasmon Resonators.

    Science.gov (United States)

    Ilic, Ognjen; Thomas, Nathan H; Christensen, Thomas; Sherrott, Michelle C; Soljačić, Marin; Minnich, Austin J; Miller, Owen D; Atwater, Harry A

    2018-03-27

    We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.

  8. Thermal hadron production by QCD Hawking radiation

    International Nuclear Information System (INIS)

    Satz, Helmut

    2007-01-01

    The QCD counterpart of Hawking radiation from black holes leads to thermal hadron production in high energy collisions, from e + e - annihilation to heavy ion interactions. This hadronic radiation is emitted at a universal temperature T≅(σ/2π) 1/2 , where the string tension σ measures the colour field at the event horizon of confinement. Moreover, the emitted radiation is thermal 'at birth'; since the event horizon prevents all information transfer, no memory has to be destroyed kinetically. (author)

  9. A Study on the Interaction Mechanism between Thermal Radiation and Materials

    Institute of Scientific and Technical Information of China (English)

    Dehong XIA; Tao YU; Chuangu WU; Qingqing CHANG; Honglei JIAO

    2005-01-01

    From the viewpoint of field synergy principle and dipole radiation theory, the interaction between the incident thermal radiation wave and materials is analyzed to reveal the mechanism of selective absorption of incident thermal radiation. It is shown that the frequency of the incident thermal radiation and the damping constant of damping oscillators in materials are of vital importance for the thermal radiation properties (reflectivity, absorptivity, transmissivity, etc.) of materials.

  10. The development and validation of a thermal model for the cabin of a vehicle

    International Nuclear Information System (INIS)

    Marcos, David; Pino, Francisco J.; Bordons, Carlos; Guerra, José J.

    2014-01-01

    Energy management in modern vehicles is a crucial issue, especially in the case of electric vehicles (EV) or hybrid vehicles (HV), in which different energy sources and loads must be considered for the operation of a vehicle. Air conditioning is an important load that must be thoroughly analysed because it can constitute a considerable percentage of the energy demand. In this paper, a simplified and dynamic thermal model for the cabin of a vehicle is proposed and validated. The developed model can be used for the design and testing of the heating, ventilation, and air conditioning (HVAC) system of a vehicle and for the study of its effects on the performance and fuel consumption of vehicles, such as EVs or HVs. The model is based on theoretical heat transfer, thermal inertia, and radiation treatment equations. The model results obtained from simulations are compared with the cabin air temperature of a vehicle under different conditions. This comparison demonstrates the accuracy between the simulation results and actual results. - Highlights: •A thermal model of a vehicle cabin with two thermal inertias is developed. •The model is validated with experimental data. •The simulation results and the experimental data fit

  11. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  12. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  13. Exergy of partially coherent thermal radiation

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2012-01-01

    Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.

  14. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  15. Thermal-hydraulic codes validation for safety analysis of NPPs with RBMK

    International Nuclear Information System (INIS)

    Brus, N.A.; Ioussoupov, O.E.

    2000-01-01

    This work is devoted to validation of western thermal-hydraulic codes (RELAP5/MOD3 .2 and ATHLET 1.1 Cycle C) in application to Russian designed light water reactors. Such validation is needed due to features of RBMK reactor design and thermal-hydraulics in comparison with PWR and BWR reactors, for which these codes were developed and validated. These validation studies are concluded with a comparison of calculation results of modeling with the thermal-hydraulics codes with the experiments performed earlier using the thermal-hydraulics test facilities with the experimental data. (authors)

  16. Optimized Radiator Geometries for Hot Lunar Thermal Environments

    Science.gov (United States)

    Ochoa, Dustin

    2013-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.

  17. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  18. Classical theory of thermal radiation from a solid.

    Science.gov (United States)

    Guo, Wei

    2016-06-01

    In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain.

  19. Thermal radiation from lorentzian traversable wormholes

    Energy Technology Data Exchange (ETDEWEB)

    MartIn-Moruno, Prado; Gonzalez-Diaz, Pedro F, E-mail: pra@iff.csic.es [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 121, 28006 Madrid (Spain)

    2011-09-22

    In this contribution we show that lorentzian dynamic wormholes emit thermal phantom-like radiation. Analogously to as it occurs for black holes, the consideration of such radiation process allows the formulation of a wormhole thermodynamics which might help in the understanding of those objects.

  20. Cosmic thermalization and the microwave background radiation

    International Nuclear Information System (INIS)

    Rana, N.C.

    1981-01-01

    A different origin of the microwave background radiation (MBR) is suggested in view of some of the difficulties associated with the standard interpretation. Extensive stellar-type nucleosynthesis could provide radiation with the requisite energy density of the MBR and its spectral features are guaranteed by adequate thermalization of the above radiation by an ambient intergalactic dust medium. This thermalization must have occurred in quite recent epochs, say around epochs of redshift z = 7. The model emerges with consistent limits on the cosmic abundance of helium, the general luminosity evolution of the extragalactic objects, the baryonic matter density in the Universe (or, equivalently the deceleration parameter) and the degree of isotropy of MBR. The model makes definite predictions on issues like the properties of the intergalactic thermalizers, the degree of isotropy of MBR at submillimetre wavelengths and cluster emission in the far infrared. (author)

  1. Radiative thermal rectification using superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Nefzaoui, Elyes, E-mail: elyes.nefzaoui@univ-poitiers.fr; Joulain, Karl, E-mail: karl.joulain@univ-poitiers.fr; Drevillon, Jérémie; Ezzahri, Younès [Institut Pprime, Université de Poitiers-CNRS-ENSMA, 2, Rue Pierre Brousse, Bâtiment B25, TSA 41105, 86073 Poitiers Cedex 9 (France)

    2014-03-10

    Thermal rectification can be defined as an asymmetry in the heat flux when the temperature difference between two interacting thermal reservoirs is reversed. In this Letter, we present a far-field radiative thermal rectifier based on high-temperature superconducting materials with a rectification ratio up to 80%. This value is among the highest reported in literature. Two configurations are examined: a superconductor (Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}) exchanging heat with (1) a black body and (2) another superconductor, YBa{sub 2}Cu{sub 3}O{sub 7} in this case. The first configuration shows a higher maximal rectification ratio. Besides, we show that the two-superconductor rectifier exhibits different rectification regimes depending on the choice of the reference temperature, i.e., the temperature of the thermostat. Presented results might be useful for energy conversion devices, efficient cryogenic radiative insulators engineering, and thermal logical circuits’ development.

  2. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  3. Interaction of alpha radiation with thermally-induced defects in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Majid, Abdul

    2008-01-01

    The interaction of radiation-induced defects created by energetic alpha particles and thermally-induced defects in silicon has been studied using a Deep Level Transient Spectroscopy (DLTS) technique. Two thermally-induced defects at energy positions E c -0.48 eV and E c -0.25 eV and three radiation-induced defects E2, E3 and E5 have been observed. The concentration of both of the thermally-induced defects has been observed to increase on irradiation. It has been noted that production rates of the radiation-induced defects are suppressed in the presence of thermally-induced defects. A significant difference in annealing characteristics of thermally-induced defects in the presence of radiation-induced defects has been observed compared to the characteristics measured in pre-irradiated samples

  4. Using stellar spectra to illustrate thermal radiation laws

    Science.gov (United States)

    Kaltcheva, N. T.; Pritzl, B. J.

    2018-05-01

    Stars are point-source emitters that are the closest to the definition of a blackbody in comparison to all other similar sources of radiation found in nature. Existing libraries on stellar spectra are thus a valuable resource that can be used to introduce the laws of thermal radiation in a classroom setting. In this article we briefly describe some of the opportunities that available databases on stellar spectra provide for students to gain a deeper understanding on thermal radiation and spectral line characteristics.

  5. Combination thermal and radiation shield for well logging apparatus

    International Nuclear Information System (INIS)

    Wilson, B.F.

    1984-01-01

    A device for providing both thermal protection and radiation shielding for components such as radiation detectors within a well logging instrument comprises a thermally insulative flask containing a weldment filled with a mass of eutectic material which undergoes a change of state e.g. melting at a temperature which will provide an acceptable thermal environment for such components for extended time periods. The eutectic material which is preferably a bismuth (58%)/tin (42%) alloy has a specific gravity (> 8.5) facilitating its use as a radiation shield and is distributed around the radiation detectors so as to selectively impede the impinging of the detectors by radiation. The device is incorporated in a skid of a well logging instrument for measuring γ backscatter. A γ source is located either above or within the protective shielding. (author)

  6. Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Dubuffet

    2002-01-01

    Full Text Available The thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ∂klat /∂T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged Péclet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing

  7. Phase-change radiative thermal diode

    OpenAIRE

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2013-01-01

    A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important ap...

  8. Thermal/structural analysis of radiators for heavy-duty trucks

    International Nuclear Information System (INIS)

    Mao Shaolin; Cheng, Changrui; Li Xianchang; Michaelides, Efstathios E.

    2010-01-01

    A thermal/structural coupling approach is applied to analyze thermal performance and predict the thermal stress of a radiator for heavy-duty transportation cooling systems. Bench test and field test data show that non-uniform temperature gradient and dynamic pressure loads may induce large thermal stress on the radiator. A finite element analysis (FEA) tool is used to predict the strains and displacement of radiator based on the solid wall temperature, wall-based fluid film heat transfer coefficient and pressure drop. These are obtained from a computational fluid dynamics (CFD) simulation. A 3D simulation of turbulent flow and coupled heat transfer between the working fluids poses a major difficulty because the range of length scales involved in heavy-duty radiators varies from few millimeters of the fin pitch and/or tube cross-section to several meters for the overall size of the radiator. It is very computational expensive, if not impossible, to directly simulate the turbulent heat transfer between fins and the thermal boundary layer in each tube. In order to overcome the computational difficulties, a dual porous zone (DPZ) method is applied, in which fins in the air side and turbulators in the water side are treated as porous region. The parameters involved in the DPZ method are tuned based on experimental data in prior. A distinguished advantage of the porous medium method is its effectiveness of modeling wide-range characteristic scale problems. A parametric study of the impact of flow rate on the heat transfer coefficient is presented. The FEA results predict the maximum value of stress/strain and target locations for possible structural failure and the results obtained are consistent with experimental observations. The results demonstrate that the coupling thermal/structural analysis is a powerful tool applied to heavy-duty cooling product design to improve the radiator thermal performance, durability and reliability under rigid working environment.

  9. Thermal Vacuum Verification of Origami Inspired Radiators

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort seeks to provide a unique means of modulating the waste thermal energy radiated by a radiator, and represents a restart of the FY17 effort that had to be...

  10. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  11. Radiation-thermal processes of conversion in the coals

    International Nuclear Information System (INIS)

    Mustafaev, I.I.

    2002-01-01

    Full text: The brief review, history, modern condition and bibliographic data on research of radiation-stimulated processes in coals are adduced in the report. Results of new researches of influence of gamma - radiation and accelerated electrons on pyrolysis, gasification, desulphurization, paramagnetism, adsorption and optical properties of coals in wide intervals of change of absorbed dose, dose rate, temperature, radiation type and other parameters of processes are stated. As object of researches Turkish (Yeni koy, Yatagan) and Russian (Siberia) coals were used. Specific peculiarities of influence of ionizing radiations on fossil fuels, bringing in change of their reactivity as result of destruction and polycondensation processes are considered. a)Pyrolysis: Under action of gamma-radiation and accelerated electrons the rate of thermal (t) pyrolysis grows and the ratio of radiation-thermal (rt) and thermal (t) processes: Wrt/ Wt depends on dose rate and temperature. By increase of dose rate the radiation effects grows, and at increase of temperature this effect is reduced. The influence of high rate heating of coals under pulls action of accelerated electrons on conversion degree and product composition has been established. The investigation regularities of formation liquid and gas products is resulted at radiation - thermal processing of mixtures of lignites with fuel oil. These experiments were conducted in flowing conditions in the interval of temperature T=350-500 degrees centigrade, power of the pulls accelerated electrons P=30-50 W, flow velocity of fuel oil 0,2-2 ml/minute. As a index of process were controlled conversion degree of coals, overall yield, contents and characteristic of liquid and gas products. The products of thermal treatment of these mixtures and also radiation-thermal treatment of separate components significantly less than radiation-thermal conversion of binary mixtures. It has been established that radiation effect has a positive

  12. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  13. Parallel thermal radiation transport in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)

    2003-07-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  14. Physiological and pathological effects of thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hymes, I.

    1983-09-15

    This report deals with man's response to abnormally high levels of thermal radiation. The early sections deal with the properties and biological roles of the skin in some detail as a basis for the definitions and descriptions of pathological damage. The estimation of hazard ranges in thermal radiation exposures requires a moderately accurate knowledge of the intensity and duration of the emitted flux. The (BLEVE) Boiling Liquid Expanding Vapor Explosion fireball conveniently meets this requirement as well as having the capability to inflict severe burn injuries over considerable distances. Liquid Petroleum Gas fireballs have been used as the source term for the thermal radiation calculations which predict threshold lethality and various categories of burn injury. Inevitably there are areas of uncertainty in such calculations, some contributory factors being atmospheric conditions, fuel container rupture pattern, type of clothing worn etc. The sensitivity of the predicted hazard ranges to these influential parameters is exemplified in several of the graphs presented. The susceptibility of everyday clothing to ignite or melt in thermal fluxes greater than about 70 kW/m/sup 2/ is shown to be a matter of some gravity since burning clothing can thwart escape and inflict serious, if not fatal, burns quite apart from injuries directly received from the incident radiation. The various means by which incident heat fluxes can be reduced or their effects mitigated are reviewed. Two major BLEVE case histories are discussed in some detail and the circumstances compared with those predicted by the theoretical calculations. 38 refs., 36 figs.

  15. On the thermal stability of radiation-dominated accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S3H4 (Canada)

    2013-11-20

    We study the long-term thermal stability of radiation-dominated disks in which the vertical structure is determined self-consistently by the balance of heating due to the dissipation of MHD turbulence driven by magneto-rotational instability (MRI) and cooling due to radiation emitted at the photosphere. The calculations adopt the local shearing box approximation and utilize the recently developed radiation transfer module in the Athena MHD code based on a variable Eddington tensor rather than an assumed local closure. After saturation of the MRI, in many cases the disk maintains a steady vertical structure for many thermal times. However, in every case in which the box size in the horizontal directions are at least one pressure scale height, fluctuations associated with MRI turbulence and dynamo action in the disk eventually trigger a thermal runaway that causes the disk to either expand or contract until the calculation must be terminated. During runaway, the dependence of the heating and cooling rates on total pressure satisfy the simplest criterion for classical thermal instability. We identify several physical reasons why the thermal runaway observed in our simulations differ from the standard α disk model; for example, the advection of radiation contributes a non-negligible fraction to the vertical energy flux at the largest radiation pressure, most of the dissipation does not happen in the disk mid-plane, and the change of dissipation scale height with mid-plane pressure is slower than the change of density scale height. We discuss how and why our results differ from those published previously. Such thermal runaway behavior might have important implications for interpreting temporal variability in observed systems, but fully global simulations are required to study the saturated state before detailed predictions can be made.

  16. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  17. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana; Groat, Lee A.; Chudy, Thomas; Shelyug, Anna; Navrotsky, Alexandra; Ewing, Rodney C.; Schlüter, Jochen; Škoda, Radek; Bismayer, Ulrich

    2017-01-01

    Abstract

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  18. Development, validation and routine control of a radiation process

    International Nuclear Information System (INIS)

    Kishor Mehta

    2010-01-01

    Today, radiation is used in industrial processing for variety of applications; from low doses for blood irradiation to very high doses for materials modification and even higher for gemstone colour enhancement. At present, radiation is mainly provided by either radionuclides or machine sources; cobalt-60 is the most predominant radionuclide in use. Currently, there are several hundred irradiation facilities worldwide. Similar to other industries, quality management systems can assist radiation processing facilities in enhancing customer satisfaction and maintaining and improving product quality. To help fulfill quality management requirements, several national and international organizations have developed various standards related to radiation processing. They all have requirements and guidelines for development, validation and routine control of the radiation process. For radiation processing, these three phases involve the following activities. Development phase includes selecting the type of radiation source, irradiation facility and the dose required for the process. Validation phase includes conducting activities that give assurance that the process will be successful. Routine control then involves activities that provide evidence that the process has been successfully realized. These standards require documentary evidence that process validation and process control have been followed. Dosimetry information gathered during these processes provides this evidence. (authors)

  19. Study of thermal, radiation and environmental effects on serpentine

    International Nuclear Information System (INIS)

    Raje, Naina; Kalekar, Bhupesh B.; Dubey, K.A.

    2016-01-01

    Physical and chemical properties of a material, such as particle size surface area, magnetic properties, water content, radiation and thermal stability, viscosity, porosity, are responsible for their specific applications. Serpentine is a greenish, layer structured phyllosilicate, known as magnesium hydroxy silicate. The availability of large number of hydroxyl group makes serpentine a potential candidate for nuclear shielding material. Hence present studies have been carried out to understand the stability of serpentine with the variation in thermal, radiation and environmental parameters. Serpentine samples were received from Reactor Projects Division, BARC. An accurately weighed sample was subjected to simultaneous TG - DTA - EGA measurements in air as well as inert atmosphere at the heating rate of 10 °C/min. The sample was heated from room temperature to 1000 °C with a gas flow rate of 100 mL/min in Netzsch thermal analyzer (Model STA409 PC LUXX) connected to Bruker FTIR system (Model - Tensor27) via a 1m long capillary. The sample was subjected to gamma radiation in the range of 10 - 100 kGy using 60 Co gamma source in gamma chamber and was subjected to TG measurements to understand the effect of radiation on the thermal stability of serpentine and the results are being discussed here

  20. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  1. Evaluation of Three Parametric Models for Estimating Directional Thermal Radiation from Simulation, Airborne, and Satellite Data

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu

    2018-03-01

    Full Text Available An appropriate model to correct thermal radiation anisotropy is important for the wide applications of land surface temperature (LST. This paper evaluated the performance of three published directional thermal radiation models—the Roujean–Lagouarde (RL model, the Bidirectional Reflectance Distribution Function (BRDF model, and the Vinnikov model—at canopy and pixel scale using simulation, airborne, and satellite data. The results at canopy scale showed that (1 the three models could describe directional anisotropy well and the Vinnikov model performed the best, especially for erectophile canopy or low leaf area index (LAI; (2 the three models reached the highest fitting accuracy when the LAI varied from 1 to 2; and (3 the capabilities of the three models were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure. The analysis at pixel scale indicated a consistent result that the three models presented a stable effect both on verification and validation, but the Vinnikov model had the best ability in the erectophile canopy (savannas and grassland and low LAI (barren or sparsely vegetated areas. Therefore, the Vinnikov model was calibrated for different land cover types to instruct the angular correction of LST. Validation with the Surface Radiation Budget Network (SURFRAD-measured LST demonstrated that the root mean square (RMSE of the Moderate Resolution Imaging Spectroradiometer (MODIS LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST showed better spatial uniformity and higher angular correlation.

  2. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  3. Thermal Radiation Anomalies Associated with Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  4. Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations

    International Nuclear Information System (INIS)

    Hemadri, Vadiraj A.; Gupta, Ashish; Khandekar, Sameer

    2011-01-01

    With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors, experimental study of embedded PHP thermal radiators, having two different effective Biot numbers respectively, and subjected to conjugate heat transfer conditions on their surface, i.e., natural convection and radiation, has been carried out under different thermo-mechanical boundary conditions. High resolution infrared camera is used to obtain spatial temperature profiles of the radiators. To complement the experimental study, detailed 3D computational heat transfer simulation has also been undertaken. By embedding PHP structures, it was possible to make the net thermal resistance of the mild steel radiator plate equivalent to the aluminum radiator plate, in spite of the large difference in their respective thermal conductivities (k Al ∼ 4k MS ). The study reveals that embedded PHP structures can be beneficial only under certain boundary conditions. The degree of isothermalization achieved in these structures strongly depends on its effective Biot number. The relative advantage of embedded PHP is appreciably higher if the thermal conductivity of the radiator plate material itself is low. The study indicates that the effective thermal conductivity of embedded PHP structure is of the order of 400 W/mK to 2300 W/mK, depending on the operating conditions. - Research highlights: → Study of radiator plates with embedded Pulsating Heat Pipe by infrared thermography. → Radiator is subjected to natural convection and radiation boundary conditions. → Experimental study is supported by 3D simulation. → Effective thermal conductivity of PHPs of the order of 2000 W/mK is obtained. → Efficacy of embedded PHPs depends on the effective Biot number of the system.

  5. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kun, E-mail: kunmo@anl.gov; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.

    2017-04-15

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO{sub 2} particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO{sub 2} particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO{sub 2} particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO{sub 2} particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.

  6. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  7. Process validation for radiation processing

    International Nuclear Information System (INIS)

    Miller, A.

    1999-01-01

    Process validation concerns the establishment of the irradiation conditions that will lead to the desired changes of the irradiated product. Process validation therefore establishes the link between absorbed dose and the characteristics of the product, such as degree of crosslinking in a polyethylene tube, prolongation of shelf life of a food product, or degree of sterility of the medical device. Detailed international standards are written for the documentation of radiation sterilization, such as EN 552 and ISO 11137, and the steps of process validation that are described in these standards are discussed in this paper. They include material testing for the documentation of the correct functioning of the product, microbiological testing for selection of the minimum required dose and dose mapping for documentation of attainment of the required dose in all parts of the product. The process validation must be maintained by reviews and repeated measurements as necessary. This paper presents recommendations and guidance for the execution of these components of process validation. (author)

  8. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO2 fiber

    International Nuclear Information System (INIS)

    Katsumata, Toru; Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki

    2014-01-01

    Visible light thermal radiation from SiO 2 glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO 2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO 2 fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO 2 fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO 2 fibers are smaller than those from SiO 2 fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO 2 are potentially applicable for the fiber-optic thermometry above 900 K

  9. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  10. Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies

    Science.gov (United States)

    Messina, Riccardo; Antezza, Mauro

    2014-05-01

    We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

  11. Non-Grey Radiation Modeling using Thermal Desktop/Sindaworks TFAWS06-1009

    Science.gov (United States)

    Anderson, Kevin R.; Paine, Chris

    2006-01-01

    This paper provides an overview of the non-grey radiation modeling capabilities of Cullimore and Ring's Thermal Desktop(Registered TradeMark) Version 4.8 SindaWorks software. The non-grey radiation analysis theory implemented by Sindaworks and the methodology used by the software are outlined. Representative results from a parametric trade study of a radiation shield comprised of a series of v-grooved shaped deployable panels is used to illustrate the capabilities of the SindaWorks non-grey radiation thermal analysis software using emissivities with temperature and wavelength dependency modeled via a Hagen-Rubens relationship.

  12. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1988-01-01

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  13. A thermal manikin with human thermoregulatory control: implementation and validation.

    Science.gov (United States)

    Foda, Ehab; Sirén, Kai

    2012-09-01

    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin 'Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature (t(eq)) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t(eq) from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t(eq). The results showed that the t(eq) values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode.

  14. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  15. Thermal radiation from large bolides and impact plumes

    Science.gov (United States)

    Svetsov, V.; Shuvalov, V.

    2017-09-01

    Numerical simulations of the impacts of asteroids and comets from 20 m to 3 km in diameter have been carried out and thermal radiation fluxes on the ground and luminous efficiencies of the impacts have been calculated. It was assumed that the cosmic objects have no strength, deform, fragment, and vaporize in the atmosphere. After the impact on the ground, formation of craters and plumes was simulated taking into account internal friction of destroyed rocks and a wake formed in the atmosphere. The equations of radiative transfer, added to the equations of gas dynamics, were used in the approximation of radiative heat diffusion or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the approximation of volume emission. Radiation fluxes on the Earth's surface were calculated by integrating the equation of radiative transfer along rays passing through a luminous area. Direct thermal radiation from fireballs and impact plumes produced by asteroids and comets larger than 50 m in diameter is dangerous for people, animals, plants, economic objects. Forest fires can be ignited on the ground within a radius of roughly 1000 times the body's diameter (for diameters of the order or smaller than 1 km), 50-m-diameter bodies can ignite forest fires within a radius of up to 40 km and 3-km asteroids - within 1700 km.

  16. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    Science.gov (United States)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  17. Validating an infrared thermal switch as a novel access technology

    Directory of Open Access Journals (Sweden)

    Memarian Negar

    2010-08-01

    Full Text Available Abstract Background Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. Methods In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. Results User performance (p = 0.16 and response time (p = 0.25 with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Conclusions Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  18. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  19. Experimental Characterization of a Composite Morphing Radiator Prototype in a Relevant Thermal Environment

    Science.gov (United States)

    Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.

    2017-01-01

    For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.

  20. Using Stellar Spectra to Illustrate Thermal Radiation Laws

    Science.gov (United States)

    Kaltcheva, N. T.; Pritzl, B. J.

    2018-01-01

    Stars are point-source emitters that are the closest to the definition of a blackbody in comparison to all other similar sources of radiation found in nature. Existing libraries on stellar spectra are thus a valuable resource that can be used to introduce the laws of thermal radiation in a classroom setting. In this article we briefly describe…

  1. Radiators in hydronic heating installations structure, selection and thermal characteristics

    CERN Document Server

    Muniak, Damian Piotr

    2017-01-01

    This book addresses key design and computational issues related to radiators in hydronic heating installations. A historical outline is included to highlight the evolution of radiators and heating technologies. Further, the book includes a chapter on thermal comfort, which is the decisive factor in selecting the ideal heating system and radiator type. The majority of the book is devoted to an extensive discussion of the types and kinds of radiators currently in use, and to identifying the reasons for the remarkable diversity of design solutions. The differences between the solutions are also addressed, both in terms of the effects of operation and of the thermal comfort that needs to be ensured. The book then compares the advantages and disadvantages of each solution, as well as its potential applications. A detailed discussion, supported by an extensive theoretical and mathematical analysis, is presented of the computational relations that are used in selecting the radiator type. The dynamics of radiator hea...

  2. The absorption of thermal radiation by water films

    International Nuclear Information System (INIS)

    Pearson, K.G.; Elliott, D.

    1977-04-01

    Except at the shortest wavelengths (i.e. <2μm) liquid water is relatively opaque to thermal radiation. It is also a poor reflector, reflecting back only about 2% of normal incident radiation. It is shown that when radiation falls on a plane water surface from a parallel heated surface about 93.5% of the incident radiation enters the surface, the remaining 6.5% being reflected back to the source. It is also shown that, for source temperatures up to the maximum of interest in reactor safety studies, a large fraction of the thermal radiation which enters the water is absorbed on passing through a distance approaching 0.5 mm. Since liquid water films of such thickness can be expected to exist on the pressure tubes of an SGHWR following a loss of coolant accident it follows that, irrespective of the condition of the pressure tube wall, the absorptivity of the pressure tubes will in effect be about 0.9. Data are presented for experiments performed to determine the absorptivity of water films on a polished surface whose dry absorptivity was measured to be 0.18. The presence of the water film, of estimated thickness 0.3 mm, increased the absorptivity of the surface to a value close to unity. (author)

  3. Thermal and radiation losses in a linear device

    International Nuclear Information System (INIS)

    Rosenau, P.; Degani, D.

    1980-01-01

    An analysis is presented of the electron temperature in a linear device which includes the effect of thermal conduction, heat flux limit, radiation, and end plugs. It is found that the thermal conduction and the heat flux limit are dominant in the initial phase of cooling, while the later phase is almost completely controlled by radiation that spatially homogenizes the temperature distribution. In the case of bremsstrahlung, within the frame of the present model, the temperature decays to zero in a finite time. This process takes the form of a cooling wave that moves from the ends of the column to the center. Impurities cause a milder, exponential decay, which is still much faster than the algebraic conduction decay. The thermal effectiveness of the end plugs is described by a convective transfer coefficient h/sub p/. Its scaling law (in terms of the coupled plamsa-plug system) reveals that a very high plug-plasma density ratio provides a simple way to significantly retard the cooling

  4. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  5. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    Science.gov (United States)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  6. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  7. Formation of aromatic products at radiation-thermal destruction of lignin

    International Nuclear Information System (INIS)

    Metreveli, P.K.; Bludenko, A.V.; Ponomarev, A.V.

    2012-01-01

    Influence of electron irradiation on lignin destruction is studied. Hydrolyzed lignin and mixture of fatty acid triglycerides (FATG) have been irradiated by 8.5 MeV electrons. Comparative study of four variants of lignin destruction is carried out, they are pyrogenic distillation, post-radiation dry distillation, electron-beam distillation (EBD) and EBD at combined heating. The mechanism of lignin radiation-thermal transformation with guaiacol and creosol formation is considered. Lignin EBD is investigated depending on dose rate, absorbed dose, electroheating power and addition (FATG and chitin) content. It is pointed out, that lignin stimulates radiation-thermal conversion of FATG into low-viscosity diesel fuel. The conclusion is made, that lignin EBD at radiation and combined heating can be perspective effective method of vegetal polyphenols conversion into liquid phenols [ru

  8. Numerical Study of Thermal Radiation Effect on Confined Turbulent Free Triangular Jets

    Directory of Open Access Journals (Sweden)

    Kiyan Parham

    2013-01-01

    Full Text Available The present study investigates the effects of thermal radiation on turbulent free triangular jets. Finite volume method is applied for solving mass, momentum, and energy equations simultaneously. Discrete ordinate method is used to determine radiation transfer equation (RTE. Results are presented in terms of velocity, kinetic energy, and its dissipation rate fields. Results show that thermal radiation speeds the development of velocity on the jet axis and enhances kinetic energy; therefore, when radiation is added to free jet its mixing power, due to extra kinetic energy, increases.

  9. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    Science.gov (United States)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  10. VII International scientific conference Radiation-thermal effects and processes in inorganic materials. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    In the collection there are the reports of the VII International scientific conference and the VII All-Russian school-conference Radiation-thermal effects and processes in inorganic materials which were conducted on October 2-10, 2010, in Tomsk. The reports deal with new developments of charged particles high-intensity beam sources, high-temperature metrology of high-current beams and work materials, radiation-thermal stimulated effects and processes in inorganic materials, physical basics of technological processes, radiation-thermal technologies and equipment for their realization, allied branches of science and technology, specifically, nanotechnologies [ru

  11. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    International Nuclear Information System (INIS)

    Demarco, R.; Nmira, F.; Consalvi, J.L.

    2013-01-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C 1 –C 3 hydrocarbon–air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated

  12. Changes of intermediary taurine and tryptophan metabolism after combined radiation-thermal injury

    International Nuclear Information System (INIS)

    Konnova, L.A.; Novoselova, G.S.

    1986-01-01

    The dynamics of changes of the taurine and tryptophane concentration in blood serum of rats has been studied during 30 days after 3b degree burn of 15% of body surface after total even exposure to radiation in doses of 3 and 6 Gy, and after combined radiation thermal injury. Combined radiation-thermal injury was found to be characterized by reduced concentration of taurine but an increase of the tryptophane level from the second-third day after the injury

  13. An anisotropic diffusion approximation to thermal radiative transfer

    International Nuclear Information System (INIS)

    Johnson, Seth R.; Larsen, Edward W.

    2011-01-01

    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  14. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    Science.gov (United States)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  15. Experimental investigation of radiation effect on human thermal comfort by Taguchi method

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah; Yigit, Abdulvahap

    2016-01-01

    Highlights: • Radiation heat flux from lighting lamps on human thermal comfort is studied. • The effect of posture position on thermal comfort is investigated. • The effect of clothing color on thermal comfort is examined. • Radiation heat flux from halogen reflector lamp increase skin temperature more. • Posture position effect on thermal comfort is less than the other parameters. - Abstract: In this study, the effect of radiation heat flux of lighting lamps on human thermal comfort was investigated by using Taguchi method. In addition, at indoor conditions, clothing color and posture position under the radiation effect on thermal comfort were also investigated. For this purpose, experiments were performed in an air conditioned laboratory room in summer and autumn seasons. The amount of temperature rise on the back was considered as performance parameter. An L8 orthogonal array was selected as an experimental plan for the third parameters mentioned above for summer and autumn seasons. The results were analyzed for the optimum conditions using signal-to-noise (S/N) ratio and ANOVA method. The optimum results were found to be clear halogen lamp as lighting lamp, white as t-shirt color, standing as posture position, in summer season. The optimum levels of the lighting lamp, t-shirt color and posture position were found to be clear halogen lamp, white, sitting in autumn season, respectively.

  16. A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization

    International Nuclear Information System (INIS)

    Zhou Bing; Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the blackbody emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization principles are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  18. Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD

    Science.gov (United States)

    Pool, Vanessa L.; Dou, Benjia; Van Campen, Douglas G.; Klein-Stockert, Talysa R.; Barnes, Frank S.; Shaheen, Sean E.; Ahmad, Md I.; van Hest, Maikel F. A. M.; Toney, Michael F.

    2017-01-01

    Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI3) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI3 and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI3 annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI3 into PbI2. PMID:28094249

  19. Reduction in thermal conductivity of ceramics due to radiation damage

    International Nuclear Information System (INIS)

    Klemens, P.G.; Hurley, G.F.; Clinard, F.W. Jr.

    1976-01-01

    Ceramics are required for a number of applications in fusion reactors. In several of these applications, the thermal conductivity is an important design parameter as it affects the level of temperature and thermal stress in service. Ceramic insulators are known to suffer substantial reduction in thermal conductivity due to neutron irradiation damage. The present study estimates the reduction in thermal conductivity at high temperature due to radiation induced defects. Point, extended, and extended partly transparent defects are considered

  20. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  1. Thermal stabilities of various rubber vulcanization cured by sulfur, peroxide and gamma radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Shamshad Ahmed; Abdel Aziz, M.M.

    1999-01-01

    Sulfur and peroxide-cured rubber vulcanizates of NR and EPDM were obtained by blending the elastomers with fillers, antioxidants and appropriate accelerators, followed by vulcanization at 150 - 160 degree C. Blends of the same elastomers with appropriate co-agents and additives were also cured by gamma radiation at 150 and 200 kGy. A comparison of the thermal stabilities of these vulcanizates prepared by different curing techniques has been made by thermogravimetric analysis (TGA), assessed on the basis of comparison of DTG peak maxima, temperature for loss of 50% mass and actual thermal curves. The comparison reveals that the sulfur-cured vulcanizates are less thermally stable than their peroxide-cured counterparts. This may be attributed to the presence of a stronger C-C bond in case of peroxide-cured vulcanizates compared to weaker C-S sub x-C bond in case of sulfur-cured vulcanizates. However, compared to peroxide-cured vulcanizates, radiation-cured formulations demonstrated much improved thermal stability. This may originate from the existence of more uniformly distributed crosslinks and the enhanced rate of crosslink formation in the radiation process as compared to peroxide curing. In all the formulations whether sulfur, peroxide or radiation-cured, the natural rubber vulcanizates were found to be thermally much inferior to the synthetic contender, EPDM. Influence of variation of the amount of co-agent and other additives on the thermal stabilities of formulations of radiation cured NR and EPDM vulcanizates was also investigated

  2. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  3. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    Science.gov (United States)

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  4. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  5. Thermal injury lowers the threshold for radiation-induced neuroinflammation and cognitive dysfunction.

    Science.gov (United States)

    Cherry, Jonathan D; Williams, Jacqueline P; O'Banion, M Kerry; Olschowka, John A

    2013-10-01

    The consequences of radiation exposure alone are relatively well understood, but in the wake of events such as the World War II nuclear detonations and accidents such as Chernobyl, other critical factors have emerged that can substantially affect patient outcome. For example, ~70% of radiation victims from Hiroshima and Nagasaki received some sort of additional traumatic injury, the most common being thermal burn. Animal data has shown that the addition of thermal insult to radiation results in increased morbidity and mortality. To explore possible synergism between thermal injury and radiation on brain, C57BL/6J female mice were exposed to either 0 or 5 Gy whole-body gamma irradiation. Irradiation was immediately followed by a 10% total-body surface area full thickness thermal burn. Mice were sacrificed 6 h, 1 week or 6 month post-injury and brains and plasma were harvested for histology, mRNA analysis and cytokine ELISA. Plasma analysis revealed that combined injury synergistically upregulates IL-6 at acute time points. Additionally, at 6 h, combined injury resulted in a greater upregulation of the vascular marker, ICAM-1 and TNF-α mRNA. Enhanced activation of glial cells was also observed by CD68 and Iba1 immunohistochemistry at all time points. Additionally, doublecortin staining at 6 months showed reduced neurogenesis in all injury conditions. Finally, using a novel object recognition test, we observed that only mice with combined injury had significant learning and memory deficits. These results demonstrate that thermal injury lowers the threshold for radiation-induced neuroinflammation and long-term cognitive dysfunction.

  6. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  7. Dosimetric studies for gamma radiation validation of medical devices

    International Nuclear Information System (INIS)

    Soliman, Y.S.; Beshir, W.B.; Abdel-Fattah, A.A.; Abdel-Rehim, F.

    2013-01-01

    The delivery and validation of a specified dose to medical devices are key concerns to operators of gamma radiation facilities. The objective of the present study was to characterize the industrial gamma radiation facility and map the dose distribution inside the product-loading pattern during the validation and routine control of the sterilization process using radiochromic films. Cardboard phantoms were designed to achieve the homogeneity of absorbed doses. The uncertainty of the dose delivered during validation of the sterilization process was assessed. - Highlights: ► Using γ-rays for sterilization of hollow fiber dialyzers and blood tubing sets according to ISO 11137, 2006. ► Dosimetry studies of validations of γ-irradiation facility and sterilized medical devices. ► Places of D min and D max have been determined using FWT-60 films. ► Determining the target minimum doses required to meet the desired SAL of 10 −6 for the two products.

  8. Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context – Numerical modeling and validation

    International Nuclear Information System (INIS)

    Copertaro, Benedetta; Principi, Paolo; Fioretti, Roberto

    2016-01-01

    Highlights: • A refrigerated container with PCMs was evaluated in the Italian climatic context. • The numerical results were validated by an experimental campaign. • A 4.23% of mean bias was achieved comparing the numerical and experimental results. • PCMs application leads to a reduction in peak heat load of 20%. • An energy rate reduction of 4.65% was obtained in the PCMs added container. - Abstract: Due to external climatic conditions, radiation and temperature, refrigerated containers are subjected to high thermal stresses during storage in yards, warehouses, ships or during transport by rail or road. Moreover the consequent high thermal load has a great influence on both the electric and fuel energy consumption and on combined greenhouse gas emissions into the atmosphere. The aim of this research is the theoretical evaluation, using a previously validated Finite Element Method (FEM), of the related energy benefits deriving from the application of PCMs (Phase Change Materials) to a traditional refrigerated container envelope. Specifically the numerical analysis was performed for several kinds of PCMs, climatic conditions and exposures. The study also provides a numerical tool to be used in the prediction of the thermal performance of refrigerated container envelopes with PCM in the Italian context. An experimental analysis was carried out in order to test the accuracy of the numerical model and to validate it. Results show that PCM application to a 20’ ISO container envelope can reduce and shift the daily heat load phases with respect to a traditional envelope fitted only with insulating materials.

  9. A short history of nomograms and tables used for thermal radiation calculations

    Science.gov (United States)

    Stewart, Seán. M.; Johnson, R. Barry

    2016-09-01

    The theoretical concept of a perfect thermal radiator, the blackbody, was first introduced by the German physicist Gustav Robert Kirchhoff in 1860. By the latter half of the nineteenth century it had become the object of intense theoretical and experimental investigation. While an attempt at trying to theoretically understand the behavior of radiation emitted from a blackbody was undertaken by many eminent physicists of the day, its solution was not found until 1900 when Max Planck put forward his now famous law for thermal radiation. Today, of course, understanding blackbody behavior is vitally important to many fields including infrared systems, illumination, pyrometry, spectroscopy, astronomy, thermal engineering, cryogenics, and meteorology. Mathematically, the form Planck's law takes is rather cumbersome meaning calculations made with it before the advent of modern computers were rather tedious, dramatically slowing the process of computation. Fortunately, during those early days of the twentieth century researchers quickly realized Planck's equation, and the various functions closely related to it, readily lend themselves to being given a graphical, mechanical, or numerically tabulated form for their evaluation. The first of these computational aids to appear were tables. These arose shortly after Planck introduced his equation, were produced in the greatest number, and remained unsurpassed in their level of accuracy compared to all other aids made. It was also not long before nomograms designed to aid thermal radiation calculations appeared. Essentially a printed chart and requiring nothing more than a straightedge to use, nomograms were cheap and extremely easy to use. Facilitating instant answers to a range of quantities relating to thermal radiation, a number were produced and the inventiveness displayed in some was quite remarkable. In this paper we consider the historical development of many of the nomograms and tables developed and used by generations

  10. Validation study of FLUENT for the application of dry-storage system thermal analysis

    International Nuclear Information System (INIS)

    Tseng Yungshin; Wang Jongrong; Cheng Yihsiang; Shih Chunkuan

    2009-01-01

    In this study, the commercial CFD code, FLUENT, has been selected to evaluate the accuracy of the temperature prediction for nuclear fuel dry storage system (DSS). The experimental results of VSC-17 DSS were employed for such purposes. Through a minimal assumptions and necessary simplifications (e.g., the lumped model of fuel), a high integrity geometry model with about 4.0 million meshes was employed to solve the conjugate heat transfer coupled with thermal radiation problem. First, the general scheme validation indicates that FLUENT can provide a result which agrees well with analytical solution. It means that the numerical scheme included in FLUENT is reliable and accurate. The comparisons with VSC-17 further points out that the maximum temperature difference between simulation and experimental solution is less than 10degC and the maximum deviation for whole DSS is less than 5%. Those findings mentioned above imply that FLUENT can be a highly accurate thermal analysis tool for d DSS design. Through a series modeling and scheme selecting, this code can be an efficient tool for the new DSS development in the future. (author)

  11. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  12. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  13. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  14. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  15. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    Science.gov (United States)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  16. Radiation effects on thermal decomposition of inorganic solids

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1985-01-01

    Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)

  17. Thermal analysis of used and radiation treated polycarbonate (L-MW) biomaterial

    International Nuclear Information System (INIS)

    Jayabalan, M.; Sreenivasan, K.; Nair, P.D.; Jalajamani, K.V.

    1988-01-01

    γ-radiation treatment of radiation sterilized polycarbonate biomaterials has been carried out to ensure efficient disposal by incineration. Low molecular weight polycarbonate sterilized with 2.5 Mrad dose of γ-radiation was further treated with different doses of γ-radiation. The radiation-treated samples were subjected to thermogravimetry. The sterilized sample and the 7.5 Mrad-treated sample showed similar properties. These samples do not leave any residue during thermal decomposition. (author). 5 refs., 3 tables

  18. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    International Nuclear Information System (INIS)

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo

    2016-01-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO 2 ) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO 2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management

  19. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan)

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  20. Annular convective-radiative fins with a step change in thickness, and temperature-dependent thermal conductivity and heat transfer coefficient

    Science.gov (United States)

    Barforoush, M. S. M.; Saedodin, S.

    2018-01-01

    This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.

  1. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  2. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  3. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  4. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    Science.gov (United States)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  5. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  6. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    International Nuclear Information System (INIS)

    Mares, G.; Notingher, P.

    1996-01-01

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation

  7. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  8. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  9. Validation of the TEXSAN thermal-hydraulic analysis program

    International Nuclear Information System (INIS)

    Burns, S.P.; Klein, D.E.

    1992-01-01

    The TEXSAN thermal-hydraulic analysis program has been developed by the University of Texas at Austin (UT) to simulate buoyancy driven fluid flow and heat transfer in spent fuel and high level nuclear waste (HLW) shipping applications. As part of the TEXSAN software quality assurance program, the software has been subjected to a series of test cases intended to validate its capabilities. The validation tests include many physical phenomena which arise in spent fuel and HLW shipping applications. This paper describes some of the principal results of the TEXSAN validation tests and compares them to solutions available in the open literature. The TEXSAN validation effort has shown that the TEXSAN program is stable and consistent under a range of operating conditions and provides accuracy comparable with other heat transfer programs and evaluation techniques. The modeling capabilities and the interactive user interface employed by the TEXSAN program should make it a useful tool in HLW transportation analysis

  10. Combined environment aging effects: radiation-thermal degradation of polyvinylchloride and polyethylene

    International Nuclear Information System (INIS)

    Clough, R.L.; Gillen, K.T.

    1981-01-01

    Results are presented for a case of polymer aging in which powerful synergisms are found between radiation and temperature. This effect was observed with formulations of polyvinylchloride and polyethylene and occurred in simultaneous and sequential radiation-thermal experiments. Dose rate dependencies, which appear to be mechanistically related to the synergism, were also found. The evidence indicates that these aging effects are mediated by a thermally induced breakdown of peroxides initially formed by the radiation. Similar effects could be important to material degradation in a variety of other types of combined-stress environment. A new technique, which uses PH 3 treatment of intact polymer specimens to test for the importance of peroxides in the pathway that leads to changes in macroscopic tensile properties, is described

  11. Entropy Generation in Thermal Radiative Loading of Structures with Distinct Heaters

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-09-01

    Full Text Available Thermal loading by radiant heaters is used in building heating and hot structure design applications. In this research, characteristics of the thermal radiative heating of an enclosure by a distinct heater are investigated from the second law of thermodynamics point of view. The governing equations of conservation of mass, momentum, and energy (fluid and solid are solved by the finite volume method and the semi-implicit method for pressure linked equations (SIMPLE algorithm. Radiant heaters are modeled by constant heat flux elements, and the lower wall is held at a constant temperature while the other boundaries are adiabatic. The thermal conductivity and viscosity of the fluid are temperature-dependent, which leads to complex partial differential equations with nonlinear coefficients. The parameter study is done based on the amount of thermal load (presented by heating number as well as geometrical configuration parameters, such as the aspect ratio of the enclosure and the radiant heater number. The results present the effect of thermal and geometrical parameters on entropy generation and the distribution field. Furthermore, the effect of thermal radiative heating on both of the components of entropy generation (viscous dissipation and heat dissipation is investigated.

  12. Fire Intensity Data for Validation of the Radiative Transfer Equation

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  13. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  14. Thermal radiation effects on hydromagnetic flow

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2005-01-01

    Numerical results are presented for the effects of thermal radiation, buoyancy and heat generation or absorption on hydromagnetic flow over an accelerating permeable surface. These results are obtained by solving the coupled nonlinear partial differential equations describing the conservation of mass, momentum and energy by a perturbation technique. This qualitatively agrees with the expectations, since the magnetic field exerts a retarding force on the free convection flow. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, Prandtl number, Grashof number and Schmidt number on the profiles of the velocity components and temperature. The effects of the different parameters on the velocity and temperature profiles as well as the skin friction and wall heat transfer are presented graphically. Favorable comparisons with previously published work confirm the correctness of numerical results

  15. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    Science.gov (United States)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  16. Thermal analysis of an HVAC system with TRV controlled hydronic radiator

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2010-01-01

    A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis and contr......A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis...... and controller design. A discrete-element model with interconnected small scaled elements is proposed for the radiator. This models the radiator more precisely than that of a lumped model in terms of transfer delay and radiator gain. This precise modeling gives us an intuition into a regular unwanted phenomenon...... which occurs in low demand situations. When flow is very low in radiator and the supply water temperature and the pressure drop across the valve is constant, oscillation in room temperature occurs. One reason could be the large gain of radiator in low demand conditions compared to the high demand...

  17. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  18. Measurement of Thermal Radiation Properties of Solids

    Science.gov (United States)

    Richmond, J. C. (Editor)

    1963-01-01

    The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.

  19. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  20. Thermoluminescent dosemeters (TLD) exposed to high fluxes of gamma radiation, thermal neutrons and protons

    International Nuclear Information System (INIS)

    Gambarini, G.; Martini, M.; Meinardi, F.; Raffaglio, C.; Salvadori, P.; Scacco, A.; Sichirollo, A.E.

    1996-01-01

    Thermoluminescent dosemeters (TLD), widely experimented and utilized in personal dosimetry, have some advantageous characteristics which induce one to employ them also in radiotherapy. The new radiotherapy techniques are aimed at selectively depositing a high dose in cancerous tissues. This goal is reached by utilising both conventional and other more recently proposed radiation, such as thermal neutrons and heavy charged particles. In these inhomogeneous radiation fields a reliable mapping of the spatial distribution of absorbed dose is desirable, and the utilized dosemeters have to give such a possibility without notably perturbing the radiation field with the materials of the dosemeters themselves. TLDs, for their small dimension and their tissue equivalence for most radiation, give good support in the mapping of radiation fields. After exposure to the high fluxes of therapeutic beams, some commercial TL dosemeters have shown a loss of reliability. An investigation has therefore be performed, both on commercial and on laboratory made phosphors, in order to investigate their behaviour in such radiation fields. In particular the thermal neutron and gamma ray mixed field of the thermal column of a nuclear reactor, of interest for Boron Neutron Capture Therapy (B.N.C.T.) and a proton beam, of interest for proton therapy, were considered. Here some results obtained with new TL phosphors exposed in such radiation fields are presented, after a short description of some radiation damage effect on commercial LiF TLDs exposed in the (n th ,γ) field of the thermal column of a reactor. (author)

  1. Radiation thermal transformations of formaldehyde in alcohols

    International Nuclear Information System (INIS)

    Vetrov, V.S.; Korolev, V.M.; Koroleva, G.N.; Likholap, V.F.; Khomich, F.G.

    1978-01-01

    The effect of acid and reactor gamma radiation on the interaction of formaldehyde and methanol has been studied. The radiation-thermal investigations were carried out in the range of temperatures from 150 to 230 deg C. A dose rate of n,γ-radiation amounted to 2.4x10 17 eV (gxs). From the data obtained it is concluded that the 0.01-0.1 M formic acid addition and irradiation of the methanol-formaldehyde mixture result in a substantial increase in formaldehyde consumption, the acid addition increasing the rate of formaldehyde consumption in about two times; the n,γ-radiation effect is much powerful. The rate of methylal formation increases in the presence of acid and at the temperature rise; its maximum is formed in the range of 180-190 deg C. The methyl formiate formation increases with the acid addition and temperature rise. It is concluded that radiolytic protons can accelerate methylal formation from methanol-formaldehyde solutions. The temperature rise results in the concentration increase in a free form of formaldehyde and the formation of methylal and methyl formiate

  2. Radiation-thermal purification of waste water from oil pollution

    International Nuclear Information System (INIS)

    Mustafaev, I.; Guliyeva, N.; Rzayev, R.; Yagubov, K.

    2004-01-01

    Full text: During the extraction, preparation, transportation and refining of oil the sewages containing oil contaminations are produced. The concentration of oil content in the water depends on used technology and may vary from a thousandths parts up to tens percents. There is a necessity of cleaning this pollution up to a permissible level. There are numerous methods (adsorption, mechanical, chemical and etc) of treating of waster water from oil contaminations. Radiation-chemical method is one of the effective among the above mentioned methods. The results of radiation-thermal decomposition of n-heptane micro-admixtures in water medium are adduced. The main parameters of radiolysis change within the intervals: temperature 20-400 o C, absorbed dose - 0†10.8 kGy at dose rate 3.6 kGy/h. The correlation of n-heptane concentration and water steam changed within [C 5 H 1 2]/[H 2 O] (1-100) 10-5. Total concentration of steam was about 10 20 molec/ml. As a product of decomposition are observed H 2 , CO, CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 3 H 6 , C 4 H 8 , hydrocarbons C 5 , and C 6 . The changes of n-heptane concentration in the reactor also were established. The chain regime of n-heptane decomposition at high temperatures in the irradiated mixture is observed. The critical value of temperature and mixture ratio of components, under which the break of chain process of normal n-heptane occurs are defined. The mechanisms of proceeding radiation thermal processes in hydrocarbons-water system are discussed. At the temperatures higher than 300 o C the radiation-thermal decompositions of hydrocarbon micro-impurities in water into gas products occurs according a chain mechanism and the radiation-chemical yield of the decomposition exceeds 100 molec/100eV. This method can be used for purification of sewages from oil contaminations

  3. Thermal Decomposition of Radiation-Damaged Polystyrene

    International Nuclear Information System (INIS)

    J Abrefah, J.; Klinger, G.S.

    2000-01-01

    The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin polystyrene. The differences were in the

  4. Trial production of hyper-thermal neutron generator for Neutron Capture Therapy (NCT) and its radiation properties

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Toru

    1999-01-01

    In NCT, it was at first important to give a cancer portion to radiation dose required for its recovery. By finding out that whole cross-section of water comprising of a living body decreased monotonously with increase of neutron energy from about 100 barn against thermal neutron, became about 40 barn at about 0.5 eV and kept constant to 40 barn till at about 100 eV, application of thermal neutron shifted to higher temperature side, called Hyper thermal neutron, to NCT is proposed. The Hyper thermal neutron radiation can be expected to have similar controllability to that of the thermal neutron radiation. In 1977 fiscal year, a trial Hyper thermal neutron generator was produced on a base of up-to-date investigation results. As a part of property evaluation of the generator, evaluation of energy spectra in the Hyper thermal neutron generated at LINAC by TOF was conducted to confirm shift of the spectra to high temperature side. And, a Fantom experiment at KUR heavy water neutron radiation facility was also conducted to confirm effect of improvement in deep portion dose distribution. (G.K.)

  5. Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity

    Directory of Open Access Journals (Sweden)

    Moradi Amir

    2013-01-01

    Full Text Available In this article, the simultaneous convection-radiation heat transfer of a moving fin of variable thermal conductivity is studied. The differential transformation method (DTM is applied for an analytic solution for heat transfer in fin with two different profiles. Fin profiles are rectangular and exponential. The accuracy of analytic solution is validated by comparing it with the numerical solution that is obtained by fourth-order Runge-Kutta method. The analytical and numerical results are shown for different values of the embedding parameters. DTM results show that series converge rapidly with high accuracy. The results indicate that the fin tip temperature increases when ambient temperature increases. Conversely, the fin tip temperature decreases with an increase in the Peclet number, convection-conduction and radiation-conduction parameters. It is shown that the fin tip temperature of the exponential profile is higher than the rectangular one. The results indicate that the numerical data and analytical method are in a good agreement with each other.

  6. Integrated Validation System for a Thermal-hydraulic System Code, TASS/SMR-S

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Kim, Hyungjun; Kim, Soo Hyoung; Hwang, Young-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeon-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Development including enhancement and modification of thermal-hydraulic system computer code is indispensable to a new reactor, SMART. Usually, a thermal-hydraulic system code validation is achieved by a comparison with the results of corresponding physical effect tests. In the reactor safety field, a similar concept, referred to as separate effect tests has been used for a long time. But there are so many test data for comparison because a lot of separate effect tests and integral effect tests are required for a code validation. It is not easy to a code developer to validate a computer code whenever a code modification is occurred. IVS produces graphs which shown the comparison the code calculation results with the corresponding test results automatically. IVS was developed for a validation of TASS/SMR-S code. The code validation could be achieved by a comparison code calculation results with corresponding test results. This comparison was represented as a graph for convenience. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. The code developer could gain a confidence about his code modification easily and fast and could be free from tedious and long validation work. The popular software introduced in IVS supplies better usability and portability.

  7. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    International Nuclear Information System (INIS)

    Harish, V.; Nagaiah, N.

    2011-01-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  8. Experimental investigation of radiative thermal rectifier using vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-12-22

    Vanadium dioxide (VO{sub 2}) exhibits a phase-change behavior from the insulating state to the metallic state around 340 K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO{sub 2} deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO{sub 2} film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.

  9. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  10. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)

    2016-08-15

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  11. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  12. Efficiency of early application of immunomodulators in combined effect of radiation and thermal injury

    International Nuclear Information System (INIS)

    Makarov, G.F.

    1989-01-01

    Medical effect of thymus preparations (thymoline, thymoptine) and levamysole under combined radiation-thermal injury is studied. Experimental results have shown that early application of certain immunostimulators under combined radiation-thermal injury of medium criticality is low-efficient. Their ability to sufficiently increase the antibody synthesis is manifested only under combined action of burns and irradiation in non-lethal doses. 5 refs

  13. Theory and validation of a liquid radiation filter greenhouse simulation for performance prediction

    International Nuclear Information System (INIS)

    Feuermann, D.; Kopel, R.; Zeroni, M.; Levi, S.; Gale, J.

    1997-01-01

    A greenhouse is described which has a selectively absorbing liquid radiation filter (LRF) circulating in double layered cladding. The filter removes much of the near infrared wave band of solar radiation (700 nm) while transmitting most of the photosynthetic radiation (400-700 nm). This greatly reduces the heat input to the greenhouse and, by transferring heat from day to night, facilitates better temperature control. This is particularly important for CO2 fertilization, which requires that the greenhouse should remain closed during daylight hours. A computer simulation model was developed to study the relationship between design parameters of such a LRF greenhouse and its thermal performance under different climatic conditions. The model was based on a small number of governing equations describing the major physical phenomena responsible for the greenhouse climate. Validation of the simulation was performed with data from a 330 m2 LRF greenhouse, operating in the Negev (Israel) desert highlands. The predicted greenhouse temperatures were found to agree with measured values to within one to two degrees Celsius. Performances of a LRF and a conventional greenhouse were compared using the simulation and hourly meteorological data for central Israel. For the summer season of May to October, the number of daylight hours during which the LRF greenhouse could remain closed was larger by about two-thirds than that of the conventional greenhouse

  14. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Stéphane Guichard

    2015-12-01

    Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.

  15. Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory

    International Nuclear Information System (INIS)

    Roura, P.; Costa, J.

    2002-01-01

    Among the rush of papers published after the discovery of visible luminescence in porous silicon, a number of them claimed that an extraordinary behaviour had been found. However, after five years of struggling with increasingly sophisticated but not completely successful models, it was finally demonstrated that it was simply thermal radiation. Here, we calculate thermal radiation emitted by silicon nanoparticles when irradiated in vacuum with a laser beam. If one interprets this radiation as being photoluminescence, its properties appear extraordinary: non-exponential excitation and decay transients and a supralinear dependence on laser power. Within the (quantum) theory of photoluminescence, this behaviour can be interpreted as arising from a non-usual excitation mechanism known as multiphoton excitation. Although this erroneous interpretation has, to some extent, a predictive power, it is unable to give a sound explanation for the quenching of radiation when particles are not irradiated in vacuum but inside a gas. The real story of this error is presented both to achieve a deeper understanding of the radiative thermal emission of nanoparticles and as a matter of reflection on scientific activity. (author)

  16. Thermal performance of a radiatively cooled system for quantum optomechanical experiments in space

    International Nuclear Information System (INIS)

    Pilan Zanoni, André; Burkhardt, Johannes; Johann, Ulrich; Aspelmeyer, Markus; Kaltenbaek, Rainer; Hechenblaikner, Gerald

    2016-01-01

    Highlights: • We improved performance and design aspects of a radiatively cooled instrument. • A heat-flow analysis showed near optimal performance of the shield design. • A simple modification to imaging optics allowed further improvements. • We studied the thermal behavior for different orbital cases. • A transfer-function analysis showed strong attenuation of thermal variations. - Abstract: Passive cooling of scientific instruments via thermal radiation to deep space offers many advantages over active cooling in terms of mission cost, lifetime and the achievable quality of vacuum and microgravity. Motivated by the mission proposal MAQRO to test the foundations of quantum physics harnessing a deep-space environment, we investigate the performance of a radiatively cooled instrument, where the environment of a test particle in a quantum superposition has to be cooled to less than 20 K. We perform a heat-transfer analysis between the instrument components and a transfer-function analysis on thermal oscillations induced by the spacecraft interior and dissipative sources. The thermal behavior of the instrument is discussed for an orbit around a Lagrangian point and for a highly elliptical Earth orbit. Finally, we investigate possible design improvements. These include a mirror-based design of the imaging system on the optical bench (OB) and an extension of the heat shields.

  17. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  18. Low temperature thermal radiative properties of gold coated metals

    Czech Academy of Sciences Publication Activity Database

    Frolec, Jiří; Králík, Tomáš; Srnka, Aleš

    2017-01-01

    Roč. 82, OCT (2017), s. 51-55 ISSN 0140-7007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : gold films * heat transfer * thermal radiation * cryogenics Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.779, year: 2016

  19. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yoshihito Kurazumi

    2013-01-01

    Full Text Available In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.

  20. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Science.gov (United States)

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  1. Effect of prior hyperthermia on subsequent thermal enhancement of radiation damage in mouse intestine

    International Nuclear Information System (INIS)

    Marigold, J.C.L.; Hume, S.P.

    1982-01-01

    Hyperthermia given in conjunction with X-rays results in a greater level of radiation injury than following X-rays alone, giving a thermal enhancement ratio (TER). The effect of prior hyperthermia ('priming') on TER was studied in the small intestine of mouse by giving 42.0 deg C for 1 hour at various times before the combined heat and X-ray treatments. Radiation damage was assessed by measuring crypt survival 4 days after radiation. TER was reduced when 'priming' hyperthermia was given 24-48 hours before the combined treatments. The reduction in effectiveness of the second heat treatment corresponded to a reduction in hyperthermal temperature of approximately 0.5 deg C, a value similar to that previously reported for induced resistance to heat given alone ('thermotolerance') (Hume and Marigold 1980). However, the time courses for development and decay of the TER response were much longer than those for 'thermotolerance', suggesting that different mechanisms are involved in thermal damage following heat alone and thermal enhancement of radiation damage

  2. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    Science.gov (United States)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  3. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    Science.gov (United States)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  4. Simultaneous Thermal and Gamma Radiation Aging of Electrical Cable Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.

    2018-04-11

    The polymers used for insulation in nuclear power plant electrical cables are susceptible to aging during long term operation. Elevated temperature is the primary contributor to changes in polymer structure that result loss of mechanical and electrical properties, but gamma radiation is also a significant source of degradation for polymers used within relevant plant locations. Despite many years of polymer degradation research, the combined effects of simultaneous exposure to thermal and radiation stress are not well understood. As nuclear operators contemplate and prepare for extended operations beyond initial license periods, a predictive understanding of exposure-based cable material degradation is becoming an increasingly important input to safety, licensing, operations and economic decisions. We are focusing on carefully-controlled simultaneous thermal and gamma radiation accelerating aging and characterization of the most common nuclear cable polymers to understand the relative contributions of temperature, time, dose and dose rate to changes in cable polymer material structure and properties. Improved understanding of cable performance in long term operation will help support continued sustainable nuclear power generation.

  5. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    International Nuclear Information System (INIS)

    Sodha, M. S.; Mishra, S. K.

    2011-01-01

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  6. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  7. Heat and mass transfer effects on moving vertical plate in the presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2004-01-01

    Full Text Available Thermal radiation effects on moving infinite vertical plate in the presence variable temperature and mass diffusion is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature and the concentration level near the plate are raised linearly with time. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity and skin-friction are studied for different parameters like thermal Grashof number, mass Grashof number, time and radiation parameter. It is observed that the velocity slightly decreases with increasing value of the radiation parameter.

  8. International Scientific Conference on 'Radiation-Thermal Effects and Processes in Inorganic Materials'

    International Nuclear Information System (INIS)

    2015-01-01

    The International Scientific Conference on 'Radiation-Thermal Effects and Processes in Inorganic Materials' is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects № 14-38-10210 and № 14-02-20376. (introduction)

  9. Optimized thermal amplification in a radiative transistor

    Energy Technology Data Exchange (ETDEWEB)

    Prod' homme, Hugo; Ordonez-Miranda, Jose; Ezzahri, Younes, E-mail: younes.ezzahri@univ-poitiers.fr; Drevillon, Jeremie; Joulain, Karl [Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962 Futuroscope Chasseneuil (France)

    2016-05-21

    The thermal performance of a far-field radiative transistor made up of a VO{sub 2} base in between a blackbody collector and a blackbody emitter is theoretically studied and optimized. This is done by using the grey approximation on the emissivity of VO{sub 2} and deriving analytical expressions for the involved heat fluxes and transistor amplification factor. It is shown that this amplification factor can be maximized by tuning the base temperature close to its critical one, which is determined by the temperature derivative of the VO{sub 2} emissivity and the equilibrium temperatures of the collector and emitter. This maximization is the result of the presence of two bi-stable temperatures appearing during the heating and cooling processes of the VO{sub 2} base and enables a thermal switching (temperature jump) characterized by a sizeable variation of the collector-to-base and base-to-emitter heat fluxes associated with a slight change of the applied power to the base. This switching effect leads to the optimization of the amplification factor and therefore it could be used for thermal modulation purposes.

  10. Experimental validation of thermal design of top shield for a pool type SFR

    International Nuclear Information System (INIS)

    Aithal, Sriramachandra; Babu, V. Rajan; Balasubramaniyan, V.; Velusamy, K.; Chellapandi, P.

    2016-01-01

    Highlights: • Overall thermal design of top shield in a SFR is experimentally verified. • Air jet cooling is effective in ensuring the temperatures limits for top shield. • Convection patterns in narrow annulus are in line with published CFD results. • Wire mesh insulation ensures gradual thermal gradient at top portion of main vessel. • Under loss of cooling scenario, sufficient time is available for corrective action. - Abstract: An Integrated Top Shield Test Facility towards validation of thermal design of top shield for a pool type SFR has been conceived, constructed & commissioned. Detailed experiments were performed in this experimental facility having full-scale features. Steady state temperature distribution within the facility is measured for various heater plate temperatures in addition to simulating different operating states of the reactor. Following are the important observations (i) jet cooling system is effective in regulating the roof slab bottom plate temperature and thermal gradient across roof slab simulating normal operation of reactor, (ii) wire mesh insulation provided in roof slab-main vessel annulus is effective in obtaining gradual thermal gradient along main vessel top portion and inhibiting the setting up of cellular convection within annulus and (iii) cellular convection with four distinct convective cells sets in the annular gap between roof slab and small rotatable plug measuring ∼ϕ4 m in diameter & gap width varying from 16 mm to 30 mm. Repeatability of results is also ensured during all the above tests. The results presented in this paper is expected to provide reference data for validation of thermal hydraulic models in addition to serving as design validation of jet cooling system for pool type SFR.

  11. Validation of MCNP4A for repository scattered radiation analysis

    International Nuclear Information System (INIS)

    Haas, M.N.; Su, S.

    1998-02-01

    Comparison is made between experimentally determined albedo (scattered) radiation and MCNP4A predictions in order to provide independent validation for repository shielding analysis. Both neutron and gamma scattered radiation fields from concrete ducts are compared in this paper. Satisfactory agreement is found between actual and calculated results with conservative values calculated by the MCNP4A code for all conditions

  12. The fundamentals of the radiation thermal technology for cement production

    International Nuclear Information System (INIS)

    Abramson, I.G.; Kapralova, R.M.; Nikiforov, Yu.V.; Egorov, G.B.; Vaisman, A.F.

    1995-01-01

    The fundamentals of principally new radiation thermal way of cement production are presented. The peculiarities of qualities and structure of clinker obtained by this way are given. The technical economic advantages of the new technology are shown

  13. Hermite- Padé projection to thermal radiative and variable ...

    African Journals Online (AJOL)

    The combined effect of variable thermal conductivity and radiative heat transfer on steady flow of a conducting optically thin viscous fluid through a channel with sliding wall and non-uniform wall temperatures under the influence of an externally applied homogeneous magnetic field are analyzed in the present study.

  14. On the selection of shape and orientation of a greenhouse. Thermal modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 004, Punjab (India)

    2009-01-15

    In this study, five most commonly used single span shapes of greenhouses viz. even-span, uneven-span, vinery, modified arch and quonset type have been selected for comparison. The length, width and height (at the center) are kept same for all the selected shapes. A mathematical model for computing transmitted total solar radiation (beam, diffused and ground reflected) at each hour, for each month and at any latitude for the selected geometry greenhouses (through each wall, inclined surfaces and roofs) is developed for both east-west and north-south orientation. Computed transmitted solar radiation is then introduced in a transient thermal model developed to compute hourly inside air temperature for each shape and orientation. Experimental validation of both the models is carried out for the measured total solar radiation and inside air temperature for an east-west orientation, even-span greenhouse (for a typical day in summer) at Ludhiana (31 N and 77 E) Punjab, India. During the experimentation, capsicum crop is grown inside the greenhouse. The predicted and measured values are in close agreement. Results show that uneven-span shape greenhouse receives the maximum and quonset shape receives the minimum solar radiation during each month of the year at all latitudes. East-west orientation is the best suited for year round greenhouse applications at all latitudes as this orientation receives greater total radiation in winter and less in summer except near the equator. Results also show that inside air temperature rise depends upon the shape of the greenhouse and this variation from uneven-span shape to quonset shape is 4.6 C (maximum) and 3.5 C (daily average) at 31 N latitude. (author)

  15. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2015-09-01

    Full Text Available This paper investigates the theoretical influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. The model which constituted highly nonlinear governing equations is transformed using similarity solution and then solved using homotopy analysis method (HAM. The analysis is carried out up to the 5th order of approximation and the influences of different physical parameters such as Prandtl number, Grashof number, suction/injection parameter, thermal radiation parameter and heat generation/absorption coefficient and also Hartman number on dimensionless velocity, temperature and the rate of heat transfer are investigated and discussed quantitatively with the aid of graphs. Numerical results obtained are compared with the previous results published in the literature and are found to be in good agreement. It was found that when the buoyancy parameter and the fluid velocity increase, the thermal boundary layer decreases. In case of the thermal radiation, increasing the thermal radiation parameter produces significant increases in the thermal conditions of the fluid temperature which cause more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer thickness increase as a result of increase in radiation.

  16. High thermal efficiency, radiation-based advanced fusion reactors. Final report

    International Nuclear Information System (INIS)

    Taussig, R.T.

    1977-04-01

    A new energy conversion scheme is explored in this study which has the potential of achieving thermal cycle efficiencies high enough (e.g., 60 to 70 percent) to make advanced fuel fusion reactors attractive net power producers. In this scheme, a radiation boiler admits a large fraction of the x-ray energy from the fusion plasma through a low-Z first wall into a high-Z working fluid where the energy is absorbed at temperatures of 2000 0 K to 3000 0 K. The hot working fluid expands in an energy exchanger against a cooler, light gas, transferring most of the work of expansion from one gas to the other. By operating the radiation/boiler/energy exchanger as a combined cycle, full advantage of the high temperatures can be taken to achieve high thermal efficiency. The existence of a mature combined cycle technology from the development of space power plants gives the advanced fuel fusion reactor application a firm engineering base from which it can grow rapidly, if need be. What is more important, the energy exchanger essentially removes the peak temperature limitations previously set by heat engine inlet conditions, so that much higher combined cycle efficiencies can be reached. This scheme is applied to the case of an advanced fuel proton-boron 11 fusion reactor using a single reheat topping and bottoming cycle. A wide variety of possible working fluid combinations are considered and particular cycle calculations for the thermal efficiency are presented. The operation of the radiation boiler and energy exchanger are both described. Material compatibility, x-ray absorption, thermal hydraulics, structural integrity, and other technical features of these components are analyzed to make a preliminary assessment of the feasibility of this concept

  17. Influence of thermal fluctuations on Cherenkov radiation from fluxons in dissipative Josephson systems

    DEFF Research Database (Denmark)

    Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.

    2000-01-01

    The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...

  18. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  19. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  20. Cyclotron radiation from thermal and non-thermal electrons in the WEGA-stellarator

    International Nuclear Information System (INIS)

    Piekaar, H.W.; Rutgers, W.R.

    1980-11-01

    Electron cyclotron radiation measurements on the WEGA-stellarator are reported. Emission spectra around 2ωsub(ce) and 3ωsub(ce) were measured with a far-infra-red spectrometer and InSb detectors. When the plasma loop voltage is high, runaway electrons give rise to intense broad-band emission. Runaway particles can be removed by increasing the plasma density. For low loop voltage discharges the electron temperature profile was deduced from thermal emission around 2ωsub(ce). In spite of the low E-field, runaway particles are still created and pitch-angle scattered because ωsub(pe)/ωsub(ce) approximately 1. From non-thermal emission below 2ωsub(ce) and 3ωsub(ce) the energy and number of particles could be calculated, and was found to be in agreement with existing theories

  1. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  2. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  3. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  4. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  5. Non-thermal axion dark radiation and constraints

    International Nuclear Information System (INIS)

    Mazumdar, Anupam

    2016-07-01

    The Peccei-Quinn mechanism presents a neat solution to the strong CP problem. As a by-product, it provides an ideal dark matter candidate, ''the axion'', albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultra-relativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.

  6. Radiative contribution to the thermal conductivity of fibrous insulations

    Science.gov (United States)

    Linford, R. M. F.; Schmitt, R. J.; Hughes, T. A.

    1974-01-01

    An approach is shown for using a simple two-flux model to interpret infrared transmission data for a variety of reuseable surface insulations materials and to calculate the radiation transmission. A description is given of preliminary experiments on mullite and silica-based materials. The calculated parameters are compared with the measured values of the total thermal conductivity, as determined on guarded hot plate equipment. It is pointed out that for many samples the newly developed four-flux model must be utilized because the scattering properties of the fibers are often dependent on the wavelength of the radiation.

  7. Validation experiments of nuclear characteristics of the fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Zavaljevski, N.; Marinkovic, P.; Stefanovis, D.; Nikolic, D.; Avdic, S.

    1992-01-01

    In 1988/90 a coupled fast-thermal system HERBE at RB reactor, based on similar facilities, is designed and realized. Fast core of HERBE is built of natural U fuel in RB reactor center surrounded by the neutron filter and neutron converter located in an independent Al tank. Fast zone is surrounded by thermal neutron core driver. Designed nuclear characteristics of HERBE core are validated in the experiments described in the paper. HERBE cell parameters were calculated with developed computer codes: VESNA and DENEB. HERBE system criticality calculation are performed with 4G 2D RZ computer codes GALER and TWENTY GRAND, 1D multi-group AVERY code and 3D XYZ few-group TRITON computer code. The experiments for determination of critical level, dρ/dH, and reactivity of safety rods are accomplished in order to validate calculation results. Specific safety experiment is performed in aim to determine reactivity of flooded fast zone in possible accident. A very good agreements with calculation results are obtained and the validation procedures are presented. It is expected that HERBE will offer qualitative new opportunities for work with fast neutrons at RB reactor including nuclear data determination. (author)

  8. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, Aba [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, P.O. Box 17000, Stn Forces, Kingston, ON, K7K 7B4 (Canada)], E-mail: aba.mortley@rmc.ca; Bonin, H.W.; Bui, V.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, P.O. Box 17000, Stn Forces, Kingston, ON, K7K 7B4 (Canada)

    2007-12-15

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging {sup 13}C solid state NMR spectra imply limited sample degradation with increasing radiation.

  9. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    International Nuclear Information System (INIS)

    Mortley, Aba; Bonin, H.W.; Bui, V.T.

    2007-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13 C solid state NMR spectra imply limited sample degradation with increasing radiation

  10. Accelerated thermal and radiation-oxidation combined degradation of electric cable insulation materials

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Seguchi, Tadao; Yoshida, Kenzo

    1986-03-01

    For the development of accelerated testing methodology to estimate the life time of electric cable, which is installed in radiation field such as a nuclear reactor containment vessel, radiation and thermal combined degradation of cable insulation and jacketing materials was studied. The materials were two types of formulated polyethylene, ethylene-propylene rubber, Hypalon, and Neoprene. With Co-60 γ-rays the materials were irradiated up to 0.5 MGy under vacuum and in oxygen under pressure, then exposed to thermal aging at elevated temperature in oxygen. The degradation was investigated by the tensile test, gelfraction, and swelling measurements. The thermal degradation rate for each sample increases with increase of oxygen concentration, i.e. oxygen pressure, during the aging, and tends to saturate above 0.2 MPa of oxygen pressure. Then, the effects of irradiation and the temperature on the thermal degradation rate were investigated at the oxygen pressure of 0.2 MPa in the temperature range from 110 deg C to 150 deg C. For all of samples irradiated in oxygen, the following thermal degradation rate was accelerated by several times comparing with unirradiated samples, while the rate of thermal degradation for the sample except Neoprene irradiated under vacuum was nearly equal to that of unirradiated one. By the analysis of thermal degradation rate against temperature using Arrhenius equation, it was found that the activation energy tends to decrease for the samples irradiated in oxidation condition. (author)

  11. Thermal imaging method to visualize a hidden painting thermally excited by far infrared radiations

    Science.gov (United States)

    Davin, T.; Wang, X.; Chabane, A.; Pawelko, R.; Guida, G.; Serio, B.; Hervé, P.

    2015-06-01

    The diagnosis of hidden painting is a major issue for cultural heritage. In this paper, a non-destructive active infrared thermographic technique was considered to reveal paintings covered by a lime layer. An extended infrared spectral range radiation was used as the excitation source. The external long wave infrared energy source delivered to the surface is then propagated through the material until it encounters a painting zone. Due to several thermal effects, the sample surface then presents non-uniformity patterns. Using a high sensitive infrared camera, the presence of covered pigments can thus be highlighted by the analysis of the non-stationary phenomena. Reconstituted thermal contrast images of mural samples covered by a lime layer are shown.

  12. A Re-examination of Kirchhoff's Law of Thermal Radiation in Relation to Recent Criticisms: Reply (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2016-07-01

    Full Text Available Recently, Robert J. Johnson submitted an analysis of my work, relative to Kirchhoff’s Law of Thermal Emission (R.J. Johnson, A Re-examination of Kirchhoff’s Law of Thermal Radiation in Relation to Recent Criticisms. Prog. Phys. , 2016, v.12, no.3, 175–183 in which he reached the conclusion that “Robitaille’s claims are not sus- tainable and that Kirchhoff’s Law and Planck’s proof remain valid in the situations for which they were intended to apply, including in cavities with walls of any arbi- trary materials in thermal equilibrium” . However, even a cursory review of Johnson’s letter reveals that his conclusions are unjustified. No section constitutes a proper chal- lenge to my writings. Nonetheless, his letter is important, as it serves to underscore the impossibility of defending Kirchhoff’s work. At the onset, Kirchhoff formulated his law, based solely on thought experiments and, without an y experimental evidence (G. Kirchhoff, ̈Uber das Verh ̈altnis zwischen dem Emissionsverm ̈ogen und dem Ab- sorptionsvermogen. der K ̈orper fur W ̈arme und Licht. Pogg. Ann. Phys. Chem. , 1860, v. 109, 275–301. Thought experiments, not laboratory confirmation, remain the ba- sis on which Kirchhoff’s law is defended, despite the passage of 150 years. For his part, Max Planck tried to derive Kirchhoff’s Law by redefining the nature of a black body and relying on the use of polarized radiation, even though he realized that heat radiation is never polarized (Planck M. The Theory of Heat radiation . P.Blakiston’s Son & Co., Philadelphia, PA, 1914. In advancing his proof of Kirchhoff’s Law, Max Planck concluded that the reflectivities of any two arbitrary materials must be equal, though he argued otherwise (see P.-M. Robitaille and S.J. Cr others, “The Theory of Heat Radiation” Revisited: A Commentary on the Validity of Kirchhoff’s Law of Ther- mal Emission and Max Planck’s Claim of Universality. Prog. Phys., 2015, v

  13. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    International Nuclear Information System (INIS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-01-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO 2 substrates, we confirm recent theoretical predictions of T 2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures

  14. Thermal property characterization of fine fibers by the 3-omega technique

    International Nuclear Information System (INIS)

    Xing, Changhu; Jensen, Colby; Munro, Troy; White, Benjamin; Ban, Heng; Chirtoc, Mihai

    2014-01-01

    The 3 omega method is one of few reliable measurement techniques for thermal characterization of micro to nanoscale suspended wires or fibers and has been applied for measurements of carbon nanotubes and silicon nanowires. However, the models described in the past were either complicated for analysis or simplified from a more complete solution. In addition, the past models cannot be implemented directly when using a more reliable measurement configuration with a Wheatstone bridge. In this work, a simpler, explicit model, is developed to describe the heat transfer process through a suspended wire for measurement of its thermal properties. Generic trends and values of the 3ω harmonic voltage amplitude and phase responses clearly indicate the frequency limits for thermal conductivity and heat capacity determination and ideal conditions for thermal diffusivity estimation. Based on a sensitivity analysis, these limits are confirmed and appropriate frequency ranges for thermal conductivity and diffusivity are recommended. Radiation influence on the measurement results is quantified and correlated to a dimensionless radiation parameter. Two methods are presented to determine sample thermal properties independent of lateral heat losses and validated by numerical experiments using COMSOL. Uncertainty analysis was also derived by Taylor series expansion with calculated parameter sensitivities. - Highlights: • An improved model for suspended wire 3 omega measurement. • Quantification on the radiation induced measurement error. • Numerical simulation validating the improved model. • Sensitivity analysis to find measurement range minimizing uncertainty

  15. Impact of an angiotensin analogue in treating thermal and combined radiation injuries

    Science.gov (United States)

    Jadhav, Sachin Suresh

    Background: In recent years there has been a growing concern regarding the use of nuclear weapons by terrorists. Such incidents in the past have shown that radiation exposure is often accompanied by other forms of trauma such as burns, wounds or infection; leading to increased mortality rates among the affected individuals. This increased risk with combined radiation injury has been attributed to the delayed wound healing observed in this injury. The Renin-Angiotensin System (RAS) has emerged as a critical regulator of wound healing. Angiotensin II (A-II) and Angiotensin (1-7) [A(1-7)] have been shown to accelerate the rate of wound healing in different animal models of cutaneous injury. Nor-Leu3-Angiotensin (1-7) [Nor-Leu3-A (1-7)], an analogue of A(1-7), is more efficient than both A-II and A(1-7) in its ability to improve wound healing and is currently in phase III clinical trials for the treatment of diabetic foot ulcers. Aims: The three main goals of this study were to; 1) Develop a combined radiation and burn injury (CRBI) model and a radiation-induced cutaneous injury model to study the pathophysiological effects of these injuries on dermal wound healing; 2) To treat thermal and CRBI injuries using Nor-Leu 3-A (1-7) and decipher the mechanism of action of this peptide and 3) Develop an in-vitro model of CRBI using dermal cells in order to study the effect of CRBI on individual cell types involved in wound healing. Results: CRBI results in delayed and exacerbated apoptosis, necrosis and inflammation in injured skin as compared to thermal injury by itself. Radiation-induced cutaneous injury shows a radiation-dose dependent increase in inflammation as well as a chronic inflammatory response in the higher radiation exposure groups. Nor-Leu3-A (1-7) can mitigate thermal and CRBI injuries by reducing inflammation, oxidative stress and DNA damage while increasing the rate of proliferation of dermal stem cells and re-epithelialization of injured skin. The in

  16. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.

    Science.gov (United States)

    Tattersall, Glenn J; Andrade, Denis V; Abe, Augusto S

    2009-07-24

    The toco toucan (Ramphastos toco), the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, from serving as a sexual ornament to being a refined adaptation for feeding. However, it is also a significant surface area for heat exchange. Here we show the remarkable capacity of the toco toucan to regulate heat distribution by modifying blood flow, using the bill as a transient thermal radiator. Our results indicate that the toucan's bill is, relative to its size, one of the largest thermal windows in the animal kingdom, rivaling elephants' ears in its ability to radiate body heat.

  17. Steady state ensembles of thermal radiation in a layered media with a constant heat flux

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Bogy, David B.

    2013-01-01

    This paper describes steady-state ensembles of thermally excited electromagnetic radiation in nano-scale layered media with a constant non-vanishing heat flux across the layers. It is shown that Planck's law of thermal radiation, the principle of equivalence, and the laws of wave propagation in layered media, imply that in order for the ensemble of thermally excited electromagnetic fields to exist in a medium consisting of a stack of layers between two half-space, the net heat flux across the layers must exceed a certain threshold that is determined by the temperatures of the half spaces and by the reflective properties of the entire structure. The obtained results provide a way for estimating the radiative heat transfer coefficient of nano-scale layered structures. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  19. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  20. Validation of thermal hydraulic computer codes for advanced light water reactor

    International Nuclear Information System (INIS)

    Macek, J.

    2001-01-01

    The Czech Republic operates 4 WWER-440 units, two WWER-1000 units are being finalised (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppressure system are modelled with RALOC and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems. An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. The paper provides a concise information on these activities of the NRI and its Thermal-hydraulics Department. A detailed example of the system code validation and the consequent utilisation of the results for a real NPP purposes is included. (author)

  1. Design of a test-bench to validate a model of a thermal window design; Diseno de un banco de ensayos para la validacion de un modelo de diseno termico de ventanas

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra O, Claudio; Fissore Sch, Adelqui; Mottard, Jean-Michel [Universidad de Concepcion (Chile). Facultad de Ingenieria. Dept. de Ingenieria Mecanica]. E-mail: clsaaved @udec.cl; afissore@udec.cl

    2000-07-01

    Paper presents the design of a test-bench and instrumentation to validate a window thermal mathematical model. The test-bench simulate the thermal performance of a office with a only one wall in directly contact with outdoors, where a single glass window is mounted. To obtain a similar heat transfer relation as the real building, the chamber has been designed and manufactured with an inner and an outer envelope, and with an air spacing maintaining at the same temperature that the test chamber. To change the window size, the test-bench is equipped with a single modifiable outer wall. Instrumentation and methods of measurement for solar radiation, infra red outdoor radiation, indoor and outdoor air temperatures, wind velocity, heat transfer, air ventilating flow and temperature, wall temperatures, etc. are specified. (author)

  2. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    International Nuclear Information System (INIS)

    Sinha, A.; Shit, G.C.

    2015-01-01

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field

  3. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A. [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Institute of Mathematical Sciences, Chennai 600113 (India)

    2015-03-15

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field.

  4. Validation matrix for the assessment of thermal-hydraulic codes for VVER LOCA and transients. A report by the OECD support group on the VVER thermal-hydraulic code validation matrix

    International Nuclear Information System (INIS)

    2001-06-01

    This report deals with an internationally agreed experimental test facility matrix for the validation of best estimate thermal-hydraulic computer codes applied for the analysis of VVER reactor primary systems in accident and transient conditions. Firstly, the main physical phenomena that occur during the considered accidents are identified, test types are specified, and test facilities that supplement the CSNI CCVMs and are suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. The construction of VVER Thermal-Hydraulic Code Validation Matrix follows the logic of the CSNI Code Validation Matrices (CCVM). Similar to the CCVM it is an attempt to collect together in a systematic way the best sets of available test data for VVER specific code validation, assessment and improvement, including quantitative assessment of uncertainties in the modelling of phenomena by the codes. In addition to this objective, it is an attempt to record information which has been generated in countries operating VVER reactors over the last 20 years so that it is more accessible to present and future workers in that field than would otherwise be the case. (authors)

  5. Double diffusive magnetohydrodynamic heat and mass transfer of nanofluids over a nonlinear stretching/shrinking sheet with viscous-Ohmic dissipation and thermal radiation

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2017-03-01

    Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.

  6. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  7. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    Directory of Open Access Journals (Sweden)

    M. Awais

    2018-03-01

    Full Text Available The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed. Keywords: Nanoparticles, Polymeric liquid, Oldroyd-B model, Nonlinear thermal radiation

  8. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  9. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  10. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (CRAY VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  11. Relativistic, Viscous, Radiation Hydrodynamic Simulations of Geometrically Thin Disks. I. Thermal and Other Instabilities

    Science.gov (United States)

    Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek

    2018-04-01

    We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.

  12. Thermal hydraulics of accelerator driven system: validation and analysis

    International Nuclear Information System (INIS)

    Kumari, I.; Khanna, A.

    2014-01-01

    This paper presents validation of RELAP5/Mod4.0 code modified to incorporate Lead Bismuth Eutectic (LBE)fluid properties for simulation of Accelerator Driven System (ADS) against Barone's NACIE facility.Results of mass flow rates (MFR), Reynolds number, heat transfer coefficients, temperatures and temperature difference for three powers (10.8, 21.7 and 32.5 kW) under natural circulation of LBE match with Barone's values within 7%,18%,37%, 5% and 8% of relative error respectively. After this validation Indian ADS for thermal power of 15 kW has been simulated. Simulated profiles of temperature, MFR and pressure drop LBE and air are reported. Air and LBE temperatures of present work match with literature design values within 5% of relative error. (author)

  13. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  14. Effect of sun radiation on the thermal behavior of distribution transformer

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim; Mohamadianfard, Mohamad

    2010-01-01

    Performance and life of oil-immersed distribution transformers are strongly dependent on the oil temperature. Transformers, working in regions with high temperature and high solar radiation, usually suffer from excessive heat in summers which results in their early failures. In this paper, the effect of sun radiation on the transformer was investigated by using experimental and analytical methods. Transformer oil temperature was measured in two different modes, with and without sun shield. Effects of different parameters such as direct and indirect solar radiation on the thermal behavior of the transformer were mathematically modeled and the results were compared with experimental findings. Agreements between the experimental and numerical results show that the model can reasonably predict thermal behavior of the transformer. It was found that a sun shield has an important effect on the oil temperature reduction in summer which could be as high as 7 deg. C depending on the load ratio. The amount of temperature reduction by sun shield reduces as the load ratio of transformer increases. By installing a sun shield and reducing oil temperature, transformer life could be increased up to 24% in average.

  15. Analysis of the thermal performance of heat pipe radiators

    Science.gov (United States)

    Boo, J. H.; Hartley, J. G.

    1990-01-01

    A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.

  16. Validation of containment thermal hydraulic computer codes for VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)

    2005-07-01

    Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to

  17. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  18. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment.

    Science.gov (United States)

    Bröde, Peter; Błazejczyk, Krzysztof; Fiala, Dusan; Havenith, George; Holmér, Ingvar; Jendritzky, Gerd; Kuklane, Kalev; Kampmann, Bernhard

    2013-01-01

    The growing need for valid assessment procedures of the outdoor thermal environment in the fields of public weather services, public health systems, urban planning, tourism & recreation and climate impact research raised the idea to develop the Universal Thermal Climate Index UTCI based on the most recent scientific progress both in thermo-physiology and in heat exchange theory. Following extensive validation of accessible models of human thermoregulation, the advanced multi-node 'Fiala' model was selected to form the basis of UTCI. This model was coupled with an adaptive clothing model which considers clothing habits by the general urban population and behavioral changes in clothing insulation related to actual environmental temperature. UTCI was developed conceptually as an equivalent temperature. Thus, for any combination of air temperature, wind, radiation, and humidity, UTCI is defined as the air temperature in the reference condition which would elicit the same dynamic response of the physiological model. This review analyses the sensitivity of UTCI to humidity and radiation in the heat and to wind in the cold and compares the results with observational studies and internationally standardized assessment procedures. The capabilities, restrictions and potential future extensions of UTCI are discussed.

  19. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  20. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  1. Exact solution of thermal radiation on vertical oscillating plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available Thermal radiation effects on unsteady flow past an infinite vertical oscillating plate in the presence of variable temperature and uniform mass flux is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with time and the mass is diffused from the plate to the fluid at an uniform rate. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, concentration and temperature are studied for different physical parameters like the phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing phase angle ωt.

  2. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  3. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  4. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  5. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  6. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  7. Radiation energy devaluation in diffusion combusting flows of natural gas

    International Nuclear Information System (INIS)

    Makhanlall, Deodat; Munda, Josiah L.; Jiang, Peixue

    2013-01-01

    Abstract: CFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements. - Highlights: • Thermodynamic effects of thermal radiation in combusting flows analyzed. • General equation for second-law analyses of combusting flows extended. • Optimum fuel–air equivalence ratio determined for natural gas flame

  8. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  9. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  10. Fabrication and performance analysis of MEMS-based Variable Emissivity Radiator for Space Applications

    International Nuclear Information System (INIS)

    Lee, Changwook; Oh, Hyung-Ung; Kim, Taegyu

    2014-01-01

    All Louver was typically representative as the thermal control device. The louver was not suitable to be applied to small satellite, because it has the disadvantage of increase in weight and volume. So MEMS-based variable radiator was developed to support the disadvantage of the louver MEMS-based variable emissivity radiator was designed for satellite thermal control. Because of its immediate response and low power consumption. Also MEMS- based variable emissivity radiator has been made smaller by using MEMS process, it could be solved the problem of the increase in weight and volume, and it has a high reliability and immediate response by using electrical control. In this study, operation validation of the MEMS radiator had been carried out, resulting that emissivity could be controlled. Numerical model was also designed to predict the thermal control performance of MEMS-based variable emissivity radiator

  11. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    Science.gov (United States)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  12. Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid

    Directory of Open Access Journals (Sweden)

    Sadia Ayub

    Full Text Available This paper models the peristaltic transport of magnetohydrodynamic (MHD third grade nanofluid in a curved channel with wall properties. Combined effects of heat and mass transfer are retained via mixed convection. The present analysis is made in the presence of thermal radiation and chemical reaction. No-slip effect is maintained at the boundary for the velocity, temperature and nanoparticle volume fraction. Resulting formulation is simplified by employing the assumptions of long wavelength and low Reynolds number approximations. Results of axial velocity, temperature, nanoparticle mass transfer and heat transfer are studied graphically. Results reveal increment in fluid velocity for larger values of heat transfer Grashof number. There is reduction in nanoparticle mass transfer with the increase in thermophoresis parameter. Keywords: Peristalsis, Third grade nanofluid, Curved channel, Mixed convection, Thermal radiation, Chemical reaction, Flexible walls, Numerical solutions

  13. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  14. Radiative heat transfer in a heat generating and turbulently convecting fluid layer

    International Nuclear Information System (INIS)

    Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.

    1980-01-01

    The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)

  15. Radiative Heat Transfer with Nanowire/Nanohole Metamaterials for Thermal Energy Harvesting Applications

    Science.gov (United States)

    Chang, Jui-Yung

    Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat

  16. Radiation and thermal characteristics of mouse lymphoma cells and their radiation-sensitive mutant

    International Nuclear Information System (INIS)

    Baba, Yuji; Yasunaga, Tadamasa; Uozumi, Hideaki; Takahashi, Mutsumasa; Sawada, Shozo.

    1988-01-01

    Radiation and thermal characteristics of L5178Y cells and their radiation-sensitive mutant M10 cells were studied by the colony-forming method and the dye-exclusion method using eosin-Y. Although M10 cells were remarkably radiation-sensitive compared with L5178Y cells, it was diffcult to cause interphase death of M10 after a large dose of irradiation. After heat treatments, L5178Y cells revealed more cell destruction and were stained well by eosin-Y, but it was relatively difficult to produce cell destruction of M10 cells, which showed poor staining by eosin-Y. When assayed by the colony-forming method, M10 cells were also heat-resistant compared to L5178Y. The dye-exclusion rate was closely correlated with cell survival after hyperthermia of L5178Y cells, suggesting that this is a simple method of detecting the thermosensitivity and thermotolerance of cancer cells. The difference in survival of L5178Y cells and M10 cells after combined treatment with gamma irradiation and hyperthermia was smaller than with gamma irradiation alone. It was also found that there was a relationship between radiation-induced interphase death and hyperthermia-induced interphase death, and that interphase death accounted for a major part of cell death caused by hyperthermia in mouse leukemia cells. (author)

  17. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  18. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism

    Directory of Open Access Journals (Sweden)

    Subenoy Chakraborty

    2015-06-01

    Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  19. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation

    Science.gov (United States)

    Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.

    2018-06-01

    Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.

  20. Replacement of thermal column elastomeric gasket in pool type research reactors based on ageing and radiation degradation

    International Nuclear Information System (INIS)

    Garai, S.K.

    2006-01-01

    Pool type research reactors are designed with Thermal column facilities to irradiate samples at different flux levels of thermal neutrons. The sealing of demineralised pool water between stainless steel lined pool wall and the Aluminium Thermal column plate is achieved by an elastomeric gasket. The gasket joint is subjected to pool water temperature ranging from 25degC to 45degC and radiation field of the order of 104 -106 R/hr. The gasket loses its sealing properties due to ageing and radiation degradation after a few years, leading to the leakage and loss of the pool water. Though degradation of the gasket is, generally, predictable, some amount of uncertainty always remains in the leakage rate. The paper describes the study of a few elastomers in radiation environment and replacement of the Thermal column gasket of a swimming pool type research reactor. It includes the details of features like planning and scheduling, the actual sequential execution of the job, various problems encountered and corrective measures applied, engineering and radiological safety measures adopted, development of remote tools, disassembly and reassembly procedure and finally satisfactory completion of the site job in high radiation environment with minimum time and man rem consumption. (author)

  1. Installation and thermal design of synchrotron radiation beam ports at SPEAR

    International Nuclear Information System (INIS)

    Jako, C.; Hower, N.; Simon, T.

    1979-01-01

    With SPEAR operating at 3.7 GeV, 38.3 mA and radiating a total of 50 kW, the maximum crotch temperature was calculated to be 105 0 C. The value obtained by extrapolation of experimental data was 80 0 C. The discrepancy between the two figures is due, in part, to the inherent limitation of temperature measurements in the presence of a high thermal gradient, and, in part, to the assumptions made in the analysis. It can be concluded, however, that the temperature at the crotch surface resulting from the synchrotron radiation is comfortably below the 185 0 C limit and that the total radiated power can be raised to at least 75 kW without exceeding this limit

  2. Validity of the isotropic thermal conductivity assumption in supercell lattice dynamics

    Science.gov (United States)

    Ma, Ruiyuan; Lukes, Jennifer R.

    2018-02-01

    Superlattices and nano phononic crystals have attracted significant attention due to their low thermal conductivities and their potential application as thermoelectric materials. A widely used expression to calculate thermal conductivity, presented by Klemens and expressed in terms of the relaxation time by Callaway and Holland, originates from the Boltzmann transport equation. In its most general form, this expression involves a direct summation of the heat current contributions from individual phonons of all wavevectors and polarizations in the first Brillouin zone. In common practice, the expression is simplified by making an isotropic assumption that converts the summation over wavevector to an integral over wavevector magnitude. The isotropic expression has been applied to superlattices and phononic crystals, but its validity for different supercell sizes has not been studied. In this work, the isotropic and direct summation methods are used to calculate the thermal conductivities of bulk Si, and Si/Ge quantum dot superlattices. The results show that the differences between the two methods increase substantially with the supercell size. These differences arise because the vibrational modes neglected in the isotropic assumption provide an increasingly important contribution to the thermal conductivity for larger supercells. To avoid the significant errors that can result from the isotropic assumption, direct summation is recommended for thermal conductivity calculations in superstructures.

  3. Pulse laser induced change in thermal radiation from a single spherical particle on thermally bad conducting surface : an analytical solution

    International Nuclear Information System (INIS)

    Moksin, M.M.; Grozescu, V.I.; Yunus, W.M.M.; Azmi, B.Z.; Talib, Z.A.; Wahab, Z.A.

    1996-01-01

    A relatively simple analytical expression was derived that provided a description of the radius and thermal properties of a single particle from the change in grey body radiation emission subsequent to pulse laser heating of the particle

  4. Radiation equivalence of genotoxic chemicals - Validation in cultered mammalian cell lines

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1982-01-01

    Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated. REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human. (orig.)

  5. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  6. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITHOUT NASADIG)

    Science.gov (United States)

    Vogt, R. A.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  7. Effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Solovetskij, Yu.I.; Lunin, V.V.; Miroshnichenko, I.I.

    1993-01-01

    A study was made on reasons of radiation-thermal damage by 2.0 MeV accelerated electron beams of surface and active metal phases of Al, Ni, Mo base hydrodesulfurization catalysts. Data of diffusion reflection electron spectra for coked industrial and model systems after radiation-thermal treatment are presented. 14 refs., 2 figs

  8. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    Science.gov (United States)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  9. Validation studies of thermal-hydraulic code for safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Haapalehto, T.

    1995-01-01

    The thesis gives an overview of the validation process for thermal-hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. Large part of the work has been performed in cooperation with the CATHARE-team in Grenoble, France. (41 refs., 11 figs., 8 tabs.)

  10. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  11. Development of irradiated UO2 thermal conductivity model

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho

    2001-01-01

    Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)

  12. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    Science.gov (United States)

    Demarco, R.; Nmira, F.; Consalvi, J. L.

    2013-05-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK

  13. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  14. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-01-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  15. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-03-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  16. ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation

    International Nuclear Information System (INIS)

    Parzer, I.; Kljenak, I.

    2005-01-01

    The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)

  17. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A.; Alhuthali, M.S. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2015-07-01

    Magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid in the presence of thermophoresis and Brownian motion effects is analyzed. Energy equation subject to nonlinear thermal radiation is taken into account. The flow is generated by a bidirectional stretching surface. Fluid is electrically conducting in the presence of a constant applied magnetic field. The induced magnetic field is neglected for a small magnetic Reynolds number. Mathematical formulation is performed using boundary layer analysis. Newly proposed boundary condition requiring zero nanoparticle mass flux is employed. The governing nonlinear mathematical problems are first converted into dimensionless expressions and then solved for the series solutions of velocities, temperature and nanoparticles concentration. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Skin friction coefficients and Nusselt number are also computed and analyzed. It is found that the thermal boundary layer thickness is an increasing function of radiative effect. - Highlights: • Three-dimensional boundary layer flow of viscoelastic nanofluid is examined. • Nonlinear thermal radiation is analyzed. • Brownian motion and thermophoresis effects are present. • Recently developed condition requiring zero nanoparticle mass flux is implemented. • Construction of convergent solutions of nonlinear flow is possible.

  18. Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures

    Science.gov (United States)

    1976-11-01

    1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA

  19. Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Influence of Li2CO3-ZnO-Fe2O3 powder reagents mixture density on the synthesis efficiency of lithium-zinc ferrites in the conditions of thermal heating or pulsed electron beam heating was studied by X-Ray diffraction and magnetization analysis. The results showed that the including a compaction of powder reagents mixture in ferrite synthesis leads to an increase in concentration of the spinel phase and decrease in initial components content in lithium-substituted ferrites synthesized by thermal or radiation-thermal heating.

  20. A mouse radiation-induced liver disease model for stereotactic body radiation therapy validated in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wu, Zhi-Feng; Zhang, Jian-Ying; Shen, Xiao-Yun; Gao, Ya-Bo; Hu, Yong; Zeng, Zhao-Chong; Zhou, Le-Yuan

    2016-01-01

    Purpose: Lower radiation tolerance of the whole liver hinders dose escalations of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) treatment. This study was conducted to define the exact doses that result in radiation-induced liver disease (RILD) as well as to determine dose constraints for the critical organs at risk (OARs) in mice; these parameters are still undefined in HCC SBRT. Methods: This study consisted of two phases. In the primary phase, mice treated with helical tomotherapy-based SBRT were stratified according to escalating radiation doses to the livers. The pathological differences, signs [such as mouse performance status (MPS)], and serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT)/albumin levels were observed. Radiation-induced disease severities of the OARs were scored using systematic evaluation standards. In the validation phase in humans, 13 patients with HCC who had undergone radiotherapy before hepatectomy were enrolled to validate RILD pathological changes in a mouse study. Results: The evaluation criteria of the mouse liver radiotherapy-related signs were as follows: MPS ≥ 2.0 ± 0.52, AST/ALT ≥ 589.2 ± 118.5/137.4 ± 15.3 U/L, serum albumin ≤ 16.8 ± 2.29 g/L. The preliminary dose constraints of the OARs were also obtained, such as those for the liver (average dose ≤ 26.36 ± 1.71 Gy) and gastrointestinal tract (maximum dose ≤ 22.63 Gy). Mouse RILD models were able to be developed when the livers were irradiated with average doses of ≥31.76 ± 1.94 Gy (single fraction). RILD pathological changes in mice have also been validated in HCC patients. Conclusions: Mouse RILD models could be developed with SBRT based on the dose constraints for the OARs and evaluation criteria of mouse liver radiotherapy-related signs, and the authors’ results favor the study of further approaches to treat HCC with SBRT.

  1. The effect of thermal treatment on radiation-induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Vorona, I.P.; Ishchenko, S.S.; Baran, N.P.

    2005-01-01

    The effect of thermal treatment on the radiation-induced EPR spectrum of tooth enamel was studied. Annealing before sample irradiation was found to increase enamel radiation sensitivity by more than 40%. Depending on the annealing conditions the EPR signals of three supplementary radiation radicals were observed in addition to the main signal caused by CO 2 - radicals. It was found that the presence of these signals in the enamel EPR spectra provides evidence of sample annealing. The possibility of obtaining information about sample history by studying the additional EPR signals is discussed. It can be important to EPR dating and EPR dosimetry

  2. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  3. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  4. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  5. Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization

    International Nuclear Information System (INIS)

    Bouaziz, M.N.; Aziz, Abdul

    2010-01-01

    A novel concept of double optimal linearization is introduced and used to obtain a simple and accurate solution for the temperature distribution in a straight rectangular convective-radiative fin with temperature dependent thermal conductivity. The solution is built from the classical solution for a pure convection fin of constant thermal conductivity which appears in terms of hyperbolic functions. When compared with the direct numerical solution, the double optimally linearized solution is found to be accurate within 4% for a range of radiation-conduction and thermal conductivity parameters that are likely to be encountered in practice. The present solution is simple and offers superior accuracy compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method. The fin efficiency expression resembles the classical result for the constant thermal conductivity convecting fin. The present results are easily usable by the practicing engineers in their thermal design and analysis work involving fins.

  6. VO2-based radiative thermal transistor with a semi-transparent base

    Science.gov (United States)

    Prod'homme, Hugo; Ordonez-Miranda, Jose; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2018-05-01

    We study a radiative thermal transistor analogous to an electronic one made of a VO2 base placed between two silica semi-infinite plates playing the roles of the transistor collector and emitter. The fact that VO2 exhibits an insulator to metal transition is exploited to modulate and/or amplify heat fluxes between the emitter and the collector, by applying a thermal current on the VO2 base. We extend the work of precedent studies considering the case where the base can be semi-transparent so that heat can be exchanged directly between the collector and the emitter. Both near and far field cases are considered leading to 4 typical regimes resulting from the fact that the emitter-base and base-collector separation distances can be larger or smaller than the thermal wavelength for a VO2 layer opaque or semi-transparent. Thermal currents variations with the base temperatures are calculated and analyzed. It is found that the transistor can operate in an amplification mode as already stated in [1] or in a switching mode as seen in [2]. An optimum configuration for the base thickness and separation distance maximizing the thermal transistor modulation factor is found.

  7. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-09-01

    Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.

  8. EOS Terra Validation Program

    Science.gov (United States)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  9. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  10. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  11. The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study.

    Science.gov (United States)

    Jaspers, M E H; Carrière, M E; Meij-de Vries, A; Klaessens, J H G M; van Zuijlen, P P M

    2017-11-01

    Objective measurement tools may be of great value to provide early and reliable burn wound assessment. Thermal imaging is an easy, accessible and objective technique, which measures skin temperature as an indicator of tissue perfusion. These thermal images might be helpful in the assessment of burn wounds. However, before implementation of a novel measurement tool into clinical practice is considered, it is appropriate to test its clinimetric properties (i.e. reliability and validity). The objective of this study was to assess the reliability and validity of the recently introduced FLIR ONE thermal imager. Two observers obtained thermal images of burn wounds in adult patients at day 1-3, 4-7 and 8-10 after burn. Subsequently, temperature differences between the burn wound and healthy skin (ΔT) were calculated on an iPad mini containing the FLIR Tools app. To assess reliability, ΔT values of both observers were compared by calculating the intraclass correlation coefficient (ICC) and measurement error parameters. To assess validity, the ΔT values of the first observer were compared to the registered healing time of the burn wounds, which was specified into three categories: (I) ≤14 days, (II) 15-21 days and (III) >21 days. The ability of the FLIR ONE to discriminate between healing ≤21 days and >21 days was evaluated by means of a receiver operating characteristic curve and an optimal ΔT cut-off value. Reliability: ICCs were 0.99 for each time point, indicating excellent reliability up to 10 days after burn. The standard error of measurement varied between 0.17-0.22°C. the area under the curve was calculated at 0.69 (95% CI 0.54-0.84). A cut-off value of -1.15°C shows a moderate discrimination between burn wound healing ≤21 days and >21 days (46% sensitivity; 82% specificity). Our results show that the FLIR ONE thermal imager is highly reliable, but the moderate validity calls for additional research. However, the FLIR ONE is pre-eminently feasible

  12. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  13. Guide to verification and validation of the SCALE-4 radiation shielding software

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, B.L.; Emmett, M.B.; Tang, J.S.

    1996-12-01

    Whenever a decision is made to newly install the SCALE radiation shielding software on a computer system, the user should run a set of verification and validation (V&V) test cases to demonstrate that the software is properly installed and functioning correctly. This report is intended to serve as a guide for this V&V in that it specifies test cases to run and gives expected results. The report describes the V&V that has been performed for the radiation shielding software in a version of SCALE-4. This report provides documentation of sample problems which are recommended for use in the V&V of the SCALE-4 system for all releases. The results reported in this document are from the SCALE-4.2P version which was run on an IBM RS/6000 work-station. These results verify that the SCALE-4 radiation shielding software has been correctly installed and is functioning properly. A set of problems for use by other shielding codes (e.g., MCNP, TWOTRAN, MORSE) performing similar V&V are discussed. A validation has been performed for XSDRNPM and MORSE-SGC6 utilizing SASI and SAS4 shielding sequences and the SCALE 27-18 group (27N-18COUPLE) cross-section library for typical nuclear reactor spent fuel sources and a variety of transport package geometries. The experimental models used for the validation were taken from two previous applications of the SASI and SAS4 methods.

  14. Guide to verification and validation of the SCALE-4 radiation shielding software

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Emmett, M.B.; Tang, J.S.

    1996-12-01

    Whenever a decision is made to newly install the SCALE radiation shielding software on a computer system, the user should run a set of verification and validation (V ampersand V) test cases to demonstrate that the software is properly installed and functioning correctly. This report is intended to serve as a guide for this V ampersand V in that it specifies test cases to run and gives expected results. The report describes the V ampersand V that has been performed for the radiation shielding software in a version of SCALE-4. This report provides documentation of sample problems which are recommended for use in the V ampersand V of the SCALE-4 system for all releases. The results reported in this document are from the SCALE-4.2P version which was run on an IBM RS/6000 work-station. These results verify that the SCALE-4 radiation shielding software has been correctly installed and is functioning properly. A set of problems for use by other shielding codes (e.g., MCNP, TWOTRAN, MORSE) performing similar V ampersand V are discussed. A validation has been performed for XSDRNPM and MORSE-SGC6 utilizing SASI and SAS4 shielding sequences and the SCALE 27-18 group (27N-18COUPLE) cross-section library for typical nuclear reactor spent fuel sources and a variety of transport package geometries. The experimental models used for the validation were taken from two previous applications of the SASI and SAS4 methods

  15. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-03-01

    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  16. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  17. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    International Nuclear Information System (INIS)

    Jordan, K. A.; Schubring, D.; Girardin, G.; Pautz, A.

    2013-01-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  18. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  19. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  20. Thermal and radiation history of meteorites as revealed by their thermoluminescence records

    International Nuclear Information System (INIS)

    Bhandari, N.

    1985-01-01

    Attempts are described to derive information about important parameters of the thermal and radiation history of meteorites from a study of depth profile of thermoluminescence coupled to appropriate annealing studies. In this review some possibilities are examined, emphasizing various factors cardinal to any meaningful application of TL in meteoritics. (author)

  1. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  2. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  3. The influence of wavelength-dependent radiation in simulation of lamp-heated rapid thermal processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A. [Sandia National Labs., Livermore, CA (United States). Computational Mechanics Dept.

    1994-08-01

    Understanding the thermal response of lamp-heated rapid thermal processing (RTP) systems requires understanding relatively complex radiation exchange among opaque and partially transmitting surfaces and materials. The objective of this paper is to investigate the influence of wavelength-dependent radiative properties. The examples used for the analysis consider axisymmetric systems of the kind that were developed by Texas Instruments (TI) for the Microelectronics Manufacturing Science and Technology (MMST) Program and illustrate a number of wavelength-dependent (spectral) effects. The models execute quickly on workstation class computing flatforms, and thus permit rapid comparison of alternative reactor designs and physical models. The fast execution may also permit the incorporation of these models into real-time model-based process control algorithms.

  4. Effects of thermal ageing and gamma radiations on ethylene-propylene based insulator of electric cables

    International Nuclear Information System (INIS)

    Baccaro, S.; D'Atanasio, P.

    1986-01-01

    This paper describes the effects of gamma radiation and thermal aging on cable insulator. The elastic properties degrade rapidly as the absorbed dose increases: the percent elongation at break attains nearly 100% value at 0.5 MGy absorbed dose. The gases evolved during the irradiation are mainly H 2 and CO 2 ; CO, CH 4 and C 2 H 6 are present in much lower concentrations. The damage undergone depends strongly on sequential radiation and thermal aging; the analysis of accelerated life test data by means of the Arrhenius model gave (1.23+-0.25) eV for the activation energy, about 1 eV higher than the values reported in the literature

  5. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  6. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  7. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  8. The effect of radiation induced electrical conductivity (RIC) on the thermal conductivity

    International Nuclear Information System (INIS)

    White, D.P.

    1993-01-01

    Microwave heating of plasmas in fusion reactors requires the development of microwave windows through which the microwaves can pass without great losses. The degradation of the thermal conductivity of alumina in a radiation environment is an important consideration in reliability studies of these microwave windows. Several recent papers have addressed this question at higher temperatures and at low temperatures. The current paper extends the low temperature calculations to determine the effect of phonon-electron scattering on the thermal conductivity at 77 K due to RIC. These low temperature calculations are of interest because the successful application of high power (>1 MW) windows for electron cyclotron heating systems in fusion reactors will most likely require cryogenic cooling to take advantage of the low loss tangent and higher thermal conductivity of candidate window materials at these temperatures

  9. Computational Design and Experimental Validation of New Thermal Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  10. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  11. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  12. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  13. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  14. TORE-SUPRA: design of thermal radiation shield at 80 K

    International Nuclear Information System (INIS)

    Aymar, R.; Cordier, J.J.; Deschamps, P.; Gauthier, A.; Perin, J.P.

    1982-09-01

    The TORE-SUPRA superconducting toroidal magnet operating at liquid helium temperature, must be protected against thermal radiation from the vessels. For this purpose, stainless steel heat shields, cooled at 80 K, are positioned between coil casings at 4.5 K and the vessels, and constitute a double stiff toroid which completely surrounds the magnet. Mockups have been manufactured to study their design and operating problems. Calculations have also been made to analyse the mechanical behaviour of these shields

  15. Effect of the thermal spread in a beam on the radiative Pierce instability

    International Nuclear Information System (INIS)

    Klochkov, D.N.; Pekar, M.Yu.; Rukhadze, A.A.

    1999-01-01

    The linear dynamics of the radiative Pierce instability in a single plane in the case of the relativistic electron beam with T temperature stabilized through a strong magnetic field, is considered. It is shown that the instability increment decreases with the thermal spread growth [ru

  16. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  17. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Science.gov (United States)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  18. Degradation of electrical insulation of polyethylene under thermal and radiation environment, (4). [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuhei; Murabayashi, Fumio; Sawa, Goro [Mie Univ., Tsu (Japan); Yamaguchi, Shinji; Ieda, Masayuki

    1982-12-01

    Although the quality assurance guideline for the cables used for the safety and protection systems of nuclear power plants is given by IEEE Standards 323 and 383-1974, in addition, it is important to clarify the aging process under the complex environment of heat and radiation and the equivalence of the accelerated aging test of insulating materials. The authors performed the sequential (H.T-..gamma.. or ..gamma..-HT) and simultaneous (..gamma.., HT) application of respective aging factors of heat and radiation to non-additive low density polyethylene films by changing dose rate as the first stage, to clarify the dose rate dependence of the aging. They mainly investigated the dielectric properties, and forwarded investigation based on the change of carbonyl group by infrared spectrometry and residual free radicals by ESR analysis. In the samples irradiated with ..gamma..-ray only and those irradiated with ..gamma..-ray after thermal treatment for 7 hours at 90 deg C, the absorption coefficient ..cap alpha.. of carbonyl group increased with dose in the range from 3 Mrad to 60 Mrad, and both samples showed approximately the same ..cap alpha.. value. The ..cap alpha.. value of the samples thermally treated after irradiation was larger than that of the samples treated in the reverse order, and the difference between them increased with the increase of dose. The values of dielectric tangent delta at room temperature and 1 kHz for the samples (..gamma..) and (HT-..gamma..) increased with dose, and were almost the same, but those for the samples (..gamma..-HT) and (..gamma.., HT) were larger than the former two.

  19. Guidelines for the Development, Validation and Routine Control of Industrial Radiation Processes

    DEFF Research Database (Denmark)

    Safrany, A.; Miller, Arne; Kovacs, A.

    Radiation processing has become a well accepted technology on the global market, with uses ranging from the sterilization of medical devices to polymer cross-linking and curing to the irradiation of selected food items. Besides these well established uses, new radiation technology applications...... are emerging for environmental remediation and the synthesis of advanced materials and products. Quality assurance is vital for the success of these technologies and requires the development of standardized procedures as well as the harmonization of process validation and process control. It is recognized...

  20. Protection of the skin against occupational and operational ultraviolet and thermal radiation

    International Nuclear Information System (INIS)

    Wiskemann, A.

    1980-01-01

    When irradiation with short wave ultraviolet (UVB) exceed the threshold doses, the eye as well as the skin react with an acute inflammation. After chronic exposure to both radiations the skin is altered as a farmers skin. Thermal visible and infrared radiation may produce a local combustion or a livedo or a general hyperthermia. Many possibilities of an occupational exposition to natural or artificial optical radiation are listed. Until now no exposure limits have been recommended in the Federal Republic of Germany. The biologic effective radiant exposure can be calculated from the spectral distribution of the irradiance. The resulting value should be clearly lower than the threshold doses for the UV-keratoconjunctivitis and for the UV-erythema of the skin. Artificial light sources have to be closed exept the useful radiation beam. When this is impossible and in case of natural radiation, the skin must be shielded by clothing and/or by sunscreen preparations. Photosensitizers as tar products have to be kept away from the skin. (orig.) 891 MG/orig. 892 HIS [de

  1. Design of vessel baking system and thermal radiation shields for SST-1

    International Nuclear Information System (INIS)

    Kumar, E.R.; Nagabhushana, S.; Pathak, H.A.; Panigrahi, S.; Nath, T.R.; Babu, A.V.S; Gangradey, R.; Patel, R.J.; Saxena, Y.C.

    1998-01-01

    SST-1 is a Steady State Tokamak with a major radius of 1.1 m, minor radius of 0.2 m and toroidal field of 3.0 T. The toroidal and poloidal field coils of SST-1 are superconducting. One of the main objectives of SST-1 is to demonstrate steady state particle removal and active plasma density control which states the necessity of wall conditioning. The vacuum vessel will be baked up to 525 K by passing hot nitrogen gas through the U - channels welded on the inner surface of vacuum vessel. The required mass flow rate at 5 bar is 0.712 Kg/s to maintain 525 K wall temperature in steady state. Superconducting coils operating at 4.5 K will be protected against thermal radiation from hot surfaces using liquid nitrogen cooled panels operating at 87 K. Maximum 1200 litres/hour liquid nitrogen is required during vessel baking. The design of vacuum vessel baking system and thermal radiation shields and related flow analysis are presented here. (authors)

  2. Design of vessel baking system and thermal radiation shields for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E.R.; Nagabhushana, S.; Pathak, H.A.; Panigrahi, S.; Nath, T.R.; Babu, A.V.S; Gangradey, R.; Patel, R.J.; Saxena, Y.C. [Institute for Plasma Research, Gandhinagar (India)

    1998-07-01

    SST-1 is a Steady State Tokamak with a major radius of 1.1 m, minor radius of 0.2 m and toroidal field of 3.0 T. The toroidal and poloidal field coils of SST-1 are superconducting. One of the main objectives of SST-1 is to demonstrate steady state particle removal and active plasma density control which states the necessity of wall conditioning. The vacuum vessel will be baked up to 525 K by passing hot nitrogen gas through the U - channels welded on the inner surface of vacuum vessel. The required mass flow rate at 5 bar is 0.712 Kg/s to maintain 525 K wall temperature in steady state. Superconducting coils operating at 4.5 K will be protected against thermal radiation from hot surfaces using liquid nitrogen cooled panels operating at 87 K. Maximum 1200 litres/hour liquid nitrogen is required during vessel baking. The design of vacuum vessel baking system and thermal radiation shields and related flow analysis are presented here. (authors)

  3. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  4. Influence of gamma radiation on thermal properties and water vapor transmission of poly(3-hydroxybutyrate) (PHB) in blends

    Energy Technology Data Exchange (ETDEWEB)

    Forster, Pedro L.; Martins, Natalia A.; Parra, Duclerc F.; Egute, Nayara S.; Lugao, Ademar B., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Biodegradable polymers are a newly emerging field. A vast number of biodegradable polymers have been synthesized recently and some microorganisms and enzymes capable of degrading them have been identified. Polyesters such as poly(3-hydroxybutyrate) (PHB) or other polyhydroxyalkanoates (PHAs) have attracted commercial and academic interest as new biodegradable materials. In this work, we investigated the effect of gamma radiation on the thermal properties and biodegradation behavior of PHB in blend with poly(ethyleneglycol)(PEG). The samples were irradiated at gamma radiation of 5 and 10 kGy. The thermal behaviour was investigated by utilization of differential scanning calorimetry (DSC) changes in thermal stability, glass transition and melting point were reported. (author)

  5. Influence of gamma radiation on thermal properties and water vapor transmission of poly(3-hydroxybutyrate) (PHB) in blends

    International Nuclear Information System (INIS)

    Forster, Pedro L.; Martins, Natalia A.; Parra, Duclerc F.; Egute, Nayara S.; Lugao, Ademar B.

    2009-01-01

    Biodegradable polymers are a newly emerging field. A vast number of biodegradable polymers have been synthesized recently and some microorganisms and enzymes capable of degrading them have been identified. Polyesters such as poly(3-hydroxybutyrate) (PHB) or other polyhydroxyalkanoates (PHAs) have attracted commercial and academic interest as new biodegradable materials. In this work, we investigated the effect of gamma radiation on the thermal properties and biodegradation behavior of PHB in blend with poly(ethyleneglycol)(PEG). The samples were irradiated at gamma radiation of 5 and 10 kGy. The thermal behaviour was investigated by utilization of differential scanning calorimetry (DSC) changes in thermal stability, glass transition and melting point were reported. (author)

  6. DNA damage induced by radiation plasmodial mixed + gamma thermal neutrons in the presence and absence of free radical scavenger

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza; Mas Milian, Felix; Gouveia, Andreia; Deppman, Airton

    2010-01-01

    In this work is quantified the damage in DNA plasmid induced by mixed radiation (thermal neutron and gamma rays) for first time. For the study was used the pBs KS+ plasmid of 2961 bp in aqueous solution of the 88 ng/μL with 0, 2 and 20 mmol/L of glycerol which acts as a free radicals scavenger. This plasmid changes its form of supercoiled to circular when a simple strand break is produced, and passes to a linear form when a double strand break is produced in the chain. Quantifying the fractions that exist in each of these forms is possible to estimate the effect of radiation on DNA. The irradiations were carried out in the radial channel 3 at IEA-R1 research reactor of the Instituto de Pesquisas Energeticas y Nucleares in Sao Paulo, Brazil. DNA forms were separated by agarose gel electrophoresis. For quantification the program GelAnalis was used. The values of the fractions of DNA in various forms were plotted as a function of dose and fitted to exponential and linear functions to obtaining the probabilities of simple and double strand breaks normalized by dose and molecular mass. The results showed the protective action of free radical scavenger against damage induced for radiation which corroborates the previous results found with other ionizing radiations. Yields of SSB and DSB will be of interest for the validation of the different models that attempt to reproduce the experimental results

  7. Thermal gravitational radiation of Fermi gases and Fermi liquids

    International Nuclear Information System (INIS)

    Schafer, G.; Dehnen, H.

    1983-01-01

    In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec

  8. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  9. Gamma-radiation effect on thermal ageing of butyl rubber compounds

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Butyl rubber has a comprehensive use in sealing systems, especially in tires inner tubes, due to their low permeability to gases. So, it is required that butyl rubber compounds show a better performance, more and more. Butyl rubber is provided with excellent mechanical properties and oxidation resistance. Besides showing these properties, radiation exposures impart modifications in physical-chemical and morphological properties on butyl rubber materials. When exposed to gamma-radiation, rubbers suffer changes in their mechanical and physical properties, caused by material degradation. The major radiation effect in butyl rubbers is chain scission; besides, ageing promotes too the same effect with further build-up of free radicals. This work aims to the study of gamma-radiation in physical-chemical properties of butyl rubber subjected to thermal ageing. Doses used herein were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 KGy. Samples were evaluated before and after ageing according to traditional essays, such as: hardness, tensile strength and elongation at break. From accomplished assessments it is possible to affirm that at doses higher than 50 kGy it was observed a sharp decreasing in butyl rubber physical-chemical properties, before and after exposure to ageing. (author)

  10. Gamma-radiation effect on thermal ageing of butyl rubber compounds

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Lugao, Ademar B.

    2015-01-01

    Butyl rubber has a comprehensive use in sealing systems, especially in tires inner tubes, due to their low permeability to gases. So, it is required that butyl rubber compounds show a better performance, more and more. Butyl rubber is provided with excellent mechanical properties and oxidation resistance. Besides showing these properties, radiation exposures impart modifications in physical-chemical and morphological properties on butyl rubber materials. When exposed to gamma-radiation, rubbers suffer changes in their mechanical and physical properties, caused by material degradation. The major radiation effect in butyl rubbers is chain scission; besides, ageing promotes too the same effect with further build-up of free radicals. This work aims to the study of gamma-radiation in physical-chemical properties of butyl rubber subjected to thermal ageing. Doses used herein were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 KGy. Samples were evaluated before and after ageing according to traditional essays, such as: hardness, tensile strength and elongation at break. From accomplished assessments it is possible to affirm that at doses higher than 50 kGy it was observed a sharp decreasing in butyl rubber physical-chemical properties, before and after exposure to ageing. (author)

  11. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  12. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  13. Challenges in validating radiation sterilization with low energy electron irradiation

    International Nuclear Information System (INIS)

    Miller, A.; Helt-Hansen, J.

    2011-01-01

    Complete text of publication follows. Low energy electron irradiation (80-300 keV) is used increasingly for sterilization or decontamination in connection with isolators for aseptic filling lines in the pharmaceutical industry. It is not defined how validation for this process shall be carried out. A method can be derived from the medical device standard for radiation sterilization, ISO 11137, because the principles described in this standard can be applied to almost any industrial irradiation process. The validations elements are: Process definition, concerning specification of the dose required for the process and the maximum acceptable dose for the product. Installation qualification, concerning acceptance the irradiation facility. Operational qualification, concerning characterization of the facility. Performance qualification, concerning setting up the process. Process control, concerning routine monitoring. The limited penetration of the low energy electrons leads to problems with respect to executing these validation steps. This paper discusses these problems, and shows with examples how they can be solved.

  14. Soil radioactivity levels and radiation hazard assessment around a Thermal Power Plant

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Pankaj; Sharma, Somdutt; Agrawal, Anshu; Kumar, Rajesh; Prajith, Rama; Sahoo, B.K.

    2016-01-01

    Coal based thermal power plants further enhance the level of radioactivity in the environment, as burning of coal produces fly ash that can be released into the environment containing traces of 238 U, 232 Th and their decay products. Therefore, coal fired power plants are one of the major contributor towards the Technologically Enhanced Natural Radiation (TENR). Keeping this in view, a study of natural radioactivity in the soil of twenty five villages within 5 km radius around the Harduaganj Thermal Power Plant, Aligarh, UP, India is going on under a BRNS major project, to know the radiological implications on general population living around this plant

  15. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  16. A fast, exact code for scattered thermal radiation compared with a two-stream approximation

    International Nuclear Information System (INIS)

    Cogley, A.C.; Pandey, D.K.

    1980-01-01

    A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media

  17. Non-thermal effects of 94 GHz radiation on bacterial metabolism

    Science.gov (United States)

    Raitt, Brittany J.

    Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were used to investigate the non-thermal effects of terahertz (THz) radiation exposure on bacterial cells. The THz source used was a 94 GHz (0.94 THz) Millitech Gunn Diode Oscillator with a power density of 1.3 mW/cm2. The cultures were placed in the middle sixty wells of two 96-well microplates, one serving as the experimental plate and one serving as a control. The experimental plate was placed on the radiation source for either two, eighteen, or twenty-four hours and the metabolism of the cells was measured in a spectrophotometer using the tetrazolium dye XTT. The results showed no consistent significant differences in either the growth rates or the metabolism of any of the bacterial species at this frequency and power density.

  18. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  19. Blackbody Radiation and the Carbon Particle

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Robitaille

    2008-07-01

    Full Text Available Since the days of Kirchhoff, blackbody radiation has been considered to be a universal process, independent of the nature and shape of the emitter. Nonetheless, in promoting this concept, Kirchhoff did require, at the minimum, thermal equilibrium with an enclosure. Recently, the author stated (P.-M. Robitaille, IEEE Trans. Plasma Sci., 2003, v.31(6, 1263-1267; P.-M. Robitaille, Progr. in Phys., 2006, v.2, 22-23, that blackbody radiation is not universal and has called for a return to Stewart's law (P.-M. Robitaille, Progr. in Phys., 2008, v.3, 30-35. In this work, a historical analysis of thermal radiation is presented. It is demonstrated that soot, or lampblack, was the standard for blackbody experiments throughout the 1800s. Furthermore, graphite and carbon black continue to play a central role in the construction of blackbody cavities. The advent of universality is reviewed through the writings of Pierre Prevost, Pierre Louis Dulong, Alexis Therese Petit, Jean Baptiste Joseph Fourier, Simeon Denis Poisson, Frederick Herve de la Provostaye, Paul Quentin Desain, Balfour Stewart, Gustav Robert Kirchhoff, and Max Karl Ernst Ludwig Planck. These writings illustrate that blackbody radiation, as experimentally produced in cavities and as discussed theoretically, has remained dependent on thermal equilibrium with at least the smallest carbon particle. Finally, Planck's treatment of Kirchhoff's law is examined in detail and the shortcomings of his derivation are outlined. It is shown once again, that universality does not exist. Only Stewart's law of thermal emission, not Kirchhoff's, is fully valid.

  20. Radiation Improved Mechanical and Thermal Property of PP/HDPE

    International Nuclear Information System (INIS)

    Chaisupaditsin, M.; Thammit, C.; Techakiatkul, C.

    1998-01-01

    The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved

  1. Studies on the evaluation of thermal belts and radiation fog over mountainous regions by LANDSAT data

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.; Horiguchi, I.; Fukaishi, K.; Kanechika, O.; Ishida, H.; Sakurai, Y.; Sakai, T.; Yamauchi, Y.; Kohno, Y.

    1996-01-01

    Local meteorological phenomena and characteristics under conditions of nocturnal radiative cooling in winter were investigated using Landsat data and physiographic parameters over the hilly and mountainous regions of the western part of shikoku. (1) Relative elevation between thermal belts and underlying ground such as bottom of basin or valley was 400m on an average. (2) Thermal belts appeared in the zone between 400m and 1000m above the sea level in the western part of Shikoku. (3) Temperature of the thermal belts varied with the elevation in a ratio of about 1 degrees C/100m. This observation indicated that the thermal belt temperature was closely related to the altitude of the zone where the thermal belts originated. (4) Radiation fog was frequently recorded over some part along the Hiji river and over the area along Ootoyo to Motoyama; fog was present even at 10 a.m. (3 hours after sunrise). (5) Upper surface of the fog layer was located at 200m and 600m above the sea level in the Oozu basin and in the area along Ootoyo to Motoyama respectively. (6) In the Oozu basin, the distribution of hamlets on the mountainside was often recognized in the localities within the upper limit of foggy areas

  2. "The Theory of Heat Radiation" Revisited: A Commentary on the Validity of Kirchhoff's Law of Thermal Emission and Max Planck's Claim of Universality

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-04-01

    Full Text Available Affirming Kirchhoff’s Law of thermal emission, Max Planck conferred upon his own equation and its constants, h and k , universal significance. All arbitrary cavities were said to behave as blackbodies. They were thought to contain b lack, or normal radiation, which depended only upon temperature and frequency of observation, irrespective of the nature of the cavity walls. Today, laboratory blackbodies a re specialized, heated devices whose interior walls are lined with highly absorptive surfaces, such as graphite, soot, or other sophisticated materials. Such evidence repeatedly calls into question Kirchhoff’s Law, as nothing in the laboratory is independent of the nature of the walls. By focusing on Max Planck’s classic text, “ The Theory of Heat Radiation ’, it can be demonstrated that the German physicist was unable to properly justify Kirchhoff’s Law. At every turn, he was confronted with the fact that materials possess frequency dependent reflectivity and absorptivity, but he often chose to sidestep these realities. He used polarized light to derive Kirchhoff’s Law, when it is well known that blackbody radiation is never polar- ized. Through the use of an element, d σ , at the bounding surface between two media, he reached the untenable position that arbitrary materials have the same reflective prop- erties. His Eq.40 ( ρ = ρ ′ , constituted a dismissal of experimental reality. It is evident that if one neglects reflection, then all cavities must be black. Unable to ensure that perfectly reflecting cavities can be filled with black radiation, Planck inserted a minute carbon particle, which he qualified as a “catalyst”. In fact, it was acting as a perfect absorber, fully able to provide, on its own, the radiation sought. In 1858, Balfour Stew- art had outlined that the proper treatment of cavity radiation must include reflection. Yet, Max Planck did not cite the Scottish scientist. He also d id not correctly address

  3. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  4. Development of the finite element method in the thermal field. TRIO-EF software for thermal and radiation analysis

    International Nuclear Information System (INIS)

    Casalotti, N.; Magnaud, J.P.

    1989-01-01

    The possibilities of the TRIO-EF software in the thermal field are presented. The TRIO-EF is a computer program based on the finite element method and used for three-dimensional incompressible flow analysis. It enables the calculation of three-dimensional heat transfer and the fluid/structure analysis. The geometrically complex radiative reactor systems are taken into account in the form factor calculation. The implemented algorithms are described [fr

  5. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  6. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  7. Predicting thermal distortion of synchrotron radiation mirrors with finite element analysis

    International Nuclear Information System (INIS)

    DiGennaro, R.; Edwards, W.R.; Hoyer, E.

    1985-10-01

    High power and high power densities due to absorbed radiation are significant design considerations which can limit performance of mirrors receiving highly collimated synchrotron radiation from insertion devices and bending magnet sources. Although the grazing incidence angles needed for x-ray optics spread the thermal load, localized, non-uniform heating can cause distortions which exceed allowable surface figure errors and limit focusing resolution. This paper discusses the suitability of numerical approximations using finite element methods for heat transfer, deformation, and stress analysis of optical elements. The primary analysis objectives are (1) to estimate optical surface figure under maximum heat loads, (2) to correctly predict thermal stresses in order to select suitable materials and mechanical design configurations, and (3) to minimize fabrication costs by specifying appropriate tolerances for surface figure. Important factors which determine accuracy of results include finite element model mesh refinement, accuracy of boundary condition modeling, and reliability of material property data. Some methods to verify accuracy are suggested. Design analysis for an x-ray mirror is presented. Some specific configurations for internal water-cooling are evaluated in order to determine design sensitivity with respect to structural geometry, material properties, fabrication tolerances, absorbed heat magnitude and distribution, and heat transfer approximations. Estimated accuracy of these results is discussed

  8. A Thermal Infrared Radiation Parameterization for Atmospheric Studies

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)

    2001-01-01

    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  9. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  10. Radiation protection Aspects Using the Thermal Waters from the Felix-1 Mai-Oradea Geothermal Deposit

    International Nuclear Information System (INIS)

    Jurcut, T.; Cosma, C.; Pop, I.

    2001-01-01

    Full text: The geothermal 'Felix-1 Mai-Oradea' deposit is situated in the western part of Romania and it is well known long years ago. The waters of this deposit are used in the medical treatments in the two resorts (Felix and 1 Mai) and for heating and swimming pools in Oradea town. The deposit depth (2500-3000 m) determines a high temperature (66-900 deg. C) of these waters also a mineral content of 200-1400 mg/l, the main components being Ca and Mg. First time, during some years, the thermal water was directly used in the central heating radiators from 'Nufarul' residential district. At present a heating switch installation is utilised. The high radium content of these thermal waters comparatively with Italian or Japanese thermal waters suggested us a study of radium deposition on the inner walls of the pipes also in the inner central heating radiators. Analysing these depositions using a high resolution Ge-Li detector, the radium-226 and small quantities of radium-224 and 223 isotopes were registered. Average radium-226 deposition was 1200 Bq/kg. (author)

  11. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  12. Numerical Investigation of Thermal Radiation and Viscous Effects on Entropy Generation in Forced Convection Blood Flow over an Axisymmetric Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-05-01

    Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.

  13. Non linear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface

    Directory of Open Access Journals (Sweden)

    K. Ganesh Kumar

    Full Text Available A mathematical analysis of two-phase boundary layer flow and heat transfer of a Williamson fluid with fluid particle suspension over a stretching sheet has been carried out in this paper. The region of temperature jump and nonlinear thermal radiation is considered in the energy transfer process. The principal equations of boundary layer flow and temperature transmission are reformed to a set of non-linear ordinary differential equations under suitable similarity transformations. The transfigured equalities are solved numerically with the help of RKF-45 order method. The effect of influencing parameters on velocity and temperature transfer of fluid is examined and deliberated by plotted graphs and tabulated values. Significances of the mass concentration of dust particle parameter play a key role in controlling flow and thermal behavior of non-Newtonian fluids. Further, the temperature and concern boundary layer girth are declines for increasing values of Williamson parameter. Keywords: Two-phase flow, Williamson fluid, Nonlinear thermal radiation, Magnetic field, Temperature jump

  14. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  15. Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E.; Suo-Anttila, Jill M.; Erickson, Kenneth L

    2014-09-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation result is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.

  16. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model

    International Nuclear Information System (INIS)

    Sheikholeslami, Mohsen; Domiri Ganji, Davood; Younus Javed, M.; Ellahi, R.

    2015-01-01

    In this study, effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied. The significant effects of Brownian motion and thermophoresis have been included in the model of nanofluid. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations. These equations, subjected to the associated boundary conditions are solved numerically using the fourth-order Runge–Kutta method. The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number, thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. Results show that Nusselt number has direct relationship with radiation parameter and Reynolds number while it has reverse relationship with other active parameters. It can also be found that concentration boundary layer thickness decreases with the increase of radiation parameter. - Highlights: • This paper analyses thermal radiation on magnetohydrodynamic nanofluid. • Fourth-order Runge–Kutta method is used. • The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. • Comparison is also made with the existing literature

  17. Uncertainty propagation applied to multi-scale thermal-hydraulics coupled codes. A step towards validation

    Energy Technology Data Exchange (ETDEWEB)

    Geffray, Clotaire Clement

    2017-03-20

    The work presented here constitutes an important step towards the validation of the use of coupled system thermal-hydraulics and computational fluid dynamics codes for the simulation of complex flows in liquid metal cooled pool-type facilities. First, a set of methods suited for uncertainty and sensitivity analysis and validation activities with regards to the specific constraints of the work with coupled and expensive-to-run codes is proposed. Then, these methods are applied to the ATHLET - ANSYS CFX model of the TALL-3D facility. Several transients performed at this latter facility are investigated. The results are presented, discussed and compared to the experimental data. Finally, assessments of the validity of the selected methods and of the quality of the model are offered.

  18. Probable reasons for the lower effectiveness of remedies for early treatment of acute radiation sickness accompanied by combination of radiation and thermal injuries

    International Nuclear Information System (INIS)

    Budagov, R.S.; Ul'yanova, L.P.

    2001-01-01

    Mechanism underlying a lower effectiveness of remedies for early treatment of acute radiation sickness in the case of combined radiation and thermal injuries are studied. Experiments were carried out on mice. Animals had been subjected to either a 3B degree thermal burn covering 10% of the body surface or a single whole body gamma-irradiation of 7 Gy dose or a combined injury (radiation exposure + burn), and changes of the blood serum level of interleukin-6 (IL-6) were investigated by means of ELISA kits. Modifying influence of remedies for early therapy (a synthetic analogue of dicorynomycolate trehalose and a preparation based on killed Lacobacillus acidophilus) on the endogenous serum level of IL-6 and on the 30-day survival was evaluated. In accordance with the degree and duration of increased levels of IL-6 in blood serum, the investigated groups of animals were ranged as follows: combined action > burn only > irradiation only. L. acidophilus based preparation rendered a transient modifying action on the IL-6 level at the combined injury and contributed to increasing the 30-day survival. Lower effectiveness of remedies for early treatment of acute radiation sickness may be associated with too excessive levels of IL-6 in the blood serum [ru

  19. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    Science.gov (United States)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  20. The International Experimental Thermal Hydraulic Systems database – TIETHYS: A new NEA validation tool

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, Upendra S.

    2018-07-22

    Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary of appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available. https://www.oecd-nea.org/tiethysweb/

  1. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  2. Online In-Core Thermal Neutron Flux Measurement for the Validation of Computational Methods

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Yahya Ismail

    2016-01-01

    In order to verify and validate the computational methods for neutron flux calculation in RTP calculations, a series of thermal neutron flux measurement has been performed. The Self Powered Neutron Detector (SPND) was used to measure thermal neutron flux to verify the calculated neutron flux distribution in the TRIGA reactor. Measurements results obtained online for different power level of the reactor. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and measured thermal neutron flux in the core are in very good agreement indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux distribution in the reactor core. Since the computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of RTP utilization. (author)

  3. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  4. ESR Study Applied To Thermal Stability Of Radiation-Induced Species Of Solid Ketoprofen

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Katusin-Razem, B.; Razem, D.

    2015-01-01

    Ketoprofen [2-(3-benzoylphenyl) propionic acid] is a non-steroidal anti-inflammatory drug. It has been widely used in human and veterinary medicine. Radiation processing of drugs and its ingredients is recognized as a safe and effective method among the existing technologies for sterilization and protocols that can be found in ISO 11137-1. Radiosterilization of drugs or other medical products by a suitable dose of ionizing radiation conducted in an appropriate environment ensures sterile conditions by destroying or removing vegetative and sporulating microbes from the ingredients or environment. In earlier studies the effects of gamma radiation was evaluated by selected physico-chemical methods and the observations showed that solid ketoprofen is relatively stable toward ionizing irradiation and that radiosterilization might be a suitable method for the sterilization of solid ketoprofen. The studies reported in this work were undertaken to analyse thermal stability of free radicals by accelerated aging method with a view to the determination of shelf-life. The expiration date (shelf-life) of a product is based on evaluation of both, thermal stability of free radicals, as well as on the time evolution of stable radiolysis products. Namely, storage time is determined by the time required by any degradation product in the dosage form to achieve a sufficient level to represent a risk to the patient. This work shows that ESR spectroscopy provides means for determination of thermal stability of radicals induced by gamma-irradiation in solid drugs. Therefore, despite the complex mixture of individual free radicals induced by gamma-irradiation in solid ketoprofen, the overall lifetime of free radicals could be determined by using isothermal and isochronal annealing. This study shows that radicals induced by gamma-irradiation in solid ketoprofen are stable for at least about 6 months. (author).

  5. Investigation of V and V process for thermal fatigue issue in a sodium cooled fast reactor – Application of uncertainty quantification scheme in verification and validation with fluid-structure thermal interaction problem in T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2014-11-15

    Highlights: • Outline of numerical simulation code MUGTHES for fluid-structure thermal interaction was described. • The grid convergence index (GCI) method was applied according to the ASME V and V-20 guide. • Uncertainty of MUGTHES can be successfully quantified for thermal-hydraulic problems and unsteady heat conduction problems in the structure. • Validation for fluid-structure thermal interaction problem in a T-junction piping system was well conducted. - Abstract: Thermal fatigue caused by thermal mixing phenomena is one of the most important issues in design and safety assessment of fast breeder reactors. A numerical simulation code MUGTHES consisting of two calculation modules for unsteady thermal-hydraulics analysis and unsteady heat conduction analysis in structure has been developed to predict thermal mixing phenomena and to estimate thermal response of structure under the thermal interaction between fluid and structure fields. Although verification and validation (V and V) of MUGTHES has been required, actual procedure for uncertainty quantification is not fixed yet. In order to specify an actual procedure of V and V, uncertainty quantifications with the grid convergence index (GCI) estimation according to the existing guidelines were conducted in fundamental laminar flow problems for the thermal-hydraulics analysis module, and also uncertainty for the structure heat conduction analysis module and conjugate heat transfer model was quantified in comparison with the theoretical solutions of unsteady heat conduction problems. After the verification, MUGTHES was validated for a practical fluid-structure thermal interaction problem in T-junction piping system compared with measured results of velocity and temperatures of fluid and structure. Through the numerical simulations in the verification and validation, uncertainty of the code was successfully estimated and applicability of the code to the thermal fatigue issue was confirmed.

  6. Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen J.; Yuko, James

    2010-01-01

    This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.

  7. Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas

    Directory of Open Access Journals (Sweden)

    Matthieu Melot

    2011-01-01

    Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.

  8. Validity of the linear no-threshold (LNT) hypothesis in setting radiation protection regulations for the inhabitants in high level natural radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Atefi, M.; Razi, Z.; Mortazavi Gh

    2010-01-01

    Some areas in Ramsar, a city in northern Iran, have long been known as inhabited areas with the highest levels of natural radiation. Despite the fact that the health effects of high doses of ionizing radiation are well documented, biological effects of above the background levels of natural radiation are still controversial and the validity of the LNT hypothesis in this area, has been criticized by many investigators around the world. The study of the health effects of high levels of natural radiation in areas such as Ramsar, help scientists to investigate the biological effects without the need for extrapolating the observations either from high doses of radiation to low dose region or from laboratory animals to humans. Considering the importance of these studies, National Radiation Protection Department (NRPD) of the Iranian Nuclear Regulatory Authority has started an integrative research project on the health effects of long-term exposure to high levels of natural radiation. This paper reviews findings of the studies conducted on the plants and humans living or laboratory animals kept in high level natural radiation areas of Ramsar. In human studies, different end points such as DNA damage, chromosome aberrations, blood cells and immunological alterations are discussed. This review comes to the conclusion that no reproducible detrimental health effect has been reported so far. In this paper the validity of LNT hypothesis in the assessment of the health effects of high levels of natural radiation is discussed. (author)

  9. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  10. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

    Directory of Open Access Journals (Sweden)

    T. Sajid

    2018-03-01

    Full Text Available The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.

  11. Blackbody Radiation and the Carbon Particle

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2008-07-01

    Full Text Available Since the days of Kirchhoff, blackbody radiation has been considered to be a uni- versal process, independent of the nature and shape of the emitter. Nonetheless, in promoting this concept, Kirchhoff did require, at the minimum, thermal equilibrium with an enclosure. Recently, the author stated (P.-M. Robitaille, IEEE Trans. Plasma Sci. , 2003, v. 31(6, 1263–1267; P.-M. Robitaille, Progr. in Phys. , 2006, v. 2, 22–23, that blackbody radiation is not universal and has called for a return to Stewart’s law (P.-M. Robitaille, Progr. in Phys. , 2008, v. 3, 30–35. In this work, a historical analysis of thermal radiation is presented. It is demonstrated that soot, or lampblack, was the standard for blackbody experiments throughout the 1800s. Furthermore, graphite and carbon black continue to play a central role in the construction of blackbody cavities. The advent of universality is reviewed through the writings of Pierre Prevost, Pierre Louis Dulong, Alexis Therese Petit, Jean Baptiste Joseph Fourier, Simeon Denis Pois- son, Frederick Herve de la Provostaye, Paul Quentin Desain, Balfour Stewart, Gustav Robert Kirchhoff, and Max Karl Ernst Ludwig Planck. These writings illustrate that blackbody radiation, as experimentally produced in cavities and as discussed theoreti- cally, has remained dependent on thermal equilibrium with at least the smallest carbon particle. Finally, Planck’s treatment of Kirchhoff’s law is examined in detail and the shortcomings of his derivation are outlined. It is shown once again, that universality does not exist. Only Stewart’s law of thermal emission, not Kirchhoff’s, is fully valid.

  12. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  13. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kasmani, Ruhaila Md; Bhuvaneswari, M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sivasankaran, S.; Siri, Zailan [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  14. The script concordance test in radiation oncology: validation study of a new tool to assess clinical reasoning

    International Nuclear Information System (INIS)

    Lambert, Carole; Gagnon, Robert; Nguyen, David; Charlin, Bernard

    2009-01-01

    The Script Concordance test (SCT) is a reliable and valid tool to evaluate clinical reasoning in complex situations where experts' opinions may be divided. Scores reflect the degree of concordance between the performance of examinees and that of a reference panel of experienced physicians. The purpose of this study is to demonstrate SCT's usefulness in radiation oncology. A 90 items radiation oncology SCT was administered to 155 participants. Three levels of experience were tested: medical students (n = 70), radiation oncology residents (n = 38) and radiation oncologists (n = 47). Statistical tests were performed to assess reliability and to document validity. After item optimization, the test comprised 30 cases and 70 questions. Cronbach alpha was 0.90. Mean scores were 51.62 (± 8.19) for students, 71.20 (± 9.45) for residents and 76.67 (± 6.14) for radiation oncologists. The difference between the three groups was statistically significant when compared by the Kruskall-Wallis test (p < 0.001). The SCT is reliable and useful to discriminate among participants according to their level of experience in radiation oncology. It appears as a useful tool to document the progression of reasoning during residency training

  15. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  16. Composite heat transfer in a pipe with thermal radiation of two-dimensional propagation - in connection with the temperature rise in flowing medium upstream from heating section

    International Nuclear Information System (INIS)

    Echigo, R.; Hasegawa, S.; Kamiuto, K.

    1975-01-01

    An analytical procedure is presented for simultaneous convective and radiative heat transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional propagation of radiative transfer and also shows the numerical results on the temperature profiles and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional radiative transfer the entire ranges of the temperature field have to be solved simultaneously both along the radial and flow directions. Moreover, the heat flux by thermal radiation emitted from the heating wall propagates upstream so that it is necessary to examine the temperature profiles of the flowing medium to a certain distance upstream from the entrance of the heating section. In this way in order to attempt to solve the governing equation numerically by a finite difference method the dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation is required Consequently the band matrix method is used and the temperature profiles of the medium in both regions upstream and downstream from the entrance of the heating section are illustrated and the heat transfer results are discussed in some detail by comparing with those of the one-dimensional transfer of radiation.(auth)

  17. Thermal analysis of a glass bending process

    International Nuclear Information System (INIS)

    Buonanno, G.; Dell'Isola, M.; Frattolillo, A.; Giovinco, G.

    2005-01-01

    The paper presents the thermal simulation of naturally ventilated ovens used in glass sheets hot forming for windscreen production. The determination of thermal and flow conditions in the oven and, consequently, the windshield temperature distribution is necessary both for the productive process optimisation and to assure beforehand, without any iterative tuning process, the required characteristics of the product considered. To this purpose, the authors carried out a 3D numerical simulation of the thermal interaction between the glass and the oven internal surfaces during the whole heating process inside the oven. In particular, a finite volumes method was used to take into account both the convective, conductive and radiative heat transfer in the oven. The numerical temperature distribution in the glass was validated through the comparison with the data obtained from an experimental apparatus designed and built for the purpose

  18. Validation of Effective Models for Simulation of Thermal Stratification and Mixing Induced by Steam Injection into a Large Pool of Water

    Directory of Open Access Journals (Sweden)

    Hua Li

    2014-01-01

    Full Text Available The Effective Heat Source (EHS and Effective Momentum Source (EMS models have been proposed to predict the development of thermal stratification and mixing during a steam injection into a large pool of water. These effective models are implemented in GOTHIC software and validated against the POOLEX STB-20 and STB-21 tests and the PPOOLEX MIX-01 test. First, the EHS model is validated against STB-20 test which shows the development of thermal stratification. Different numerical schemes and grid resolutions have been tested. A 48×114 grid with second order scheme is sufficient to capture the vertical temperature distribution in the pool. Next, the EHS and EMS models are validated against STB-21 test. Effective momentum is estimated based on the water level oscillations in the blowdown pipe. An effective momentum selected within the experimental measurement uncertainty can reproduce the mixing details. Finally, the EHS-EMS models are validated against MIX-01 test which has improved space and time resolution of temperature measurements inside the blowdown pipe. Excellent agreement in averaged pool temperature and water level in the pool between the experiment and simulation has been achieved. The development of thermal stratification in the pool is also well captured in the simulation as well as the thermal behavior of the pool during the mixing phase.

  19. Linearized Flux Evolution (LiFE): A technique for rapidly adapting fluxes from full-physics radiative transfer models

    Science.gov (United States)

    Robinson, Tyler D.; Crisp, David

    2018-05-01

    Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.

  20. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  1. Thermal Analysis of the Receiver of a Standalone Pilot Solar Dish–Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2018-06-01

    Full Text Available Recent developments in solar thermal systems have aroused considerable interest in several countries with high solar potential. One of the most promising solar driven technologies is the solar thermal dish-Stirling system. One of the main issues of the solar dish–Stirling system is thermal losses from its components. The majority of the thermal losses of the system occur through its receiver before the thermal energy is converted to electrical energy by the Stirling engine. The goal of this investigation is to analyze the thermal performance of the receiver of a standalone pilot solar dish–Stirling system installed in Kerman City, Iran, to be used in remote off-grid areas of the Kerman Province. An analytical model was developed to predict the input energy, thermal losses, and thermal efficiency of the receiver. The receiver thermal model was first validated by comparing simulation results to experimental measurements for the EuroDish project. Then, the incident flux intensity intercepted by the receiver aperture, the thermal losses through the receiver (including conduction, convection, and radiation losses, and the power output during daytime hours (average day of each month for a year were predicted. The results showed that the conduction loss was small, while the convection and radiation losses played major roles in the total thermal losses through the receiver. The convection loss is dominant during the early morning and later evening hours, while radiation loss reaches its highest value near midday. Finally, the thermal efficiency of the receiver and the power output for each working hour throughout the year were calculated. The maximum performance of the system occurred at midday in the middle of July, with a predicted power output of 850 W, and a receiver efficiency of about 60%. At this time, a conduction loss of about 266 W, a convection loss of 284 W, and a radiation loss of about 2000 W were estimated.

  2. Validation and further development of a novel thermal analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, E.H.; Shuttleworth, A.G.; Rousseau, P.G. [Pretoria Univ. (South Africa). Dept. of Mechanical Engineering

    1994-12-31

    The design of thermal and energy efficient buildings requires inter alia the investigation of the passive performance, natural ventilation, mechanical ventilation as well as structural and evaporative cooling of the building. Only when these fail to achieve the desired thermal comfort should mechanical cooling systems be considered. Few computer programs have the ability to investigate all these comfort regulating methods at the design stage. The QUICK design program can simulate these options with the exception of mechanical cooling. In this paper, Quick`s applicability is extended to include the analysis of basic air-conditioning systems. Since the design of these systems is based on indoor loads, it was necessary to validate QUICK`s load predictions before extending it. This article addresses validation in general and proposes a procedure to establish the efficiency of a program`s load predictions. This proposed procedure is used to compare load predictions by the ASHRAE, CIBSE, CARRIER, CHEETAH, BSIMAC and QUICK methods for 46 case studies involving 36 buildings in various climatic conditions. Although significant differences in the results of the various methods were observed, it is concluded that QUICK can be used with the same confidence as the other methods. It was further shown that load prediction programs usually under-estimate the effect of building mass and therefore over-estimate the peak loads. The details for the 46 case studies are available to other researchers for further verification purposes. With the confidence gained in its load predictions, QUICK was extended to include air-conditioning system analysis. The program was then applied to different case studies. It is shown that system size and energy usage can be reduced by more than 60% by using a combination of passive and mechanical cooling systems as well as different control strategies. (author)

  3. Mars Surface Ionizing Radiation Environment: Need for Validation

    Science.gov (United States)

    Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.

    1999-01-01

    Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from

  4. Importance of thermal radiation from heat sink in cooling of three phase PWM inverter kept inside an evacuated chamber

    Directory of Open Access Journals (Sweden)

    Anjan Sarkar

    2017-04-01

    Full Text Available The paper describes a thermal analysis of a three-phase inverter operated under a Sinusoidal Pulse Width Modulation (SPWM technique which used three sine waves displaced in 120° phase difference as reference signals. The IGBT unit is assumed to be placed with a heat sink inside an evacuated chamber and the entire heat has to be transferred by conduction and radiation. The main heat sources present here are the set of IGBTs and diodes which generates heat on a pulse basing on their switching frequencies. Melcosim (a well-known tool developed by Mitsubishi Electric Corporation has been used to generate the power pulse from one set of IGBT and diode connected to a phase. A Scilab code is written to study the conduction and thermal radiation of heat sink and their combined effect on transient growth of the junction temperature of IGBT unit against complex switching pulses. The results mainly show that how thermal radiation from heat sink plays a crucial role in maintaining the junction temperature of IGBT within a threshold limit by adjusting various heat sink parameters. As the IGBT heat generation rate becomes higher, radiative heat transfer of the heat sink increases sharply which enhances overall cooling performance of the system.

  5. Validation of the method for determination of the thermal resistance of fouling in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Markowski, Mariusz; Trafczynski, Marian; Urbaniec, Krzysztof

    2013-01-01

    Highlights: • Heat recovery in a heat exchanger network (HEN). • A novel method for on-line determination of the thermal resistance of fouling is presented. • Details are developed for shell and tube heat exchangers. • The method was validated and sensibility analysis was carried out. • Developed approach allows long-term monitoring of changes in the HEN efficiency. - Abstract: A novel method for on-line determination of the thermal resistance of fouling in shell and tube heat exchangers is presented. It can be applied under the condition that the data on pressure, temperature, mass flowrate and thermophysical properties of both heat-exchanging media are continuously available. The calculation algorithm for use in the novel method is robust and ensures reliable determination of the thermal resistance of fouling even if the operating parameters fluctuate. The method was validated using measurement data retrieved from the operation records of a heat exchanger network connected with a crude distillation unit rated 800 t/h. Sensibility analysis of the method was carried out and the calculated values of the thermal resistance of fouling were critically reviewed considering the results of qualitative evaluation of fouling layers in the exchangers inspected during plant overhaul

  6. Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy-Forchheimer flow

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present work aims to report the consequences of heterogeneous-homogeneous reactions in Darcy-Forchheimer flow of Casson material bounded by a nonlinear stretching sheet of variable thickness. Nonlinear stretched surface with variable thickness is the main agent for MHD Darcy-Forchheimer flow. Impact of thermal radiation and non-uniform heat absorption/generation are also considered. Flow in porous space is characterized by Darcy-Forchheimer flow. It is assumed that the homogeneous process in ambient fluid is governed by first order kinetics and the heterogeneous process on the wall surface is given by isothermal cubic autocatalator kinetics. The governing nonlinear ordinary differential equations are solved numerically. Effects of physical variables such as thickness, Hartman number, inertia and porous, radiation, Casson, heat absorption/generation and homogeneous-heterogeneous reactions are investigated. The variations of drag force (skin friction and heat transfer rate (Nusselt numberfor different interesting variables are plotted and discussed. Keywords: Casson fluid, Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Heat generation/absorption, Thermal radiation

  7. On the thermal stability of a radiating gas under general differential approximation

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1988-02-01

    The thermal stability of a radiating gas in a semi-infinite space is studied under a general differential approximation. The fluid is bounded on the axis z'=0 by a horizontal infinite wall maintained at a temperature T 0 which is high enough for radiative heat transfer to be significant. At z'=∞, the fluid is at uniform temperature T ∞ such that T 0 >T ∞ . The equations of motion under small perturbation theory reduce to a set of linear homogeneous equations with a variable coefficient subject to homogeneous boundary conditions when the unperturbed temperature is adopted as the independent variable. The solution is effected via a finite difference scheme and the Rayleigh number is determined by Newton's iterative method. (author). 8 refs

  8. Validation of the reactor dynamics code HEXTRAN

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1994-05-01

    HEXTRAN is a new three-dimensional, hexagonal reactor dynamics code developed in the Technical Research Centre of Finland (VTT) for VVER type reactors. This report describes the validation work of HEXTRAN. The work has been made with the financing of the Finnish Centre for Radiation and Nuclear Safety (STUK). HEXTRAN is particularly intended for calculation of such accidents, in which radially asymmetric phenomena are included and both good neutron dynamics and two-phase thermal hydraulics are important. HEXTRAN is based on already validated codes. The models of these codes have been shown to function correctly also within the HEXTRAN code. The main new model of HEXTRAN, the spatial neutron kinetics model has been successfully validated against LR-0 test reactor and Loviisa plant measurements. Connected with SMABRE, HEXTRAN can be reliably used for calculation of transients including effects of the whole cooling system of VVERs. Further validation plans are also introduced in the report. (orig.). (23 refs., 16 figs., 2 tabs.)

  9. Dose rate effect on the yield of radiation induced response with thermal fading

    International Nuclear Information System (INIS)

    Chernov, V.; Rogalev, B.; Barboza-Flores, M.

    2005-01-01

    A model describing the dependences of the accumulation of thermally unstable radiation induced defects on the dose and dose rate is proposed. The model directly takes into account the track nature of the ionizing radiation represented as accumulation processes of defects in tracks averaged over a crystal volume considering various degrees of overlapping in space and time. The accumulation of the defects in the tracks is phenomenologically described. General expressions are obtained that allows radiation yield simulation of defects involving known creation and transformation processes. The cases considered, of linear accumulation (constant increment of the defects in tracks) and accumulation with saturation (complete saturation of the defects in one track), lead to a set of linear dose dependences with saturation, which are routinely used in luminescence and ESR dating. The accumulation, with increase of sensitivity in regions overlapped by two or more tracks, gave a set of dose dependences, from linear-sublinear-linear-saturation, distinctive of quartz up to linear-supralinear-linear-saturation. It is shown that the effect of the dose rate on dose dependences is determined by a dimensionless parameter a=Pτ/D0, where P is the dose rate, τ is the defect lifetime and D0 is the track dose. At a-bar 1 the dose rate influences basically the accumulation of thermally unstable defects. In the reverse case the dose dependences did not seems to be influenced by the dose rate

  10. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  11. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – Ck's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usage are discussed.

  12. Investigation and computer modeling of radiation and thermal decomposition of polystyrene scintillators

    Science.gov (United States)

    Sakhno, Tamara V.; Pustovit, Sergey V.; Borisenko, Artem Y.; Senchishin, Vitaliy G.; Barashkov, Nikolay N.

    2003-12-01

    This paper is devoted to the investigation and computer modeling of radiation and thermal decomposition of luminescent polystyrene compositions. It has been shown, that the stability of the optical properties of luminescent polymer composition depends on its material structure. On the basis of quantum-chemical calculation has been obtained the possible products of PS gamma-radiolysis and the effect of formation of fragments with conjugated double bonds and products with quinone structure has been investigated.

  13. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  14. Absence of storage effects on radiation damage after thermal neutron irradiation of dry rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kowyama, Y. [Mie Univ., Tsu (Japan); Saito, M.; Kawase, T.

    1987-09-15

    Storage effects on dry rice seeds equilibrated to 6.8% moisture content were examined after irradiation with X-rays of 5, 10, 20 and 40 kR and with thermal neutrons of 2.1, 4.2, 6.3 and 8.4×10{sup 13}N{sub th}/cm{sup 2}. Reduction in root growth was estimated from dose response curves after storage periods of 1 hr to 21 days. The longer the storage period, the greater enhancement of radiation damages in X-irradiated seeds. There were two components in the storage effect, i. e., a rapid increase of radiosensitivity within the first 24 hr and a slow increase up to 21 days. An almost complete absence of a storage effect was observed after thermal neutron exposure, in spite of considerably high radioactivities of the induced nuclides, {sup 56}Mn, {sup 42}K and {sup 24}Na, which were detected from gamma-ray spectrometry of the irradiated seeds. The present results suggest that the contributions of gamma-rays from the activated nuclides and of inherent contaminating gamma-rays are little or negligible against the neutron-induced damage, and that the main radiobiological effects of thermal neutrons are ascribed to in situ radiations, i, e., heavy particles resulting from neutron-capture reaction of atom. A mechanism underlying the absence of storage effect after thermal neutron irradiation was briefly discussed on the basis of radical formation and decay. (author)

  15. Development and validation of P-MODTRAN7 and P-MCScene, 1D and 3D polarimetric radiative transfer models

    Science.gov (United States)

    Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.

    2016-05-01

    A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.

  16. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  17. Test plan for validation of the radiative transfer equation.

    Energy Technology Data Exchange (ETDEWEB)

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  18. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  19. Situational awareness of hazards: Validation of multi-source radiation measurements

    Science.gov (United States)

    Hultquist, C.; Cervone, G.

    2016-12-01

    Citizen-led movements producing scientific hazard data during disasters are increasingly common. After the Japanese earthquake-triggered tsunami in 2011, and the resulting radioactive releases at the damaged Fukushima Daiichi nuclear power plants, citizens monitored on-ground levels of radiation with innovative mobile devices built from off-the-shelf components. To date, the citizen-led SAFECAST project has recorded 50 million radiation measurements worldwide, with the majority of these measurements from Japan. The analysis of data which are multi-dimensional, not vetted, and provided from multiple devices presents big data challenges due to their volume, velocity, variety, and veracity. While the SAFECAST project produced massive open-source radiation measurements at specific coordinates and times, the reliability and validity of the overall data have not yet been assessed. The nuclear disaster provides a case for assessing the SAFECAST data with official aerial remote sensing radiation data jointly collected by the governments of the United States and Japan. A spatial and statistical assessment of SAFECAST requires several preprocessing steps. First, SAFECAST ionized radiation sensors collected data using different units of measure than the government data, and they had to be converted. Secondly, the normally occurring radiation and decay rates of Cesium from deposition surveys were used to properly compare measurements in space and time. Finally, the GPS located points were selected within overlapping extents at multiple spatial resolutions. Quantitative measures were used to assess the similarity and differences in the observed measurements. Radiation measurements from the same geographic extents show similar spatial variations and statistically significant correlations. The results suggest that actionable scientific data for disasters and emergencies can be inferred from non-traditional and not vetted data generated through citizen science projects. This

  20. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  1. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Abdullah, Z. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Hayat, T. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan)

    2016-01-01

    This research work addresses the three-dimensional hydromagnetic flow of Jeffrey fluid with nanoparticles. Flow is generated by a bidirectional stretching surface. The effects of thermal radiation and internal heat generation are encountered in energy expressions. More realistic convective boundary conditions at the surface are employed instead of constant surface temperature and mass species conditions. Boundary layer assumptions lead to the governing non-linear mathematical model. Resulting equations through momentum, energy and mass species are made dimensionless using suitable variables. The solution expressions of dimensionless velocities, temperature and nanoparticle concentration have been computed for the convergent series solutions. The impacts of interesting parameters on the dimensionless quantities are displayed and interpreted. The values of physical quantities are computed and analyzed. - Highlights: • Three-dimensional hydromagnetic flow of Jeffrey nanofluid is considered. • Brownian motion and thermophoresis effects are encountered. • Heat transfer analysis is performed with thermal radiation. • Results are plotted and visualized.

  2. Validating the accuracy of SO2 gas retrievals in the thermal infrared (8-14 μm)

    Science.gov (United States)

    Gabrieli, Andrea; Porter, John N.; Wright, Robert; Lucey, Paul G.

    2017-11-01

    Quantifying sulfur dioxide (SO2) in volcanic plumes is important for eruption predictions and public health. Ground-based remote sensing of spectral radiance of plumes contains information on the path-concentration of SO2. However, reliable inversion algorithms are needed to convert plume spectral radiance measurements into SO2 path-concentrations. Various techniques have been used for this purpose. Recent approaches have employed thermal infrared (TIR) imaging between 8 μm and 14 μm to provide two-dimensional mapping of plume SO2 path-concentration, using what might be described as "dual-view" techniques. In this case, the radiance (or its surrogate brightness temperature) is computed for portions of the image that correspond to the plume and compared with spectral radiance obtained for adjacent regions of the image that do not (i.e., "clear sky"). In this way, the contribution that the plume makes to the measured radiance can be isolated from the background atmospheric contribution, this residual signal being converted to an estimate of gas path-concentration via radiative transfer modeling. These dual-view approaches suffer from several issues, mainly the assumption of clear sky background conditions. At this time, the various inversion algorithms remain poorly validated. This paper makes two contributions. Firstly, it validates the aforementioned dual-view approaches, using hyperspectral TIR imaging data. Secondly, it introduces a new method to derive SO2 path-concentrations, which allows for single point SO2 path-concentration retrievals, suitable for hyperspectral imaging with clear or cloudy background conditions. The SO2 amenable lookup table algorithm (SO2-ALTA) uses the MODTRAN5 radiative transfer model to compute radiance for a variety (millions) of plume and atmospheric conditions. Rather than searching this lookup table to find the best fit for each measured spectrum, the lookup table was used to train a partial least square regression (PLSR) model

  3. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs

    Science.gov (United States)

    Sinton, William M.; Kaminski, Charles

    1988-01-01

    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake.

  4. The effect of thermal and radiation accelerated ageing on the A. C. electric motor parameters

    International Nuclear Information System (INIS)

    Pica, I.; Segarceanu, D.

    2000-01-01

    The paper presents the main aspects concerning the electric parameters variation of triphase asynchronous motors operating under specific environmental conditions determined by temperature, humidity, radiation. The testing of electric motor capability to meet and exceed the required performances all along its operating life implies the performing of thermal and radiation ageing while the motor is brought, in a relatively short time, under conditions equivalent to those at the end of its service life. The paper describes ageing and measurement techniques and the analyses of electric parameter behavior in these environmental simulated conditions. (author)

  5. Radiation Protection in the Experimental Pile Marius

    International Nuclear Information System (INIS)

    Cohendy, G.

    1962-01-01

    Measurements made around the experimental pile 'Marius' made it possible to determine the valid characteristics of the slabs designed to improve the biological protection by covering the charge and discharge pits. These measurements also made it possible to evaluate the risks occurring when the pile is operating at various Powers and to make a reasonable estimate of the value of the ratio of the total danger due to neutrons (thermal and fast) and γ radiation and to the danger due only to the γ radiation. A knowledge of this ratio makes it possible to make satisfactory evaluations with a single apparatus which is really portable. (author) [fr

  6. Validation of an educative manual for patients with head and neck cancer submitted to radiation therapy

    Directory of Open Access Journals (Sweden)

    Flávia Oliveira de Almeida Marques da Cruz

    2016-01-01

    Full Text Available Abstract Objective: develop the content and face validation of an educative manual for patients with head and neck cancer submitted to radiation therapy. Method: descriptive methodological research. The Theory of Psychometrics was used for the validation process, developed by 15 experts in the theme area of the educative manual and by two language and publicity professionals. A minimum agreement level of 80% was considered to guarantee the validity of the material. Results: the items addressed in the assessment tool of the educative manual were divided in three blocks: objectives, structure and format, and relevance. Only one item, related to the sociocultural level of the target public, obtained an agreement rate <80%, and was reformulated based on the participants' suggestions. All other items were considered appropriate and/or complete appropriate in the three blocks proposed: objectives - 92.38%, structure and form - 89.74%, and relevance - 94.44%. Conclusion: the face and content validation of the educative manual proposed were attended to. This can contribute to the understanding of the therapeutic process the head and neck cancer patient is submitted to during the radiation therapy, besides supporting clinical practice through the nursing consultation.

  7. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  8. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  9. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, AHA., E-mail: amyhamijah@nm.gov.my [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia)

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  10. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    Science.gov (United States)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder's intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties' absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  11. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    International Nuclear Information System (INIS)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-01-01

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex

  12. Thermal and radiation process for nano-/micro-fabrication of crosslinked PTFE

    International Nuclear Information System (INIS)

    Kobayashi, Akinobu; Oshima, Akihiro; Okubo, Satoshi; Tsubokura, Hidehiro; Takahashi, Tomohiro; Oyama, Tomoko Gowa; Tagawa, Seiichi; Washio, Masakazu

    2013-01-01

    Nano-/micro-fabrication process of crosslinked poly(tetrafluoroethylene) (RX-PTFE) is proposed as a novel method using combined process which is thermal and radiation process for fabrication of RX-PTFE (TRaf process). Nano- and micro-scale patterns of silicon wafers fabricated by EB lithography were used as the molds for TRaf process. Poly(tetrafluoroethylene) (PTFE) dispersion was dropped on the fabricated molds, and then PTFE was crosslinked with doses from 105 kGy to 1500 kGy in its molten state at 340 °C in nitrogen atmosphere. The obtained nano- and micro-structures by TRaf process were compared with those by the conventional thermal fabrication process. Average surface roughness (R a ) of obtained structures was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM). R a of obtained structures with the crosslinking dose of 600 kGy showed less than 1.2 nm. The fine nano-/micro-structures of crosslinked PTFE were successfully obtained by TRaf process

  13. Adaptive radiation along a thermal gradient: preliminary results of habitat use and respiration rate divergence among whitefish morphs.

    Directory of Open Access Journals (Sweden)

    Kimmo Kalevi Kahilainen

    Full Text Available Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L. morphs (two pelagic, one littoral and one profundal using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.

  14. The fuel and channel thermal/mechanical behaviour code FACTAR 2.0 (LOCA)

    International Nuclear Information System (INIS)

    Westbye, C.J.; Mackinnon, J.C.; Gu, B.W.

    1996-01-01

    The computer code FACTAR 2.0 (LOCA) models the thermal and mechanical response of components within a single CANDU fuel channel under loss-of-coolant accident conditions. This code version is the successor to the FACTAR 1.x code series, and features many modelling enhancements over its predecessor. In particular, the thermal hydraulic treatment has been extended to model reverse and bi-directional coolant flow, and the axial variation in coolant flow rate. Thermal radiation is calculated by a detailed surface-to-surface model, and the ability to represent a greater range of geometries (including experimental configurations employed in code validation) has been implemented. Details of these new code treatments are described in this paper. (author)

  15. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  16. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  17. Validation of an educative manual for patients with head and neck cancer submitted to radiation therapy 1

    Science.gov (United States)

    da Cruz, Flávia Oliveira de Almeida Marques; Ferreira, Elaine Barros; Vasques, Christiane Inocêncio; da Mata, Luciana Regina Ferreira; dos Reis, Paula Elaine Diniz

    2016-01-01

    Abstract Objective: develop the content and face validation of an educative manual for patients with head and neck cancer submitted to radiation therapy. Method: descriptive methodological research. The Theory of Psychometrics was used for the validation process, developed by 15 experts in the theme area of the educative manual and by two language and publicity professionals. A minimum agreement level of 80% was considered to guarantee the validity of the material. Results: the items addressed in the assessment tool of the educative manual were divided in three blocks: objectives, structure and format, and relevance. Only one item, related to the sociocultural level of the target public, obtained an agreement rate manual proposed were attended to. This can contribute to the understanding of the therapeutic process the head and neck cancer patient is submitted to during the radiation therapy, besides supporting clinical practice through the nursing consultation. PMID:27305178

  18. Thermally stimulated current in PTFE and its application in radiation dosimetry

    International Nuclear Information System (INIS)

    Ozdemir, S.

    1985-01-01

    Thermally Stimulated Current (TSC) measurement was made on PTFE (Polytetrafluoro ethylene) in an attempt to develop an integrating radiation dosimeter material and the system. TSC spectra, dose response, energy response, fading and background charge stability characteristics were used as a measure of suitability of various untreated and heat treated PTFE samples for dosimetry applications. For practical TSC dosimetry system, it was discovered that the PTFE samples should be subjected to a specific heat treatment in order to produce samples with better dosimeter characteristics. A treatment at a temperature of 240 C produces a high dose response and low fading characteristics. It was found that the spurious charges due to storage and low sensitivity to irradiation caused the limitation in the measurement of low doses with PTFE samples for personnel protection. However, a TSC Dosimetry system using PTFE is proposed which is suitable for radiation doses in the radiotherapy range from *approx* 50 to *approx* 800 mGy. (author)

  19. Radiation effect of polyether-urethane under action of different ionizing radiation

    International Nuclear Information System (INIS)

    Huang Wei; Chen Xiaojun; Gao Xiaoling; Xu Yunshu; Fu Yibei

    2006-01-01

    The research concerns in the radiation effect of γ-ray and electron beam on polyether-urethane. The thermal property and radical intensity were determined by differential thermal gravimetric analysis and electron spin resonance. The composition and content of gas products from samples irradiated by different ionizing radiation were analyzed by gas chromatography. The action mechanism of these two radiation resources of γ-ray and electron beam are same, but the means of energy deposit is different. It results in the differences of radical intensity and the thermal property of polyether-urethane as well as its gas products from the radiation decomposition. (authors)

  20. These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnos

    Science.gov (United States)

    2002-01-01

    These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnostic of physical phenomena The 7.85-micron image in the upper left shows stratospheric temperatures which are elevated in the region of the A fragment impact (to the left of bottom). Temperatures deeper in the atmosphere near 150-mbar are shown by the 17.2-micron image in the upper right. There is a small elevation of temperatures at this depth, indicated by the arrow, and confirmed by other measurements near this wavelength. This indicates that the influence of the impact of fragment A on the troposphere has been minimal. The two images in the bottom row show no readily apparent perturbation of the ammmonia condensate cloud field near 600 mbar, as diagnosed by 8.57-micron radiation, and deeper cloud layers which are diagnosed by 5-micron radiation.

  1. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  2. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  3. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  4. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  5. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  6. Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors

    International Nuclear Information System (INIS)

    Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.

    2010-01-01

    A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)

  7. Thermoluminescence studies of the thermal and radiation histories of chondritic meteorites

    International Nuclear Information System (INIS)

    Melcher, C.L.

    1980-01-01

    The thermoluminescence properties of chondritic meteorites are investigated to understand the ways in which the stored TL reflects the thermal and radiation histories of these objects. Differences in TL levels measured in recent falls are attributed to small differences in orbital temperatures. In addition, a correlation between TL level and terrestrial age is observed in meteorites of known terrestrial age. The thermoluminescence in chondrites is produced primarily by ionization from galactic cosmic rays with a much smaller contribution from the decay of natural radionuclides (U, Th, K, Rb). The production of most of the TL occurs after the break up of the large parent bodies into meter-size objects which are thus exposed to the ionizing effects of the cosmic rays. Measurements indicate that the low temperature TL represents a dynamic equilibrium between build up from ionizing radiation and thermal draining. The high temperature TL is near saturation. The terrestrial ages currently of greatest interest are those of the recently discovered meteorites in Antarctica. TL measurements were made on 11 of these meteorites and compared with the activities of 14 C, 26 Al, and 36 Cl measured by other workers in terrestrial age studies. A good correlation was found between the TL levels and the activities of cosmogenic radionuclides in these meteorites. Since the TL measurements can be made more rapidly and require much smaller samples (approx. 10 mg) than the radionuclide measurements, TL is most useful as a screening process to select potentially interesting samples for further study by more precise techniques

  8. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    Science.gov (United States)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  9. Mechanical and thermal properties of polypropylene composites with curaua fibre irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Egute, Nayara S.; Forster, Pedro L.; Parra, Duclerc F.; Fermino, Danilo M.; Santana, Sebastiao; Lugao, Ademar B.

    2009-01-01

    Thermal and mechanical behavior of polypropylene with curaua fibre composites were investigated. The treatment of the curaua fibres was processed in alkaline solution (10% wt NaOH). A coupling agent was used (maleic anhydride) to increase the adhesion of the fibre/matrix interface. This composite was irradiated with gamma source in the doses of 5, 15 and 30 kGy and the adhesion between the fibres and the polymeric matrix was monitored to observe probable changes. The thermal behavior was evaluated using differential scanning calorimetry (DSC) and Thermogravimetry (TGA). The mechanical behavior was evaluated using tensile strength in comparison with non-reinforced polypropylene resin. The morphology of the composite fracture surface was observed using scanning electron microscopy (SEM). There were no significant changes in the thermal properties neither in the adhesion of irradiated fibres at doses of 5, 15 and 30 kGy of gamma radiation. (author)

  10. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    International Nuclear Information System (INIS)

    Pan, Shu-Yuan; Chang, E.-E.; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-01-01

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO 3 decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO 2 capture and utilization. However, the evaluation criteria of CaCO 3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO 3 standards, carbonated BOFS samples and synthetic CaCO 3 /BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO 3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for

  11. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan (China); Kim, Hyunook [Department of Environmental Engineering, University of Seoul, Seoul 130-743 (Korea, Republic of); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China)

    2016-04-15

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO{sub 3} decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO{sub 2} capture and utilization. However, the evaluation criteria of CaCO{sub 3} content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO{sub 3} standards, carbonated BOFS samples and synthetic CaCO{sub 3}/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO{sub 3} in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed

  12. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  13. Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector

    International Nuclear Information System (INIS)

    Hung, Tzu-Chen; Huang, Tsung-Jie; Lee, Duen-Sheng; Lin, Chih-Hung; Pei, Bau-Shei; Li, Zeng-Yao

    2017-01-01

    Highlights: • Various types of solar air collectors are discussed. • CFD has been used to validate the characteristics of heat transfer. • Solar Ray Tracing has been successfully used for thermal radiation flux. - Abstract: This study combines both concepts of solar ventilation technology and solar air collector. This is a quite innovative and potential facility to effectively use thermal energy and reduce the accumulation of heat in the indoor space simultaneously. The purpose of this study is to create a prototype and implement the experiments. Computational fluid dynamics (CFD) approach is employed to validate the characteristics of the flow and heat transfer. For the accuracy of numerical predictions, the method of Solar Ray Tracing was used for thermal radiation flux as boundary condition on the wall. The local heat transfer correlation was investigated to predict surrounding wind speed upon device cover. Three sorts of glasses and several aspect ratios of flow channels have been compared to conclude the optimal configuration. In addition, four important factors, such as the stagnant layer thickness, emissivity on the illustrated surface, mass flow rate and the height of the device, are also considered and discussed in detail. The result showed that the optimal design is dominated by the combination of an aspect ratio of 50 mm:10 mm, and appropriate mass flow rate to the height of the device. The present work on thermal energy collection can assist us in designing a powerful solar air collector in some potential applications.

  14. Models of thermal transfer by radiation and by conduction, in any geometry, in multiphase multicomponent medium

    International Nuclear Information System (INIS)

    Jeanne, T.

    1990-03-01

    A conduction model and a radiation model are proposed for the calculation of heat transfer. A multiphase multicomponent medium is considered. The conduction model allows the calculation of heat exchanges between two configurations. The heat flow from each component can be obtained. This model is well adapted to the calculation of thermal shocks in an ensemble of materials. The radiation model shows how the radiative transfers can be calculated in a cylinder composed of two opaque surfaces, with the same axis of rotation, and separated by a transparent medium. The form factors are obtained from Herman and Nusselt methods. The parts of the face-to-face surfaces which are seen and not seen are evaluated [fr

  15. Thermal activation and radiation quenching effects in pre-dose dating of porcelain

    International Nuclear Information System (INIS)

    Wang Weida; Xia Junding

    2005-01-01

    The pre-dose technique is very useful for thermoluminescence dating of porcelain. It incorporates two characteristics in the porcelain dating, i.e. thermal activation and radiation quenching. Two methods, activation method and quenching method, for evaluation of paleodose were introduced. The results show that activation method and quenching method one suitable for dating of lower limit age (less than 100 years B.P.) and upper limit age (greater than 1000 years B.P.), respectively. When both methods are co-used, the dating will be more accurate. (authors)

  16. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast

    International Nuclear Information System (INIS)

    Boreham, D.R.; Trivedi, A.; Weinberger, P.; Mitchel, R.E.

    1990-01-01

    Either an ionizing radiation exposure or a heat shock is capable of inducing both thermal tolerance and radiation resistance in yeast. Yeast mutants, deficient in topoisomerase I, in topoisomerase II, or in DNA polymerase I, were used to investigate the mechanism of these inducible resistances. The absence of either or both topoisomerase activities did not prevent induction of either heat or radiation resistance. However, if both topoisomerase I and II activities were absent, the sensitivity of yeast to become thermally tolerant (in response to a heat stress) was markedly increased. The absence of only topoisomerase I activity (top1) resulted in the constitutive expression of increased radiation resistance equivalent to that induced by a heat shock in wild-type cells, and the topoisomerase I-deficient cells were not further inducible by heat. This heat-inducible component of radiation resistance (or its equivalent constitutive expression in top1 cells) was, in turn, only a portion of the full response inducible by radiation. The absence of polymerase I activity had no detectable effect on either response. Our results indicate that the actual systems that confer resistance to heat or radiation are independent of either topoisomerase activity or DNA polymerase function, but suggest that topoisomerases may have a regulatory role during the signaling of these mechanisms. The results of our experiments imply that maintenance of correct DNA topology prevents induction of the heat-shock response, and that heat-shock induction of a component of the full radiation resistance in yeast may be the consequence of topoisomerase I inactivation

  17. Effect of radiation sickness on the progress and treatment of mechanical and thermal injuries. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K

    1964-04-01

    It has been estimated that 70 or 75% of persons exposed to atomic weapons would suffer mechanical and thermal injuries, and that 30% receive radiation injuries. Of the total persons injured, 75% would suffer combinations of these injuries. As a result the various injurious agents, complexes of injury conditions, would be observed. These include leukopenia and impaired resistance to infection, shortened delay in appearance o irradiation symptoms, intensified evidence of shock, and an increased tendency toward hemorrhage, with increased sensitivity to blood loss. The author discusses a wide range of general and specific medical procedures and drugs that can be used to treat and support recovery of persons with combined radiation and mechanical or thermal injuries. Some general treatment procedures include absolute isolation and rest, special dietetic supplementation, strict medical supervision to prevent acute hemorrhage or circulatory failure, and parenteral administration of fluids. Other special measures include treatment of the primary reactions to injury by antihistamines, sedatives, antibiotics, hormones, support of circulation, blood transfusions, etc.

  18. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  19. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  20. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    Science.gov (United States)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  1. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  2. The Effects of Perlite Concentration and Coating Thickness of the Polyester Nonwoven Structures on Thermal and Acoustic Insulation and Also Electromagnetic Radiation Properties

    Directory of Open Access Journals (Sweden)

    Seyda EYUPOGLU

    2018-02-01

    Full Text Available In this study, the improvement of the thermal and acoustic insulation and also electromagnetic radiation properties of polyester (PET nonwoven fabric (NWF with 180 g/m2 weight was investigated. For this purpose, PET NWF was coated with perlite stone powder having 210 – 590 µm particle size using polyurethane (PU based coating. Five different concentrations from 1 to 5 % of perlite stone powder were applied to the surface of PET NWF having five different thicknesses. And then the effect of perlite concentration and its thickness to thermal, acoustic and electromagnetic radiation properties were studied. It was found that the addition of perlite stone powder increased the thermal and acoustic insulation properties of PET NWF. Furthermore, the addition of perlite stone powder does not affect the electromagnetic radiation properties of samples.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17562

  3. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  4. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  5. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Sung, Dahye [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Lee, Junghoon [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Kim, Yonghwan [Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Chung, Wonsub, E-mail: wschung1@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2015-12-01

    Highlights: • Composite plasma electrolytic oxidation was performed using dispersed CuO particles in convectional PEO electrolyte. • Thermal radiation performance and corrosion resistance were examined by FT-IR spectroscopy and electrochemical methods, respectively. • Deposited copper oxide on the surface of the Al substrate was enhanced the corrosion resistance and the emissivity compared with the conventional PEO. - Abstract: A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu{sub 2}O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  6. Analytical developments in the Wong-Fung-Tam-Gao radiation model of thermal diffusivity

    International Nuclear Information System (INIS)

    Lucia, U.; Maino, G.

    2004-01-01

    When the thermal diffusivity, χ, of a thin film on a substrate is measured by means of the mirage method, the photothermal deflection of the probe beam is determined by the heat radiation field contributed by the film and the substrate, heated by the pump beam. A two-dimensional algorithm is here presented in order to deduce the measure of the diffusivities of the film and the substrate in one set of mirage detection from the experimental data

  7. Self-generated clouds of micron-sized particles as a promising way of a Solar Probe shielding from intense thermal radiation of the Sun

    Science.gov (United States)

    Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu

    2017-10-01

    An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.

  8. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  9. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Directory of Open Access Journals (Sweden)

    Q. Hussain

    2018-06-01

    Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis

  10. Radiation catalytical effects in the pre-irradiated and thermally treated catalyst BASF K-3-10

    International Nuclear Information System (INIS)

    Motl, A.

    1987-01-01

    The effects of different heat treatment methods on radiation catalysis, induced by pre-irradiation of the BASF K-3-10 catalyst by γ- or β-radiation or by fast neutrons were investigated. It was found that calcination of the irradiated non-reduced catalyst resulted in a strong decrease in or even a total disappearance of the final radiation catalytical effects; however, at the same time the catalytical activity of the unirradiated catalyst was found to increase. The calcination of the catalyst in a nitrogen atmosphere after reduction also led to a substantial decrease in the resulting positive radiation catalytical effects and the exceedance of a certain calcination temperature also resulted in a decrease in the unirradiated catalyst activity. It could be concluded that calcination in nitrogen of the reduced irradiated samples decreased the radiation catalytical effects to a lesser degree than the calcination in the air of the non-reduced irradiated samples. In both cases, a different thermal stability of effects induced by different types of ionizing radiation was observed and it was found that it increased in the sequence beta radiation - gamma radiation - fast neutrons. The investigation of the γ radiation dose dependence of the radiation catalytical effect on the catalyst calcined before irradiation in the presence of air showed that the final radiation catalytical effects were lower than those observed in case of similarly irradiated but non-calcined samples. The dose dependence of the effect had the same character in both cases. (author). 3 tabs., 8 refs

  11. On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot

    Science.gov (United States)

    Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.

    2018-06-01

    Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.

  12. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  13. Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-11-01

    Full Text Available For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs installed above ground, a finite-element model coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element methods (FEM, the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment.

  14. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  15. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)

    2016-05-15

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  16. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Masood Khan

    2016-05-01

    Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  17. Some Findings from Thermal-Hydraulic Validation Tests for SMART Passive Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Shin, Yong-Cheol; Min, Kyoung-Ho; Yi, Sung-Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To satisfy the domestic and international needs for nuclear safety improvement after the Fukushima accident, an effort to improve its safety has been studied, and a Passive Safety System (PSS) for SMART has been designed. In addition, an Integral Test Loop for the SMART design (SMART-ITL, or FESTA) has been constructed and it finished its commissioning tests in 2012. Consequently, a set of Design Base Accident (DBA) scenarios have been simulated using SMARTITL. Recently, a test program to validate the performance of the SMART PSS was launched and its scaled-down test facility was additionally installed at the existing SMART-ITL facility. In this paper, some findings from the validation tests for the SMART PSS will be summarized. The acquired data will be used to validate the safety analysis code and its related models, to evaluate the performance of SMART PSS, and to provide base data during the application phase of SDA revision and construction licensing. A test program to validate the performance of SMARS PSS was launched with an additional scaleddown test facility of SMART PSS, which will be installed at the existing SMART-ITL facility. In this paper, some findings from the validation tests of the SMART passive safety system during 2013-2014 were summarized. They include a couple of SMART PSS tests using active pumps and several 1-train SMART PSS tests. From the test results it was estimated that the SMART PSS has sufficient cooling capability to deal with the SBLOCA scenario of SMART. During the SBLOCA scenario, in the CMT the water layer inventory was well stratified thermally and the safety injection water was injected efficiently into the RPV from the initial period and cools down the RCS properly.

  18. Thermal radiation characteristics and direct evidence of tungsten cooling on the way to nanostructure formation on its surface

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Miyamoto, T. [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-07-15

    The physical properties of tungsten with nanostructure on its surface are investigated focusing on the thermal radiation and cooling characteristics. First, direct evidence of substantial W surface cooling has been clearly shown with use of a very thin thermocouple inserted into W target, which solves an uncertainty associated with a radiation thermometer. Second, the above measurements of W surface temperature make it possible to estimate quantitatively the total emissivity from which we may evaluate the radiative power through the Stefan–Boltzmann equation, which is very important for mitigation evaluation of a serious plasma heat load to the plasma-facing component.

  19. Thermal radiation characteristics and direct evidence of tungsten cooling on the way to nanostructure formation on its surface

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2013-01-01

    The physical properties of tungsten with nanostructure on its surface are investigated focusing on the thermal radiation and cooling characteristics. First, direct evidence of substantial W surface cooling has been clearly shown with use of a very thin thermocouple inserted into W target, which solves an uncertainty associated with a radiation thermometer. Second, the above measurements of W surface temperature make it possible to estimate quantitatively the total emissivity from which we may evaluate the radiative power through the Stefan–Boltzmann equation, which is very important for mitigation evaluation of a serious plasma heat load to the plasma-facing component

  20. Eurotherm Conference No. 105: Computational Thermal Radiation in Participating Media V

    International Nuclear Information System (INIS)

    Hafi, Mouna El; Fournier, Richard; Lemonnier, Denis; Lybaert, Paul; Selçuk, Nevin

    2016-01-01

    This volume of Journal of Physics: Conference Series is based on papers presented at the Eurotherm Conference 105: Computational Thermal Radiation in Participating Media V, which was held in Albi, France on 1-3 April 2015. This seminar was the fifth in a series after Nancy, France (Eurotherm Seminar 95, April 2012), Mons, Belgium (Eurotherm Seminar 73, April 2003), Poitiers, France (Eurotherm Seminar 78, April 2006) and Lisbon, Portugal (Eurotherm Seminar 83, April 2009). Around 40 contributions were received during the conference preparation that have been submitted to oral presentations. A selection process based on two peer-reviews of the full papers finally resulted in the acceptance of 36 for oral presentations (including 2 plenary lectures). These 2 plenary lectures and 10 other papers have been selected for a special issue in a journal related to radiative heat transfer and will not be presented in this volume. The conference was attended by almost 60 scientists from 15 different countries: Australia, Belgium, Canada, China, France, Germany, Poland, Portugal, Russia, Switzerland, The Netherlands, Sweden, Tunisia, Turkey and USA. (paper)

  1. Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C

    Science.gov (United States)

    Danchenko, V.; Fang, P. H.; Brashears, S. S.

    1982-01-01

    Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.

  2. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    Science.gov (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  3. Study of non-thermal effects from laser radiation on live tissues

    International Nuclear Information System (INIS)

    Cotta, M.A.

    1987-02-01

    The functional biological effects related to the irradiation of live tissues with low power lasers, called non-thermal effects were theoretical and experimentally studied. For the experimental part, a device which allows to: irradiation lesions artificially created on the back of rats by a He-Ne laser, or put a moving ground glass in front of the laser beam, by irradiation of this same laser with its coherence degree decreased. The relevance of the radiation coherence in the lesion cicatrization process was shown. The electrical field distribution and the intensity distribution on a surface with micro-roughness when irradiated by coherent light are theoretically studied. (M.C.K.) [pt

  4. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  5. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    International Nuclear Information System (INIS)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  6. Adaptation, validation and application of the chemo-thermal oxidation method to quantify black carbon in soils

    International Nuclear Information System (INIS)

    Agarwal, Tripti; Bucheli, Thomas D.

    2011-01-01

    The chemo-thermal oxidation method at 375 o C (CTO-375) has been widely used to quantify black carbon (BC) in sediments. In the present study, CTO-375 was tested and adapted for application to soil, accounting for some matrix specific properties like high organic carbon (≤39%) and carbonate (≤37%) content. Average recoveries of standard reference material SRM-2975 ranged from 25 to 86% for nine representative Swiss and Indian samples, which is similar to literature data for sediments. The adapted method was applied to selected samples of the Swiss soil monitoring network (NABO). BC content exhibited different patterns in three soil profiles while contribution of BC to TOC was found maximum below the topsoil at all three sites, however at different depths (60-130 cm). Six different NABO sites exhibited largely constant BC concentrations over the last 25 years, with short-term (6 months) prevailing over long-term (5 years) temporal fluctuations. - Research highlights: → The CTO-375 method was adapted and validated for BC analysis in soils. → Method validation figures of merit proofed satisfactory. → Application is shown with soil cores and topsoil temporal variability. → BC content can be elevated in subsurface soils. → BC contents in surface soils were largely constant over the last 25 years. - Although widely used also for soils, the chemo-thermal oxidation method at 375 o C to quantify black carbon has never been properly validated for this matrix before.

  7. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    International Nuclear Information System (INIS)

    Fainberg, J; Schaefer, W

    2015-01-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples. (paper)

  8. Orbital maneuvering vehicle thermal design and analysis techniques

    Science.gov (United States)

    Chapter, J.

    1986-01-01

    This paper describes the OMV thermal design that is required to maintain components within temperature limits for all mission phases. A key element in the OMV thermal design is the application of a motorized thermal shade assembly that is a replacement for the more conventional variable conductance heat pipes or louvers. The thermal shade assembly covers equipment module radiator areas, and based upon the radiator temperature input to onboard computer, opens and closes the shade, varying the effective radiator area. Thermal design verification thermal analyses results are presented. Selected thermal analyses methods, including several unique subroutines, are discussed. A representation of enclosure Script F equations, in matrix form, is also included. Personal computer application to the development of the OMV thermal design is summarized.

  9. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  10. Fundamental validation of simulation method for thermal stratification in upper plenum of fast reactors. Analysis of sodium experiment

    International Nuclear Information System (INIS)

    Ohno, Shuji; Ohshima, Hiroyuki; Sugahara, Akihiro; Ohki, Hiroshi

    2010-01-01

    Three-dimensional thermal-hydraulic analyses have been carried out for a sodium experiment in a relatively simple axis-symmetric geometry using a commercial CFD code in order to validate simulating methods for thermal stratification behavior in an upper plenum of sodium-cooled fast reactor. Detailed comparison between simulated results and experimental measurement has demonstrated that the code reproduced fairly well the fundamental thermal stratification behaviors such as vertical temperature gradient and upward movement of a stratification interface when utilizing high-order discretization scheme and appropriate mesh size. Furthermore, the investigation has clarified the influence of RANS type turbulence models on phenomena predictability; i.e. the standard k-ε model, the RNG k-ε model and the Reynolds Stress Model. (author)

  11. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M.

    2012-10-01

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  12. Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings

    International Nuclear Information System (INIS)

    Wang, Weijie; Fu, Ceji; Tan, Wenchang

    2014-01-01

    Spectral and directional control of thermal emission holds substantial importance in applications where heat transfer is predominantly by thermal radiation. In this work, we investigate the spectral and directional properties of thermal emission from a novel structure, which is constituted with a photonic crystal (PC) sandwiched by SiC gratings. Numerical results based on the RCWA algorithm reveal that greatly enhanced emissivity can be achieved in a broad frequency band and in a wide range of angle of emission. This promising emission feature is found to be caused by excitation of surface phonon polaritons (SPhPs), PC mode, magnetic polaritons (MPs) and Fabry–Pérot resonance from high order diffracted waves, as well as the coupling between different resonant modes. We show that the broad enhanced emissivity band can be manipulated by adjusting the dimensional parameters of the structure properly. -- Highlights: ► We propose a novel structure made of a photonic crystal sandwiched by SiC gratings. ► High emissivity can be achieved in a broad spectral band and angle range. ► We explain the result by excitation of multiple excited modes and their coupling

  13. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    Science.gov (United States)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  14. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  15. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  16. The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation

    Science.gov (United States)

    Wong, Elizabeth W.; Minnett, Peter J.

    2018-04-01

    Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.

  17. Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2018-06-01

    Full Text Available In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM. The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve and Adomian Decomposition Method are also applied and good agreement is found. Keywords: Unsteady flow, Viscous fluid, Thermal radiation, Porous plate, Arrhenius kinetics, HAM and numerical method

  18. Effects on heat transfer of multiphase magnetic fluid due to circular magnetic field over a stretching surface with heat source/sink and thermal radiation

    Directory of Open Access Journals (Sweden)

    A. Zeeshan

    Full Text Available The purpose of the current article is to explore the boundary layer heat transport flow of multiphase magnetic fluid with solid impurities suspended homogeneously past a stretching sheet under the impact of circular magnetic field. Thermal radiation effects are also taken in account. The equations describing the flow of dust particles in fluid along with point dipole are modelled by employing conservation laws of mass, momentum and energy, which are then converted into non-linear coupled differential equations by mean of similarity approach. The transformed ODE’s are tackled numerically with the help of efficient Runga-Kutta method. The influence of ferromagnetic interaction parameter, viscous dissipation, fluid-particle interaction parameter, Eckert number, Prandtl number, thermal radiation parameter and number of dust particles, heat production or absorption parameter with the two thermal process namely, prescribed heat flux (PHF or prescribed surface temperature (PST are observed on temperature and velocity profiles. The value of skin-friction coefficient and Nusselt number are calculated for numerous physical parameters. Present results are correlated with available for a limited case and an excellent agreement is found. Keywords: Ferromagnetic interaction parameter, Dusty magnetic fluid, stretching sheet, Magnetic dipole, Heat source/sink, Thermal radiation

  19. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  20. Dependence of the coefficient of environmental thermal losses of radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid from their average operating and ambient temperatures

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    The approximation formula is derived for calculating the normalized coefficient of thermal losses of flat solar collectors (FSCs) for heating heat-transfer fluid (HTF). These are used in hot water supply systems in the warmer part of the year, depending on the average working surface temperature of their radiation-absorbing thermal exchange panels (RATEPs) (t"-_w_s_r) and the ambient temperature (t_a_m_b) in their realistic variation range. (author)

  1. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  2. Use of Maple Seeding Canopy Reflectance Dataset for Validation of SART/LEAFMOD Radiative Transfer Model

    Science.gov (United States)

    Bond, Barbara J.; Peterson, David L.

    1999-01-01

    This project was a collaborative effort by researchers at ARC, OSU and the University of Arizona. The goal was to use a dataset obtained from a previous study to "empirically validate a new canopy radiative-transfer model (SART) which incorporates a recently-developed leaf-level model (LEAFMOD)". The document includes a short research summary.

  3. Multi-scale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    International Nuclear Information System (INIS)

    Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.; Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.

    2010-01-01

    We present the latest advances of the multi-scale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multi-scale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This quantification allows the studying of how the clusterization of DNA lesions affects the lethality of damage. We discuss the first results of molecular dynamics simulations of ubiquitin in the environment of thermal spikes, predicted to occur in tissue for a short time after an ion's passage in the vicinity of the ions' tracks. (authors)

  4. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  5. Effects of non-thermal mobile phone radiation on breast adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Zen Fourie

    2011-09-01

    Full Text Available Mobile phone usage currently exceeds landline communication in Africa. The extent of this usage has raised concerns about the long-term health effects of the ongoing use of mobile phones. To assess the physiological effects of radiation from mobile phones in vitro, MCF-7 breast adenocarcinoma cells were exposed to 2W/kg non-thermal 900-MHz mobile phone radiation. The effects investigated were those on metabolic activity, cell morphology, cell cycle progression, phosphatidylserine (PS externalisation and the generation of reactive oxygen species and nitrogen species. Statistically insignificant increases in mitochondrial dehydrogenase activity were observed in irradiated cells when compared to controls. Fluorescent detection of F-actin demonstrated an increase in F-actin stress fibre formation in irradiated MCF-7 cells. Cell cycle progression revealed no statistically significant variation. A small increase in early and late apoptotic events in irradiated MCF-7 cells was observed. No statistically significant changes were observed in reactive oxygen and reactive nitrogen species generation. In addition, quantitative and qualitative analyses of cell cycle activity and nuclear and cytosolic changes, respectively, revealed no significant changes. In conclusion, exposure to 1 h of 900-MHz irradiation induced an increase in PS externalisation and an increase in the formation of F-actin stress fibres in MCF-7 cells. Data obtained from this study, and their correlation with other studies, provides intriguing links between radio frequency radiation and cellular events and warrant further investigation.

  6. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  7. Thermal Performance of the LHC Short Straight Section Cryostat

    CERN Document Server

    Bergot, J B; Nielsen, L; Parma, Vittorio; Rohmig, P; Roy, E

    2002-01-01

    The LHC Short Straight Section (SSS) cryostat houses and thermally protects in vacuum the cold mass which contains a twin-aperture superconducting quadrupole magnet and superconducting corrector magnets operating at 1.9 K in superfluid helium. In addition to mechanical requirements, the cryostat is designed to minimize the heat in-leak from the ambient temperature to the cold mass. Mechanical components linking the cold mass to the vacuum vessel such as support posts and an insulation vacuum barrier are designed to have minimum heat conductivity with efficient thermalisations for heat interception. Heat in-leak by radiation is reduced by employing multilayer insulation wrapped around the cold mass and an actively cooled aluminium thermal shield. The recent commissioning and operation of two SSS prototypes in the LHC Test String 2 have given a first experimental validation of the thermal performance of the SSS cryostat in nominal operating conditions. Temperature sensors mounted in critical locations provide a...

  8. Validity and reliability testing of two instruments to measure breast cancer patients' concerns and information needs relating to radiation therapy

    Directory of Open Access Journals (Sweden)

    Kristjanson Linda J

    2007-11-01

    Full Text Available Abstract Background It is difficult to determine the most effective approach to patient education or tailor education interventions for patients in radiotherapy without tools that assess patients' specific radiation therapy information needs and concerns. Therefore, the aim of this study was to develop psychometrically sound tools to adequately determine the concerns and information needs of cancer patients during radiation therapy. Patients and Methods Two tools were developed to (1 determine patients concerns about radiation therapy (RT Concerns Scale and (2 ascertain patient's information needs at different time point during their radiation therapy (RT Information Needs Scale. Tools were based on previous research by the authors, published literature on breast cancer and radiation therapy and information behaviour research. Thirty-one breast cancer patients completed the questionnaire on one occasion and thirty participants completed the questionnaire on a second occasion to facilitate test-retest reliability. One participant's responses were removed from the analysis. Results were analysed for content validity, internal consistency and stability over time. Results Both tools demonstrated high internal consistency and adequate stability over time. The nine items in the RT Concerns Scale were retained because they met all pre-set psychometric criteria. Two items were deleted from the RT Information Needs Scale because they did not meet content validity criteria and did not achieve pre-specified criteria for internal consistency. This tool now contains 22 items. Conclusion This paper provides preliminary data suggesting that the two tools presented are reliable and valid and would be suitable for use in trials or in the clinical setting.

  9. Patient-Reported Outcomes After Radiation Therapy in Men With Prostate Cancer: A Systematic Review of Prognostic Tool Accuracy and Validity

    Energy Technology Data Exchange (ETDEWEB)

    O' Callaghan, Michael E., E-mail: elspeth.raymond@health.sa.gov.au [South Australian Prostate Cancer Clinical Outcomes Collaborative (Australia); Freemasons Foundation Centre for Men' s Health, University of Adelaide (Australia); Urology Unit, Repatriation General Hospital, SA Health, Flinders Centre for Innovation in Cancer (Australia); Raymond, Elspeth [South Australian Prostate Cancer Clinical Outcomes Collaborative (Australia); Campbell, Jared M. [Joanna Briggs Institute, University of Adelaide (Australia); Vincent, Andrew D. [Freemasons Foundation Centre for Men' s Health, University of Adelaide (Australia); Beckmann, Kerri [South Australian Prostate Cancer Clinical Outcomes Collaborative (Australia); Centre for Population Health Research, University of South Australia (Australia); Roder, David [Centre for Population Health Research, University of South Australia (Australia); Evans, Sue; McNeil, John [Epidemiology and Preventative Medicine, Monash University (Australia); Millar, Jeremy [Radiation Oncology, Alfred Health (Australia); Zalcberg, John [Epidemiology and Preventative Medicine, Monash University (Australia); Borg, Martin [South Australian Prostate Cancer Clinical Outcomes Collaborative (Australia); Adelaide Radiotherapy Centre (Australia); Moretti, Kim [South Australian Prostate Cancer Clinical Outcomes Collaborative (Australia); Freemasons Foundation Centre for Men' s Health, University of Adelaide (Australia); Flinders Centre for Innovation in Cancer, Centre for Population Health Research, University of South Australia (Australia); Discipline of Surgery, University of Adelaide (Australia)

    2017-06-01

    Purpose: To identify, through a systematic review, all validated tools used for the prediction of patient-reported outcome measures (PROMs) in patients being treated with radiation therapy for prostate cancer, and provide a comparative summary of accuracy and generalizability. Methods and Materials: PubMed and EMBASE were searched from July 2007. Title/abstract screening, full text review, and critical appraisal were undertaken by 2 reviewers, whereas data extraction was performed by a single reviewer. Eligible articles had to provide a summary measure of accuracy and undertake internal or external validation. Tools were recommended for clinical implementation if they had been externally validated and found to have accuracy ≥70%. Results: The search strategy identified 3839 potential studies, of which 236 progressed to full text review and 22 were included. From these studies, 50 tools predicted gastrointestinal/rectal symptoms, 29 tools predicted genitourinary symptoms, 4 tools predicted erectile dysfunction, and no tools predicted quality of life. For patients treated with external beam radiation therapy, 3 tools could be recommended for the prediction of rectal toxicity, gastrointestinal toxicity, and erectile dysfunction. For patients treated with brachytherapy, 2 tools could be recommended for the prediction of urinary retention and erectile dysfunction. Conclusions: A large number of tools for the prediction of PROMs in prostate cancer patients treated with radiation therapy have been developed. Only a small minority are accurate and have been shown to be generalizable through external validation. This review provides an accessible catalogue of tools that are ready for clinical implementation as well as which should be prioritized for validation.

  10. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  11. Measurements of the thermal radiative properties of liquid uranium

    International Nuclear Information System (INIS)

    Havstad, M.A.; McLean, W. II; Self, S.A.

    1992-07-01

    Measurements of the thermal radiative properties of liquid uranium have been made using an instrument with two optical systems, one for measuring the complex index of refraction by ellipsometry, the other for measuring the normal spectral emissivity by direct comparison to an integral blackbody cavity. The measurements cover the wavelength range 0.4 to 10 μm with sample temperatures between 940 and 1630 K. Two 5keV ion sputter guns and an Auger spectrometer produce and verify, in-situ, atomically pure sample surfaces. Good agreement between the two methods is observed for the normal spectral emissivity, which varies with wavelength in a manner typical of transition metals. The two components of the complex index of refraction, the index of refraction and the extinction coefficient, increase with wavelength, from ∼3 at 0.4 μm to -20 at 9.5 μm. Both components of polarized reflectivity are shown for visible to infrared wavelengths

  12. Thermal and radiation induced polymerisation of carbon sub-oxide

    International Nuclear Information System (INIS)

    Schmidt, Michel

    1964-03-01

    This research thesis addresses the study of the polymerisation of carbon sub-oxide (C 3 O 2 ) in gaseous phase. As this work is related to other researches dealing with the reactions of the graphite-CO 2 system which occur in graphite-moderated nuclear reactors, a first intention was to study the behaviour of C 3 O 2 when submitted to radiations. Preliminary tests showed that the most remarkable result of this action was the formation of a polymer. It was also noticed that the polymerisation of this gas was spontaneous however slower at room temperature. The research thus focused on this polymerisation, and on the formula of the obtained polymer. After some generalities, the author reports the preparation, purification and storage and conservation of the carbon sub-oxide. The next parts report the kinetic study of thermal polymerisation, the study of polymerisation under γ rays, the study of the obtained polymer by using visible, UV and infrared spectroscopy, electronic paramagnetic resonance, and semi-conductivity measurements [fr

  13. Thermal imaging in medicine

    Directory of Open Access Journals (Sweden)

    Jaka Ogorevc

    2015-12-01

    Full Text Available AbstractIntroduction: Body temperature monitoring is one of the oldest and still one of the most basic diagnostic methods in medicine. In recent years thermal imaging has been increasingly used in measurements of body temperature for diagnostic purposes. Thermal imaging is non-invasive, non-contact method for measuring surface body temperature. Method is quick, painless and patient is not exposed to ionizing radiation or any other body burden.Application of thermal imaging in medicine: Pathological conditions can be indicated as hyper- or hypothermic patterns in many cases. Thermal imaging is presented as a diagnostic method, which can detect such thermal anomalies. This article provides an overview of the thermal imaging applications in various fields of medicine. Thermal imaging has proven to be a suitable method for human febrile temperature screening, for the detection of sites of fractures and infections, a reliable diagnostic tool in the detection of breast cancer and determining the type of skin cancer tumour. It is useful in monitoring the course of a therapy after spinal cord injury, in the detection of food allergies and detecting complications at hemodialysis and is also very effective at the course of treatment of breast reconstruction after mastectomy. With thermal imaging is possible to determine the degrees of burns and early detection of osteomyelitis in diabetic foot phenomenon. The most common and the oldest application of thermal imaging in medicine is the field of rheumatology.Recommendations for use and standards: Essential performance of a thermal imaging camera, measurement method, preparation of a patient and environmental conditions are very important for proper interpretation of measurement results in medical applications of thermal imaging. Standard for screening thermographs was formed for the human febrile temperature screening application.Conclusion: Based on presented examples it is shown that thermal imaging can

  14. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Mein, Stewart [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Cai, Bin; Curcuru, Austen [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Juang, Titania; Miles, Devin [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Mutic, Sasa; Wang, Yuhe [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Oldham, Mark [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

    2017-04-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  15. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    International Nuclear Information System (INIS)

    Rankine, Leith J.; Mein, Stewart; Cai, Bin; Curcuru, Austen; Juang, Titania; Miles, Devin; Mutic, Sasa; Wang, Yuhe; Oldham, Mark; Li, H. Harold

    2017-01-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  16. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)

    2017-02-15

    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and