WorldWideScience

Sample records for thermal power production

  1. Thermal electric power production

    International Nuclear Information System (INIS)

    Boehmer, S.

    2001-01-01

    The basic principle of a thermal power plant is to heat up water in the pipe system of a boiler to generate steam, which exits the boiler with high pressure and releases its energy to a tandem-arranged turbine. This energy is transmitted to a generator over a common shaft. The generated electricity is fed into the power supply system. The processed steam is condensed to water by means of a condenser and transferred back into the pipe system of the boiler (feed water circuit). In general the following techniques are applied for the combustion of solid, liquid and gaseous fuels: dry bottom boiler, wet bottom boiler, grate firing, fluidized bed combustion, gasification systems - integrated gasification combined cycle (IGCC), oil firing technique, gas firing technique. Residues from power plants are generated by the following processes and emission reduction measures: separation of bottom ash or boiler slag in the boiler; separation of fly ash (particulate matter) by means of filters or electric precipitators; desulphurization through lime additive processes, dry sorption or spray absorption processes and lime scrubbing processes; desulphurization according to Wellmann-Lord and to the Walther process; reduction of NO x emissions by selective catalytic reduction (SCR). In this case spent catalyst results as a waste unless it is recycled. No residues are generated by the following measures to reduce NO x emissions: minimization of nitrogen by selective non-catalytic reduction (SNCR); adaptations of the firing technology to avoid emissions - primary measures (low-NO x burners, CO reduction). However, this may change the quality of fly ash by increasing unburnt carbon. Combustion of fossil fuels (with the exception of gaseous fuels) and biomass generates large quantities of residues - with coal being the greatest contributor - either from the fuel itself in the form of ashes, or from flue gas cleaning measures. In coal-fired power plants huge amounts of inorganic residues

  2. The full costs of thermal power production in Eastern Canada

    International Nuclear Information System (INIS)

    Venema, H.D.; Barg, S.

    2003-07-01

    This study examines the public health and global warming costs associated with generating electricity with fossil fuels such as coal, oil or natural gas. A Full Cost Accounting approach was used to determine the costs for Eastern Canada. The electricity sector is chosen because it is a large emitter of air pollutants and greenhouse gases. The sector it will undergo potentially significant structural changes as Canada complies with the Kyoto Protocol. Alternative investments in nonpolluting sources of electricity should include analysis of full costs. Two types of factors are evaluated in this study: the public health costs caused by emissions of sulphur and nitrogen oxides and volatile organic carbon (VOC) in Eastern Canada, and the marginal climate change damages caused by the emissions of greenhouse gasses (GHGs) in Eastern Canada. The major contribution of this study is the application of the impact-pathway approach to power sector emissions. Recent Canadian studies have reported either the pollutant emission rates for different power generation technologies and fuels, or the health costs of ambient air pollution not specifically attributable to the power sector. This study isolates the component of air pollution attributable to the power sector and analyses its geographic distribution. It was concluded that coal-fired generation should be closely monitored because the externalities burden is the same magnitude as the marginal production cost. 77 refs., 20 tabs., 21 figs

  3. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  4. Thermal insulation product for insulation, especially in nuclear power engineering, and method of its production

    International Nuclear Information System (INIS)

    Veselovsky, P.; Zink, S.; Balacek, P.; Mares, I.

    1989-01-01

    The insulation consists of a sewn fabric cover made of inorganic fibers, in which the fiber filling is reinforced mechanically by dense point interweaving. The inorganic fibers, 1 to 5 μm in diameter, consist of min. 97 wt.% mixture of aluminium and silicon oxides in the vitreous state. The fibers making up the cover consist of min. 95% silicon, aluminium, calcium, magnesium and boron oxides in the vitreous state; the rest can consist of alloy steel fibres. The bulk density of the insulation is 70 to 150 kg/m 3 . The product is highly resistant to temperature and to the action of chemicals, water, and acid and alkaline deactivation solutions. Its manufacture is fast and undemanding. It is designed for thermal insulation of pipes, tanks and valves in nuclear power plants. (M.D.). 2 figs

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  7. Thermodynamic aspects of power production in thermal, chemical and electrochemical systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanisław; Poświata, Artur

    2012-01-01

    We apply optimization methods to study power generation limits for various energy converters, such as thermal, solar, chemical, and electrochemical engines. Methodological similarity is observed when analysing power limits in thermal machines and fuel cells which are electrochemical flow engines. Operative driving forces and voltage are suitable indicators of imperfect phenomena in energy converters. The results obtained generalize our previous findings for power yield limits in purely thermal systems with finite rates. While temperatures T i of participating media were only necessary variables in purely thermal systems, in the present work both temperatures and chemical potentials μ k are essential. This case is associated with engines propelled by fluxes of both energy and substance. In dynamical systems downgrading or upgrading of resources may occur. Energy flux (power) is created in the generator located between the resource fluid (‘upper’ fluid 1) and the environmental fluid (‘lower’ fluid, 2). Fluid properties, transfer mechanisms and conductance values of dissipative layers or conductors influence the rate of power production. Numerical approaches to the dynamical solutions are based on the dynamic programming or maximum principle. Here we focus especially on the latter method, which involves discrete algorithms of Pontryagin’s type. Downgrading or upgrading of resources may also occur in electrochemical systems of fuel cell type. Yet, in this paper we restrict ourselves to the steady-state fuel cells. We present a simple analysis showing that, in linear systems, only at most ¼ of power dissipated in the natural transfer process can be transformed into the noble form of mechanical power.

  8. Program THEK energy production units of average power and using thermal conversion of solar radiation

    Science.gov (United States)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  9. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  10. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  11. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  12. Power Electronics Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-07

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  13. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  14. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    Science.gov (United States)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  15. Thermal power measurement apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Thermal power measurements are important in nuclear power plants, fossil-fuel plants and other closed loop systems such as heat exchangers and chemical reactors. The main object of this invention is to determine the enthalpy of a fluid using only acoustically determined sound speed and correlating the speed with enthalpy. An enthalpy change is measured between two points in the fluid flow: the apparatus is described in detail. (U.K.)

  16. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  17. Thermal and physiochemical properties of pellets with power aims made of sawmill residual product

    International Nuclear Information System (INIS)

    Casanova Treto, Pedro; Solis, Kattia; Carrillo, Tonny

    2017-01-01

    Sawmill residual product of Pylon (Hyeronima alchorneoides) and Eucalyptus (Eucalyptus spp) species was used to produce pellets under different conditions of densification. Experimental equipment was used to determine the thermal conductivity, thermal diffusivity and specific heat. Physicochemical properties of the pellets obtained under different conditions of densification, such as ash content and calorific value were determined. The content of nitrogen, chlorine and sulfur present in the material used to produce the pellets was estimated. Thermal conductivity values were determined between 0,253 W/m·K and 0,279 W/m·K; 1,748 m2 /s and 2,314 m2 /s for the thermal diffusivity, and in the case of specific heat were determined values between 3,019 kJ/kg·K and 2,183 kJ/kg·K. The high heat values was between 18 907 kJ/kg and 18 960 kJ/kg. An ash content of 1,31% was determined on a dry basis. Finally, the content of nitrogen, chlorine and sulfur determined in the residual biomass used, corresponds to 0,1129%, 0,0592 % and 0,0317%, respectively. A direct relationship between increasing the bulk density of the pellets and the thermal properties was determined. The calorific value and the ash content had a negligible effect due to the treatments applied. The estimated content of N, Cl and S corresponds to that expected in the selected biomass. Comparison of the properties of the pellets produced under the conditions studied -densification, against regulations-, showed acceptable results, entering these in terms of different categories of quality. (author) [es

  18. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2018-01-01

    Full Text Available Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment.

  19. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Osman, Yassir Idris Abdalla; Feng, Rong; Si, Zetian

    2018-01-01

    Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV) conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment. PMID:29862289

  20. Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants

    International Nuclear Information System (INIS)

    Niknam, Taher; Kavousi Fard, Abdollah; Baziar, Aliasghar

    2012-01-01

    This paper assesses the operation and management of electrical energy, hydrogen production and thermal load supplement by the Fuel Cell Power Plants (FCPP) in the distribution systems with regard to the uncertainties which exist in the load demand as well as the price of buying natural gas for FCPPs, fuel cost for residential loads, tariff for purchasing electricity, tariff for selling electricity, hydrogen selling price, operation and maintenance cost and the price of purchasing power from the grid. Therefore, a new modified multi-objective optimization algorithm called Teacher-Learning Algorithm (TLA) is proposed to integrate the optimal operation management of Proton Exchange Membrane FCPPs (PEM-FCPPs) and the optimal configuration of the system through an economic model of the PEM-FCPP. In order to improve the total ability of TLA for global search and exploration, a new modification process is suggested such that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated power systems, in this paper for the first time, the DFR problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to see the feasibility and the superiority of the proposed method, a standard test system is investigated as the case study. The simulation results are investigated in four different scenarios to show the effect of hydrogen production and thermal recovery more evidently. -- Highlights: ► Present an economical and thermal modeling of PEM-FCPPs. ► Present an approach for optimal operation of PEM-FCPPs in a stochastic environment. ► Consider benefits of thermal recovery and Hydrogen production for PEM-FCPPs. ► Present several scenarios for management of PEM-FCPPs.

  1. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  2. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  3. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    Science.gov (United States)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  4. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  5. Concentration solar thermal power

    International Nuclear Information System (INIS)

    Livet, F.

    2011-01-01

    As the production of electricity by concentration solar power (CSP) installations is said to be a source of energy for the future, the author discusses past experiments (notably the French Thermis project), and the different techniques which are currently being used. He indicates the regions which appear to be the most appropriate for this technique. He presents the three main techniques: parabolic cylinder, tower, and Stirling cycle installations. He discusses the issue of intermittency. He proposes an assessment of prices and of their evolution, and indicates the investments made in different installations (in Italy, Spain, Germany and Portugal). He comments the case of hybrid installations (sun and gas), evokes the Desertec project proposed by the German industry which comprises a set of hybrid installations. He notices that there is no significant technological evolution for this process

  6. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  7. The mechanisms underlying corrosion product formation and deposition in nuclear power plant circuits through the action of galvanic and thermal electromotive forces

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Brusov, K.N.; Razmashkin, N.V.; Versin, V.V.; Rybalchenko, I.L.

    1983-01-01

    From a theoretical standpoint, the processes of formation of corrosion products in nuclear power plant circuits, deposition of corrosion products on the circuit surfaces, formation of an equilibrium concentration of corrosion products in the coolant, and distribution of radionuclides resulting from corrosion in different parts of the circuit are considered. It is shown that the main driving forces for the mass-transfer processes in the circuits are the thermal and galvanic electromotive forces (EMF) of the microcouples. On the basis of the theoretical concepts developed the authors have obtained analytical dependences for calculating the individual stages of the process of corrosion product transfer in the circuits. The mechanisms underlying the processes which occur as a result of thermal and galvanic EMFs are considered, together with the factors influencing these processes. The results of verification of the dependences by computational methods are given and they are compared with operational data from nuclear and conventional thermal power plants and with experimental data. (author)

  8. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  9. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  10. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  11. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  12. Power Electronics Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics Thermal Management Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the investigates and develops thermal management strategies for power electronics systems that use wide-bandgap

  13. ACS production: optimal design of solar thermal power plants; Produccion de ACS. Optimizacion del dimensionado de instalaciones de energia solar termica

    Energy Technology Data Exchange (ETDEWEB)

    Platon Arias, L.; San Jose Alonso, F.

    2009-07-01

    The aim of this project is to develop a program to size solar thermal power plants for the production of the company ACS, which enable optimum value calculations of the different influence parameters (surface, inclination, orientation, energy input) advising diverse circumstances and requirements. The energy input calculation has been effected according to f-chart method. For the solar radiation on inclined and oriented surfaces calculation, has been applied the Klein Method. (Author) 14 refs.

  14. The use of fractionated fly ash of thermal power plants as binder for production of briquettes of coke breeze and dust

    Science.gov (United States)

    Temnikova, E. Yu; Bogomolov, A. R.; Lapin, A. A.

    2017-11-01

    In this paper, we propose to use the slag and ash material of thermal power plants (TPP) operating on pulverized coal fuel. The elemental and chemical composition of fly ash of five Kuzbass thermal power plants differs insignificantly from the composition of the mineral part of coking coal because coke production uses a charge, whose composition defines the main task: obtaining coke with the required parameters for production of iron and steel. These indicators are as follows: CRI reactivity and strength of the coke residue after reaction with CO2 - CSR. The chemical composition of fly ash of thermal power plants and microsilica with bulk density of 0.3-0.6 t/m3 generated at production of ferroalloys was compared. Fly ash and microsilica are the valuable raw material for production of mineral binder in manufacturing coke breeze briquettes (fraction of 2-10 mm) and dust (0-200 μm), generated in large quantities during coking (up to 40wt%). It is shown that this binder is necessary for production of smokeless briquettes with low reactivity, high strength and cost, demanded for production of cupola iron and melting the silicate materials, basaltic rocks in low-shaft furnaces. It is determined that microsilica contains up to 90% of silicon oxide, and fly ash contains up to 60% of silicon oxide and aluminum oxide of up to 20%. On average, the rest of fly ash composition consists of basic oxides. According to calculation by the VUKHIN formula, the basicity index of briquette changes significantly, when fly ash is introduced into briquette raw material component as a binder. The technology of coke briquette production on the basis of the non-magnetic fraction of TPP fly ash in the ratio from 3.5:1 to 4.5:1 (coke breeze : coke dust) with the addition of the binder component to 10% is proposed. The produced briquettes meet the requirements by CRI and require further study on CSR requirements.

  15. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  16. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  17. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  18. Marine pastures: a by-product of large (100 megawatt or larger) floating ocean-thermal power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, S.; Roels, O.A.

    1976-08-31

    The potential biological productivity of an open-sea mariculture system utilizing the deep-sea water discharged from an ocean-thermal energy conversion (OTEC) plant was investigated. In a series of land-based studies, surface water was used to inoculate deep water and the primary production of the resultant blooms was investigated. Each cubic meter of deep water can produce approximately 2.34 g of phytoplankton protein, and that an OTEC plant discharging deep water at a rate of 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ could produce 5.3 x 10/sup 7/ kg of phytoplankton protein per 350-day year. A series of land-based shellfish studies indicated that, when fed at a constant rate of 1.83 x 10/sup -3/ g of protein per second per 70-140 g of whole wet weight, the clam, Tapes japonica, could convert the phytoplankton protein-nitrogen into shellfish meat protein-nitrogen with an efficiency of about 33 per cent. Total potential wet meat weight production from an OTEC plant pumping 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ is approximately 4.14 x 10/sup 8/ kg for a 350-day year. Various factors affecting the feasibility of open-sea mariculture are discussed. It is recommended that future work concentrate on a technical and economic analysis. (WDM)

  19. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  20. A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From Nuclear Power Plants

    International Nuclear Information System (INIS)

    Khalil, Yehia F.; Elimelech, Menachem

    2006-01-01

    In this work, we describe a novel design that utilizes seawater and a portion of rejected heat from a nuclear plant's steam cycle to operate a water desalination system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a nuclear power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the nuclear station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)

  1. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  2. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  3. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  4. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  5. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  6. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  7. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  8. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  9. KMRR thermal power measurement error estimation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Sim, B.S.; Lim, I.C.; Oh, S.K.

    1990-01-01

    The thermal power measurement error of the Korea Multi-purpose Research Reactor has been estimated by a statistical Monte Carlo method, and compared with those obtained by the other methods including deterministic and statistical approaches. The results show that the specified thermal power measurement error of 5% cannot be achieved if the commercial RTDs are used to measure the coolant temperatures of the secondary cooling system and the error can be reduced below the requirement if the commercial RTDs are replaced by the precision RTDs. The possible range of the thermal power control operation has been identified to be from 100% to 20% of full power

  10. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  11. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  12. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  13. Water pollution and thermal power stations

    International Nuclear Information System (INIS)

    Maini, A.; Harapanahalli, A.B.

    1993-01-01

    There are a number of thermal power stations dotting the countryside in India for the generation of electricity. The pollution of environment is continuously increasing in the country with the addition of new coal based power stations and causing both a menace and a hazard to the biota. The paper reviews the problems arising out of water pollution from the coal based thermal power stations. (author). 2 tabs

  14. Power Electronics Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert; Bennion, Kevin

    2016-06-08

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  15. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  16. Thermal Aspects Related to Power Assemblies

    Directory of Open Access Journals (Sweden)

    PLESCA, A.

    2010-02-01

    Full Text Available In many cases when a power assembly based on power semiconductors is used, catastrophic failure is the result of steep temperature gradient in the localized temperature distribution. Hence, an optimal heatsink design for certain industrial applications has become a real necessity. In this paper, the Pro/ENGINEER software with the thermal simulation integrated tool, Pro/MECHANICA, has been used for thermal study of a specific power semiconductor assembly. A series of steady-state and transient thermal simulations have been performed. The experimental tests have confirmed the simulation results. Therefore, the use of specific 3D modeling and simulation software allows to design special power semiconductor assemblies with a better thermal transfer between its heatsink and power electronic components at given operating conditions.

  17. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  18. Reference costs of the electric power production

    International Nuclear Information System (INIS)

    2003-06-01

    This study periodically realized by the DGEMP aims to compare the competitiveness of the different channels of electric power production, for different utilization conditions. The first part ''reference costs of the 2003 electric power production'' examines the prices of the electric power produced by different channels in particular in the framework of the industrial implementing in 2015. The nuclear and thermal power plants are concerned. The second part is devoted to the decentralized production channels (wind energy, photovoltaic, cogeneration heat-electricity) is under construction and will be presented next year. (A.L.B.)

  19. Japanese aquaculture: use of thermal water from power plant

    International Nuclear Information System (INIS)

    Kuroda, Takeya

    1983-01-01

    There is some merit of thermal water from power plants in the effect to marine life. Since 1963, the research and development on the aquaculture using this warm water have been carried out at some twenty power plants, seven nuclear and thirteen thermal, some of which are now in the commercial stage. These fish farming projects are operated variously from seed to adult fish production. They can also be classified as land and sea facilities, conforming to the characteristics of the respective sea areas. The current situation in this field and the future prospect are described: thermal aquaculture including seed production and adult fish farming; the projects in nuclear and thermal power plants, respectively; future problems in the facilities, breeding environment and marine life for cultivation. (Mori, K.)

  20. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Strategies for growth of thermal power

    International Nuclear Information System (INIS)

    Shah, R.K.D.

    1998-01-01

    The power generating industry in India is at the cross roads. Massive investments are required to achieve GDP growth of 7-8% per annum over the next 10 years. For this, appropriate strategies have to be evolved which will give the country best returns. With coal being the major fuel resource in India, thermal power generation will continue to be the mainstay in the next decade. This paper covers various key issues to be addressed covering the plan and perspectives of thermal power, environmental issues, technology strategies for growth, power policy and R and D. (author)

  2. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  3. Financing Solar Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  4. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  5. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  6. Radioactive emission from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1981-07-01

    Radioactive hazards of the emissions and wastes of thermal power plants arising from fuel impurities of uranium and thorium are discussed. The hazard due to radioactive emission is calculated for an average Australian bituminous coal which contains 2 ppm of U and 2.7 ppm of Th. When the dust removal efficiency of a coal-fired power plant is 99%, the radioactive hazard is greater than that of a nuclear reactor of the same electrical output. After 500 years the radioactive toxicity of the coal waste will be higher than that of fission products of a nuclear reactor and after 2,000 years it will exceed the toxicity of all the nuclear wastes including actinides. The results of a recent calculation are shown, according to which the radioactive hazard of a coal-fired power plant to the public is from several hundred to several tens of thousands of times higher than that of a total fuel cycle of plutonium. It is found that in some regions, such as Japan, the hazard due to /sup 210/Po through seafood could be considerable.

  7. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    Halsall, M.J.; Taubman, C.J.

    1989-09-01

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  8. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  9. Tasks of a power engineer in future thermal power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  10. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  11. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  12. Power Producer Production Valuation

    Directory of Open Access Journals (Sweden)

    M. Kněžek

    2008-01-01

    Full Text Available The ongoing developments in the electricity market, in particular the establishment of the Prague Energy Exchange (PXE and the associated transfer from campaign-driven sale to continuous trading, represent a significant change for power companies.  Power producing companies can now optimize the sale of their production capacities with the objective of maximizing profit from wholesale electricity and supporting services. The Trading Departments measure the success rate of trading activities by the gross margin (GM, calculated by subtracting the realized sales prices from the realized purchase prices and the production cost, and indicate the profit & loss (P&L to be subsequently calculated by the Control Department. The risk management process is set up on the basis of a business strategy defining the volumes of electricity that have to be sold one year and one month before the commencement of delivery. At the same time, this process defines the volume of electricity to remain available for spot trading (trading limits. 

  13. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  14. Thermal power plants and environment

    International Nuclear Information System (INIS)

    1997-01-01

    Recent versions of the air quality models which are reviewed and approved from the Environmental Protection Agency (EPA) are analysed in favour of their application in simple and complex terrain, different meteorological conditions and modifications in the sources of pollutant emissions. Improvement of the standard methods for analysis of the risks affecting the environment from different energy sources has been carried out. The application of the newly introduced model enabled (lead to performing) risk analysis of the coal power plants compared to other types of energy sources. Detailed investigation of the risk assessment and perception from coal power plants, has been performed and applied to the Macedonian coal power plants. Introducing the concept of 'psychological pollution', a modification of the standard models and programs for risk assessment from various energy sources has been suggested (proposed). The model has been applied to REK Bitola, where statistically relevant differences in relation to the control groups have been obtained. (Original)

  15. Virginia Power thermal-hydraulics methods

    International Nuclear Information System (INIS)

    Anderson, R.C.; Basehore, K.L.; Harrell, J.R.

    1987-01-01

    Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed

  16. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  17. Availability of thermal power plants

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1981-01-01

    Availability data based on unique uniform, and clearly defined concepts and methods of acquisition have been compiled by the VGB since 1970. The data are published in anual reports. These reports contain availability data of fossil-fuelled units, combined gas/steam units, nuclear power plants, and gas turbine plants in Germany and abroad, listed by unit size fuel type, time of operation, and application. For the purpose of comparison, the data for the years since 1970 are presented as well as data averaged for the whole period under report. The main results for the year 1980 are presented now that the greater part of the plants has been evaluated. The complete evaluation will be published towards the end of 1981. (orig.) [de

  18. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2013-01-01

    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...

  19. Ecological safety of thermal power industry and investments

    International Nuclear Information System (INIS)

    Glebov, V.P.

    1995-01-01

    Evaluation of ecological safety of domestic fossil fuel thermal power industry is given in comparison with foreign one. Ways of solving ecological problems are considered. They are based on introduction of new technologies, providing decrease of ecological effect, on development of effective ash-and sulfur-trapping, nitrogen purification equipment, on production of ecologically improved fuel. The necessity of investments to power industry is noted

  20. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  1. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M [IVO International Ltd, Vantaa (Finland)

    1997-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  2. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M. [IVO International Ltd, Vantaa (Finland)

    1996-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  3. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    1981-01-01

    A thermal power plant reheat cycle system is described in which the discharge from a first expansion stage is reheated prior to expansion in a subsequent expansion stage. The primary coolant has a high sheet transfer rate and can accommodate temperature changes in the reheat vapor. (U.K.)

  4. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1979-01-01

    A method is described for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component

  5. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  6. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  7. Availability statistics for thermal power plants

    International Nuclear Information System (INIS)

    1989-01-01

    Denmark, Finland and Sweden have adopted almost the same methods of recording and calculation of availability data. For a number of years comparable availability and outage data for thermal power have been summarized and published in one report. The purpose of the report now presented for 1989 containing general statistical data is to produce basic information on existing kinds of thermal power in the countries concerned. With this information as a basis additional and more detailed information can be exchanged in direct contacts between bodies in the above mentioned countries according to forms established for that purpose. The report includes fossil steam power, nuclear power and gas turbines. The information is presented in separate diagrams for each country, but for plants burning fossil fuel also in a joint NORDEL statistics with data grouped according to type of fuel used. The grouping of units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. Values based on energy have been adopted as basic availability data. The same applies to the preference made in the definitions outlined by UNIPEDE and UNIPEDE/WEC. Some data based on time have been included to make possible comparisons with certain international values and for further illustration of the performance. For values given in the report, the definitions in the NORDEL document ''Concepts of Availability for Thermal Power, September 1977'', have been applied. (author)

  8. Environmental effects of thermal power plants

    International Nuclear Information System (INIS)

    Gerlitzky, M.; Friedrich, R.; Unger, H.

    1986-02-01

    Reviewing critically the present literature, the effects of thermal power plants on the environment are studied. At first, the loads of the different power plant types are compiled. With regard to the effects of emission reduction proceedings the pollutant emissions are quantified. The second chapter shows the effects on the ecological factors, which could be caused by the most important emission components of thermal power plants. Where it is possible, relations between immissions respectively depositions and their effects on climate, man, flora, fauna and materials will be given. This shows that many effects depend strongly on the local landscape, climate and use of natural resources. Therefore, it appears efficient to ascertain different load limits. The last chapter gives a suggestion for an ecological compatibility test (ECT) of thermal power plants. In modular form the ECT deals with the emission fields, waste heat, pollution burden of air and water, noise, loss of area and aesthetical aspects. Limits depending on local conditions and use of area will be discussed. (orig.) [de

  9. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  10. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  11. On optimization of power production

    Energy Technology Data Exchange (ETDEWEB)

    Feltenmark, S.

    1997-01-01

    Short-term optimization of power production is treated. It concerns the problem of determining a production schedule for a power system, which minimizes the total cost of production, while satisfying various constraints. The thesis consists of an introductory chapter, four chapters that each concerns a specific problem area (economic dispatch, unit commitment, hydro power planning and cogeneration optimization), plus a chapter with relevant theory. The emphasis of the thesis is on the mathematical structures that arise in problems in this field, and how to exploit them algorithmically. A recurring theme is convexification, either implicit, by dualization, or explicit, as in our approach to hydro power optimization. 134 refs

  12. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  13. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  14. Thermal power stations and environmental protection

    International Nuclear Information System (INIS)

    Gerking, E.

    1975-01-01

    In this book, the advantages of an optimum cooling concept for waters are compared with the disadvantages of an uncontrolled thermal pollution of waters by waste waters from thermal power plants. The book focuses on the problem of the cost of measures for environmental protection which has not yet received a detailed and complete treatment. The author suggests that perfectionist solutions and superfluos measures be abandoned in favour of a far-reaching, efficient environmental protection concept with a low expenditure of fuel and capital. A detailed treatment is given to false conclusions in the present estimations of the effects of thermal pollution of the waters and to the advantages of freshwater cooling and cooling in general. Also discussed are immission problems and attempts at their solution. (ORU/AK) [de

  15. Analysis of thermal power calibration method

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.

    2000-01-01

    The methods for determining fuel element burnup have recently become interesting because of activities related to the shipment of highly enriched fuel elements back to the United States for final disposal before 2009. The most common and practical method for determining fuel element burnup in research reactors is reactor calculation. Experience has shown that burnup calculations become complicated and biased with uncertainties if a long period of reactor operation must be reproduced. Besides this, accuracy of calculated burnup is always limited with accuracy of reactor power calibration, since burnup calculation is based on calculated power density distribution, which is usually expressed in terms of power released per fuel element and normalised to the reactor power It is obvious that reactor thermal power calibration is very important for precise fuel element burnup calculation. Calculated fuel element burnup is linearly dependent on the thermal reactor power. The reactor power level may be determined from measured absolute thermal flux distribution across the core in the horizontal and vertical planes. Flux distributions are measured with activation of cadmium covered and bare foils irradiated by the steady reactor power. But it should be realised that this method is time consuming and not accurate. This method is practical only for zero power reactors and is in practice very seldom performed for other reactors (e.g. for TRIGA reactor in Ljubljana absolute thermal flux distribution was not performed since reactor reconstruction in 1991). In case of power reactors and research reactors in which a temperature rise across the core is produced and measured than a heat balance method is the most common and accurate method of determining the power output of the core. The purpose of this paper is to analyse the accuracy of calorimetric reactor power calibration method and to analyse the influence of control rod position on nuclear detector reading for TRIGA reactors

  16. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  17. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  18. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    Science.gov (United States)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  19. Thermal Power:Focusing on Efficient and Clean Generation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    History review Before the foundation of New China,there was no thermal power equipment manufacturing industry in China at all.China imported the manufacturing technology of 6-MW and12-MW thermal power units from the former

  20. Availability statistics for thermal power plants

    International Nuclear Information System (INIS)

    1990-01-01

    Denmark, Finland and Sweden have adopted almost the same methods of recording and calculation of availability data. For a number of years comparable availability and outage data for thermal power have been summarized and published in one report. The purpose of the report now presented for 1990 containing general statistical data is to produce basic information on existing kinds of thermal power in the countries concerned. With this information as a basis additional and more detailed information can be exchanged in direct contacts between bodies in the above mentioned countries according to forms established for that purpose. The report includes fossil steam power, nuclear power and gas turbines. The information is presented in separate diagrams for each country, but for plants burning fossil fuel also in a joint NORDEL statistics with data grouped according to type of fuel used. The grouping of units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. Values based on energy have been adopted as basic availability data. The same applied to the preference made in the definitions outlined by UNIPEDE and UNIPEDE/WEC. Some data based on time have been included to make possible comparisons with certain international values and for futher illustration of the performance. (au)

  1. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  2. Environmental protection in thermal power plants

    International Nuclear Information System (INIS)

    1987-01-01

    This workbook is a compilation of the most important facts and data that are relevant today for environmental protection in thermal power plants. Unlike the other issues the text is not in the form of a random collection of data but in the form of a complete presentation. Possible elaboration projects for pupils can be easily derived from the individual sections. These deal with: the discussion about environmental protection; forest decline; sources of emission; nuisances in the Federal Republic of Germany; environmental protection in fossil-fuel power plants - clean air - cooling water utilization and water protection - noise; environmental protection in nuclear power plants - radioactive material produced in nuclear reactors and the retention of such materials - radioactive waste materials - monitoring of radioactive emissions; accessory materials and hints. (orig./HSCH) [de

  3. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  4. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  5. Application of neutron absorption method of the analysis on thermal neutrons for the control of substances and products containing boron in a nuclear power engineering and industry

    International Nuclear Information System (INIS)

    Chuev, A.G.; Kiryanov, G.I.; Shagov, S.V.; Shtan, A.S.; Titov, V.V.

    2002-01-01

    Nuclear physical methods of analysis using the absorption effect of ionising radiation should satisfy the following requirements for industrial practice. First, the ionising radiation should have a high penetrating ability in the environment examined to ensure a representative nature of the data and reliability of the analysis. Secondly, the absorption degree of radiation should be sufficient to maintain the sensitivity and accuracy of the measurements. In addition, to keep the necessary selectivity, the neutron absorption analysis on thermal neutrons is applied on chemical elements and their isotopes with an anomalously high absorption cross section about 10 2 - 10 4 barn. To such elements belong Gd, Sm, B, Cd, Hg and others. Based on the exponential law of absorption for thermal neutrons, an analytical expression was obtained for the concentration of the element analyzed in dependence on the flow of the elapsed neutrons. A number of interfering factors such as the matrix effect of the filling agent, scattering of neutrons, dispersion of the density and of the temperature of the environment, and background radiation have to be taken into account. Owing to the difference between the experimental calibration dependence and the exponential one, the methods of its mathematical approximation, for example, polynomial function and partially hyperbolic one are considered. The scheme realisation of the method is feasible in geometry 'on passage' and 'on reflection' of the neutron flow. Radionuclide Pu-Be sources are preferred as the neutron sources based on nuclear reactions of the (α,n) type. Detectors used for registration of slow neutrons are gas discharge corona 3 He-filled counters. Hydrogen-containing substances with good scattering properties are utilised as the fast neutron moderators. The neutron absorption method has found wide application in the nuclear power engineering and atomic industry. This method is intended for continuous automatic monitoring of

  6. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  7. Increasing the efficiency of thermal power stations

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-01-01

    High energy prices and an increased investment of costs in power plants as well as the necessity to minimize all kinds of environmental pollution have severe consequences on the construction and operation of thermal power stations. One of the most promising measures to cope with the mentioned problems is to raise the thermal efficiency of power plants. With the example of an Austrian electric utility it can be shown that by application of high efficiency combined cycles primary energy can be converted into electricity in a most efficient manner. Excellent operating experience has proved the high reliability of these relatively complex systems. Raising the temperature of the gas topping process still higher will not raise the efficiency considerably. In this respect a Rankine cycle is superior to a Brayton cycle. In a temperature range of 850 to 900 0 C were conventional materials with known properties can still be used, only the alkali metals cesium and potassium have the necessary physical and thermodynamic properties for application in Rankine topping cycles. Building on experience gained in the Fast Breeder development and from the US space program, a potassium topping cycle linked to a conventional water steam cycle with an intermediate diphenyl vapour cycle has been proposed which should give thermal efficiencies in excess of 50%. In a multi-national program this so called Treble Rankine Cycle is being investigated under the auspices of the International Energy Agency. Work is in progress to investigate the technical and economic feasibility of this energy conversion system. Experimental investigations are already under way in the Austrian Research Center Seibersdorf where high temperature liquid metal test facilities have been operated since 1968. (Author)

  8. Independent Energy's Solar thermal products and services listing

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This article is a listing of companies offering products and services for the development of solar thermal electric power plants. The listing provides the company name under a heading describing the product or service the company provides. The products and services covered by the listing include developers and owner/operators, manufacturers of equipment, instruments and controls, consulting services, engineering and construction, and financial and legal services

  9. Thermal power plants and acid rain

    International Nuclear Information System (INIS)

    Ataman, Eleonora

    1990-01-01

    The slow acidification of the environment and the frequent occurrence of the precipitation with pH lower than 5.6 over areas continuously extending are caused by the pollutant releases, especially SO 2 and NO x from anthropic sources. There is a relationship between the SO 2 release from the high stacks of thermal power plants and the long-range transfrontier pollution. The most efficient method to avoid damage on environment is to reduce the releases from stationary and mobile sources. (author)

  10. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misulovin, A.; Gilai, D.; Levin, P.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    Improvements in the performance of fission power reactors made possible by designing them subcritical driven by D-T neutron sources are investigated. Light-water thermal systems are found to be most promising, neutronically and energetically, for the source driven mode of operation. The range of performance characteristics expected from breeding Light Water Hybrid Reactors (LWHR) is defined. Several promising types of LWHR blankets are identified. Options opened for the nuclear energy strategy by four types of the LWHRs are examined, and the potential contribution of these LWHRs to the nuclear energy economy are discussed. The power systems based on these LWHRs are found to enable a high utilization of the energy content of the uranium resources in all forms available - including depleted uranium and spent fuel from LWRs, while being free from the need for uranium enrichment and plutonium separation capabilities. (author)

  11. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  12. Market Power in Hydro-Thermal Supply

    International Nuclear Information System (INIS)

    Edin, Karl-Axel

    2006-12-01

    Despite having had a deregulated electricity market in Sweden for over ten years we still need to increase our understanding as to how deregulated electricity markets actually work and how possible problems are to be solved. One question that is always in focus is if the competition between generators in the Nordic electricity market really works the way it was intended. Many argue that the concentration in ownership of generation plants already has gone too far. Together with joint ownership in nuclear facilities and barriers for entrance, critics say that this has resulted in higher electricity prices than necessary. In this report different methods to (ex ante) study potential possibilities for generating firms to influence the electricity price (market power) and (ex post) discover possible manipulation through analysing the spot price and other observed factors on the electricity market are analysed. The purpose of the longer underlying paper is to give a comprehensive treatment of the electricity market with storage, i.e. hydro power, with an auction market organisation and to test the models on the Nordic market in order to explore the explanatory power of auction market theory and the theory of contestable market. The main theoretical effort in the paper concerns auction theory with inventories. The paper develops an inter-temporal auction model of a thermal-hydro power market. Parallel to the derivation of the basic equations a numerical model is developed in order to illustrate the results of the model. Section 2 of the present paper summarizes the basic equations (derived in the longer paper) for an inter-temporal auction thermal-hydro market. Section 3 contains the illustrations of solutions to equations for some stylized markets. In section 4 the auction model is tested on the Nordic market

  13. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-06-01

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  14. Power Electronics and Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New vehicle electronics systems are being developed at a rapid pace, and NREL is examining strategies to

  15. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  16. Alternative trends in development of thermal power plants

    International Nuclear Information System (INIS)

    Prisyazhniuk, Vitaly A.

    2008-01-01

    Thermal (or fossil fuel) power plants (TPP) are the major polluters of man's environment, discharging into the atmosphere the basic product of carbon fuel combustion, CO 2 . It is this very gas that accounts for the greenhouse effect causing the global climate warm-up on our planet. A natural solution of the problem of reducing carbon dioxide discharge into the atmosphere lies in power saving, thus reducing the amount of the fuel burnt. This approach can be justified from any standpoint, both economically and ecologically. The ideal way of solving the problem would be to completely give up burning carbon-containing fuel, such as coal, petroleum products, and other power resources of organic nature. This work is intended to outline the ways of reducing consumption of fuel by TPP and, consequently, of reducing their discharging into the atmosphere the gases producing the greenhouse effect. One of the ways lies in changing the thermophysical characteristics of the working medium, which becomes possible if we can modify the conventional working medium, that is water, or can use some working medium with quite different thermophysical properties. The article dwells on various technological ways providing for a practical solution of the problem, such as the Kalina cycle; modification of water properties by way of magneto-hydrodynamic resonance (MHD resonance); and employing, in the thermodynamic cycle of Thermal Power Plants, liquids boiling at temperatures which are lower than that of the environment

  17. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  18. Thermal and physical properties of bakery products.

    Science.gov (United States)

    Baik, O D; Marcotte, M; Sablani, S S; Castaigne, F

    2001-07-01

    This article reviews the measurement techniques, prediction models, and data on thermo-physical properties of bakery products: specific heat, thermal conductivity, thermal diffusivity, and density. Over the last decade, investigation has focused more on thermo-physical properties of nonbread bakery products. Both commonly used and new measurement techniques for thermo-physical properties reported in the publication are presented with directions for their proper use. Data and prediction models are tabulated for the range of moisture content and temperature of the bakery products.

  19. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  20. A learning curve for solar thermal power

    Science.gov (United States)

    Platzer, Werner J.; Dinter, Frank

    2016-05-01

    Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.

  1. Thermal hadron production by QCD Hawking radiation

    International Nuclear Information System (INIS)

    Satz, Helmut

    2007-01-01

    The QCD counterpart of Hawking radiation from black holes leads to thermal hadron production in high energy collisions, from e + e - annihilation to heavy ion interactions. This hadronic radiation is emitted at a universal temperature T≅(σ/2π) 1/2 , where the string tension σ measures the colour field at the event horizon of confinement. Moreover, the emitted radiation is thermal 'at birth'; since the event horizon prevents all information transfer, no memory has to be destroyed kinetically. (author)

  2. Critical success factors for BOT electric power projects in China: Thermal power versus wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhen-Yu. [School of Business Administration, North China Electric Power University, Beijing 102206 (China); Zuo, Jian; Zillante, George [School of Natural and Built Environments, University of South Australia, Adelaide 5001 (Australia); Wang, Xin-Wei [Shandong Nuclear Power Equipment Manufacturing Co. Ltd, Haiyang, Shandong 265118 (China)

    2010-06-15

    Chinese electric power industry has adopted Build-Operate-Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity - thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China. (author)

  3. International technologies market for coal thermal power plants

    International Nuclear Information System (INIS)

    1998-01-01

    This paper reports a general framework of potential market of clean coal combustion technologies in thermal power plants, specially for commercialization and market penetration in developing countries [it

  4. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  5. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  6. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    Ross, R.J.; Ravenscroft, P.D.

    1996-01-01

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO 2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  7. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  8. Safety of power transformers, power supplies, reactors and similar products - Part 1: General requirements and tests

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1998-01-01

    This International Standard deals with safety aspects of power transformers, power supplies, reactors and similar products such as electrical, thermal and mechanical safety. This standard covers the following types of dry-type transformers, power supplies, including switch mode power supplies, and reactors, the windings of which may be encapsulated or non-encapsulated. It has the status of a group safety publication in accordance with IEC Guide 104.

  9. Power electronics solution to dust emissions from thermal power plants

    Directory of Open Access Journals (Sweden)

    Vukosavić Slobodan

    2010-01-01

    Full Text Available Thermal power stations emit significant amounts of fly ash and ultra fine particles into the atmosphere. Electrostatic precipitators (ESP or electro filters remove flying ashes and fine particles from the flue gas before passing the gas into the chimney. Maximum allowable value of dust is 50 mg/m3 and it requires that the efficiency of the ESPs better than 99 %, which calls for an increase of active surface of the electrodes, hence increasing the filter volume and the weight of steel used for the filter. In previous decades, electrostatic precipitators in thermal power plants were fed by thyristor controlled, single phase fed devices having a high degree of reliability, but with a relatively low collection efficiency, hence requiring large effective surface of the collection plates and a large weight of steel construction in order to achieve the prescribed emission limits. Collection efficiency and energy efficiency of the electrostatic precipitator can be increased by applying high frequency high voltage power supply (HF HV. Electrical engineering faculty of the University of Belgrade (ETF has developed technology and HF HV equipment for the ESP power supply. This solution was subjected to extensive experimental investigation at TE Morava from 2008 to 2010. High frequency power supply is proven to reduce emission two times in controlled conditions while increasing energy efficiency of the precipitator, compared to the conventional thyristor controlled 50Hz supply. Two high frequency high voltage unit AR70/1000 with parameters 70 kV and 1000 mA are installed at TE Morava and thoroughly testes. It was found that the HF HV power supply of the ESP at TE Morava increases collection efficiency so that emission of fine particles and flying ashes are halved, brought down to only 50 % of the emissions encountered with conventional 50 Hz thyristor driven power supplies. On the basis of this study, conclusion is drawn that the equipment comprising HF HV

  10. Social assessment and location of nuclear and thermal power plants

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu; Nishio, Mitsuo.

    1979-01-01

    Most of the locations of nuclear and thermal power plants in Japan are depopulated villages with remote rural character, but for the development of such districts, the policy is not yet clearly established, and the appropriate measures are not taken. The living regions of residents and the production regions of enterprises are more and more estranged. Social assessment is the scientific method to perceive the future change due to the installation of power stations. The features particular to the assessment of natural environment and social environment related to the location of power stations are considered, and the technical problems involved in the method of assessment of natural environment are solved, and the actual method of assessment of social environment is developed. Then, the possibility of establishing this method and the problems in its application are investigated. The plan of developing the surroundings of power generation facilities is criticized, and the coordination of the location plan of power companies and the regional projects of municipalities is discussed. Finally, the mechanism of consensus formation concerning the location of power stations is considered, dividing into regional consensus formation and administrative consensus formation, and the possibility of instituting social assessment is examined. (Kako, I.)

  11. Power and Thermal Management of System-on-Chip

    DEFF Research Database (Denmark)

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  12. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  13. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  14. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  15. Technological challenges in thermal plasma production

    International Nuclear Information System (INIS)

    Ramakrishnan, S.

    1995-01-01

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  16. Strategies for emission reduction from thermal power plants.

    Science.gov (United States)

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  17. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    International Nuclear Information System (INIS)

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  18. French studies on the thermal effluents of electric power plants

    International Nuclear Information System (INIS)

    Dezes-Cadiere, H.

    1976-01-01

    This report presents a synthesis of studies made in France in the thermal effluent field: thermal power plant cooling systems, transfer and dispersion of thermal effluents in the receptive media, effects of thermal effluents on water physicochemistry and biochemistry, effects of thermal effluents on aquatic ecosystems, and, possibilities of waste heat recovery with the view of utilization in agriculture, aquaculture and district heating. A catalogue of French organizations working or having data on thermal effluents is presented, as also an alphabetical list of the contacted persons. A bibliography of French documents concerning the previously mentioned studies is finally given (193 refs.) [fr

  19. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  20. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  1. Marine renewable energies. When researchers consider the ocean as an energy source. Offshore wind power. The thermal energy of seas, a solar resource to be no longer neglected. Lipid biofuels production by micro-algae

    International Nuclear Information System (INIS)

    Ruer, J.; Gauthier, M.; Zaharia, R.; Cadoret, J.P.

    2008-01-01

    In the present day context of search for renewable energy sources, it is surprising that the oceans energy, potentially enormous, is poorly taken into consideration with respect to the other renewable energy sources, while France has been a pioneer in this domain with the construction of the Rance tidal power plant in the 1960's, and still in operation today. However, the scientific community, and in particular the IFREMER institute in France, is developing R and D programs on marine energy technologies. On the other hand, the development of wind power is growing up rapidly with a worldwide installed capacity exceeding today 94000 MW and supplying 3% of the electricity consumed in Europe. The development of offshore wind farms represents today 1122 MW and should grow up very fast in the coming years. The ocean is also a huge reservoir of thermal energy which can be exploited to generate electricity and desalinated water. Finally, the cultivation of micro-algae for the enhanced production of lipids may be a more ecological alternative to the terrestrial production of biofuels, strongly criticized today for its long term environmental impacts. (J.S.)

  2. Physico-chemical characterization of slag waste coming from GICC thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, A.; Aineto, M.; Iglesias, I. [Laboratory of Applied Mineralogy, Universidad de Castilla-La Mancha, Ciudad Real Madrid (Spain); Romero, M.; Rincon, J.Ma. [The Glass-Ceramics Laboratory, Insituto Eduardo Torroja de Ciencias de la Construccion, CSIC, c/Serrano Galvache s/n, 28033, Madrid (Spain)

    2001-09-01

    The new gas installations of combined cycle (GICC) thermal power plants for production of electricity are more efficient than conventional thermal power plants, but they produce a high quantity of wastes in the form of slags and fly ashes. Nowadays, these by-products are stored within the production plants with, until now, no applications of recycling in other industrial processes. In order to evaluate the capability of these products for recycling in glass and ceramics inductory, an investigation for the full characterization has been made by usual physico-chemical methods such as: chemical analysis, mineralogical analysis by XRD, granulometry, BET, DTA/TG, heating microscopy and SEM/EDX.

  3. Nuclear power plant thermal-hydraulic performance research program plan

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed

  4. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  5. Fuel combustion in thermal power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-11-01

    The position of black coal in the energy balance of Japan is discussed. About 75% of electric energy is produced by thermal power plants. Eighty-five per cent of electricity is produced by power plants fired with liquid fuels and 3% by coal fired plants. Coal production in Japan, the forecast coal import to the country by 1990 (132 Mt/year), proportion of coal imported from various countries, chemical and physical properties of coal from Australia, China and Japan are discussed. Coal classification used in Japan is evaluated. The following topics associated with coal combustion in fossil-fuel power plants in Japan are discussed: coal grindability, types of pulverizing systems, slagging properties of boiler fuel in Japan, systems for slag removal, main types of steam boilers and coal fired furnaces, burner arrangement and design, air pollution control from fly ash, sulfur oxides and nitrogen oxides, utilization of fly ash for cement production, methods for removal of nitrogen oxides from flue gas using ammonia and catalysts or ammonia without catalysts, efficiency of nitrogen oxide control, abatement of nitrogen oxide emission from boilers by flue gas recirculation and reducing combustion temperatures. The results of research into air pollution control carried out by the Nagasaki Technical Institute are reviewed.

  6. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  7. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    Science.gov (United States)

    Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin

    2018-03-01

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome

  8. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R J [Donlar Corporation (United States); Ravenscroft, P D [BP Exploration Operating Company, (United Kingdom)

    1997-12-31

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO{sub 2} corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs.

  9. Thermal design of a Mars oxygen production plant

    Science.gov (United States)

    Sridhar, K. R.; Iyer, Venkatesh A.

    1991-01-01

    The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.

  10. Japanese aquaculture with thermal water from power plants

    International Nuclear Information System (INIS)

    Kuroda, T.

    1977-01-01

    The present level of thermal aquaculture, utilizing thermal water which is waste cooling water from nuclear power plant, in Japan is reported. There are 13 major potential areas for thermal aquaculture in cooperation with conventional type thermal power plants, seven of which are actually operating. Aquaculture facilities of all these are on land, none in the sea. Of these seven centers, those that have already commercialized their nursery methods or are approaching that stage of research and development, are Tohoku Hatsuden Kogyo Ltd., Tsuruga Hama Land Ltd. and Kyushu Rinsan Ltd. Major problems faced specialists in Japanese thermal aquaculture are water temperature, water quality, radioactivity and costs. For keeping the water temperature constant all seasons, cooling or heating by natural sea water may be used. Even negligible amounts of radioactivity that nuclear power plants release into the sea will concentrate in the systems of marine life. A strict precautionary checking routine is used to detect radioactivity in marine life. (Kobatake, H.)

  11. Thermodynamic analysis of thermal efficiency and power of Minto engine

    International Nuclear Information System (INIS)

    He, Wei; Hou, Jingxin; Zhang, Yang; Ji, Jie

    2011-01-01

    Minto engine is a kind of liquid piston heat engine that operates on a small temperature gradient. But there is no power formula for it yet. And its thermal efficiency is low and formula sometimes is misused. In this paper, deriving the power formula and simplifying the thermal efficiency formula of Minto engine based on energy distribution analysis will be discussed. To improve the original Minto engine, a new design of improved Minto engine is proposed and thermal efficiency formula and power formula are also given. A computer program was developed to analyze thermal efficiency and power of original and improved Minto engines operating between low and high-temperature heat sources. The simulation results show that thermal efficiency of improved Minto engine can reach over 7% between 293.15 K and 353.15 K which is much higher than that of original one; the temperature difference between upper and lower containers is lower than half of that between low and high temperature of heat sources when the original Minto engines output the maximum power; on the contrary, it is higher in the improved Minto engines. -- Highlights: ► The thermal efficiency formula of Minto engine is simplified and the power formula is established. ► A high-powered design of improved Minto engine is proposed. ► A computer simulation program based on real operating environment is developed.

  12. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1997-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  13. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1998-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  14. Technical and economic aspects of operation of thermal and hydro power systems

    International Nuclear Information System (INIS)

    Bakken, Bjoern Harald.

    1997-01-01

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs

  15. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  16. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  17. Reference costs of the electric power production; Couts de reference de la production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This study periodically realized by the DGEMP aims to compare the competitiveness of the different channels of electric power production, for different utilization conditions. The first part ''reference costs of the 2003 electric power production'' examines the prices of the electric power produced by different channels in particular in the framework of the industrial implementing in 2015. The nuclear and thermal power plants are concerned. The second part is devoted to the decentralized production channels (wind energy, photovoltaic, cogeneration heat-electricity) is under construction and will be presented next year. (A.L.B.)

  18. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  19. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  20. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  1. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  2. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  3. On thermal gravitational contribution to particle production and dark matter

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2017-11-01

    Full Text Available We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles that might not be in thermal equilibrium or/and might only have gravitational interaction, such as dark matter (DM. For particles with spin 0,1/2 and 1 we calculate the relevant cross sections through gravitational annihilation and give the analytic formulas with full mass-dependent terms. We find that DM with mass between TeV and 1016 GeV could have the relic abundance that fits the observation, with small dependence on its spin. We also discuss the effects of gravitational annihilation from inflatons. Interestingly, contributions from inflatons could be dominant and have the same power dependence on Hubble parameter of inflation as that from vacuum fluctuation. Also, fermion production from inflaton, in comparison to boson, is suppressed by its mass due to helicity selection.

  4. Recommendations for the market introduction of solar thermal power stations

    International Nuclear Information System (INIS)

    Trieb, F.; Nitsch, J.

    1998-01-01

    Until 2010, solar thermal power stations based on parabolic trough concentrating collectors can become a competitive option on the world's electricity market, if the market extension of this mature technology is supported by a concerted, long-term programme capable of bundling the forces of industry, finance, insurance and politics. Technical improvements based on the experience of over ten years of successful operation, series production and economies of scale will lead to a further cost reduction of 50% and to electricity costs of 0.06 - 0.04 US$/kWh for hybrid steam cycles and hybrid combined cycles, respectively. Until 2010, a capacity of 7 GW will be installed, avoiding 16 million tons of carbon dioxide per year. The programme comprises an investment of 16 billion US$ and requires external funding of 6%. (author)

  5. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  6. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  7. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  8. Cavitation and thermal dilepton production in QGP

    International Nuclear Information System (INIS)

    Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.

    2012-01-01

    We study the effects of bulk and shear viscosities on both hydrodynamical evolution and thermal dilepton emission rate from the QGP phase at RHIC energies. We use lattice QCD inspired parametrization for the bulk viscosity and trace anomaly (equation of state) to describe behavior of the system near the critical temperature T c . Ratio of the shear viscosity to entropy density is taken to be η/s∼1/4π. We calculate the corrections on the dilepton production rates due to modification in the distribution function, arising due to the presence of the bulk and shear viscosities. It is shown that when the system temperature evolves close to T c the effect of the bulk viscosity on the dilepton emission rates cannot be ignored. It is demonstrated that the bulk viscosity can suppress the thermal dilepton spectra where as the effect of the shear viscosity is to enhance it. Further we show that the bulk viscosity driven fragmentation or cavitation can set in very early during the hydrodynamical evolution and this in turn would make the hydrodynamical treatment invalid beyond the cavitation time. We find that even though the finite bulk viscosity corrections and the onset of the cavitation reduce the production rates, the effect of the minimal η/s=1/4π can enhance the dilepton production rates significantly in the regime p T ⩾2 GeV.

  9. Power trade: A mean to replace thermal to hydro power

    Energy Technology Data Exchange (ETDEWEB)

    Viladrich, Christian; Brun, Pierre; Pereira, Alice; Moustafa, Fatma

    2010-09-15

    In the framework of the Eastern Nile Power Trade Program Study a comprehensive generation and transmission expansion plan was established for Egypt, Ethiopia, and Sudan. The results show that an interconnection between these countries is profitable and has a positive impact on CO2 savings. A common development of power system and a power market can promote the regional cooperation to use the Nile waters for the benefit of the entire region.

  10. Power Electronics Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on inverter components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.

  11. Power MOSFET Thermal Instability Operation Characterization Support

    Science.gov (United States)

    Shue, John L.; Leidecker, Henning

    2010-01-01

    Metal-oxide semiconductor field-effect transistors (MOSFETs) are used extensively in flight hardware and ground support equipment. In the quest for faster switching times and lower "on resistance," the MOSFETs designed from 1998 to the present have achieved most of their intended goals. In the quest for lower on resistance and higher switching speeds, the designs now being produced allow the charge-carrier dominated region (once small and outside of the area of concern) to become important and inside the safe operating area (SOA). The charge-carrier dominated region allows more current to flow as the temperature increases. The higher temperatures produce more current resulting in the beginning of thermal runaway. Thermal runaway is a problem affecting a wide range of modern MOSFETs from more than one manufacturer. This report contains information on MOSFET failures, their causes and test results and information dissemination.

  12. Power Electronics Thermal Management R&D: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-08

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  13. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  14. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  16. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  17. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  18. Solar thermal production of zinc: Program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A; Weidenkaff, A; Moeller, S; Palumbo, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The solar thermal production of zinc is considered for the conversion of solar energy into storable and transportable chemical fuels. The ultimate objective is to develop a technically and economically viable technology that can produce solar zinc. The program strategy for achieving such a goal involves research on two paths: a direct path via the solar thermal splitting of ZnO in the absence of fossil fuels, and an indirect path via the solar carbothermal/CH{sub 4}-thermal reduction of Zn O, with fossil fuels (coke or natural gas) as chemical reducing agents. Both paths make use of concentrated solar energy for high-temperature process heat. The direct path brings us to the complete substitution of fossil fuels with solar fuels for a sustainable energy supply system. The indirect path creates a link between today`s fossil-fuel-based technology and tomorrow`s solar chemical technology and builds bridges between present and future energy economies. (author) 1 fig., 15 refs.

  19. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  20. Soil radioactivity levels and radiation hazard assessment around a Thermal Power Plant

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Pankaj; Sharma, Somdutt; Agrawal, Anshu; Kumar, Rajesh; Prajith, Rama; Sahoo, B.K.

    2016-01-01

    Coal based thermal power plants further enhance the level of radioactivity in the environment, as burning of coal produces fly ash that can be released into the environment containing traces of 238 U, 232 Th and their decay products. Therefore, coal fired power plants are one of the major contributor towards the Technologically Enhanced Natural Radiation (TENR). Keeping this in view, a study of natural radioactivity in the soil of twenty five villages within 5 km radius around the Harduaganj Thermal Power Plant, Aligarh, UP, India is going on under a BRNS major project, to know the radiological implications on general population living around this plant

  1. Air-cooling viability to increase the power in the thermal power stations of gas: Colombian case

    International Nuclear Information System (INIS)

    Amell, Andres; Bedoya, H. A

    2000-01-01

    Thermal power decreases as air temperature increases, which reduce both efficiency and projects yielding. Technologically it is possible to eliminate the environment temperature incidence on reduction of power and efficiency, cooling the input air to the turbine, obtaining important power and efficiency improvements. In this work, the technical and economical viability, when applying air cooling technologies (evaporative cooling, steam compression, and production and ice storage (TES) were studied, having in mind meteorological conditions and Colombian electric marketing features, in which, nearly 2800 MW of natural gas thermal power have been installed in the last decade. as a result of applying these cooling technologies the study determined: the mean potential of recoverable power at the second peak of the national demand curve, shows several schemes in which they are technically and economically viable in the Colombian context

  2. Upgrading of electrostatic precipitators in old thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurthy, H V

    1987-02-01

    Indian thermal power stations installed in the 60's and earlier had dust collectors whose efficiency was well below the acceptable level of emission under the Air (Prevention and Control of Pollution) Act 1981. This necessitates the need for higher efficiency dust collectors to be installed in old thermal power stations. Further, the poor quality of the coal being received at power stations presently causes severe environmental pollution in and around the plant. This paper deals with the retrofitting of electrostatic precipitators in existing units and the problems encountered in executing the same.

  3. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  4. Decision on thermal power plant can be taken this spring

    International Nuclear Information System (INIS)

    Haga, I.

    1978-01-01

    Towards the end of the 1960s it appeared that nuclear power would be the natural successor to hydroelectric power, as the latter became less attractive for further exploitation, reinforced by environmentalist opposition to several proposed hydroelectric schemes. Conventional thermal power was also considered, but one proposed stand-by plant was rejected in 1971 largely because of environmental considerations. Preliminary planning and PR information on nuclear power in the early 1970s aroused considerable opposition and a governmental commission was appointed in 1975-6 to evaluate the question of reactor safety and transport and disposal of radioactive waste, to report in 1978. It is therefore not possible to count on nuclear power as a supplement until the end of the 1980s at the earliest. Gas-fired thermal power is environmentally attractive, but at present no gas fields have been found which make this economic. Oil-fired power is quite feasible, but no political decision has yet been taken. Coal fuel, based on the Spitzbergen mines has recently become more interesting, and small power plants for the extreme north of Norway are under consideration. Finally it is pointed out that nuclear power is safer than generally assumed while fluidised bed combustion of coal in a combined steam-gas turbine plant will lead to very high thermal efficiencies. (JIW)

  5. Air quality assessment in the vicinity of nuclear and thermal power stations

    International Nuclear Information System (INIS)

    Sivaramasundaram, K.; Vijay Bhaskar, B.; Muthusubramanian, P.; Rajan, M.P.; Hegde, A.G.

    2007-01-01

    The status and ranking of any country, in the context of globalisation, is decided by its economic progress, which is directly linked into power generation. The power is generated by many routes and the nuclear and thermal routes are noteworthy among them. As the power production and its associated activities may cause qualitative deterioration, it is essential to study the impact of power production on atmospheric environment. In this connection, a comparative study has been carried out to assess the air quality with special reference to criteria pollutants in the vicinity of nuclear and thermal power stations. In the present investigation, the air samples are collected on weekly basis and the pollutants such as sulphur dioxide (SO 2 ), nitrogen oxides (NOx), carbon monoxide (CO), suspended particulate matter (SPM) and respirable particulate matter (RPM) are estimated by adopting standard procedures set by United States-Environmental Protection Agency (US-EPA) and Central Pollution Control Board (CPCB). As the micro meteorological parameters influence on the status of air quality, simultaneous measurements of these parameters are also carried, out during sampling. It is studied that estimated concentrations of all criteria pollutants in the vicinity of these power stations are within the permissible limits set by CPCB. On the basis of the generated database pertaining to the concentrations of criteria air pollutants in the vicinity of nuclear and thermal power stations, it is concluded that nuclear power production may be considered as a viable option in terms of environmental protection in our country. (author)

  6. Thermal hydraulic aspects of uncertainty in power measurement of nuclear reactors

    International Nuclear Information System (INIS)

    Gupta, S.K.; Kumar, Rajesh; Gaikwad, A.J.; Majumdar, P.; Agrawal, R.A.

    2004-01-01

    Power measurement in Nuclear Reactors is carried out through in-core and ex-core neutron monitors which are continuously calibrated against thermal power. In Indian Pressurized Heavy Water Reactors (220 MWe) the temperature difference across steam generator hot and cold legs is taken to be a measure of thermal power as the flow through the primary heat transport system is assumed to be constant through out is operation. Gross flow is not measured directly. However, the flow depends on the characteristics of the primary heat transport pumps, which are centrifugal type and are affected by the grid frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable high grid frequency. This uncertainty is in addition to instrument inaccuracy and should be accounted for in safety analysis. In some reactors thermal power is calculated from stem flow rate and pressure, here the location of steam flow measurement is important to avoid leakage related error in thermal power. Neutron absorption cross section in the power measurement instruments and the power production in the fuel varies with neutron energy levels, these aspects are also discussed in the paper. (author)

  7. Thermal Design of Power Electronic Circuits

    CERN Document Server

    Künzi, R.

    2015-06-15

    The heart of every switched mode converter consists of several switching semiconductor elements. Due to their non-ideal behaviour there are ON state and switching losses heating up the silicon chip. That heat must effectively be transferred to the environment in order to prevent overheating or even destruction of the element. For a cost-effective design, the semiconductors should be operated close to their thermal limits. Unfortunately the chip temperature cannot be measured directly. Therefore a detailed understanding of how losses arise, including their quantitative estimation, is required. Furthermore, the heat paths to the environment must be understood in detail. This paper describes the main issues of loss generation and its transfer to the environment and how it can be estimated by the help of datasheets and/or experiments.

  8. Behaviour at thermal ageing of power cable components through penetrations

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2009-01-01

    The materials for electric insulation and exterior jackets of the power cables are formulated organic compounds. The environmental service conditions will induce chemical and/or physical processes at molecular level of the material; these processes are the ageing mechanisms. The power cables passing through penetrations lead to an increase of the rate of thermal ageing mechanisms, resulting in irreversible degradation of mechanical and electric properties of the organic compounds and of the functional properties of the cable. The paper presents the results of the laboratory tests when the real environmental service conditions for penetration are simulated, the comparison with the results of the thermal computation of the power cables heating and the evaluation of the influence of temperature increase of the power cable components on the cable lifetime. For the particular case of a power cable with PVC insulation, we estimated a lifetime decrease about seven years as referred to lifetime of about 30 years for operation in air. (authors)

  9. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  10. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  11. Investigation of thermal integration between biogas production and upgrading

    International Nuclear Information System (INIS)

    Zhang, Xiaojing; Yan, Jinying; Li, Hailong; Chekani, Shabnam; Liu, Loncheng

    2015-01-01

    Highlights: • Identify thermal characteristics of amine-based biogas upgrading for waste heat recovery. • Identify thermal characteristics of AD biogas production as sink for heat recovery. • Evaluation of thermal integration between biogas production and upgrading to improve overall energy efficiency. • Cost analysis applied for the economic feasibility of the thermal integration. • Using the principles of target design and system integration for connected thermal processes. - Abstract: Thermal integration of anaerobic digestion (AD) biogas production with amine-based chemical absorption biogas upgrading has been studied to improve the overall efficiency of the intergraded system. The thermal characteristics have been investigated for industrial AD raw biogas production and amine-based chemical absorption biogas upgrading. The investigation provides a basic understanding for the possibilities of energy saving through thermal integration. The thermal integration is carried out through well-defined cases based on the thermal characteristics of the biogas production and the biogas upgrading. The following factors are taken into account in the case study: thermal conditions of sub-systems, material and energy balances, cost issues and main benefits. The potential of heat recovery has been evaluated to utilise the waste heat from amine-based upgrading process for the use in the AD biogas production. The results show that the thermal integration has positive effects on improving the overall energy efficiency of the integrated biogas plant. Cost analysis shows that the thermal integration is economically feasible

  12. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  13. Analysis of thermal process of pozzolan production

    Directory of Open Access Journals (Sweden)

    Mejía De Gutiérrez, R.

    2004-06-01

    Full Text Available The objective of this study was evaluated the effect of heat treatment parameters on the pozzolanic activity of natural kaolin clays. The experimental design included three factors: kaolin type, temperature and time. Five types of Colombian kaolin clays were thermally treated from 400 to 1000 °C by 1, 2, and 3 hours. The raw materials and the products obtained were characterized by X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Differential Thermal / Thermo gravimetric Analysis (DTAJ TGA. The pozzolanic activity of thermally treated samples according to chemical and mechanical tests was investigated.

    El objetivo de este estudio fue caracterizar las variables de producción de un metacaolín de alta reactividad puzolánica. El diseño experimental utilizó un modelo factorial que consideró tres factores: tipo de caolín (C, temperatura y tiempo. A partir del conocimiento de las fuentes de caolín y el contacto con proveedores y distribuidores del producto a nivel nacional, se seleccionaron cinco muestras representativas de arcillas caoliníticas, las cuales se sometieron a un tratamiento térmico entre 400 y 1.000 ºC (seis niveles de temperatura y tres tiempos de exposición, 1, 2 y 3 horas. Los caolines de origen y los productos obtenidos de cada proceso térmico fueron evaluados mediante técnicas de tipo físico y químico, difracción de rayos X, infrarrojo FTIR, y análisis térmico diferencial (OTA, TGA. Complementariamente se evalúa la actividad puzolánica, tanto química como mecánica, del producto obtenido a diferentes temperaturas de estudio.

  14. Power Electronics Thermal Management R&D (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  15. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  16. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  17. Power production at minimum risk

    International Nuclear Information System (INIS)

    Fremlin, J.H.

    1983-01-01

    A summary, including extensive quotations, is given of the main themes of a lecture by Prof. Fremlin in which he assessed the risks inherent in the use of various power systems. Considering only hazards which affect members of the public, the methods used to quantify such risks are examined. Both so-called inconspicuous hazards from radiation effects and conspicuous risks from accidents which could arise from nuclear power stations are compared to those from other types of power generation. The small risk arising from nuclear wastes is stressed. The lecturer concluded that he would not let 'tiny differences of risk' affect his decisions on energy planning. (U.K.)

  18. Thermal Analysis of a Power Conditioning Unit for a Howitzer

    Science.gov (United States)

    2009-08-01

    contact resistance Interface ( mA2 -K / W) AL-PCB 0.000389 AL-AL (thermal grease) 0.000083 AL-power chips 0.003891 AL-power chips (thermal grease...1120 W/ mA2 . Figure 3 shows the view of the box that the source of the solar radiation sees. The inside of the box is cluttered with cables, wiring, and...temperature (130°F) and a conservative convective heat transfer coefficient (5 W/ mA2 ) to all of the outer surfaces. These outer surfaces would

  19. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  20. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  1. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  2. The power of product integrity.

    Science.gov (United States)

    Clark, K B; Fujimoto, T

    1990-01-01

    In the dictionary, integrity means wholeness, completeness, soundness. In products, integrity is the source of sustainable competitive advantage. Products with integrity perform superbly, provide good value, and satisfy customers' expectations in every respect, including such intangibles as their look and feel. Consider this example from the auto industry. In 1987, Mazda put a racy four-wheel steering system in a five-door family hatchback. Honda introduced a comparable system in the Prelude, a sporty, two-door coupe. Most of Honda's customers installed the new technology; Mazda's system sold poorly. Potential customers felt the fit--or misfit--between the car and the new component, and they responded accordingly. Companies that consistently develop products with integrity are coherent, integrated organizations. This internal integrity is visible at the level of strategy and structure, in management and organization, and in the skills, attitudes, and behavior of individual designers, engineers, and operators. Moreover, these companies are integrated externally: customers become part of the development organization. Integrity starts with a product concept that describes the new product from the potential customer's perspective--"pocket rocket" for a sporty, subcompact car, for example. Whether the final product has integrity will depend on two things: how well the concept satisfies potential customers' wants and needs and how completely the concept has been embodied in the product's details. In the most successful development organizations, "heavyweight" product managers are responsible for leading both tasks, as well as for guiding the creation of a strong product concept.

  3. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  4. Ecological and economic interests in design process of thermal power plant

    International Nuclear Information System (INIS)

    Sander, M.

    1996-01-01

    In design process of thermal power plant various ecological and economic contradictory interests are brought in focus. Requests on environmental protection written in laws, standards and international treaties are increasing investment costs and energy production costs. In a design phase there is a task to reconcile these contradictory requests. The paper presents relationship between technology and environmental protection with a focus on air pollution. Air pollution and human health is considered taking in account the role of design phase in thermal power plants project and human health problems. International laws and standards are presented with moral dilemmas concerning low investment costs and high environmental standards. (author)

  5. Evaluation of power history during power burst experiments in TRACY by combination of gamma-ray and thermal neutron detectors

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Ohno, Akio

    2002-01-01

    A combination method using γ-ray and thermal neutron detectors was newly applied to the accurate evaluation of power histories during reactivity-initiated power burst experiments in the Transient Experiment Critical Facility (TRACY). During an initial power burst, the power history was determined using a fast response γ-ray ionization chamber, which was used because of its ability to exactly trace the power history within a short duration of the initial burst. After the initial burst, a micro fission chamber containing highly enriched uranium was used for the determination of the power history because the γ-ray ionization chamber could not be applied due to the contribution of delayed γ-rays from fission products. By the present method, the power histories were evaluated for the experiments in the range of 1.50 to 2.93$ of the reactivity insertion. It was found that the peak power and integrated power as determined by the previous method using only the micro fission chamber were underestimated to be 40% and 30% in maximum, respectively, in comparison with the results from the present evaluation. The numerical simulation performed by using the Monte Carlo method indicated that the underestimation could be comprehended by considering the time delay of thermal neutron detection of the fission chamber, which arose from the flight-time of neutrons from the TRACY core to the fission chamber. (author)

  6. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  7. Thermal Management of Software Changes in Product Lifecycle of Consumer Electronics

    OpenAIRE

    Muraoka , Yoshio; Seki , Kenichi; Nishimura , Hidekazu

    2014-01-01

    Part 6: Industry and Consumer Products; International audience; Because the power consumption of consumer electronic products varies according to processor execution, which depends on software, thermal risk may be increased by software changes, including software updates or the installation of new applications, even after hardware development has been completed. In this paper, we first introduce a typical system-level thermal simulation model, coupling the activities within modules related to...

  8. Power to Production: Activity Guide.

    Science.gov (United States)

    Massachusetts Univ., Lowell. Tsongas Industrial History Center.

    This field trip program consists of a 90-minute interpretive tour and a 90-minute hands-on workshop. The tour and workshop explore the role of water power in the Industrial Revolution. On the tour, students discover firsthand the unique resources of Lowell, Massachusetts, and the Park, while the workshop brings these historic resources to life as…

  9. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  10. Prospects for solving environmental problems pertinent to thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Tumanovskii; V.R. Kotler [OAO All-Russia Thermal Engineering Institute, Moscow (Russian Federation)

    2007-06-15

    Possible ways to protect the atmosphere and water basin against harmful emissions and effluent waters discharged from thermal power stations are considered. Data on the effectiveness of different methods for removing NOx, SO{sub 2}, and ash particles, as well as heavy metals and CO{sub 2}, from these emissions and discharges are presented.

  11. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  12. Determination of reactor thermal power using a more accurate method

    International Nuclear Information System (INIS)

    Papuga, J.; Madron, F.; Pliska, J.

    2005-01-01

    Reactor thermal power is an important operational parameter in many respects such as nuclear safety, reactor physics or evaluation of turbine thermal performance. Thermal power of a pressurized water reactor is determined on the basis of the steam generator thermal balance. The balance can be made in several variants differing from one another by the selection of different measuring circuits whose data are used in the balancing. In principle, no one such variant gives the true value of the thermal power. Among the variant values, the one nearest to the unknown true value of reactor thermal power is probably the value calculated with the lowest uncertainty. The determination of such uncertainty is not easy and its value can make even several percent, which has significant economic consequences. This paper presents the method of data reconciliation and its application to the data of the third of Dukovany NPP. The data reconciliation method allows to exploit all the information which process data contain. It is based on the statistical adjustment of the redundant data in such a way that the adjusted data obey generally valid laws of nature (e.g. conservation laws). Mass and energy balances based on the data not yet reconciled do not obey those laws because of measurement errors. For data reconciliation in Dukovany, a detailed model of mass and energy flows describing the 3rd unit from steam generators to alternator and condenser was set up. Laws of mass and energy conservation and phase equilibrium in water-steam systems are thus fulfilled. Moreover, the user can model momentum balances in pipelines and create other equations, which are respected during calculation. The data reconciliation is done regularly for hourly averages (Authors)

  13. Optimization of thermal efficiency of nuclear central power like as PWR

    International Nuclear Information System (INIS)

    Lapa, Nelbia da Silva

    2005-10-01

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  14. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  15. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  16. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    International Nuclear Information System (INIS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Meng, Dennis Desheng

    2011-01-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA

  17. Thermal power terms in the Einstein-dilaton system

    International Nuclear Information System (INIS)

    Zuo, Fen

    2014-01-01

    We employ the gauge/string duality to study the thermal power terms of various thermodynamic quantities in gauge theories and the renormalized Polyakov loop above the deconfinement phase transition. We restrict ourselves to the five-dimensional Einstein gravity coupled to a single scalar, the dilaton. The asymptotic solutions of the system for a general dilaton potential are employed to study the power contributions of various quantities. If the dilaton is dual to the dimension-4 operator TrF μν 2 , no power corrections would be generated. Then the thermal quantities approach their asymptotic values much more quickly than those observed in lattice simulation. When the dimension of the dual operator is different from 4, various power terms are generated. The lowest power contributions to the thermal quantities are always quadratic in the dilaton, while that of the Polyakov loop is linear. As a result, the quadratic terms in inverse temperature for both the trace anomaly and the Polyakov loop, observed in lattice simulation, cannot be implemented consistently in the system. This is in accordance with the field theory expectation, where no gauge-invariant operator can accommodate such contributions. Two simple models, where the dilaton is dual to operators with different dimensions, are studied in detail to clarify the conclusion.

  18. Super thermal power plants and environment: a critical appraisal

    International Nuclear Information System (INIS)

    Sharma, A.K.

    1995-01-01

    This paper discusses the possible impact on the environment by the particulate matters, oxides of sulphur and nitrogen, trace metals and solid/liquid wastes, which are emitted during the combustion of coal in the super thermal power plants of National Thermal Power Corporation (NTPC). The coal consumed by these plants have sufficient sulphur content and ash. Of all the mineral in coal, pyrite is one of the most deleterious in combustion and a major source of oxide of sulphur pollution of the atmosphere. The impact of these on the terrestrial and aquatic environment in and around power plants and on region have been discussed. To arresting such contaminants, some remedial measures are suggested. (author). 14 refs., 1 fig., 3 tabs

  19. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  20. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  1. The THESEUS project -- 50 MWe solar thermal power for Crete

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, F.; Geyer, M.; Kistner, R.; Aringhoff, R.; Nava, P.; Brakmann, G.

    1998-07-01

    A consortium of European industry, utilities and research institutions from Greece, Germany, Spain and Italy attempts to implement a 52 MWe solar thermal power plant with parabolic trough technology on the Greek island of Crete sponsored by the EU' s THERMIE program. The increased demand for electricity on the island, a consequence of the growing allurement of the island as a tourist resort, makes it necessary to expand the installed capacity on Crete during the next years. According to the capacity expansion plans of Greek' s utility PPC a 160 MWe heavy fuel-fired power plant complex--two 30 MWe diesel units and two 50 MWe steam turbine units--is foreseen to be built by the year 2002. In this paper a description of the technical, economical and environmental aspects of the THESEUS project is provided. Moreover a market entry strategy for solar thermal power generation is discussed.

  2. Methods and Algorithms for Economic MPC in Power Production Planning

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil

    in real-time. A generator can represent a producer of electricity, a consumer of electricity, or possibly both. Examples of generators are heat pumps, electric vehicles, wind turbines, virtual power plants, solar cells, and conventional fuel-fired thermal power plants. Although this thesis is mainly...... concerned with EMPC for minutes-ahead production planning, we show that the proposed EMPC scheme can be extended to days-ahead planning (including unit commitment) as well. The power generation from renewable energy sources such as wind and solar power is inherently uncertain and variable. A portfolio...... design an algorithm based on the alternating direction method of multipliers (ADMM) to solve input-constrained OCPs with convex objective functions. The OCPs that occur in EMPC of dynamically decoupled subsystems, e.g. power generators, have a block-angular structure. Subsystem decomposition algorithms...

  3. Process and device for thermal energy production

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1977-01-01

    The main aim of the invention is to create a heating cycle arrangement, for the energy production facilities as from liquid metal cooled nuclear reactors, that will stand up to the temperature changes of the heated steam at least as from the high pressure turbine. This arrangement includes a first system in which flows a liquid metal coolant between a heat source, a steam generator and a utilisation system on which flows a vaporisable fluid from this generator, passing through a first turbine, a heater, at least a second turbine and a condenser. The steam heated in the heater is heated by the liquid metal coolant. A preheater is located in the heated steam system upstream of the heater. This preheater is connected so as to heat the steam to a preset, practically constant value, before this steam to be heated enters the heater heated by the liquid metal. This arrangement reduces the thermal transitions in the superheater and the heater during load changes. In a preferential design mode, the steam from the steam generator is sent to a moisture extraction drum and the heater is exposed to the steam in this drum [fr

  4. 'Crud' detection and evaluation during the Embalse nuclear power plant's thermal cycle for powers of 100%

    International Nuclear Information System (INIS)

    Fernandez, A.; Rosales, A.H.; Mura, V.R.; Sentupery, C.; Rascon, H.

    1987-01-01

    This paper describes the 'crud' measurements performed during the Embalse nuclear power plant's thermal cycle for a power of 100% (645 MWe) under different purification conditions. The aim of this work is to optimize the four steam generators' tube plate cleaning in function of the sweeping produced by their purification. (Author)

  5. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  6. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  7. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  8. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  9. Efficiency assessment and benchmarking of thermal power plants in India

    International Nuclear Information System (INIS)

    Shrivastava, Naveen; Sharma, Seema; Chauhan, Kavita

    2012-01-01

    Per capita consumption of electricity in India is many folds lesser than Canada, USA, Australia, Japan, Chaina and world average. Even though, total energy shortage and peaking shortage were recorded as 11.2% and 11.85%, respectively, in 2008–09 reflecting non-availability of sufficient supply of electricity. Performance improvement of very small amount can lead to large contribution in financial terms, which can be utilized for capacity addition to reduce demand supply gap. Coal fired thermal power plants are main sources of electricity in India. In this paper, relative technical efficiency of 60 coal fired power plants has been evaluated and compared using CCR and BCC models of data envelopment analysis. Target benchmark of input variables has also been evaluated. Performance comparison includes small versus medium versus large power plants and also state owned versus central owned versus private owned. Result indicates poor performance of few power plants due to over use of input resources. Finding reveals that efficiency of small power plants is lower in comparison to medium and large category and also performance of state owned power plants is comparatively lower than central and privately owned. Study also suggests different measures to improve technical efficiency of the plants. - Highlights: ► This study evaluates relative technical efficiency of 60 coal fired thermal power plants of India. ► Input oriented CCR and BCC models of data envelopment analysis have been used. ► Small, medium and large power plants have been compared. ► Study will help investor while setting up new power projects. ► Power plants of different ownerships have also been compared.

  10. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  11. Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2005-12-01

    Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.

  12. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  13. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  14. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  15. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  16. Effect of increased renewables generation on operation of thermal power plants

    International Nuclear Information System (INIS)

    Eser, Patrick; Singh, Antriksh; Chokani, Ndaona; Abhari, Reza S.

    2016-01-01

    Highlights: • Impacts of increased renewables in central European transmission system are assessed. • Individual transmission lines and power plants of transmission system are modelled. • Starts and ramps of thermal power plants significantly increase with increased renewables. • Impact of renewables on thermal power plants is highly dependent on location. - Abstract: High spatial and temporal resolution optimal power flow simulations of the 2013 and 2020 interconnected grid in Central Western and Eastern Europe regions are undertaken to assess the impact of an increased penetration of renewables on thermal power plants. In contrast to prior studies, the present work models each individual transmission line and power plant within the two regions. Furthermore, for conventional plants, electricity costs are determined with respect to fuel type, nameplate capacity, operating condition and geographic location; cycling costs are modeled as function of the recent operational history. For renewable power plants, costs and available power are determined using mesoscale weather simulations and hydrology models. Countrywide validation of the simulations shows that all renewable and most conventional power production is predicted with less than 10% error. It is shown that the increased penetration of renewables in 2020 will induce a 4–23% increase in the number of starts of conventional plants. The number of load ramps significantly increases by 63–181%, which underlines the necessity for equipment manufacturers and utilities to adapt to scenarios of high penetration of renewables. The increased cycling operation of coal plants is shown to depend strongly on the power plant’s location and is mainly observed in Germany and the Czech Republic. Austrian coal plants are cycled less because they supply more base load power to southern Germany, where several nuclear power plants will be phased out by 2020. Thus there is a need for more transmission capacity along

  17. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  18. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Faul, I.

    1986-01-01

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  19. Cost allocation. Combined heat and power production

    International Nuclear Information System (INIS)

    Sidzikauskas, V.

    2002-01-01

    The benefits of Combined Heat and Power (CHP) generation are discussed. The include improvement in energy intensity of 1% by 2010, 85-90% efficiency versus 40-50% of condensation power and others. Share of CHP electricity production in ERRA countries is presented.Solutions for a development CHP cost allocation are considered. Conclusion are presented for CHP production cost allocation. (R.P.)

  20. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  1. Thermal effluents from nuclear power plant influences species distribution and thermal tolerance of fishes in reservoirs

    International Nuclear Information System (INIS)

    Pal, A.K.; Das, T.; Dalvi, R.S.; Bagchi, S.; Manush, S.M.; Ayyappan, S.; Chandrachoodan, P.P.; Apte, S.K.; Ravi, P.M.

    2007-01-01

    During electricity generation water bodies like reservoir act as a heat sink for thermal effluent discharges from nuclear power plant. We hypothesized that the fish fauna gets distributed according to their temperature preference in the thermal gradient. In a simulated environment using critical thermal methodology (CTM), we assessed thermal tolerance and metabolic profile of fishes (Puntius filamentosus, Parluciosoma daniconius, Ompok malabaricus, Mastacembelus armatus, Labeo calbasu, Horabragrus brachysoma, Etroplus suratensis, Danio aequipinnatus and Gonoproktopterus curmuca) collected from Kadra reservoir in Karnataka state. Results of CTM tests agrees with the species abundance as per the temperature gradient formed in the reservoir due to thermal effluent discharge. E. suratensis and H. brachysoma) appear to be adapted to high temperature (with high CTMax and CTMin values) and are in abundance at point of thermal discharge. Similarly, P. daniconius, appear to be adapted to cold (low CTM values) is in abundance in lower stretches of Kadra reservoir. Overall results indicate that discharge form nuclear power plant influences the species biodiversity in enclosed water bodies. (author)

  2. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  3. Control of thermal therapies with moving power deposition field

    International Nuclear Information System (INIS)

    Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B

    2006-01-01

    A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with

  4. Hydro-thermal power flow scheduling accounting for head variations

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; Ravindranath, K.M.

    1992-01-01

    In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants

  5. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  6. Transient electro-thermal modeling of bipolar power semiconductor devices

    CERN Document Server

    Gachovska, Tanya Kirilova; Du, Bin

    2013-01-01

    This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio

  7. State and development of the technology of thermal power plants

    International Nuclear Information System (INIS)

    Peter, F.; Schueller, K.H.

    1981-01-01

    Like in the past thermal power plants shall have to be designed also in the future in a way that a sufficient, low-priced and environment-preserving electricity and heat supply can be granted. The technology applied today in fossil-fuel and nuclear power plants and its further development is outlined under the aspects of a better utilization of primary energy, the substitution of petroleum and, in the long term, also of natural gas and coal, and of the extended protection of the environment against harmful influences. (orig.) [de

  8. Photovoltaic power production figures in 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide figures of photovoltaic power production (in Mw) along 1992 are presented. Worldwide production of modules per manufacturing technology and per manufacturing companies in Europe, USA and Japan are provided as well. The review has used the following sources: ''PV News'', ''PV insider's report'' and ''systems solars''. (Author)

  9. Feasibility study on Bobovdol thermal power plant upgrading project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey has been made in relation with the improvement project intended of energy conservation, and reduction of global warming gas emission at the Bobovdol thermal power plant located in the suburb of Sofia, the capital of the Republic of Bulgaria. The existing Bobovdol power plant having a total capacity of 630 MW with three generators is a coal burning thermal power plant having been used already for 23 to 27 years, hence over-aged. The survey has discussed an improvement project of scrap-and-build type to make the plant a high-efficiency gas combined cycle power plant using gas turbines. The project calls for building 210-MW gas combined power generation facilities having 70-MW gas turbines, one each in three stages in 2007, 2012 and 2017. As a result of the discussions, the fuel consumption reducing rate was found to reach 37.99%, whereas the cumulative energy saving quantity in 41 years will reach 16.37 million tons of fuel oil equivalent. In addition, the reduction rate of global warming gas emission is 57.75%, and the cumulative reduction quantity in 41 years is 105.18 million tons. (NEDO)

  10. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  11. Environmental impact assessment of coal fired thermal power stations

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Sadasivan, S.; Negi, B.S.; Meenakshy, V.

    1992-01-01

    Coal fly ash samples collected from various thermal power plants and one lignite ash sample were analysed for various elements such as As, Ca, Ce, Co, Cr, Cu, Eu, Fe, Hf, K, La, Lu, Mn, Na, Ni, Pb, Rb, Se, Si, Sb, Sc, Sm, Sr, Ti, V, Yb and Zn using energy dispersive X-ray fluorescence and instrumental neutron activation analysis methods. The two-step maximum leachability test was also performed on all fly ash samples. 13 refs, 9 tabs

  12. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  13. Failure at Zainsk thermal power station: lesson for thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Derkach, A.L.; Klyuchnikov, A.A.; Fedorenko, G.M.; Kuz'min, V.V.

    2007-01-01

    An account of system failure at Zainsk Thermal PS on January 1-st, 1979 is given. The cause of failure - sudden unauthorized energizing of block transformer which led to a direct asynchronous start of 200 MW turbine generator from grid. The failure resulted in the explosion and fire in generator, shaft destruction, and the damage of the machine hall's roof. The core roots of the failure have been scrutinised

  14. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  15. A review on lithium-ion power battery thermal management technologies and thermal safety

    Science.gov (United States)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  16. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  17. Temperature and Thermal Stress Analysis of Refractory Products

    Directory of Open Access Journals (Sweden)

    Shaoyang Shi

    2013-05-01

    Full Text Available Firstly current status of temperature and thermal stress research of refractory product at home and aboard are analyzed. Finite element model of two classical refractory products is building by using APDL language. Distribution law of temperature and thermal stress of two typical refractory products-ladles and tundish are analyzed and their structures are optimized. Stress of optimal structure is dropped obviously, and operation life is increased effectively.

  18. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  19. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  20. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  1. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  2. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  3. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  4. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  5. Hydrogen Fuel as Ecological Contribution to Operation of the Existing Coal-Fired Thermal Power Plants

    International Nuclear Information System (INIS)

    Cosic, D.

    2009-01-01

    The analysis is carried out of the application of a new hydrogen based alternative fuel as ecological contribution of the coal thermal power plants operation. Given the fact that coal thermal power plants are seen as the largest producers, not only of CO 2 , but of all others harmful gases, the idea is initiated to use the new alternative fuel as an additive to the coal which would result in much better performance of the coal power plants from an ecological point of view. It is possible to use such a fuel in relation of 10-30% of former coal use. The positive influence of such an application is much bigger than relative used quantity. This lecture has a goal to incite potential investors to create conditions for industrial testing of the new fuel. It will be very interesting to animate investors for large-scale production of the new fuel, too.(author).

  6. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  7. An electron beam flue gas treatment plant for a coal fired thermal power station. EBA demonstration plant in Chengdu thermal power station (China EBA Project)

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Shi, Jingke

    1999-01-01

    Ebara's electron beam flue gas treatment plant was installed and is being demonstrated in Chengdu Thermal Power Station, Sichuan, China. The demonstration is proving that this plant is fully capable of meeting the target removal of sulfur dioxides from flue gas (flow rate : 300-thousand m 3 /h). Recovered by-products, namely ammonium sulfate and ammonium nitrate, from the treatment were actually tested as fertilizers, the result of which was favorable. The sale and distribution of these by-products are already underway. In May 1995, this plant was presented the certificate of authorization by China's State Power Corporation. It is noted that this was the first time a sulfur dioxide removal plant was certified as such in China. (author)

  8. Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant

    International Nuclear Information System (INIS)

    Blanco-Marigorta, Ana M.; Victoria Sanchez-Henriquez, M.; Pena-Quintana, Juan A.

    2011-01-01

    Exergetic analysis is without any doubt a powerful tool for developing, evaluating and improving an energy conversion system. In the present paper, two different cooling technologies for the power cycle of a 50 MWe solar thermal power plant are compared from the exergetic viewpoint. The Rankine cycle design is a conventional, single reheat design with five closed and one open extraction feedwater heaters. The software package GateCycle is used for the thermodynamic simulation of the Rankine cycle model. The first design configuration uses a cooling tower while the second configuration uses an air cooled condenser. With this exergy analysis we identify the location, magnitude and the sources or thermodynamic inefficiencies in this thermal system. This information is very useful for improving the overall efficiency of the power system and for comparing the performance of both technologies.

  9. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  10. Applications of laser diagnostics to thermal power plants and engines

    International Nuclear Information System (INIS)

    Deguchi, Y.; Kamimoto, T.; Wang, Z.Z.; Yan, J.J.; Liu, J.P.; Watanabe, H.; Kurose, R.

    2014-01-01

    The demands for lowering the burdens on the environment will continue to grow steadily. It is important to monitor controlling factors in order to improve the operation of industrial thermal systems. In engines, exhaust gas temperature and concentration distributions are important factors in nitrogen oxides (NO x ), total hydrocarbon (THC) and particulate matter (PM) emissions. Coal and fly ash contents are parameters which can be used for the control of coal-fired thermal power plants. Monitoring of heavy metals such as Hg is also important for pollution control. In this study, the improved laser measurement techniques using computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS), low pressure laser-induced breakdown spectroscopy (LIBS), and laser breakdown time-of-flight mass spectrometry (LB-TOFMS) have been developed and applied to measure 2D temperature and species concentrations in engine exhausts, coal and fly ash contents, and trace species measurement. The 2D temperature and NH 3 concentration distributions in engine exhausts were successfully measured using CT-TDLAS. The elemental contents of size-segregated particles were measured and the signal stability increased using LIBS with the temperature correction method. The detection limit of trace species measurement was enhanced using low pressure LIBS and LB-TOFMS. The detection limit of Hg can be enhanced to 3.5 ppb when employing N 2 as the buffer gas using low pressure LIBS. Hg detection limit was about 0.82 ppb using 35 ps LB-TOFMS. Compared to conventional measurement methods laser diagnostics has high sensitivity, high response and non-contact features for actual industrial systems. With these engineering developments, transient phenomena such as start-ups in thermal systems can be evaluated to improve the efficiency of these thermal processes. - Highlights: • Applicability of newly developed laser diagnostics was demonstrated for the improvement of thermal power plants and

  11. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  12. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  13. Analyzing Thermal Module Developments and Trends in High-Power LED

    Directory of Open Access Journals (Sweden)

    Jung-Chang Wang

    2014-01-01

    Full Text Available The solid-state light emitting diode (SSLED has been verified as consumer-electronic products and attracts attention to indoor and outdoor lighting lamp, which has a great benefit in saving energy and environmental protection. However, LED junction temperature will influence the luminous efficiency, spectral color, life cycle, and stability. This study utilizes thermal performance experiments with the illumination-analysis method and window program (vapour chamber thermal module, VCTM V1.0 to investigate and analyze the high-power LED (Hi-LED lighting thermal module, in order to achieve the best solution of the fin parameters under the natural convection. The computing core of the VCTM program employs the theoretical thermal resistance analytical approach with iterative convergence stated in this study to obtain a numerical solution. Results showed that the best geometry of thermal module is 4.4 mm fin thickness, 9.4 mm fin pitch, and 37 mm fin height with the LED junction temperature of 58.8°C. And the experimental thermal resistances are in good agreement with the theoretical thermal resistances; calculating error between measured data and simulation results is no more than ±7%. Thus, the Hi-LED illumination lamp has high life cycle and reliability.

  14. Ownership and efficiency in nuclear power production

    International Nuclear Information System (INIS)

    Pollitt, M.G.

    1995-01-01

    This paper aims to contribute to the relatively small amount of academic literature on the efficiency of nuclear power production. The author draws on world-wide comparisons to illustrate the situation in the United Kingdom, where the nuclear generating capacity, conceived of and constructed as a public concern, has recently been privatised. The theory and evidence for links between ownership and productive efficiency is received. Efficiency measures used are explained as are the linear programs required to generate them. Data Envelopment Analysis (DEA) is used to analyse productive efficiency of nuclear power plants before and after privatisation. Results of the DEA are used to test the hypothesis that ownership has no effect on productive efficiency. (UK)

  15. Thermal power plants in the Oslofjord district - Recipient evaluations

    International Nuclear Information System (INIS)

    Boehle, B.; Danielssen, D.; Tveite, S.; Haugen, I.; Nilsen, G.; Audunson, T.; Rye, H.; Thendrup, A.

    1975-11-01

    The results presented in a series of reports from the three institutes concerning the physical characteristics of the waters in the vicinoty of five possible sites for thermal (including nuclear) power plants in the Oslofjord district, and the spreading and effects of thermal effluents on the biological state and resources of these waters, are summarised, and an evaluation of the relative suitability of these sites is made. The sites are ranked as follows:- 1. Naverfjorden or, 2. Langangsfjorden - Saga, with effluent release to the Naverfjord region in both cases; 3. Vardeaasen; 4. Hurum; 5; Brenntangen. The possible intake - outlet arrangements are ranked as follows:-1. Deep intake - surface outlet, 2. Deep intake - deep outlet, or surface intake - surface outlet, 3. Surface intake - deep outlet. (JIW)

  16. The fundamentals of the radiation thermal technology for cement production

    International Nuclear Information System (INIS)

    Abramson, I.G.; Kapralova, R.M.; Nikiforov, Yu.V.; Egorov, G.B.; Vaisman, A.F.

    1995-01-01

    The fundamentals of principally new radiation thermal way of cement production are presented. The peculiarities of qualities and structure of clinker obtained by this way are given. The technical economic advantages of the new technology are shown

  17. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...

  18. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  19. Maintenance in nuclear production power plants

    International Nuclear Information System (INIS)

    Lozano, J. M.

    2010-01-01

    This article highlights the importance and quality of maintenance in the complete phases of development, in a sector which has been often questioned by the public opinion, and that is always subject to national and international standards. The aim of maintenance is to guarantee the production of electric power in a reliable, safe, economic and friendly environmentally way, assuring a long-term production. (Author)

  20. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  1. Computer-assisted training in the thermal production department

    International Nuclear Information System (INIS)

    Felgines, R.

    1985-01-01

    For many years now, in the United States and Canada, computer-assisted training (CAT) experiments have been carried out in various fields: general or professional education, student testing in universities. This method seems very promising and particularly for continuing education and for keeping industrial process operating and maintenance personnel abreast of their specialities. Thanks to the progress in data processing and remote processing with central computers, this technique is being developed in France for professional training applications. Faced with many training problems, the Thermal Production Department of EDF (Electricite de France) first conducted in 1979 a test involving a limited subset of the nuclear power station operating personnel; this course amounted to some ten hours with very limited content. It seemed promising enough, so that in 1981, a real test was launched at 4 PWR plants: DAMPIERRE, FESSENHEIM, GRAVELINES, TRICASTIN. This test which involves about 700 employees has been fruitful and we decided to generalise this system to all the French nuclear power plants (40 units of 900 and 1300 MW). (author)

  2. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  3. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  4. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  5. Prognostics Approach for Power MOSFET Under Thermal-Stress

    Science.gov (United States)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real

  6. Availability of thermal power plants 1977-1986

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1987-01-01

    To get a picture of power plant availability and its influencing factors, availability data have been acquired and evaluated by VGB according to different design and operation parameters since 1970. The present volume is the 16th annual statistics since 1970. It covers the decade of 1977 to 1986 and contains availability data of 384 power plants in Germany and abroad, with a total of 94.896 MW and 3.768 plant years. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbine systems, with further sub-categories according to unit size, fuel, type, years of operation, and operating regime. German plants are reviewed separately. All power data are gross data measured at the generator terminals. For a comparative evaluation, the data of 1986 are supplemented by yearly averages since 1977 and averages for the decade from 1977 to 1986. Since 1978, nonavailability data are categorized as 'unscheduled' and 'scheduled' nonavailabilities. For availability data of 1970 to 1976, see the VGB publication 'Availability of thermal power plants, 1970 to 1981'. (orig./UA) [de

  7. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  8. Application of the thermal efficiency analysis software 'EgWin' at existing power plants

    International Nuclear Information System (INIS)

    Koda, E.; Takahashi, T.; Nakao, Y.

    2008-01-01

    'EgWin' is the general purpose software to analyze a thermal efficiency of power system developed in CRIEPI. This software has been used to analyze the existing power generation unit of 30 or more, and the effectiveness has been confirmed. In thermal power plants, it was used for the clarification of the thermal efficiency decrease factor and the quantitative estimation of the influence that each factor gave to the thermal efficiency of the plant. Also it was used for the quantitative estimation of the effect by the operating condition change and the facility remodeling in thermal power, atomic energy, and geothermal power plants. (author)

  9. Power and LPG production with LNG import

    International Nuclear Information System (INIS)

    Mak, J.Y.

    2004-01-01

    When used in power cogeneration, Liquefied Natural Gas (LNG) is both energy efficient and can eliminate seawater or fuel gas consumption as well as the associated environmental impacts of conventional regasification processes. However, some liquefied natural gas (LNG) sources have heating values higher than current North American natural gas pipelines can allow for. LNG from these cannot be injected into gas pipelines without several heating control processing steps. This paper outlines two new technologies developed to address this issue. The first is a power cogeneration process using LNG as a heat sink. The second technology involves a fractionation process removing Liquid Propane Gas (LPG) components from imported LNG, thereby controlling heat value. Both technologies are applicable in grassroots installations as well as being suitable for retrofitting to existing LNG regasification for power generation and LPG production. It was concluded that power cogeneration with a mixed fluid power cycle recovered a significant portion of energy in LNG liquefaction plants. Additionally, it was also possible to fractionate high quality LPG from LNG at a low cost, with the residue being further re-condensed and re-utilized for power generation. It was also concluded that the LNG fractionation process would add flexibility to the LNG receiving terminals, allowing the import of lower quality LNG to North America, while also generating additional revenues from LPG production. 3 refs., 5 tabs., 6 figs

  10. Thermal power blocks with ultra-super-critical steam parameters

    Directory of Open Access Journals (Sweden)

    Aličić Merim M.

    2016-01-01

    Full Text Available New generation of thermal power plants are required to have increased utilization rates, in addition to reduced emissions of pollutants, in order to reach optimal solutions, from both technical and economic point of view. One way to achieve greater utilization efficiency is operation of the plant at super critical (SC or ultra super critical steam parameters (USC. However, achieving high parameters depends on use of new materials, which have better properties at high temperatures and pressures, use of new welding technologies and by solving the problem of corrosion. The paper gives an overview of some of the plants with these parameters.

  11. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  12. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  13. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  14. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    Science.gov (United States)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  15. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  16. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  17. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  18. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Operator product expansion and its thermal average

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1998-05-01

    QCD sum rules at finite temperature, like the ones at zero temperature, require the coefficients of local operators, which arise in the short distance expansion of the thermal average of two-point functions of currents. We extend the configuration space method, applied earlier at zero temperature, to the case at finite temperature. We find that, upto dimension four, two new operators arise, in addition to the two appearing already in the vacuum correlation functions. It is argued that the new operators would contribute substantially to the sum rules, when the temperature is not too low. (orig.) 7 refs.

  20. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  1. Phytomonitoring of air pollution around a thermal power plant

    Science.gov (United States)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  2. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  3. Examination of applicability of thermoelectric power measurement for thermal aging evaluation of cast duplex stainless steel to real components in nuclear power plants

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2006-01-01

    It is known the mechanical properties of cast duplex stainless steel, which is used for main coolant pipes of pressurized water reactor type nuclear power plants, change due to thermal aging. Non-destructive evaluation method for thermal aging using thermoelectric power measurement has been studied in INSS. And it has been found that there was some relation between mechanical properties and thermoelectric power in the case of accelerated aging sample and change in thermoelectric power was caused by change in microstructure due to thermal aging. In this study, n-site measurement of thermoelectric power of a main coolant pipe with the measurement device which has been used in a laboratory was carried out. As a result, thermoelectric power of the main coolant pipe was almost measured within the range from -2.2 to -2μ V/degC, and that was corresponding to the relation of accelerated aging samples between thermoelectric power and the product of ferrite content and aging parameter considering the standard error. Moreover, applying the measured thermoelectric power to the relation of accelerated aging samples between thermoelectric power and impact value, change in the impact value of the pipe seemed to be corresponding to about 40% of the maximum change assumed by thermal aging. (author)

  4. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  5. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  6. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  7. The thermal management of high power light emitting diodes

    Science.gov (United States)

    Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin

    2012-10-01

    Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.

  8. Availability of thermal power plants 1976-1985

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1986-01-01

    This assessment is the 15th annual assessment since 1970. It covers the decade 1976 to 1985 and contains the availability figures for 395 power stations in Germany and abroad with an output of about 93,750 MW and 3,642 years of power station operation. The availability figures of fossil fired units, combined units (plant with combined gas/steam circuit), nuclear power stations and gas turbine plants are given, which are classified according to unit size, fuel, type of construction, age and method of use. The German plants are covered separately. All output figures are gross figures (output at the generator terminals). For comparison purposes, apart for the results of 1985, the annual values determined since 1976 and the mean values for the decade 1976-1985 are given. The non-availability is divided into faults and planned outages since 1978. Availability figures for the years 1970 to 1975 can be found in the VGB assessment 'Availability of thermal power plants 1970-1981'. (orig./GL) [de

  9. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  10. Statistical modeling of an integrated boiler for coal fired thermal power plant

    Directory of Open Access Journals (Sweden)

    Sreepradha Chandrasekharan

    2017-06-01

    Full Text Available The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R2 analysis and ANOVA (Analysis of Variance. The dependability of the process variable (temperature on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM supported by DOE (design of experiments are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant. Keywords: Chemical engineering, Applied mathematics

  11. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    Science.gov (United States)

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  12. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  13. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  14. Emerging Changes in the Worldwide Power Sector: The Assets of Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    Moliere, Michel; Girardot, Amelie; Jones, Robert M.

    2007-07-01

    In forthcoming decades we will see major changes in the landscape of the worldwide power sector as CO2 management and incipient hydrocarbon scarcity exert their increasing influence. The power generation community must be prepared to satisfy a particularly complex and challenging set of requirements. These issues include curbing CO2 emissions, coping with surging primary energy prices, and compliance with regional and local emissions requirements such as SOx and NOx-while maintaining maximum efficiency. In this context, as confirmed by International Energy Agency forecasts, thermal power will maintain a prominent position in overall power generation since it enables the large capacity additions required in emerging countries. Thanks to their reliable assets (such as energy efficiency and environment) gas turbine-based power systems, including Gas Turbine Combined Cycles (GTCC) and Combined Heat & Power (CHP), will continue to be major contributors to worldwide power generation. However, evolving changes in the spectrum of fuels will create an additional challenge for power generation equipment manufacturers-requiring innovative technologies in fuel processing, combustion, and emission controls to address these needs. This paper reviews the factors underlining the changing power generation environment worldwide, including the increasing scarcity of conventional fuels and the growing interest in biofuels and hydrogen. Insights will be offered into various technologies needed to support the growing need for increased fuel flexibility.

  15. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  16. New production of electric power when accelerating nuclear power phaseout

    International Nuclear Information System (INIS)

    1986-10-01

    This investigation states that it is possible to eliminate nuclear power to the beginning of the year 2000. In this case the time for planning and construction of large coal power plants with condenser turbines should be set at seven years. The production cost excluding fuel will be 0.12 to 0.19 SEK per kWh. Investment cost is estimated to 5 500 to 8 200 SEK per kW. When using wood chips the cost will be 0.30 SEK and 11 300 SEK, respectively. A large part of the increased cost will include substantial flue gas purification. The existing plant of Karlshamn should be maintained with a minimum of charges and extensions

  17. Thermal and nonthermal particle production without event horizons

    International Nuclear Information System (INIS)

    Sanchez, N.

    1979-01-01

    Usually, particle production in accelerated frames is discussed in connection with the presence of event horizons and with a planckian spectrum. Accelerated frames without event horizons, where particle production takes place with thermal as well as nonthermal distributions, are constructed. (Auth.)

  18. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    Thermal loading of power devices are closely related to the reliability performance of the whole converter system. The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal...

  19. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  20. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  1. Power Ultrasound to Process Dairy Products

    Science.gov (United States)

    Bermúdez-Aguirre, Daniela; Barbosa-Cánovas, Gustavo V.

    Conventional methods of pasteurizing milk involve the use of heat regardless of treatment (batch, high temperature short time - HTST or ultra high temperature - UHT sterilization), and the quality of the milk is affected because of the use of high temperatures. Consequences of thermal treatment are a decrease in nutritional properties through the destruction of vitamins or denaturation of proteins, and sometimes the flavor of milk is undesirably changed. These changes are produced at the same time that the goal of the pasteurization process is achieved, which is to have a microbiological safe product, free of pathogenic bacteria, and to reduce the load of deteriorative microorganisms and enzymes, resulting in a product with a longer storage life.

  2. Certain aspects of the environmental impact of nuclear power engineering and thermal power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F [AN Belorusskoj SSR, Minsk. Inst. Yadernoj Ehnergetiki

    1979-01-01

    A review is made of the both environmental impact and hazard to man resulting from nuclear power engineering as compared with those of thermal power engineering. At present, in addition to such criteria, as physical-chemical characteristic of energy sources, their efficiency and accessibility for exploitation, new requirements were substantiated in relation to safety of their utilization for environment. So, one of essential problems of nuclear power engineering development consists in assessment and prediction of radioecological consequence. The analysis and operating experience of more than 1000 reactor/years with no accidents and harm for pupulation show, that in respect to impact on environment and man nuclear power engineering is much more safe in comparison with energy sources using tradidional fossile fuel.

  3. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper....

  4. Accident prevention ordinance 2.0 Thermal Power Plants

    International Nuclear Information System (INIS)

    Egyptien, H.H.; Fischermann, E.

    This accident prevention ordinance is to cover primarily the very section of a power station where fossil or nuclear energy is converted into thermal energy, e.g. by heating or vaporization of a heat source. In paragraph 1, 40 GJ/h are stipulated as the lower limit of capacity corresponding to about 11 MW. Therefore, the accident prevention ordinance does not only marshal the operation of steam generators in electricity supply utilities but also covers smaller industrial power stations which partly do only meet the company's own requirements. Pipes are only covered as far as they are operated in conjunction with a heat generator. The same applies to coal handling and ash removal facilities. This means that for heat release e.g. in the framework of a district heating grid, the transfer station to the distribution grid is regarded as being a border of the power station and thus a border to the area of application of the accident prevention ordinance. (orig./HP) [de

  5. Experimental thermal behavior of a power plant reheater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. Manuela Prieto; Garcia, F. Javier Fernandez; Ramon, Ines Suarez [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33204 Gijon, Asturias (Spain); Roces, Hilario Sanchez [Central Termica de Soto de Ribera, Soto de Ribera, Asturias (Spain)

    2006-04-15

    The process conditions of power plant components subjected to high pressures and temperatures are essential to determine their remaining life, availability and efficiency. It is, therefore, expedient to pay special attention to critical components, such as superheater and reheater heat exchangers, headers, and main and reheated steam lines. In this paper, on-line and off-line variables of a power plant reheater that has presented problems of thickness losses and repetitive tube fissures are studied. The fissures are associated with the effect of a thermal-mechanical mechanism. Off-line measurements were taken of the following variables: pressure, temperature, velocity and composition of the gases. On-line instrumentation was completed by the installation of specific thermocouples to ascertain the temperatures in the tubes outlet. Various angles for the fuel inlet of the burners and variations in the number and location of the working burners were also assayed. As a consequence of this analysis, it can be deduced that there are important differences in the outlet temperature of the reheater tubes that decrease for lower powers. Finally, it is pointed that a non-uniform distribution of the steam flow in the reheater might be the cause of the problem. (author)

  6. Control of nitrogen oxides at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Hall, R.E.

    1991-01-01

    Reviews reports presented at the International symposium on reduction of NO{sub x} emissions from stationary pollutant sources, held in San Francisco (USA) in March 1989. Topics concentrated on the latest trends in power engineering in the USA and Europe. Reports were dedicated to test results of pilot plant equipment employing the increasingly popular LNB, OFA, Reburn, SNCR, and SCR technologies. The following conclusions are drawn on the basis of the symposium proceedings: The nitric oxide problem may be considered exaggerated in regard to thermal power plants because of errors made during flue gas composition analysis. The combination of new combustion chambers and staged air input with simultaneous redesigning of equipment is most widely employed in the USA (achieving a 50% NO{sub x} reduction with minimum effect on power plant operation and maintenance costs). Economic sense demands that primary methods of NO{sub x} removal be used prior to SCR implementation. The SCR technology reducing NO{sub x} emission by 60-80% with ammonia to less than 5 ppm is the most popular flue gas denitrification method. 15 refs.

  7. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  8. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  9. Assessment of inhalation risk due to radioactivity released from coal-based thermal power plant

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.; Kushwaha, H.S.

    2006-01-01

    In India, the coal based thermal power plants have been the major source of power generation in the past and would continue for decades to come. As the coal contains naturally occurring primordial radionuclides the burning of pulverized coal to produce energy for generation of electricity in thermal power plants will result in the emission of a variety of natural radioactive elements into the environment in the vicinity of thermal power plants. In this paper we have used two different methods for characterization of uncertainty in inhalation risk to the general public around 10 Kms radius in the neighborhood of a coal-fired thermal power plant. (author)

  10. Risk management methodology applied at thermal power plant

    International Nuclear Information System (INIS)

    Coppolino, R.

    2007-01-01

    Nowadays, the responsibility of the environmental risks, connected the productive processes and to the products of an enterprise, represent one of the main aspects which an adequate management approach has to foresee. In this paper it has been evaluated the guidelines followed by Edipower Thermoelectric Power plant of S. Filippo di Mela (ME). These guidelines were given in order to manage the chemical risk connected to the usage of various chemicals with which the workers get in touch when identifying the risks of the methodology introduced by the AZ/NZS 4360:2004 Risk Management Standard

  11. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Panse, S.V.; Jadhav, A.S.; Gudekar, A.S.; Joshi, J.B.

    2011-01-01

    Highlights: → Solar energy harnessing using inclined face of high mountains as solar chimney. → Solar chimneys with structural stability, ease of construction and lower cost. → Mathematical model developed, using complete (mechanical and thermal) energy balance. → Can harness wind power also, as wind velocities at mountain top add to power output. → Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  12. Influence of pressure and humidity on ethanol distillery power production

    International Nuclear Information System (INIS)

    Zumalacarregui de Cardenas, Lourdes; Perez Ones, Osney; Rodriguez Ramos, Pedro; Lombardi, Geraldo

    2011-01-01

    A distillery for the Generation of Renewable Energy Integrated to Food Production (GERIPA), that produces 125 000 L/day of ethanol, presents advantages in comparison with the traditional distilleries. In this paper the available thermal energy in sugar cane and sorghum, bagasse and straw, and also in biogas are calculated. This energy produces vapor for the process and electricity, using a boiler with 88 % of efficiency and a two stages with intermediate extraction turbine. The dependence of electric power surplus with vapor pressure is evaluated, finding that between 60 and 100 MPa, the electric power surplus reaches 7.15 to 7.82 MW. This electricity can be send to the electro-energetic system. The effective efficiency is calculated for 6 to 10 MPa finding values lower than 25 %. It is shown that a bagasse dryer can be used to increase the efficiency. (author)

  13. Thermal Energy Corporation Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E. Bruce [Thermal Energy Corporation, Houston, TX (United States); Brown, Tim [Thermal Energy Corporation, Houston, TX (United States); Mardiat, Ed [Burns and McDonnell Engineering Company, Inc., Kansas City, MI (United States)

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  14. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  15. EVALUATION OF THERMAL EFFICIENCY OF THE TECHNOLOGICAL SCHEME OF APPLE CHIPS AND DRIED FRUITS PRODUCTION

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2014-01-01

    Full Text Available The estimation of thermodynamic perfection of separate technological processes is executed at heat-moisture of handling of fruit and a line of manufacture of fruit apple chips and dried fruits. The technological scheme of a line of processing of fruits and manufactures of fruit chips on the basis of convection and the microwave-dryings suggested resource-saving. The technique is made and results of calculation of thermal expenses for various schemes of manufacture of apple chips are resulted. For the offered scheme material, thermal and power streams on the basis of balance parities of technological processes are certain. The comparative thermal production efficiency of apple chips for a base foreign variant and the offered technological scheme with the closed cycle of use of the heat-carrier and the combined convection-microwave-drying is shown. In this paper we define the thermal and energy flows for the processes of convective drying, pre-microwave drying, hydrothermal treatment and final microwave drying plant material, which are one of the main stages of the production of all kinds of fruit and vegetable concentrates, including fruit apple chips. Resource-saving ways moisture-heat of handling (hydration, blanching, drying, etc. produce raw materials in the production of food concentrates suggested a reduced water flow with a high degree of use of its potential power and microwave sources. To assess the thermal efficiency of the various processes and production schemes used as indicators of thermal efficiency and proposed value of specific heat (kJ / kg given mass productivity per unit of feedstock and translational moisture. The values of the mass fraction of the heat of material flows for the base and the proposed resource-saving production scheme fruit chips, for example, apple, based on a combination of convection-microwave drying each control surface.

  16. Benthos of a coastal power station thermal discharge canal

    Energy Technology Data Exchange (ETDEWEB)

    Bamber, R.N.; Spencer, J.F.

    1984-08-01

    Kingsnorth Power Station, on the river Medway Estuary, Kent, discharges cooling water into a canal comprising a 4 km creek system. A comprehensive investigation of the sublittoral benthic fauna of the discharge system was undertaken from January 1979 to September 1981. The macrofauna is significantly suppressed at sites along the discharge canal, representing a community with half the number of species comprising dense populations of a few dominant opportunistic species tolerant of thermal stress (e.g. Tubificoides, Cauleriella) and not those characteristic of organic pollution stress communities. The latter are regular summer immigrants in the creek, but persist only in low numbers if at all in the winter (e.g. Polydora ciliata). This suppression is the result of an approximately 10/sup 0/C temperature front between the heated discharge water and ambient estuarine water, passing over the sea bed with the ebbing and flooding tide four times each day. 39 references, 11 figures, 3 tables.

  17. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  18. Chemistry of the water in thermal power plants

    International Nuclear Information System (INIS)

    Freier, R.K.

    1984-01-01

    This textbook and practical manual gives a comprehensive review of the scientific knowledge of water as operating substance and of the chemistry of water in thermal power plants. The fundamentals of water chemistry and of the conventional and nuclear water/steam circuit are described. The contents of the chapters are: 1. The atom, 2. The chemical bond, 3. The dissolving capacity of water, 4. Operational parameters and their measurement, 5. Corrosion, 6. The water/steam coolant loop of conventional plants (WSC), 7. The pressurized water reactor (PWR), 8. The boiling water reactor (BWR), 9. The total and partial desalination properties of ion exchangers, 10. The cooling water, 11. The failure of Harrisburg in a simple presentation. (HK) [de

  19. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  20. Theoretical study on thermal stability of molten salt for solar thermal power

    International Nuclear Information System (INIS)

    Wei, Xiaolan; Peng, Qiang; Ding, Jing; Yang, Xiaoxi; Yang, Jianping; Long, Bin

    2013-01-01

    Molten salt (HTS) composed of 53% KNO 3 , 40% NaNO 2 and 7 wt.% NaNO 3 has been used as heat transfer media and thermal storage fluid in the solar thermal power, but thermal decomposition will occur at higher temperature because of the oxidation of nitrite to nitrate in the air. In this paper, the reaction mechanism of NO 2 − oxidation is researched by quantum mechanical method. The results show that two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found in the reaction. This reaction is an exothermic reaction and the activation barrier is 94.0 kJ mol −1 . The energy difference of this reaction is very large, so the reaction rate is very slow. -- Highlights: ► The mechanism of the oxidation of nitrite salt in HTS is explained. ► Two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found. ► The activation barrier of the nitrite oxidation is determined

  1. Revitalization of Tuzla Thermal Power Plant's Unit 3 (100 MW)

    International Nuclear Information System (INIS)

    Sakovic, A.; Praso, N.

    1998-01-01

    Power Plant Revitalization is a highly ranged concept essentially aimed at continued operations of the generating unit at, or near, rated capacities for the rest of the economic life of the plant or even for an extended life. In essence, the need to rehabilitate may arise due to reasons such as low availability factor, low efficiency, increasing operating and maintenance costs, loss of reliability, drop in safety of plant and personnel, poor maintainability or environmental requirements. The term revitalization is therefore normally used in the context to cover the range of activities including repairing components, replacing equipment, modifying systems, adding new system and equipment and perhaps restoration to rated capacities. This exercise on already complex power generation process will naturally require the application of various technologies in order to ensure a safe and efficient installation of electricity supply. In normal conditions of producing and consumption of electricity (load demands) in order to answer the question of what kind of revitalization to undertake it is necessary to state at the very beginning: - whether it is necessary, from the point of equipment wear-out, to revitalize all equipment at once (one-phase revitalization), or - whether it is possible to postpone the revitalization of a part of equipment for the next period (phased revitalization). Both concepts have some specific advantages and disadvantages. In essence the decision-making process between these two approaches, three basic conditions should be considered: technical-technological adequacy, energy-economy adequacy and financial adequacy. This paper covers general considerations, approach and methodology implemented during the revitalization the Tuzla Thermal Power Plant's Unit 3 (100MW) which was imposed by urgent demands of the Power System, the war conditions and financial possibilities including: - General data on TPP Tuzla and Unit 3 - Scope of work and economic effects

  2. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    Science.gov (United States)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  3. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  4. Valves for condenser-cooling-water circulating piping in thermal power station and nuclear power station

    International Nuclear Information System (INIS)

    Kondo, Sumio

    1977-01-01

    Sea water is mostly used as condenser cooling water in thermal and nuclear power stations in Japan. The quantity of cooling water is 6 to 7 t/sec per 100,000 kW output in nuclear power stations, and 3 to 4 t/sec in thermal power stations. The pipe diameter is 900 to 2,700 mm for the power output of 75,000 to 1,100,000 kW. The valves used are mostly butterfly valves, and the reliability, economy and maintainability must be examined sufficiently because of their important role. The construction, number and arrangement of the valves around a condenser are different according to the types of a turbine and the condenser and reverse flow washing method. Three types are illustrated. The valves for sea water are subjected to the electrochemical corrosion due to sea water, the local corrosion due to stagnant water, the fouling by marine organisms, the cavitation due to valve operation, and the erosion by earth and sand. The fundamental construction, use and features of butterfly valves are described. The cases of the failure and repair of the valves after their delivery are shown, and they are the corrosion of valve bodies and valve seats, and the separation of coating and lining. The newly developed butterfly valve with overall water-tight rubber lining is introduced. (Kako, I.)

  5. Application of process simulation for evaluation of ecologically benefical developments in thermal power plant technology

    International Nuclear Information System (INIS)

    Schuster, G.

    2000-04-01

    Responsibility for the environment and a sustainable utilization of resources gain also in the production of electric power more and more importance. For this reason existing power generation processes have to be improved and alternatives to existing processes have to be developed. As a first step in this procedure process simulation is a powerful tool to evaluate the potentials of new developments. In this work it is shown, how new thermal power processes are modeled and simulated based on well-known thermodynamic and chemical correlations. Processes for thermal power plants using lignite with high water content and biomass as fuel are studied. In each case simulations are carried out for complete plants including all important unit operations. Based on a conventional thermal power plant for lignite different variants for efficiency improvement by fuel drying are examined. Additionally the potential of a process with gasification and gas turbine is discussed. Compared to a lignite power plant the preconditions for a biomass power plant are different. A promising option for the future seems to be small, decentralized combined heat and power plants. Therefore a process with simple and compact design including gasifier and gas turbine is regarded and sensitivity analyses are carried out. As well as for the lignite processes possible improvements by fuel drying are studied. The basis lignite power plant (drying in an impact rotor mill with hot flue gas) has an overall electric efficiency of 36 %. Alternative fuel drying processes (reducing water content from 54 w % to 10 w %) can increase efficiency to nearly 43 %. Using integrated air-blown gasification combined with gas turbine and steam turbine and additional fuel drying raises the efficiency up to 49 % in the case of cold gas cleanup and up to 50 percent in the case of hot gas cleanup. Efficiencies of the regarded biomass power plants are in the range of about 20 % (with a biomass water content of 25 w %). By

  6. Supplier selection criteria for sustainable supply chain management in thermal power plant

    Science.gov (United States)

    Firoz, Faisal; Narayan Biswal, Jitendra; Satapathy, Suchismita

    2018-02-01

    Supplies are always in great demand when it comes to industrial operations. The quality of raw material their price accompanied by sustainability and environmental effects are a major concern for industrial operators these days. Supply Chain Management is the subject which is focused on how the supply of different products is carried out. The motive is that each operation performed can be optimized and inherently the efficiency of the whole chain is integrated. In this paper we will be dealing with all the criteria that are required to be evaluated before selecting a supplier, in particular, focusing on Thermal Power Plant. The most suppliers of the thermal power plant are the coal suppliers. The quality of coal directly determines the efficiency of the whole plant. And when there are matters concerning coal environmental pollution plays a very crucial role. ANP method has been used here to select suppliers of thermal power sectors in Indian context. After applying ANP to prioritize the sustainable supplier selection criteria, it is found that for thermal power industries best suppliers are Nationalized/State owned suppliers then 2nd ranked suppliers are imported supplier. Private owned suppliers are ranked least. So private owned suppliers must be more concerned about their performance. Among these suppliers it is found that to compete in the global market privatized suppliers have to give more emphasize on most important criteria like sustainability, then fuel cost and quality. Still some sub-criteria like a clean program, environmental issues, quality, reliability, service rate, investment in high technology, green transportation channel, waste management etc needs for continuous improvement as per their priority.

  7. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  8. Taiwan Power Company's power distribution analysis and fuel thermal margin verification methods for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, P.H.

    1995-01-01

    Taiwan Power Company's (TPC's) power distribution analysis and fuel thermal margin verification methods for pressurized water reactors (PWRs) are examined. The TPC and the Institute of Nuclear Energy Research started a joint 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, these methods were developed to allow TPC to independently perform verifications of the local power density and departure from nucleate boiling design bases, which are required by the reload safety evaluation for the Maanshan PWR plant. The computer codes utilized were extensively validated for the intended applications. Sample calculations were performed for up to six reload cycles of the Maanshan plant, and the results were found to be quite consistent with the vendor's calculational results

  9. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  10. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  11. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  12. Feasibility study on modernization of North Bangkok Thermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to save energies and reduce global warming gas emission, a feasibility study was performed on the oil burning thermal power plant in the city of North Bangkok in Thailand to reconstruct the plant into a natural gas burning combined cycle power plant. In the project, the old facilities with an output of 237.8 MW using three steam turbines in total will be reconstructed into a plant comprising of two steam turbines for 256,2 MW and two gas turbines for 460.4 MW, or a facility of 716.6 MW in total. The plant construction will have the gas turbines, steam turbines, generators, and a waste heat recovered steam generator fixed on one axis, two of which will be installed. The gas turbines will use natural gas as fuel, and the steam turbines will be operated by steam from the waste heat recovered steam generator. As a result of the discussions, the reduction of the energy consumption for a period of 40 years will correspond to crude oil of 20,560 kt, while the reduction of the global warming gas emission will be 107,200 t-CO2. In addition, the energy saving cost will be 9-ton crude oil equivalent/one million yen, and the cost for reduction of the global warming gas emission will be 47 t-CO2/one million yen. (NEDO)

  13. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  14. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  15. Europe's largest solar thermal power plant. [200 kw thermal output supplemented by two 10-kw windmills

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, U

    1976-03-01

    An overview is given over the solar heating plant which has recently been commissioned in the Camargue (France). This is the largest plant in Europe, with a mean heat output of about 200 kW, for the production of thermal energy from solar energy. The plant consists of 108 parabolic collectors (200 sq. metres) and 48 flat collectors (110 sq. metres). Two windmills with outputs of 10 kW each complete the system. The heat energy produced by the solar collectors is given up to 3 different stores, which in turn are connected to various consumers.

  16. Impact of thermal power generation units on floristic diversity of Kota and its environs

    International Nuclear Information System (INIS)

    Jain, Shuchita; Dadhich, K.

    2001-01-01

    The emissions from thermal power plants have great phytotoxic effects on plants due to changes in their morphology and physiology. A floristic study has been conducted near the Thermal Power Station at Kota in Rajasthan to estimate the impact of emissions from the thermal power plant on biota. It is observed that the whole vegetation, especially the perennial trees and shrubs, growing near the station were severely damaged due to effects of air pollutants emitted from the Thermal Power Station. Analysis of the fly ash reveals its composition as composed of silica, alumina, iron oxide etc. (author)

  17. Potentials for heat accumulators in thermal power plants; Potenziale fuer Waermespeicher in Heiz(kraft)werken

    Energy Technology Data Exchange (ETDEWEB)

    Dengel, Andreas [STEAG New Energies GmbH, Saarbruecken (Germany)

    2012-07-01

    STEAG New Energies GmbH (Saarbruecken, Federal Republic of Germany) is contractor and operator of a variety of decentralized plants for heat production and power generation. The customers consist of communities, cooperation associations, business enterprises as well as industrial enterprises. Beside merely heat generators, so-called heat and power cogeneration plants often are used. The power generation is of minor importance due to the heat-controlled energy supply of the customers. Biomass power plants being operated in line with the Renewable Energy Law are an exemption. The demand for regulating energy increased clearly due to the enhanced volatile feeding of regenerative produced electric power. If the operation of heat and power cogeneration plants becomes more independent from the actual energy demand by using energy storages, then the energy transducer can be implemented in the lucrative market of regulation energy supply. Thus, the potential of such storages at the sites within a company shall be determined. Additionally, the development and testing of a latent heat accumulator for a thermal power plant of the company supplying process vapour with a temperature of 300 Celsius to a foil manufacturing facility is envisaged.

  18. Market role, profitability and competitive features of thermal power plants in the Swedish future electricity market with high renewable integration

    OpenAIRE

    Llovera Bonmatí, Albert

    2017-01-01

    The Swedish energy market is currently undergoing a transition from fossil fuels to renewable energy sources, including a potential phase-out of nuclear power. The combination of a phase-out with expansion of intermittent renewable energy leads to the issue of increased fluctuations in electricity production. Energy-related organizations and institutions are projecting future Swedish energy scenarios with different possible transition pathways. In this study the market role of thermal power p...

  19. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  20. Thermal energy distribution analysis for hydrogen production in RGTT200K conceptual design

    International Nuclear Information System (INIS)

    Tumpal Pandiangan; Ign Djoko Irianto

    2011-01-01

    RGTT200K is a high temperature gas-cooled reactor (HTGR) which conceptually designed for power generation, hydrogen production and desalination. Hydrogen production process in this design uses thermochemical method of Iodine-Sulphur. To increase the thermal conversion efficiency in hydrogen production installations, it needs to design a thermal energy distribution and temperature associated with the process of thermo-chemical processes in the method of Iodine-Sulphur. In this method there are 7 kinds of processes: (i) H 2 SO4 decomposition reaction (ii) treatment of vaporization (iii) treatment of pre vaporizer (iv) treatment of flash 4 (v) treatment of decomposition of HI (vi) treatment of the flash 1-3 and (vii) Bunsen reaction. To regulate the distribution of energy and temperature appropriate to the needs of each process used 3 pieces of heat exchanger (HE). Calculation of energy distribution through the distribution of helium gas flow has been done with Scilab application programs, so that can know the distribution of thermal energy for production of 1 mole of hydrogen. From this model, it can calculate the thermal energy requirement for production of hydrogen at the desired capacity. In the conceptual design of RGTT200K, helium discharge has been designed by 20 kg/s, so that an efficient hydrogen production capacity needed to produce 15347.8 for 21.74 mole of H 2 . (author)

  1. Potential impact of thermal effluents from Chongqing Fuling nuclear power plant to the Three Gorges Reservoir

    International Nuclear Information System (INIS)

    Han Baohua; Li Jianguo; Ma Binghui; Zhang Yue; Sun Qunli; Hu Yuping

    2012-01-01

    This study is based on the hydrological data near Chongqing Fuling Nuclear Power Plant along the Yangtze River, the present situation of the ecological environment of the Three Gorges Reservoir and the predicted results of thermal effluents from Chongqing Fuling Nuclear Power Plant. The standards of cooling water and the thermal tolerances indexes of aquatic organisms were investigated. The effects of thermal effluents on aquatic organisms were analyzed. The potential impact of Chongqing Fuling nuclear power plant to the Three Gorges Reservoir was explained. The results show that in the most adverse working conditions, the surface temperature near the outfall area is not more than 1℃, the temperature of thermal effluents do not exceed the suitable thermal range of fish breeding, growth and other thermal tolerances indexes. Thermal effluents from nuclear power plant have no influence about fish, plankton and benthic organisms in the Three Gorges Reservoir. (authors)

  2. Ecological and economic interests in design process of thermal power plant; Ekoloski i gospodarstveni izazovi pri projektiranju energetskih postrojenja

    Energy Technology Data Exchange (ETDEWEB)

    Sander, M [Elektroprojekt, Zagreb (Croatia)

    1997-12-31

    In design process of thermal power plant various ecological and economic contradictory interests are brought in focus. Requests on environmental protection written in laws, standards and international treaties are increasing investment costs and energy production costs. In a design phase there is a task to reconcile these contradictory requests. The paper presents relationship between technology and environmental protection with a focus on air pollution. Air pollution and human health is considered taking in account the role of design phase in thermal power plants project and human health problems. International laws and standards are presented with moral dilemmas concerning low investment costs and high environmental standards. (author). 6 tabs., 2 figs., 13 refs.

  3. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  4. Thermophysical properties of the products of low-grade fuels thermal recycling

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The relevance of the work is caused by reorientation of the modern power engineering to use of local low grade fuel resources. Some types of low grade fuels (peat, brown coal, sapropel, wood chips are considered in this work. Thermotechnical characteristics of the investigated fuels and products of their thermal recycling are determined. Thermal recycling process is accompanied by release of fuel dissociation heat (0.33-3.69 MJ/kg. The results of thermal low grade fuel recycling are solid carbonaceous product (semi-coke with a calorific value higher in 1.5-7 times than the value of natural fuels; pyrolysis resin with calorific value 29.4-36.8 MJ/kg; combustible gas with calorific value 15.16-19.06 MJ/m3.

  5. A new way of assessment of environmental effects of thermal power plants

    International Nuclear Information System (INIS)

    Cardu, M.

    1996-01-01

    Starting from some fundamental aspects of the atmospheric pollution by gases resulted from the burning of fossil fuels in thermal power plants (TPP) a new method was devised to evaluate quantitatively the harmful consequences of air pollution. This method makes use of some quantities introduced first in the assessment of earthquake consequences. Its application resulted in worth indications with respect to optimal utilization of fuels in TPPs from the point of view of environmental impacts and energy production efficiency. (author) 1 fig., 2 tabs., 4 refs

  6. Test results on parabolic dish concentrators for solar thermal power systems

    Science.gov (United States)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  7. Micromachining technology for thermal ink-jet products

    Science.gov (United States)

    Verdonckt-Vandebroek, Sophie

    1997-09-01

    This paper reviews recent trends and evolutions in the low- end color printing market which is currently dominated by thermal inkjet (TIJ) based products. Micro electromechanical systems technology has been an enabler for the unprecedented cost/performance ratio of these printing products. The generic TIJ operating principles are based on an intimate blend of thermodynamics, fluid dynamics and LSI electronics. The key principles and design issues are outlined and the fabrication of TIJ printheads illustrated with an implementation by the Xerox Corporation.

  8. Quantitative measurement of productivity loss due to thermal discomfort

    DEFF Research Database (Denmark)

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2011-01-01

    discomfort caused by elevated air temperature had a negative effect on performance. A quantitative relationship was established between thermal sensation votes and task performance. It can be used for economic calculations pertaining to building design and operation when occupant productivity is considered...

  9. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  10. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  11. Analysis of Heat Transfer in Power Split Device for Hybrid Electric Vehicle Using Thermal Network Method

    Directory of Open Access Journals (Sweden)

    Jixin Wang

    2014-06-01

    Full Text Available This paper presents a rational prediction of temperature field on the differential hybrid system (DHS based on the thermal network method (TNM. The whole thermal network model is built by considering both the contact thermal resistance between gasket and planet gear and the temperature effect on the physical property parameters of lubricant. The contact thermal resistance is obtained by using the concept of contact branch thermal resistance and G-W elastic model. By building an elaborate thermal network model and computing models for power losses and thermal resistances between components, the whole temperature field of DHS under typical operating condition is predicted. Results show that thermal network method can be effectively used to predict the temperature distribution and the rule of temperature variation, the surface roughness significantly affects contact thermal conduction, and the decrease in the thermal resistance of the natural convection between air and DHS housing can effectively improve the thermal environment of DHS.

  12. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  13. Models for thermal and mechanical monitoring of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vilaithong, Rummiya

    2011-07-01

    At present, for economic reasons, there is an increasing emphasis on keeping transformers in service for longer than in the past. A condition-based maintenance using an online monitoring and diagnostic system is one option to ensure reliability of the transformer operation. The key parameters for effectively monitoring equipment can be selected by failure statistics and estimated failure consequences. In this work, two key aspects of transformer condition monitoring are addressed in depth: thermal behaviour and behaviour of on-load tap changers. In the first part of the work, transformer thermal behaviour is studied, focussing on top-oil temperatures. Through online comparison of a measured value of the top-oil temperature and its calculated value, some rapidly developing failures in power transformers such as malfunction of the cooling unit may be detected. Predictions of top-oil temperature can be obtained by means of a mathematical model. Long-term investigations on some dynamic top-oil temperature models are presented for three different types of transformer units. The last-state top-oil temperature, load current, ambient temperature and the operating state of pumps and fans are applied as inputs of the top-oil temperature models. In the fundamental physical models presented, some constant parameters are required and can be estimated using a least-squares optimization technique. Multilayer Feed-forward and Recurrent neural network models are also proposed and investigated. The neural network models are trained with three different Backpropagation training algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient and Automated Bayesian Regularization. The effect of varying operating conditions of the cooling units and the non-steady-state behaviour of loading conditions, as well as ambient temperature are noted. Results show sophisticated temperature prediction is possible using the neural network models that is generally more accurate than with the physical

  14. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  15. Utilization of agricultural waste in power production

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.C. [ELSAMPROJEKT A/S, Fredericia (Denmark); Rasmussen, I. [MIDTKRAFT Power Co., Aarhus (Denmark)

    1993-12-31

    It is a goal of the Danish energy policy for the last decade to reduce energy consumption and to introduce fuels for power production with less CO{sub 2} emission than coal. This measure has caused a considerable effort by the Danish utilities to develop technologies that reduce CO{sub 2} emissions without causing heavy cost increases of power. Agricultural waste in the form of surplus straw is available in an amount equivalent to 20% of the annual coal imports to Denmark. Straw firing is difficult due to its significant contents of alkaline components. Consequently, its utilization presupposes the development of new technologies. The biomass development program is concentrated on two ways which are (1) co-firing of existing coal fired power station with a modest amount of straw and (2) development of CFB technology that allows a high share of biomass as well as coal only. These options were tested in a coal fired 70 MW spreader stoker unit and a 125 MW PF unit. Approx. 4000 t of straw were burned. Additional tests will be launched this autumn, burning 35,000 t of straw at rates up to 20% straw. The CFB option is pursued from the platform of a 80 MWth unit, operational early `92. This plant burns a mix of 50% straw and 50% coal and consumes annually 70.000 t of straw. Future development is aiming towards CFBs of 250 MW(e), burning in excess of 50% biomass.

  16. Model based fleet optimisation and master control of a power production system

    International Nuclear Information System (INIS)

    Joergensen, C.; Mortensen, J.H.; Nielsen, E.O.; Moelbak, T.

    2006-01-01

    This paper discussed an optimization concept for power plants operated by the Danish power company Elsam. The power company operates a distributed power production system with fossil fuel thermal plants, biomass-fired thermal plants, waste incineration plants, on- and offshore wind power, and district heating storage units. Power and regulation power are traded on an hourly basis, while trading of district heating resources is conducted using bilateral contracts. System and plant level case studies on optimization and control were presented. A system control level was developed to ensure compliance with power market requirements. Dynamic constraints were posed by environmental regulations, grid capabilities, and fuel and district heating contracts. System components included a short-term load scheduler; a power controller; a frequency control scheduler; a marginal cost calculator; and a master control. The scheduler consisted of an optimization algorithm and a set of steady-state models designed to minimize fuel, load, and maintenance costs. Quadratic programming and mixed integer programming methods were used to minimize deviations between the total electrical power production reference value and actual power production values. The study showed that control levels can be optimized using advanced modelling and control methods. However, integration and coordination between the various levels is needed to obtain improved performance. It was concluded that a bottom-up approach starting at the lowest possible level can ensure the performance of an optimization scheme. 6 refs., 9 figs

  17. The sustainability indicators of power production systems

    Energy Technology Data Exchange (ETDEWEB)

    Onat, Nevzat [Vocational School of Technical Studies, Marmara University, Istanbul 34722 (Turkey); Bayar, Haydar [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

    2010-12-15

    One of the most important elements of economical and social development is to provide uninterrupted electric energy to consumers. The increasing world population and technological developments rapidly increase the demand on electric energy. In order to meet the increasing demand for sustainable development, it is necessary to use the consumable resources of the world in the most productive manner and minimum level and to keep its negative effects on human health and environment in the lowest level as much as possible. In this study, alignment of hydrogen fuel cells, hydroelectric, wind, solar and geothermal sourced electric energy systems, in addition to fossil fueled coal, natural gas and nuclear power plants, in respect to sustainability parameters such as CO{sub 2} emission, land use, energy output, fresh water consumption and environmental and social effects is researched. Consequently, it has been determined that the wind and nuclear energy power plants have the highest sustainability indicators. The fuel cells that use hydrogen obtained by using coal and natural gas are determined as the most disadvantageous transformation technologies in respect to sustainability. This study contains an alignment related to today's technologies. Using of renewable energy resources especially in production of hydrogen, output increases to be ensured with nanotechnology applications in photovoltaic systems may change this alignment. (author)

  18. Implementation of a cogenerative district heating: optimization of a simulation model for the thermal power demand

    Energy Technology Data Exchange (ETDEWEB)

    Barelli, L.; Bidini, G.; Pinchi, E.M. [Dipartimento di Ingegneria Industriale, Universita degli Studi di Perugia, Perugia (Italy)

    2006-07-01

    The district heating set up with a cogeneration system, concurs to attain energetic, economic and ambient benefits. It also provides to citizens a new service. The project strategy is based on the idea of supplying a portion of the necessary thermal power through a combustion alternative engine in cogeneration modality. It's also interesting to modulate the load with auxiliary boilers fed by natural gas. This solution allows to save primary energy, create a centralization of the energy production, which contributes to the problem of polluting emissions, through the decentralization of the sources. The first step to assess the technical-economic feasibility of a district heating system, based on a cogeneration plant, is to underline and to characterize the energetic request of the basin of user. The objective of the present work is to develop a model that yields an esteem of the hourly thermal load for every days of the heating season of a complex user, represented by a single neighbourhood. To do this, the present work proposes a new method of simulation of the daily and hourly thermal load trend, known only the value of the power installed in the thermal plant for every user, the seasonal hours of the burner operation and the timetable of the heating service distribution, more than the external mean daily temperature trend. The results obtained using this model, have been verified with the data of seasonal consumptions, confirming the validity of the proposed methodology.The above allows to determine, with more precision, the thermal request peak to satisfy, taking in consideration the contemporaneity of the loads, also of different typology, and to carry out a better sizing of the generation plant. (author)

  19. Pressurized thermal shock analysis in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Stefan; Braun, Michael [TUEV NORD Nuclear, Hannover (Germany)

    2015-03-15

    For more than 30 years TUeV NORD is a competent consultant in nuclear safety is-sues giving expert third party opinion to our clients. According to the German regulations the safety against brittle fracture has to be proved for the reactor pressure vessel (RPV) and with a new level of knowledge the proof has to be continuously updated with the development in international codes and standards like ASME, BS and RCC-M. The load of the RPV is a very complex transient pressure and temperature situation. Today these loading conditions can be modeled by thermal hydraulic calculations and new experimental results much more detailed than in the construction phase of German Nuclear Power Plants in the 1980s. Therefore, the proof against brittle fracture from the construction phase had to be updated for all German Nuclear Power Plants with the new findings of the loading conditions especially for a postulated small leakage in the main coolant line. The RPV consists of ferritic base material (about 250 mm) and austenitic cladding (about 6 mm) at the inner side. The base material and the cladding have different physical properties which have to be considered temperature dependently in the cal-culations. Radiation-embrittlement effects on the material are to be respected in the fracture mechanics assessment. The regions of the RPV of special interest are the core weld, the inlet and outlet nozzle region and the flange connecting weld zone. The fracture mechanics assessment is performed for normal and abnormal operating conditions and for accidents like LOCA (Loss of Coolant Accident). In this paper the German approach to fracture mechanics assessment to brittle fracture will be discussed from the point of view of a third party organization.

  20. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  1. Comparison of the effects of nuclear power plants and thermal power plants on the environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.; Teverovskij, E.N.

    1976-01-01

    A comparison of ecological effects produced by a thermal power station (TPS) and a nuclear power plant (NPP) of similar electric capacity has been made. The ecological advantages of NPP over TPS are revealed in analysis of aerosol and gas blow-out and its danger for the environment. From the above data it follows that TPS as compared with NPP of similar electric capacity produces a 100 and 1000 fold higher air pollution effect than the latter. The dose of TPS radiation effect is minimum 500 times higher than that of NPP at normal operation. Large-scale construction of NPP is one of the most perfect means of atmosphere protection against harmful industrial discharges

  2. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    OpenAIRE

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  3. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  4. Sandia Laboratories in-house activities in support of solar thermal large power applications

    Science.gov (United States)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  5. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    Science.gov (United States)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  6. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    Science.gov (United States)

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  8. DISTRIBUTED ELECTRICAL POWER PRODUCTION SYSTEM AND METHOD OF CONTROL THEREOF

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a distributed electrical power production system wherein two or more electrical power units comprise respective sets of power supply attributes. Each set of power supply attributes is associated with a dynamic operating state of a particular electrical power unit....

  9. Thermal Response to High-Power Holmium Laser Lithotripsy.

    Science.gov (United States)

    Aldoukhi, Ali H; Ghani, Khurshid R; Hall, Timothy L; Roberts, William W

    2017-12-01

    The aim of this study was to investigate "caliceal" fluid temperature changes during holmium laser activation/lithotripsy using settings up to 40 W power output with different irrigation flow rates. The experimental system consisted of a glass test tube (diameter 10 mm/length 75 mm) filled with deionized water, to mimic a calix. Real-time temperature was recorded using a thermocouple (Physitemp, NJ) positioned 5 mm from the bottom of the tube. A 200 μm laser fiber (Flexiva; Boston Scientific, MA) was introduced through the working channel of a disposable ureteroscope (LithoVue; Boston Scientific) and the laser fiber tip was positioned 15 mm above the bottom of the test tube. Deionized water irrigation (room temperature) through the working channel of the ureteroscope was delivered at flow rates of 0, 7-8, 14-15, and 38-40 mL/minute. A 120-W holmium laser (pulse 120; Lumenis, CA) was used. The following settings were explored: 0.5 J × 10 Hz, 1.0 J × 10 Hz, 0.5 J × 20 Hz, 1.0 J × 20 Hz, 0.5 J × 40 Hz, 1.0 J × 40 Hz, and 0.5 J × 80 Hz. During each experiment, the laser was activated continuously for 60 seconds. Temperature increased with increasing laser power output and decreasing irrigation flow rate. The highest temperature, 70.3°C (standard deviation 2.7), occurred with laser setting of 1.0 J × 40 Hz and no irrigation after 60 seconds of continuous laser firing. None of the tested laser settings and irrigation parameters produced temperature exceeding 51°C when activated for only 10 seconds of continuous laser firing. High-power holmium settings fired in long bursts with low irrigation flow rates can generate high fluid temperatures in a laboratory "caliceal" model. Awareness of this risk allows urologist to implement a variety of techniques (higher irrigation flow rates, intermittent laser activation, and potentially cooled irrigation fluid) to control and mitigate thermal

  10. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  11. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  12. Thermal Management of Transient Power Spikes in Electronics - Phase Change Energy Storage or Copper Heat Sinks?

    OpenAIRE

    Krishnan, S.; Garimella, S V

    2004-01-01

    A transient thermal analysis is performed to investigate thermal control of power semiconductors using phase change materials, and to compare the performance of this approach to that of copper heat sinks. Both the melting of the phase change material under a transient power spike input, as well as the resolidification process, are considered. Phase change materials of different kinds (paraffin waxes and metallic alloys) are considered, with and without the use of thermal conductivity enhancer...

  13. Diffusion of green power products in Switzerland

    International Nuclear Information System (INIS)

    Wuestenhagen, Rolf; Markard, Jochen; Truffer, Bernhard

    2003-01-01

    As in many other European countries, green electricity is an emerging product in Switzerland as well. Although the market is yet to be liberalised, more than 100 of the 1200 Swiss electric utilities offer some sort of green electricity product to their customers. Successful companies like the municipal utilities of the cities of Zurich and Berne have reached customer response rates of up to 4%, while still maintaining cost-based pricing, i.e. charging their customers price premiums of 400-700% per kWh. While most of the products still rely on mainly photovoltaics, some utilities have started to introduce mixed green electricity products also including wind power. With a share of 60% in the Swiss generation mix, hydropower's role in the green electricity mix was also an issue to emerge causing controversial debate. While being renewable, hydropower is not considered environmentally benign by all the stakeholders, and unlike new renewables (solar, wind, biomass), there is little room for new hydropower generation facilities in Switzerland. The green electricity labelling scheme 'Naturemade' tackles that issue. The labelling organisation has evolved from a process with broad stakeholder involvement, which included environmental NGOs, scientific institutions, green electricity providers, renewable energy advocates, government bodies and consumer organisations. The analysis in this paper is based on a diffusion theory framework. It identifies and characterises different phases of (past and future) market development, and stresses the importance of eco-labelling as a tool to facilitate the transition from niche to mass market. Finally, we also discuss conclusions that can be drawn from the Swiss case towards market development and labelling on a European level

  14. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    therapy machines. Today the majority of the cancer therapy cobalt-60 sources used in the world are manufactured using material from the NRU reactor in Chalk River. The same technology that was used for producing cobalt-60 in a research reactor was then adapted and transferred for use in a CANDU power reactor. In the early 1970s, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production was initiated in the four Pickering A CANDU reactors located east of Toronto. This was the first full scale production of millions of curies of cobalt-60 per year. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology in additional CANDUs. Over the years MDS Nordion has partnered with CANDU reactor owners to produce cobalt-60 at various sites. CANDU reactors that have, or are still producing cobalt-60, include Pickering A, Pickering B, Gentilly 2, Embalse in Argentina, and Bruce B. In conclusion, the technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and Atomic Energy of Canada, has been safely, economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world. MDS Nordion is presently adding three more CANDU power reactors to its supply chain. These three additional cobalt producing CANDU's will help supplement the ability of the health care industry to provide safe, sterile, medical disposable products to people around the world. As new applications for cobalt-60 are identified, and the demand for bulk cobalt-60 increases, MDS Nordion and AECL

  15. Improving the efficiency of thermal power equipment based on technologies using surfactants

    Science.gov (United States)

    Nikolaeva, L. A.; Zueva, O. S.

    2015-10-01

    The formation of deposits on the functional surfaces of the equipment of heating systems and their corrosion are one of the major energetic problems. To improve the operational efficiency of thermal power equipment, surface-active agents (surfactants) are widely used, which are applied for the treatment of the working surfaces before use, during use, to prevent the parking corrosion, as well as while performing periodic chemical cleanings of power equipment. The tests have been performed, and the technology of application of Auge Neo Ac 56 acid product (MAHIM, Kazan) has been developed, designed to remove mineral deposits and scale from cooling and boiler systems without mechanical influence on them and without disassembly of technological equipment.

  16. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  17. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  18. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  19. Determining the thermal and physicals properties of oil processing products

    Directory of Open Access Journals (Sweden)

    Viktoria I. Kryvda

    2015-03-01

    Full Text Available In the last decades both technological process’ improvement and primary energy resources saving are the main tasks of oil refineries. Using various oil products does impose an accurate knowledge of their properties. The dispersion analysis applied makes possible to construct a model simulating the primary oil refining products’ and raw materials’ thermal physical properties. As a result of data approximation there were obtained polynomials with coefficients differing from attributable to the studied oil products fractions. The research represents graphic dependences of thermal physical properties on temperature values for diesel oil fraction. The linear character of density and calorific capacity dependencies from temperature is represented with a proportional error in calculations. The relative minimum error is below 2% that confirms the implemented calculations’ adequacy. The resulting model can be used in calculations for further technological process improvements.

  20. Development of a machine treating removed shells and others in thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Daiho, Koichi; Iwao, Takenobu

    1981-01-01

    The living things removed form the cooling water systems in thermal and nuclear power stations, such as shells and jelly fish, have been disposed by burying in the premises, but it is the actual situation that the occurrence of bad smell and the securing of land for burying are the worries. Accordingly, a machine for deodorizing the removed living things was manufactured for trial, and the treatment experiment was carried out in Chita Power Station. This treating machine dries the removed living things around 200 deg C, and makes the deodorizing treatment. The treated products can be utilized effectively as fertilizer, and the prospect to put this machine in practical use as a waste treatment machine of resource re-utilization type was obtained. General Technical Research Institute, Chubu Electric Power Co., Inc., has developed a machine treating abandoned fish for making organic fertilizer, and its principle was applied to the development of this treating machine. The treating capacity of this machine is 1 t/day, and the power consumption is 9.3 kW. The waste oil from power stations of about 15 l/h is used as the fuel. A crusher, a constant feed screw conveyer and a rotary kiln for drying are used. In the treating experiment, about 30 t of shells and others were treated during 51 days. The results are reported. (Kako, I.)

  1. Production of Strontium-90 Thermal Power Sources; Fabrication de sources d'energie thermique au strontium-90; Proizvodstvo istochnikov ''teplovoj ehnergii iz Sr''9''0; Preparacion de fuentes de energia termica con estroncio-90

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J. S.; Bloom, J. L.; Schneider, A. [Martin Company, Nuclear Division, Baltimore 3, MD (United States)

    1963-11-15

    One of the most attractive fields for utilization of large quantities of waste fission products is the field of direct-conversion power supplies for remote locations. Strontium-90 is being given the greatest exploitation because of its availability, nuclear properties, and the relative ease with which it can be fabricated into compact heat sources. Strontium-90 fuelled generators are being used to power automatic weather stations and navigational aids, and consideration is being given to the use of strontium-90 as a power source for space vehicles. Evaluation of several potentially useful strontium compounds led to the selection of the titanate as exhibiting overall properties most desirable for this purpose. Strontium-90, separated from crude fission product streams and purified to the requisite degree by the USAEC's Hanford Works, is shipped in the form of the carbonate to a hot cell facility operated by the Martin Company, where it is converted to titanate pellets. This process is an adaption to remote operation of conventional chemical and ceramic techniques. The pellets are encapsulated in Hastelloy C containers for use in thermoelectric power supplies. Unusual operational problems are encountered because the large quantities of strontium-90 handled (potentially millions of curies per year) represent formidable radiation and contamination hazards. Details of the facility, equipment, process, and safety criteria are given. The operational experience gained during the recent processing of the first 250 000 curies of strontium-90 into fuel for a SNAP-7 generator is described. Encapsulation, calorimetry, decontamination, and waste disposal procedures are also outlined. (author) [French] L'une des utilisations les plus interessantes des produits de fission en grande quantite consiste a les employer comme sources d'energie par combustion directe pour des installations geographiquement isolees. C'est le strontium-90 qui est l e plus utilise parce qu'on en dispose en

  2. The Products of the Thermal Decomposition of CH3CHO

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  3. Considering on the use of thermal power plants in Brazil; Discorrendo sobre o uso das termeletricas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Maria Thereza da Silva Lopes; Souza, Marina Correa de [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil). Inst. de Ciencia e Tecnologia

    2015-07-01

    Today, the world depends on an abundant amount of energy. Hence, there is a need in creating new ways of obtaining energy to boost industrial production and thereby increase the wealth of a country. Therefore, industrial growth is strongly linked to way to get clean and cheap energy. In Brazil, preferentially uses the energy from the hydroelectric plants, but these may not always generate the energy required to supply all our needs. So, we can not deny that the thermal power plants have a respectable role in power generation, complementing the energy from the hydroelectric when they go through times of low production, as in periods of drought. (author)

  4. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  5. Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort

    OpenAIRE

    Karlsson, Jonathan

    2012-01-01

    The aim of this project was to generate knowledge to enable us to take advantage of heat storage in heavy building structures with regard to as energy savings, better thermal indoor climate, and reduced peak powers. This could include buildings that can function without energy input during cold periods, buildings that give a robust indoor climate without installed cooling, and buildings with good thermal comfort also in case of higher outdoor temperatures resulting from global warming. To rea...

  6. A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants

    OpenAIRE

    Kumar, Ravinder

    2016-01-01

    The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy ba...

  7. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    Science.gov (United States)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  8. BIOCHAR MODIFICATION, THERMAL STABILITY AND TOXICITY OF PRODUCTS MODIFICATION

    Directory of Open Access Journals (Sweden)

    Romana FRIEDRICHOVÁ

    2017-12-01

    Full Text Available Biochar is a product obtained from processing of waste biomass. The main application of biochar is in soil and environment remediation. Some new applications of this carbonaceous material take advantage of its adsorption capacity use it as a heterogeneous catalyst for energy storage and conversion etc. This contribution describes thermal stability of the original biochar. It discusses biochar modified by chemical and physical methods including a new compound of biochar-graphene oxide. The purpose of the modifications is to increase its active surface to introduce active functional groups into the carbon structure of biochar in relation to fire safety and toxicity of those products.

  9. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  10. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  11. Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.

    Science.gov (United States)

    Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V

    2017-05-01

    This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Variable thermal resistor based on self-powered Peltier effect

    OpenAIRE

    Min, Gao; Yatim, N. M.

    2008-01-01

    Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported.

  13. Variable thermal resistor based on self-powered Peltier effect

    International Nuclear Information System (INIS)

    Min Gao; Yatim, N Md

    2008-01-01

    Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported. (fast track communication)

  14. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  15. Hydrogen co-production from subcritical water-cooled nuclear power plants in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gnanapragasam, N.; Ryland, D.; Suppiah, S., E-mail: gnanapragasamn@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    Subcritical water-cooled nuclear reactors (Sub-WCR) operate in several countries including Canada providing electricity to the civilian population. The high-temperature-steam-electrolysis process (HTSEP) is a feasible and laboratory-demonstrated large-scale hydrogen-production process. The thermal and electrical integration of the HTSEP with Sub-WCR-based nuclear-power plants (NPPs) is compared for best integration point, HTSEP operating condition and hydrogen production rate based on thermal energy efficiency. Analysis on integrated thermal efficiency suggests that the Sub-WCR NPP is ideal for hydrogen co-production with a combined efficiency of 36%. HTSEP operation analysis suggests that higher product hydrogen pressure reduces hydrogen and integrated efficiencies. The best integration point for the HTSEP with Sub-WCR NPP is upstream of the high-pressure turbine. (author)

  16. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... are identified during the acceleration and deceleration periods of the motor. The main causes for these adverse thermal cycles have been presented and, consequently, the influence of the deceleration slope, modulation technique and reactive current on the thermal cycles has been analyzed. Finally, the improved...

  17. Impact of environmental cost on economics of thermal power plant. Paper no. IGEC-1-007

    International Nuclear Information System (INIS)

    Chandra, H.; Kaushik, S.C.; Chandra, A.

    2005-01-01

    Cost analysis per unit of power generation have been performed for coal based thermal power plant situated in Dadri (UP) for Indian and imported coal from Australia and America. In our study it has been found that it is better to use imported coal in Indian thermal power plants with advantages like low environmental, investment and total cost per unit of power generation. The effect of percent excess air and plant load factor on total cost per unit of power generation is also analyzed. (author)

  18. On the evolution, over four generations of paraboloidal dish solar thermal electric power systems

    International Nuclear Information System (INIS)

    Kaneff, S.

    1993-01-01

    After a decade of supplying useful power, the White Cliffs Paraboloidal Dish Solar Thermal Power Station (1100 km west of Sydney) is still operational and has provided major lessons and experience for subsequent developments; particularly for the Molokai/Alburquerque unit built jointly with Power Kinetics Inc (of Troy, USA) for the US Department of Energy. This has, in turn, given valuable guidance for the third generation system now nearing completion in Canberra and employing new collector concepts refined for commercial production and viability. Unlike much dish-oriented R and D, we consider systems of dish arrays supplying central plant as a more attractive proposition than assemblies of dish/engine units, for all but very small systems (<2 MWe). Development has recently commerce on the fourth generation technology which result in a 2 MWe dish system within 2 years, expected to be followed closely by a system of 10 to 20 MWe, preparatory to still larger systems, as the technology evolves and experience is gained. The rationale in this progression in based on the achievement of commercial cost-effectiveness in competition with other energy sources. The direction of evolution is becoming clear and application of the technology to broader spheres than electricity generation is likely. Because of the nature of production methods employed and the ease of installation, system implementation can be rapid. (Author) 29 refs

  19. About Economy of Fuel at Thermal Power Stations due to Optimization of Utilization Diagram of Power-Generating Equipment

    Directory of Open Access Journals (Sweden)

    M. V. Svechko

    2008-01-01

    Full Text Available Problems of rational fuel utilization becomes more and more significant especially for thermal power stations (TPS. Thermal power stations have complicated starting-up diagrams and utilization modes of their technological equipment. Method of diagram optimization of TPS equipment utilization modes has been developed. The method is based on computer analytical model with application of spline-approximation of power equipment characteristics. The method allows to economize fuel consumption at a rate of 15-20 % with accuracy of the predicted calculation not more than 0.25 %.

  20. Analysis of Gas Separated for Silica Membrane in Hydrogen Gas Production by Using Nuclear Reactor Thermal

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2007-01-01

    One of the hydrogen production method that have been developed is a thermo-chemical method. This method is permissible to increase thermal efficiency up to 70 % and to decrease of operational temperature from 800℃ down to 450 ℃. One of several factor that can increase of the hydrogen production thermal efficiency at the above method is to apply a separated membrane that have a relative good for permeansce and selectivity performance. It had been carried out for analyzing of time and temperature CVD (Chemical Vapouration Deposition) that is affected to permeansce and power selecting performance of the membrane. The layering membrane silica process was carried out by means of the CVD method at atmosphere pressure. The membrane silica layering that was observed was developed by a CVD method in atmospheric pressure. The silica membrane was formed at the out side surface of the alumina gamma cylinder that had been coated by alumina gamma which it has average porosity about of 0.01 mic.meter. A permeansce and separation power performance of the membrane silica that was carried out by means of CVD method at 600 ℃ on H 2 , He and N 2 are : 2 x 10 -10 , 9 x 10 -9 and 4 x 10 -7 mol Pa/m 2 s and the selected power of H 2 /N 2 = 45. The permeansce of that membrane is relative good but the selected power is relative not so good. (author)

  1. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  2. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  3. Considerations upon the possibility of abating the pollution produced by thermal power plants

    International Nuclear Information System (INIS)

    Ataman, Eleonora

    1992-01-01

    Thermal power plants using fossil fuels in conventional boilers are among the most important man-made stationary sources of pollutant release. A review of the present possibilities to abate the pollution, mainly by abatement of releases at stack is presented. At present the unique viable solution applicable in Romania thermopower stations appears to be the use of catalytic technology based on NO x selective reduction with ammonia. Investments for pollution abatement installations for intra- or post-combustion burning gases in classic boilers appear to be 1/4 and 1/3 of the cost of a new thermal power plant and the maintenance costs of de-pollution installations even when the resulting products are rendered profitable, the cost of KWh will raise. Replacement of classical boilers by circulating fluidized bed boilers would solve entirely the SO 2 and NO x release issue. Investments for such boilers are lower than those implied by a new classical boiler equipped with supplementary installations for the removal of intra- and post-combustion gases. The only remaining drawback is waste resulting desulfurization which is disposed at the dump. (author)

  4. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  5. Low Cost Radiator for Fission Power Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn Research Center (GRC) is developing fission power system technology for future space transportation and surface power applications. The early systems are...

  6. Low Cost Radiator for Fission Power Thermal Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing fission power system technology for future space transportation and surface power applications. The early systems are envisioned in the 10 to...

  7. Thermal evolution of the Schwinger model with matrix product operators

    International Nuclear Information System (INIS)

    Banuls, M.C.; Cirac, J.I.; Cichy, K.; Jansen, K.; Saito, H.

    2015-10-01

    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.

  8. Production for high thermal stability NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China)], E-mail: iyy2000@163.com; Zhang, J.; Hu, S.Q.; Han, Z.D. [College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, Shandong Province (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2008-04-15

    To improve sintered NdFeB magnets' thermal stability and magnetic properties, combined addition of elements Cu and Gd was investigated. It was found that with Gd addition increase to 1.0%, the temperature coefficient {alpha} improved from -0.15 to -0.05%/deg. C (maximum working temperature 120 deg. C), but the remanence and the maximum energy product linearly decreased. With addition of Cu in Gd-containing magnets the intrinsic coercivity increased greatly, and the remanence increased also because of their density improvement, and optimum Cu content was achieved at 0.2%. Microstructure analysis showed that most of the Cu distributed at grain boundaries and led to clear and smooth morphologies. Magnets with high thermal stability {alpha}=-0.05%/deg. C and magnetic properties were obtained with addition of Gd=0.8% and Cu=0.2%.

  9. Miniaturization, Packaging, and Thermal Analysis of Power Electronics Modules

    OpenAIRE

    Lostetter, Alexander B.

    1998-01-01

    High power circuits, those involving high levels of voltages and currents to produce several kilowatts of power, would possess an optimized efficiency when driven at high frequencies (on the order of MHz). Such an approach would greatly reduce the size of capacitive and magnetic components, and thus ultimately reduce the cost of the power electronic circuits. The problem with this strategy in conventional packaging, however, is that at high frequencies, interconnects between the power devic...

  10. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Amroussia, Aida [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Bergez, Wladimir [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Boehlert, Carl [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Burgess, Thomas; Carroll, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Durantel, Florent [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Ferrante, Paride; Fourmeau, Tiffany [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, Van [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Grygiel, Clara [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Kramer, Jacob [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Mittig, Wolfgang [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Monnet, Isabelle [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Patel, Harsh [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); and others

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from {sup 16}O to {sup 238}U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti–6Al–4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  11. Efficiency of power technologies of utilization of thermal waste from positions of regional system (for the Kemerovo region part 2.

    Directory of Open Access Journals (Sweden)

    Churashev V. N.

    2016-03-01

    Full Text Available The objective analysis and forecasting of heat saving in Russia are very difficult now as the statistical reporting under energy carriers is focused generally on indicators of production of fuel and energy, but not on indicators of their consumption. According to experts the main losses of FER happen when burning fuel on thermal power plant and boiler rooms. One of the main reasons of high losses of energy at a stage of transformation of fuel to electric and thermal energy is use of obsolete technologies of generation. In article the emphasis is placed on the analysis of possibility of reduction of losses of FER due to realization of innovative power technologies. On the basis of economic-mathematical tools (model of regional energy industry; current and expected fuel and energy balances of the region the assessment of potential volume of reductions of losses of heat power on the example of the Kemerovo region is carried out.

  12. The potential estimation and factor analysis of China′s energy conservation on thermal power industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Lisha

    2013-01-01

    At present, researches about energy conservation are focused on prediction. But there are few researches focused on the estimation of effective input and energy conservation potential, and there has been even no research on energy conservation of thermal power industry of China. This paper will try to fill in such a blank. Panel data on Chinese thermal power industry over 2005–2010 are established, and we adopt the stochastic frontier analysis approach to estimate the energy saving potential of thermal power industry. The results are as follows: (1) the average efficiency of energy inputs in China′s thermal power industry over 2005–2010 was about 0.85, and cumulative energy saving potential equals to 551.04 (Mtce); (2) by improving the non-efficiency factors, the relatively backward inland cities could achieve higher energy saving in thermal power industry; (3) the energy input efficiency of Eastern China Grid is shown to be the highest; (4) in order to realize the energy-saving goal of thermal power industry, one important policy method the government should adopt is to conduct a market-oriented reform in power industry and break the state-owned monopoly to provide incentives for private and foreign direct investment in thermal power sector. -- Highlights: •We adopt SFA model to estimate the coal input efficiency of power sector in China. •We calculate the cumulative energy saving potential equals to 551.04 Mtce. •East China power grid has the highest energy input efficiency. •Some backward inland cities may be the main force for future energy conservation. •Encourage private and foreign direct investment in power sector might be effective

  13. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  14. Cost estimation of thermal and nuclear power using annual securities report

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nagatomi, Yu; Murakami, Tomoko

    2011-01-01

    Cost estimation of generation cost derived from various power sources was widely conducted using model plant or annual securities report of electric utilities. Although annual securities report method was subjected to some limitation in methodology itself, useful information was obtained for cost comparison of thermal and nuclear power. Studies on generation cost evaluation of thermal and nuclear power based on this method during past five years showed that nuclear power cost was almost stable 7 Yen/kWh and thermal power cost was varying 9 - 12 Yen/kWh dependent on violent fluctuations of primary energy cost. Nuclear power was expected cost increase due to enhanced safety requirements or damage compensation of accidents as well as decommissioning and back-end cost, which were difficult to evaluate accurately with annual securities report. Further comprehensive and accurate cost estimation should be encouraged including these items. (T. Tanaka)

  15. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  16. Operational and environmental performance in China's thermal power industry: Taking an effectiveness measure as complement to an efficiency measure.

    Science.gov (United States)

    Wang, Ke; Zhang, Jieming; Wei, Yi-Ming

    2017-05-01

    The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system's capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system's capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational

  17. Technical solutions for mitigating adverse impacts on the environment implemented at Deva Thermal Power Plant

    International Nuclear Information System (INIS)

    Vaida, Victor; Egyed, Francisc; Manea, Laurean

    2004-01-01

    Situated at the south-west of Transylvania, 9 km from Deva town on the Mures River bank, Deva Power Plant has an installed capacity of 1260 MW, in six 210 MW generation units. Each unit operates with two steam boilers of 330 t/h, and steam rated parameters are 13.72 MPa and 550 deg C. The generated electricity is delivered in the national grid at voltage levels of 200 and 400 kV; there exists also the possibility of delivering electricity to the neighbouring countries through the power line Sibiu - Arad - Szeged. The Power Plant also produces thermal energy. The total installed thermal capacity is 400 MWt. Deva Power Plant was commissioned in three stages. During the first stage, between 1969 and 1971, Units No. 1, 2, 3 and 4 were commissioned, followed by Unit No. 5 in 1977 and by Unit No. 6 in 1980. All main equipment was manufactured in Russia. The main fuel utilised here is hard coal extracted from Valea Jiului basins, with calorific value between 14600 and 18800 kJ/kg. Natural gas is used as a flame support fuel. Deva Power Plant has actually produced 9% to 12% of the total electricity produced in the country and 18% to 25% of the electricity produced on coal. Continuous efforts have been made for the rehabilitation and modernisation of this power plant aiming to improve operational safety whilst equal interest has been paid to mitigating the environmental damage caused by the great size combustion systems. In this paper we present some of the preoccupations concerning earliest as well as prospective actions to be taken to protect the environment and to comply with the relevant standards and laws in force. The major role played by Deva Power Plant within the National Power Grid secured through reliable and steady operation also means undertaking exceptional environmental protection actions, to comply with current requirements. By its comprehensive modernisation programme already in progress, Deva Power Plant focus on the continuous upgrading of their plant in

  18. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  19. Preparation of sewage sludges for the thermal disposal in lignite power stations. Aufbereitung von Klaerschlaemmen zur thermischen Entsorgung in Braunkohlenkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Krone, C.; Koch, J.; Leidel, H.; Scheel, W. (VEAG Vereinigte Energiewerke AG, Ingenieurunternehmen fuer Kraftwerks-, Energie- und Umwelttechnik, Vetschau (Germany))

    1992-10-01

    The thermal disposal of communal sewage sludges as well as the additional combustion of such substances in furnaces of power station boilers are really no technical solutions. New are the consideration concerning the sludge preparation with the aid of the steam fluidized bed drying process and the additional combustion of the dried products in raw-brown-coal-fired large-scale steam generators. - The investigation proves the technical feasibility and points to problems which still have to be tackled. (orig.).

  20. Influence of renewable sources of energy on the operation of the production capacity in electrical power systems

    International Nuclear Information System (INIS)

    Nikolova-Potseva, Sofija

    2012-01-01

    In the PhD dissertation an approach for solving the generation scheduling problem between conventional power plants in a complex power system with integrated wind power plants is presented. The system that is analyzed is composed of thermal power plants, storage hydro power plants, pumped-storage hydro power plants, additional systems to deal with pumping water of pumped-storage hydro power plants and wind power plants. The model takes into consideration thermal power plants with and without contracted energy production over the study period. The objective of the generation scheduling problem in such a hybrid system is to determine the optimal amounts of generation power of conventional power plants over the study period, so that the total production costs of thermal power plants and additional units engaged for pumping water of pumped-storage hydro power plants be minimal and be satisfied the relevant real operational constraints of the system. The problem model takes into account the following constraints: power balance equations, constraints resulting from power output limits of thermal and hydro power plants, balance equations for contracted energy for thermal power plants with contracted energy production, power output limits of wind energy system and balance equations for available volume of water of storage hydro power plants and pumped-storage hydro power plants over the study period. The proposed model for power plant optimal operation does not take into account the system configuration and network losses. The computer program is developed in Matlab, in order to verify the proposed method for solving the optimal generation scheduling of conventional power plants in complex power system with integrated wind power plants. The developed computer program has been applied to specific systems and different variants of systems with integrated wind power plants have been analyzed. Particular problem in the operation of the power system is suppressed energy towards

  1. EFFICIENCY AND COST MODELLING OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Péter Bihari

    2010-01-01

    Full Text Available The proper characterization of energy suppliers is one of the most important components in the modelling of the supply/demand relations of the electricity market. Power generation capacity i. e. power plants constitute the supply side of the relation in the electricity market. The supply of power stations develops as the power stations attempt to achieve the greatest profit possible with the given prices and other limitations. The cost of operation and the cost of load increment are thus the most important characteristics of their behaviour on the market. In most electricity market models, however, it is not taken into account that the efficiency of a power station also depends on the level of the load, on the type and age of the power plant, and on environmental considerations. The trade in electricity on the free market cannot rely on models where these essential parameters are omitted. Such an incomplete model could lead to a situation where a particular power station would be run either only at its full capacity or else be entirely deactivated depending on the prices prevailing on the free market. The reality is rather that the marginal cost of power generation might also be described by a function using the efficiency function. The derived marginal cost function gives the supply curve of the power station. The load level dependent efficiency function can be used not only for market modelling, but also for determining the pollutant and CO2 emissions of the power station, as well as shedding light on the conditions for successfully entering the market. Based on the measurement data our paper presents mathematical models that might be used for the determination of the load dependent efficiency functions of coal, oil, or gas fuelled power stations (steam turbine, gas turbine, combined cycle and IC engine based combined heat and power stations. These efficiency functions could also contribute to modelling market conditions and determining the

  2. Energy and exergy evaluation of a 220MW thermal power plant ...

    African Journals Online (AJOL)

    Energy and exergy evaluation of a 220MW thermal power plant. ... Nigerian Journal of Technology ... At the variation of environmental or dead state temperature, ther e were no appreciable changes in the values of exergy efficiency of the ...

  3. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility...

  4. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  5. Climate Change Effect on Thermal Power Cooling in the U.S.

    Science.gov (United States)

    Maintaining reasonable surface-water temperatures is paramount for aquatic ecosystem health. Thermal pollution from power plant effluent can result in unnatural river temperature spikes locally, as well as cause damaging breaches to river temperature. The threat of a nonstationar...

  6. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  7. Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture

    KAUST Repository

    Iloeje, Chukwunwike

    2015-04-01

    © 2015 Elsevier Ltd. A number of CO2 capture-enabled power generation technologies have been proposed to address the negative environmental impact of CO2 emission. One important barrier to adopting these technologies is the associated energy penalty. Chemical-looping Combustion (CLC) is an oxy-combustion technology that can significantly lower this penalty. It utilizes an oxygen carrier to transfer oxygen from air/oxidizing stream in an oxidation reactor to the fuel in a reduction reactor. Conventional CLC reactor designs employ two separate reactors, with metal/metal oxide particles circulating pneumatically in-between. One of the key limitations of these designs is the entropy generation due to reactor temperature difference, which lowers the cycle efficiency. Zhao et al. (Zhao et al., 2014; Zhao and Ghoniem, 2014) proposed a new CLC rotary reactor design, which overcomes this limitation. This reactor consists of a single rotating wheel with micro-channels designed to maintain thermal equilibrium between the fuel and air sides. This study uses three thermodynamic models of increasing fidelity to demonstrate that the internal thermal coupling in the rotary CLC reactor creates the potential for improved cycle efficiency. A theoretical availability model and an ideal thermodynamic cycle model are used to define the efficiency limits of CLC systems, illustrate the impact of reactor thermal coupling and discuss relevant criteria. An Aspen Plus® model of a regenerative CLC cycle is then used to show that this thermal coupling raises the cycle efficiency by up to 2% points. A parametric study shows that efficiency varies inversely with pressure, with a maximum of 51% at 3bar, 1000C and 60% at 4bar, 1400C. The efficiency increases with CO2 fraction at high pressure ratios but exhibits a slight inverse dependence at low pressure ratios. The parametric study shows that for low purge steam demand, steam generation improves exhaust heat recovery and increases efficiency

  8. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  9. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  10. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  11. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  12. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  13. Study on key technologies of optimization of big data for thermal power plant performance

    Science.gov (United States)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  14. Quintessential kination and thermal production of gravitinos and axinos

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.E.; Pallis, C.; Rodriguez-Quintero, J. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Lola, S., E-mail: mario.gomez@dfa.uhu.es, E-mail: magda@physics.upatras.gr, E-mail: kpallis@gen.auth.gr, E-mail: jose.rodriguez@dfaie.uhu.es [Department of Physics, University of Patras, Panepistimioupolis, GR-26500 Patras (Greece)

    2009-01-15

    The impact of a kination-dominated phase generated by a quintessential exponen-tial model on the thermal abundance of gravitinos and axinos is investigated. We find that their abundances become proportional to the transition temperature from the kination to the radiation era; since this temperature is significantly lower than the initial (''reheating'') temperature, the abundances decrease with respect to their values in the standard cosmology. For values of the quintessential energy-density parameter close to its upper bound, on the eve of nucleosynthesis, we find the following: (i) for unstable gravitinos, the gravitino constraint is totally evaded; (ii) if the gravitino is stable, its thermal abundance is not sufficient to account for the cold dark matter of the universe; (iii) the thermal abundance of axinos can satisfy the cold dark matter constraint for values of the initial temperature well above those required in the standard cosmology. A novel calculation of the axino production rate by scatterings at low temperature is also presented.

  15. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  16. Thermally-aware composite run-time CPU power models

    OpenAIRE

    Walker, Matthew J.; Diestelhorst, Stephan; Hansson, Andreas; Balsamo, Domenico; Merrett, Geoff V.; Al-Hashimi, Bashir M.

    2016-01-01

    Accurate and stable CPU power modelling is fundamental in modern system-on-chips (SoCs) for two main reasons: 1) they enable significant online energy savings by providing a run-time manager with reliable power consumption data for controlling CPU energy-saving techniques; 2) they can be used as accurate and trusted reference models for system design and exploration. We begin by showing the limitations in typical performance monitoring counter (PMC) based power modelling approaches and illust...

  17. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  18. Turbostar: an ICF reactor using both direct and thermal power conversion. Revision 1

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1986-01-01

    Combining direct and thermal power conversion results in a 52% gross plant efficiency with DT fuel and 68% with advanced DD fuel. We maximize the fraction of fusion-yield energy converted to kinetic energy in a liquid-lithium blanket, and use this energy directly with turbine generators to produce electricity. We use the remainder of the energy to produce electricity in a standard Rankine thermal power conversion cycle

  19. The Feasibility Study on Thermal Loading Control of Wind Power Converters with a Flexible Switching Frequency

    DEFF Research Database (Denmark)

    Qin, Zian; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Thermal loading of wind power converters is critical to their reliability performance. Especially for IGBT modules applied in a converter, both of the mean value and variation of the junction temperature have significant impact on the lifetime. Besides other strategies to reduce the thermal loadi...... the temperature fluctuations due to wind speed variations. The trade-off between the reduced amplitude of temperature fluctuations and the additional power losses that may be introduced is quantitatively studied....

  20. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    International Nuclear Information System (INIS)

    Lee, Hansang; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation

  1. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator

    International Nuclear Information System (INIS)

    Wu, Yongjia; Ming, Tingzhen; Li, Xiaohua; Pan, Tao; Peng, Keyuan; Luo, Xiaobing

    2014-01-01

    Highlights: • An appropriate ceramic plate thickness is effective in alleviating the thermal stress. • A smaller distance between thermo-pins can help prolong lifecycle of the TE module. • Either a thicker or a thinner copper conducting strip effectively reduces thermal stress. • A suitable tin soldering thickness will alleviate thermal stress intensity and increase thermal efficiency. - Abstract: Thermoelectric generator is a device taking advantage of the temperature difference in thermoelectric material to generate electric power, where the higher the temperature difference of the hot-cold ends, the higher the efficiency will be. However, higher temperature or higher heat flux upon the hot end will cause strong thermal stress which will negatively influence the lifecycle of the thermoelectric module. This phenomenon is very common in industrial applications but seldom has research work been reported. In this paper, numerical analysis on the thermodynamics and thermal stress performance of the thermoelectric module has been performed, considering the variation on the thickness of materials; the influence of high heat flux on thermal efficiency, power output, and thermal stress has been examined. It is found that under high heat flux imposing upon the hot end, the thermal stress is so strong that it has a decisive effect on the life expectation of the device. To improve the module’s working condition, different geometrical configurations are tested and the optimum sizes are achieved. Besides, the side effects on the efficiency, power output, and open circuit voltage output of the thermoelectric module are taken into consideration

  2. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation.

  3. Use of plutonium for power production

    International Nuclear Information System (INIS)

    1965-01-01

    The panel reviewed available information on various aspects of plutonium utilization, such as physics of plutonium, technology of plutonium fuels in thermal and fast reactors, behaviour of plutonium fuel under reactor irradiation, technological and economic aspects of plutonium fuel cycle. Refs, figs and tabs

  4. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  5. Thermal diagnostics in power plant to improve performance

    International Nuclear Information System (INIS)

    Meister, H.

    1995-01-01

    The improvement of older power plants by changing poor performing components is a cost effective method to increase the capacity of the units. The necessary information for the detection of components that are to be replaced can be obtained from heat rate and component tests with accuracy instrumentation. The discussed methods and tools provided by ABB Were used with success in several power plants in Europe. These tools are in the process of permanent improvement and can be used in almost any type of power plant. Due to the reasons discussed above, there is a high potential for improvement of a lot of power plants in the next decade. (author)

  6. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  7. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  8. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  9. Gas power production, surplus concepts and the transformation of hydro-electric rent into resource rent

    International Nuclear Information System (INIS)

    Amundsen, Eirik S.

    1997-01-01

    The paper considers the effects of introducing large scale gas power production capacity into an electricity sector based on hydropower. In this process the economic rent is transmitted from the hydro power sector to the resource rent in the gas power sector, but is along the way intermingled with ordinary producer surplus and quasi-rent stemming from increasing cost conditions in the production infrastructure and capacity constraints. The net effect on total rent generated depends on development in demand, demand elasticities, costs saved from delaying hydropower projects and the existence of producer surplus in gas power generation. The paper closes with a discussion of possible tax base changes following from the introduction of a thermal power system based on natural gas

  10. THE IMPROVEMENT OF LOW-WASTE TECHNOLOGIES OF WORKING BODY OF WATER PREPARATION AT THERMAL AND NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    K. D. Rymasheuskaya

    2017-01-01

    Full Text Available In the present work the main directions of water desalination technologies improving have been analyzed. Possible techniques of high-quality treatment of water that enable the reduction of amounts of environmentally hazardous substances to be discharged into the hydrosphere are indicated. The purpose of the work was to improve the ecological efficiency and the effectiveness of water treatment equipment at heat power plants when designing new and the modernizing existing water treatment schemes. In order to achieve this goal the following problems have been solved: the one of analyzing the main directions of the improvement of technologies of working body of water preparation at thermal and nuclear power plants; of analyzing the main directions of reduction of total volume of highly mineralized power plant wastewaters; of developing the technological scheme of recycling of concentrate of membrane installations and regenerants of ionite filters in acid and alkali; of developing the technological scheme of transformation of the sludge in pre-processing waste into valuable commodity products. The results of research can be applied for the design of new and the modernization of existing water treatment installations of thermal and nuclear power plants. It will enable to reduce considerably the use of natural water and the amount of chemicals added as well as the volume of wastewater and the concentration of dissolved solids in it. As a consequence, the negative impact of thermal and nuclear power plants on the hydrosphere will be reduced. 

  11. Study of the valorisation of thermal storage and of power-to-heat. Study report + Study synthesis

    International Nuclear Information System (INIS)

    Canal, Patrick; Gerbaud, Manon; Mouret, Sylvain; Chammas, Maxime; Attard, Pierre; Bucy, Jacques de; Lochmann, Hugo; Le Gars, Loic; Payen, Luc; Lesueur, Herve

    2016-11-01

    This study aimed at assessing the potential of thermal storage and of power-to-heat in France, and at identifying relevant technological sectors by 2030. In order to do so, the study aimed at quantifying the value of these sectors for applications considered as relevant, this value lying in the valorisation of heat or electric power excesses, in the power arbitration, and in investment savings. Analyses have have been performed on case studies through an assessment of storage value and of P2H (Power-to-Heat) for the collectivity, a joint optimisation of fleet sizing and management, a modelling of power system fundamentals, an analysis of the profitability of storage and P2H projects, and an assessment of the technical source and of the impact on jobs. Thus, after an overview of thermal storage and power-to-heat technologies, and a presentation of the adopted methodology (definition of case studies, case study methodology, modelling hypotheses related to production and consumption, and modelling of the power system), the authors report the study of the sizing of biomass boilers in an urban heat network (determination of the storage value for the community), the study of development of an urban heat network (storage value for the community and for the operator, technological perspective by 2030), the study of the use of power-to-heat and storage for an urban heat network (value for the community, profitability and business model, perspective by 2030), the study of unavoidable heat recovery on an industrial site (value, profitability and business model, perspective by 2030), the study of co-generation and thermal storage on an industrial site (value, impact on income), the study of domestic thermal storage and of the flexibility of the French electric power system (impact of thermal water heaters on the flexibility), and the study of the impact on employment (jobs related to the domestic market and to the development of an exporting sector). Appendices propose sheets

  12. Meat products: main pathogens and non-thermal control strategies

    Directory of Open Access Journals (Sweden)

    Norma Heredia

    2014-12-01

    Full Text Available Meat is a rich nutrient matrix that allows the proper environment for diverse microorganisms’ proliferation, deteriorative and pathogen. E. coli O157 and non-O157, Salmonella spp. and Listeria monocytogenes are among the pathogen ones. On other hand, the growing demand for “fresh-like” products with high sanitary, organoleptic and nutritional quality had drive the development of alternative technologies to traditional or thermal, to satisfy consumers’ demand. In the last decades new food preservation techniques with no effect on nutritional or organoleptic characteristics had been developed, maintaining or improving microbiological stability and quality. This work is review of the most common pathogen microorganisms in meat and meat products, and the emerging technologies like high hydrostatic pressure, radiation, intelligent and active packages, and the use of natutal compounds for their control.

  13. THERMAL CALCULATION FOR THE PRODUCTION OF VEGETABLES GREENHOUSE

    Directory of Open Access Journals (Sweden)

    Ancuţa JURCO

    2013-01-01

    Full Text Available This paper presents the calculation regarding thermic transmision through the closing elements made for a greenhouse designed for salat production, pea, spinach and cabbage, D.M. greenhouse type, with medium and large openings (12...30m having a light roof with spatial structure from bars and thin walls made from galvanized steel or aluminium and designed at the Technique University from Cluj-Napoca. The greenhouse opening is 15.90 m, the total lenght is 40.50m and 669.53 sqm surface with 643.95 sqm usable area. After analyzing the thermal calculations for the production of vegetables greenhouse show that the heat losses are insignificant, advantage is given by the light roof with spatial structure from bars and thin walls made from galvanized steel or aluminium.

  14. Non-equilibrium Dynamics, Thermalization and Entropy Production

    International Nuclear Information System (INIS)

    Hinrichsen, Haye; Janotta, Peter; Gogolin, Christian

    2011-01-01

    This paper addresses fundamental aspects of statistical mechanics such as the motivation of a classical state space with spontaneous transitions, the meaning of non-equilibrium in the context of thermalization, and the justification of these concepts from the quantum-mechanical point of view. After an introductory part we focus on the problem of entropy production in non-equilibrium systems. In particular, the generally accepted formula for entropy production in the environment is analyzed from a critical perspective. It is shown that this formula is only valid in the limit of separated time scales of the system's and the environmental degrees of freedom. Finally, we present an alternative simple proof of the fluctuation theorem.

  15. Periphyton crops and productivity in a reactor thermal effluent

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Samples of periphyton grown for two weeks on microscope slides in surface waters of the reactor cooling reservoir, Par Pond, were examined for differences in species composition, diversity, standing crop, and 14 C uptake relatable to 7 positions in the thermal effluent. For stations which differed in average temperature by less than 5 0 C, weight specific productivity differed by a factor of 7. Periphyton biomass differed more than fivefold between stations 5.5 0 C apart. For most incubation intervals, both weight specific productivity and accumulated crop correlated highly with the average growing temperature, but slopes of regressions from consecutive periods often differed greatly while species composition and temperauture regime changed only slightly. Recent experiments indicate that observed differences may be due to interactions between nutrients and temperatures. (U.S.)

  16. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  17. Reheating, thermalization and non-thermal gravitino production in MSSM inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrantelli, Andrea [Tallinn University of Technology, Faculty of Civil Engineering, Tallinn (Estonia)

    2017-10-15

    In the framework of MSSM inflation, matter and gravitino production are here investigated through the decay of the fields which are coupled to the udd inflaton, a gauge-invariant combination of squarks. After the end of inflation, the flat direction oscillates about the minimum of its potential, losing at each oscillation about 56% of its energy into bursts of gauge/gaugino and scalar quanta when crossing the origin. These particles then acquire a large inflaton VEV-induced mass and decay perturbatively into the MSSM quanta and gravitinos, transferring the inflaton energy very efficiently via instant preheating. Regarding thermalization, we show that the MSSM degrees of freedom thermalize very quickly, yet not immediately by virtue of the large vacuum expectation value of the inflaton, which breaks the SU(3){sub C} x U(1){sub Y} symmetry into a residual U(1). The energy transfer to the MSSM quanta is very efficient, since full thermalization is achieved after only O(40) complete oscillations. The udd inflaton thus provides an extremely efficient reheating of the Universe, with a temperature T{sub reh} = O(10{sup 8} GeV), which allows for instance several mechanisms of baryogenesis. We also compute the gravitino number density from the perturbative decay of the flat direction and of the SUSY multiplet. We find that the gravitinos are produced in negligible amount and satisfy cosmological bounds such as the Big Bang nucleosynthesis (BBN) and dark matter (DM) constraints. (orig.)

  18. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    The Rehab power plant located in the Northern part of Jordan is presented as a case study of industrial water management. This power plant consumes boiler feed water in the amount of 200 m3/d of the fresh ground water available from nearby wells and it produces 193 m3/d of wastewater. Fifty seven water samples were ...

  19. Thermal electricity production at EDF: the technological ways

    International Nuclear Information System (INIS)

    Pin, M.

    1993-01-01

    In France, fossil fuel power plants are used for semi-base production (≤ 4.000 hours/year) and for peak periods (≤ 1.000 hours/year). Existing plants are renovated taking in account environmental protection: diminution of NO x and SO 2 concentrations. Three processes are used: circulating fluidized beds, fluidized beds under pressure, or integrated gasification combined cycle. (A.B.). 5 figs., 2 tabs

  20. A survey of thorium utilization in thermal power reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    The present status of thorium utilization in thermal reactors HTGR's, HWR's and LWR's has been reviewed. Physics considerations are made to obtain the optimum use of thorium. Existing information on reprocessing and refabrication is given together with the properties of thorium metal and thoria

  1. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  2. TPDWR2: thermal power determination for Westinghouse reactors, Version 2. User's guide

    International Nuclear Information System (INIS)

    Kaczynski, G.M.; Woodruff, R.W.

    1985-12-01

    TPDWR2 is a computer program which was developed to determine the amount of thermal power generated by any Westinghouse nuclear power plant. From system conditions, TPDWR2 calculates enthalpies of water and steam and the power transferred to or from various components in the reactor coolant system and to or from the chemical and volume control system. From these results and assuming that the reactor core is operating at constant power and is at thermal equilibrium, TPDWR2 calculates the thermal power generated by the reactor core. TPDWR2 runs on the IBM PC and XT computers when IBM Personal Computer DOS, Version 2.00 or 2.10, and IBM Personal Computer Basic, Version D2.00 or D2.10, are stored on the same diskette with TPDWR2

  3. A critical review on energy, exergy, exergoeconomic and economic (4-E analysis of thermal power plants

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2017-02-01

    Full Text Available The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy balance is not sufficient for the possible finding of the system imperfections. Energy losses taking place in a system can be easily determined by using exergy analysis. Hence, it is a powerful tool for the measurement of energy quality, thereby helps to make complex thermodynamic systems more efficient. Nowadays, economic optimization of plant is also a big problem for researchers because of the complex nature. At a viewpoint of this, a comprehensive literature review over the years of energy, exergy, exergoeconomic and economic (4-E analysis and their applications in thermal power plants stimulated by coal, gas, combined cycle and cogeneration system have been done thoroughly. This paper is addressed to those researchers who are doing their research work on 4-E analysis in various thermal power plants. If anyone extracts an idea for the development of the concept of 4-E analysis using this article, we will achieve our goal. This review also indicates the scope of future research in thermal power plants.

  4. Analysis of the Opportunity for an Increase in the Thermal Power of Power Generating Units of Nuclear Power Plants (Part 1)

    OpenAIRE

    Chernousenko, Olga Yuriivna; Nikulenkova, Tetiana Volodymyrivna; Nikulenkov, Anatolii Hennadiiovych

    2017-01-01

    For Ukraine the realization of available reserves to increase the power of operating power units of nuclear plants is a vital problem the solution of which would allow us to increase electric power output. A special role is also played by economic priorities; in particular an increase in power by 1 kW is ten times cheaper in comparison with the construction of 1 kW of new power facilities. One more factor is the world experience in the field of an increase in the thermal power of operating po...

  5. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  6. Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Blaabjerg, Frede; Ma, Ke

    2017-01-01

    of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....

  7. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  8. Climatic impact of Norwegian gas power production

    International Nuclear Information System (INIS)

    Aune, Finn Roar; Golombek, Rolf; Kittelsen, Sverre A.C.; Rosendal, Knut Einar

    2001-01-01

    This article discusses model calculations of the impact of a Norwegian gas power plant on the total carbon dioxide emission in Western Europe. The authors have set up a model that is based on the assumption that the European markets for electricity and gas be liberalized as defined in various EU directives. The model calculates all energy prices and the energy produced and consumed in Western Europe within a time horizon where all the capacities of the energy sector are given. If gas power plants are built in Norway after such liberalization, the model predicts a reduction of CO 2 emissions in Western Europe even if the gas power plant increases the local emission in Norway. This is primarily because of the phasing-out of the coal-fired power plants in other countries. Alternative calculations using different assumptions about taxes, transportation capacity, minimum run-off years in Norway give the same type of results. Thus, the principal result about the climatically beneficial effect of a Norwegian gas power plant is robust within the model. However, alternative assumptions about the extent of the liberalization and the time horizon may lead to other conclusions. In any case, the impact of a Norwegian gas power plant (6 TWh) is so small on the European scale as to be rather symbolic

  9. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... 1University of Jordan, Engineering College, Civil Engineering Department, Jordan. 2Al Balqa Applied .... Two reverse osmosis lines each containing a high- pressure ..... tolerance of high salt concentrations within the power.

  10. A Study on infrared tracing and monitoring of thermal discharge from the power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Sun; Hong, Wuk Hee; Kim, Yung Bae; Park, Jang Rae; Choi, Yung An; Park, Yung San [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-08-01

    Massive discharge of cooling water from the nuclear power plants as well as many thermal power plants would cause serious environmental problems. Hence, the task of predicting cooling water dispersion areas has enormous importance for better environmental management related with the power plant operation. For the last two decades, extensive field survey and dispersion modeling have been mainly applied to predict thermal discharge dispersion areas. In this study, the method of infrared thermal sensing was tested as a possible means of measuring the affected areas of thermal discharge at the thermal power plant sites. Many IR images obtained by using the terrestrial camera, or by using the airborne scanner, or from the Landsat iv satellite were analyzed from the pc with the IDRISI and resource software and further enhanced with other image analysis technologies. The result of study proved this IR imaging technology to be an potentially cost-effective tool for assessment of water-temperature increase caused by the thermal discharge from the power plants, however, further elaboration of procedure was highly requested. (author). 9 refs., 24 figs.

  11. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  12. A study on the ocean circulation and thermal diffusion near a nuclear power plant

    International Nuclear Information System (INIS)

    Shu, Kyung Suk; Han, Moon Hee; Kim, Eun Han; Hwang, Won Tae

    1994-08-01

    The thermal discharge used with cooling water at nuclear power plant is released to a neighbour sea and it is influenced on marine environment. The thermal discharge released from power plant is mainly transported and diffused by ocean circulation of neighbour sea. So the evaluation for characteristics of ocean circulation around neighbour sea is firstly performed. The purpose of this research is primarily analyzed the thermal diffusion in sea around Yongkwang nuclear power plant. For this viewpoint, fundamental oceanographic data sets are collected and analyzed in Yellow sea, west sea of Korea, sea around Yongkwang. The ocean circulation and the effects of temperature increase by thermal discharge are evaluated using these data. The characteristics of tide is interpreted by the analysis of observed tidal elevation and tidal currents. The characteristics of temperature and salinity is investigated by the long-term observation of Korea Fisheries Research and Development Agency and the short-term observation around Yongkwang. (Author)

  13. Electric machinery and drives in thermal power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery. (TK) [de

  14. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  15. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  16. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  17. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  18. Method of estimating thermal power distribution of core of BWR type reactor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1982-01-01

    Purpose: To accurately and rapidly predict the thermal power of the core of a BWR they reactor at load follow-up operating time. Method: A parameter value corrected from a correction coefficient deciding unit and a xenon density distribution value predicted and calculated from a xenon density distributor are inputted to a thermal power distribution predicting devise, the status amount such as coolant flow rate or the like predetermined at this and next high power operating times is substituted for physical model to predict and calculate the thermal power distribution. The status amount of a nuclear reactor at the time of operating in previous high power corresponding to the next high power operation to be predicted is read from the status amount of the reactor stored in time series manner is a reactor core status memory, and the physical model used in the prediction and calculation of the thermal power distribution at the time of next high power operation is corrected. (Sikiya, K.)

  19. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  20. energy and exergy evaluation of a 220mw thermal power plant

    African Journals Online (AJOL)

    HOD

    The outcomes of this work provide the exergy consumption and distribution profiles of the thermal power plant ... power plant with post-combustion CO2 capture. The once-through boiler exhibited the highest exergy destruction of all the plants ...