WorldWideScience

Sample records for thermal power pressure

  1. Thermal stratification in the pressurizer

    International Nuclear Information System (INIS)

    Baik, S.J.; Lee, K.W.; Ro, T.S.

    2001-01-01

    The thermal stratification in the pressurizer due to the insurge from the hot leg to the pressurizer has been studied. The insurge flow of the cold water into the pressurizer takes place during the heatup/cooldown and the normal or abnormal transients during power operation. The pressurizer vessel can undergo significant thermal fatigue usage caused by insurges and outsurges. Two-dimensional axisymmetric transient analysis for the thermal stratification in the pressurizer is performed using the computational fluid dynamics code, FLUENT, to get the velocity and temperature distribution. Parametric study has been carried out to investigate the effect of the inlet velocity and the temperature difference between the hot leg and the pressurizer on the thermal stratification. The results show that the insurge flow of cold water into the pressurizer does not mix well with hot water, and the cold water remains only in the lower portion of the pressurizer, which leads to the thermal stratification in the pressurizer. The thermal load on the pressurizer due to the thermal stratification or the cyclic thermal transient should be examined with respect to the mechanical integrity and this study can serve the design data for the stress analysis. (authors)

  2. Pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, E.M.

    1996-12-01

    Pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. Supplement 6 to Generic Letter 89-10, {open_quotes}Safety-Related Motor-Operated Gate Valve Testing and Surveillance,{close_quotes} provided an acceptable approach to addressing pressure locking and thermal binding of gate valves. More recently, the NRC has issued Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} to request that licensees take certain actions to ensure that safety-related power-operated gate valves that are susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases. Over the past two years, several plants in Region I determined that valves in certain systems were potentially susceptible to pressure locking and thermal binding, and have taken various corrective actions. The NRC Region I Systems Engineering Branch has been actively involved in the inspection of licensee actions in response to the pressure locking and thermal binding issue. Region I continues to maintain an active involvement in this area, including participation with the Office of Nuclear Reactor Regulation in reviewing licensee responses to Generic Letter 95-07.

  3. Taiwan Power Company's power distribution analysis and fuel thermal margin verification methods for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, P.H.

    1995-01-01

    Taiwan Power Company's (TPC's) power distribution analysis and fuel thermal margin verification methods for pressurized water reactors (PWRs) are examined. The TPC and the Institute of Nuclear Energy Research started a joint 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, these methods were developed to allow TPC to independently perform verifications of the local power density and departure from nucleate boiling design bases, which are required by the reload safety evaluation for the Maanshan PWR plant. The computer codes utilized were extensively validated for the intended applications. Sample calculations were performed for up to six reload cycles of the Maanshan plant, and the results were found to be quite consistent with the vendor's calculational results

  4. Qinshan phase II extension nuclear power project thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong; Ai Honglei

    2010-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor, the loadings at connections of surge line to main pipe and RCP and the displacements of surge line at supports are obtained. (authors)

  5. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  6. A modernized high-pressure heater protection system for nuclear and thermal power stations

    Science.gov (United States)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  7. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  8. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    Science.gov (United States)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  9. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    possibilities for retrofitting of the Tashkent thermal electric power plant on the basis of solar power technologies are being discussed with the German partners in the framework of the Joint-research project, funded by Volkswagenstiftung foundation (Germany) entitled 'Optimum feed-in of solar heat for conversion of low-efficient fossil-fired steam power plants to low-emission solar hybrid power plants by example of Uzbekistan'. The main data on the Tashkent thermal electric power plant: 12 steam turbines with total electric power output 1830 MW are installed. Main fuel - natural gas. Specific mass flow of the fuel - 394 gram/kWph. Electric efficiency of the power plant - 31,2 %. There is a reservoir for a masut (black oil) for 80 000 tons in the power plant, which consists of 7 masut tanks each of 10000 m 3 and 6 masut tanks each of 5000 m 3 . The following possibilities of retrofitting of the Tashkent thermal electric power plant with using solar technologies are being considered: 1. Installing a solar-fed steam generator instead of the existing steam generator. 2. Installing a solar-fed steam generator parallel to the existing steam generator. 3. Installing solar-heated feed water pre-heaters instead of the existing high-pressure and low-pressure feed water pre-heaters. 4. Installing solar-heated feed water pre-heaters parallel to the existing high-pressure and low-pressure feed water pre-heaters. The results of the researches are expected to improve electric efficiency of the Tashkent thermal electric power plant simultaneously reducing emissions into the environment. (authors)

  10. NRC staff review of licensee responses to pressure-locking and thermal-binding issue

    Energy Technology Data Exchange (ETDEWEB)

    Rathbun, H.J.

    1996-12-01

    Commercial nuclear power plant operating experience has indicated that pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. In Generic Letter (GL) 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} the U.S. Nuclear Regulatory Commission (NRC) staff requested that nuclear power plant licensees take certain actions to ensure that valves susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases of the facility. The NRC staff has received summary information from licensees in response to GL 95-07 describing actions they have taken to prevent the occurrence of pressure locking and thermal binding. The NRC staff has developed a systematic process to help ensure uniform and consistent review of licensee submittals in response to GL 95-07.

  11. Pressurized thermal shock analysis in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Stefan; Braun, Michael [TUEV NORD Nuclear, Hannover (Germany)

    2015-03-15

    For more than 30 years TUeV NORD is a competent consultant in nuclear safety is-sues giving expert third party opinion to our clients. According to the German regulations the safety against brittle fracture has to be proved for the reactor pressure vessel (RPV) and with a new level of knowledge the proof has to be continuously updated with the development in international codes and standards like ASME, BS and RCC-M. The load of the RPV is a very complex transient pressure and temperature situation. Today these loading conditions can be modeled by thermal hydraulic calculations and new experimental results much more detailed than in the construction phase of German Nuclear Power Plants in the 1980s. Therefore, the proof against brittle fracture from the construction phase had to be updated for all German Nuclear Power Plants with the new findings of the loading conditions especially for a postulated small leakage in the main coolant line. The RPV consists of ferritic base material (about 250 mm) and austenitic cladding (about 6 mm) at the inner side. The base material and the cladding have different physical properties which have to be considered temperature dependently in the cal-culations. Radiation-embrittlement effects on the material are to be respected in the fracture mechanics assessment. The regions of the RPV of special interest are the core weld, the inlet and outlet nozzle region and the flange connecting weld zone. The fracture mechanics assessment is performed for normal and abnormal operating conditions and for accidents like LOCA (Loss of Coolant Accident). In this paper the German approach to fracture mechanics assessment to brittle fracture will be discussed from the point of view of a third party organization.

  12. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  13. Pressurized Thermal Shock Analysis for OPR1000 Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    The study provides a brief understanding of the analysis procedure and techniques using ANSYS, such as the acceptance criteria, selection and categorization of events, thermal analysis, structural analysis including fracture mechanics assessment, crack propagation and evaluation of material properties. PTS may result from instrumentation and control malfunction, inadvertent steam dump, and postulated accidents such as smallbreak (SB) LOCA, large-break (LB) LOCA, main steam line break (MSLB), feedwater line breaks and steam generator overfill. In this study our main focus is to consider only the LB LOCA due to a cold leg break of the Optimized Power Reactor 1000 MWe (OPR1000). Consideration is given as well to the emergency core cooling system (ECCS) specific sequence with the operating parameters like pressure, temperature and time sequences. The static structural and thermal analysis to investigate the effects of PTS on RPV is the main motivation of this study. Specific surface crack effects and its propagation is also considered to measure the integrity of the RPV. This study describes the procedure for pressurized thermal shock analysis due to a loss of coolant accidental condition and emergency core cooling system operation for reactor pressure vessel.. Different accidental events that cause pressurized thermal shock to nuclear RPV that can also be analyzed in the same way. Considering the limitations of low speed computer only the static analysis is conducted. The modified LBLOCA phases and simplified geometry can is utilized to analyze the effect of PTS on RPV for general understanding not for specific specialized purpose. However, by integrating the disciplines of thermal and structural analysis, and fracture mechanics analysis a clearer understanding of the total aspect of the PTS problem has resulted. By adopting the CFD, thermal hydraulics, uncertainties and risk analysis for different type of accidental conditions, events and sequences with proper

  14. The thermal pressure distribution of a simulated cold neutral medium

    Energy Technology Data Exchange (ETDEWEB)

    Gazol, Adriana, E-mail: a.gazol@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacán (Mexico)

    2014-07-01

    We numerically study the thermal pressure distribution in a gas with thermal properties similar to those of the cold neutral interstellar gas by analyzing three-dimensional hydrodynamic models in boxes with sides of 100 pc with turbulent compressible forcing at 50 pc and different Mach numbers. We find that at high pressures and for large Mach numbers, both the volume-weighted and the density-weighted distributions can be appropriately described by a log-normal distribution, whereas for small Mach numbers they are better described by a power law. Thermal pressure distributions resulting from similar simulations but with self-gravity differ only for low Mach numbers; in this case, they develop a high pressure tail.

  15. Thermal pressure and isochoric thermal conductivity of solid CO2

    International Nuclear Information System (INIS)

    Purs'kij, O.Yi.

    2005-01-01

    The analysis of the correlation between the thermal pressure and the isochoric thermal conductivity of solid CO 2 has been carried out. The temperature dependences of the thermal pressure and isochoric thermal conductivity for samples with various molar volumes have been obtained. The isothermal pressure dependences of the thermal conductivity of solid CO 2 have been calculated. The form of the temperature dependence of the isochoric thermal conductivity taking the thermal pressure into account has been revealed. Behaviour of the isochoric thermal conductivity is explained by phonon-phonon interaction and additional influence of the thermal pressure

  16. Simulation and test of the thermal behavior of pressure switch

    Science.gov (United States)

    Liu, Yifang; Chen, Daner; Zhang, Yao; Dai, Tingting

    2018-04-01

    Little, lightweight, low-power microelectromechanical system (MEMS) pressure switches offer a good development prospect for small, ultra-long, simple atmosphere environments. In order to realize MEMS pressure switch, it is necessary to solve one of the key technologies such as thermal robust optimization. The finite element simulation software is used to analyze the thermal behavior of the pressure switch and the deformation law of the pressure switch film under different temperature. The thermal stress releasing schemes are studied by changing the structure of fixed form and changing the thickness of the substrate, respectively. Finally, the design of the glass substrate thickness of 2.5 mm is used to ensure that the maximum equivalent stress is reduced to a quarter of the original value, only 154 MPa when the structure is in extreme temperature (80∘C). The test results show that after the pressure switch is thermally optimized, the upper and lower electrodes can be reliably contacted to accommodate different operating temperature environments.

  17. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  18. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  19. Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector

    Directory of Open Access Journals (Sweden)

    Shamshirgaran S. Reza

    2017-01-01

    Full Text Available The evaluations of the performance of solar flat-plate collectors are reported in the literature. A computer program developed by MATLAB has been applied for modelling the performance of a solar collector under steady state laminar conditions. Results demonstrate that Cu-water nanofluid would be capable of boosting the thermal efficiency of the collector by 2.4% at 4% volume concentration in the case of using Cunanofluid instead of just water as the working fluid. It is noteworthy that, dispersing the nanoparticles into the water results in a higher pressure drop and, therefore, a higher power consumption for pumping the nanofluid within the collector. It has been estimated for the collector understudy, that the increase in the pressure drop and pumping power to be around 30%.

  20. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  1. Thermal hydraulic aspects of uncertainty in power measurement of nuclear reactors

    International Nuclear Information System (INIS)

    Gupta, S.K.; Kumar, Rajesh; Gaikwad, A.J.; Majumdar, P.; Agrawal, R.A.

    2004-01-01

    Power measurement in Nuclear Reactors is carried out through in-core and ex-core neutron monitors which are continuously calibrated against thermal power. In Indian Pressurized Heavy Water Reactors (220 MWe) the temperature difference across steam generator hot and cold legs is taken to be a measure of thermal power as the flow through the primary heat transport system is assumed to be constant through out is operation. Gross flow is not measured directly. However, the flow depends on the characteristics of the primary heat transport pumps, which are centrifugal type and are affected by the grid frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable high grid frequency. This uncertainty is in addition to instrument inaccuracy and should be accounted for in safety analysis. In some reactors thermal power is calculated from stem flow rate and pressure, here the location of steam flow measurement is important to avoid leakage related error in thermal power. Neutron absorption cross section in the power measurement instruments and the power production in the fuel varies with neutron energy levels, these aspects are also discussed in the paper. (author)

  2. Thermal-hydraulic oscillations in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings

    International Nuclear Information System (INIS)

    Wang, S.B.; Wu, J.Y.; Chin Pan; Lin, W.K.

    2004-01-01

    The stability of a natural circulation boiling loop is of great importance and interests for both academic researches and many industrial applications, such as next generation boiling water reactors. The present study investigated the thermal-hydraulic oscillation behavior in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings. The experiments were conducted at atmospheric pressure with heating power ranging from 4 to 8 kW and inlet subcooling ranging from 27 to 75 deg. C. Significant oscillations in loop mass flow rate, pressure drop in each section, and heated wall and fluid temperatures are present for all the cases studied here. The oscillation is typically quasi-periodic and with flow reversal with magnitudes smaller than forward flows. The magnitude of wall temperature oscillation could be as high as 60 deg. C, which will be of serious concern for practical applications. It is found that the first fundamental oscillation (large magnitude oscillation) frequency increases with increase in heated power and with decrease in inlet subcooling. (author)

  3. Pressurized thermal shock program sponsored by EPRI

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1983-01-01

    The potential for long term neutron embrittlement of reactor vessels has been recognized for a number of years. Reactor vessel thermal shock is not a new concern, but with a growing number of plants approaching their mid-lives, it is a concern that must be understood and dealt with. Recent attention has focused on the performance of vessels during overcooling transients. This concern was designated as Unresolved Safety Issue A-49 by the Nuclear Regulatory Commission in December 1981. The USNRC staff has identified eight overcooling events of concern in U.S. PWRs. The concern is currently limited to Pressurized Water Reactors. The Electric Power Research Institute (EPRI) has supported research on reactor vessel integrity for a number of years and has supported an extensive effort on reactor vessel pressurized thermal shock (PTS) over the last three years. In addition, EPRI has developed a linked set of computer codes to simulate the pressurized thermal shock transients and assess the integrity of the nuclear reactor vessels for various overcooling transients. This paper focuses on the integrated analysis approach being used by EPRI in performing such analysis. (orig.)

  4. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  5. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  6. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  7. An estimation of reactor thermal power uncertainty using UFM-based feedwater flow rate in nuclear power plants

    International Nuclear Information System (INIS)

    Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang

    2005-01-01

    Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)

  8. Critical success factors for BOT electric power projects in China: Thermal power versus wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhen-Yu. [School of Business Administration, North China Electric Power University, Beijing 102206 (China); Zuo, Jian; Zillante, George [School of Natural and Built Environments, University of South Australia, Adelaide 5001 (Australia); Wang, Xin-Wei [Shandong Nuclear Power Equipment Manufacturing Co. Ltd, Haiyang, Shandong 265118 (China)

    2010-06-15

    Chinese electric power industry has adopted Build-Operate-Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity - thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China. (author)

  9. Pressurized Thermal Shock, Pts

    International Nuclear Information System (INIS)

    Boyd, C.

    2008-01-01

    Pressurized Thermal Shock (Pts) refers to a condition that challenges the integrity of the reactor pressure vessel. The root cause of this problem is the radiation embrittlement of the reactor vessel. This embrittlement leads to an increase in the reference temperature for nil ductility transition (RTNDT). RTNDT can increase to the point where the reactor vessel material can loose fracture toughness during overcooling events. The analysis of the risk of having a Pts for a specific plant is a multi-disciplinary problem involving probabilistic risk analysis (PRA), thermal-hydraulic analysis, and ultimately a structural and fracture analysis of the vessel wall. The PRA effort involves the postulation of overcooling events and ultimately leads to an integrated risk analysis. The thermal-hydraulic effort involves the difficult task of predicting the system behavior during a postulated overcooling scenario with a special emphasis on predicting the thermal and mechanic loadings on the reactor pressure vessel wall. The structural and fracture analysis of the reactor vessel wall relies on the thermal-hydraulic conditions as boundary conditions. The US experience has indicated that medium and large diameter primary system breaks dominate the risk of Pts along with scenarios that involve a stuck open valve (and associated system cooldown) that recloses resulting in system re-pressurization while the vessel wall is cool.

  10. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  11. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  12. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    Science.gov (United States)

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  14. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  15. A powerful methodology for reactor vessel pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Boucau, J.; Mager, T.

    1994-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). More specifically, the review of the old WWER-type of reactors (WWER 440/230) has indicated a sensitive behaviour to neutron embrittlement. This led already to some remedial actions including safety injection water preheating or vessel annealing. Such measures are usually taken based on the analysis of a selected number of conservative PTS events. Consideration of all postulated cooldown events would draw attention to the impact of operator action and control system effects on reactor vessel PTS. Westinghouse has developed a methodology which couples event sequence analysis with probabilistic fracture mechanics analyses, to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. Once the event sequences of concern are identified, detailed deterministic thermal-hydraulic and structural evaluations can be performed to determine the conditions required to minimize the extension of postulated flaws or enhance flaw arrest in the reactor vessel. The results of these analyses can then be used to better define further modifications in vessel and plant system design and to operating procedures. The purpose of the present paper will be to describe this methodology and to show its benefits for decision making. (author). 1 ref., 3 figs

  16. Applications of laser diagnostics to thermal power plants and engines

    International Nuclear Information System (INIS)

    Deguchi, Y.; Kamimoto, T.; Wang, Z.Z.; Yan, J.J.; Liu, J.P.; Watanabe, H.; Kurose, R.

    2014-01-01

    The demands for lowering the burdens on the environment will continue to grow steadily. It is important to monitor controlling factors in order to improve the operation of industrial thermal systems. In engines, exhaust gas temperature and concentration distributions are important factors in nitrogen oxides (NO x ), total hydrocarbon (THC) and particulate matter (PM) emissions. Coal and fly ash contents are parameters which can be used for the control of coal-fired thermal power plants. Monitoring of heavy metals such as Hg is also important for pollution control. In this study, the improved laser measurement techniques using computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS), low pressure laser-induced breakdown spectroscopy (LIBS), and laser breakdown time-of-flight mass spectrometry (LB-TOFMS) have been developed and applied to measure 2D temperature and species concentrations in engine exhausts, coal and fly ash contents, and trace species measurement. The 2D temperature and NH 3 concentration distributions in engine exhausts were successfully measured using CT-TDLAS. The elemental contents of size-segregated particles were measured and the signal stability increased using LIBS with the temperature correction method. The detection limit of trace species measurement was enhanced using low pressure LIBS and LB-TOFMS. The detection limit of Hg can be enhanced to 3.5 ppb when employing N 2 as the buffer gas using low pressure LIBS. Hg detection limit was about 0.82 ppb using 35 ps LB-TOFMS. Compared to conventional measurement methods laser diagnostics has high sensitivity, high response and non-contact features for actual industrial systems. With these engineering developments, transient phenomena such as start-ups in thermal systems can be evaluated to improve the efficiency of these thermal processes. - Highlights: • Applicability of newly developed laser diagnostics was demonstrated for the improvement of thermal power plants and

  17. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  18. Pressure-assisted thermal sterilization of soup

    Science.gov (United States)

    Shibeshi, Kidane; Farid, Mohammed M.

    2010-12-01

    The overall efficiency of an existing scale-up pressure-assisted thermal sterilization (PATS) unit was investigated with regards to inactivation of Geobacillus stearothermophilus spores suspended in pumpkin soup. The PATS unit is a double pipe heat exchanger in which the soup is pumped into its inner high pressure tube and constrained by two high pressure valves, while steam is continuously passed through the annular region to heat the content. The technology is based on pressure generation by thermal expansion of the liquid in an enclosure. In this work, the addition of an air line to push the treated liquid food out of the existing PATS unit has improved the overall quality of the treated samples, as evidenced by achieving higher log reduction of the spores. Compared with thermal processing, the application of PATS shows the potential for lowering the thermal treatment temperature, offering improved food quality.

  19. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  20. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  1. The accident prevention regulation 'Thermal Power Stations' and its effects in practice

    International Nuclear Information System (INIS)

    Albert, O.

    1983-01-01

    The origin of the accident prevention regulation - ''Thermal Power Stations'' is attributable mainly to two tragic accidents. It has made organizational changes and interventions in the operational process necessary in thermal power stations. Emphasis is laid upon the consistent issue of written permits-to-work on plant components carrying a heating medium and operating under pressure and on written operating licences for the operation of boilers. The paper describes additional ways in which regulation influences the daily practices of the power station operator. Brief references is made to the draft of the revised regulation. (orig./HP) [de

  2. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  3. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    Science.gov (United States)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  4. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  5. Discussion of mechanical design for pressured cavity-air-receiver in solar power tower system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhilin; Zhang, Yaoming; Liu, Deyou; Wang, Jun; Liu, Wei [Hohai Univ., Nanjing (China). New Materials and Energy Sources Research and Exploitation Inst.

    2008-07-01

    In 2005, Hohai university and Nanjing Chunhui science and technology Ltd. of China, cooperating with Weizmann Institute of Science and EDIG Ltd. of Israel, built up a 70kWe solar power tower test plant in Nanjing, Jiangsu province, China, which was regarded as the first demonstration project to demonstrate the feasibility of solar power tower system in China. The system consists of heliostats field providing concentrated sunlight, a solar tower with a height of 33 meter, a pressured cavity-air-receiver transforming solar energy to thermal energy, a modified gas turbine adapting to solar power system, natural gas subsystem for solar-hybrid generation, cooling water subsystem for receiver and CPC, controlling subsystem for whole plant, et al. In this system, air acts as actuating medium and the system works in Brayton cycle. Testing results show that solar power tower system is feasible in China. To promote the development of solar powered gas turbine system and the pressured cavity-air-receiver technology in China, it is necessary to study the mechanical design for pressured Cavity-air-receiver. Mechanical design of pressured cavity-air-receiver is underway and some tentative principles for pressured cavity-air-receiver design, involving in power matching, thermal efficiency, material choosing, and equipment security and machining ability, are presented. At the same time, simplified method and process adapted to engineering application for the mechanical design of pressured cavity-air-receiver are discussed too. Furthermore, some design parameters and appearance of a test sample of pressured cavity-air-receiver designed in this way is shown. It is appealed that, in China, the research in this field should be intensified and independent knowledge patents for pivotal technological equipments such as receiver in solar power tower system should be formed. (orig.)

  6. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  7. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec"T"M 649 and Novec"T"M 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  8. Power Electronics Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics Thermal Management Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the investigates and develops thermal management strategies for power electronics systems that use wide-bandgap

  9. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  10. Pressure test behaviour of embalse nuclear power plant containment structure

    International Nuclear Information System (INIS)

    Bruschi, S.; Marinelli, C.

    1984-01-01

    It's described the structural behaviour of the containment structure during the pressure test of the Embalse plant (CANDU type, 600MW), made of prestressed concrete with an epoxi liner. Displacement, strain, temperature, and pressure measurements of the containment structure of the Embalse Nuclear Power Plant are presented. The instrumentation set up and measurement specifications are described for all variables of interest before, during and after the pressure test. The analytical models to simulate the heat transfer due to sun heating and air convenction and to predict the associated thermal strains and displacements are presented. (E.G.) [pt

  11. Fuzzy control applied to nuclear power plant pressurizer system

    International Nuclear Information System (INIS)

    Oliveira, Mauro V.; Almeida, Jose C.S.

    2011-01-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  12. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  13. Behaviours of reinforced concrete containment models under thermal gradient and internal pressure

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Ohnuma, H.; Yoshioka, Y.; Okada, K.; Ueda, M.

    1979-01-01

    The provisions for design concepts in Japanese Technical Standard of Concrete Containments for Nuclear Power Plants require to take account of thermal effects into design. The provisions also propose that the thermal effects could be relieved according to the degree of crack formation and creep of concrete, and may be neglected in estimating the ultimate strength capacity in extreme environmental loading conditions. This experimental study was carried out to clarify the above provisions by investigating the crack and deformation behaviours of two identical reinforced cylindrical models with dome and basement (wall outer diameter 160 cm, and wall thickness 10 cm). One of these models was hydraulically pressurized up to failure at room temperature and the other was subjected to similar internal pressure combined with the thermal gradient of approximately 40 to 50 0 C across the wall. Initial visual cracks were recognized when the stress induced by the thermal gradient reached at about 85% of bending strength of concrete used. The thermal stress of reinforcement calculated with the methods proposed by the authors using an average flexural rigidity considering the contribution of concrete showed good agreement with test results. The method based on the fully cracked section, however, was recognized to underestimate the measured stress. These cracks considerably reduced the initial deformation caused by subsequent internal pressure. (orig.)

  14. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  15. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  16. Chaotic oscillations in a low pressure two-phase natural circulation loop under low power and high inlet subcooling conditions

    International Nuclear Information System (INIS)

    Wu, C.Y.; Wang, S.B.; Pan, C.

    1996-01-01

    The oscillation characteristics of a low pressure two-phase natural circulation loop have been investigated experimentally in this study. Experimental results indicate that the characteristics of the thermal hydraulic oscillations can be periodic, with 2-5 fundamental frequencies, or chaotic, depending on the heating power and inlet subcooling. The number of fundamental frequencies of oscillation increases if the inlet subcooling is increased at a given heating power or the heating power is decreased at a given inlet subcooling; chaotic oscillations appear if the inlet subcooling is further increased and/or the heating power is further decreased. A map of the oscillation characteristics is thus established. The change in oscillation characteristics is evident from the time evolution and power spectrum of a thermal hydraulic parameter and the phase portraits of two thermal hydraulic parameters. These results reveal that a strange attractor exists in a low pressure two-phase natural circulation loop with low power and very high inlet subcooling. (orig.)

  17. Thermal circuit and supercritical steam generator of the BGR-300 nuclear power plant

    International Nuclear Information System (INIS)

    Afanas'ev, B.P.; Godik, I.B.; Komarov, N.F.; Kurochnkin, Yu.P.

    1979-01-01

    Secondary coolant circuit and a steam generator for supercritical steam parameters of the BGR-300 reactor plant are described. The BGR-300 plant with a 300 MW(e) high-temperature gas-cooled fast reactor is developed as a pilot commercial plant. It is shown that the use of a supercritical pressure steam increases the thermal efficiency of the plant and descreases thermal releases to the environment, permits to use home-made commercial turbine plants of large unit power. The proposed supercritical pressure steam generator has considerable advantages from the viewpoint of heat transfer and hydrodynamical processes

  18. Thermal high pressure hydrogenolysis II. The thermal high pressure hydrocracking of fluorene

    NARCIS (Netherlands)

    Oltay, Ernst; Penninger, Johannes M.L.; Konter, Willem A.N.

    1973-01-01

    The thermal hydrocracking of fluorene was investigated in the temperature range of 400 to 480 °C and hydrogen pressures of up to 375 atm. As main reaction products were found 2-methylbiphenyl, biphenyl, toluene and benzene. They account for about 90% of the converted fluorene. Only very low

  19. Thermal Aspects Related to Power Assemblies

    Directory of Open Access Journals (Sweden)

    PLESCA, A.

    2010-02-01

    Full Text Available In many cases when a power assembly based on power semiconductors is used, catastrophic failure is the result of steep temperature gradient in the localized temperature distribution. Hence, an optimal heatsink design for certain industrial applications has become a real necessity. In this paper, the Pro/ENGINEER software with the thermal simulation integrated tool, Pro/MECHANICA, has been used for thermal study of a specific power semiconductor assembly. A series of steady-state and transient thermal simulations have been performed. The experimental tests have confirmed the simulation results. Therefore, the use of specific 3D modeling and simulation software allows to design special power semiconductor assemblies with a better thermal transfer between its heatsink and power electronic components at given operating conditions.

  20. Thermal performance of a Stirling engine powered by a solar simulator

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit; Çınar, Can; Solmaz, Hamit; Özgören, Yasar Önder; Uyumaz, Ahmet

    2015-01-01

    In this study, the performance of a beta type Stirling engine which works at relatively lower temperatures was investigated using 400 W and 1000 W halogen lamps as a heat source and helium as the working fluid. The working fluid was charged into the engine block and the pressure of the working fluid was ranged from 1 to 5 bars with 1 bar increments. The halogen lamps were placed into a cavity adjacent to the hot end of the displacer cylinder, which is made of aluminum alloy. In the experiments conducted with 400 W halogen lamp, the temperature of the cavity was 623 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 37.08 W, 1.68 Nm and 9.27%, at 5 bar charge pressure. For the 1000 W halogen lamp, the temperature of the cavity was determined to be 873 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 127.17 W, 3.4 Nm and 12.85%, at the same charge pressure. The experimental thermal efficiencies of the engine were also compared with thermodynamic nodal analysis. - Highlights: • The performance of a beta type Stirling engine was investigated. • 400 and 1000 W halogen lamps were used as a solar simulator in the experiments. • Cavity temperature was measured 623 and 873 K for 400 and 1000 W lamps. • 1000 W halogen lamp provided better engine performance and thermal efficiency. • Experimental results of efficiency were compared with nodal analysis results

  1. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  2. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  3. Aging considerations for pressurizers in nuclear power plants

    International Nuclear Information System (INIS)

    Ware, A.G.

    1988-01-01

    This paper discusses the degradation mechanisms affecting the residual life of the nuclear pressurized water reactor (PWR) pressurizer and its subcomponents. The major sources of degradation for pressurizers are thermal transients such as plant heatups and cooldowns, internal pressure within the vessel, high intermittent flow through the spray nozzle, differential thermal movement causing rubbing of the immersion heater sheathes, and prolonged exposure to chemical and thermal conditions that can potentially lead to degradation. The latter includes thermal embrittlement of cast stainless steel spray heads and chemically assisted intergranular stress corrosion cracking of stainless steel. Steam leakage that interacts with lubricants used to assemble manway bolted joints can cause corrosion of bolts

  4. Power Electronics Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert; Bennion, Kevin

    2016-06-08

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  5. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    International Nuclear Information System (INIS)

    Wang Hongyue; Zhao Lingling; Zhou Qiangtai; Xu Zhigao; Kim, Hyung Taek

    2008-01-01

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters

  6. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  7. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  8. Experimental thermal behavior of a power plant reheater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. Manuela Prieto; Garcia, F. Javier Fernandez; Ramon, Ines Suarez [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33204 Gijon, Asturias (Spain); Roces, Hilario Sanchez [Central Termica de Soto de Ribera, Soto de Ribera, Asturias (Spain)

    2006-04-15

    The process conditions of power plant components subjected to high pressures and temperatures are essential to determine their remaining life, availability and efficiency. It is, therefore, expedient to pay special attention to critical components, such as superheater and reheater heat exchangers, headers, and main and reheated steam lines. In this paper, on-line and off-line variables of a power plant reheater that has presented problems of thickness losses and repetitive tube fissures are studied. The fissures are associated with the effect of a thermal-mechanical mechanism. Off-line measurements were taken of the following variables: pressure, temperature, velocity and composition of the gases. On-line instrumentation was completed by the installation of specific thermocouples to ascertain the temperatures in the tubes outlet. Various angles for the fuel inlet of the burners and variations in the number and location of the working burners were also assayed. As a consequence of this analysis, it can be deduced that there are important differences in the outlet temperature of the reheater tubes that decrease for lower powers. Finally, it is pointed that a non-uniform distribution of the steam flow in the reheater might be the cause of the problem. (author)

  9. PNL technical review of pressurized thermal-shock issues

    International Nuclear Information System (INIS)

    Pedersen, L.T.; Apley, W.J.; Bian, S.H.; Defferding, L.J.; Morgenstern, M.H.; Pelto, P.J.; Simonen, E.P.; Simonen, F.A.; Stevens, D.L.; Taylor, T.T.

    1982-07-01

    Pacific Northwest Laboratory (PNL) was asked to develop and recommend a regulatory position that the Nuclear Regulatory Commission (NRC) should adopt regarding the ability of reactor pressure vessels to withstand the effects of pressurized thermal shock (PTS). Licensees of eight pressurized water reactors provided NRC with estimates of remaining effective full power years before corrective actions would be required to prevent an unsafe operating condition. PNL reviewed these responses and the results of supporting research and concluded that none of the eight reactors would undergo vessel failure from a PTS event before several more years of operation. Operator actions, however, were often required to terminate a PTS event before it deteriorated to the point where failure could occur. Therefore, the near-term (less than one year) recommendation is to upgrade, on a site-specific basis, operational procedures, training, and control room instrumentation. Also, uniform criteria should be developed by NRC for use during future licensee analyses. Finally, it was recommended that NRC upgrade nondestructive inspection techniques used during vessel examinations and become more involved in the evaluation of annealing requirements

  10. Optimization of thermal efficiency of nuclear central power like as PWR

    International Nuclear Information System (INIS)

    Lapa, Nelbia da Silva

    2005-10-01

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  11. Determination of reactor thermal power using a more accurate method

    International Nuclear Information System (INIS)

    Papuga, J.; Madron, F.; Pliska, J.

    2005-01-01

    Reactor thermal power is an important operational parameter in many respects such as nuclear safety, reactor physics or evaluation of turbine thermal performance. Thermal power of a pressurized water reactor is determined on the basis of the steam generator thermal balance. The balance can be made in several variants differing from one another by the selection of different measuring circuits whose data are used in the balancing. In principle, no one such variant gives the true value of the thermal power. Among the variant values, the one nearest to the unknown true value of reactor thermal power is probably the value calculated with the lowest uncertainty. The determination of such uncertainty is not easy and its value can make even several percent, which has significant economic consequences. This paper presents the method of data reconciliation and its application to the data of the third of Dukovany NPP. The data reconciliation method allows to exploit all the information which process data contain. It is based on the statistical adjustment of the redundant data in such a way that the adjusted data obey generally valid laws of nature (e.g. conservation laws). Mass and energy balances based on the data not yet reconciled do not obey those laws because of measurement errors. For data reconciliation in Dukovany, a detailed model of mass and energy flows describing the 3rd unit from steam generators to alternator and condenser was set up. Laws of mass and energy conservation and phase equilibrium in water-steam systems are thus fulfilled. Moreover, the user can model momentum balances in pipelines and create other equations, which are respected during calculation. The data reconciliation is done regularly for hourly averages (Authors)

  12. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin

    2011-01-01

    This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability

  13. Workshop on gate valve pressure locking and thermal binding

    International Nuclear Information System (INIS)

    Brown, E.J.

    1995-07-01

    The purpose of the Workshop on Gate Valve Pressure Locking and Thermal Binding was to discuss pressure locking and thermal binding issues that could lead to inoperable gate valves in both boiling water and pressurized water reactors. The goal was to foster exchange of information to develop the technical bases to understand the phenomena, identify the components that are susceptible, discuss actual events, discuss the safety significance, and illustrate known corrective actions that can prevent or limit the occurrence of pressure locking or thermal binding. The presentations were structured to cover U.S. Nuclear Regulatory Commission staff evaluation of operating experience and planned regulatory activity; industry discussions of specific events, including foreign experience, and efforts to determine causes and alleviate the affects; and valve vendor experience and recommended corrective action. The discussions indicated that identifying valves susceptible to pressure locking and thermal binding was a complex process involving knowledge of components, systems, and plant operations. The corrective action options are varied and straightforward

  14. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  15. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  16. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  17. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  18. Pressurized thermal shock. Thermo-hydraulic conditions in the CNA-I reactor pressure vessel

    International Nuclear Information System (INIS)

    Ventura, Mirta A.; Rosso, Ricardo D.

    2002-01-01

    In this paper we analyze several reports issued by the Utility (Nucleo Electrica S.A.) and related to Reactor Pressure Vessel (RPV) phenomena in the CNA-I Nuclear Power Plant. These analyses are aimed at obtaining conclusions and establishing criteria ensuring the RPV integrity. Special attention was given to the effects ECCS cold-water injection at the RPV down-comer leading to pressurized thermal shock scenarios. The results deal with hypothetical primary system pipe breaks of different sizes, the inadvertent opening of the pressurizer safety valve, the double guillotine break of a live steam line in the containment and the inadvertent actuation pressurizer heaters. Modeling conditions were setup to represent experiments performed at the UPTF, under the hypothesis that they are representative of those that, hypothetically, may occur at the CNA-I. No system scaling analysis was performed, so this assertion and the inferred conclusions are no fully justified, at least in principle. The above mentioned studies, indicate that the RPV internal wall surface temperature will be nearly 40 degree. It was concluded that they allowed a better approximation of PTS phenomena in the RPV of the CNA-I. Special emphasis was made on the influence of the ECCS systems on the attained RPV wall temperature, particularly the low-pressure TJ water injection system. Some conservative hypothesis made, are discussed in this report. (author)

  19. KMRR thermal power measurement error estimation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Sim, B.S.; Lim, I.C.; Oh, S.K.

    1990-01-01

    The thermal power measurement error of the Korea Multi-purpose Research Reactor has been estimated by a statistical Monte Carlo method, and compared with those obtained by the other methods including deterministic and statistical approaches. The results show that the specified thermal power measurement error of 5% cannot be achieved if the commercial RTDs are used to measure the coolant temperatures of the secondary cooling system and the error can be reduced below the requirement if the commercial RTDs are replaced by the precision RTDs. The possible range of the thermal power control operation has been identified to be from 100% to 20% of full power

  20. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  1. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility...

  2. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  3. Examination of applicability of thermoelectric power measurement for thermal aging evaluation of cast duplex stainless steel to real components in nuclear power plants

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2006-01-01

    It is known the mechanical properties of cast duplex stainless steel, which is used for main coolant pipes of pressurized water reactor type nuclear power plants, change due to thermal aging. Non-destructive evaluation method for thermal aging using thermoelectric power measurement has been studied in INSS. And it has been found that there was some relation between mechanical properties and thermoelectric power in the case of accelerated aging sample and change in thermoelectric power was caused by change in microstructure due to thermal aging. In this study, n-site measurement of thermoelectric power of a main coolant pipe with the measurement device which has been used in a laboratory was carried out. As a result, thermoelectric power of the main coolant pipe was almost measured within the range from -2.2 to -2μ V/degC, and that was corresponding to the relation of accelerated aging samples between thermoelectric power and the product of ferrite content and aging parameter considering the standard error. Moreover, applying the measured thermoelectric power to the relation of accelerated aging samples between thermoelectric power and impact value, change in the impact value of the pipe seemed to be corresponding to about 40% of the maximum change assumed by thermal aging. (author)

  4. RETRAN applications in pressurized thermal shock analysis of turkey point units 3 and 4

    International Nuclear Information System (INIS)

    Arpa, J.; Fatemi, A.S.; Mathavan, S.K.

    1985-01-01

    A methodology to assess the impact of overcooling transients on vessel wall integrity with respect to pressurized thermal shock conditions has been developed at Florida Power and Light Company for the Turkey Point Nuclear Units. Small break loss-of-coolant and small steamline break events have been simulated with the RETRAN code. Highly conservative assumptions, such as engineered safeguards with minimum temperature and maximum flow, have been made to maximize cooldown and thermal stress in the vessel wall. Temperatures, pressures, and flows obtained with RETRAN provide input for stress and fracture mechanics analyses that evaluate reactor vessel integrity. The results of the RETRAN analyses compare well with generic calculations performed by the Westinghouse Owners Group for a similar type of plant

  5. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-01-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulae but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads. Since the SSC leads will be cooled by supercritical helium, the flow of vapor is regulated by a control valve. These leads include a superconducting portion at the cold end. All of the material properties in the model are functions of temperature, and for the helium are functions of pressure and temperature. No pressure drop calculations were performed as part of this analysis. The diameter that minimizes the Carnot work was determined for four different lengths at a design current of 6600 amps

  6. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  7. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  8. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  9. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  10. Performance analysis of different ORC configurations for thermal energy and LNG cold energy hybrid power generation system

    Science.gov (United States)

    Sun, Zhixin; Wang, Feng; Wang, Shujia; Xu, Fuquan; Lin, Kui

    2017-01-01

    This paper presents a thermal energy and Liquefied natural gas (LNG) cold energy hybrid power generation system. Performances of four different Organic Rankine cycle (ORC) configurations (the basic, the regenerative, the reheat and the regenerative-reheat ORCs) are studied based on the first and the second law of thermodynamics. Dry organic fluid R245fa is selected as the typical working fluid. Parameter analysis is also conducted in this paper. The results show that regeneration could not increase the thermal efficiency of the thermal and cold energy hybrid power generation system. ORC with the reheat process could produce more specific net power output but it may also reduce the system thermal efficiency. The basic and the regenerative ORCs produce higher thermal efficiency while the regenerative-reheat ORC performs best in the exergy efficiency. A preheater is necessary for the thermal and cold energy hybrid power generation system. And due to the presence of the preheater, there will be a step change of the system performance as the turbine inlet pressure rises.

  11. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  12. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  13. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  14. Effects of pressure and temperature on thermal contact resistance between different materials

    Directory of Open Access Journals (Sweden)

    Zhao Zhe

    2015-01-01

    Full Text Available To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.

  15. Water pollution and thermal power stations

    International Nuclear Information System (INIS)

    Maini, A.; Harapanahalli, A.B.

    1993-01-01

    There are a number of thermal power stations dotting the countryside in India for the generation of electricity. The pollution of environment is continuously increasing in the country with the addition of new coal based power stations and causing both a menace and a hazard to the biota. The paper reviews the problems arising out of water pollution from the coal based thermal power stations. (author). 2 tabs

  16. Non-thermal pressure in the outskirts of Abell 2142

    Science.gov (United States)

    Fusco-Femiano, Roberto; Lapi, Andrea

    2018-03-01

    Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/ne basing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Pe and of the X-ray electron density ne does not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts.

  17. An analysis of system pressure and temperature distribution in self-pressurizer of SMART considering thermal stratification at intermediate cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    Because the pressurizer is in reactor vessel, the heat transfer from primary water would increase the temperatures of fluids in pressurizer to same temperature of hotleg, if no cooling equipment were supplied. Thus, heat exchanger and thermal insulator are needed to minimize heat transferred from primary water and to remove heat in pressurizer. The temperatures in cavities of pressurizer for normal operation are 70 deg C and 74 deg C for intermediate and end cavity, respectively, which considers the solubility of nitrogen gas in water. Natural convection is the mechanism of heat balance in pressurizer of SMART. In SMART, the heat exchanger in pressurizer is placed in lower part of intermediate cavity, so the heat in upper part of intermediate cavity can't be removed adequately and it can cause thermal stratification. If thermal stratification occurred, it increases heat transfers to nitrogen gas and system pressure increases as the result. Thus, proper evaluation of those effects on system pressure and ways to mitigate thermal stratification should be established. This report estimates the system pressure and temperatures in cavities of pressurizer with considering thermal stratification in intermediate cavity. The system pressure and temperatures for each cavities considered size of wet thermal insulator, temperature of upper plate of reactor vessel, parameters of heat exchanger in intermediate cavity such as flow rate and temperature of cooling water, heat transfer area, effective tube height, and location of cooling tube. In addition to the consideration of thermal stratification thermal mixing of all water in intermediate cavity also considered and compared in this report. (author). 6 refs., 60 figs., 2 tabs.

  18. Power Electronics Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-07

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  19. Electrical properties of pressure quenched silicon by thermal spraying

    International Nuclear Information System (INIS)

    Tan, S.Y.; Gambino, R.J.; Sampath, S.; Herman, H.

    2007-01-01

    High velocity thermal spray deposition of polycrystalline silicon film onto single crystal substrates, yields metastable high pressure forms of silicon in nanocrystalline form within the deposit. The phases observed in the deposit include hexagonal diamond-Si, R-8, BC-8 and Si-IX. The peculiar attribute of this transformation is that it occurs only on orientation silicon substrate. The silicon deposits containing the high pressure phases display a substantially higher electrical conductivity. The resistivity profile of the silicon deposit containing shock induced metastable silicon phases identified by X-ray diffraction patterns. The density of the pressure induced polymorphic silicon is higher at deposit/substrate interface. A modified two-layer model is presented to explain the resistivity of the deposit impacted by the pressure induced polymorphic silicon generated by the thermal spraying process. The pressure quenched silicon deposits on the p - silicon substrate, with or without metastable phases, display the barrier potential of about 0.72 eV. The measured hall mobility value of pressure quenched silicon deposits is in the range of polycrystalline silicon. The significance of this work lies in the fact that the versatility of thermal spray may enable applications of these high pressure forms of silicon

  20. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    International Nuclear Information System (INIS)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in x 1.2 m x 17.1 cm thick [4 ft x 4 ft x 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the open-quotes mirrorclose quotes insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in x 2.1 in [10 ft x 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28 degrees C/hr [12.5, 25, and 50 degrees F/hr] as measured on the heated face. A peak temperature of 454 degrees C [850 degrees F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing

  1. Detection of fatigue damage of high and medium pressure rotor by X-ray diffraction method. Survey and research of nondestructive examination of thermal power generation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tatsuo; Suesada, Yasuhiko; Nishioka, Noriaki; Goto, Toru; Ito, Hitomi; Kadoya, Yoshikuni

    1987-03-25

    In recent years, the existing thermal power generation facilities have been required to be operated in securing dependability from the standpoints of the operating conditions which have been getting severer and the demands to use them for longer periods, accordingly it is hoped to establish the diagnostic technology of aged deterioration by the non-destructive examination method for the facilities. In the beginning of 1959 the Kansai Electric Power Co. surveyed the current situation of this technology at various thermal power generation turbine facilities and discovered that concerning the diagnostic technology of aged deterioration by the non-destructive examination method, there remained many matters untouched in the basic research field. The company consequently started a survey and research jointly with Mitsubishi Heavy Industries in the first half of 1959. This report summarizes the research on the detection of aged deterioration due to thermal fatigue of Cr-Mo-V rotor material by the X-ray diffraction method which was conducted during the full fiscal year of 1984 and the first half of FY 1985 as a part of the above joint research. With respect to the conditions for the detection method of thermal fatigue damages of dummy grooves of the high and medium pressure rotor by the application of the X-ray diffraction method, it is preferred to measure a diffraction strength curve of the diffraction surface by using a Co tube as X-ray tube and it is also desirable to use a position sensitive proportional counter tube for X-ray detector. (5 figs, 6 refs)

  2. Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Shu, E-mail: yschen@iner.org.t [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Yuann, Yng-Ruey; Dai, Liang-Che; Lin, Yon-Pon [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)

    2011-05-15

    Research highlights: The Chinshan Mark I containment pressure-temperature responses are analyzed. GOTHIC is used to calculate the containment responses under three pipe break events. This study is used to support the Chinshan Stretch Power Uprate (SPU) program. The calculated peak pressure and temperature are still below the design values. The Chinshan containment integrity can be maintained under SPU condition. - Abstract: Chinshan Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/4 plant with original licensed thermal power (OLTP) of 1775 MWt for each unit. Recently, the Stretch Power Uprate (SPU) program for the Chinshan plant is being conducted to uprate the core thermal power to 1858 MWt (104.66% OLTP). In this study, the Chinshan Mark I containment pressure/temperature responses during LOCA at 105% OLTP (104.66% OLTP + 0.34% OLTP power uncertainty = 105% OLTP) are analyzed using the containment thermal-hydraulic program GOTHIC. Three kinds of LOCA (Loss of Coolant Accident) scenarios are investigated: Recirculation Line Break (RCLB), Main Steam Line Break (MSLB), and Feedwater Line Break (FWLB). In the short-term analyses, blowdown data generated by RELAP5 transient analyses are provided as boundary conditions to the GOTHIC containment model. The calculated peak drywell pressure and temperature in the RCLB event are 217.2 kPaG and 137.1 {sup o}C, respectively, which are close to the original FSAR results (219.2 kPaG and 138.4 {sup o}C). Additionally, the peak drywell temperature of 155.3 {sup o}C calculated by MSLB is presented in this study. To obtain the peak suppression pool temperature, a long-term RCLB analysis is performed using a simplified RPV (Reactor Pressure Vessel) volume to calculate blowdown flow rate. One RHR (Residual Heat Removal) heat exchanger is assumed to be inoperable for suppression pool cooling mode. The calculated peak suppression pool temperature is 93.2 {sup o}C, which is below the pool temperature used for evaluating the

  3. Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen, Yen-Shu; Yuann, Yng-Ruey; Dai, Liang-Che; Lin, Yon-Pon

    2011-01-01

    Research highlights: → The Chinshan Mark I containment pressure-temperature responses are analyzed. → GOTHIC is used to calculate the containment responses under three pipe break events. → This study is used to support the Chinshan Stretch Power Uprate (SPU) program. → The calculated peak pressure and temperature are still below the design values. → The Chinshan containment integrity can be maintained under SPU condition. - Abstract: Chinshan Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/4 plant with original licensed thermal power (OLTP) of 1775 MWt for each unit. Recently, the Stretch Power Uprate (SPU) program for the Chinshan plant is being conducted to uprate the core thermal power to 1858 MWt (104.66% OLTP). In this study, the Chinshan Mark I containment pressure/temperature responses during LOCA at 105% OLTP (104.66% OLTP + 0.34% OLTP power uncertainty = 105% OLTP) are analyzed using the containment thermal-hydraulic program GOTHIC. Three kinds of LOCA (Loss of Coolant Accident) scenarios are investigated: Recirculation Line Break (RCLB), Main Steam Line Break (MSLB), and Feedwater Line Break (FWLB). In the short-term analyses, blowdown data generated by RELAP5 transient analyses are provided as boundary conditions to the GOTHIC containment model. The calculated peak drywell pressure and temperature in the RCLB event are 217.2 kPaG and 137.1 o C, respectively, which are close to the original FSAR results (219.2 kPaG and 138.4 o C). Additionally, the peak drywell temperature of 155.3 o C calculated by MSLB is presented in this study. To obtain the peak suppression pool temperature, a long-term RCLB analysis is performed using a simplified RPV (Reactor Pressure Vessel) volume to calculate blowdown flow rate. One RHR (Residual Heat Removal) heat exchanger is assumed to be inoperable for suppression pool cooling mode. The calculated peak suppression pool temperature is 93.2 o C, which is below the pool temperature used for evaluating the

  4. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  5. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  6. Achieving quasi-adiabatic thermal environment to maximize resolution power in very high-pressure liquid chromatography: Theory, models, and experiments.

    Science.gov (United States)

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-04-29

    A cylindrical vacuum chamber (inner diameter 5 cm) housing a narrow-bore 2.1 mm×100 mm column packed with 1.8 μm HSS-T3 fully porous particles was built in order to isolate thermally the chromatographic column from the external air environment. Consistent with statistical physics and the mean free path of air molecules, the experimental results show that natural air convection and conduction are fully eliminated for housing air pressures smaller than 10(-4) Torr. Heat radiation is minimized by wrapping up the column with low-emissivity aluminum-tape (emissivity coefficient ϵ=0.03 vs. 0.28 for polished stainless steel 316). Overall, the heat flux at the column wall is reduced by 96% with respect to standard still-air ovens. From a practical viewpoint, the efficiency of the column run at a flow rate of 0.6 mL/min at a constant 13,000 psi pressure drop (the viscous heat power is around 9 W/m) is improved by up to 35% irrespective of the analyte retention. Models of heat and mass transfer reveal that (1) the amplitude of the radial temperature gradient is significantly reduced from 0.30 to 0.01 K and (2) the observed improvement in resolution power stems from a more uniform distribution of the flow velocity across the column diameter. The eddy dispersion term in the van Deemter equation is reduced by 0.8±0.1 reduced plate height unit, a significant gain in column performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  8. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  9. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Strategies for growth of thermal power

    International Nuclear Information System (INIS)

    Shah, R.K.D.

    1998-01-01

    The power generating industry in India is at the cross roads. Massive investments are required to achieve GDP growth of 7-8% per annum over the next 10 years. For this, appropriate strategies have to be evolved which will give the country best returns. With coal being the major fuel resource in India, thermal power generation will continue to be the mainstay in the next decade. This paper covers various key issues to be addressed covering the plan and perspectives of thermal power, environmental issues, technology strategies for growth, power policy and R and D. (author)

  11. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  12. Power Electronics and Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New vehicle electronics systems are being developed at a rapid pace, and NREL is examining strategies to

  13. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Liang-Che, E-mail: lcdai@iner.gov.tw; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-12-15

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  14. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    International Nuclear Information System (INIS)

    Dai, Liang-Che; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-01-01

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  15. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    Science.gov (United States)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  16. Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients

    International Nuclear Information System (INIS)

    Tuomisto, Harri.

    1987-06-01

    In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments

  17. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  18. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  19. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Byun, Choong Sup; Song, Dong Soo

    2006-01-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information

  20. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun [ENERGEO Inc., Sungnam (Korea, Republic of); Byun, Choong Sup; Song, Dong Soo [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information.

  1. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  2. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  3. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  4. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    International Nuclear Information System (INIS)

    Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.

    2012-01-01

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l ∼ 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R 500 is ∼20% at l = 3000, thus clusters interiors (r 500 ) dominate the power spectrum amplitude at these angular scales.

  5. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  6. Pressure supression pool thermal mixing

    International Nuclear Information System (INIS)

    Cook, D.H.

    1984-10-01

    A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model developed in this work produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing is verified by comparing the model-predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point

  7. Pressure suppression pool thermal mixing

    International Nuclear Information System (INIS)

    Cook, D.H.

    1984-01-01

    A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing model is verified by comparing the model predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point

  8. Pressurized thermal shock in nuclear power plants: Good practices for assessment. Deterministic evaluation for the integrity of reactor pressure vessel

    International Nuclear Information System (INIS)

    2010-02-01

    Starting in the early 1970s, a series of coordinated research projects (CRPs) was sponsored by the IAEA focusing on the effects of neutron radiation on reactor pressure vessel (RPV) steels and RPV integrity. In conjunction with these CRPs, many consultants meetings, specialists meetings, and international conferences, dating back to the mid-1960s, were held. Individual studies on the basic phenomena of radiation hardening and embrittlement were also performed to better understand increases in tensile strength and shifts to higher temperatures for the integrity of the RPV. The overall objective of this CRP was to perform benchmark deterministic calculations of a typical pressurized thermal shock (PTS) regime, with the aim of comparing the effects of individual parameters on the final RPV integrity assessment, and then to recommend the best practices for their implementation in PTS procedures. At present, several different procedures and approaches are used for RPV integrity assessment for both WWER 440-230 reactors and pressurized water reactors (PWRs). These differences in procedures and approaches are based, in principle, on the different codes and rules used for design and manufacturing, and the different materials used for the various types of reactor, and the different levels of implementation of recent developments in fracture mechanics. Benchmark calculations were performed to improve user qualification and to reduce the user effect on the results of the analysis. This addressed generic PWR and WWER types of RPV, as well as sensitivity analyses. The complementary sensitivity analyses showed that the following factors significantly influenced the assessment: flaw size, shape, location and orientation, thermal hydraulic assumptions and material toughness. Applying national codes and procedures to the benchmark cases produced significantly different results in terms of allowable material toughness. This was mainly related to the safety factors used and the

  9. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  10. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  11. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  12. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  13. Experiment and numerical analysis of the NPP pressurizer auxiliary spray line submitted to large thermal shocks

    International Nuclear Information System (INIS)

    Couterot, C.; Geyer, P.; Proix, J.M.

    1994-03-01

    The pressurizer auxiliary spray line of PWR nuclear power plants may be submitted to severe temperature transients during upset conditions: a 325 deg C cold thermal shock in one second is followed by a 200 deg C hot thermal shock. For such transients, the RCC-M French design code rules that prevent the ratcheting deformation hazard are not respected for the components with thickness transition. Consequently, Electricite de France has realized twenty thermal cycles under pressure on a representative mock-up. During these tests, many temperature, strain and diametral variations were measured. No significant ratcheting deformation was detected on all components, except on the 6'' x 2'' x 6'' T-piece, where a weak progressive diameter increase was observed during a few cycles. Moreover, computations of a 2'' socket welding were made with the non linear kinematic hardening Chaboche model which also showed a weak progressive deformation behaviour. (authors). 7 figs., 7 refs

  14. Development and Applications of a General Coupled Thermal-hydraulic/Neutronic Model for the Ringhals-3 Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Staalek, Mathias

    2008-03-01

    Coupled calculations are important for the simulation of nuclear power plants when there is a strong feedback between the neutron kinetics and the thermal-hydraulics. A general coupled model of the Ringhals-3 Pressurized Water Reactor has been developed for this purpose. The development is outlined in the thesis with details given in the appended papers. A PARCS model was developed for the core calculations and a RELAP5 model for the thermal-hydraulic calculations. The RELAP5 model has 157 channels for modelling the flow in the fuel assemblies. This means that there is a one-one correspondence radially between the neutronic and thermal-hydraulic nodalization. This detailed mapping between the neutron kinetics and the thermal-hydraulics makes it possible to use the model for all kinds of transient. To provide realistic material data to the PARCS model, a cross-section interface was developed. With this interface one can import material data from a binary CASMO-4 library file into PARCS. Due to the one-to-one mapping, any any core loading can easily be considered. The PARCS model was benchmarked against measurements of the steady-state power distribution of Ringhals-3. The power shape was well reproduced by the model. Validational work for steady-state conditions of the thermal-hydraulic was also successfully performed. The most challenging part of the validation of a coupled model is for transients. This is much more difficult since the dynamics of the system becomes very important. Two transients that occurred at Ringhals-3 were chosen for the validational work. The first transient was a Load Rejection Transient. In general the model gave good results but some problems were experienced, e.g. the pressurizer pressure turned out to be more difficult to be correctly simulated. The second transient was a Loss of Feed Water transient. A malfunctioning feed water control valve closed, and therefore shut down the feed water supply to the steam generator in one of the

  15. Development and Applications of a General Coupled Thermal-hydraulic/Neutronic Model for the Ringhals-3 Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Staalek, Mathias

    2008-03-15

    Coupled calculations are important for the simulation of nuclear power plants when there is a strong feedback between the neutron kinetics and the thermal-hydraulics. A general coupled model of the Ringhals-3 Pressurized Water Reactor has been developed for this purpose. The development is outlined in the thesis with details given in the appended papers. A PARCS model was developed for the core calculations and a RELAP5 model for the thermal-hydraulic calculations. The RELAP5 model has 157 channels for modelling the flow in the fuel assemblies. This means that there is a one-one correspondence radially between the neutronic and thermal-hydraulic nodalization. This detailed mapping between the neutron kinetics and the thermal-hydraulics makes it possible to use the model for all kinds of transient. To provide realistic material data to the PARCS model, a cross-section interface was developed. With this interface one can import material data from a binary CASMO-4 library file into PARCS. Due to the one-to-one mapping, any any core loading can easily be considered. The PARCS model was benchmarked against measurements of the steady-state power distribution of Ringhals-3. The power shape was well reproduced by the model. Validational work for steady-state conditions of the thermal-hydraulic was also successfully performed. The most challenging part of the validation of a coupled model is for transients. This is much more difficult since the dynamics of the system becomes very important. Two transients that occurred at Ringhals-3 were chosen for the validational work. The first transient was a Load Rejection Transient. In general the model gave good results but some problems were experienced, e.g. the pressurizer pressure turned out to be more difficult to be correctly simulated. The second transient was a Loss of Feed Water transient. A malfunctioning feed water control valve closed, and therefore shut down the feed water supply to the steam generator in one of the

  16. Power Electronics Thermal Management R&D: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-08

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.

  17. Environmental effects of thermal power plants

    International Nuclear Information System (INIS)

    Gerlitzky, M.; Friedrich, R.; Unger, H.

    1986-02-01

    Reviewing critically the present literature, the effects of thermal power plants on the environment are studied. At first, the loads of the different power plant types are compiled. With regard to the effects of emission reduction proceedings the pollutant emissions are quantified. The second chapter shows the effects on the ecological factors, which could be caused by the most important emission components of thermal power plants. Where it is possible, relations between immissions respectively depositions and their effects on climate, man, flora, fauna and materials will be given. This shows that many effects depend strongly on the local landscape, climate and use of natural resources. Therefore, it appears efficient to ascertain different load limits. The last chapter gives a suggestion for an ecological compatibility test (ECT) of thermal power plants. In modular form the ECT deals with the emission fields, waste heat, pollution burden of air and water, noise, loss of area and aesthetical aspects. Limits depending on local conditions and use of area will be discussed. (orig.) [de

  18. Chemistry of the water in thermal power plants

    International Nuclear Information System (INIS)

    Freier, R.K.

    1984-01-01

    This textbook and practical manual gives a comprehensive review of the scientific knowledge of water as operating substance and of the chemistry of water in thermal power plants. The fundamentals of water chemistry and of the conventional and nuclear water/steam circuit are described. The contents of the chapters are: 1. The atom, 2. The chemical bond, 3. The dissolving capacity of water, 4. Operational parameters and their measurement, 5. Corrosion, 6. The water/steam coolant loop of conventional plants (WSC), 7. The pressurized water reactor (PWR), 8. The boiling water reactor (BWR), 9. The total and partial desalination properties of ion exchangers, 10. The cooling water, 11. The failure of Harrisburg in a simple presentation. (HK) [de

  19. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)

    2012-10-20

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.

  20. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  1. Thermal power measurement apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Thermal power measurements are important in nuclear power plants, fossil-fuel plants and other closed loop systems such as heat exchangers and chemical reactors. The main object of this invention is to determine the enthalpy of a fluid using only acoustically determined sound speed and correlating the speed with enthalpy. An enthalpy change is measured between two points in the fluid flow: the apparatus is described in detail. (U.K.)

  2. Effect of pressure on thermal expansion of UNiGa

    International Nuclear Information System (INIS)

    Honda, F.; Andreev, A.V.; Havela, L.; Prokes, K.; Sechovsky, V.

    1997-01-01

    The thermal expansion of single crystalline UNiGa has been measured along the crystallographic axes (a and c) under pressures up to 1.1 GPa. The linear thermal expansion both in the paramagnetic and antiferromagnetic ranges is strongly anisotropic. The antiferromagnetic ordering is accompanied by considerable (10 -4 ) linear spontaneous magnetostrictions (along the a- and c-axis) of different signs (-0.8 x 10 -4 and 1.8 x 10 -4 ). The mutual compensation of these two effects causes the volume effect to be rather small (∝10 -5 ). Two of the four magnetic phase transitions in UNiGa indicated by the expansion anomalies under ambient pressure are suppressed by pressures above 0.5 GPa. Results of our experiments allow to construct a pressure-temperature (p-T) magnetic phase diagram. (orig.)

  3. Thermal Power:Focusing on Efficient and Clean Generation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    History review Before the foundation of New China,there was no thermal power equipment manufacturing industry in China at all.China imported the manufacturing technology of 6-MW and12-MW thermal power units from the former

  4. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  5. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  6. Applying Petroleum the Pressure Buildup Well Test Procedure on Thermal Response Test—A Novel Method for Analyzing Temperature Recovery Period

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2018-02-01

    Full Text Available The theory of Thermal Response Testing (TRT is a well-known part of the sizing process of the geothermal exchange system. Multiple parameters influence the accuracy of effective ground thermal conductivity measurement; like testing time, variable power, climate interferences, groundwater effect, etc. To improve the accuracy of the TRT, we introduced a procedure to additionally analyze falloff temperature decline after the power test. The method is based on a premise of analogy between TRT and petroleum well testing, since the origin of both procedures lies in the diffusivity equation with solutions for heat conduction or pressure analysis during radial flow. Applying pressure build-up test interpretation techniques to borehole heat exchanger testing, greater accuracy could be achieved since ground conductivity could be obtained from this period. Analysis was conducted on a coaxial exchanger with five different power steps, and with both direct and reverse flow regimes. Each test was set with 96 h of classical TRT, followed by 96 h of temperature decline, making for almost 2000 h of cumulative borehole testing. Results showed that the ground conductivity value could vary by as much as 25%, depending on test time, seasonal period and power fluctuations, while the thermal conductivity obtained from the falloff period provided more stable values, with only a 10% value variation.

  7. Simulation of Thermal Hydraulic at Supercritical Pressures with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Joona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI02044 VTT (Finland)

    2008-07-01

    The proposed concepts for the fourth generation of nuclear reactors include a reactor operating with water at thermodynamically supercritical state, the Supercritical Water Reactor (SCWR). For the design and safety demonstrations of such a reactor, the possibility to accurately simulate the thermal hydraulics of the supercritical coolant is an absolute prerequisite. For this purpose, the one-dimensional two-phase thermal hydraulics solution of APROS process simulation software was developed to function at the supercritical pressure region. Software modifications included the redefinition of some parameters that have physical significance only at the subcritical pressures, improvement of the steam tables, and addition of heat transfer and friction correlations suitable for the supercritical pressure region. (author)

  8. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  9. Thermal power blocks with ultra-super-critical steam parameters

    Directory of Open Access Journals (Sweden)

    Aličić Merim M.

    2016-01-01

    Full Text Available New generation of thermal power plants are required to have increased utilization rates, in addition to reduced emissions of pollutants, in order to reach optimal solutions, from both technical and economic point of view. One way to achieve greater utilization efficiency is operation of the plant at super critical (SC or ultra super critical steam parameters (USC. However, achieving high parameters depends on use of new materials, which have better properties at high temperatures and pressures, use of new welding technologies and by solving the problem of corrosion. The paper gives an overview of some of the plants with these parameters.

  10. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  11. Thermal-hydraulic instabilities in pressure tube graphite-moderated boiling water reactors

    International Nuclear Information System (INIS)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling charmers in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement

  12. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    Science.gov (United States)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  13. Prevention against fragile fracture in PWR pressure vessel in the presence of pressurized thermal shock

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Oliveira, L.F.S. de; Roberty, N.C.

    1984-01-01

    A method for the determination of operational limit curves (primary pressure versus temperature) for PWR is presented. Such curves give the operators indications related to the safety status of the plant concerning the possibility of a pressurized thermal shock. The method begins by a thermal analysis for several postulated transients, followed by the determination of the thermomechanical stresses in the vessel and finally it makes use of the linear elasticity fracture mechanics. Curves are shown for a typical PWR. (Author) [pt

  14. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  15. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  18. Effects of pressure on thermal transport in plutonium oxide powder

    International Nuclear Information System (INIS)

    Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.

  19. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  20. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  1. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  2. Power Electronics Thermal Management R&D (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  3. Study of the thermal and hydraulic phenomena occurring during power excursion on a heated test section

    International Nuclear Information System (INIS)

    Nyer, M.

    1969-01-01

    The thermal and hydrodynamic phenomena occurring during a power excursion were studied in an out-of-pile loop with a water cooled channel at low pressure (1 to 4 atm. abs. ). Circular and rectangular test sections with electrically heated walls of two different thermal diffusivity materials(aluminium and stainless steel) were used. The rectangular test sections were 600 mm long, 35 mm wide and had a 2, 9 mm gap; they simulate two half plates of the M.T.R. fuel element. Natural or forced convection are possible in the test section; the water height above it can be varied from 2.8 to 8 meters and the maximum allowed pressure at its outlet is 4 atm. abs.The heating source is a series of lead batteries which is able to generate, for short periods of time, 85 volts and 25000 amperes; linear, square or exponential power rise versus time can be realized. A 14 channels tape recorder (0-10 000 Hz bandwidth; is used for the measurements of temperature (8/100 mm diameter thermocouple), pressure ('Statham' pressure transducers) and void fraction (X rays). More than 500 tests have been carried out. The influence of the initial water temperature, flow rate, pressure, water height on the water ejections, pressure variations and void fraction in the test section were studied. Tests with energies up to 3000 W/cm in 50 milliseconds were attempted. The energy above which the instabilities appear was determined. An interpretation of the observed phenomena and a simplified theoretical model are presented [fr

  4. Virginia Power thermal-hydraulics methods

    International Nuclear Information System (INIS)

    Anderson, R.C.; Basehore, K.L.; Harrell, J.R.

    1987-01-01

    Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed

  5. Analysis of thermal power calibration method

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.

    2000-01-01

    The methods for determining fuel element burnup have recently become interesting because of activities related to the shipment of highly enriched fuel elements back to the United States for final disposal before 2009. The most common and practical method for determining fuel element burnup in research reactors is reactor calculation. Experience has shown that burnup calculations become complicated and biased with uncertainties if a long period of reactor operation must be reproduced. Besides this, accuracy of calculated burnup is always limited with accuracy of reactor power calibration, since burnup calculation is based on calculated power density distribution, which is usually expressed in terms of power released per fuel element and normalised to the reactor power It is obvious that reactor thermal power calibration is very important for precise fuel element burnup calculation. Calculated fuel element burnup is linearly dependent on the thermal reactor power. The reactor power level may be determined from measured absolute thermal flux distribution across the core in the horizontal and vertical planes. Flux distributions are measured with activation of cadmium covered and bare foils irradiated by the steady reactor power. But it should be realised that this method is time consuming and not accurate. This method is practical only for zero power reactors and is in practice very seldom performed for other reactors (e.g. for TRIGA reactor in Ljubljana absolute thermal flux distribution was not performed since reactor reconstruction in 1991). In case of power reactors and research reactors in which a temperature rise across the core is produced and measured than a heat balance method is the most common and accurate method of determining the power output of the core. The purpose of this paper is to analyse the accuracy of calorimetric reactor power calibration method and to analyse the influence of control rod position on nuclear detector reading for TRIGA reactors

  6. Japanese aquaculture with thermal water from power plants

    International Nuclear Information System (INIS)

    Kuroda, T.

    1977-01-01

    The present level of thermal aquaculture, utilizing thermal water which is waste cooling water from nuclear power plant, in Japan is reported. There are 13 major potential areas for thermal aquaculture in cooperation with conventional type thermal power plants, seven of which are actually operating. Aquaculture facilities of all these are on land, none in the sea. Of these seven centers, those that have already commercialized their nursery methods or are approaching that stage of research and development, are Tohoku Hatsuden Kogyo Ltd., Tsuruga Hama Land Ltd. and Kyushu Rinsan Ltd. Major problems faced specialists in Japanese thermal aquaculture are water temperature, water quality, radioactivity and costs. For keeping the water temperature constant all seasons, cooling or heating by natural sea water may be used. Even negligible amounts of radioactivity that nuclear power plants release into the sea will concentrate in the systems of marine life. A strict precautionary checking routine is used to detect radioactivity in marine life. (Kobatake, H.)

  7. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  8. The analysis of pressurizer safety valve stuck open accident for low power and shutdown PSA

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ho Gon; Park, Jin Hee; Jang, Seong Chul; Kim, Tae Woon

    2005-01-01

    The PSV (Pressurizer Safety Valve) popping test carried out practically in the early phase of a refueling outage has a little possibility of triggering a test-induced LOCA due to a PSV not fully closed or stuck open. According to a KSNP (Korea Standard Nuclear Power Plant) low power and shutdown PSA (Probabilistic Safety Assessment), the failure of a HPSI (High Pressure Safety Injection) following a PSV stuck open was identified as a dominant accident sequence with a significant contribution to low power and shutdown risks. In this study, we aim to investigate the consequences of the NPP for the various accident sequences following the PSV stuck open as an initiating event through the thermal-hydraulic system code calculations. Also, we search the accident mitigation method for the sequence of HPSI failure, then, the applicability of the method is verified by the simulations using T/H system code.

  9. Thermal applications of low-pressure diamond

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    During the last decade several applications of low-pressure diamond were developed. Main products are diamond heat-spreaders using its high thermal conductivity, diamond windows with their high transparency over a wide range of wavelengths and wear resistant tool coatings because of diamonds superhardness. A short description of the most efficient diamond deposition methods (microwave, DC-glow discharge, plasma-jet and arc discharge) is given. The production and applications of diamond layers with high thermal conductivity will be described. Problems of reproducibility of diamond deposition, the influence of impurities, the heat conductivity in electronic packages, reliability and economical mass production will be discussed. (author)

  10. Influence of pressure and humidity on ethanol distillery power production

    International Nuclear Information System (INIS)

    Zumalacarregui de Cardenas, Lourdes; Perez Ones, Osney; Rodriguez Ramos, Pedro; Lombardi, Geraldo

    2011-01-01

    A distillery for the Generation of Renewable Energy Integrated to Food Production (GERIPA), that produces 125 000 L/day of ethanol, presents advantages in comparison with the traditional distilleries. In this paper the available thermal energy in sugar cane and sorghum, bagasse and straw, and also in biogas are calculated. This energy produces vapor for the process and electricity, using a boiler with 88 % of efficiency and a two stages with intermediate extraction turbine. The dependence of electric power surplus with vapor pressure is evaluated, finding that between 60 and 100 MPa, the electric power surplus reaches 7.15 to 7.82 MW. This electricity can be send to the electro-energetic system. The effective efficiency is calculated for 6 to 10 MPa finding values lower than 25 %. It is shown that a bagasse dryer can be used to increase the efficiency. (author)

  11. Steady state thermal hydraulic analysis of a boiling water reactor core, for various power distributions, using computer code THABNA

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saha, D.

    1976-01-01

    The core of a boiling water reactor may see different power distributions during its operational life. How some of the typical power distributions affect some of the thermal hydraulic parameters such as pressure drop minimum critical heat flux ratio, void distribution etc. has been studied using computer code THABNA. The effect of an increase in the leakage flow has also been analysed. (author)

  12. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  13. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Erkan, Nejdet [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Takahashi, Shinji [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Song, Daehun [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Hyundai and Kia Corporate R& D Division, Hyundai Motors, 772-1, Jangduk-dong, Hwaseong-Si, Gyeonggi-Do 445-706 (Korea, Republic of); Sagawa, Wataru; Okamoto, Koji [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan)

    2016-08-15

    Highlights: • Thermal stratification was reproduced in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants. • Horizontal temperature profiles were uniform in the toroidal suppression pool. • Subcooling-steam flow rate map of thermal stratification was obtained. • Steam bubble-induced flow model in suppression pool was suggested. • Bubble frequency strongly depends on the steam flow rate. - Abstract: Thermal stratification in the suppression pool of the Fukushima Daiichi nuclear power plants was experimentally investigated in sub-atmospheric pressure conditions using a 1/20 scale torus shaped setup. The thermal stratification was reproduced in the scaled-down suppression pool and the effect of the steam flow rate on different thermal stratification behaviors was examined for a wide range of steam flow rates. A sparger-type steam injection pipe that emulated Fukushima Daiichi Unit 3 (F1U3) was used. The steam was injected horizontally through 132 holes. The development (formation and disappearance) of thermal stratification was significantly affected by the steam flow rate. Interestingly, the thermal stratification in the suppression pool vanished when subcooling became lower than approximately 5 °C. This occurred because steam bubbles are not well condensed at low subcooling temperatures; therefore, those bubbles generate significant upward momentum, leading to mixing of the water in the suppression pool.

  14. Availability statistics for thermal power plants

    International Nuclear Information System (INIS)

    1989-01-01

    Denmark, Finland and Sweden have adopted almost the same methods of recording and calculation of availability data. For a number of years comparable availability and outage data for thermal power have been summarized and published in one report. The purpose of the report now presented for 1989 containing general statistical data is to produce basic information on existing kinds of thermal power in the countries concerned. With this information as a basis additional and more detailed information can be exchanged in direct contacts between bodies in the above mentioned countries according to forms established for that purpose. The report includes fossil steam power, nuclear power and gas turbines. The information is presented in separate diagrams for each country, but for plants burning fossil fuel also in a joint NORDEL statistics with data grouped according to type of fuel used. The grouping of units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. Values based on energy have been adopted as basic availability data. The same applies to the preference made in the definitions outlined by UNIPEDE and UNIPEDE/WEC. Some data based on time have been included to make possible comparisons with certain international values and for further illustration of the performance. For values given in the report, the definitions in the NORDEL document ''Concepts of Availability for Thermal Power, September 1977'', have been applied. (author)

  15. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  16. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .

  17. Regional siting survey for thermal power plants in the state of Ohio

    International Nuclear Information System (INIS)

    Elkins, M.L.; DiNunno, J.J.

    1975-01-01

    The selection and evaluation of sites for power plants have become increasingly difficult in recent years as pressures from various societal segments have resulted in government restraints on selection and burning of fossil fuels, on methods of heat dissipation, on acquisition of transmission line rights-of-way, and on environmental impact in general. The key elements in successful application of power plant siting technology are the development of the proper balance among the basic siting considerations and the understanding that level of detail in a study varies in an inverse relationship with the siting area under examination. As the first step in the process of selection and eventual licensing of new thermal power plant sites for a utility in the State of Ohio, the entire state was screened to determine promising candidate regions large enough to offer several possible candidate sites for thermal power plants. Because of the size of the area under consideration and the advantages of developing sites with an ultimate capacity for more than one power plant, sites with an installed capacity of 1100 to 4400 MW(e) were considered for this study. As a result of the preliminary screening conducted in four distinct steps, three candidate regions showed the best overall promise for either nuclear or fossil-fueled power plant development. Tentative identification was made of candidate sites within these candidate regions, and follow-on studies conducted in an increasing level of detail are presently in progress to determine the candidate site(s) most promising for power plant siting. (U.S.)

  18. Application of RELAP5/MOD3.3 to Calculate Thermal Hydraulic Behavior of the Pressurizer Safety Valve Performance Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Kim, Young Ae; Oh, Seung Jong; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-10-15

    The increase of the acceptance tolerance of Pressurizer Safety Valve (PSV) test is vital for the safe operation of nuclear power plants because the frequent tests may make the valves decrepit and become a cause of leak. Recently, Korea Hydro and Nuclear Power Company (KHNP) is building a PSV performance test facility to provide the technical background data for the relaxation of the acceptance tolerance of PSV including the valve pop-up characteristics and the loop seal dynamics (if the plant has the loop seal in the upstream of PSV). The discharge piping and supports must be designed to withstand severe transient hydrodynamic loads when the safety valve actuates. The evaluation of hydrodynamic loads is a two-step process: first the thermal hydraulic behavior in the piping must be defined, and then the hydrodynamic loads are calculated from the thermal hydraulic parameters such as pressure and mass flow. The hydrodynamic loads are used as input to the structural analysis.

  19. Thermal cycle efficiency of the indirect combined HTGR-GT power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    High thermal efficiency of 50% could be expected in a power generation system coupling a high temperature gas-cooled reactor(HTGR) with a closed cycle gas turbine(GT). There are three candidate systems such as a direct cycle(DC), an indirect cycle(ICD) and an indirect combined cycle(IDCC). The IDCC could solve many problems in both the DC and the IDC and consists of a primary circuit and a secondary circuit where a topping cycle is a Brayton cycle and a bottoming cycle is a steam cycle. In this report, the thermal cycle efficiency of the IDCC is examined regarding configurations of components and steam pressure. It has been shown that there are two types of configurations, that is, a perfect cascade type and a semi-cascade one and the latter can be further classified into Case A, Case B and Case C. The conditions achieving the maximum thermal cycle efficiency were revealed for these cases. In addition, the optimum system configurations were proposed considering the thermal cycle efficiency, safety and plant arrangement. (author).

  20. Thermal electric power production

    International Nuclear Information System (INIS)

    Boehmer, S.

    2001-01-01

    The basic principle of a thermal power plant is to heat up water in the pipe system of a boiler to generate steam, which exits the boiler with high pressure and releases its energy to a tandem-arranged turbine. This energy is transmitted to a generator over a common shaft. The generated electricity is fed into the power supply system. The processed steam is condensed to water by means of a condenser and transferred back into the pipe system of the boiler (feed water circuit). In general the following techniques are applied for the combustion of solid, liquid and gaseous fuels: dry bottom boiler, wet bottom boiler, grate firing, fluidized bed combustion, gasification systems - integrated gasification combined cycle (IGCC), oil firing technique, gas firing technique. Residues from power plants are generated by the following processes and emission reduction measures: separation of bottom ash or boiler slag in the boiler; separation of fly ash (particulate matter) by means of filters or electric precipitators; desulphurization through lime additive processes, dry sorption or spray absorption processes and lime scrubbing processes; desulphurization according to Wellmann-Lord and to the Walther process; reduction of NO x emissions by selective catalytic reduction (SCR). In this case spent catalyst results as a waste unless it is recycled. No residues are generated by the following measures to reduce NO x emissions: minimization of nitrogen by selective non-catalytic reduction (SNCR); adaptations of the firing technology to avoid emissions - primary measures (low-NO x burners, CO reduction). However, this may change the quality of fly ash by increasing unburnt carbon. Combustion of fossil fuels (with the exception of gaseous fuels) and biomass generates large quantities of residues - with coal being the greatest contributor - either from the fuel itself in the form of ashes, or from flue gas cleaning measures. In coal-fired power plants huge amounts of inorganic residues

  1. An ultralow power wireless intraocular pressure monitoring system

    International Nuclear Information System (INIS)

    Liu Demeng; Mei Niansong; Zhang Zhaofeng

    2014-01-01

    This paper describes an ultralow power wireless intraocular pressure (IOP) monitoring system that is dedicated to sensing and transferring intraocular pressure of glaucoma patients. Our system is comprised of a capacitive pressure sensor, an application-specific integrated circuit, which is designed on the SMIC 180 nm process, and a dipole antenna. The system is wirelessly powered and demonstrates a power consumption of 7.56 μW at 1.24 V during continuous monitoring, a significant reduction in active power dissipation compared to existing work. The input RF sensitivity is −13 dBm. A significant reduction in input RF sensitivity results from the reduction of mismatch time of the ASK modulation caused by FM0 encoding. The system exhibits an average error of ± 1.5 mmHg in measured pressure. Finally, a complete IOP system is demonstrated in the real biological environment, showing a successful reading of the pressure of an eye. (semiconductor integrated circuits)

  2. System transient analysis code development for low pressure and low power

    International Nuclear Information System (INIS)

    Kim, Hee Cheol

    1998-02-01

    A real time reactor system analysis code, ARTIST, based on drift flux model has been developed to investigate the transient system behavior under low pressure, low flow and low power conditions with noncondensable gas present in the system. The governing equations of the ARTIST code consist of three mass continuity equations (steam, liquid and noncondensable), two energy equations (gas and mixture) and one momentum equation (mixture) constituted with the drift flux model. The capability of ARTIST in predicting two-phase flow void distribution in the system has been validated against experimental data. The results of the ARTIST axial void distribution at low pressure and low flow, are far better than the results of both the homogeneous model of TASS code and the two-fluid model of RELAP5/MOD3 code. Also, RELAP5/MOD3 calculation shows the large amplitude of void fraction oscillations at low pressure. These results imply that interfacial momentum transfer terms in the two-fluid model formulation should be carefully constituted, especially for the low pressure condition due to the big density differences between steam and water. Thermal-hydraulic state solution scheme is developed when noncondensable gas exists. Numerical consistency and convergence of obtaining equilibrium state is tested with the ideal problems for various situations including very low partial pressure conditions. Calculated thermal-hydraulic state for each test shows consistent and expected behaviour. A new multi-layer back propagation network algorithm for calculating the departure from nucleate boiling ratio (DNBR) is developed and adopted in ARTIST code in order to have real-time DNBR evaluation by eliminating the tandem procedure of the transient DNBR calculation. The algorithm trained by different patterns generated by latin hypercube sampling method on the performance space is tested for the randomly sampled untrained data and the transient DNBR data. The uncertainty of the algorithm is

  3. Tasks of a power engineer in future thermal power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  4. Dependence of Glass Mechanical Properties on Thermal and Pressure History

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauchy, Mathieu

    Predicting the properties of new glasses prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible glasses in recent years. However, as a non......-equilibrium material, the structure and properties of glass depend not only on its composition, but also on its thermal and pressure histories. Here we review our recent findings regarding the thermal and pressure history dependence of indentation-derived mechanical properties of oxide glasses....

  5. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  6. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  7. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    Science.gov (United States)

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  8. Pressure effects on the thermal stability of silicon carbide fibers

    Science.gov (United States)

    Jaskowiak, Martha H.; Dicarlo, James A.

    1989-01-01

    Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.

  9. Thermodynamic analysis of thermal efficiency and power of Minto engine

    International Nuclear Information System (INIS)

    He, Wei; Hou, Jingxin; Zhang, Yang; Ji, Jie

    2011-01-01

    Minto engine is a kind of liquid piston heat engine that operates on a small temperature gradient. But there is no power formula for it yet. And its thermal efficiency is low and formula sometimes is misused. In this paper, deriving the power formula and simplifying the thermal efficiency formula of Minto engine based on energy distribution analysis will be discussed. To improve the original Minto engine, a new design of improved Minto engine is proposed and thermal efficiency formula and power formula are also given. A computer program was developed to analyze thermal efficiency and power of original and improved Minto engines operating between low and high-temperature heat sources. The simulation results show that thermal efficiency of improved Minto engine can reach over 7% between 293.15 K and 353.15 K which is much higher than that of original one; the temperature difference between upper and lower containers is lower than half of that between low and high temperature of heat sources when the original Minto engines output the maximum power; on the contrary, it is higher in the improved Minto engines. -- Highlights: ► The thermal efficiency formula of Minto engine is simplified and the power formula is established. ► A high-powered design of improved Minto engine is proposed. ► A computer simulation program based on real operating environment is developed.

  10. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  11. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  12. Pressurized thermal shock (PTS)

    International Nuclear Information System (INIS)

    Rosso, Ricardo D.; Ventura, Mirta A.

    2006-01-01

    In the present work, a description of Thermal Shock in Pressurized conditions (PTS), and its influence in the treatment of the integrity of the pressure vessel (RPV) of a Pressurized Water Reactor (PWR) and/or of a Heavy water Pressurized water Reactor (PHWR) is made. Generally, the analysis of PTS involves a process of three stages: a-) Modeling with a System Code of relevant thermohydraulics transients in reference with the thermal shock; b-) The local distribution of temperatures in the downcomer and the heat transference coefficients from the RPV wall to the fluid, are determined; c-) The fracture mechanical analysis. These three stages are included in this work: Results with the thermohydraulics code Relap5/mod.3, are obtained, for a LOCA scenario in the hot leg of the cooling System of the Primary System of the CAN-I reactor. The method used in obtaining results is described. A study on the basis of lumped parameters of the local evolutions of the temperature of the flow is made, in the downcomer of the reactor pressure vessel. The purpose of this study is to determine how the intensification of the stress coefficient, varies in function of the emergency injected water during the thermohydraulic transients that take place under the imposed conditions in the postulated scene. Specially, it is considered a 50 cm 2 break, located in the neighborhoods of the pressurized with the corresponding hot leg connection. This size is considered like the most critical. The method used to obtain the results is described. The fracture mechanical analysis is made. From the obtained results we confirmed that we have a simple tool of easy application in order to analyze phenomena of the type PTS in the postulated scenes by break in the cold and hot legs of the primary system. This methodology of calculus is completely independent of the used ones by the Nucleoelectrica Argentina S.A. (NASA) in the analysis of the PTS phenomena in the CAN-I. The results obtained with the adopted

  13. Pressure dependence of thermal conductivity and specific heat in CeRh2Si2 measured by an extended thermal relaxation method

    Science.gov (United States)

    Nishigori, Shijo; Seida, Osamu

    2018-05-01

    We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.

  14. Tube Plugging Criteria for the High-pressure Heaters of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungnam; Cho, Nam-Cheoul; Lee, Kuk-hee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of a nuclear power plant. This method relies on the similar plugging criteria used in the steam generator tubes. Power generation field urges nuclear power plants to reduce operating and maintaining costs to remain competitive. To reduce the cost by means of preventing the lowering thermal efficiency, the inspection of balance-of-plant heat exchanger, which was treated as not important work, becomes important. The tubing materials and tube thickness of heat exchangers in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. But tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. The feed water heater is a kind of heat exchanger which raises the temperature of water supplied from the condenser. The heat source of high-pressure heaters is the extraction steam from the high-pressure turbine and moisture separator re-heater. If the tube wall of the heater is broken, the feed water flowing inside the tube intrudes to shell side. This forces the turbine to be stop in order to protect it. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. A method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of Ulchin NPP No. 3 and 4. This method relies on the similar plugging

  15. Power Electronics Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Reliable WBG devices are capable of operating at elevated temperatures (≥ 175 °Celsius). However, packaging WBG devices within an automotive inverter and operating them at higher junction temperatures will expose other system components (e.g., capacitors and electrical boards) to temperatures that may exceed their safe operating limits. This creates challenges for thermal management and reliability. In this project, system-level thermal analyses are conducted to determine the effect of elevated device temperatures on inverter components. Thermal modeling work is then conducted to evaluate various thermal management strategies that will enable the use of highly efficient WBG devices with automotive power electronic systems.

  16. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  17. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  18. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  19. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  20. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  1. Japanese aquaculture: use of thermal water from power plant

    International Nuclear Information System (INIS)

    Kuroda, Takeya

    1983-01-01

    There is some merit of thermal water from power plants in the effect to marine life. Since 1963, the research and development on the aquaculture using this warm water have been carried out at some twenty power plants, seven nuclear and thirteen thermal, some of which are now in the commercial stage. These fish farming projects are operated variously from seed to adult fish production. They can also be classified as land and sea facilities, conforming to the characteristics of the respective sea areas. The current situation in this field and the future prospect are described: thermal aquaculture including seed production and adult fish farming; the projects in nuclear and thermal power plants, respectively; future problems in the facilities, breeding environment and marine life for cultivation. (Mori, K.)

  2. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  3. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  4. Power and Thermal Management of System-on-Chip

    DEFF Research Database (Denmark)

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  5. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    International Nuclear Information System (INIS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Meng, Dennis Desheng

    2011-01-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA

  6. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523 0 K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473 0 K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313 0 K to 2.15 +- 0.25 W/mK at 473 0 K. Thermal diffusivity at 300 0 K was found to be 1.2 +- 0.4 X 10 -6 m 2 /s and shows approximately the same pressure and temperature dependencies as the thermal conductivity

  7. Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2005-12-01

    Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.

  8. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  9. Assessing the environmental impacts of freshwater thermal pollution from global power generation in LCA.

    Science.gov (United States)

    Raptis, Catherine E; Boucher, Justin M; Pfister, Stephan

    2017-02-15

    Freshwater heat emissions from power plants with once-through cooling systems constitute one of many environmental pressures related to the thermoelectric power industry. The objective of this work was to obtain high resolution, operational characterization factors (CF) for the impact of heat emissions on ecosystem quality, and carry out a comprehensive, spatially, temporally and technologically differentiated damage-based environmental assessment of global freshwater thermal pollution. The aggregation of CFs on a watershed level results in 12.5% lower annual impacts globally and even smaller differences for the most crucial watersheds and months, so watershed level CFs are recommended when the exact emission site within the basin is unknown. Long-range impacts account for almost 90% of the total global impacts. The Great Lakes, several Mississippi subbasins, the Danube, and the Yangtze are among the most thermally impacted watersheds globally, receiving heat emissions from predominantly coal-fuelled and nuclear power plants. Globally, over 80% of the global annual impacts come from power plants constructed during or before the 1980s. While the impact-weighted mean age of the power plants in the Mississippi ranges from 38 to 51years, in Chinese watersheds including the Yangtze, the equivalent range is only 15 to 22years, reflecting a stark contrast in thermal pollution mitigation approaches. With relatively high shares of total capacity from power plants with once-through freshwater cooling, and tracing a large part of the Danube, 1kWh of net electricity mix is the most impactful in Hungary, Bulgaria and Serbia. Monthly CFs are provided on a grid cell level and on a watershed level for use in Life Cycle Assessment. The impacts per generating unit are also provided, as part of our effort to make available a global dataset of thermoelectric power plant emissions and impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  11. Thermally induced pressure locking of gate valves: A survey of valve bonnet pressurization rates

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Moore, W.E.

    1996-01-01

    Closed, water filled gate valves run the risk of becoming pressurized due to heat input from the environment or from adjacent connected piping. Thermal pressurization of gate valve bonnets may lead to the valves failing to open on demand and can even induce structural failure of valves. This paper presents an analytical prediction of the pressurization rate of a closed pressure vessel subject to uniform heating which may be considered as an upper bound to the pressurization rate that may occur in the field. Then actual valve experiences described in the literature are reviewed to determine the expected pressurization rate in existing hardware designs. A statistical approach is applied to reconcile the differing pressurization rates reported in the literature and determine a rate that can be applied in valve evaluations. The limitations of the reconciled rate are discussed

  12. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  13. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  14. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  15. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  16. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  17. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  18. Thermal diffusivity of Swedish meatballs, pork meat pate and tomato puree during high pressure processing

    Science.gov (United States)

    Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan

    2011-06-01

    Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.

  19. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  20. WWER-440/230 reactor pressure vessel integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1996-08-01

    This report was prepared with the objective of integrating all aspects involved and to provide plant specific information on the issue of reactor pressure vessel integrity including pressurized thermal shock assessment. Areas of the thermal hydraulic analysis including selection of transients, of the structural analysis including fracture mechanics assessment and of the material properties including embrittlement, annealing and re-embrittlement behaviour are addressed. The report also provides related recommendations and conclusions as well as detailed information on the plant specific status for operating WWER-440/230 nuclear power plants. 10 refs, 9 figs, 9 tabs

  1. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  2. High-resolution thermal expansion measurements under helium-gas pressure

    Science.gov (United States)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  3. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  4. A review on lithium-ion power battery thermal management technologies and thermal safety

    Science.gov (United States)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  5. A method for evaluating pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, T.

    1996-12-01

    A method is described to evaluate the susceptibility of gate valves to pressure locking and thermal binding. Binding of the valve disc in the closed position due to high pressure water trapped in the bonnet cavity (pressure locking) or differential thermal expansion of the disk in the seat (thermal binding) represents a potential mechanism that can prevent safety-related systems from functioning when called upon. The method described here provides a general equation that can be applied to a given gate valve design and set of operating conditions to determine the susceptibility of the valve to fail due to disc binding. The paper is organized into three parts. The first part discusses the physical mechanisms that cause disc binding. The second part describes the mathematical equations. The third part discusses the conclusions.

  6. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  7. The influence of chemistry concentration on the fracture risk of a reactor pressure vessel subjected to pressurized thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pin-Chiun [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China); Chou, Hsoung-Wei, E-mail: hwchou@iner.gov.tw [Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, ROC (China); Ferng, Yuh-Ming [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2016-02-15

    Highlights: • Probabilistic fracture mechanics method was used to analyze a reactor pressure vessel. • Effects of copper and nickel contents on RPV fracture probability under PTS were investigated and discussed. • Representative PTS transients of Beaver Valley nuclear power plant were utilized. • The range of copper and nickel contents of the RPV materials were suggested. • With different embrittlement levels the dominated PTS category is different. - Abstract: The radiation embrittlement behavior of reactor pressure vessel shell is influenced by the chemistry concentration of metal materials. This paper aims to study the effects of copper and nickel content variations on the fracture risk of pressurized water reactor (PWR) pressure vessel subjected to pressurized thermal shock (PTS) transients. The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. A Taiwan domestic PWR pressure vessel assumed with varied copper and nickel contents of beltline region welds and plates is investigated in the study. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the U.S. NRC's new PTS rule are applied as the loading condition. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.

  8. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  9. Measurement of thermal conducitivity of Cdsub(0,28) Hgsub(0.72)Te at hydrostatic pressure

    International Nuclear Information System (INIS)

    Amirkhanov, Kh.I.; Magomedov, Ya.B.; Emirov, S.N.; Gadzjieva, R.M.

    1975-01-01

    The article reports experimental data on the effect of hydrostatic pressures up to 3.3kbar on the thermal conductivity, electrical conductivity, and thermo-emf of the solid solution Cdsub(0.28)Hgsub(0.72)Te in the temperature range 300-450 0 K. An increase in thermal conductivity and thermo-emf and a decrease in electrical conductivity with pressure were observed. The increase in thermal conductivity is attributed to a rise in the phonon thermal conductivity, which is determined by the characteristic Debye temperature. The character of the temperature dependence of the phonon thermal conductivity changes with increase in pressure. Whereas at P=1 bar lamdasub(PHI) approximately CTsup(-0.93), which may be explained by the dominant influence of the changeover processes on the thermal resistivity, at P=3.3kbar lamdasub(PHI) approximately CTsup(-0.7), which is typical of a considerable contribution by phonon scattering at point defects at high-temperatures. The characteristic temperature increases under hydrostatic pressure, and this leads to a rise in the phonon thermal conductivity and to a reduction in the intensity of the changeover processes. The change in electrical conductivity and thermo-emf is attributed to the effect of pressure on the band structure

  10. Power doppler 'blanching' after the application of transducer pressure

    International Nuclear Information System (INIS)

    Joshua, F.; Edmonds, J.; Lassere, M.; De Carle, R.; Rayment, M.; Bryant, C.; Shnier, R.

    2005-01-01

    The aim of this study was to determine if transducer pressure modifies power Doppler assessments of rheumatoid arthritis synovium at the metacarpophalangeal joints and metatarsophalangeal joints. Five rheumatoid arthritis patients of varying degrees of 'disease activity' and damage were assessed with power Doppler ultrasound scanning of the dominant hand second to fifth metacarpophalangeal joints. Two rheumatoid arthritis patients had their dominant foot first to fifth metatarsophalangeal joints assessed with power Doppler ultrasound. Ultrasonography was performed with a high frequency transducer (14 MHz) with a colour mode frequency of 10 Mhz, and a standard colour box and gain. In the joint that showed the highest power Doppler signal, an image was made. A further image was taken after transducer pressure was applied. In all patients, there was increased flow to at least one joint. After pressure was applied, power Doppler signal intensity markedly reduced in all images and in some there was no recordable power Doppler signal. Increased transducer pressure can result in a marked reduction or obliteration in power Doppler signal. This power Doppler 'blanching' shows the need for further studies to evaluate sources of error and standardization before power Doppler ultrasound becomes a routine measure of 'disease activity' in rheumatoid arthritis. Copyright (2005) Blackwell Science Pty Ltd

  11. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  12. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation

    Science.gov (United States)

    Jannot, Y.; Degiovanni, A.; Camus, M.

    2018-04-01

    Standard pore size determination methods like mercury porosimetry, nitrogen sorption, microscopy, or X-ray tomography are not suited to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization has been developed in a previous study. This method has been used with air pressure varying from 10-1 to 105 Pa for materials having a thermal conductivity less than 0.05 W m-1 K-1 at atmospheric pressure. It enables the estimation of pore size distribution between 100 nm and 1 mm. In this paper, we present a new experimental device enabling thermal conductivity measurement under gas pressure up to 106 Pa, enabling the estimation of the volume fraction of pores having a 10 nm diameter. It is also demonstrated that the main thermal conductivity models (parallel, series, Maxwell, Bruggeman, self-consistent) lead to the same estimation of the pore size distribution as the extended parallel model (EPM) presented in this paper and then used to process the experimental data. Three materials with thermal conductivities at atmospheric pressure ranging from 0.014 W m-1 K-1 to 0.04 W m-1 K-1 are studied. The thermal conductivity measurement results obtained with the three materials are presented, and the corresponding pore size distributions between 10 nm and 1 mm are presented and discussed.

  13. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1981-01-01

    Preliminary data on the thermal propertes of a course-grained rock salt from Avery Island, Louisiana, indicate that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7 W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573 K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 /K at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  14. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1980-01-01

    Preliminary data on the thermal properties of a coarse-grained rock salt from Avery Island, Louisiana, indicates that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  15. Thermal micropressure sensor for pressure monitoring in a minute package

    International Nuclear Information System (INIS)

    Wang, S. N.; Mizuno, K.; Fujiyoshi, M.; Funabashi, H.; Sakata, J.

    2001-01-01

    A thermal micropressure sensor suitable for pressure measurements in the range from 7x10 -3 to 1x10 5 Pa has been fabricated by forming a titanium (Ti) thin-film resistor on a floating nondoped silica glass membrane, with the sensing area being as small as 60 μmx60 μm. The sensor performance is raised by: (1) increasing the ratio of gaseous thermal conduction in the total thermal conduction by sensor structure design; (2) compensating the effect of ambient-temperature drift by using a reference resistor located close to the sensing element but directly on the silicon substrate; and (3) utilizing an optimized novel constant-bias Wheatstone bridge circuit. By choosing a proper bias voltage, which can be found by simple calculation, the circuit extracts information on gaseous thermal conduction from the directly measurable total heat loss of the heated sensing element. The sensor was enclosed in a metal package with a capacity of about 0.5 ml by projection welding and was successfully applied to monitoring the pressure in the minute space

  16. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  17. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  18. Ballooning of CANDU pressure tube in local thermal transients

    International Nuclear Information System (INIS)

    Mihalache, Maria; Ionescu, Viorel

    2008-01-01

    In certain LOCA scenarios for the CANDU fuel channel, the ballooning of the pressure tube and contact with the calandria tube can occur. After the contact moment, a radial heat transfer from cooling fluid to moderator takes place through the contact area. If the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. In INR-Pitesti the DELOCA code was developed to simulate the mechanical behaviour of pressure tube during pre-contact transition, and mechanical and thermal behaviour of pressure tube and calandria tube after occurrence of the contact between the two tubes. The code contains few models: thermal creep of Zr-2.5%Nb alloy, the heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. This paper gives a DELOCA code description and the fuel channel behaviour analysis, in transient temperature conditions of the pressure tube, using the materials properties, time and temperature dependencies of these properties as obtained in the different laboratories of the world and in the INR - Pitesti in the last years. DELOCA computer code simulated the fuel channel response to the constant heating rates of inside pressure tube surface. The paper presents contact temperature and time dependencies on the heating rate, and the appropriate fitting functions. (authors)

  19. Simulation of the fluctuations of hydraulic pressure in thermal power plants; Simulacion de golpe de ariete en centrales termicas

    Energy Technology Data Exchange (ETDEWEB)

    Calzada Mazeres, P. de la [INITEC (Spain)

    1995-07-01

    In this study the different equipments of the circulation waste system in thermal power plants are modellized (refrigeration water from the condenser). The purpose is to analyze the transient generated when the pump trip is produced at different shutting times of discharge valve. (Author)

  20. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  1. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  2. A Method of Estimating Pressure and Intensity Distributions of Multielement Phased Array High Intensity Focused Ultrasonic Field at Full Power Using a Needle Hydrophone

    International Nuclear Information System (INIS)

    Yu Ying; Shen Guofeng; Bai Jingfeng; Chen Yazhu

    2011-01-01

    The pressure and intensity distribution of high intensity focused ultrasound (HIFU) fields at full power are critical for predicting heating patterns and ensuring safety of the therapy. With the limitations of maximum pressure at the hydrophone and damage from cavitation or thermal effects, it is hard to measure pressure and intensity directly when HIFU is at full power. HIFU-phased arrays are usually composed of large numbers of small elements and the sound power radiated from some of them at full power is measureable using a hydrophone, we grouped them based on the limitation of maximum permissible pressure at the hydrophone and the characteristics of the element arrangement in the array. Then sound field measurement of the group was carried out at full power level. Using the acoustic coherence principle, the pressure and intensity distribution of the array at full power level can be calculated from corresponding values from the groups. With this method, computer simulations and sound field measurement of a 65-element concentric distributed phased array was carried out. The simulation results demonstrate theoretically the feasibility of this method. Measurements on the 65-element phased array also verify the effectiveness of this method for estimating the pressure and intensity distribution of phased array at full power level using a needle hydrophone.

  3. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  4. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  5. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  6. Variation in thermal conductivity of porous media due to temperature and pressure

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2003-01-01

    In the last decade, a great amount of attention has been paid to the study of the temperature dependence of the thermal transport properties of insulating materials. Thermal insulators constitute one of the major areas of the porous ceramic consumption. Measurements of thermal transport properties are important tools in this field. In the present work a set of synthetic porous insulating foams, used as insulating materials is studied. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials in air and then volumetric heat capacity is calculated. The study of thermal transport properties of three synthetic porous insulators that are foam, closed cell foam and fiberglass, under different conditions of temperature pressure and with corresponding densities was done. Due to this research it is possible to work out the material with optimum performance, lower thermal expansion and conductivity, high temperature use, low as well as high-pressure use, so that the insulation with high margin of safety and space with lower cost could be obtained. As a result the proper type of insulation can be recommended in accordance with the specific application. The change in the temperature and pressure causes different behavior on the samples, even then all these samples are suitable for insulation purposes in scientific and commercial fields. Foam is the best choice because of its lowest thermal conductivity values, fiberglass is a better choice because of its consistency, and closed cell foam is the third choice because of its plastic nature and high density. (author)

  7. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor

    International Nuclear Information System (INIS)

    Hoang, Trung Q; Zhu Xinli; Lobban, Lance L; Mallinson, Richard G

    2011-01-01

    Production of hydrogen for fuel cell vehicles, mobile power generators and for hydrogen-enhanced combustion from ethanol is demonstrated using energy-efficient non-thermal plasma reforming. A tubular reactor with a multipoint electrode system operated in pulsed mode was used. Complete conversion can be achieved with high selectivity (based on ethanol) of H 2 and CO of 111% and 78%, respectively, at atmospheric pressure. An elevated pressure of 15 psig shows improvement of selectivity of H 2 and CO to 120% and 87%, with a significant reduction of C 2 H x side products. H 2 selectivity increased to 127% when a high ratio (29.2) of water-to-ethanol feed was used. Increasing CO 2 selectivity is observed at higher water-to-ethanol ratios indicating that the water gas shift reaction occurs. A higher productivity and lower C 2 H x products were observed at larger gas gaps. The highest overall energy efficiency achieved, including electrical power consumption, was 82% for all products or 66% for H 2 only.

  8. Thermal power terms in the Einstein-dilaton system

    International Nuclear Information System (INIS)

    Zuo, Fen

    2014-01-01

    We employ the gauge/string duality to study the thermal power terms of various thermodynamic quantities in gauge theories and the renormalized Polyakov loop above the deconfinement phase transition. We restrict ourselves to the five-dimensional Einstein gravity coupled to a single scalar, the dilaton. The asymptotic solutions of the system for a general dilaton potential are employed to study the power contributions of various quantities. If the dilaton is dual to the dimension-4 operator TrF μν 2 , no power corrections would be generated. Then the thermal quantities approach their asymptotic values much more quickly than those observed in lattice simulation. When the dimension of the dual operator is different from 4, various power terms are generated. The lowest power contributions to the thermal quantities are always quadratic in the dilaton, while that of the Polyakov loop is linear. As a result, the quadratic terms in inverse temperature for both the trace anomaly and the Polyakov loop, observed in lattice simulation, cannot be implemented consistently in the system. This is in accordance with the field theory expectation, where no gauge-invariant operator can accommodate such contributions. Two simple models, where the dilaton is dual to operators with different dimensions, are studied in detail to clarify the conclusion.

  9. 浅谈火电厂稳高压消防给水系统的若干问题%Existing problems of stabilized high pressure fire fighting water supply system in thermal power plant

    Institute of Scientific and Technical Information of China (English)

    赵佰波; 王欣

    2012-01-01

    The definitions of stabilized high pressure fire fighting water supply system and temporary high pressure fire fighting water supply system were introduced, and a comparison between the two systems was carried out. Some suggestions for the setup of pump adapters and fire water tanks of stabilized high pressure fire fighting water supply system in thermal power plant were pointed out.%介绍了稳高压消防给水系统与临时高压消防给水系统的定义,进行了两类消防给水系统的对比,对火电厂稳高压消防给水系统水泵接合器及消防水箱的设置提出建议.

  10. Thermal-hydraulic and neutronic analysis of pressurized water reactor cores

    International Nuclear Information System (INIS)

    Alves, C.H.

    1982-01-01

    A computational code, named CANAL2, was developed for the simulation of the steady-state and transient behaviour of a Pressurized Water Reactor core. The conservation equations for the control volumes are obtained by area-averaging of the two-fluid model conservation equations and reducing them to the drift-flux model formulation. The resulting equations are aproximated by finite differences and solved by a marching-type numerical scheme. The model takes into account the exchange of mass, momentum and energy between adjacent subchannels of a fuel bundle. Turbulent mixing and diversion crossflow are considered. Correlations are provided for several heat trans and flow regimes and selected according to the local conditons. During transients core power can be evaluated by a point-Kinetics model. Fuel and coolant temperatures are feedback to the neutronics. The heat conduction equation is solved in the fuel using the Crank-Nicolson scheme. Temperature-dependent correlations are provided for the fuel and cladding thermal conductivities. Several runs were made with the code CANAL2 using the available experimental and calculated data in the open literature. Results indicate that CANAL2 is a good calculational tool for the thermal-hydraulics of PWR cores. A few refinements will make the code useful for design. (Author) [pt

  11. Application of the thermal efficiency analysis software 'EgWin' at existing power plants

    International Nuclear Information System (INIS)

    Koda, E.; Takahashi, T.; Nakao, Y.

    2008-01-01

    'EgWin' is the general purpose software to analyze a thermal efficiency of power system developed in CRIEPI. This software has been used to analyze the existing power generation unit of 30 or more, and the effectiveness has been confirmed. In thermal power plants, it was used for the clarification of the thermal efficiency decrease factor and the quantitative estimation of the influence that each factor gave to the thermal efficiency of the plant. Also it was used for the quantitative estimation of the effect by the operating condition change and the facility remodeling in thermal power, atomic energy, and geothermal power plants. (author)

  12. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  13. An analysis of system pressure and temperature distribution in self-pressurizer of SMART and calculation of sizing of wet thermal insulator and pressurizer cooler

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    To evaluate the amount of heat transfer from coolant to gas in reactor vessel heat transfer through the structure of pressurizer and evaporation/condensation on surface of liquid pool should be considered. And, also the heat exchange by pressurizer cooler and heat transfer to upper plate of reactor vessel should be considered. Thus, overall examinations on design variables which affect the heat transfer from coolant to gas are needed to maintain the pressurizer conditions at designed value for normal operation through heatup process. The major design variables, which affect system pressure and gas temperature during heatup, and the sizes of wet thermal insulator and pressurizer cooler, and volume of gas cylinder connected to pressurizer. A computer program is developed for the prediction of system pressure and temperature of pressurizer gas region with considering volume expansion of coolant and heat transfer from coolant to gas during heatup. Using the program, this report suggests the optimized design values of wet thermal insulator, pressurizer cooler, and volume of gas cylinder to meet the target conditions for normal operation of SMART. (author). 6 refs., 17 figs., 5 tabs.

  14. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  15. Neutronic calculations for the reactor pressure vessel of Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Lerner, Ana M.; Madariaga, Marcelo R.

    1999-01-01

    In 1974 a surveillance program for the Atucha I nuclear power plant pressure vessel was initiated which included the construction of different types of specimens, distributed in 30 irradiation capsules located under the core at the lower part of some of the fuel channels. The capsules containing the irradiated specimens were withdrawn in two stages; the first set (SET 1) of 15 specimens in 1980 and the second one (SET 2) of the remaining 15, in 1987. Both fracture mechanic tests and dosimetry analysis were carried out by the designer (KWU) for SET1 and by the owner National Atomic Energy Commission (CNEA) for SET2. The calculations performed in the case of SET1 showed that there was a significant spectrum difference between the position where the specimens had been and the reactor pressure vessel (RPV) - inner surface (IS). It was established that the ratio of thermal flux (E 1 MeV) varied, approximately, from 1000 to 10 from the irradiation position to the RPV- IS. The purpose of this report is to show the calculations recently performed at the Nuclear Regulatory Authority, with particular emphasis on the difference in the results generated by the modification to sightly enriched fuel. A simplified 1-D calculations show that there is a slight increase (4% approximately) in the flux along the whole energy range. As it has already been mentioned, this is due, more than to the isotopic composition of the new fuel, to the difference in power density spatial distribution, which is a consequence of a different fuel management, necessary to preserve operational limits below their maximum allowed values with the same total thermal power generated. More detailed calculations are nevertheless foreseen in order to verify these first results. (author)

  16. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  17. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  18. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  19. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion....... Sulfate reduction rates increase with increasing pressure and show maximum values at pressures higher than in situ. (C) 2003 Elsevier Science B.V. All rights reserved....

  20. Thermal-hydraulic analyses of pressurized-thermal-shock-induced vessel ruptures

    International Nuclear Information System (INIS)

    Dobranich, D.

    1982-05-01

    A severe overcooling transient was postulated to produce vessel wall temperatures below the nil-ductility transition temperature which in conjunction with system repressurization, led to vessel rupture at the core midplane. Such transients are referred to as pressurized-thermal-shock transients. A wide range of vessel rupture sizes were investigated to assess the emergency system's ability to cool the fuel rods. Ruptures greater than approximately 0.015 m 2 produced flows greater than those of the emergency system and resulted in core uncovery and subsequent core damage

  1. Pressure effects on thermal conductivity and expansion of geologic materials

    International Nuclear Information System (INIS)

    Sweet, J.N.

    1979-02-01

    Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail

  2. Upgrading of electrostatic precipitators in old thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurthy, H V

    1987-02-01

    Indian thermal power stations installed in the 60's and earlier had dust collectors whose efficiency was well below the acceptable level of emission under the Air (Prevention and Control of Pollution) Act 1981. This necessitates the need for higher efficiency dust collectors to be installed in old thermal power stations. Further, the poor quality of the coal being received at power stations presently causes severe environmental pollution in and around the plant. This paper deals with the retrofitting of electrostatic precipitators in existing units and the problems encountered in executing the same.

  3. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  4. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  5. Thermal properties of Avery Island salt to 5730K and 50-MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-01-01

    Thermal conductivity, thermal diffusivity, and thermal linear expansion were measured on two samples of Avery Island rock salt up to simultaneous temperatures and pressures of 573 0 K and 50 MPa. Thermal conductivity at room temperature measured 6.3 +- 0.6 W/mK and decreased monotonically to 3.3 +- 0.4 W/mK at 573 0 K. Thermal diffusivity decreased from 3.0 +- 0.8 x 10 -6 m 2 /s at room temperature to 1.4 +- 0.5 x 10 -6 m 2 /s at 573 0 K. Thermal linear expansivity increased from 4.8 +- 0.3 x 10 -5 K -1 at room temperature to 5.6 +- 0.3 x 10 -5 K -1 at 573 0 K. The thermal properties showed no measurable (+-5%) dependence on confining pressure from 0 to 50 MPa for any temperature tested. The thermal conductivity values were not distinguishable (+-5%) from intrinsic (single crystal) values measured by others. Diffusivity fell about 20% below intrinsic values, and linear expansivity about 20% above intrinsic values. Thermal conductivity values for Avery Island salt measured recently by Morgan are as much as 50% lower than values measured here and were probably strongly affected by sample handling prior to measurement. The pressure independence of the thermal properties measured in our study suggests that thermally-induced microfracturing is nearly nonexistent. This lack of thermal cracking is consistent with the high (cubic) symmetry of halite

  6. Availability statistics for thermal power plants

    International Nuclear Information System (INIS)

    1990-01-01

    Denmark, Finland and Sweden have adopted almost the same methods of recording and calculation of availability data. For a number of years comparable availability and outage data for thermal power have been summarized and published in one report. The purpose of the report now presented for 1990 containing general statistical data is to produce basic information on existing kinds of thermal power in the countries concerned. With this information as a basis additional and more detailed information can be exchanged in direct contacts between bodies in the above mentioned countries according to forms established for that purpose. The report includes fossil steam power, nuclear power and gas turbines. The information is presented in separate diagrams for each country, but for plants burning fossil fuel also in a joint NORDEL statistics with data grouped according to type of fuel used. The grouping of units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. Values based on energy have been adopted as basic availability data. The same applied to the preference made in the definitions outlined by UNIPEDE and UNIPEDE/WEC. Some data based on time have been included to make possible comparisons with certain international values and for futher illustration of the performance. (au)

  7. Method of estimating thermal power distribution of core of BWR type reactor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1982-01-01

    Purpose: To accurately and rapidly predict the thermal power of the core of a BWR they reactor at load follow-up operating time. Method: A parameter value corrected from a correction coefficient deciding unit and a xenon density distribution value predicted and calculated from a xenon density distributor are inputted to a thermal power distribution predicting devise, the status amount such as coolant flow rate or the like predetermined at this and next high power operating times is substituted for physical model to predict and calculate the thermal power distribution. The status amount of a nuclear reactor at the time of operating in previous high power corresponding to the next high power operation to be predicted is read from the status amount of the reactor stored in time series manner is a reactor core status memory, and the physical model used in the prediction and calculation of the thermal power distribution at the time of next high power operation is corrected. (Sikiya, K.)

  8. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  9. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  10. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  11. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  12. Thermal hydraulic evaluation for an experimental facility to investigate pressurized thermal shock (PTS) in CDTN/CNEN

    International Nuclear Information System (INIS)

    Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L.

    2002-01-01

    The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)

  13. Investigation of pressure retarded osmosis power production

    Directory of Open Access Journals (Sweden)

    Taousanidis Nikolaos

    2017-01-01

    Full Text Available A major source of energy exists where there is mixing between aqueous solutions of different salinities. This energy source is particularly concentrated where fresh water rivers flow on to the ocean. The power, represented by the osmotic pressure difference between fresh water and salt water, may be called salinity gradient power. In this study the pressure retarded osmosis method for the extraction of salinity gradients’ energy is investigated, main problems and difficulties are pointed out and finally the whole subject is justified with experimental results.

  14. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  15. Seismic-safe conditions of blasting near pressure pipe-lines during power installation construction

    International Nuclear Information System (INIS)

    Smolij, N.I.; Nikitin, A.S.

    1980-01-01

    Seismic-safe conditions for performing drill-blasting operations in the vicinity of underground gas pipelines when constructing thermal- or nuclear power plants are discussed. It is shown that, for the determination of seismic-safe parameters, of drill-blasting operations, the maximum permissible level of seismic loads should be specified taking into account the mechanical properties of the pipeline.metal, structural parameters of the gas pipeline and the pressure of the medium transported. Besides, the seismic effect of the blast should be considered with regard to particular conditions of blasting and rock properties. The equations and diagrams used in the calculation are given

  16. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    Thermal loading of power devices are closely related to the reliability performance of the whole converter system. The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal...

  17. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  18. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  19. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  20. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  1. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  2. The comparision of a basic and a dual-pressure ORC (Organic Rankine Cycle): Geothermal Power Plant Velika Ciglena case study

    International Nuclear Information System (INIS)

    Guzović, Zvonimir; Rašković, Predrag; Blatarić, Zoran

    2014-01-01

    In the Republic of Croatia there is some medium temperature geothermal fields (between 100 and 180 °C) by means of which it is possible to produce electricity. However, only recently concrete initiatives for the construction of geothermal power plants have been started. In previous papers, the possible cycles for geothermal fields in the Republic of Croatia are proposed: ORC (Organic Rankine Cycle) and Kalina cycle. Also for the most prospective geothermal fields, energy and exergy analysis for the proposed cycles are performed, on the basis of which the most suitable cycle is proposed. It is ORC which in all cases has better both the thermal efficiency (the First Law efficiency) and the exergy efficiency (the Second Law efficiency). With aim to further improving of geothermal energy utilization in this paper the replacement of a basic ORC with a dual-pressure ORC is analysed. A dual-pressure cycle reduces the thermodynamic losses incurred in the geothermal water-working fluid heat exchangers of the basic ORC, which arise through the heat transfer process across a large temperature difference. The dual-pressure cycle maintains a closer match between the geothermal water cooling curve and the working fluid heating/boiling curve and these losses can be reduced. Now, on the example of the most prospective geothermal field, Velika Ciglena (175 °C), energy and exergy analysis for the proposed the dual-pressure cycle are performed. As a conclusion, in case of Geothermal Power Plant Velika Ciglena, a dual-pressure ORC has slightly lower thermal efficiency (13.96% vs. 14.1%) but considerably higher both exergy efficiency (65% vs. 52%) and net power (6371 kW vs. 5270 kW). - Highlights: • In Croatia there are several medium temperature geothermal sources (100–180 °C). • Electricity production is possible in binary plants with ORC (Organic Rankine Cycle) or with the Kalina cycle. • In all cases ORC has better thermodynamic characteristics than Kalina cycle.

  3. Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture

    KAUST Repository

    Iloeje, Chukwunwike

    2015-04-01

    © 2015 Elsevier Ltd. A number of CO2 capture-enabled power generation technologies have been proposed to address the negative environmental impact of CO2 emission. One important barrier to adopting these technologies is the associated energy penalty. Chemical-looping Combustion (CLC) is an oxy-combustion technology that can significantly lower this penalty. It utilizes an oxygen carrier to transfer oxygen from air/oxidizing stream in an oxidation reactor to the fuel in a reduction reactor. Conventional CLC reactor designs employ two separate reactors, with metal/metal oxide particles circulating pneumatically in-between. One of the key limitations of these designs is the entropy generation due to reactor temperature difference, which lowers the cycle efficiency. Zhao et al. (Zhao et al., 2014; Zhao and Ghoniem, 2014) proposed a new CLC rotary reactor design, which overcomes this limitation. This reactor consists of a single rotating wheel with micro-channels designed to maintain thermal equilibrium between the fuel and air sides. This study uses three thermodynamic models of increasing fidelity to demonstrate that the internal thermal coupling in the rotary CLC reactor creates the potential for improved cycle efficiency. A theoretical availability model and an ideal thermodynamic cycle model are used to define the efficiency limits of CLC systems, illustrate the impact of reactor thermal coupling and discuss relevant criteria. An Aspen Plus® model of a regenerative CLC cycle is then used to show that this thermal coupling raises the cycle efficiency by up to 2% points. A parametric study shows that efficiency varies inversely with pressure, with a maximum of 51% at 3bar, 1000C and 60% at 4bar, 1400C. The efficiency increases with CO2 fraction at high pressure ratios but exhibits a slight inverse dependence at low pressure ratios. The parametric study shows that for low purge steam demand, steam generation improves exhaust heat recovery and increases efficiency

  4. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  5. Survival of juvenile fishes receiving thermal and mechanical stresses in a simulated power plant condenser

    International Nuclear Information System (INIS)

    Kedl, R.J.; Coutant, C.C.

    Experiments were conducted in a water-recirculating loop to determine the effects of fluid-induced stresses (e.g., turbulence, pressure, and vacuum) on six species of larval fish and one species each of frog tadpoles and zooplankton. These stresses simulate the insults developed in the condenser portion, but not including the pump, of a steam power plant. Some experiments were conducted with thermal stresses superimposed on fluid-induced stresses. Fluid-induced stresses of the magnitude developed in these experiments were generally not fatal to the larval fish within the precision of the experiments, although some sublethal effects were noted. When thermal stress was superimposed on the fluid-induced stresses, the mortalities were equivalent to those resulting from thermal stress alone. Fluid-induced stresses of low magnitude were not fatal to Daphnia magna, but fluid-induced stresses of higher magnitude were responsible for significant mortalities. (U.S.)

  6. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  7. Thermal shield support degradation in pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Fry, D.N.

    1986-01-01

    Damage to the thermal shield support structures of three pressurized water reactors (PWRs) due to flow-induced vibrations was recently discovered during refueling. In two of the reactors, severe damage occurred to the thermal shield, and in one reactor the core support barrel (CSB) was damaged, necessitating extended outages for repairs. In all three reactors, several of the thermal shield supports were either loose, damaged, or missing. The three plants had been in operation for approximately 10 years before the damage was apparent by visual inspection. Because each of the three US PWR manufacturers have experienced thermal shield support degradation, the Nuclear Regulatory Commission requested that Oak Ridge National Laboratory analyze ex-core neutron detector noise data to determine the feasibility of detecting incipient thermal shield support degradation. Results of the noise data analysis indicate that thermal shield support degradation probably began early in the life of both severely damaged plants. The degradation was characterized by shifts in the resonant frequencies of core internal structures and the appearance of new resonances in the ex-core neutron detector noise. Both the data analyses and the finite element calculations indicate that these changes in resonant frequencies are less than 3 Hz. 11 refs., 16 figs

  8. Optimization of the triple-pressure combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Alus Muammer

    2012-01-01

    Full Text Available The aim of this work was to develop a new system for optimization of parameters for combined cycle power plants (CCGTs with triple-pressure heat recovery steam generator (HRSG. Thermodynamic and thermoeconomic optimizations were carried out. The objective of the thermodynamic optimization is to enhance the efficiency of the CCGTs and to maximize the power production in the steam cycle (steam turbine gross power. Improvement of the efficiency of the CCGT plants is achieved through optimization of the operating parameters: temperature difference between the gas and steam (pinch point P.P. and the steam pressure in the HRSG. The objective of the thermoeconomic optimization is to minimize the production costs per unit of the generated electricity. Defining the optimal P.P. was the first step in the optimization procedure. Then, through the developed optimization process, other optimal operating parameters (steam pressure and condenser pressure were identified. The developed system was demonstrated for the case of a 282 MW CCGT power plant with a typical design for commercial combined cycle power plants. The optimized combined cycle was compared with the regular CCGT plant.

  9. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  10. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  11. An approach of raising the low power reactor trip block (P-7) in Maanshan Power Plant

    International Nuclear Information System (INIS)

    Wang, L.C.

    1984-01-01

    The technical specification for the Maanshan Nuclear Power Station (FSAR Table 16.2.2-3) requires that with an increasing reactor power level above the setpoint of low power reactor trip block (P-7), a turbine trip shall initiate a reactor trip. This anticipatory reactor trip on turbine trip prevents the pressurizer PORV from openning during turbine trip event. In order to reduce unnecessary reactor trip due to turbine trip on low reactor power level during Maanshan start-up stage, Taiwan Power Company performed a transient analysis for turbine trip event by using RETRAN code. The highest reactor power level at which a turbine trip will not open the pressurizer PORV is searched. The results demonstrated that this power level can be increased from the original value-10% of the rated thermal power-to about 48% of the rated thermal power

  12. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  13. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    Science.gov (United States)

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  14. Improved thermal/MHD design of self-cooled blankets for high-power-density fusion reactors

    International Nuclear Information System (INIS)

    Sedehi, S.; Lund, K.O.

    1986-01-01

    In this work, an improved self-cooled blanket design is conceived that seeks to minimize the induced current and pressure loss, while maintaining effective cooling and power output. Standard solutions for fully developed MHD flows in rectangular ducts are utilized to describe the magnetic pressure drop in rectangular ducts in terms of the duct aspects ratio. A newly available analytical result for developing and fully developed temperatures is utilized in determining the maximum wall temperature and outlet temperature. Based on results from rectangular ducts, improved annular-type duct designs are proposed and evaluated. The results from the rectangular duct analysis indicate reduced pressure drop and increased thermal performance for large aspect ratio (ratio of duct width in the toroidal B-field direction to width normal to B-field). An infinite aspect ratio occurs for the annular duct design and it is shown that this configuration has superior characteristics as a self-cooled blanket design concept

  15. Cost estimation of thermal and nuclear power using annual securities report

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nagatomi, Yu; Murakami, Tomoko

    2011-01-01

    Cost estimation of generation cost derived from various power sources was widely conducted using model plant or annual securities report of electric utilities. Although annual securities report method was subjected to some limitation in methodology itself, useful information was obtained for cost comparison of thermal and nuclear power. Studies on generation cost evaluation of thermal and nuclear power based on this method during past five years showed that nuclear power cost was almost stable 7 Yen/kWh and thermal power cost was varying 9 - 12 Yen/kWh dependent on violent fluctuations of primary energy cost. Nuclear power was expected cost increase due to enhanced safety requirements or damage compensation of accidents as well as decommissioning and back-end cost, which were difficult to evaluate accurately with annual securities report. Further comprehensive and accurate cost estimation should be encouraged including these items. (T. Tanaka)

  16. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  17. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    International Nuclear Information System (INIS)

    Lee, Sang Bum; Roh, Seon Man

    2016-01-01

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB

  18. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  19. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  20. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  1. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  2. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  3. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  4. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  5. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  6. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  7. Thermal power stations and environmental protection

    International Nuclear Information System (INIS)

    Gerking, E.

    1975-01-01

    In this book, the advantages of an optimum cooling concept for waters are compared with the disadvantages of an uncontrolled thermal pollution of waters by waste waters from thermal power plants. The book focuses on the problem of the cost of measures for environmental protection which has not yet received a detailed and complete treatment. The author suggests that perfectionist solutions and superfluos measures be abandoned in favour of a far-reaching, efficient environmental protection concept with a low expenditure of fuel and capital. A detailed treatment is given to false conclusions in the present estimations of the effects of thermal pollution of the waters and to the advantages of freshwater cooling and cooling in general. Also discussed are immission problems and attempts at their solution. (ORU/AK) [de

  8. Decision on thermal power plant can be taken this spring

    International Nuclear Information System (INIS)

    Haga, I.

    1978-01-01

    Towards the end of the 1960s it appeared that nuclear power would be the natural successor to hydroelectric power, as the latter became less attractive for further exploitation, reinforced by environmentalist opposition to several proposed hydroelectric schemes. Conventional thermal power was also considered, but one proposed stand-by plant was rejected in 1971 largely because of environmental considerations. Preliminary planning and PR information on nuclear power in the early 1970s aroused considerable opposition and a governmental commission was appointed in 1975-6 to evaluate the question of reactor safety and transport and disposal of radioactive waste, to report in 1978. It is therefore not possible to count on nuclear power as a supplement until the end of the 1980s at the earliest. Gas-fired thermal power is environmentally attractive, but at present no gas fields have been found which make this economic. Oil-fired power is quite feasible, but no political decision has yet been taken. Coal fuel, based on the Spitzbergen mines has recently become more interesting, and small power plants for the extreme north of Norway are under consideration. Finally it is pointed out that nuclear power is safer than generally assumed while fluidised bed combustion of coal in a combined steam-gas turbine plant will lead to very high thermal efficiencies. (JIW)

  9. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  10. A study of thermal-hydraulic requirements for increasing the power rates for natural-circulation boiling water reactors

    International Nuclear Information System (INIS)

    Yasuo, A.; Inada, F.; Hidaka, M.

    1992-01-01

    In this paper, the feasibility of higher power rates for natural-circulation boiling water reactors (BWRs) is studied with the objective of examining the flexibility of the plant power rate in constructing such plants to cope with the increasing demand for electricity. By applying existing one-dimensional design codes, the riser heights necessary to meet two major thermal-hydraulic requirements, i.e., critical power and core stability, are systematically calculated. Several restrictions on the maximum diameter and height of the pressure vessel are also considered because these restrictions could make construction impossible or drastically increase the construction costs. A very simple map of the dominant parameters for higher power rates is obtained. It is concluded that natural-circulation BWRs of >1000 MW (electric) will be feasible within the restrictions considered here

  11. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  12. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion...... range of temperatures and pressures and can easily be modified to accommodate different experiments, either biological or chemical. As an application, we present measurements of bacterial sulfate reduction rates in hydrothermal sediments from Guyamas Basin over a wide range of temperatures and pressures...

  13. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  14. The Influence Of Temperature And Pressure On AP600 Pressure Vessel Analysis By Two Dimensional Finite Element Method

    International Nuclear Information System (INIS)

    Utaya

    1996-01-01

    Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )

  15. Cluster formation in in-service thermally aged pressurizer welds

    Science.gov (United States)

    Lindgren, Kristina; Boåsen, Magnus; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2018-06-01

    Thermal aging of reactor pressure vessel steel welds at elevated temperatures may affect the ductile-to-brittle transition temperature. In this study, unique weld material from a pressurizer, with a composition similar to that of the reactor pressure vessel, that has been in operation for 28 years at 345 °C is examined. Despite the relatively low temperature, the weld becomes hardened during operation. This is attributed to nanometre sized Cu-rich clusters, mainly located at Mo- and C-enriched dislocation lines and on boundaries. The welds have been characterized using atom probe tomography, and the characteristics of the precipitates/clusters is related to the hardness increase, giving the best agreement for the Russell-Brown model.

  16. Re-austenitisation of chromium-bearing pressure vessel steels during the weld thermal cycle

    International Nuclear Information System (INIS)

    Dunne, Druce; Li, Huijun; Jones, Christopher

    2013-01-01

    Steels with chromium contents between 0.5 and 12 wt% are commonly used for fabrication of creep resistant pressure vessels (PV) for the power generation industry. Most of these steels are susceptible to Type IV creep failure in the intercritical and/ or grain refined regions of the heat affected zone (HAZ) of the parent metal. The re-austenitisation process plays a central role in establishing the transformed microstructures and the creep resistance of the various sub-zones of the HAZ. The high alloy content and the presence of alloy-rich carbides in the as-supplied parent plate can significantly retard the kinetics of transformation to austenite, resulting in both incomplete austenitisation and inhomogeneous austenite. Overlapping weld thermal cycles in multi-pass welds add further complexity to the progressive development of microstructure over the course of the welding process. In order to clarify structural evolution, thermal simulation has been used to study the effects of successive thermal cycles on the structures and properties of the HAZ of 2.25Cr-1Mo steel. The results showed that, before post-weld heat treatment (PWHT), the HAZ microstructures and properties, particularly in doubly reheated sub-zones, were highly heterogeneous and differed markedly from those of the base steel. It is concluded that close control of the thermal cycle by pre-heat, weld heat input and post-heat is necessary to obtain a heat affected zone with microstructures and properties compatible with those of the base plate.

  17. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  18. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    International Nuclear Information System (INIS)

    Conboy, Thomas; Hejzlar, Pavel

    2006-01-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  19. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    Science.gov (United States)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  20. Optimization of hydrostatic pressure at varied sonication conditions--power density, intensity, very low frequency--for isothermal ultrasonic sludge treatment.

    Science.gov (United States)

    Delmas, Henri; Le, Ngoc Tuan; Barthe, Laurie; Julcour-Lebigue, Carine

    2015-07-01

    This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS), intensity (IUS), and frequency (FS) - down to audible range, under varied hydrostatic pressure (Ph) and low temperature isothermal conditions (to avoid any thermal effect). The selected application was activated sludge disintegration, a major industrial US process. For a rational approach all comparisons were made at same specific energy input (ES, US energy per solid weight) which is also the relevant economic criterion. The decoupling of power density and intensity was obtained by either changing the sludge volume or most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases marked maxima of sludge disintegration appeared at optimum pressures, which values increased at increasing power intensity and density. Such optimum was expected due to opposite effects of increasing hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher temperature and pressure at the end of collapse. In addition the first attempt to lower US frequency down to audible range was very successful: at any operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and 20 kHz. At same energy consumption the best conditions - obtained at 12 kHz, maximum power density 720 W/L and 3.25 bar - provided about 100% improvement with respect to usual conditions (1 bar, 20 kHz). Important energy savings and equipment size reduction may then be expected. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  2. Thermal Load Analysis of Multilayered Corium in the Lower Head of Reactor Pressure Vessel during Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Seok Won; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of); Hwang, Tae Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    In-Vessel Retention (IVR) is one of the severe accident management strategies to terminate or mitigate the severe accident which is also called 'core-melt accident'. The reactor vessel would be cooled by flooding the cavity with water. The molten core mixture is divided into two or three layers due to the density difference. Light metal layer which contains Fe and Zr is on the oxide layer which is consist of UO{sub 2} and ZrO{sub 2}. Heavy metal layer which contains U, Fe and Zr is located under the oxide layer. In oxide layer, the crust which is solidified material is formed along the boundary. The assessment of IVR for nuclear power plant has been conducted with lumped parameter method by Theofanous, Rempe and Esmaili. In this paper, the numerical analysis was performed and verified with the Esmaili's work to analyze thermal load of multilayered corium in pressurized reactor vessel and also to examine the condition of in-vessel corium characteristic before the vessel failure that lead to ex-vessel severe accident progression for example, ex-vessel debris bed cooling. The in-vessel coolability analysis for several scenarios is conducted for the plant which has higher power than AP1000. Two sensitivity analyses are conducted, the first is emissivity of light metal layer and the second is the heat transfer coefficient correlations of oxide layer. The effect of three layered system also investigated. In this paper, the numerical analysis was performed and verified with Esmaili's model to analyze thermal load of multilayered corium in pressurized reactor vessel. For two layered system, thermal load was analyzed according to the severe accident scenarios, emissivity of the light metal layer and heat transfer correlations of the.

  3. Pressure locking test results

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  4. Pressure locking test results

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, open-quotes Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.close quotes Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions

  5. Stirling engines for low-temperature solar-thermal-electric power generation

    Science.gov (United States)

    der Minassians, Artin

    their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.

  6. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  7. Application of the French codes to the pressurized thermal shocks assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin [Suzhou Nuclear Power Research Institute, Life Management Center, Suzhou (China); Qian, Guian [Paul Scherrer Institute, Nuclear Energy and Safety Department, Villigen (Switzerland); Shi, Jinhua [Amec Foster Wheeler, Clean Energy Department, Gloucester (United Kingdom)

    2016-12-15

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  8. Application of the French Codes to the Pressurized Thermal Shocks Assessment

    Directory of Open Access Journals (Sweden)

    Mingya Chen

    2016-12-01

    Full Text Available The integrity of a reactor pressure vessel (RPV related to pressurized thermal shocks (PTSs has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the “screening criterion” for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no “screening criterion”. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  9. Application of the French codes to the pressurized thermal shocks assessment

    International Nuclear Information System (INIS)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin; Qian, Guian; Shi, Jinhua

    2016-01-01

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed

  10. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  11. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  12. Thermal effluents from nuclear power plant influences species distribution and thermal tolerance of fishes in reservoirs

    International Nuclear Information System (INIS)

    Pal, A.K.; Das, T.; Dalvi, R.S.; Bagchi, S.; Manush, S.M.; Ayyappan, S.; Chandrachoodan, P.P.; Apte, S.K.; Ravi, P.M.

    2007-01-01

    During electricity generation water bodies like reservoir act as a heat sink for thermal effluent discharges from nuclear power plant. We hypothesized that the fish fauna gets distributed according to their temperature preference in the thermal gradient. In a simulated environment using critical thermal methodology (CTM), we assessed thermal tolerance and metabolic profile of fishes (Puntius filamentosus, Parluciosoma daniconius, Ompok malabaricus, Mastacembelus armatus, Labeo calbasu, Horabragrus brachysoma, Etroplus suratensis, Danio aequipinnatus and Gonoproktopterus curmuca) collected from Kadra reservoir in Karnataka state. Results of CTM tests agrees with the species abundance as per the temperature gradient formed in the reservoir due to thermal effluent discharge. E. suratensis and H. brachysoma) appear to be adapted to high temperature (with high CTMax and CTMin values) and are in abundance at point of thermal discharge. Similarly, P. daniconius, appear to be adapted to cold (low CTM values) is in abundance in lower stretches of Kadra reservoir. Overall results indicate that discharge form nuclear power plant influences the species biodiversity in enclosed water bodies. (author)

  13. Thermal pollution impacts on rivers and power supply in the Mississippi River watershed

    Science.gov (United States)

    Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin

    2018-03-01

    Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome

  14. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1997-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  15. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1998-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  16. Technical and economic aspects of operation of thermal and hydro power systems

    International Nuclear Information System (INIS)

    Bakken, Bjoern Harald.

    1997-01-01

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs

  17. A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES

    Directory of Open Access Journals (Sweden)

    K. M. Vasyliv

    2017-06-01

    Full Text Available Purpose. Development of a model-software complex (MSC for computer analysis of modes of the system of induction motors (IM of smoke exhausters of thermal power plant (TPP, the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON and induction motors and interdependence (in all possible combinations between: TON (from which motors powered and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants.

  18. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  19. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  20. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    International Nuclear Information System (INIS)

    Ramsthaler, J.H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs

  1. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  2. Thermal design of a pressure electroslag remelting furnace applied for 5

    International Nuclear Information System (INIS)

    Cruz M, J.P.

    1999-01-01

    Actual work defines the thermal design methodology for pressure electroslag remelting furnaces (P ESR) of variable capacity, applied for 5 Kg. It begins with classification and description of secondary refining furnaces, after PESR process and the concept of thermal design are described. Next, in base of the steel weight to remelt (5 Kg); ingot, crucible and electrode dimensions are obtained. These elements will be inside of pressure vessel whose thickness are determined according to ASME Code (Section 8, Division 1, U G-27). It was developed a computer program, where the furnace capacity can be modified, so like other conditions, and display principal dimensions of the furnace. Current and voltage are obtained from the heat necessary to remelt the ingot and the heat transfer in the crucible, is analysed because of it is the most critical element. It was selected too the equipment to registry temperatures and pressure in base of thermocouple characteristics. (Author)

  3. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  4. The Power of Peer Pressure

    Science.gov (United States)

    Wingle, Jane

    2006-01-01

    In a religion class of 26 bright creative sixth graders, one student demonstrates the power of peer pressure. Part of the morning ritual is to say prayer petitions. Students seems to be calmed by their expressions of care for their families, friends, pets, their military troops, victims of natural disasters, the homeless, etc. However, one student…

  5. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  6. Assessment of inhalation risk due to radioactivity released from coal-based thermal power plant

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.; Kushwaha, H.S.

    2006-01-01

    In India, the coal based thermal power plants have been the major source of power generation in the past and would continue for decades to come. As the coal contains naturally occurring primordial radionuclides the burning of pulverized coal to produce energy for generation of electricity in thermal power plants will result in the emission of a variety of natural radioactive elements into the environment in the vicinity of thermal power plants. In this paper we have used two different methods for characterization of uncertainty in inhalation risk to the general public around 10 Kms radius in the neighborhood of a coal-fired thermal power plant. (author)

  7. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  8. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  9. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  10. Development of a computer code, PZRTR, for the thermal hydraulic analysis of a multi-cavity cold gas pressurizer for an integral reactor, SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Yoon, J

    2003-12-01

    The concept of a Multi-cavity Cold Gas PressuriZeR (MCGPZR) is applied to the SMART: The pressurizer system includes in-vessel cavities and out-of-vessel gas cylinders holding the gas supply/vent system. The gas cylinders are connected to the one of the in-vessel cavities via piping with valves. A pressurizer is maintained at a cold temperature of less than about 100 .deg. C, which is realized with coolers installed in and with wet thermal insulators installed on one of the cavities located inside the hot reactor vessel, to minimize the contribution of a steam partial pressure and is filled with nitrogen gas as a pressure-absorbing medium. The working medium and working temperature of the MCGPZR is totally different from that of a hot steam pressurizer of the commercial PWR. In addition, the MCGPZR is intended to be designed to meet a pressure transient during normal power operation (by its gas volume capacity) without using an active control system and during plant heatup/cooldown operation by using an active gas control (filling/venting) system. Therefore in order to evaluate the feasibility of the concept of the MCGPZR and its intended design goal, the thermal hydraulic behaviors and controllability of the MCGPZR during transients especially a heatup/cooldown operation must be analyzed. In this study, a thermal hydraulic transient analysis computer code, PZRTR, for the Reactor Coolant System (RCS) of an integral reactor composed of the MCGPZR, modular Once-Through Steam Generators (OTSGs), a core and a reactor coolant loop is developed. The pressurizer module (MCGPZR module) of the PZRTR code is based on a two-fluid, nonhomogeneous, nonequilibrium model for the two-phase system behavior and the OTSG module is based on a homogeneous equilibrium model of the two-phase flow process. The core module is simply based on the axial power distributions and the reactor coolant loop is based on the temperature distributions. The code is currently dedicated for the

  11. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    Energy Technology Data Exchange (ETDEWEB)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332‐0245 (United States)

    2017-05-15

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression also reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.

  12. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  13. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  14. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  15. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  16. The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar

    Science.gov (United States)

    Horai, Ki-iti; Susaki, Jun-ichi

    1989-06-01

    The effect of high pressure up to 12 kbar on thermal conductivity of silicate rocks was determined. Measurements were made by the transient hot wire method on 23 samples. With the exception of one sedimentary rock, one meteorite and manufactured fused and crystalline quartz, the samples were igneous and metamorphic rocks of the oceanic and the continental lithospheres. The samples were of cylindrical shape, 24 mm long and 12 mm in diameter, containing a heater of 0.1 mm thick chromel wire along their axis and a thermocouple at the center. They were encased in cubes of 41 mm-edge-long pyrophyllite and then placed between slide-type cubic anvils of the IHI high-pressure apparatus, which transmitted quasi-hydrostatic pressure of more than 2 kbar to the sample through the solid pyrophyllite medium. The validity of the method was confirmed by comparing the conductivity of standard materials measured using the present method with literature values. The results show that the thermal conductivity of all samples increases with increasing pressure. The most rapid increase in the range below 2 kbar can be attributed to the closure of microcracks in the sample, and uniform, less pronounced increases above 2 kbar should be intrinsic to the material. The effect of temperature was also studied on a small number of selected samples. In the temperature range from 300 to 700 K, the thermal conductivities of crystalline rocks under quasi-hydrostatic compressive stresses of 4 and 10 kbar showed a monotonic decrease of thermal conductivity. The thermal conductivity of fused quartz, however, increased with temperature. Pressure appeared to have no appreciable effect on the temperature dependence of silicate thermal conductivity.

  17. Super thermal power plants and environment: a critical appraisal

    International Nuclear Information System (INIS)

    Sharma, A.K.

    1995-01-01

    This paper discusses the possible impact on the environment by the particulate matters, oxides of sulphur and nitrogen, trace metals and solid/liquid wastes, which are emitted during the combustion of coal in the super thermal power plants of National Thermal Power Corporation (NTPC). The coal consumed by these plants have sufficient sulphur content and ash. Of all the mineral in coal, pyrite is one of the most deleterious in combustion and a major source of oxide of sulphur pollution of the atmosphere. The impact of these on the terrestrial and aquatic environment in and around power plants and on region have been discussed. To arresting such contaminants, some remedial measures are suggested. (author). 14 refs., 1 fig., 3 tabs

  18. TPDWR2: thermal power determination for Westinghouse reactors, Version 2. User's guide

    International Nuclear Information System (INIS)

    Kaczynski, G.M.; Woodruff, R.W.

    1985-12-01

    TPDWR2 is a computer program which was developed to determine the amount of thermal power generated by any Westinghouse nuclear power plant. From system conditions, TPDWR2 calculates enthalpies of water and steam and the power transferred to or from various components in the reactor coolant system and to or from the chemical and volume control system. From these results and assuming that the reactor core is operating at constant power and is at thermal equilibrium, TPDWR2 calculates the thermal power generated by the reactor core. TPDWR2 runs on the IBM PC and XT computers when IBM Personal Computer DOS, Version 2.00 or 2.10, and IBM Personal Computer Basic, Version D2.00 or D2.10, are stored on the same diskette with TPDWR2

  19. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman [Institute of Planetology, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Breuer, Doris, E-mail: Vlada.Stamenkovic@dlr.de, E-mail: Lena.Noack@dlr.de, E-mail: Doris.Breuer@dlr.de, E-mail: Tilman.Spohn@dlr.de [Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin (Germany)

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  20. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    International Nuclear Information System (INIS)

    Stamenković, Vlada; Noack, Lena; Spohn, Tilman; Breuer, Doris

    2012-01-01

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths—resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution—the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  1. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  2. Impact of thermal power generation units on floristic diversity of Kota and its environs

    International Nuclear Information System (INIS)

    Jain, Shuchita; Dadhich, K.

    2001-01-01

    The emissions from thermal power plants have great phytotoxic effects on plants due to changes in their morphology and physiology. A floristic study has been conducted near the Thermal Power Station at Kota in Rajasthan to estimate the impact of emissions from the thermal power plant on biota. It is observed that the whole vegetation, especially the perennial trees and shrubs, growing near the station were severely damaged due to effects of air pollutants emitted from the Thermal Power Station. Analysis of the fly ash reveals its composition as composed of silica, alumina, iron oxide etc. (author)

  3. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  4. International technologies market for coal thermal power plants

    International Nuclear Information System (INIS)

    1998-01-01

    This paper reports a general framework of potential market of clean coal combustion technologies in thermal power plants, specially for commercialization and market penetration in developing countries [it

  5. Optical fiber powered pressure sensor

    International Nuclear Information System (INIS)

    Schweizer, P.; Neveux, L.; Ostrowsky, D.B.

    1987-01-01

    In the system described, a pressure sensor and its associated electronics are optically powered by a 20 mw laser and a photovoltaic cell via an optical fiber. The sensor is periodically interrogated and sends the measures obtained back to the central unit using an LED and a second fiber. The results obtained as well as the expected evolution will be described

  6. CCP Sensitivity Analysis by Variation of Thermal-Hydraulic Parameters of Wolsong-3, 4

    Energy Technology Data Exchange (ETDEWEB)

    You, Sung Chang [KHNP, Daejeon (Korea, Republic of)

    2016-10-15

    The PHWRs are tendency that ROPT(Regional Overpower Protection Trip) setpoint is decreased with reduction of CCP(Critical Channel Power) due to aging effects. For this reason, Wolsong unit 3 and 4 has been operated less than 100% power due to the result of ROPT setpoint evaluation. Typically CCP for ROPT evaluation is derived at 100% PHTS(Primary Heat Transport System) boundary conditions - inlet header temperature, header to header different pressure and outlet header pressure. Therefore boundary conditions at 100% power were estimated to calculate the thermal-hydraulic model at 100% power condition. Actually thermal-hydraulic boundary condition data for Wolsong-3 and 4 cannot be taken at 100% power condition at aged reactor condition. Therefore, to create a single-phase thermal-hydraulic model with 80% data, the validity of the model was confirmed at 93.8%(W3), 94.2%(W4, in the two-phase). And thermal-hydraulic boundary conditions at 100% power were calculated to use this model. For this reason, the sensitivities by varying thermal-hydraulic parameters for CCP calculation were evaluated for Wolsong unit 3 and 4. For confirming the uncertainties by variation PHTS model, sensitivity calculations were performed by varying of pressure tube roughness, orifice degradation factor and SG fouling factor, etc. In conclusion, sensitivity calculation results were very similar and the linearity was constant.

  7. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  8. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  9. Thermal properties of rock salt and quartz monzonite to 5730K and 50-MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-01-01

    Measurements of thermal conductivity, thermal diffusivity, and thermal linear expansion have been made on two rock types, a rock salt and a quartz monzonite, at temperatures from 300 to 573 0 K and confining pressures from 10 to 50 MPa. The samples were taken from deep rock formations under consideration as possible sites for a nuclear waste repository - the rock salt from a domal salt formation at Avery Island, Louisiana, and the quartz monzonite from the Climax Stock, Nevada Test Site, Nevada. The testing temperature and pressures are meant to bracket conditions expected in the repository. In both rock types, the thermal properties show a strong dependence upon temperature and a weak or non-dependence upon confining pressure. Thermal conductivity and diffusivity both decrease with increasing temperature in approximately linear fashion for samples which have not been previously heated. At 50 MPa in both rocks this decrease closely matches the measured or expected intrinsic (crack-free) behavior of the material. Preliminary indications from the quartz monzonite suggest that conductivity and diffusivity at low pressure and temperature may decrease as a result of heat treatment above 400 0 K

  10. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    Science.gov (United States)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  11. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  12. Strategies for emission reduction from thermal power plants.

    Science.gov (United States)

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  13. Study on key technologies of optimization of big data for thermal power plant performance

    Science.gov (United States)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  14. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  15. An alternative method for performing pressurized thermal shock analysis

    International Nuclear Information System (INIS)

    Bishop, B.A.; Meyer, T.A.; Carter, R.G.; Gamble, R.M.

    1997-01-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a c and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab

  16. An alternative method for performing pressurized thermal shock analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B A; Meyer, T A [Westinghouse Energy Systems, Pittsburgh, PA (United States); Carter, R G [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R M [Sartrex Corp., Rockville, MD (United States)

    1997-09-01

    This paper describes how Probability of Crack Initiation and acceptable Pressurized Thermal Shock frequency were correlated with a{sub c} and summarizes several example applications, including evaluation of potential plant modifications. Plans for an industry supported pilot-plant application of the alternative Probabilistic Fracture Mechanics method for RG 1.154 are also discussed. 9 refs, 4 figs, 1 tab.

  17. Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method.

    Science.gov (United States)

    Zhu, S; Ramaswamy, H S; Marcotte, M; Chen, C; Shao, Y; Le Bail, A

    2007-03-01

    Thermal properties of food systems at high pressure (HP) are important in the design and operation of HP processing equipment. Available techniques for thermal property evaluation under HP conditions are still very limited. In this study, a dual-needle line-heat-source (DNL) device was installed in an HP vessel to evaluate thermal conductivity (k), diffusivity (alpha), and volumetric heat capacity (C(pV)) of foods at high pressure. The DNL probe was calibrated using glycerin (0.1 MPa) and 2% (w/w) agar gel (0.1 to 350 MPa) at 5 and 25 degrees C. Calibration results showed a good correlation with the reference data of pure water: R(2)= 0.966 for thermal conductivity and R(2)= 0.837 for diffusivity, and a small standard deviation of relative error (3.18%) for the volumetric heat capacity. Fresh potato and cheddar cheese were used as test samples at 5 degrees C at selected pressure levels (0.1 to 350 MPa). The potato samples gave thermal properties very close to those of pure water, but much higher than those of the cheese. The k and alpha values of both potato and cheese increased with pressure and a 2nd-order polynomial well fitted their pressure dependency. The volumetric heat capacity data did not show a clear pressure-dependency trend. The experimental system worked well for the evaluation of thermal properties at pressures up to 350 MPa.

  18. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-01-01

    To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method

  19. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  20. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kozak, Joseph P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tomerlin, Jeff J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  1. Optimization of thermal efficiency of nuclear central power like as PWR; Otimizacao da eficiencia termica de uma usina nuclear do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, Nelbia da Silva

    2005-10-15

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  2. Real-Time Strap Pressure Sensor System for Powered Exoskeletons

    Directory of Open Access Journals (Sweden)

    Jesús Tamez-Duque

    2015-02-01

    Full Text Available Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.

  3. French studies on the thermal effluents of electric power plants

    International Nuclear Information System (INIS)

    Dezes-Cadiere, H.

    1976-01-01

    This report presents a synthesis of studies made in France in the thermal effluent field: thermal power plant cooling systems, transfer and dispersion of thermal effluents in the receptive media, effects of thermal effluents on water physicochemistry and biochemistry, effects of thermal effluents on aquatic ecosystems, and, possibilities of waste heat recovery with the view of utilization in agriculture, aquaculture and district heating. A catalogue of French organizations working or having data on thermal effluents is presented, as also an alphabetical list of the contacted persons. A bibliography of French documents concerning the previously mentioned studies is finally given (193 refs.) [fr

  4. Thermodynamic aspects of power production in thermal, chemical and electrochemical systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanisław; Poświata, Artur

    2012-01-01

    We apply optimization methods to study power generation limits for various energy converters, such as thermal, solar, chemical, and electrochemical engines. Methodological similarity is observed when analysing power limits in thermal machines and fuel cells which are electrochemical flow engines. Operative driving forces and voltage are suitable indicators of imperfect phenomena in energy converters. The results obtained generalize our previous findings for power yield limits in purely thermal systems with finite rates. While temperatures T i of participating media were only necessary variables in purely thermal systems, in the present work both temperatures and chemical potentials μ k are essential. This case is associated with engines propelled by fluxes of both energy and substance. In dynamical systems downgrading or upgrading of resources may occur. Energy flux (power) is created in the generator located between the resource fluid (‘upper’ fluid 1) and the environmental fluid (‘lower’ fluid, 2). Fluid properties, transfer mechanisms and conductance values of dissipative layers or conductors influence the rate of power production. Numerical approaches to the dynamical solutions are based on the dynamic programming or maximum principle. Here we focus especially on the latter method, which involves discrete algorithms of Pontryagin’s type. Downgrading or upgrading of resources may also occur in electrochemical systems of fuel cell type. Yet, in this paper we restrict ourselves to the steady-state fuel cells. We present a simple analysis showing that, in linear systems, only at most ¼ of power dissipated in the natural transfer process can be transformed into the noble form of mechanical power.

  5. A Study on infrared tracing and monitoring of thermal discharge from the power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Sun; Hong, Wuk Hee; Kim, Yung Bae; Park, Jang Rae; Choi, Yung An; Park, Yung San [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-08-01

    Massive discharge of cooling water from the nuclear power plants as well as many thermal power plants would cause serious environmental problems. Hence, the task of predicting cooling water dispersion areas has enormous importance for better environmental management related with the power plant operation. For the last two decades, extensive field survey and dispersion modeling have been mainly applied to predict thermal discharge dispersion areas. In this study, the method of infrared thermal sensing was tested as a possible means of measuring the affected areas of thermal discharge at the thermal power plant sites. Many IR images obtained by using the terrestrial camera, or by using the airborne scanner, or from the Landsat iv satellite were analyzed from the pc with the IDRISI and resource software and further enhanced with other image analysis technologies. The result of study proved this IR imaging technology to be an potentially cost-effective tool for assessment of water-temperature increase caused by the thermal discharge from the power plants, however, further elaboration of procedure was highly requested. (author). 9 refs., 24 figs.

  6. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis, E-mail: romani@uvigo.e [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)

    2010-01-15

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  7. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2010-01-01

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  8. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  9. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  10. Microcomputer simulation of PWR power plant pressurizer

    International Nuclear Information System (INIS)

    Araujo, L.R.A. de; Calixto Neto, J.; Martinez, A.S.; Schirru, R.

    1990-01-01

    It is presented a method for the simulation of the pressurizer behavior of a PWR power plant. The method was implanted in a microcomputer, and it considers all the devices for the pressure control (spray and relief valves, heaters, controller, etc.). The physical phenomena and the PID (Proportional + Integral + Derivative) controller were mathematically represented by linear relations, uncoupled, discretized in the time. There are three different algorithms which take into account the non-linear effects introduced by the variation of the physical properties due to the temperature and pressure, and also the mutual effects between the physical phenomena and the PID controller. (author)

  11. Pressurizer model for Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Parkansky, D.G.; Bedrossian, G.C.

    1993-01-01

    Since the models normally used for he simulation of eventual accidents at the Embalse nuclear power plant with the FIREBIRD III code did not work satisfactorily when the pressurizer becomes empty of liquid, a new model was developed. This report presents the governing equations as well as the calculation technique, for which a computer program was made. An example of application is also presented. The results show that this new model can easily solve the problem of lack of liquid in the pressurizer, as it lets the fluid enter and exit freely, according to the pressure transient at the reactor outlet headers. (author)

  12. Environmental protection in thermal power plants

    International Nuclear Information System (INIS)

    1987-01-01

    This workbook is a compilation of the most important facts and data that are relevant today for environmental protection in thermal power plants. Unlike the other issues the text is not in the form of a random collection of data but in the form of a complete presentation. Possible elaboration projects for pupils can be easily derived from the individual sections. These deal with: the discussion about environmental protection; forest decline; sources of emission; nuisances in the Federal Republic of Germany; environmental protection in fossil-fuel power plants - clean air - cooling water utilization and water protection - noise; environmental protection in nuclear power plants - radioactive material produced in nuclear reactors and the retention of such materials - radioactive waste materials - monitoring of radioactive emissions; accessory materials and hints. (orig./HSCH) [de

  13. Operating experience feedback report -- Pressure locking and thermal binding of gate valves

    International Nuclear Information System (INIS)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD's recommendation for actions to effectively prevent the occurrence of valve binding failures

  14. Air-cooling viability to increase the power in the thermal power stations of gas: Colombian case

    International Nuclear Information System (INIS)

    Amell, Andres; Bedoya, H. A

    2000-01-01

    Thermal power decreases as air temperature increases, which reduce both efficiency and projects yielding. Technologically it is possible to eliminate the environment temperature incidence on reduction of power and efficiency, cooling the input air to the turbine, obtaining important power and efficiency improvements. In this work, the technical and economical viability, when applying air cooling technologies (evaporative cooling, steam compression, and production and ice storage (TES) were studied, having in mind meteorological conditions and Colombian electric marketing features, in which, nearly 2800 MW of natural gas thermal power have been installed in the last decade. as a result of applying these cooling technologies the study determined: the mean potential of recoverable power at the second peak of the national demand curve, shows several schemes in which they are technically and economically viable in the Colombian context

  15. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  16. Practical application of the benchmarking technique to increase reliability and efficiency of power installations and main heat-mechanic equipment of thermal power plants

    Science.gov (United States)

    Rimov, A. A.; Chukanova, T. I.; Trofimov, Yu. V.

    2016-12-01

    facilitating the analysis of the benchmarking results permitting to represent the quality loss of this power installation in the form of the difference between the actual value of the key indicator or comparison indicator and the best quartile of the existing distribution. The uncertainty of the obtained values of the quality loss indicators was evaluated by transforming the standard uncertainties of the input values into the expanded uncertainties of the output values with the confidence level of 95%. The efficiency of the technique is demonstrated in terms of benchmarking of the main thermal and mechanical equipment of the extraction power-generating units T-250 and power installations of the thermal power plants with the main steam pressure 130 atm.

  17. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  18. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    Science.gov (United States)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  19. Safety grade pressurizer heater power supply connector assembly

    International Nuclear Information System (INIS)

    Burnett, J.M.; Daftari, R.M.; Reyns, R.M.

    1987-01-01

    This patent describes a pressurizer heater power supply connector assembly for attaching a power cable to an electric heater within a pressurizer of a pressurized water nuclear reactor system, the electric heater having pin contacts. The assembly comprises: a pin-socket type connector including a tubular body having a first open end carrying a pin-socket contact member and an insert intermediate a shell and the pin-socket contact member, the contact member having socket means for electrically receiving and contacting the pin contacts, and a second open end; a flexible sealed conduit including a flexible corrugated tube having one end connected to the second open end of the pin-socket type connector, and another end; and a shop splice assembly including a header adapter and a hose clamp interconnected between the header adapter and another end of the flexible corrugated tube

  20. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well......-known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...... will present measurements comparing pressure dynamics for two valve opening algorithms. In addition the paper will give a theoretical investigation of the energy loss during valve shifting and finally measurements of average power output from the power take-off system in various sea states are compared...

  1. Experimental coal dust suppression system installed at the Nikola Tesla thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Guzijan, D [Rudarski Institut, Belgrade (Yugoslavia). Zavod za Ventilaciju i Tehnicku Zastitu

    1988-01-01

    Describes a project conducted at the Nikola Tesla thermal power plant by the Mining Institute of Belgrade to reduce the high levels of dust concentrations in overloading stations on coal conveyors and hoppers. A mathematical model was developed to determine the ventilation capacity required at each of the 18 overloading stations with the hoppers considered successively: empty, 1/3 full, 2/3 full and completely full. Shows how this model enabled an efficient dust suppression system to be developed and subsequently installed by the Termovent company in Belgrade using 4 axial ventilators supplied by the Ventilator Company in Zagreb. The ventilators were powered by means of 5.5 kW electric motors and provided 440 Pa pressure at 950 rpm. Gives the result of dust concentration measurements indicating that the installed system achieved the results predicted by the mathematical model and that the levels were well below the statutory limit. A description of the complete installation is included. 3 refs.

  2. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  3. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  4. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  5. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  6. Ecological safety of thermal power industry and investments

    International Nuclear Information System (INIS)

    Glebov, V.P.

    1995-01-01

    Evaluation of ecological safety of domestic fossil fuel thermal power industry is given in comparison with foreign one. Ways of solving ecological problems are considered. They are based on introduction of new technologies, providing decrease of ecological effect, on development of effective ash-and sulfur-trapping, nitrogen purification equipment, on production of ecologically improved fuel. The necessity of investments to power industry is noted

  7. Thermal Analysis of a Power Conditioning Unit for a Howitzer

    Science.gov (United States)

    2009-08-01

    contact resistance Interface ( mA2 -K / W) AL-PCB 0.000389 AL-AL (thermal grease) 0.000083 AL-power chips 0.003891 AL-power chips (thermal grease...1120 W/ mA2 . Figure 3 shows the view of the box that the source of the solar radiation sees. The inside of the box is cluttered with cables, wiring, and...temperature (130°F) and a conservative convective heat transfer coefficient (5 W/ mA2 ) to all of the outer surfaces. These outer surfaces would

  8. Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape......Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... oscillations in the cylinder chamber, especially for systems with long connections between the cylinder and the valve manifold. Hose pressure oscillations will induce oscillations in the produced piston force. Hence, pressure oscillations may increase the fatigue loading on systems employing a discrete fluid...

  9. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1998-01-01

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi)

  10. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, G.; Zhou, D.; Yang, J.

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been ...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated.......In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...

  11. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  12. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3

    OpenAIRE

    Jinlong Zhu; Jianzhong Zhang; Hongwu Xu; Sven C. Vogel; Changqing Jin; Johannes Frantti; Yusheng Zhao

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal P...

  13. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  14. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  15. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    1981-01-01

    A thermal power plant reheat cycle system is described in which the discharge from a first expansion stage is reheated prior to expansion in a subsequent expansion stage. The primary coolant has a high sheet transfer rate and can accommodate temperature changes in the reheat vapor. (U.K.)

  16. Study on the power control system for NPP power unit with the WWER-440 reactor

    International Nuclear Information System (INIS)

    Aleksandrova, N.D.; Naumov, A.V.

    1981-01-01

    Results of model investigations into basic version of the power control systems (PCS) conformably to the WWER-440 NPP power unit are stated. Transient processes in the power unit system when being two PCS versions during perturbations of different parameters: unit power, vapour pressure or position of control rods have been simulated. Investigations into the different PCS versions show that quality of operation of a traditional scheme with a turbine power controller and reactor pressure controller can be significantly improved with the introduction of a high-speed signal of pressure into the reactor controller. The PCS version with the compensation of interrelations between the turbine and reactor controllers constructed according to the same principles as the standard schemes of power units of thermal electric power plant is perspective as well [ru

  17. The potential estimation and factor analysis of China′s energy conservation on thermal power industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Lisha

    2013-01-01

    At present, researches about energy conservation are focused on prediction. But there are few researches focused on the estimation of effective input and energy conservation potential, and there has been even no research on energy conservation of thermal power industry of China. This paper will try to fill in such a blank. Panel data on Chinese thermal power industry over 2005–2010 are established, and we adopt the stochastic frontier analysis approach to estimate the energy saving potential of thermal power industry. The results are as follows: (1) the average efficiency of energy inputs in China′s thermal power industry over 2005–2010 was about 0.85, and cumulative energy saving potential equals to 551.04 (Mtce); (2) by improving the non-efficiency factors, the relatively backward inland cities could achieve higher energy saving in thermal power industry; (3) the energy input efficiency of Eastern China Grid is shown to be the highest; (4) in order to realize the energy-saving goal of thermal power industry, one important policy method the government should adopt is to conduct a market-oriented reform in power industry and break the state-owned monopoly to provide incentives for private and foreign direct investment in thermal power sector. -- Highlights: •We adopt SFA model to estimate the coal input efficiency of power sector in China. •We calculate the cumulative energy saving potential equals to 551.04 Mtce. •East China power grid has the highest energy input efficiency. •Some backward inland cities may be the main force for future energy conservation. •Encourage private and foreign direct investment in power sector might be effective

  18. Thermal Stress Analysis for Ceramics Stalk in the Low Pressure Die Casting Machine

    Science.gov (United States)

    Noda, Nao-Aki; Hendra, Nao-Aki; Takase, Yasushi; Li, Wenbin

    Low pressure die casting (LPDC) is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The LPDC process is playing an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. The LPDC process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal by means of a pressurized gas in order to rise into a ceramic tube, which connects the die to the furnace. The ceramics tube called stalk has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk is dipped into the molten aluminum. It is important to develop the design of the stalk to reduce the risk of fracture because of low fracture toughness of ceramics. In this paper, therefore, the finite element method is applied to calculate the thermal stresses when the stalk is dipped into the crucible by varying the dipping speeds and dipping directions. It is found that the thermal stress can be reduced by dipping slowly if the stalk is dipped into the crucible vertically, while the thermal stress can be reduced by dipping fast if it is dipped horizontally.

  19. Thermal structure of atmospheric pressure non-equilibrium plasmas

    International Nuclear Information System (INIS)

    Nozaki, Tomohiro; Unno, Yasuko; Okazaki, Ken

    2002-01-01

    The thermal structure of a methane-fed dielectric barrier discharge (DBD) and a atmospheric pressure glow-discharge (APG) has been extensively investigated in terms of time-averaged gas temperature profile between two parallel-plate electrodes separated by 1.0 mm. Emission spectroscopy of the rotational band of CH ((0, 0) A 2 Δ→X 2 Π:431 nm) was performed for this purpose. In order to minimize average temperature increase in the reaction field, DBD and APG were activated by 10 kHz with 2% duty cycle pulsed voltage (2 μs pulse width/100 μs interval). In DBD, temperature increase of a single microdischarge, on a time average, reached 200 K. It suddenly decreased below 100 K associated with the dark space formation near the dielectric barrier. Also, gas temperature in the surface discharge was fairly low because emission in these regions was limited within the initial stages of propagation (∼5 ns), whereas energy deposition would continue until microdischarge extinction; these facts implied that rotational temperature seemed to be far below the actual gas temperature in these regions. In APG, gas temperature was uniformly increased by positive column formation. In addition, a remarkable temperature increase due to negative glow formation was obtained only near the metallic electrode. For practical interest, we also investigated the net temperature increase with high frequency operations (AC-80 kHz), which depends not only on plasma properties, but also various engineering factors such as flow field, external cooling conditions, and total input power. In DBD, gas temperature in the middle of gas gap was significantly increased with increasing input power because of poor cooling conditions. In APG, in contrast, gas temperature near the electrodes was significantly increased associated with negative glow formation

  20. Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power

    Directory of Open Access Journals (Sweden)

    Shengli Liao

    2015-11-01

    Full Text Available Coal-fired thermal power plants, which represent the largest proportion of China’s electric power system, are very sluggish in responding to power system load demands. Thus, a reasonable and feasible scheme for the medium-term optimal commitment of thermal units (MOCTU can ensure that the generation process runs smoothly and minimizes the start-up and shut-down times of thermal units. In this paper, based on the real-world and practical demands of power dispatch centers in China, a flexible mathematical model for MOCTU that uses equal utilization hours for the installed capacity of all thermal power plants as the optimization goal and that considers the award hours for MOCTU is developed. MOCTU is a unit commitment (UC problem with characteristics of large-scale, high dimensions and nonlinearity. For optimization, an improved progressive optimality algorithm (IPOA offering the advantages of POA is adopted to overcome the drawback of POA of easily falling into the local optima. In the optimization process, strategies of system operating capacity equalization and single station operating peak combination are introduced to move the target solution from the boundary constraints along the target isopleths into the feasible solution’s interior to guarantee the global optima. The results of a case study consisting of nine thermal power plants with 27 units show that the presented algorithm can obtain an optimal solution and is competent in solving the MOCTU with high efficiency and accuracy as well as that the developed simulation model can be applied to practical engineering needs.

  1. Increasing the efficiency of thermal power stations

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-01-01

    High energy prices and an increased investment of costs in power plants as well as the necessity to minimize all kinds of environmental pollution have severe consequences on the construction and operation of thermal power stations. One of the most promising measures to cope with the mentioned problems is to raise the thermal efficiency of power plants. With the example of an Austrian electric utility it can be shown that by application of high efficiency combined cycles primary energy can be converted into electricity in a most efficient manner. Excellent operating experience has proved the high reliability of these relatively complex systems. Raising the temperature of the gas topping process still higher will not raise the efficiency considerably. In this respect a Rankine cycle is superior to a Brayton cycle. In a temperature range of 850 to 900 0 C were conventional materials with known properties can still be used, only the alkali metals cesium and potassium have the necessary physical and thermodynamic properties for application in Rankine topping cycles. Building on experience gained in the Fast Breeder development and from the US space program, a potassium topping cycle linked to a conventional water steam cycle with an intermediate diphenyl vapour cycle has been proposed which should give thermal efficiencies in excess of 50%. In a multi-national program this so called Treble Rankine Cycle is being investigated under the auspices of the International Energy Agency. Work is in progress to investigate the technical and economic feasibility of this energy conversion system. Experimental investigations are already under way in the Austrian Research Center Seibersdorf where high temperature liquid metal test facilities have been operated since 1968. (Author)

  2. Interesting pressure dependence of power factor in BiTeI

    International Nuclear Information System (INIS)

    Guo, San-Dong; Wang, Jian-Li

    2016-01-01

    We investigate pressure dependence of electronic structures and thermoelectric properties in BiTeI by using a modified Becke and Johnson exchange potential. Spin–orbit coupling (SOC) effects are also included due to giant Rashba splitting. Thermoelectric properties are illuminated through solving Boltzmann transport equations within the constant scattering time approximation. The calculated energy band gap of 0.36 eV agrees well with the experimental value of 0.38 eV. As the pressure increases, the energy band gap first decreases, and then increases. The Rashba energy has the opposite trend with the energy band gap. SOC has obvious detrimental influence on the power factor in both n-type and p-type doping. For low doping concentration, the power factor has the same trend with the energy band gap with increasing pressure, but shows a monotonic changing trend in high doping. It is found that the pressure can induce a significantly enhanced power factor in high n-type doping, which can be understood as pressure leading to two-dimensional-like density of states in the conduction bands. These results suggest that BiTeI may be a potential candidate for efficient thermoelectricity in n-type doping by pressure, turning an ordinary insulator into a topological insulator. (paper)

  3. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana

  4. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  5. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  6. Behaviour at thermal ageing of power cable components through penetrations

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2009-01-01

    The materials for electric insulation and exterior jackets of the power cables are formulated organic compounds. The environmental service conditions will induce chemical and/or physical processes at molecular level of the material; these processes are the ageing mechanisms. The power cables passing through penetrations lead to an increase of the rate of thermal ageing mechanisms, resulting in irreversible degradation of mechanical and electric properties of the organic compounds and of the functional properties of the cable. The paper presents the results of the laboratory tests when the real environmental service conditions for penetration are simulated, the comparison with the results of the thermal computation of the power cables heating and the evaluation of the influence of temperature increase of the power cable components on the cable lifetime. For the particular case of a power cable with PVC insulation, we estimated a lifetime decrease about seven years as referred to lifetime of about 30 years for operation in air. (authors)

  7. A balanced strategy in managing steam generator thermal performance

    International Nuclear Information System (INIS)

    Hu, M. H.; Nelson, P. R.

    2009-01-01

    This paper presents a balanced strategy in managing thermal performance of steam generator designed to deliver rated megawatt thermal (MWt) and megawatt electric (MWe) power without loss with some amount of thermal margin. A steam generator (SG) is a boiling heat exchanger whose thermal performance may degrade because of steam pressure loss. In other words, steam pressure loss is an indicator of thermal performance degradation. Steam pressure loss is mainly a result of either 1) tube scale induced poor boiling or 2) tube plugging historically resulting from tubing corrosion, wear due to flow induced tube vibration or loose parts impact. Thermal performance degradation was historically due to tube plugging but more recently it is due to poor boiling caused by more bad than good constituents of feedwater impurities. The whole SG industry still concentrates solely on maintenance programs towards preventing causes for tube plugging and yet almost no programs on maintaining adequate boiling of fouled tubes. There can be an acceptable amount of tube scale that provides excellent boiling capacity without tubing corrosion, as operational experience has repeatedly demonstrated. Therefore, future maintenance has to come up balanced programs for allocating limited resources in both maintaining good boiling capacity and preventing tube plugging. This paper discusses also thermal performance degradation due to feedwater impurity induced blockage of tube support plate and thus subsequent water level oscillations, and how to mitigate them. This paper provides a predictive management of tube scale for maintaining adequate steam pressure and stable water level without loss in MWt/MWe or recovering from steam pressure loss or water level oscillations. This paper offers a balanced strategy in managing SG thermal performance to fulfill its mission. Such a strategy is even more important in view of the industry trend in pursuing extended power uprate as high as 20 percent

  8. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  9. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2013-01-01

    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...

  10. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  11. About Economy of Fuel at Thermal Power Stations due to Optimization of Utilization Diagram of Power-Generating Equipment

    Directory of Open Access Journals (Sweden)

    M. V. Svechko

    2008-01-01

    Full Text Available Problems of rational fuel utilization becomes more and more significant especially for thermal power stations (TPS. Thermal power stations have complicated starting-up diagrams and utilization modes of their technological equipment. Method of diagram optimization of TPS equipment utilization modes has been developed. The method is based on computer analytical model with application of spline-approximation of power equipment characteristics. The method allows to economize fuel consumption at a rate of 15-20 % with accuracy of the predicted calculation not more than 0.25 %.

  12. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  13. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.

    Science.gov (United States)

    Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S

    2012-06-01

    The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.

  14. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  15. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  16. Feasibility study on Bobovdol thermal power plant upgrading project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey has been made in relation with the improvement project intended of energy conservation, and reduction of global warming gas emission at the Bobovdol thermal power plant located in the suburb of Sofia, the capital of the Republic of Bulgaria. The existing Bobovdol power plant having a total capacity of 630 MW with three generators is a coal burning thermal power plant having been used already for 23 to 27 years, hence over-aged. The survey has discussed an improvement project of scrap-and-build type to make the plant a high-efficiency gas combined cycle power plant using gas turbines. The project calls for building 210-MW gas combined power generation facilities having 70-MW gas turbines, one each in three stages in 2007, 2012 and 2017. As a result of the discussions, the fuel consumption reducing rate was found to reach 37.99%, whereas the cumulative energy saving quantity in 41 years will reach 16.37 million tons of fuel oil equivalent. In addition, the reduction rate of global warming gas emission is 57.75%, and the cumulative reduction quantity in 41 years is 105.18 million tons. (NEDO)

  17. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    International Nuclear Information System (INIS)

    Park, Ick-Joon; Jeong, Chan-Yong; Song, Sang-Hun; Kwon, Hyuck-In; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok

    2012-01-01

    In this work, we present the results concerning the use of amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments. (paper)

  18. Adaptation of thermal power plants: The (ir)relevance of climate (change) information

    International Nuclear Information System (INIS)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, Michelle T.H. van

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate and hydrological projections, is then numerically solved to analyze the adaptation decisions of a selection of real power plants. We find that operators that base their decisions on current climatic conditions are likely to make identical choices and perform just as well as operators that are fully ‘informed’ about climate change. Where electricity supply is mainly generated by thermal power plants, heat waves, droughts and low river flow may impact electricity supply for decades to come. - Highlights: • We analyze adaptation to climate change by thermal power plants. • A numerical investment model is applied to a coal plant and a nuclear power plant. • The numerical analysis is based on climate and hydrological projections. • Climate change information has a relatively small effect on a power plant's NPV. • Uncertainty and no-regret benefits lower the value of climate change information.

  19. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  20. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  1. Control of thermal therapies with moving power deposition field

    International Nuclear Information System (INIS)

    Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B

    2006-01-01

    A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with

  2. Market Power in Hydro-Thermal Supply

    International Nuclear Information System (INIS)

    Edin, Karl-Axel

    2006-12-01

    Despite having had a deregulated electricity market in Sweden for over ten years we still need to increase our understanding as to how deregulated electricity markets actually work and how possible problems are to be solved. One question that is always in focus is if the competition between generators in the Nordic electricity market really works the way it was intended. Many argue that the concentration in ownership of generation plants already has gone too far. Together with joint ownership in nuclear facilities and barriers for entrance, critics say that this has resulted in higher electricity prices than necessary. In this report different methods to (ex ante) study potential possibilities for generating firms to influence the electricity price (market power) and (ex post) discover possible manipulation through analysing the spot price and other observed factors on the electricity market are analysed. The purpose of the longer underlying paper is to give a comprehensive treatment of the electricity market with storage, i.e. hydro power, with an auction market organisation and to test the models on the Nordic market in order to explore the explanatory power of auction market theory and the theory of contestable market. The main theoretical effort in the paper concerns auction theory with inventories. The paper develops an inter-temporal auction model of a thermal-hydro power market. Parallel to the derivation of the basic equations a numerical model is developed in order to illustrate the results of the model. Section 2 of the present paper summarizes the basic equations (derived in the longer paper) for an inter-temporal auction thermal-hydro market. Section 3 contains the illustrations of solutions to equations for some stylized markets. In section 4 the auction model is tested on the Nordic market

  3. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  4. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  5. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  6. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  7. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  8. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    Energy Technology Data Exchange (ETDEWEB)

    D’Auria, F; Rohatgi, Upendra S.

    2017-01-12

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  9. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  10. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  11. Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant

    International Nuclear Information System (INIS)

    Blanco-Marigorta, Ana M.; Victoria Sanchez-Henriquez, M.; Pena-Quintana, Juan A.

    2011-01-01

    Exergetic analysis is without any doubt a powerful tool for developing, evaluating and improving an energy conversion system. In the present paper, two different cooling technologies for the power cycle of a 50 MWe solar thermal power plant are compared from the exergetic viewpoint. The Rankine cycle design is a conventional, single reheat design with five closed and one open extraction feedwater heaters. The software package GateCycle is used for the thermodynamic simulation of the Rankine cycle model. The first design configuration uses a cooling tower while the second configuration uses an air cooled condenser. With this exergy analysis we identify the location, magnitude and the sources or thermodynamic inefficiencies in this thermal system. This information is very useful for improving the overall efficiency of the power system and for comparing the performance of both technologies.

  12. Time dependent start-up thermal analysis of a Super Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto,, E-mail: sutanto@fuji.waseda.jp; Oka, Yoshiaki

    2013-10-15

    Highlights: • Time dependent startup thermal analysis of a Super Fast Reactor is performed. • A recirculation system is used for pressurization and for generating supercritical steam. • MCST satisfies the criterion both during subcritical pressure and during power-raising. • MCST is not sensitive to the change of inlet temperature, gap volume and flow rate because of high flow to power ratio. • CHF is not limiting the MCST during subcritical pressure due to large margin of heat flux. -- Abstract: The startup system of a supercritical pressure light water cooled fast reactor (Super FR) is studied by time dependent thermal-hydraulic analysis. The plant analysis code is developed based on an innovative upward flow pattern in all the assemblies of the Super FR. A recirculation system consisting of a steam drum, a circulation pump, and a heat exchanger is used for the startup. Detailed procedures are performed and the maximum cladding surface temperature (MCST) at rated power, 640 °C, is used as the criterion. Firstly a small constant nuclear power is used for rising the core feed water temperature to be 280 °C through the recirculation system. Secondly, pressurization is done in the recirculation system from atmospheric to operating pressure, 25 MPa, by raising the power. Thirdly, line-switching from recirculation mode to once-through direct-cycle is performed while turbines are started by supercritical steam at supercritical pressure. Finally the power is raised to be 100% of power followed by raising the flow rate. During pressurization the heat flux margin is large due to low power used for pressurization and the MCST is much lower than the criterion. The MCST is not sensitive to the inlet temperature, the flow rate, and the gap volume of the core because of high flow to power ratio. Smaller dimension of steam drum can be used for pressurization stably. The MCST satisfies the criterion both during subcritical pressure and during power-raising.

  13. Time dependent start-up thermal analysis of a Super Fast Reactor

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2013-01-01

    Highlights: • Time dependent startup thermal analysis of a Super Fast Reactor is performed. • A recirculation system is used for pressurization and for generating supercritical steam. • MCST satisfies the criterion both during subcritical pressure and during power-raising. • MCST is not sensitive to the change of inlet temperature, gap volume and flow rate because of high flow to power ratio. • CHF is not limiting the MCST during subcritical pressure due to large margin of heat flux. -- Abstract: The startup system of a supercritical pressure light water cooled fast reactor (Super FR) is studied by time dependent thermal-hydraulic analysis. The plant analysis code is developed based on an innovative upward flow pattern in all the assemblies of the Super FR. A recirculation system consisting of a steam drum, a circulation pump, and a heat exchanger is used for the startup. Detailed procedures are performed and the maximum cladding surface temperature (MCST) at rated power, 640 °C, is used as the criterion. Firstly a small constant nuclear power is used for rising the core feed water temperature to be 280 °C through the recirculation system. Secondly, pressurization is done in the recirculation system from atmospheric to operating pressure, 25 MPa, by raising the power. Thirdly, line-switching from recirculation mode to once-through direct-cycle is performed while turbines are started by supercritical steam at supercritical pressure. Finally the power is raised to be 100% of power followed by raising the flow rate. During pressurization the heat flux margin is large due to low power used for pressurization and the MCST is much lower than the criterion. The MCST is not sensitive to the inlet temperature, the flow rate, and the gap volume of the core because of high flow to power ratio. Smaller dimension of steam drum can be used for pressurization stably. The MCST satisfies the criterion both during subcritical pressure and during power-raising

  14. A digital simulation of a pressurizer in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sato, E.F.

    1980-11-01

    A model for pressurizer digital simulation of a PWR nuclear power plant during transients, considering all pressurizer control features, is presented. The pressurizer is divided into two regions separated by a water-vapor interface and non-equilibrium conditions are considered. The particular thermodynamic process followed during insurge and outsurges is determined at each instant of analysis without any previous assumption. The pressure behavior is defined by an explicit equation in any of four possible pressurizer thermodynamic conditions. Thermodynamic properties of steam and water are computed by ASME subroutines and the mathematical formulation presented in this study was programed in FORTRAN IV for a Burroughs-6700 digital computer system. This program was employed to simulate the Shippingport Atomic Power Station and Almirante Alvaro Alberto Nuclear Power Plant - Unit 1 pressurizers. The test results compared with experimental or vendor data show the validity of this analysis method. (Author) [pt

  15. Thermal pollution of the atmosphere, in particular due to power plant parks

    International Nuclear Information System (INIS)

    Fortak, H.

    1977-01-01

    In the paper, a diagram is set up and described which relates the influence of power plant agglomerations to natural atmospheric phenomena, energetically and in some ways also dynamically. As there are no power plant agglomeration in existence at present, there is neither empirical knowledge on the meteorological and climatological effects to be expected from such agglomerations, nor are empirically proved theoretical predictions of the effects possible. In the diagram, the specific vertical energy flow is given for the thermal power emitted and the emission are for natural and anthropogenic thermal sources, and characteristic values are calculated for the thermal lift and the vertical velocity at representative heights above the area. As far as the arrangement of cooling towers is concerned, it is found that it is better to avoid cooling tower agglomerations on small areas and to erect smaller power stations distributed over a large area instead. (orig.) [de

  16. SATCAP-C : a program for thermal hydraulic design of pressurized water injection type capsule

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Asoh, Tomokazu; Niimi, Motoji

    1992-10-01

    There are capsules called 'Pressure Water Injection Type Capsule' as a kind of irradiation devices at the Japan Materials Testing Reactor (JMTR). A type of the capsules is a 'Boiling Water Capsule' (usually named BOCA). The other type is a 'Saturated Temperature Capsule' (named SATCAP). When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature so far as the water does not fully change to steam. These type capsules are designed on the basis of the conception of applying the water characteristic to the control of irradiation temperature of specimens in the capsules. In designing of the capsules in which the pressurized water is injected, thermal performances have to be understood as exactly as possible. It is not easy however to predict thermal performances such as axially temperature distribution of water injected in the capsule, because there are heat-sinks at both side of inner and outer of capsule casing as the result that the water is fluid. Then, a program (named SATCAP-C) for the BOCA and SATCAP was compiled to grasp the thermal performances in the capsules and has been used the design of the capsules and analysis of the data obtained from some actual irradiation capsules. It was confirmed that the program was effective in thermal analysis for the capsules. The analysis found out the values for heat transfer coefficients at various surfaces of capsule components and some thermal characteristics of capsules. (author)

  17. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  18. Development of a Computer Code, PZRTR rev 1, for the Thermal Hydraulic Analysis of a Multi-Cavity Cold Gas Pressurizer for an Integral Reactor, SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Kang, H. O.; Yoon, J.; Kim, K. K

    2006-12-15

    The concept of a Multi-cavity Cold Gas PressuriZeR(MCGPZR) is applied to the SMART: The pressurizer system includes in-vessel cavities and out-of-vessel gas cylinders holding the gas supply/vent system. The gas cylinders are connected to the one of the in-vessel cavities via piping with valves. A pressurizer is maintained at a cold temperature of less than about 120 .deg. C which is realized with coolers installed in and with wet thermal insulators installed on one of the cavities located inside the hot reactor vessel, to minimize the contribution of a steam partial pressure and is filled with nitrogen gas as a pressure-absorbing medium. The working medium and working temperature of the MCGPZR is totally different from that of a hot steam pressurizer of the commercial PWR. In addition, the MCGPZR is intended to be designed to meet a pressure transient during normal power operation (by its gas volume capacity) without using an active control system and during plant heatup/cooldown operation by using an active gas control (filling/venting) system. Therefore in order to evaluate the feasibility of the concept of the MCGPZR and its intended design goal, the thermal hydraulic behaviors and controllability of the MCGPZR during transients especially a heatup/cooldown operation must be analyzed. In this study, a thermal hydraulic transient analysis computer code, PZRTR rev 1, for the Reactor Coolant System(RCS) of an integral reactor composed of the MCGPZR, modular Once-Through Steam Generators(OTSGs), a core and a reactor coolant loop is developed. The pressurizer module (MCGPZR module) of the PZRTR rev 1 code is based on a two-fluid, nonhomogeneous, nonequilibrium model for the two-phase system behavior and the OTSG module is based on a homogeneous equilibrium model of the two-phase flow process. The core module is simply based on the axial power distributions and the reactor coolant loop is based on the temperature distributions. The code is currently dedicated for the

  19. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  20. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  1. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  2. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  3. Metal additive manufacturing of a high-pressure micro-pump

    NARCIS (Netherlands)

    Wits, Wessel Willems; Weitkamp, Sander J.; van Es, J.; van Es, Johannes

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed

  4. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Science.gov (United States)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  5. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  6. Dynamic analysis of crack growth and arrest in a pressure vessel subjected to thermal and pressure loading

    International Nuclear Information System (INIS)

    Brickstad, B.

    1984-01-01

    Predictions of crack arrest behaviour are performed for a cracked reactor pressure vessel under both thermal and pressure loading. The object is to compare static and dynamic calculations. The dynamic calculations are made using an explicit finite element technique where crack growth is simulated by gradual nodal release. Three different load cases and the effect of different velocity dependence on the crack propagation toughness are studied. It is found that for the analysed cases the static analysis is slightly conservative, thus justifying its use for these problems. (orig.)

  7. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... are identified during the acceleration and deceleration periods of the motor. The main causes for these adverse thermal cycles have been presented and, consequently, the influence of the deceleration slope, modulation technique and reactive current on the thermal cycles has been analyzed. Finally, the improved...

  8. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  9. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  10. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1979-01-01

    A method is described for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component

  11. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  12. COMTA - a computer code for fuel mechanical and thermal analysis

    International Nuclear Information System (INIS)

    Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.

    1979-01-01

    COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)

  13. Potential impact of thermal effluents from Chongqing Fuling nuclear power plant to the Three Gorges Reservoir

    International Nuclear Information System (INIS)

    Han Baohua; Li Jianguo; Ma Binghui; Zhang Yue; Sun Qunli; Hu Yuping

    2012-01-01

    This study is based on the hydrological data near Chongqing Fuling Nuclear Power Plant along the Yangtze River, the present situation of the ecological environment of the Three Gorges Reservoir and the predicted results of thermal effluents from Chongqing Fuling Nuclear Power Plant. The standards of cooling water and the thermal tolerances indexes of aquatic organisms were investigated. The effects of thermal effluents on aquatic organisms were analyzed. The potential impact of Chongqing Fuling nuclear power plant to the Three Gorges Reservoir was explained. The results show that in the most adverse working conditions, the surface temperature near the outfall area is not more than 1℃, the temperature of thermal effluents do not exceed the suitable thermal range of fish breeding, growth and other thermal tolerances indexes. Thermal effluents from nuclear power plant have no influence about fish, plankton and benthic organisms in the Three Gorges Reservoir. (authors)

  14. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  15. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  16. Potential effect of fracture technology on IPTS [Integrated Pressurized Thermal Shock] analysis (Fracture toughness: Kla and Klc and warm prestressing)

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1990-01-01

    A major nuclear plant life extension issue to be confronted in the 1990's is pressure vessel integrity for the pressurized thermal shock (PTS) loading condition. Governing criteria associated with PTS are included in ''The PTS Rule'' (10 CFR 50.61) and Regulatory Guide 1.154: Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactors. The results of the Integrated Pressurized Water Reactors. The results of the Integrated Pressurized Thermal Shock (IPTS) Program, along with risk assessments and fracture analyses performed by the NRC and reactor system vendors, contributed to the derivation of the PTS Rule. Over the last several years, the Heavy Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) has performed a series of large-scale fracture-mechanics experiments. The Thermal Shock Experiments (TSE), Pressurized Thermal Shock Experiments (PTSE), and Wide Plate Experiments (WPE) produced K IC and K Ia data that suggest increased mean K IC and K Ia curves relative to the ones used in the IPTS study. Also, the PTSE and WPE have demonstrated that prototypical nuclear reactor pressure vessel steels are capable of arresting a propagating crack at K I values considerably above 220 MPa√m, the implicit limit of the ASME Code and the limit used in the IPTS studies. This document provides a discussion of the results of these experiments

  17. Thermal expansion and pressure effect in MnWO4

    International Nuclear Information System (INIS)

    Chaudhury, R.P.; Yen, F.; Cruz, C.R. de la; Lorenz, B.; Wang, Y.Q.; Sun, Y.Y.; Chu, C.W.

    2008-01-01

    MnWO 4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T 1 =7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure

  18. Structural evaluation method study and procedure development for pressurizer surge line subjected to thermal stratification phenomenon

    International Nuclear Information System (INIS)

    Zhang Yixiong; Yu Xiaofei; Ai Honglei

    2014-01-01

    Thermal stratification phenomenon of pressurizer surge line can lead potential threaten to plant safety. Base on the mechanism of thermal stratification occurrence, Fr number is used to judge whether the stratification occurs or not. Also the method of calculating heat transfer coefficient is investigated. Theoretically the 3-dimension thermal stress induced by thermal stratification is decoupled to 1-dimension global stress and 2-dimension local stress, and the complex 3-dimension problem is simplified into a combination of 1-dimension and 2-dimension to compute the stress. Comply with criterion RCC-M, the complete structure integrity evaluation is accomplished after combining the stress produced by thermal stratification and the stresses produced by the other loadings. In order to match the above combined analysis method, Code SYSTUS and ROCOCO are developed. By means of aforesaid evaluation method and corresponding analysis program, surge line thermal stratification of Qinshan Phase II Extension project is investigated in this paper. And the results show that structural integrity of the pressurizer surge line affected by thermal stratification still satisfies criterion RCC-M. (authors)

  19. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  20. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    International Nuclear Information System (INIS)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung; Chun, Myung-Suk

    2014-01-01

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference

  1. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung [Hong-Ik University, Seoul (Korea, Republic of); Chun, Myung-Suk [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of)

    2014-02-15

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

  2. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  3. Thermal and pressure pain sensitivity in patients with unilateral shoulder pain: comparison of involved and uninvolved sides.

    Science.gov (United States)

    Coronado, Rogelio A; Kindler, Lindsay L; Valencia, Carolina; George, Steven Z

    2011-03-01

    Cross-sectional. In the examination of patients with unilateral shoulder pain, pain provocation testing to compare the involved and uninvolved sides has been considered useful. However, side-to-side comparisons of experimental pain sensitivity in patients with unilateral shoulder pain are not widely reported in the literature. To compare experimental pain sensitivity between the involved and uninvolved sides in patients with unilateral shoulder pain. In consecutive patients seeking operative treatment for shoulder pain, sensitivity measures of bilateral pressure pain threshold at the shoulder and forearm, and thermal pain threshold, tolerance, and temporal summation at the forearm, were examined. Pressure sensitivity was tested with a Fischer pressure algometer, and thermal sensitivity with a computer-controlled Medoc neurosensory analyzer. The involved and uninvolved sides were compared with an analysis of variance. Influence of sex and location of testing were considered as covariates in the analysis. Fifty-nine consecutively recruited participants completed experimental pain sensitivity testing. Participants reported significantly lower pressure pain thresholds in the involved side compared to the uninvolved side (F1,56 = 4.96, P = .030). In addition, female compared to male participants demonstrated lower pressure pain thresholds in the bilateral shoulder regions (F1,56 = 10.84, P = .002). There was no difference in thermal pain sensitivity between sides. Average clinical pain intensity was negatively correlated with pressure pain threshold at the involved local site (r = -0.284, P = .029), indicating an influence of clinical pain intensity on local pressure pain. The results of this study provide evidence for higher experimental pressure pain sensitivity in the involved side of patients with unilateral shoulder pain and no difference between sides for thermal pain sensitivity. Females demonstrated higher pain sensitivity than males to pressure stimuli at the

  4. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  5. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  6. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  7. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  8. Containment pressure monitoring method after severe accident in nuclear power plant

    International Nuclear Information System (INIS)

    Luo Chuanjie; Zhang Shishui

    2011-01-01

    The containment atmosphere monitoring system in nuclear power plant was designed on the basis of design accident. But containment pressure will increase greatly in a severe accident, and pressure instrument in the containment can't satisfy the monitoring requirement. A new method to monitor the pressure change in the containment after a severe accident was considered, through which accident soften methods can be adopted. Under present technical condition, adding a pressure monitoring channel out of containment for post-severe accident is a considerable method. Daya Bay Nuclear Power Plant implemented this modification, by which the containment release time can be delayed during severe accident, and nuclear safety can be increased. After analysis, this method is safe and feasible. (authors)

  9. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...

  10. Thermal energy storage and utilization system

    International Nuclear Information System (INIS)

    1976-01-01

    The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand, excess extraction steam is drawn off to heat excess quantities of boiler feed water. Such boiler feed water can be heated to the maximum extent possible and used to reheat interstage steam before being sent at slightly reduced temperature to the boilers. In this way, maximum use can be made of the thermal energy stored in the low vapor pressure organic material. Alternatively, or simultaneously, the stored hot LVP organic material can be used to raise intermediate pressure steam and this steam can be injected into the steam turbines between appropriate stages or into auxiliary turbines used solely for this purpose