WorldWideScience

Sample records for thermal electric stations

  1. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  2. Hekinan thermal power station

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Hekinan thermal power station is situated at the port of Kinuura in Aichi Prefecture, Japan. Unit 1 began commercial operation in October 1991, Unit 2 in June 1992 and Unit 3 in April 1993. This brochure gives the specification of the main facilities of the power station, shows its layout; illustrates its pollution control equipment, gives specifications of its flue gas treatment systems and of its large steam turbine, describes its coal handling facilities and gives their specifications, and mentions the power station`s automated control system.

  3. VT Data - Electric Charging Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Locations of Electric Charging Stations provided by the NREL national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy....

  4. Modern techniques for the emissions control in thermal electric stations; Tecnicas modernas para el control de emisiones en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Romo Millares, C. A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    This paper presents the techniques and the control equipment for emissions in thermal stations that have the highest possibilities of being considered in the immediate future in the national energy panorama and the established frame for the environmental normativity. The pollutant compounds subject to revision are the nitrogen and sulfur oxides and unburned particles. [Espanol] Se presentan las tecnicas y equipos de control de emisiones para centrales termoelectricas que tienen mayores posibilidades de ser consideradas en el futuro inmediato dentro del panorama energetico nacional y el marco establecido por la normatividad ambiental. Los compuestos contaminantes sujetos a revision son los oxidos de nitrogeno y azufre y las particulas inquemadas.

  5. Autonomous Electrical Vehicles’ Charging Station

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2016-09-01

    Full Text Available This paper presents a model of an autonomous electrical vehicles’ charging station. It consists of renewable energy sources: wind turbine system, photovoltaic cells, as well as an energy storage, load, and EV charging station. In order to optimise the operating conditions, power electronic converters were added to the system. The model was implemented in the Homer Energy programme. The first part of the paper presents the design assumptions and technological solutions. Further in the paper simulation results are discussed and analysed, and then problems observed in the simulation and possible solutions.

  6. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  7. Space Station Electrical Power System

    Science.gov (United States)

    Labus, Thomas L.; Cochran, Thomas H.

    1987-01-01

    The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

  8. Electrical and Thermal Conductivity

    Science.gov (United States)

    Ventura, Guglielmo; Perfetti, Mauro

    After a Sect. 1.1 devoted to electrical conductivity and a section that deals with magnetic and dielectric losses ( 1.2 ), this chapter explores the theory of thermal conduction in solids. The examined categories of solids are: metals Sect. 1.3.2 , Dielectrics Sects. 1.3.3 and 1.3.4 and Nanocomposites Sect. 1.3.5 . In Sect. 1.3.6 the problem of thermal and electrical contact between materials is considered because contact resistance occurring at conductor joints in magnets or other high power applications can lead to undesirable electrical losses. At low temperature, thermal contact is also critical in the mounting of temperature sensors, where bad contacts can lead to erroneous results, in particular when superconductivity phenomena are involved.

  9. Numerical research on flow and thermal transport in cooling pool of electrical power station using three depth-averaged turbulence models

    Directory of Open Access Journals (Sweden)

    Li-ren Yu

    2009-09-01

    Full Text Available This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, {m1}, {m2}, and {m3}, were used to close the quasi three-dimensional hydrodynamic model. The {m3} model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.

  10. Numerical research on flow and thermal transport in cooling pool of electrical power station using three depth-averaged turbulence models

    Directory of Open Access Journals (Sweden)

    Li-ren YU

    2009-09-01

    Full Text Available This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, κ- ε, κ-w , and κ-ω, were used to close the quasi three-dimensional hydrodynamic model. The κ-ω model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.

  11. 700-MW coal fired sliding pressure operation boiler with improving operational characteristics. ; Chubu Electric Power Co. Inc. Hekinan thermal power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, J.; Kiyama, K. (Babcock-Hitachi K.K., Tokyo (Japan))

    1993-02-01

    In response to requirements of improvements of efficiency and operability to provide demand control and environmental preservation in coal fired boilers, Babcock-Hitachi has endeavored to develop a large capacity coal fired boiler. As a result, Babcock-Hitachi has installed a 700MW supercritical sliding pressure operation coal fired once through boiler at the Hekinan Thermal Power Station Unit No.2 of Chubu Electric Power Co. For this coal fired boiler, spiral water wall construction was adopted to stabilize the furnace outlet water temperature via uniform heat absorption at the furnace. A three-stage spray-type attemperator was also applied to the main steam temperature control to improve load controllability and to correspond to a fluctuation of heat absorption at the furnace and the convection pass zone. Moreover, gas recirculation system, parallel gas damper, and intermediate spray attemperator were used to control the reheat steam temperature. The present article describes design summary and results of trial operation of this large capacity coal fired boiler. 11 figs., 3 tabs.

  12. Electrical Equipment of Electrical Stations and Substations,

    Science.gov (United States)

    1979-10-25

    cosm =0.6 it is necessary to lower the load of generator approximately/exemplarily to 140/0 (according to the data of plant "electric power"). As a...cooling gas: the less gai density, that is less than loss. with hydrogen cooling with overpressure 0.035-0.05 Atm(gage) the density of the cooling gas is...under creation condition in machine frame of the overpressure of DOC = 79134822 PAGE gas on the order of 5-6 atm( gaye ) L42-5]. However, at such pressures

  13. Electric thermal storage demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

  14. Electric thermal storage demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

  15. Electric thermal storage demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  16. Electric thermal storage demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  17. Methodology for carrying out energy diagnosis in auxiliaries systems in thermal electrical central stations; Metodologia para realizar un diagnostico energetico en sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Nebradt Garcia, Jesus [Comision Federal de Electricidad (CFE), Mexico, D. F. (Mexico); Rojas Hidalgo, Ismael; Huante Perez, Liborio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    One of the potential areas for energy saving in Central Electric Power Plants are the auxiliaries system, so as to based in a preliminary energy diagnosis and considering that energy saving measures would be taken, going from the instrumentation, operational changes in equipment, as well as in using velocity variators in motors, it turns out to be that the energy consumption of auxiliaries at 75% load in a 150 MW thermal power plant varies from 3% to 4% and for the case of a 350 MW power plant the energy consumption of the auxiliaries represents 2 to 3.5%. Nowadays this consumption are above 6%. Considering that the country has 40 units with capacities varying from 150 to 350 MW, the economical and the fuel saving would be substantial. This paper will present a summary of the methodology to be used to carry out this type of projects. [Espanol] Una de las areas potenciales de ahorro de energia en centrales termoelectricas son los sistemas auxiliares, de tal manera que basados en un diagnostico energetico preliminar y considerando que se aplicarian las medidas de ahorro de energia que van desde la instrumentacion, cambios operativos en equipos, asi como el uso de variadores de velocidad en motores, se tienen que los consumos de auxiliares para un 75% de carga en una central termoelectrica de 150 MW varian desde un 3% hasta un 4% y para el caso de una central termoelectrica de 350 MW, el consumo de auxiliares representa del 2 al 3.5%. Hoy en dia dichos consumos estan por encima del 6%. Si consideramos que el pais cuenta con 40 unidades que varian desde 150 MW hasta 350 MW, entonces los ahorros economicos y de combustible serian impactantes. La presente ponencia mostrara un resumen de la metodologia a emplear para la realizacion de este tipo de proyectos.

  18. Thermal Radiator Pointing for International Space Station

    Science.gov (United States)

    Green, Scott

    1999-01-01

    In order to provide thermal radiation environments that result in adequate beat rejection, the single-phase, liquid ammonia (NH3) heat rejection system on the International Space Station (ISS) requires that its two thermal radiator wings be dynamically rotated as the ISS travels through its orbit. This paper discusses the closed-loop, thermal radiator pointing system that is used on ISS to ensure adequate heat rejection by the radiators, while preventing freezing of the ammonia under low heat loads and cold-environmental conditions. Although initial designs used an open-loop approach for radiator pointing, concerns about performance robustness, algorithm complexity, memory requirements, and sustaining support drove the development of a more robust, simpler, closed-loop system. Hence, the challenge of the closed-loop system was to utilize existing sensors, actuators and computers to fit into the existing hardware and software architecture of the ISS. Using a proportional-integral (PI) control architecture with limited output and an anti-windup integrator, the temperature of the ammonia coming out of the radiator is measured and controlled by adjusting the radiator wing orientation. The radiator wing orientation for the local minimum environment is fed forward to the control system, and the closed-loop controller is used to generate a bias off of that local minimum environment in order to heat up the ammonia when necessary to avoid freezing. In the earth's shadow, the controller is suspended and the radiator wing is oriented to face the earth, the local maximum thermal environment which further prevents freezing of the ammonia. This control architecture is shown to provide adequate heat rejection and avoid freezing of the ammonia, even though the physical system consists of large transport delays and time-varying dynamics which change dramatically due to orbit motion and variable heat loads.

  19. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. A reliable power station is one which would supply the required power within its installed capacity at any time within the specified voltage and frequency limits. Required for this evaluation are the station's installed ...

  20. Electrical Power Station Theory. A Course of Technical Information for Electrical Power Station Wireman Apprentices. Revised Edition.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…

  1. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-06-11

    ... turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: Written...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... Basin Electric Power Cooperative's (Basin Electric) application for a RUS loan and a Western...

  2. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... generator, and a steam turbine generator set. ADDRESSES: To obtain copies of the ROD, or for further... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric) application for...

  3. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    Science.gov (United States)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  4. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  5. Thermal to electricity conversion using thermal magnetic properties

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  6. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  7. Electric Motor Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin

    2016-06-07

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  8. Thermal fatigue of electrical fuses

    Directory of Open Access Journals (Sweden)

    Gelet Jean-Louis

    2014-06-01

    Full Text Available Electric Fuses have to respect different national or international standards such as IEC (International Electro-technical Commission 269. These standards define the characteristics of the fuses and describe the tests to be run in order to check fuse's ability to take up their main functions, i.e. current-conduction and operation under overloads and short-circuits. But fuses never carry current neither operate under standardized conditions. For example, rated current is evaluated under specified ambient temperature, without cooling air-flow, and with 1 meter-long connection-cables on both sides. In the field, temperature can reach up 80∘C, with or without air-flow and connection-parts are much more shorter. An issue is that current is never constant, often being cyclingly applied; equipments are frequently in use during the day and stopped in the night. ON-time and OFF-time generate alternative heating, then alternative stresses leading to thermal fatigue. MERSEN run many tests along the years, allowing to develop a method for choosing right fuses for each application. As a result, fuses don't melt unexpectedly in the field, but the method is supposed to be conservative and does not permit to get a better understanding of the phenomena neither an improvement of the products. The paper presents some specific ageing-tests run on conductive elements and tries to establish a correspondence between these tests and others carried out on complete fuses. Tests have been run on silver and copper, but their principle could be interesting for any structural material, especially because it underlines crack-opening.

  9. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  10. Thermal-Electricity Power Plants in Turkey

    National Research Council Canada - National Science Library

    Mustafa Balat; Havva Balat; Neslihan Acici

    2004-01-01

    .... In 2003, its share is about 74.78% (104,898 GWh/year) of total production (140,283 GWh) of the country. Turkey is mainly focused on increased natural gas use for Thermal Electric Power Plant production...

  11. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  12. Electrically Conductive White Thermal-Control Paint

    Science.gov (United States)

    Hsieh, Cheng-Hsien; Forsberg, Gustaf A.; O'Donnell, Timothy P.

    1995-01-01

    Report describes development of white thermal-control paint intended for use on spacecraft. Paint required to exhibit combination of high emittance (equal to or greater than 0.90), low absorptance (equal to or less than 0.20), and electrical conductivity sufficient to prevent charging with static electricity to potentials beyond range of plus or minus 10 V.

  13. Impact of Electric Vehicle Charging Station Load on Distribution Network

    Directory of Open Access Journals (Sweden)

    Sanchari Deb

    2018-01-01

    Full Text Available Recent concerns about environmental pollution and escalating energy consumption accompanied by the advancements in battery technology have initiated the electrification of the transportation sector. With the universal resurgence of Electric Vehicles (EVs the adverse impact of the EV charging loads on the operating parameters of the power system has been noticed. The detrimental impact of EV charging station loads on the electricity distribution network cannot be neglected. The high charging loads of the fast charging stations results in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. Further, the penalty paid by the utility for the degrading performance of the power system cannot be neglected. This work aims to investigate the impact of the EV charging station loads on the voltage stability, power losses, reliability indices, as well as economic losses of the distribution network. The entire analysis is performed on the IEEE 33 bus test system representing a standard radial distribution network for six different cases of EV charging station placement. It is observed that the system can withstand placement of fast charging stations at the strong buses up to a certain level, but the placement of fast charging stations at the weak buses of the system hampers the smooth operation of the power system. Further, a strategy for the placement of the EV charging stations on the distribution network is proposed based on a novel Voltage stability, Reliability, and Power loss (VRP index. The results obtained indicate the efficacy of the VRP index.

  14. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-02-26

    ... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: With this notice, RUS invites any affected Federal, State, and local...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY...

  15. Solar-Assisted Electric Vehicle Charging Station Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data

  16. Augmentation of coal handling plant for Nasik Thermal Power Station, India

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, M.C.; Bandhu, K.K.; Vyas, M.R.

    1989-08-01

    The augmentation of the coal handling plant at Nasik Thermal Power Station, India, was necessary, because the volume of coal to be handled increased due to the poor coal quality. The Maharashtra State Electricity Board therefore decided to install an additional conveying system consisting of a rotary-type wagon tippler (car dumper), a three-stage crushing plant, stacking and reclaiming equipment, and a motorized tripper bunkering system. 5 figs., 1 tab.

  17. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  18. An Electric Power Consumption Analysis System for the Installation of Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Seongpil Cheon

    2017-10-01

    Full Text Available With the rising demand for electric vehicles, the number of electric vehicle charging stations is increasing. Therefore, real-time monitoring of how the power consumption by charging stations affects the load on the peripheral power grid is important. However, related organizations generally do not provide actual power consumption data in real time, and only limited information, such as the charging time, is provided. Therefore, it is difficult to calculate and predict the power load in real time. In this paper, we propose a new model for estimating the electric power consumption from the supplied information, i.e., the charging time and the number of charging involved. The experimental results show that by displaying this information on a map, it is possible to visually monitor the electric power consumption of the charging stations with an accuracy rate of about 86%. Finally, the proposed system can be used to relocate and select the location of vehicle charging stations.

  19. Bony ankylosis following thermal and electrical injury

    Energy Technology Data Exchange (ETDEWEB)

    Balen, P.F.; Helms, C.A. [Dept. of Radiology, Duke University Medical Center, Durham, NC (United States)

    2001-07-01

    Objective. Bony ankylosis has been described following trauma, paralysis, psoriasis, Reiter's syndrome, ankylosing spondylitis, juvenile chronic arthritis and rheumatoid arthritis. Reports of bony ankylosis following thermal and electrical injury are limited.Design and patients. Thirteen cases of burn-related joint ankylosis in four patients are presented.Conclusion. Patients with burns from thermal or electrical injury may develop bony ankylosis among other radiographic manifestations. This bony ankylosis may result either from bridging extra-articular heterotopic ossification with preservation of the underlying joint or from intra-articular fusion due to joint destruction. (orig.)

  20. Electrical and thermal spin accumulation in germanium

    Science.gov (United States)

    Jain, A.; Vergnaud, C.; Peiro, J.; Le Breton, J. C.; Prestat, E.; Louahadj, L.; Portemont, C.; Ducruet, C.; Baltz, V.; Marty, A.; Barski, A.; Bayle-Guillemaud, P.; Vila, L.; Attané, J.-P.; Augendre, E.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2012-07-01

    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then, by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any charge current. We show that temperature gradients yield larger spin accumulations than electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation remains surprisingly unchanged under the application of a gate voltage.

  1. Advances in Electrically Driven Thermal Management

    Science.gov (United States)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  2. Peripapillary retinal thermal coagulation following electrical injury

    Directory of Open Access Journals (Sweden)

    Manjari Tandon

    2013-01-01

    Full Text Available In this study, we have presented the case report of a 20 year old boy who suffered an electric injury shock, following which he showed peripapillary retinal opacification and increased retinal thickening that subsequently progressed to retinal atrophy. The fluorescein angiogram revealed normal retinal circulation, thus indicating thermal damage to retina without any compromise to retinal circulation.

  3. 75 FR 13798 - Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and...

    Science.gov (United States)

    2010-03-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and... Operations, Inc. (Entergy, the licensee), for operation of the Waterford Steam Electric Station, Unit 3...

  4. Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-13

    Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

  5. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    The cross-planar i-v characteristics curves of Cu2SnS3 films were non-Ohmic while in-planar i-v characteristic curves were Ohmic. The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1. Key words: Ternary compound, microscopic glass substrate, Thermal ...

  6. Electricity storage using a thermal storage scheme

    Science.gov (United States)

    White, Alexander

    2015-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  7. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  8. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  9. Tampa Electric Company Polk Power Station IGCC project: Project status

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D. [Tampa Electric Co., FL (United States)

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  10. Pediatric hand burns: thermal, electrical, chemical.

    Science.gov (United States)

    Choi, Mark; Armstrong, Milton B; Panthaki, Zubin J

    2009-07-01

    Young children often use their hands for exploration of their surroundings, and this often leads to the hand being the primary site of injury. Because of this and many associated factors, burns of the pediatric hands are relatively common, with thermal injuries being the most frequent. Electrical and chemical etiologies contribute a minor portion of the burn injuries in the pediatric population. Some key differences should be considered in the management of hand burns in a pediatric patient versus an adult. In general, minor superficial burns will heal satisfactorily only with topical care. Deeper partial-thickness and full-thickness burns, however, require surgical interventions. Special care should always be taken in the management of electrical and chemical burns because the pathophysiology of these injuries are unique. Treatment of pediatric hand burns should also involve close and thorough follow-up to assess not only for healing and restoration of function of the injury but also for psychologic and emotional trauma.

  11. Electric Motor Thermal Management R&D. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

  12. Electric vehicle charging station implementation plans for the Upstate New York I-90 corridor : final report.

    Science.gov (United States)

    2016-08-01

    Public charging stations allow electric vehicle (EV) owners to have the ability and confidence to drive throughout New York State; for travel within and between metropolitan areas. Incorporating EV charging station planning into broader local and reg...

  13. Engineering work for the Tachibana-Bay Thermal Power Station; Tachibana Wan Karyoku Hatsudensho no doboku koji

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, M.; Tada, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-10-25

    The Tachibana-Bay Thermal Power Station is a coal-fired thermal power station of a generated output of 2.8 million kW (two 1.05 million kW plants of Electric Power Development Co., Ltd. and one 0.7 million kW plant of Shikoku Electric Power Co., Inc.), constructed by the two companies jointly on Kokatsu-jima Island set in the Tachibana-Bay, in the southeastern part of Tokushima Prefecture, and this power station is scheduled to supply electric power to the western Japan in and after the year 2000. This paper introduces the outline of the plan of the Tachibana-Bay Thermal Power Station and the engineering work being carried out at present. The engineering work started after the preparatory work including the installation of pollution preventing screens was carried out since 1995. The engineering work includes the land developing work comprising the shore protection work, the quay building work, site preparing work and earth dump preparing work, and the construction of the cooling water intake/discharge facility and the coal unloading pier. This coal unloading pier is a berth for coal ships in 140,000-ton class, and has a straight pile type lateral pier structure using steel pipe piles of 1600 mm in maximum diameter. Two coal unloaders of a capacity of about 2700 t/h are scheduled to be installed on the pier. 7 figs., 2 tabs.

  14. 78 FR 28000 - Entergy Louisiana, LLC and Entergy Operations, Inc.; Waterford Stream Electric Station, Unit No...

    Science.gov (United States)

    2013-05-13

    ... COMMISSION Entergy Louisiana, LLC and Entergy Operations, Inc.; Waterford Stream Electric Station, Unit No. 3... Operations, Inc. (EOI) (the licensees), are co-holders of Facility Operating License No. NPF- 38. The ELL is the owner and EOI is authorized to possess, use, and operate Waterford Steam Electric Station, Unit No...

  15. Optimal Allocation of Changing Station for Electric Vehicle Based on Queuing Theory

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2016-11-01

    Full Text Available Electric vehicle as the main development direction of the future automotive industry, has gained attention worldwide. The rationality of the planning and construction of the power station, as the foundation of energy supply, is an important premise for the development of electric vehicles. In full consideration of the electric demand and electricity consumption, this paper proposes a new construction mode in which charging station and centralized charging station are appropriately combined and presents a location optimization model. Not only can this model be applied to determine the appropriate location for the power station, but it can use the queuing theory to determine the optimal number of power equipment, with which we can achieve the minimum costs. Finally, taking a certain city as an example, the optimum plan for power station is calculated by using this model, which provides an important reference for the study of electric vehicle infrastructure planning.

  16. Public solar refuelling station for electrical vehicles at ISET. Oeffentliche Solartankstelle fuer Elektrofahrzeuge am ISET

    Energy Technology Data Exchange (ETDEWEB)

    Willer, B. (Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany)); Wollny, M. (Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany))

    1994-01-01

    Electrical cars are getting more important for reducing emission loads in urban and metropolitan areas. Power generation may also become cleaner by using renewable energy sources. A refuelling station providing solar power for electrical vehicles is an important step in infrastructural development. At Kassel, a demonstration project involves the design and installation of a ''solar-power'' refuelling station. The authors present the concept underlying this station. (BWI)

  17. Effects of thermal insulation on electrical connections and outlet boxes

    Science.gov (United States)

    Beausoliel, R. W.; Clifton, J. R.; Meese, W. J.

    1981-04-01

    When residential walls are retrofitted with foamed-in urea formaldehyde or blown-in cellulose thermal insulations, the insulation may enter electrical outlet and switch boxes. The effects of these thermal insulations on the durability of electrical components were studied. These studies were carried out at 44, 75, and 96 percent relative humidities with test periods between one and twelve months. Laboratory test methods were developed and tests performed to determine the electrical and corrosive effects of urea formaldehyde and cellulose thermal insulation contained in electrical outlet and switch boxes.

  18. Determination of Technological Electric Power Consumption for Its Transportation while Using Block-Stations

    Directory of Open Access Journals (Sweden)

    V. V. Pavlovets

    2010-01-01

    Full Text Available The paper proposes a method for calculation of the technological electric power consumption for its transportation in the elements of power network while using block-stations under conditions of differently-directed electric power transfer.The calculation of technological electric power consumption for its transportation can be applied while supplying several consumers with one element of power network simultaneously with block-station operation. 

  19. Analysis Of ElectricalThermal Coupling Of Induction Machine ...

    African Journals Online (AJOL)

    The interaction of the Electrical and mechanical parts of Electrical machines gives rise to the heating of the machine's constituent parts. This consequently leads to an increase in temperature which if not properly monitored may lead to the breakdown of the machine. This paper therefore presents the Electrical and thermal ...

  20. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  1. Influence of urbanization on the thermal environment of meteorological station: Satellite-observed evidence

    Directory of Open Access Journals (Sweden)

    Tao Shi

    2015-03-01

    Full Text Available In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover (LULC, land surface temperature (LST, normalized difference vegetation index (NDVI are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently, controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.

  2. Seismic response analysis for utility boiler and its support frames; Aseismatic design for support frames of No. 3 boiler of Hekinan thermal power station, Chubu Electric Power Co. , Inc. Karyoku hatsudenyo daiyoryo boiler plant no jishin oto kaiseki; Chubu denryoku kabushiki kaisha Hekinan karyoku hatsudensho dai 3go boiler shiji tekkotsu no taishin sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kenji; Yamano, Hiroshi; Kajiwara, Yukihiro; Kashiwazaki, Akihiro (Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo, (Japan))

    1990-01-01

    An example of aseismatic design for the support frame of the 700 MW boiler of Hekinan Thermal Power Station, Chubu Electric Power Co., Inc. is described, concentrating on the result of seismic response analysis. Practical elastic {center dot} elastic-plastic dynamic analyses was confirmed through proper modeling of a complicated boiler supporting frame structure. At the beginning of the design, it was found that rigidity of a specified layer was lower than that of other layer, and a large value of seismic response was shown. However, by correction of that, a well-balanced frame structure in each layer was realized. It was found that response shearing force of the boiler supporting frame by the building-soil foundation coupled analysis, was smaller than that by the analysis of fixed foundation model, because of the interaction to soil foundation. It was confirmed that the support frame had good seismic response characteristics even in a large earthquake (level-2, 50 kine), due to the non-linear effect of the boiler stoppers which absorb the seismic energy. 4 refs., 10 figs., 2 tabs.

  3. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  4. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities .... ceramic insulators when very hot may conduct quite well. The more ... Doping also lead to the formation of polarons and bipolarons ...

  5. Development of Advanced Thermal ana Electric Propulsion (TEP) System

    National Research Council Canada - National Science Library

    Tabibi, Bagher

    1994-01-01

    On September 30, 1993, the Department of Physics at Hampton University was awarded a research instrumentation grant by the AFOSR for the development of an advanced Thermal and Electric Propulsion (TEP) system...

  6. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  7. Thermal and electrical properties of silicon nitride substrates

    Directory of Open Access Journals (Sweden)

    H. S. Dow

    2017-09-01

    Full Text Available This work presents the results of studies on the thermal and electrical properties of sintered silicon nitride to investigate the effects of non-oxide additives. With regard to electrical transport properties, a high electrical resistivity of 1014 ∼ 1015 Ωcm at 323 K was observed with Si3N4 substrates. Typical electrical resistivity and thermal conductivity values of the Si3N4 substrates were 1015 Ωcm and 90 W/mK at room temperature, respectively. Based on the results of XPS measurement, it is suggested that the addition of Nb significantly improved oxygen gettering by the phases of Nb2O5. Based on the analysis of the thermal conductivity of Si3N4 substrates, it appears that the interaction between oxygen and Nb in Si3N4, enhanced the thermal conduction rate of Si3N4.

  8. Evaluation of solar thermal storage for base load electricity generation

    Directory of Open Access Journals (Sweden)

    Adinberg R.

    2012-10-01

    Full Text Available In order to stabilize solar electric power production during the day and prolong the daily operating cycle for several hours in the nighttime, solar thermal power plants have the options of using either or both solar thermal storage and fossil fuel hybridization. The share of solar energy in the annual electricity production capacity of hybrid solar-fossil power plants without energy storage is only about 20%. As it follows from the computer simulations performed for base load electricity demand, a solar annual capacity as high as 70% can be attained by use of a reasonably large thermal storage capacity of 22 full load operating hours. In this study, the overall power system performance is analyzed with emphasis on energy storage characteristics promoting a high level of sustainability for solar termal electricity production. The basic system parameters, including thermal storage capacity, solar collector size, and annual average daily discharge time, are presented and discussed.

  9. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    Science.gov (United States)

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  10. NPDES Permit for Potomac Electric Power Company (PEPCO) Benning Generating Station

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number DC0000094, the Potomac Electric Power Company (PEPCO) Benning Generating Station is authorized to discharge from from a facility to receiving waters named Anacostia River.

  11. Liquid Metal Thermal Electric Converter bench test module

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  12. Water chemistries at thermal and nuclear power stations: A new level of information support

    Science.gov (United States)

    Ochkov, V. F.

    2011-07-01

    Methods used by the Moscow Power Engineering Institute's Department for Technologies of Water and Fuel in providing information support to the chemical departments of power stations in the field of organizing water chemistry of power units are described. Information is given on a new handbook on water chemistries at thermal and nuclear power stations and on the site supplementing this handbook.

  13. Locating replenishment stations for electric vehicles: Application to Danish traffic data

    DEFF Research Database (Denmark)

    Wen, Min; Laporte, Gilbert; Madsen, Oli B.G.

    2012-01-01

    Environment-friendly electric vehicles have gained substantial attention in governments, industry and universities. The deployment of a network of recharging stations is essential given their limited travel range. This paper considers the problem of locating electronic replenishment stations for ...... formulations are proposed to model the problem. These models are tested on real-life traffic data collected in Denmark. Computational results are presented....

  14. DEVELOPMENT OF HIGH THERMAL CONDUCTIVITY ELECTRICAL EMBEDDING COMPOUNDS.

    Science.gov (United States)

    This report describes the development of high thermal conductivity electrical embedding compounds utilizing a technique wherein the mold is first...Contained herein, are the pertinent results of a previously reported study which led to the development of three high thermal conductivity compounds...and the further development of several additional compounds with still higher conductivities. (Author)

  15. Economic station load distribution in thermal power stations with multi-rated sets

    Energy Technology Data Exchange (ETDEWEB)

    Jagannathan, P.; Murty, N.S.; Dutt, R.V.S.K. [BHEL House, New Delhi (India)

    2004-07-01

    This paper presents a suitable method developed for arriving at the minimum station heat rate with dynamic heat rate characteristics evaluation for implementation on existing as well as next generation C & I platforms. 3 refs., 3 figs., 2 tabs.

  16. 75 FR 39285 - Virginia Electric and Power Company: North Anna Power Station, Unit No. 1 Environmental...

    Science.gov (United States)

    2010-07-08

    ... COMMISSION Virginia Electric and Power Company: North Anna Power Station, Unit No. 1 Environmental Assessment...-4, issued to Virginia Electric and Power Company (the licensee), for operation of the North Anna... changes are being made in the types of effluents that may be released offsite. There is no significant...

  17. Thermal and electrical behavior of nano-modified cement mortar

    Science.gov (United States)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Alafogianni, P.; Barkoula, N.-M.; Paipetis, A. S.; Dassios, K. G.; Matikas, T. E.

    2014-04-01

    This research aims in characterizing modified cement mortar with carbon nanotubes (CNTs) that act as nanoreinforcements leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The effective thermal properties of the modified nano-composites were evaluated using IR Thermography. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. To eliminate any polarization effects the specimens were dried in an oven before testing. In this work, the thermal and electrical properties of the nano-modified materials were studied by nondestructively monitoring their structural integrity in real time using the intrinsic multi-functional properties of the material as damage sensors.

  18. Flywheel-Based Fast Charging Station - FFCS for Electric Vehicles and Public Transportation

    Science.gov (United States)

    Gabbar, Hossam A.; Othman, Ahmed M.

    2017-08-01

    This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”

  19. A thermal study of an encapsulated electrical transformer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A. [Unidad Geotermia, Temixco (Mexico). Instituto de Investigaciones Electricas; Espinosa-Paredes, G. [Universidad Autonoma Metropolitana, Vicentina (Mexico). Dpto. de Ingenieria de Procesos e Hidraulica; Hernandez, I. [Centro de Sistemas de Manufactura, Nuevo Leon (Mexico). Instituto Tecnologico y de Estudios Superiores de Monterrey

    2002-11-01

    A thermal study of a 45 KVA-prototype encapsulated transformer is described. Casting resin systems were used as insulating systems for encapsulated electric transformers. Normal transformer operation is at full load and, thus the conductor and insulating system becomes hot owing to current circulation through the winding. To determine the various temperature distributions throughout the transformer, the thermal properties of the insulating system and boundary conditions must be known, so that hot spots are located via numerical modelling and maximum permissible temperatures are not attained. Results presented herein include thermal conductivity, thermal diffusivity, and specific heat capacity. Thermal conductivity was obtained experimentally by means of the line-source technique at various temperatures, between room temperature and 155{sup o}C which is the thermal limit of class F insulators. The thermal diffusivity was obtained by parameter estimation by fitting an approximate analytical model to the temperature-time data of the thermal conductivity experiment. Specific heat capacity was obtained from the definition of thermal diffusivity and the insulating-system density. In order to improve the electrical performance of the transformer criteria, a numerical simulation of the different dielectric structures was made using computer program. The boundary conditions for the thermal simulation stage were also determined experimentally from temperature test runs. Finally, in order to obtain data for thermal design, a numerical simulation of the high tension winding was carried out. The thermal simulation stage was performed at different current densities in the conductor with and without electrostatic shields to determine the temperature field and maximum attainable temperatures. Maximum transformer temperature were found to be 15-20{sup o}C below its thermal limit and a correlation of maximum temperature as function of circulating current was developed for design

  20. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations

    Directory of Open Access Journals (Sweden)

    Rong-Ceng Leou

    2017-04-01

    Full Text Available The battery capacity of electric buses (EB used for public transportation is greater than that of electric cars, and the charging power is also several times greater than that used in electric cars; this can result in high energy consumption and negatively impact power distribution networks. This paper proposes a framework to determine the optimal contracted power capacity and charging schedule of an EB charging station in such a way that energy costs can be reduced. A mathematical model of controlled charging, which includes the capacity and energy charges of the station, was developed to minimize costs. The constraints of the model include the charging characteristics of an EB and the operational guidelines of the bus company. A practical EB charging station was used to verify the proposed model. The financial viability of this EB charging station is also studied in this paper. The economic analysis model for this charging station considers investment and operational costs, and the operational revenue. Sensitivity analyses with respect to some key parameters are also performed in this paper. Based on actual operational routes and EB charging schemes, test results indicate that the EB charging station investment is feasible, and the planning model proposed can be used to determine optimal station power capacity and minimize energy costs.

  1. Electric Motor Thermal Management R&D (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  2. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  3. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  4. Effects of Silver Microparticles and Nanoparticles on Thermal and Electrical Characteristics of Electrically Conductive Adhesives

    Science.gov (United States)

    Zulkarnain, M.; Fadzil, M. A.; Mariatti, M.; Azid, I. A.

    2017-11-01

    The effects of different volume fractions of silver (Ag) particles of different size (microsize, 2 μm to 3.5 μm diameter; nanosize, 80 nm diameter) on the thermal and electrical characteristics of epoxy-Ag electrically conductive adhesive (ECA) have been evaluated, as well as hybrid ECAs with both particle sizes at different ratios. Improved thermal and electrical conductivity resulted from the interaction between the particles, as evaluated by analysis of sample morphology. The interaction was altered to improve the conductivity. For both particle sizes, the electrical resistivity showed a transition from insulation to conduction at 6 vol.% Ag. In the hybrid system, the thermal conductivity decreased with increasing microparticle filler ratio. The electrical conductivity of the hybrid composite increased at 50:50 weight ratio.

  5. Electrical and thermal properties of graphite/polyaniline composites

    Energy Technology Data Exchange (ETDEWEB)

    Bourdo, Shawn E., E-mail: sxbourdo@ualr.edu [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Warford, Brock A.; Viswanathan, Tito [Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States)

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  6. Research on Quantitative Models of Electric Vehicle Charging Stations Based on Principle of Energy Equivalence

    Directory of Open Access Journals (Sweden)

    Zhenpo Wang

    2013-01-01

    Full Text Available In order to adapt the matching and planning requirements of charging station in the electric vehicle (EV marketization application, with related layout theories of the gas stations, a location model of charging stations is established based on electricity consumption along the roads among cities. And a quantitative model of charging stations is presented based on the conversion of oil sales in a certain area. Both are combining the principle based on energy consuming equivalence substitution in process of replacing traditional vehicles with EVs. Defined data are adopted in the example analysis of two numerical case models and analyze the influence on charging station layout and quantity from the factors like the proportion of vehicle types and the EV energy consumption at the same time. The results show that the quantitative model of charging stations is reasonable and feasible. The number of EVs and the energy consumption of EVs bring more significant impact on the number of charging stations than that of vehicle type proportion, which provides a basis for decision making for charging stations construction layout in reality.

  7. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  8. Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jessica Robinson

    2014-10-01

    Full Text Available Electric power must become less dependent on fossil fuels and transportation must become more electric to decrease carbon emissions and mitigate climate change. Increasing availability and accessibility of charging stations is predicted to increase purchases of electric vehicles. In order to address the current inadequate charging infrastructure for electric vehicles, major entities must adopt business models for solar powered charging stations (SPCS. These SPCS should be located in parking lots to produce electricity for the grid and provide an integrated infrastructure for charging electric vehicles. Due to the lack of information related to SPCS business models, this manuscript designs several models for major entities including industry, the federal and state government, utilities, universities, and public parking. A literature review of the available relevant business models and case studies of constructed charging stations was completed to support the proposals. In addition, a survey of a university’s students, staff, and faculty was conducted to provide consumer research on people’s opinion of SPCS construction and preference of business model aspects. Results showed that 69% of respondents would be more willing to invest in an electric vehicle if there was sufficient charging station infrastructure at the university. Among many recommendations, the business models suggest installing level 1 charging for the majority of entities, and to match entities’ current pricing structures for station use. The manuscript discusses the impacts of fossil fuel use, and the benefits of electric car and SPCS use, accommodates for the present gap in available literature on SPCS business models, and provides current consumer data for SPCS and the models proposed.

  9. Ceramic thermal barrier coatings for electric utility gas turbine engines

    Science.gov (United States)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  10. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  11. Multiple Charging Station Location-Routing Problem with Time Window of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Wang Li-ying

    2015-11-01

    Full Text Available This paper presents the electric vehicle (EV multiple charging station location-routing problem with time window to optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that incorporates an adaptive variable neighborhood search (AVNS with the tabu search algorithm for intensification was developed to address the problem. The specialized neighborhood structures and the selection methods of charging station used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The results on large-scale instances also show the effectiveness of the algorithm.

  12. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    DEFF Research Database (Denmark)

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context...

  13. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan

    2016-01-01

    detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E......-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer...

  14. Electrical and Thermal Characterization of Electrospun PVP Nanocomposite Fibers

    Directory of Open Access Journals (Sweden)

    Waseem S. Khan

    2013-01-01

    Full Text Available Polyvinylpyrrolidone (PVP solutions incorporated with multiwall carbon nanotubes (MWCNTs were electrospun at various weight percentages, and then the electrical resistance and some thermal properties of these nanocomposite fibers were determined using a high-accuracy electrical resistance measurement device. During the electrospinning process, system and process parameters, such as concentrations, applied voltage, tip-to-collector distance, and pump speeds, were optimized to receive the consistent nanocomposite fibers. When polymers are used in many industrial applications, they require high electrical and thermal conductivities. Most polymers exhibit low electrical conductivity values; however, in the presence of conductive inclusions, the electrical resistance of the MWCNT fibers was reduced from 50 MΩ to below 5 MΩ, which may be attributed to the higher electrical conductivities of these nanoscale inclusions and fewer voids under the applied loads. This study may open up new possibilities in the field for developing electrically conductive novel nanomaterials and devices for various scientific and technological applications.

  15. Mixed Convection in Technological Reservoir of Thermal Power Station

    Directory of Open Access Journals (Sweden)

    Kuznetsov Geniy V.

    2014-01-01

    Full Text Available The problem of mixed convection of a viscous incompressible fluid in an open rectangular reservoir with inlet and outlet of mass with considering nonuniform heat sink at the external borders of the solution domain is solved. The region of the solution was limited by two vertical and by one horizontal walls of finite thickness and one free surface. The flat nonstationary mixed convection within the framework of Navier-Stokes model is examined for liquid and thermal conductivity for solid walls. Distributions of hydrodynamic parameters and temperatures with different intensity of heat sink on the outer contour of the cavity show a change in the intensity of heat sink on the region boundaries of the solution leads to scale changes in the structure of flow and temperature fields of the liquids.

  16. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    application was compressed in a wooden mold to form tablets of the doped polymers. On testing for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities were greatly enhanced as the concentrations of the dopants increased. Hence it is evident that those polymeric materials ...

  17. Evaluation of electrical and thermal conductivity of polymeric wastes ...

    African Journals Online (AJOL)

    The mixture on melting with heat application was compressed in a wooden mold to form tablets of the doped polymers. On testing for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities were greatly enhanced as the concentrations of the dopants increased. Hence it is ...

  18. Morphology, thermal, electrical and electrochemical stability of nano ...

    Indian Academy of Sciences (India)

    In the present work, an attempt has been made to develop nano aluminium oxide (Al2O3)-filled polyvinyl alcohol (PVA) composite gel electrolytes. Surface morphological studies, thermal behaviour, electrochemical stability and electrical characterization of these composite gel electrolytes have been performed. An increase ...

  19. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  20. Trajectory Optimization of Electric Aircraft Subject to Subsystem Thermal Constraints

    Science.gov (United States)

    Falck, Robert D.; Chin, Jeffrey C.; Schnulo, Sydney L.; Burt, Jonathan M.; Gray, Justin S.

    2017-01-01

    Electric aircraft pose a unique design challenge in that they lack a simple way to reject waste heat from the power train. While conventional aircraft reject most of their excess heat in the exhaust stream, for electric aircraft this is not an option. To examine the implications of this challenge on electric aircraft design and performance, we developed a model of the electric subsystems for the NASA X-57 electric testbed aircraft. We then coupled this model with a model of simple 2D aircraft dynamics and used a Legendre-Gauss-Lobatto collocation optimal control approach to find optimal trajectories for the aircraft with and without thermal constraints. The results show that the X-57 heat rejection systems are well designed for maximum-range and maximum-efficiency flight, without the need to deviate from an optimal trajectory. Stressing the thermal constraints by reducing the cooling capacity or requiring faster flight has a minimal impact on performance, as the trajectory optimization technique is able to find flight paths which honor the thermal constraints with relatively minor deviations from the nominal optimal trajectory.

  1. Microgravity heat pump for space station thermal management.

    Science.gov (United States)

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.

  2. Thermal and Electrical Analysis of Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  3. Small solar thermal electric power plants with early commercial potential

    Science.gov (United States)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  4. Intention-Aware Routing to Minimise Delays at Electric Vehicle Charging Stations

    NARCIS (Netherlands)

    De Weerdt, M.M.; Gerding, E.H.; Stein, S.; Robu, V.; Jennings, N.R.

    2013-01-01

    En-route charging stations allow electric vehicles to greatly extend their range. However, as a full charge takes a considerable amount of time, there may be significant waiting times at peak hours. To address this problem, we propose a novel navigation system, which communicates its intentions

  5. [Risk of electromagnetic fields in electric power stations and substations of a petrochemical plant].

    Science.gov (United States)

    Castagnoli, A; Fabri, G; Romeo, A

    2003-01-01

    Authors evaluate electromagnetic field exposure in the low-frequency range (5-30,000 Hz) in electric power stations and substations of petroleum processing plant. According to the measured values and the reference exposure limits considered, they conclude that operators should be exposed without adverse effects.

  6. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Science.gov (United States)

    2013-07-30

    ... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule... the site of a nuclear power reactor licensed for operation by the Commission, the emergency plan...

  7. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Subudhi, M. [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  8. Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station

    Science.gov (United States)

    Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M.

    2017-01-01

    The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…

  9. Thermal and Electrical Properties of Electrides

    Science.gov (United States)

    Moeggenborg, Kevin James

    1990-01-01

    A method to determine the stability and decomposition kinetics of electrides was developed. The method uses DSC and was applied to two electrides. A sample of Li ^+(PMPCY)e^- underwent a first-order decomposition reaction with a half life of 110 hrs at 23^circC while a sample of K^+(C222)e ^- decomposed autocatalytically in under 2 days at -57^circ C. The results point to two different mechanisms of decomposition in electrides. The electrical properties of several electrides were investigated through Impedance Spectroscopy and a.c. and d.c. conductivity methods. D.C. conductivity studies of K^+(C222)e^- indicated a low band gap but high apparent resistivity and marked non-Ohmic behavior for the compound. The high resistivity and non-Ohmic behavior were found to be due to a Schottky barrier at the sample-electrode interface. Four probe a.c. conductivity experiments on a cylindrical sample pellet revealed a band gap of 0.086 eV for the compound and placed an upper limit of 0.189 Omega cm at 130 K on its resistivity. The band gap of the compound may be due to the activated transfer of electrons across grain boundaries in the polycrystalline samples. The electrides Cs^+(15C5) _2e^- and Cs^+(18C6)_2e ^- were shown to exhibit the first ionic conductivity ever seen in electrides. Cs ^+(15C5)_2e ^- undergoes a transition from defect electronic conductivity to ionic conductivity, the latter having an activation energy of 0.7 eV. Cs^+(18C6) _2e^- also exhibited ionic conduction with an activation energy of 1.0 eV. Both compounds exhibited electrochemical cell behavior when placed between one cesium and one stainless steel electrode. The mechanism of the ionic conductivity may involve the release of the cesium cation from its crown ether cage and its reduction by an electron anion of the compound followed by Cs^+ transfer between anionic sites in the crystal lattice. The semiconductor behavior previously seen in Cs^+(18C6) _2e^- was shown to be due to the doping of the

  10. Thermal properties of metals alloy by electrical pyroelectric method (EPE)

    Energy Technology Data Exchange (ETDEWEB)

    Bennaji, N; Mellouki, I; Yacoubi, N, E-mail: bennajin@yahoo.f

    2010-03-01

    In present work, we propose a new technique based on uniform electrical heating of pyroelectric detector which investigated simultaneous thermal conductivity and diffusivity of samples. A new one-dimensional theoretical model was developed to determinate thermal proprieties of steel alloy. The obtained values of thermal conductivity are 13 Wm{sup -1}K{sup -1}, 18 Wm{sup -1}K{sup -1} and 24 Wm{sup -1}K{sup -1} and of thermal diffusivity are 7x10{sup -6} m{sup 2}s{sup -1}, 15x10{sup -6} m{sup 2}s{sup -1} and 8x10{sup -6} m{sup 2}s{sup -1} respectively for sheet steel, galvanized steel and stainless steel. These results are given with an uncertainty at the 1{sigma} level.

  11. A Heuristic for Locating Electric Vehicle Charging Stations for Trip Chains

    DEFF Research Database (Denmark)

    Wen, Min; Røpke, Stefan

    We present the problem of locating a limited number of electric vehiclecharging stations for a given set of trip chains, each of which consistsof a series of linked short trips and is represented by a sequence ofintervening stops along the trip chain. The objective of this problemis to maximize t...... the number of trip chains that can be completed by the electric vehicle without running out of battery. A mixed-integer programmingformulation as well as a heuristic for solving this problemwill be presented.......We present the problem of locating a limited number of electric vehiclecharging stations for a given set of trip chains, each of which consistsof a series of linked short trips and is represented by a sequence ofintervening stops along the trip chain. The objective of this problemis to maximize...

  12. A study of some features of ac and dc electric power systems for a space station

    Science.gov (United States)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  13. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax......) – of the TES unit influences the savings. For this purpose, a reference price signal was used. Results show that it is possible to save up to approximately 14% of the electricity costs. In general, savings increase with Pmax and Emax. However, the benefit of increasing these two values ceases when certain...

  14. Probabilistic Harmonic Calculation in Distribution Networks with Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Jianxue Wang

    2014-01-01

    Full Text Available Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.

  15. 75 FR 9449 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2

    Science.gov (United States)

    2010-03-02

    ... North Anna Power Station, Unit Nos. 1 and 2 (NAPS). The licenses provide, among other things, that the... COMMISSION [Docket Nos. 50-338 and 50-339; NRC-2010-0026 Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2 1.0 Background The Virginia Electric and Power Company, (the licensee...

  16. 75 FR 4591 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Environmental...

    Science.gov (United States)

    2010-01-28

    ...-7, issued to Virginia Electric and Power Company, (the licensee), for operation of the North Anna Power Station, Unit Nos. 1 and 2 (NAPS). In accordance with 10 CFR 51.21, ``Criteria for and... COMMISSION Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Environmental...

  17. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  18. Load forecast method of electric vehicle charging station using SVR based on GA-PSO

    Science.gov (United States)

    Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan

    2017-06-01

    This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.

  19. Automating security monitoring and analysis for Space Station Freedom's electric power system

    Science.gov (United States)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  20. Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.

  1. Minimum Electrical and Thermal Conductivity of Graphene: A Quasiclassical Approach

    OpenAIRE

    Trushin, Maxim; Schliemann, John

    2007-01-01

    We investigate the minimum conductivity of graphene within a quasiclassical approach taking into account electron-hole coherence effects which stem from the chiral nature of low energy excitations. Relying on an analytical solution of the kinetic equation in the electron-hole coherent and incoherent cases we study both the electrical and thermal conductivity whose relation fullfills Wiedemann-Franz law. We found that the most of the previous findings based on the Boltzmann equation are restri...

  2. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  3. Electrical stimulation vs thermal effects in a complex electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua, Jesus M., E-mail: paniagua@unex.es [Department of Applied Physics, Polytechnic School, University of Extremadura. Avda. de la Universidad s/n, 10071 Caceres (Spain); Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel [Department of Applied Physics, Polytechnic School, University of Extremadura. Avda. de la Universidad s/n, 10071 Caceres (Spain)

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10{sup -4}) than that based on thermal considerations (exposure quotient 0.16 10{sup -4}). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  4. Macroeconomic impact of the Solar Thermal Electricity Industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    In the last three years, Solar Thermal Electricity (STE) in Spain has grown significantly. Its weight within the renewables mix is becoming relevant, and even more so, its impact on economics, society, the environment, and reducing energy dependence. This report was carried out by Deloitte for Protermosolar to quantitatively and qualitatively evaluate the main macroeconomic variables derived from the development of this technology in Spain from 2008 to 2010, and forecast its possible future impact.

  5. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  6. Solar thermal bowl concepts and economic comparisons for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

    1988-04-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  7. Metallic nanowire networks: effects of thermal annealing on electrical resistance

    Science.gov (United States)

    Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D.

    2014-10-01

    Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing. Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq-1. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays.

  8. Electrically and Thermally Conducting Nanocomposites for Electronic Applications

    Directory of Open Access Journals (Sweden)

    Daryl Santos

    2010-02-01

    Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.

  9. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  10. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  11. An Electric Power Consumption Analysis System for the Installation of Electric Vehicle Charging Stations

    National Research Council Canada - National Science Library

    Seongpil Cheon; Suk-Ju Kang

    2017-01-01

    .... Therefore, it is difficult to calculate and predict the power load in real time. In this paper, we propose a new model for estimating the electric power consumption from the supplied information, i.e...

  12. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    Science.gov (United States)

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  13. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  14. The Electric Power System of the International Space Station: A Platform for Power Technology Development

    Science.gov (United States)

    Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.

    2000-01-01

    The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.

  15. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  16. Heuristic Storage System Sizing for Optimal Operation of Electric Vehicles Powered by Photovoltaic Charging Station

    OpenAIRE

    Blasius, Erik; Federau, Erik; Janik, Przemyslaw; Leonowicz, Zbigniew

    2016-01-01

    This paper discusses the utilisation of PV systems for electric vehicles charging for transportation requirements of smart cities. The gap between PV power output and vehicles charging demand is highly variable. Therefore, there is a need for additional support from a public distribution grid or a storage device in order to handle the residual power. Long term measurement data retrieved from a charging station for 15 vehicles equipped with a PV system were used in the research. Low and high i...

  17. Application of ORC power station to increase electric power of gas compression ignition engine

    Directory of Open Access Journals (Sweden)

    Mocarski Szymon

    2017-01-01

    Full Text Available The paper presents the calculation results of efficiency of the subcritical low temperature ORC power station powered by waste heat resulting from the process of cooling a stationary compression ignition engine. The source of heat to supply the ORC power station is the heat in a form of water jet cooling the engine at a temperature of 92°C, and the exhaust gas stream at a temperature of 420°C. The study considers three variants of systems with the ORC power stations with different ways of using heat source. The first variant assumes using just engine cooling water to power the ORC station. In the second variant the ORC system is powered solely by a heat flux from the combustion gases by means of an intermediary medium - thermal oil, while the third variant provides the simultaneous management of both heat fluxes to heat the water stream as a source of power supply to the ORC station. The calculations were made for the eight working media belonging both to groups of so-called dry media (R218, R1234yf, R227ea and wet media (R32, R161, R152a, R134a, R22.

  18. A Hierarchical Optimization Model for a Network of Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Cuiyu Kong

    2017-05-01

    Full Text Available Charging station location decisions are a critical element in mainstream adoption of electric vehicles (EVs. The consumer confidence in EVs can be boosted with the deployment of carefully-planned charging infrastructure that can fuel a fair number of trips. The charging station (CS location problem is complex and differs considerably from the classical facility location literature, as the decision parameters are additionally linked to a relatively longer charging period, battery parameters, and available grid resources. In this study, we propose a three-layered system model of fast charging stations (FCSs. In the first layer, we solve the flow capturing location problem to identify the locations of the charging stations. In the second layer, we use a queuing model and introduce a resource allocation framework to optimally provision the limited grid resources. In the third layer, we consider the battery charging dynamics and develop a station policy to maximize the profit by setting maximum charging levels. The model is evaluated on the Arizona state highway system and North Dakota state network with a gravity data model, and on the City of Raleigh, North Carolina, using real traffic data. The results show that the proposed hierarchical model improves the system performance, as well as the quality of service (QoS, provided to the customers. The proposed model can efficiently assist city planners for CS location selection and system design.

  19. Thermal and Electrical Performance Evaluation of PV/T Collectors in UAE

    OpenAIRE

    Kaya, Mustafa

    2013-01-01

    Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, thermal and electrical performance of PV/T collectors are analyzed and presented for the climate of RAK, UAE. Thermal performance evaluation is done following the collector output model presented in European standard EN 12975-2 and electrical performance evaluation is done by analyzing the effect of water circulation o...

  20. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model

    Directory of Open Access Journals (Sweden)

    Bin Ye

    2015-11-01

    Full Text Available In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy. An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.

  1. A collaborative effort to apply ergonomics to electric utility workers at generating stations.

    Science.gov (United States)

    Stone, Amy; Marklin, Richard; Seeley, Patricia; Mezei, Gabor

    2011-01-01

    As part of a collaborative approach involving electric utility companies, university researchers, individual contractors and a not-for-profit research institute, two ergonomics teams consisting of skilled utility workers and trained ergonomists, were assembled. These teams were to identify tasks with risk factors for musculoskeletal disorders (MSDs) among workers in fossil-fueled generating stations and and to propose ergonomic interventions for these tasks. One team focused on tasks of electricians and the other focused on tasks of plant operators and mechanics. Several of the tasks were tested in an ergonomics laboratory and at one of the utility's generating stations. We present a sample of the recommended interventions in this paper. An anthropometric analysis of electrical box height recommended the appropriate height for electrical boxes. The results of a field experiment showed that low rolling resistance wheels decreased the forces to initiate and sustain pushing a cart. The same experiment also demonstrated that the forces required to turn a cart with six wheels were lower than the forces equired to turn a cart with four wheels. A collaborative approach to ergonomics proved to be an effective method to identify and assess tasks that are problematic for workers and to develop best practices for these tasks in the electric power industry. This method could be used by other industries in their attempt to decrease the incidence, cost and severity of workplace MSDs. © 2011 - IOS Press and the authors. All rights reserved

  2. International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned

    Science.gov (United States)

    Iovine, John

    2011-01-01

    The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.

  3. Combined Solar Charging Stations and Energy Storage Units Allocation for Electric Vehicles by Considering Uncertainties

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Electric vehicles (EVs) are becoming a key feature of smart grids. EVs will be embedded in the smart grids as a mobile load-storage with probabilistic behavior. In order to manage EVs as flexible loads, charging stations (CSs) have essential roles. In this paper, a new method for optimal sitting...... and sizing of solar CSs using energy storage (ES) options is presented. Also, behavior of EVs in the presence of other loads, electricity price and solar power generation uncertainties are considered. The proposed optimization model maximizes the distribution company (DisCo) benefit by appropriate use of CSs...... are considered based on time-of-use (TOU) demand response programs (DRPs). In order to solve the optimization problem considering uncertainty of load growth, electricity price, initial state of charge of batteries and solar power generation, genetic algorithm method using Monte-Carlo simulation is used...

  4. Thermal and electrical transport across a magnetic quantum critical point.

    Science.gov (United States)

    Pfau, Heike; Hartmann, Stefanie; Stockert, Ulrike; Sun, Peijie; Lausberg, Stefan; Brando, Manuel; Friedemann, Sven; Krellner, Cornelius; Geibel, Christoph; Wirth, Steffen; Kirchner, Stefan; Abrahams, Elihu; Si, Qimiao; Steglich, Frank

    2012-04-25

    A quantum critical point (QCP) arises when a continuous transition between competing phases occurs at zero temperature. Collective excitations at magnetic QCPs give rise to metallic properties that strongly deviate from the expectations of Landau's Fermi-liquid description, which is the standard theory of electron correlations in metals. Central to this theory is the notion of quasiparticles, electronic excitations that possess the quantum numbers of the non-interacting electrons. Here we report measurements of thermal and electrical transport across the field-induced magnetic QCP in the heavy-fermion compound YbRh(2)Si(2) (refs 2, 3). We show that the ratio of the thermal to electrical conductivities at the zero-temperature limit obeys the Wiedemann-Franz law for magnetic fields above the critical field at which the QCP is attained. This is also expected for magnetic fields below the critical field, where weak antiferromagnetic order and a Fermi-liquid phase form below 0.07 K (at zero field). At the critical field, however, the low-temperature electrical conductivity exceeds the thermal conductivity by about 10 per cent, suggestive of a non-Fermi-liquid ground state. This apparent violation of the Wiedemann-Franz law provides evidence for an unconventional type of QCP at which the fundamental concept of Landau quasiparticles no longer holds. These results imply that Landau quasiparticles break up, and that the origin of this disintegration is inelastic scattering associated with electronic quantum critical fluctuations--these insights could be relevant to understanding other deviations from Fermi-liquid behaviour frequently observed in various classes of correlated materials.

  5. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  6. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction

    OpenAIRE

    Yehong Cheng; Shanbao Zhou; Ping Hu; Guangdong Zhao; Yongxia Li; Xinghong Zhang; Wenbo Han

    2017-01-01

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels? applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stab...

  7. Physical factors affecting the electrically assisted thermal bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.I.; Torres, J.-A.; Kamp, A.M. [CHLOE, University of Pau (France); Corre, B. [CSTJF, Total (France)

    2011-07-01

    In the heavy oil industry, thermal processes are used to enhance oil recovery by increasing the reservoir temperature which results in better oil mobility. Low frequency heating (LFH) is a technology using electrical conductivity of connate water to propagate current between electrodes, thus generating heat in the reservoir through the Joule effect. During the preheating and production periods, many physical factors may affect the LFH process and the aim of this study was to determine which factors affect the process and how, using a particular pattern of electrodes. Simulations were conducted using the CMG Stars reservoir simulator under different configurations, conditions and parameters. Important physical properties and operational conditions affecting the LFH process were determined and results showed that convection heat, bulk electrical conductivity and power distribution can be improved by salt water circulation. This paper highlighted the physical factors affecting LFH efficiency and these findings will be useful for future process design.

  8. Sustainable Development Commission Scotland response to the Scottish Government 'Consultation on the consenting process for thermal power stations in Scotland'

    OpenAIRE

    Sustainable Development Commission Scotland

    2009-01-01

    This document is the response of the Sustainable Development Commission Scotland to the Scottish Government’s 'Consultation on the consenting process for thermal power stations in Scotland' Publisher PDF

  9. Simulations of thermal-hydraulic processes in heat exchangers- station of the cogeneration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studovic, M.; Stevanovic, V.; Ilic, M.; Nedeljkovic, S. [Faculty of Mechanical Engineering of Belgrade (Croatia)

    1995-12-31

    Design of the long district heating system to Belgrade (base load 580 MJ/s) from Thermal Power Station `Nikola Tesla A`, 30 km southwest from the present gas/oil burning boilers in New Belgrade, is being conducted. The mathematical model and computer code named TRP are developed for the prediction of the design basis parameters of heat exchangers station, as well as for selection of protection devices and formulation of operating procedures. Numerical simulations of heat exchangers station are performed for various transient conditions: up-set and abnormal. Physical model of multi-pass, shell and tube heat exchanger in the station represented is by unique steam volume, and with space discretised nodes both for water volume and tube walls. Heat transfer regimes on steam and water side, as well as hydraulic calculation were performed in accordance with TEMA standards for transient conditions on both sides, and for each node on water side. Mathematical model is based on balance equations: mass and energy for lumped parameters on steam side, and energy balances for tube walls and water in each node. Water mass balance is taken as boundary/initial condition or as specified control function. The physical model is proposed for (s) heat exchangers in the station and (n) water and wall volumes. Therefore, the mathematical model consists of 2ns+2, non-linear differential equations, including equations of state for water, steam and tube material, and constitutive equations for heat transfer on steam and water side, solved by the Runge-Kutt method. Five scenarios of heat exchangers station behavior have been simulated with the TRP code and obtained results are presented. (author)

  10. Electrical-thermal interaction study of electrical busway using finite element analysis

    Science.gov (United States)

    Ruazani, Arief Husaini; Saad, Abdullah Aziz; Ripin, Zaidi Mohd; Ali, Wan Mohd Amri Wan Mamat; Yusof, Mohamad Yusri; Samsuddin, Muhamad Syazwan; Ong, Heng Pin; Abdullah, Muhammad Khalil

    2017-07-01

    This paper presents an approach for determining temperature distribution on a 2200A busway model. Solidwork software was used in order to create 3D modeling of busway model. This paper proposes a simulation model developed by coupling the multiphysics between electrical analysis and thermal analysis. The coupling was done by using ANSYS Workbench and ANSYS Maxwell. Basically, the electrical analysis is performed onwards busway model in order to get the value of ohmic loss which is heat loss from the conductors in the busway. The ohmic loss results will be imported to thermal analysis in order to get the temperature result as well as temperature distribution. First, the direct current loading of the busbar, which neglect the alternating current effects, was considered. Second, the alternating current loading of busbar was used instead of direct current loading. The model of the second approach gives much more accurate result in term of temperature difference. The presented model was validated against temperature measurement on real size busway under electrical loading. The obtained results show that a very good agreement between computed and experimental data. Once the verification of the model is done, the busway configurations setup behavior is studied. Increasing number of feeder affects thermal stress concentration on busway joint.

  11. The Opportunity Analyses of Using Thermosyphons in Cooling Systems of Power Transformers on Thermal Stations

    Directory of Open Access Journals (Sweden)

    Nurpeiis Аtlant

    2016-01-01

    Full Text Available The opportunity analyses of using the thermosyphons as the main elements in the systems of thermal regime supplying has been conducted under the conditions of their usage in power transformers on thermal stations. Mathematical modeling of jointly proceeding processes of conduction, forced convection and phase transitions (evaporation and condensation of coolant in the thermosyphon of rectangular cross section has been carried out. The problem of conjugated conductive-convective heat transfer was formulated in dimensionless variables “vorticity/stream function/temperature” and solved by finite difference method. The effect of the heat flux density supplied to the bottom cover of the thermosyphon from a transformer tank on the temperature drop in the steam channel was shown based on the analysis of numerical simulation results (temperature fields and velocities of steam. The parameters of energy-saturated equipment of thermal stations were found to be controlled by an intensification of heat removal from the top cover surface of the thermosyphon.

  12. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    Science.gov (United States)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-01-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  13. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  14. Electrical and Thermal Performance Analysis for a Highly Concentrating Photovoltaic/Thermal System

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2015-01-01

    Full Text Available A 30 kW highly concentrating photovoltaic/thermal (HCPV/T system has been constructed and tested outdoors. The HCPV/T system consists of 32 modules, each of which consists of point-focus Fresnel lens and triple-junction solar cells with a geometric concentrating ratio of 1090x. The modules are connected to produce both electrical and thermal energy. Performance analysis has been conducted from the viewpoint of thermodynamics. The experimental results show that highest photovoltaic efficiency of 30% and instantaneous thermal efficiency of 30% can be achieved at the same time, which means the total solar energy conversion efficiency of the HCPV/T system is higher than 60%. The photovoltaic efficiency increases with direct irradiance when the direct irradiance is below 580 W/m2, but it remains nearly unchanged when the direct irradiation is higher than 580 W/m2. The instantaneous thermal efficiency decreases during water heating process. However, the electrical performance of the system is not affected obviously by water temperature. Highest exergetic efficiency of 35.4% can be produced by the HCPV/T system. The exergetic efficiency is mainly affected by irradiation level, which is similar to the characteristics of photovoltaic performance.

  15. Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application

    Energy Technology Data Exchange (ETDEWEB)

    Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen; Chu, Peter; Gadh, Rajit; Pota, Hemanshu R.

    2014-07-31

    This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for the cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.

  16. Integrated failure detection and management for the Space Station Freedom external active thermal control system

    Science.gov (United States)

    Mesloh, Nick; Hill, Tim; Kosyk, Kathy

    1993-01-01

    This paper presents the integrated approach toward failure detection, isolation, and recovery/reconfiguration to be used for the Space Station Freedom External Active Thermal Control System (EATCS). The on-board and on-ground diagnostic capabilities of the EATCS are discussed. Time and safety critical features, as well as noncritical failures, and the detection coverage for each provided by existing capabilities are reviewed. The allocation of responsibility between on-board software and ground-based systems, to be shown during ground testing at the Johnson Space Center, is described. Failure isolation capabilities allocated to the ground include some functionality originally found on orbit but moved to the ground to reduce on-board resource requirements. Complex failures requiring the analysis of multiple external variables, such as environmental conditions, heat loads, or station attitude, are also allocated to ground personnel.

  17. Electric field effects in combustion with non-thermal plasma

    Science.gov (United States)

    Casey, Tiernan Albert

    Chemically reacting zones such as flames act as sources of charged species and can thus be considered as weakly-ionized plasmas. As such, the action of an externally applied electric field has the potential to affect the dynamics of reaction zones by enhancing transport, altering the local chemical composition, activating reaction pathways, and by providing additional thermal energy through the interaction of electrons with neutral molecules. To investigate these effects, one-dimensional simulations of reacting flows are performed including the treatment of charged species transport and non-thermal electron chemistry using a modified reacting fluid solver. A particular area of interest is that of plasma assisted ignition, which is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields by applied voltages across the domain, resulting in non-thermal behavior of the electron sub-fluid formed during the discharge. Strong electric fields cause charged species to be rapidly transported from the ignition zone across the domain in opposite directions as charge fronts, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect. This phenomenon results in an increase in the energy of the electrons in the fresh mixture with increasing time, accelerating electron impact dissociation processes. A semi-analytic model to represent this dynamic electrode effect is constructed to highlight the relative simplicity of the electrodynamic problem admitted by the far more detailed chemistry and transport. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame's preheat zone. The effect of nanosecond pulses are to

  18. Leaching study of trace elements from coal ashes: A case study of Bokaro Thermal Power Station "B".

    Science.gov (United States)

    Singh, Bihari; Kumar, Sanjay; Kumar, Madanjeet

    2004-07-01

    Electricity generation has been increasing at a rapid rate due to rapid industrialization and changing life styles. In our Country coal is the major source of energy since India has vast reserves of thermal power grade coal. Nearly every naturally occurring element is likely to be present in coal and these get entertained in the resultant coal ash. Indian coals contain high ash coupled with low calorific value and consequently resulting huge amount of coal ashes. This ash accumulates in on site piles and ponds thereby resulting in serious environmental problems particularly trace elements contamination of ground and surface waters. This study envisages the environmental assessment of coal ashes from Bokaro Thermal Power Station- Leaching study of coal ashes was made through analysis of leachates from open percolation leaching column experiments over a period of 300 days. Trace elements were observed within the regulatory limits. Many of the trace elements evaluated viz. Ni., Co, Se, Al, As, B, Ba, Sb, Hg, were observed at below detection limits of AAS. Na, K, Ca, Fe, Pb, Cd and other dissolved ions leached at significant concentration levels. This study suggests low cost high volume utilisation of bottom ash as fill material for reclaiming surrounding abandoned mined out areas in an environmentally acceptable manner.

  19. A review on battery thermal management in electric vehicle application

    Science.gov (United States)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  20. Structural, thermal, and electrical properties of CrSi2

    Science.gov (United States)

    Dasgupta, T.; Etourneau, J.; Chevalier, B.; Matar, S. F.; Umarji, A. M.

    2008-06-01

    Stoichiometric CrSi2 was prepared by arc melting and compacted by uniaxial hot pressing for property measurements. The crystal structure of CrSi2 was investigated using the powder x-ray diffraction method. From the Rietveld refinement, the lattice parameters were found to be a =4.42757 (7) and c =6.36804 (11)Å, respectively. The thermal expansion measurement revealed an anisotropic expansion in the temperature range from room temperature 800K with αa=14.58×10-6/K, αc=7.51×10-6/K, and αV=12.05×10-6/K. The volumetric thermal expansion coefficient shows an anomalous decrease in the temperature range of 450-600K. The measured electrical resistivity ρ and thermoelectric power S have similar trends with a maxima around 550K. Thermal conductivity measurements show a monotonic decrease with increasing temperature from a room temperature value of 10Wm-1K-1. The ZT values increase with temperature and have a maximum value of 0.18 in the temperature range studied. An analysis of the electronic band structure is provided.

  1. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  2. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...... power ancillary service to the overhead power system. In that sense, when the active power is not being extracted from the grid, FESS provides the power required to sustain the continuous charging process of PEV battery. A key characteristic of the whole control system is that it is able to work without...

  3. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers....... Distributed DC-bus signaling (DBS) and method resistive virtual impedance are employed in the power coordination of grid and flywheel converters, and a centralized secondary controller generates DC voltage correction term to adjust the local voltage set point. The control system is able to realize the power...

  4. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  5. About Utilization Efficiency Evaluation of Gas-Expansion and Generator Units at Thermal Power Stations

    Directory of Open Access Journals (Sweden)

    S. A. Kachan

    2007-01-01

    Full Text Available The paper considers methods for determination of gas-expansion and generator unit indices when they are applied at a thermal power station. It is shown, that while relating the effect of additional power-and-heat generation output due to heat taking-off from steam turbines to gas-expansion and generator unit to the operation of this unit a specific fuel consumption of power supply from gas-expansion and generator unit can be lower than fuel equivalent of kilowatt-hour.

  6. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    Science.gov (United States)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  7. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management

    Science.gov (United States)

    Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James

    2017-08-01

    It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.

  8. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  9. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  10. Improved grid operation through power smoothing control strategies utilizing dedicated energy storage at an electric vehicle charging station

    DEFF Research Database (Denmark)

    Martinsen, Thomas; Holjevac, Ninoslav; Bremdal, Bernt A.

    2016-01-01

    This paper addresses the principal service aspects for electric vehicles (EV), as well as issues related to energy storage design, charging station integration into power system and load management issues. It builds on the research conducted in the Flexible Electric Vehicle Charging Infrastructure...

  11. Diversion at small hydro-electric power stations; Forbislipping ved smaa vannkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Noren, Knut E.; Elstad, Ivar K.

    2008-07-01

    At a shut down caused by, for instance, a power shortage at a power station, the electric aggregate will stop and there will be a quick change in the flow of water downstream of the power station. This situation gives undesirable environmental effects, especially with regards to fish. The fish must have the opportunity to withdraw to deep pools, to avoid running aground. The goal of this report is to present good ideas to design diversion stations that reduce the environmental effects to an acceptable level, which is especially important in anadromous waterways, simultaneously not costing too much. The demand for diversion should be clarified with the authorities as soon as possible. By taking into account the power stations dimensions and foundation needs early on in the planning phase, the cost will be minimized. As a rule NVE currently demand that a diversion installation must have a capacity of 50 % of the turbines full flow of water. This is to avoid large changes in the flow of water downstream of the power station. In addition to the demand on the maximum capacity of the diversion installation, there should also be posed a demand that the calculation of the rate of flow should be kept within 50 % of the total rate of flow before the shut down. This is possible to achieve with the help of software control without the operational drawbacks caused by slow regulation being too great. Calculations carried out show that also with loading operation after shut down should have a relatively slow rate of flow. It is recommended that the short term rate of flow increase should be no more than 50 % of the rate of flow before the shut down or the stationary rate of flow before the turbines are started. To ensure the diversion with loading operation at small power stations it is recommended to use standard valves as much as possible, possibly with an energy dissipater that often can be manufactured locally. The installation should be arranged in such a way that the

  12. Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungyong; Lim, Soonho [Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2017-06-15

    In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

  13. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    Science.gov (United States)

    Alwan, Faris M; Baharum, Adam; Hassan, Geehan S

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  14. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    Directory of Open Access Journals (Sweden)

    Faris M Alwan

    Full Text Available The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  15. Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation

    Directory of Open Access Journals (Sweden)

    Azhar Ul-Haq

    2016-12-01

    Full Text Available This paper is aimed at modelling of a distinct smart charging station for electric vehicles (EVs that is suitable for DC quick EV charging while ensuring minimum stress on the power grid. Operation of the charging station is managed in such a way that it is either supplied by photovoltaic (PV power or the power grid, and the vehicle-to-grid (V2G is also implemented for improving the stability of the grid during peak load hours. The PV interfaced DC/DC converter and grid interfaced DC/AC bidirectional converter share a DC bus. A smooth transition of one operating mode to another demonstrates the effectiveness of the employed control strategy. Modelling and control of the different components are explained and are implemented in Simulink. Simulations illustrate the feasible behaviour of the charging station under all operating modes in terms of the four-way interaction among PV, EVs and the grid along with V2G operation. Additionally, a business model is discussed with comprehensive analysis of cost estimation for the deployment of charging facilities in a residential area. It has been recognized that EVs bring new opportunities in terms of providing regulation services and consumption flexibility by varying the recharging power at a certain time instant. The paper also discusses the potential financial incentives required to inspire EV owners for active participation in the demand response mechanism.

  16. Thermal, structural and electrical studies of bismuth zinc borate glasses

    Science.gov (United States)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.

    2013-06-01

    Bismuth Zinc Borate glasses with compositions xBi2O3-30ZnO-(70 - x)B2O3 (where x = 30, 35, 40 and 45 mol %) have been prepared by melt quenching method. These glasses were characterized by X-ray diffraction (XRD), Differential Thermal Analysis (DTA), Fourier Transform Infrared Spectrometer (FTIR) and Broad Band Dielectric Spectrometer (BDS). DTA and FTIR analysis reveals that Non-Bridging Oxygens (NBOs) increase with increase of bismuth content in the glass. Electrical data have been analyzed in the framework of impedance and modulus formalisms. The activation energy for dc conductivity decreases with increase of bismuth concentration. The imaginary part of modulus spectra has been fitted to non-exponential Kohlrausch-Williams-Watts (KWW) function and the value of the stretched exponent (β) is found to be almost independent of temperature but slightly dependent on composition.

  17. Electrical and thermal control of magnetic exchange interactions.

    Science.gov (United States)

    Fransson, Jonas; Ren, Jie; Zhu, Jian-Xin

    2014-12-19

    We investigate the far-from-equilibrium nature of magnetic anisotropy and exchange interactions between molecular magnets embedded in a tunnel junction. By mapping to an effective spin model, these magnetic interactions can be divided into three types: isotropic Heisenberg, anisotropic Ising, and anisotropic Dzyaloshinski-Moriya contributions, which are attributed to the background nonequilibrium electronic structures. We further demonstrate that both the magnetic self- and exchange interactions can be controlled either electrically by gating and tuning the voltage bias, or thermally by adjusting the temperature bias. We show that the Heisenberg and Ising interactions scale linearly, while the Dzyaloshinski-Moriya interaction scales quadratically, with the molecule-lead coupling strength. The interactions scale linearly with the effective spin polarizations of the leads and the molecular coherence. Our results pave a way for smart control of magnetic exchange interactions at atomic and molecular levels.

  18. Thermal and electrical comparison of different joining techniques

    Science.gov (United States)

    Szałapak, J.; Kiełbasiński, K.; Krzemiński, J.; Pawłowski, R.; Jakubowska, M.

    2016-09-01

    After the enforcement of Restriction of Hazardous Substances Directive, one of the biggest problems in electronics is finding a substitution for led solders. Meanwhile, working conditions for the electronics are tougher and tougher - the temperatures the joints have to withstand can be much higher than working temperatures of the soft solders. In current article, the authors present the Low Temperature Joining Technique (LTJT) with the use of pastes based on the mixture of silver nanoparticles and silver microflakes. The authors also show the technology of joining, justify their sintering parameters selection and compare their silver joints with Pb solder and adhesive. The joints prepared with pastes containing silver nanoparticles have much better electrical and thermal properties than the ones made with other techniques.

  19. Feasibility assessment of a solar-powered charging station for electric vehicles in the North Central region of Bulgaria

    Directory of Open Access Journals (Sweden)

    Ilieva Liliya Mihaylova

    2016-01-01

    Full Text Available The paper discusses the topical issue related to the prospects of widespread deployment of electric vehicles and their associated infrastructure in Bulgaria. The main problems hindering the development of electric vehicle transport are summarized and the current status of charging infrastructure in the country is discussed. An approach is proposed for analysis and evaluation of the financial feasibility of investment in a solar-powered charging station for electric vehicles in North Central region of Bulgaria.

  20. Deep geothermal sources for electricity production in Slovakia: thermal conditions

    Science.gov (United States)

    Majcin, Dušan; Král, Miroslav; Bilčík, Dušan; Šujan, Martin; Vranovská, Andrea

    2017-03-01

    The contribution presents the results of geothermic interpretation approaches applied to measured geothermal data and is focused to determination of the thermal conditions both for application of classic hydrothermal sources exploitation and specialized EGS technologies for electricity production in the region of Slovakia and adjacent areas. Primarily, the heat flow density data and the temperature distribution measurements in boreholes were interpreted by classic 1D interpolation and extrapolation methods. New terrestrial heat flow density map for the studied area was constructed using the values determined in boreholes, their interpretations, the newest outcomes of geothermal modelling methods based both on steady-state and transient heat transfer approaches, and on other recently gained geoscientific knowledge. Thereafter, we constructed the maps of temperature field distribution for selected depth levels up to 6000 m below the surface and the final map of the isothermal surface depths for the reservoir temperature of 160° C. This final map serves for the appraisal of the effective application of the binary cycle power plant technology in Slovakia in terms of thermal conditions.

  1. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  2. A solar thermal electric power plant for small communities

    Science.gov (United States)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  3. A Study of Solar Thermal Propulsion System Enhancement via Thermal Storage and Thermal-electric Conversion

    Science.gov (United States)

    2010-03-24

    material. Molybdenum has a thermal conductivity of 138 W/mK, while rheniums is much lower at 39.6 W/mK 2 . Zirconium Boride (ZrB2) and Hafnium Boride ...14,000 Iridium 77 2739 213 147 $42,000 Niobium 41 2750 323 53.7 $170 Molybdenum 42 2896 390 138 $100 The materials listed in Table 1 do not...this paper, several materials with melting points above 3000 K are boride compounds and several of those that are not borides contain elements which

  4. Assessment of the once-through cooling alternative for central steam-electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, R. A.; Ditmars, J. D.

    1978-12-01

    The efficacy of the disposal of waste heat from steam-electric power generation by means of once-through cooling systems was examined in the context of the physical aspects of water quality standards and guidelines for thermal discharges. Typical thermal standards for each of the four classes of water bodies (rivers, lakes, estuaries, and coastal waters) were identified. The mixing and dilution characteristics of various discharge modes ranging from simple, shoreline surface discharges to long, submerged multiport diffusers were examined in terms of the results of prototype measurements, analytical model predictions, and physical model studies. General guidelines were produced that indicate, for a given plant capacity, a given type of receiving water body, and a given discharge mode, the likelihood that once-through cooling can be effected within the restrictions of typical thermal standards. In general, it was found that shoreline surface discharges would not be adequate for large power plants (greater than or equal to 500 MW) at estuarine and marine coastal sites, would be marginally adequate at lake sites, and would be acceptable only at river sites with large currents and river discharges. Submerged multiport diffusers were found to provide the greatest likelihood of meeting thermal standards in all receiving water environments.

  5. Program for the thermal design and simulation of the operation of a steam condenser for thermal and nuclear power stations and its application to the condenser at the Cofrentes nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bartual, R.; Pallares Huici, E.

    A program is being developed for an IBM-PC or AT computer based on a calculation system which synthesises the heat transfer process which takes place in the steam condensors at conventional thermal power stations. The program incorporates a useful tool capable of representing characteristic operating curves for a given condensor. Describes its application to the steam condenser at the Cofrentes nuclear power station. 4 refs., 5 tabs., 8 figs.

  6. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    Science.gov (United States)

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  7. LIGHTWEIGHT CONCRETES WITH FLY–ASH OF PRYDNIPROVSK THERMAL POWER STATION

    Directory of Open Access Journals (Sweden)

    M. I. Netesa

    2013-08-01

    Full Text Available Purpose. Determination of conformities to law of influence of expense of components of easy concretes, which turn out on the basis of local afterproducts of industry, on their basic properties under conditions of enhanceable efficiency of the use of cement. Methodology. Experimental studies on optimization of structures and properties of concrete were carried out with use of mathematical planning experiments methods. All experiments were carried out on orthogonal design with three variables. Cement, water and additives PLKP-2 consumption were taken as varied factors. Findings. Vast experimental studies on determination of rational compositions of concrete mixtures were conducted with the use as fillers of granulated slag from iron and steel plant named after Petrovskiy and Dnepr sand, as binding agent Krivoy Rog portland-cement II/B-Ш-400, as filler fly-ash of Pridneprovsk Thermal Power Station. Efficiency coefficient of cement use was adopted as basic criterion of concrete composition rationality, it is determined on the relation of the attained durability per unit weight of used cement. For greater efficiency coefficient of cement use regularity of rational grain composition of components previously obtained was adopted, it is provided at a ratio of a large fraction consumption to medium and small 52:23:25, and their sizes are approximately 100:10:1. Experimental studies with use of mathematical planning experiments method were carried out. By results of their processing isofields were constructed according to the strength and effectiveness of the use of cement ratio of the studied factors. Originality. By strength comparative tests of hardened concrete with various local secondary resources, modified with complex plasticizer PLKP-2 additive, it was found that lightweight concrete with the density of 1700…1800 kg/m3 and concrete compressive strength from 5 to 20 MPa on the basis of granulated slag from the iron and steel plant named after

  8. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  9. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  10. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil

    Science.gov (United States)

    Wang, Jie; Zhang, Xiaopei; Du, Lizhi

    2017-10-01

    Thermal conductivity k (Wm- 1 K- 1) and electrical resistivity ρ (Ω·m) depend on common parameters such as grain size, dry density and saturation, allowing the finding of a relationship between both parameters. In this paper, we found a linear quantitative formula between thermal conductivity and electrical resistivity of soil. To accomplish this, we measured the thermal conductivity and electrical resistivity of 57 soil samples in the laboratory; samples included 8 reconstructed soils from the Changchun area (clay, silt, and sand) with approximately 7 different saturation levels. A linear relationship between thermal conductivity and electrical resistivity was found excluding the parameter of soil saturation, and the linear model was validated with undisturbed soils in Changchun area. To fully use this relationship (e.g., by imaging the thermal conductivity of soils with electrical resistivity tomography), further measurements with different soils are needed.

  11. Probabilistic modeling of nodal electric vehicle load due to fast charging stations

    DEFF Research Database (Denmark)

    Tang, Difei; Wang, Peng; Wu, Qiuwei

    2016-01-01

    In order to reduce greenhouse gas emission and fossil fuel dependence, Electric Vehicle (EV) has drawn increasing attention due to its zero emission and high efficiency. However, new problems such as range anxiety, long charging duration and high charging power may threaten the safe and efficient...... operation of both traffic and power systems. This paper proposes a probabilistic approach to model the nodal EV load at fast charging stations in integrated power and transport systems. Following the introduction of the spatial-temporal model of moving EV loads, we extended the model by taking fast charging......-temporal varying arrival and service rates. The time-varying nodal EV loads are obtained by the number of operating fast chargers at each node of the power system. System studies demonstrate that the combination of AC normal and DC charging may share the EV charging demand and alleviate the impact to power system...

  12. Modular, thermal bus-to-radiator integral heat exchanger design for Space Station Freedom

    Science.gov (United States)

    Chambliss, Joe; Ewert, Michael

    1990-01-01

    The baseline concept is introduced for the 'integral heat exchanger' (IHX) which is the interface of the two-phase thermal bus with the heat-rejecting radiator panels. A direct bus-to-radiator heat-pipe integral connection replaces the present interface hardware to reduce the weight and complexity of the heat-exchange mechanism. The IHX is presented in detail and compared to the baseline system assuming certain values for heat rejection, mass per unit width, condenser capacity, contact conductance, and assembly mass. The spreadsheet comparison can be used to examine a variety of parameters such as radiator length and configuration. The IHX is shown to permit the reduction of panel size and system mass in response to better conductance and packaging efficiency. The IHX is found to be a suitable heat-rejection system for the Space Station Freedom because it uses present technology and eliminates the interface mechanisms.

  13. Operation and maintenance of thermal power stations best practices and health monitoring

    CERN Document Server

    Chanda, Pradip

    2016-01-01

    This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control. .

  14. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    Science.gov (United States)

    Sun, K.; Zhang, Z. D.; Qian, L.; Dang, F.; Zhang, X. H.; Fan, R. H.

    2016-02-01

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermal properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.

  15. Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-11-01

    Full Text Available The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

  16. Exposure of Polymer Film Thermal Control Materials on the Materials International Space Station Experiment (MISSE)

    Science.gov (United States)

    Dever, Joyce; Miller, Sharon; Messer, Russell; Sechkar, Edward; Tollis, Greg

    2002-01-01

    Seventy-nine samples of polymer film thermal control (PFTC) materials have been provided by the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) for exposure to the low Earth orbit environment on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment (MISSE). MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA. This paper will describe background, objectives, and configurations for the GRC PFTC samples for MISSE. These samples include polyimides, fluorinated polyimides, and Teflon fluorinated ethylene propylene (FEP) with and without second-surface metallizing layers and/or surface coatings. Also included are polyphenylene benzobisoxazole (PBO) and a polyarylene ether benzimidazole (TOR-LM). On August 16, 2001, astronauts installed passive experiment carriers (PECs) on the exterior of the ISS in which were located twenty-eight of the GRC PFTC samples for 1-year space exposure. MISSE PECs for 3-year exposure, which will contain fifty-one GRC PFTC samples, will be installed on the ISS at a later date. Once returned from the ISS, MISSE GRC PFTC samples will be examined for changes in optical and mechanical properties and atomic oxygen (AO) erosion. Additional sapphire witness samples located on the AO exposed trays will be examined for deposition of contaminants.

  17. About Economy of Fuel at Thermal Power Stations due to Optimization of Utilization Diagram of Power-Generating Equipment

    Directory of Open Access Journals (Sweden)

    M. V. Svechko

    2008-01-01

    Full Text Available Problems of rational fuel utilization becomes more and more significant especially for thermal power stations (TPS. Thermal power stations have complicated starting-up diagrams and utilization modes of their technological equipment. Method of diagram optimization of TPS equipment utilization modes has been developed. The method is based on computer analytical model with application of spline-approximation of power equipment characteristics. The method allows to economize fuel consumption at a rate of 15-20 % with accuracy of the predicted calculation not more than 0.25 %.

  18. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, J. Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Doug [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mihalic, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  19. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites

    OpenAIRE

    Park, Wonjung; Hu, Jiuning; Jauregui, Luis A.; Ruan, Xiulin; Chen, Yong P.

    2014-01-01

    The author reports an experimental study of electrical and thermal transport in reduced graphene oxide (RGO)/polystyrene (PS) composites. The electrical conductivity (sigma) of RGO/PS composites with different RGO concentrations at room temperature shows a percolation behavior with the percolation threshold of similar to 0.25 vol. %. Their temperature-dependent electrical conductivity follows Efros-Shklovskii variable range hopping conduction in the temperature range of 30-300K. The thermal c...

  20. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.

  1. 77 FR 11598 - Thermal Overload Protection for Electric Motors on Motor-Operated Valves

    Science.gov (United States)

    2012-02-27

    ... COMMISSION Thermal Overload Protection for Electric Motors on Motor-Operated Valves AGENCY: Nuclear... for Electric Motors on Motor-Operated Valves.'' This regulatory guide describes a method acceptable to... devices that are integral with the motor starter for electric motors on motor-operated valves. ADDRESSES...

  2. Investigation of Thermal and Electrical Properties for Conductive Polymer Composites

    Science.gov (United States)

    Juwhari, Hassan K.; Abuobaid, Ahmad; Zihlif, Awwad M.; Elimat, Ziad M.

    2017-10-01

    This study addresses the effects of temperature ranging from 300 K to 400 K on thermal ( κ) and electrical ( σ) conductivities, and Lorenz number ( L) for different conductive polymeric composites (CPCs), as tailoring the ratios between both conductivities of the composites can be influential in the design optimization of certain thermo-electronic devices. Both κ and σ were found to have either a linear or a nonlinear (2nd and 3rd degree polynomial function) increasing behavior with increased temperatures, depending on the conduction mechanism occurring in the composite systems studied. Temperature-dependent behavior of L tends to show decreasing trends above 300 K, where at 300 K the highest and the lowest values were found to be 3 × 103 W Ω/K2 for CPCs containing iron particles and 3 × 10-2 W Ω/K2 for CPCs-containing carbon fibers respectively. Overall, temperature-dependent behavior of κ/ σ and L can be controlled by heterogeneous structures produced via mechanical-molding-compression. These structures are mainly responsible for energy-transfer processes or transport properties that take place by electrons and phonons in the CPCs' bulks. Hence, the outcome is considered significant in the development process of high performing materials for the thermo-electronic industry.

  3. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  4. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    Science.gov (United States)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  5. Determining an energy-optimal thermal management strategy for electric driven vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Andre; Probst, Tobias; Puente Leon, Fernando [Karlsruher Institut fuer Technology (KIT), Karlsruhe (Germany). Inst. of Industrial Information Technology (IIIT)

    2012-11-01

    In electric, hybrid electric and fuel cell vehicles, thermal management may have a significant impact on vehicle range. Therefore, optimal thermal management strategies are required. In this paper a method for determining an energy-optimal control strategy for thermal power generation in electric driven vehicles is presented considering all controlled devices (pumps, valves, fans, and the like) as well as influences like ambient temperature, vehicle speed, motor and battery and cooling cycle temperatures. The method is designed to be generic to increase the thermal management development process speed and to achieve the maximal energy reduction for any electric driven vehicle (e.g., by waste heat utilization). Based on simulations of a prototype electric vehicle with an advanced cooling cycle structure, the potential of the method is shown. (orig.)

  6. Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal (PVT collectors combine photovoltaic modules and solar thermal collectors, forming a single device that receives solar radiation and produces electricity and heat simultaneously. PVT collectors can produce more energy per unit surface area than side-by-side PV modules and solar thermal collectors. There are two types of liquid-type flat-plate PVT collectors, depending on the existence of glass cover over PV module: glass-covered (glazed PVT collectors, which produce relatively more thermal energy but have lower electrical yield, and uncovered (unglazed PVT collectors, which have relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of liquid-type PVT collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT collectors were measured in outdoor conditions, and the results were compared. The results show that the thermal efficiency of the glazed PVT collector is higher than that of the unglazed PVT collector, but the unglazed collector had higher electrical efficiency than the glazed collector. The overall energy performance of the collectors was compared by combining the values of the average thermal and electrical efficiency.

  7. Thermal and electrical properties of thermal-grease-insulated REBCO superconducting coils with respect to winding tension

    Science.gov (United States)

    Song, Jung-Bin; Choi, Yoon Hyuck; Yang, Dong Gyu; Kim, Young-Gyun; Kim, Seong-Gyeom; Choi, Yeon Suk; Lee, Haigun

    2017-09-01

    This study investigates the thermal and electrical characteristics of a silicon-based grease insulation (GI) GdBCO coil with respect to the winding tension through charge, sudden discharge, and over-current tests. Charge and sudden discharge test results demonstrate that the charging/discharging delay time increases as the winding tension increases; this is because the characteristic resistance of the coil decreases due to the reduced contact resistance. The over-current test results confirm that the thermal/electrical stabilities of the GI coil are considerably enhanced with an increased winding tension resulting from improved thermal contact and the decrease in the electrical contact resistance between the turn-to-turn layers of the coil. Thus, as the winding tension increases, the charging/discharging rates decrease whereas the thermal/electrical stabilities improve. Overall, selecting the appropriate winding tension for a GI coil is critical for achieving thermal/electrical stabilities, as well as ameliorating the charging/discharging delay phenomenon generally observed in a no-insulation coil.

  8. Provision of Flexible Load Control by Multi-Flywheel-Energy-Storage System in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Andrade, Fabio

    2015-01-01

    Electrical vehicle (EV) chargers are going to occupy a considerable portion of total energy consumption in the future smart grid. Fast charging stations (FCS), as the most demanding representatives of charging infrastructure, will be requested to provide some ancillary services to the power system...

  9. 77 FR 24539 - Virginia Electric and Power Company; Surry Power Station Units 1 and 2; Independent Spent Fuel...

    Science.gov (United States)

    2012-04-24

    ... significantly impact the quality of the human environment. The NRC staff concludes that there are no changes... of the environment. The Environmental Assessment and the Finding of No Significant Impact are... COMMISSION Virginia Electric and Power Company; Surry Power Station Units 1 and 2; Independent Spent Fuel...

  10. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  11. Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations

    Directory of Open Access Journals (Sweden)

    Lixing Chen

    2016-09-01

    Full Text Available To solve the problem, because of which conventional quick-charging strategies (CQCS cannot meet the requirements of quick-charging for multiple types of electric vehicles (EV on highways where vehicle inflow is excessive, this paper proposed a new quick-charging strategy (NQCS for EVs: on the premise of not affecting those EVs being charged, the remaining power of the quick-charging pile with multiple power output interfaces is used to provide a synchronous charging service for EVs waiting in the queue. To verify the effectiveness of this strategy, a power distribution model of charging pile and a queuing model of charging station (CS were constructed. In addition, based on an actual highway service area where vehicle inflow is excessive during the simulation period (0:00–24:00, charging situations of CQCS and NQCS were respectively simulated in a charging station (CS, with different number of chargers, by basic queuing algorithm and an improved queuing algorithm. The simulation results showed that when the relative EV inflow is excessive, compared to CQCS, NQCS not only can reduce user waiting time, charging time, and stay time, but also can improve the utilisation rate of charging infrastructure and service capacity of CS and reduce the queue length of CS. At the same time, NQCS can reduce the impact on the power grid. In addition, in NQCS, the on-demand power distribution method is more efficient than the average power distribution method. Therefore, NQCS is more suitable for quick-charging for multiple types of EVs on highways where vehicle inflow is excessive.

  12. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    Science.gov (United States)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-11-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  13. Ergonomics work stations decreases the health impairment and saves electrical energy at the woodworking workshop in Bali, Indonesia.

    Science.gov (United States)

    Sudiajeng, Lilik; Adiputra, Nyoman; Leibbrandt, Richard

    2012-12-01

    This research was conducted to assess the positive effect of the ergonomics work station on the health impairment and electrical energy usage at the woodworking workshop in Bali, Indonesia. Woodworking workshops are dangerous, particularly when they are used improperly. Workers are exposed to health hazards that cause health impairment and inefficiencies in their work conditions. A preliminary study at a woodworking workshop at the Bali State Polytechnic showed that the work station was not suitable to body size of the participants and caused awkward postures. In addition, there was also an inappropriate physical work environment. Both inappropriate work station and physical work environment caused participants to be less active and motivated. This paper reports on an experimental study into the effects of an ergonomic intervention at this workshop. The participants were 2 groups of male students with 10 participants in each group. The first group performed the task with the original work station as a control group, while the second group performed the task with the new work station. The study found a significant difference between groups (p ergonomics intervention on the work station decreased the working heart rate (16.7%), the total score of musculoskeletal disorders (17.3%), and the total score of psychological fatigue (21.5%). Furthermore, it also decreased the electrical energy usage (38.7%). This shows that an ergonomics intervention on work station decreased the health impairment and saved electrical energy usage. It also protected the workers from woodworking hazards and allowed participants to perform their tasks in healthy, safe, convenient and efficient work conditions.

  14. Comprehensive investigation of the metal in drums of boilers at thermal power stations

    Science.gov (United States)

    Ozhigov, L. S.; Mitrofanov, A. S.; Tolstolutskaya, G. D.; Vasilenko, R. L.; Rudenko, A. G.; Ruzhytskyi, V. V.; Ribalchenko, N. D.; Shramchenko, S. V.

    2017-05-01

    A comparative investigation of the metal of drums of two TP-100 boilers at the Starobeshevskaya and the Lugansk thermal power stations (TPS) was performed. Their operation time was approximately 300000 hours; the shell of one drum was ruptured during a hydraulic test, and the other drum is in operation. According to the results of the technical diagnostics and a strength analysis, both drums comply with the applicable regulatory requirements. The objects of the investigation were fragments of the ruptured drum and a "plug" cut out of the shell during a scheduled inspection. The investigation was carried out by microscopic metallography methods and the scanning electron microscopy technique. Mechanical tests of metal specimens were performed, and the hydrogen content in these specimens was measured. Prior to the material research, the metal was examined using a magnetic memory method. The investigation yielded specifics of the metal microstructure, mechanical properties, and fracture patterns of the metal specimens at various temperatures. An investigation performed by the method of thermal-desorption mass spectrometry revealed no considerable difference in the hydrogen content in the metal of both drums, thereby excluding the effect of hydrogenation in analyzing the rupture causes. It was established that the drum at the Starobeshevskaya TPS had been damaged due to its low impact strength at room temperature and high brittle-ductile transition point. Comparison of the metallographic study data with the results obtained using the magnetic memory method suggests that the fracture was caused by local formation of the Widmannstatten pattern at points where accessories are welded to the shell. The prospects are demonstrated of the comprehensive approach to nondestructive examination (NDE) of TPS drums using the magnetic memory technique and metallographic methods.

  15. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  16. Stackelberg Game Model of Wind Farm and Electric Vehicle Battery Switch Station

    Science.gov (United States)

    Jiang, Zhe; Li, Zhimin; Li, Wenbo; Wang, Mingqiang; Wang, Mengxia

    2017-05-01

    In this paper, a cooperation method between wind farm and Electric vehicle battery switch station (EVBSS) was proposed. In the pursuit of maximizing their own benefits, the cooperation between wind farm and EVBSS was formulated as a Stackelberg game model by treating them as decision makers in different status. As the leader, wind farm will determine the charging/discharging price to induce the charging and discharging behavior of EVBSS reasonably. Through peak load shifting, wind farm could increase its profits by selling more wind power to the power grid during time interval with a higher purchase price. As the follower, EVBSS will charge or discharge according to the price determined by wind farm. Through optimizing the charging /discharging strategy, EVBSS will try to charge with a lower price and discharge with a higher price in order to increase its profits. Since the possible charging /discharging strategy of EVBSS is known, the wind farm will take the strategy into consideration while deciding the charging /discharging price, and will adjust the price accordingly to increase its profits. The case study proved that the proposed cooperation method and model were feasible and effective.

  17. Database Development for Electrical, Electronic, and Electromechanical (EEE) Parts for the International Space Station Alpha

    Science.gov (United States)

    Wassil-Grimm, Andrew D.

    1997-01-01

    More effective electronic communication processes are needed to transfer contractor and international partner data into NASA and prime contractor baseline database systems. It is estimated that the International Space Station Alpha (ISSA) parts database will contain up to one million parts each of which may require database capabilities for approximately one thousand bytes of data for each part. The resulting gigabyte database must provide easy access to users who will be preparing multiple analyses and reports in order to verify as-designed, as-built, launch, on-orbit, and return configurations for up to 45 missions associated with the construction of the ISSA. Additionally, Internet access to this data base is strongly indicated to allow multiple user access from clients located in many foreign countries. This summer's project involved familiarization and evaluation of the ISSA Electrical, Electronic, and Electromechanical (EEE) Parts data and the process of electronically managing these data. Particular attention was devoted to improving the interfaces among the many elements of the ISSA information system and its global customers and suppliers. Additionally, prototype queries were developed to facilitate the identification of data changes in the data base, verifications that the designs used only approved parts, and certifications that the flight hardware containing EEE parts was ready for flight. This project also resulted in specific recommendations to NASA for further development in the area of EEE parts database development and usage.

  18. Occupational exposure to magnetic fields from transformer stations and electric enclosures in Turkey.

    Science.gov (United States)

    Çam, Semra Tepe; Fırlarer, Arzu; Özden, Semih; Canseven, Ayşe G; Seyhan, Nesrin

    2011-06-01

    We aimed to provide a systematic evaluation of magnetic field (MF) exposure of staff working in the offices located above or close to transformer stations (TS) and electric enclosures (EE). Occupational short-term "spot" measurements with Narda EFA-300 and isotropic magnetic field probe were carried out in two National Banks and one Industrial Company having more than 500 employees. Extremely low-frequency (ELF) MFs up to several tens of μT were measured in the mentioned working environments. 25% of the measured MFs were found less than 0.3 μT, the background exposure level that staff receive at home, 75% were above 0.3 μT with the highest value of 6.8 μT. The mean and median personal exposures were calculated to be 1.19 μT and 0.56 μT, respectively. Most of the staff (83%) is under risk based on epidemiological studies that reported a statistically significant association between risk of leukemia and averaged magnetic fields of 0.2 μT or over. Results showed that risk evaluation should be considered to minimize the possibility of the workers being harmed due to exposure to work-related electromagnetic sources.

  19. Nova Scotia Power shows how to generate electricity from ocean. [Annapolis Tidal Generating station

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The first tidal power plant in North America has completed a successful first year of operation, reports Nova Scotia Power Corp., the utility that built it and operates it. Rated at 19 MW, it's the largest tidal generating plant in the world, but the Canadians consider it a pilot-scale installation built to test the feasibility of harnessing the unusually large tides in the Bay of Fundy on Canada's east coast. Called the Annapolis Tidal Generating station it's located on a narrow neck of land separating the Annapolis River from the Bay of Fundy. The tides there range from 15 to 25 feet, averaging 21 feet. In the average tidal cycle the plant generates electricity for about six hours, sluices water into the reservoir for about three hours, and is at a standstill for about three hours. During the first year of operation the plant produced 25 million kWh. Reported availability was 99%. It missed only eight tides out of a possible 728.

  20. Flexible graphene-graphene composites of superior thermal and electrical transport properties.

    Science.gov (United States)

    Hou, Zhi-Ling; Song, Wei-Li; Wang, Ping; Meziani, Mohammed J; Kong, Chang Yi; Anderson, Ankoma; Maimaiti, Halidan; LeCroy, Gregory E; Qian, Haijun; Sun, Ya-Ping

    2014-09-10

    Graphene is known for high thermal and electrical conductivities. In the preparation of neat carbon materials based on graphene, a common approach has been the use of well-exfoliated graphene oxides (GOs) as the precursor, followed by conversion to reduced GOs (rGOs). However, rGOs are more suitable for the targeted high electrical conductivity achievable through percolation but considerably less effective in terms of efficient thermal transport dictated by phonon progression. In this work, neat carbon films were fabricated directly from few-layer graphene sheets, avoiding rGOs completely. These essentially graphene-graphene composites were of a metal-like appearance and mechanically flexible, exhibiting superior thermal and electrical transport properties. The observed thermal and electrical conductivities are higher than 220 W/m · K and 85000 S/m, respectively. Some issues in the further development of these mechanically flexible graphene-graphene nanocomposite materials are discussed and so are the associated opportunities.

  1. ANALYSIS OF EXCESSIVE HEATING ON THE THERMAL AND ELECTRICAL RESISTANCE OF A POLYMER ELECTROLYTE

    National Research Council Canada - National Science Library

    R. Atan; W. A. N. W. Mohamed

    2012-01-01

    .... An analytical method by which the electrical resistance is evaluated based on the polarisation curve and the thermal resistance from the mass balance, was applied to a 72-cell PEM fuel cell assembly...

  2. Construction and initial operation of the combined solar thermal and electric desiccant cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Mitamura, Teruaki [Faculty of Engineering, Ashikaga Institute of Technology, Ashikaga 326-8558 (Japan); Baba, Seizo [Earth Clean Tohoku Co., Ltd., Sendai 984-0038 (Japan)

    2009-08-15

    This paper reports the constructed combined solar thermal and electric desiccant cooling system - its initial operation and operational procedures. The system, as designed, can be operated during nighttime and daytime. The nighttime operation is for thermal energy storage using the auxiliary electric heater, while the daytime operation is for solar energy collection and desiccant cooling. Ongoing experimental evaluation is being undertaken to observe and determine the long-term performance of the system. (author)

  3. Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces

    Science.gov (United States)

    Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.

    2017-10-01

    The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.

  4. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  5. A study on improvement of electric motor thermal performance using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pan Seok; Lee, Ho Jun; Jung, Won Bong [Hyosung Co., Ltd., Seoul (Korea, Republic of)

    2003-07-01

    As motor performance enhancement by improving electric design has reached its limit and downsizing issue has risen, the importance of thermal design is increasing. In this study, the flow and temperature distribution were reviewed with the help of CFD analysis and this result was compared with the experimental results. Furthermore, parametric analysis with thermal design structure showed that axial duct width but fan capacity is a critical factor to lower the hot spot temperature in electric motor.

  6. Development of new test methods for electric vehicles and charging stations; Entwicklung neuartiger Pruefverfahren fuer Elektrofahrzeuge und Ladesaeulen

    Energy Technology Data Exchange (ETDEWEB)

    Peitz, Michael; Matrose, Claas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. fuer Hochspannungstechnik; Hackmann, Markus [P3 Ingenieurgesellschaft, Aachen (Germany)

    2012-07-01

    With increasing share of electric vehicles in German traffic also their connection on low voltage grid becomes more important due to their charging process. Several concepts are available for the charging operation. One opportunity is conductive charging with cable connection, whereat in public domain often charging stations are used for coupling car, grid and consumer. In general, several normative specifications dealing with connecting electrical components to the grid, but only few are related especially to electric vehicle. However specific requirements concerning the reliability of charging process exits on electric vehicle, because an interruption of the charging process due to grid actions, can't be tolerated if the charging process only restarts due to consumer action. Hence motivated, testing procedures for system emission and immunity against electrical disturbances, especially voltage dips and interruption events, are used and developed on a test center of the Institute for High Voltage Technology (IFHT). In this paper the current state of electric testing methods and research in grid integration of vehicles and charging stations are shown and discussed. (orig.)

  7. About the Territorial Potential of the Construction of Battery-Charging Stations for Autonomous Electric Motor Vehicles in the Regions

    Directory of Open Access Journals (Sweden)

    Shilova Lyubov

    2016-01-01

    Full Text Available The article describes the main current trends in the development of electric motor vehicles with "zero emission" as well as the battery-charging stations concerned. The study is based on a preliminary comparative analysis of the RF regions with respect to five indices (average per capita income, number of private cars in the region, air pollution level, provision of the region with power supply and the potential use of local renewable energy resources, and it gives some recommendations on the prospects of possible construction of battery-charging stations in the regions.

  8. Electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    The system of non-linear ordinary differential equations which describe the thermal behaviour of the machine in transient state were solved numerically using the fourth-order Runge-Kutta method. MATLAB m-files were developed and were used to solve the coupled machine model under transient condition. The thermal ...

  9. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging

    Directory of Open Access Journals (Sweden)

    Youyuan Wang

    2017-10-01

    Full Text Available This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO2 nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO2 nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  10. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging.

    Science.gov (United States)

    Wang, Youyuan; Wang, Can; Zhang, Zhanxi; Xiao, Kun

    2017-10-12

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO₂ nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO₂ nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  11. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  12. Assessment of lnternational Space Station (ISS) Lithium-ion Battery Thermal Runaway (TR)

    Science.gov (United States)

    Graika, Jason

    2017-01-01

    This task was developed in the wake of the Boeing 787 Dreamliner lithium-ion battery TR incidents of January 2013 and January 2014. The Electrical Power Technical Discipline Team supported the Dreamliner investigations and has followed up by applying lessons learned to conduct an introspective evaluation of NASA's risk of similar incidents in its own lithium-ion battery deployments. This activity has demonstrated that historically NASA, like Boeing and others in the aerospace industry, has emphasized the prevention of TR in a single cell within the battery (e.g., cell screening) but has not considered TR severity-reducing measures in the event of a single-cell TR event. center dotIn the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. This task will serve as a pathfinder for meeting those requirements and will specifically look at a number of different lithium-ion batteries currently in the design pipeline within the ISS Program batteries that, should they fail in a Dreamliner-like incident, could result in catastrophic consequences. This test is an abuse test to understand the heat transfer properties of the cell and ORU in thermal runaway, with radiant barriers in place in a flight like test in on orbit conditions. This includes studying the heat flow and distribution in the ORU. This data will be used to validate the thermal runaway analysis. This test does not cover the ambient pressure case. center dotThere is no pass/ fail criteria for this test.

  13. Interpretation of Simultaneous Mechanical-Electrical-Thermal Failure in a Lithium-Ion Battery Module: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Stock, Mark J.; Brunhart-Lupo, Nicholas; Gruchalla, Kenny

    2016-12-01

    Lithium-ion batteries are currently the state-of- the-art power sources for electric vehicles, and their safety behavior when subjected to abuse, such as a mechanical impact, is of critical concern. A coupled mechanical-electrical-thermal model for simulating the behavior of a lithium-ion battery under a mechanical crush has been developed. We present a series of production-quality visualizations to illustrate the complex mechanical and electrical interactions in this model.

  14. Thermal effects investigation on electrical properties of silicon solar cells treated by laser irradiation

    Directory of Open Access Journals (Sweden)

    Ali Pourakbar Saffar

    2014-12-01

    Full Text Available In this paper, we were investigated electrical properties of monocrystalline and polycrystalline silicon solar cells due to laser irradiation with 650 nm wavelength in two states, proximate irradiation and via optics setup. Thermal effect on the cell surface due to laser irradiation was investigated on electrical properties too. Electrical parameters investigation of solar cells illustrates cell excitement via laser irradiation and efficiency decreases due to cell surface temperature increase. Monocrystalline parameters change with uniform shape due to thermal effect and laser irradiation toward polycrystalline cells.

  15. Microbiological Characterization and Concerns of the International Space Station Internal Active Thermal Control System

    Science.gov (United States)

    Roman, Monsi C.; Wieland, Paul O.

    2005-01-01

    Since January 1999, the chemical the International Space Station Thermal Control System (IATCS) and microbial state of (ISS) Internal Active fluid has been monitored by analysis of samples returned to Earth. Key chemical parameters have changed over time, including a drop in pH from the specified 9.5 +/- 0.5 ta = 58.4, an increase in the level of total inorganic carbon (TIC), total organic carbon (TOC) and dissolved nickel (Ni) in the fluid, and a decrease in the phosphate (PO,) level. In addition, silver (AS) ion levels in the fluid decreased rapidly as Ag deposited on internal metallic surfaces of the system. The lack of available Ag ions coupled with changes in the fluid chemistry has resulted in a favorable environment for microbial growth. Counts of heterotrophic bacteria have increased from less than 10 colony-forming units (CFUs)/l00 mL to l0(exp 6) to l0(exp 7) CFUs/100 mL. The increase of the microbial population is of concern because uncontrolled microbiological growth in the IATCS can contribute to deterioration in the performance of critical components within the system and potentially impact human health if opportunistic pathogens become established and escape into the cabin atmosphere. Micro-organisms can potentially degrade the coolant chemistry; attach to surfaces and form biofilms; lead to biofouling of filters, tubing, and pumps; decrease flow rates; reduce heat transfer; initiate and accelerate corrosion; and enhance mineral scale formation. The micro- biological data from the ISS IATCS fluid, and approaches to addressing the concerns, are summarized in this paper.

  16. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    Science.gov (United States)

    Wilson, Mark E.; Cole, Harold E.; Rector, Tony; Steele, John; Varsik, Jerry

    2011-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  17. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D. [Nikola Tesla Inst., Belgrade (Yugoslavia)

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  18. Effects of thermal discharge on marine ecosystems. A case study from a coastal power station in Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Marano, G.; De Zio, V.; Pastorelli, A. M.; Rizzi, E.; Rositani, L.; Ungaro, N. [Laboratorio Provinciale di Biologia Marina, Molo Pizzoli, Bari (Italy)

    2000-07-01

    Environmental impact of thermal effluent from a fuel power station (potential production 660x4 MW) was monitored during 1998, when the production was 50%; the thermal discharge area was located on the south-western Adriatic coast (Mediterranean Sea) and two sampling surveys were carried out (February and November) in order to analyze the composition and distribution of phytoplankton and macrobenthos communities. The biological assemblages seemed to be poorly influenced by heat diffusion. Some differences were observed among macrozoobenthos species distribution, nearby the discharge point, probably due to the influence of strong water flow coming out of the discharge duct; in fact, the strong flowing current could affect the bottom features (sedimentation) of the nearest areas. Because of the monitoring design (sampling scheme, short and seasonal time period), the reported results have a preliminary character; additional information from other surveys (to be carried out during the hot seasons and at maximum power station capacity) is needed.

  19. Transient Processes in Electric Power Supply System for Oil Terminal with Own Gas-Turbine Power Station

    Directory of Open Access Journals (Sweden)

    A. M. Hаshimov

    2009-01-01

    Full Text Available The paper contains results of the investigations concerning influence of symmetrical and non-symmetrical short circuits at main power network on electric power supply system of a huge oil terminal which is powered by own gas-turbine power station. Calculations have been made in accordance with the IEC and IEEЕ requirements. Estimations for voltage level and distribution of short circuit current in the electric power supply system of the Sangachal oil terminal being operated in parallel with the AzerEnerji grid are presented in the paper

  20. Guide to Federal Funding, Financing, and Technical Assistance for Plug-in Electric Vehicles and Charging Stations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-07-29

    The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.

  1. Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jichao Hong

    2017-07-01

    Full Text Available A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed based on the big data platform and entropy method. It realizes the diagnosis and prognosis of thermal runaway simultaneously, which is caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions of temperature abnormity. The results illustrated that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. The presented method is flexible in all disorder systems and possesses widespread application potential in not only electric vehicles, but also other areas with complex abnormal fluctuating environments.

  2. Abnormal thermal shock behavior in electrical conductivity of Ti2SnC

    Directory of Open Access Journals (Sweden)

    Linquan Zhang

    2017-08-01

    Full Text Available Some ternary carbide and nitride ceramics have been demonstrated to exhibit abnormal thermal shock behavior in mechanical properties. However, the influence of thermal shock on other properties is not clear. This work reports on the influence of thermal shock on electrical conductivity of Ti2SnC as a representative member of ternary carbides. Abnormal change in electrical conductivity was first demonstrated during quenching Ti2SnC in water at 500–800 °C. The residual electrical conductivity of the quenched Ti2SnC gradually decreased with increasing temperature, but abnormally increased after quenching at 600 °C. The microstructure of surface cracks was characterized. The main mechanism for the abnormal electrical conductivity recovery is that some narrow branching cracks are filled by metallic Sn precipitating from Ti2SnC.

  3. Influence of mechanical milling and thermal annealing on electrical ...

    Indian Academy of Sciences (India)

    The present article reports some of the interesting and important electrical and magnetic properties of nanostructured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and CoFe2O4. In the case of Ni0.5Zn0.5Fe2O4, d.c. electrical conductivity increases upon milling, and it is attributed to oxygen vacancies created by high energy ...

  4. Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market

    OpenAIRE

    Hao Bai; Shihong Miao; Xiaohong Ran; Chang Ye

    2015-01-01

    A virtual power plant takes advantage of interactive communication and energy management systems to optimize and coordinate the dispatch of distributed generation, interruptible loads, energy storage systems and battery switch stations, so as to integrate them as an entity to exchange energy with the power market. This paper studies the optimal dispatch strategy of a virtual power plant, based on a unified electricity market combining day-ahead trading with real-time trading. The operation mo...

  5. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  6. Thermal radiation effect on the extinction properties of electric arcs in HV circuit breakers

    Directory of Open Access Journals (Sweden)

    Ziani Abderrahmane

    2009-01-01

    Full Text Available During the formation of the electric arc at the opening of a high voltage circuit breaker, the generated plasma will be the seat of a very important thermal exchange. Models founded only on conduction and convection thermal transfers don't reproduce the whole thermal exchanges that are governing the extinction process. This paper is devoted to the development of a model of the electric arc extinction in a high voltage circuit breaker taking in account the thermal radiation of the plasma, in addition to the conduction and convection phenomena. The Stefan-Boltzman equation is coupled with the heat equation, and both equations are solved simultaneously in order to follow the evolution of the arc voltage and the conductance of the thermal plasma. The obtained results are found in good agreement with experimental recordings.

  7. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Science.gov (United States)

    2011-09-22

    ... included in NUREG-1474, ``Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from..., ``Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20-30, 1992.'' Also... severe weather conditions such as tropical storm and hurricane force winds at the Surry 1 and 2 site. A...

  8. Experimental Enhancement for Electric Properties of Polyethylene Nanocomposites under Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet

    2017-01-01

    Full Text Available Polymer properties can be experimentally tailored by adding small amounts of different nanoparticles for enhancing their mechanical, thermal and electrical properties. The work in this paper investigates enhancing the electric and dielectric properties of Low Density Polyethylene (LDPE, and High Density Polyethylene (HDPE polymer materials with cheap nanoparticles. Certain percentages of clay and fumed silica nanoparticles are used to enhance electric and dielectric properties of polyethylene nanocomposites films. By using the Dielectric Spectroscopy; the electric and dielectric properties of each polyethylene nanocomposites have been measured with and without nanoparticles at various frequencies up to 1kHz under different thermal conditions (20°C and 60°C. And so, we were successful in specifying the optimal nanoparticles types and their concentrations for the control of electric and dielectric characterization.

  9. Electric field assisted thermal annealing reorganization of graphene oxide/polystyrene latex films

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available Graphene/polymer films were prepared by casting water dispersion of graphene oxide (GO in the presence of polystyrene (PS latex particles. The samples were heated up to 180°C and exposed to an external electric voltage during their annealing. We observed that for the GO/PS films deposited before the electric field assisted thermal annealing the polymer latex was embedded in the graphene sheets, while the electric field assisted thermal annealing induces a phase separation with the enrichment of the PS phase above an underlying GO layer. For the films annealed under an external electric field we have also found that as the electric current passes through the GO film, GO could be recovered to reduced GO with decreased resistance.

  10. Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties

    Directory of Open Access Journals (Sweden)

    M. Mar Bernal

    2017-12-01

    Full Text Available In this study, we report a novel strategy to prepare graphene nanopapers from direct vacuum filtration. Instead of the conventional method, i.e., thermal annealing nanopapers at extremely high temperatures prepared from graphene oxide (GO or partially reduced GO, we fabricate our graphene nanopapers directly from suspensions of fully reduced graphene oxide (RGO, obtained after RGO and thermal annealing at 1700 °C in vacuum. By using this approach, we studied the effect of thermal annealing on the physical properties of the macroscopic graphene-based papers. Indeed, we demonstrated that the enhancement of the thermal and electrical properties of graphene nanopapers prepared from annealed RGO is strongly influenced by the absence of oxygen functionalities and the morphology of the nanoflakes. Hence, our methodology can be considered as a valid alternative to the classical approach.

  11. Electric Motor Thermal Management Research: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    Past work in the area of active convective cooling provided data on the average convective heat transfer coefficients of circular orifice automatic transmission fluid (ATF) jets impinging on stationary targets intended to represent the wire bundle surface of the motor end-winding. Work during FY16 focused on the impact of alternative jet geometries that could lead to improved cooling over a larger surface of the motor winding. Results show that the planar jet heat transfer coefficients over a small (12.7-mm-diameter) target surface are not too much lower than for the circular orifice jet in which all of the ATF from the jet impinges on the target surface. The planar jet has the potential to achieve higher heat transfer over a larger area of the motor end winding. A new test apparatus was constructed to measure the spatial dependence of the heat transfer relative to the jet nozzle over a larger area representative of a motor end-winding. The tested planar flow geometry has the potential to provide more uniform cooling over the full end-winding surface versus the conventional jet configuration. The data will be used by motor designers to develop thermal management strategies to improve motor power density. Work on passive thermal design in collaboration with Oak Ridge National Laboratory to measure the thermal conductivity of wire bundle samples representative of end-winding and slot-winding materials was completed. Multiple measurement techniques were compared to determine which was most suitable for measuring composite wire bundle samples. NREL used a steady-state thermal resistance technique to measure the direction-dependent thermal conductivity. The work supported new interactions with industry to test new materials and reduce passive-stack thermal resistance in motors, leading to motors with increased power density. NREL collaborated with Ames Laboratory in the area of material characterization. The work focused on measuring the transverse rupture strength of

  12. Thermal treatment of low permeability soils using electrical resistance heating

    Energy Technology Data Exchange (ETDEWEB)

    Udell, K.S. [Univ. of California, Berkeley, CA (United States)

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  13. Electric Power Plants and Generation Stations, File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer plants, sewer pumpstations, water plants, water tanks http://www.harfordcountymd.gov/gis/Index.cfm, Published in 2011, 1:2400 (1in=200ft) scale, Harford County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2011. File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric...

  14. The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-14

    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. Our findings expand our knowledge and provide new means of thermal-electric energy harvesting.

  15. Stationary Charging Station Design for Sustainable Urban Rail Systems: A Case Study at Zhuzhou Electric Locomotive Co., China

    Directory of Open Access Journals (Sweden)

    Heng Li

    2015-01-01

    Full Text Available In 2014, more than 43 cities in China were racing to construct their urban rail systems (including metro and light rail systems, recognizing that an urban rail system will be a good solution to the tough problems that they are faced with, including traffic congestion and PM2.5 air pollution. On 22 August 2012, the first electric double-layer capacitor (EDLC energy storage-type rail vehicle in the world was unveiled at Zhuzhou Electric Locomotive Co., China. The EDLC rail system has been considered a promising sustainable urban rail system, which is expected to further improve the energy efficiency and to reduce environmental pollution. The first commercial EDLC tram produced by Zhuzhou Electric Locomotive Co. has been applied at Guangzhou Metro Corp. recently. From the view point of scientific research, the system design and energy management of EDLC rail systems have been extensively studied in the literature, while the stationary charging station design for the EDLC energy storage-type urban rail vehicles has been rarely reported. Thus, the aim of this paper is to report a stationary charging station that has been successfully applied in the EDLC rail system produced by Zhuzhou Electric Locomotive Co., China.

  16. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Juan J. [Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia 46022 (Spain); Pérez-Cajaraville, Juan J. [Pain Unit and Department of Anesthesia and Critical Care, Clínica Universidad de Navarra, University of Navarra, Pamplona 31008 (Spain); Muñoz, Víctor [Neurotherm Spain, Barcelona 08303 (Spain); Berjano, Enrique, E-mail: eberjano@eln.upv.es [Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València 46022 (Spain)

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  17. electrical-thermal coupling of induction machine for improved

    African Journals Online (AJOL)

    user

    The system of non-linear ordinary differential equations which describe the thermal behaviour of the machine in transient state were solved numerically using the fourth-order Runge-Kutta method. MATLAB m-files .... symmetrical induction machine in an arbitrary reference frame could be derived from the d-q equivalent ...

  18. Influence of mechanical milling and thermal annealing on electrical ...

    Indian Academy of Sciences (India)

    Wintec

    the cation distribution. The dielectric constant is smaller by an order of magnitude and the dielectric loss is three orders of magnitude smaller for the milled sample compared to that of the bulk. In the case of cobalt ferrite, the observed decrease in conductivity, when the grain size is increased from 8–92 nm upon thermal.

  19. Effects of reduction time on the structural, electrical and thermal ...

    Indian Academy of Sciences (India)

    catalyst support in direct methanol fuel cell. Therefore, in this paper, the RGO nanosheets were prepared via highly efficient chemical reduction reaction of exfoliated GO nanosheets using sodium oxalate (Na2C2O4) as the reduc- ing agent. Extensive characterizations have been conducted in terms of structural, thermal ...

  20. A Unique Electrical Thermal Stimulation System Comparable to Moxibustion of Subcutaneous Tissue

    Directory of Open Access Journals (Sweden)

    Hyoun-Seok Myoung

    2014-01-01

    Full Text Available Moxibustion strengthens immunity and it is an effective treatment modality, but, depending on the material quantity, shape, and composition, the thermal strength and intensity can be difficult to control, which may cause pain or epidermal burns. To overcome these limitations, a heat stimulating system which is able to control the thermal intensity was developed. The temperature distributions on epidermis, at 5 mm and 10 mm of depth, in rabbit femoral tissue were compared between moxibustion and the electric thermal stimulation system. The stimulation system consists of a high radio frequency dielectric heating equipment (2 MHz frequency, maximum power 200 W, isolation probe, isolation plate, negative pressure generator, and a temperature assessment system. The temperature was modulated by controlling the stimulation pulse duty ratio, repetition number, and output. There were 95% and 91% temperature distribution correlations between moxibustion and the thermal stimulus at 5 mm and 10 mm of depth in tissue, respectively. Moreover, the epidermal temperature in thermal stimulation was lower than that in moxibustion. These results showed that heat loss by the electric thermal stimulation system is less than that by the traditional moxibustion method. Furthermore, the proposed electric thermal stimulation did not cause adverse effects, such as suppuration or blisters, and also provided subcutaneous stimulation comparable to moxibustion.

  1. Laboratory device to analyse the impact of soil properties on electrical and thermal conductivity

    Science.gov (United States)

    Bertermann, David; Schwarz, Hans

    2017-04-01

    Gathering information about soil properties in an efficient way is essential for many soil applications also for very shallow geothermal systems (e.g. collector systems or heat baskets). In the field, electrical resistivity tomogramphy measurements enable non-invasive and extensive analyses regarding the determination of soil properties. For a better understanding of measured electrical resistivity values in relation to soil properties within this study, a laboratory setup was developed. The structure of this laboratory setup is geared to gather electrical resistivity or rather electrical conductivity values which are directly comparable to data measured in the field. Within this setup grain size distribution, moisture content, and bulk density, which are the most important soil parameters affecting the electrical resistivity, can be adjusted. In terms of a better estimation of the geothermal capability of soil, thermal conductivity measurements were also implemented within the laboratory test sequence. The generated data reveals the serious influence of the water content and also provides a huge impact of the bulk density on the electrical as well as on the thermal conductivity. Furthermore, different behaviour patterns of electrical and thermal conductivity in their particular relation to the different soil parameters could be identified.

  2. Optimal Policies for the Management of a Plug-In Hybrid Electric Vehicle Swap Station

    Science.gov (United States)

    2015-03-26

    research on the topic in both industry and academia . Herein, relevant literature pertaining to the PHEV swap station application and proposed solution...scenarios on China’s power system using data from Shanghai’s daily load profile and Monte Carlo simulation. Results from 7 their study indicate that...sufficient number of batteries at each station once uncertain parameters such as de- mand are observed. Realistic test data is set based on the San

  3. Electrically conductive, black thermal control coatings for spacecraft application. I - Silicate matrix formulation

    Science.gov (United States)

    Bauer, J. L.; Odonnell, T. P.; Hribar, V. F.

    1986-01-01

    The formulation of the graphite silicate paints MH-11 and MH-11Z, which will serve as electrically conductive, heat-resistant thermal control coatings for the Galileo spacecraft's 400 Newton engine plume shield, 10 Newton thruster plume shields, and external shunt radiators, is described, and performance results for these paints are reported. The MH-11 is produced by combining a certain grade of graphite powder with a silicate base to produce a black, inorganic, electrically conductive, room temperature cure thermal control paint having high temperature capability. Zinc oxide is added to the MH-11 formulation to produce the blister resistant painta MH-11Z. The mechanical, chemical, thermal, optical, and radiation characteristics of the coatings are reported. The formulation, mixing, application, and surface preparation of the substrates are described, and a method of determining the electrical resistance of the coatings is demonstrated.

  4. Electrical Parasitics and Thermal Modeling for Optimized Layout Design of High Power SiC Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede; Dutta, Atanu

    2016-01-01

    The reliability of power modules is closely depended on their electrical and thermal behavior in operation. As power modules are built to operate more integrated and faster, the electrical parasitic and thermal stress issues become more critical. This paper investigates simplified thermal...... and parasitic inductance models of SiC power modules. These models can replace the models by Finite Element Methods (FEM) to predict temperatures and electrical parasitics of power modules with much faster speed and acceptable errors and will be used for study of real operation of power modules. As a case study......, the presented models are verified by a conventional and an optimized power module layout. The optimized layout is designed based on the reduction of stray inductance and temperature in a P-cell and N-cell half-bridge module. The presented models are verified by FEM simulations and also experiment....

  5. Investigations for Thermal and Electrical Conductivity of ABS-Graphene Blended Prototypes.

    Science.gov (United States)

    Singh, Rupinder; Sandhu, Gurleen S; Penna, Rosa; Farina, Ilenia

    2017-07-31

    The thermoplastic materials such as acrylonitrile-butadiene-styrene (ABS) and Nylon have large applications in three-dimensional printing of functional/non-functional prototypes. Usually these polymer-based prototypes are lacking in thermal and electrical conductivity. Graphene (Gr) has attracted impressive enthusiasm in the recent past due to its natural mechanical, thermal, and electrical properties. This paper presents the step by step procedure (as a case study) for development of an in-house ABS-Gr blended composite feedstock filament for fused deposition modelling (FDM) applications. The feedstock filament has been prepared by two different methods (mechanical and chemical mixing). For mechanical mixing, a twin screw extrusion (TSE) process has been used, and for chemical mixing, the composite of Gr in an ABS matrix has been set by chemical dissolution, followed by mechanical blending through TSE. Finally, the electrical and thermal conductivity of functional prototypes prepared from composite feedstock filaments have been optimized.

  6. Electrical and thermal properties of PLA/CNT composite films

    OpenAIRE

    Ceregatti, Thayara; Pecharki, Paloma; PACHEKOSKI, Wagner M.; Becker,Daniela; Dalmolin, Carla

    2017-01-01

    ABSTRACT Conducting polymers presents many potential applications such as biosensors and biofuelcells. However, to be used in those devices, a thin film must be deposited onto a conducting and biocompatible substrate. In this work, carbon nanotubes (CNT) were mixed in a poly (lactic acid) - PLA - matrix with different compositions (from 0.25 to 5.0 %) in order to form conducting composites suitable to the deposition of a conducting polymer. Thermal properties of PLA/CNT composites were evalua...

  7. High-field electrical and thermal transport in suspended graphene.

    Science.gov (United States)

    Dorgan, Vincent E; Behnam, Ashkan; Conley, Hiram J; Bolotin, Kirill I; Pop, Eric

    2013-10-09

    We study the intrinsic transport properties of suspended graphene devices at high fields (≥1 V/μm) and high temperatures (≥1000 K). Across 15 samples, we find peak (average) saturation velocity of 3.6 × 10(7) cm/s (1.7 × 10(7) cm/s) and peak (average) thermal conductivity of 530 W m(-1) K(-1) (310 W m(-1) K(-1)) at 1000 K. The saturation velocity is 2-4 times and the thermal conductivity 10-17 times greater than in silicon at such elevated temperatures. However, the thermal conductivity shows a steeper decrease at high temperature than in graphite, consistent with stronger effects of second-order three-phonon scattering. Our analysis of sample-to-sample variation suggests the behavior of "cleaner" devices most closely approaches the intrinsic high-field properties of graphene. This study reveals key features of charge and heat flow in graphene up to device breakdown at ~2230 K in vacuum, highlighting remaining unknowns under extreme operating conditions.

  8. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    Science.gov (United States)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  9. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Science.gov (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Ago, Hiroki; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Takata, Yasuyuki

    2016-06-01

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω-1 m-1 and 2100 W m-1 K-1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  10. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi, E-mail: takamatsu@mech.kyushu-u.ac.jp, E-mail: x-zhang@tsinghua.edu.cn [Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Ago, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580 (Japan); Zhang, Xing, E-mail: takamatsu@mech.kyushu-u.ac.jp, E-mail: x-zhang@tsinghua.edu.cn [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); Takata, Yasuyuki [International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-06-28

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω{sup −1} m{sup −1} and 2100 W m{sup −1} K{sup −1} for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  11. INFLUENCE OF LINING THERMAL PERFORMANCE IN ELECTRIC-ARC FURNACES ON POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    S.. V. Korneev

    2014-01-01

    Full Text Available The paper presents an analysis of specific features of lining thermal performance in electric-arc furnaces at various technological periods. It has been  shown that on the basis of mathematical modeling methods for thermal processes it is possible to predict power consumption of furnaces at the operational split schedule with due account of such furnace characteristics as capacity, lining materials, furnace idle times under closed and open conditions etc. The paper shows distinctions in thermal performance of acid and the basic linings in the electric-arc furnaces. The proposed approach allows to analyze thermal losses by heat conductivity and on accumulation by a refractory lining and rather accurately to determine the required balance sheet items while calculating power consumption during various periods of scrap melting for furnaces of various capacity.

  12. Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV cell

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available A new way of improving the heat dissipating ability and PV efficiency of the solar cells by enhancing the thermal conductivity of the rear EVA layer was reported. The thermal conductivity, electrical resistivity, degree of curing of the EVA encapsulating composites and the PV efficiency of the solar cells are investigated. Filling with the thermal conductive fillers enhances the thermal conductivity of the composites effectively. The thermal conductivity of the filler influences significantly the thermal conductivity of the composite at high filler loading (greater than 20 vol%. Thermal conductivities of the composites filled with SiC, ZnO or BN reach respectively 2.85, 2.26 and 2.08 W/m•K at filler content of 60 vol%. The composites filled with ZnO or BN exhibit superior electrical insulation to those filled with SiC or Al2O3. ZnO can promote the cross-linking reaction of the EVA matrix. The test results indicated that the EVA composite encapsulating rear films filled with thermal conductive fillers are able to improve the PV efficiency and the heat dissipating ability of the solar cell effectively.

  13. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  14. Plasma-thermal electric furnace for gasification of carbon-containing waste

    Directory of Open Access Journals (Sweden)

    Anshakov A.S.

    2017-01-01

    Full Text Available The plasma-thermal electric furnace for gasification of various carbonaceous wastes (domestic, biological, agricultural, and other organic waste has been created for the first time. Its constituent parts are: hydraulic drive for supplying the packed waste into the reaction zone; gas burner with the thermal power of 42 kW; electric-arc plasmatron with a power of 50 kW; chamber for ash residue melting. The test operation of the electric furnace showed that plasma gasification of carbon-containing materials produces synthesis gas suitable for the needs of heat and electric power industry. The results of thermodynamic calculations are in satisfactory agreement with the experimental data.

  15. Electrical and thermal transport through low densified copper doped PbSe for thermoelectric application

    Energy Technology Data Exchange (ETDEWEB)

    Gayner, Chhatrasal; Malik, Iram [Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Das, Malay K. [Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Kar, Kamal K., E-mail: kamalkk@iitk.ac.in [Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India)

    2016-05-06

    In this paper, Cu doped PbSe is successfully synthesized by solid state reaction. Theinfluence of porosity on thermal and electrical transport in Cu doped PbSe is investigated in this study. Low densified material significantly scatters the electrons as well as phonons through the high number of scattering sites (like pores, cracks, disorder, etc). As a result, the drastic reduction in thermal conductivity and electrical conductivity isnoticed. Additionally, Seebeck coefficient enhances in a low densified materials. Furthermore, Pb{sub 1-x}Cu{sub x}Se (x ∼ 0 to 0.06) has high Seebeck coefficient due to the energy filtering effect and lower charge carrier concentration.

  16. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers

    Science.gov (United States)

    Mousavi, Hamze; Khodadadi, Jabbar; Moradi Kurdestany, Jamshid; Yarmohammadi, Zahra

    2016-11-01

    Density of states, electrical and thermal conductivities of electrons in graphene, boron nitride and silicon boron single sheets are studied within the tight-binding Hamiltonian model and Green's function formalism, based on the linear response theory. The results show that while boron nitride keeps significantly the lowest amounts overall with an interval of zero value in low temperatures, due to its insulating nature, graphene exhibits the most electrical and thermal conductivities, slightly higher than silicon boron except for low temperature region where the latter surpasses, owing to its metallic character. This work might make ideas for creating new electronic devices based on honeycomb nanostructures.

  17. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering

    Science.gov (United States)

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-02-01

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ~200 nm to ~1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ~3.8 × 109 W m-2 K-1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ~0.01 eV and resistivity of ~0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.

  18. Computationally-efficient finite-element-based thermal and electromagnetic models of electric machines

    Science.gov (United States)

    Zhou, Kan

    With the modern trend of transportation electrification, electric machines are a key component of electric/hybrid electric vehicle (EV/HEV) powertrains. It is therefore important that vehicle powertrain-level and system-level designers and control engineers have access to accurate yet computationally-efficient (CE), physics-based modeling tools of the thermal and electromagnetic (EM) behavior of electric machines. In this dissertation, CE yet sufficiently-accurate thermal and EM models for electric machines, which are suitable for use in vehicle powertrain design, optimization, and control, are developed. This includes not only creating fast and accurate thermal and EM models for specific machine designs, but also the ability to quickly generate and determine the performance of new machine designs through the application of scaling techniques to existing designs. With the developed techniques, the thermal and EM performance can be accurately and efficiently estimated. Furthermore, powertrain or system designers can easily and quickly adjust the characteristics and the performance of the machine in ways that are favorable to the overall vehicle performance.

  19. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.

    Science.gov (United States)

    Lobo, S M; Liu, Z-J; Yu, N C; Humphries, S; Ahmed, M; Cosman, E R; Lenkinski, R E; Goldberg, W; Goldberg, S N

    2005-05-01

    This study determined the effects of thermal conductivity on RF ablation tissue heating using mathematical modelling and computer simulations of RF heating coupled to thermal transport. Computer simulation of the Bio-Heat equation coupled with temperature-dependent solutions for RF electric fields (ETherm) was used to generate temperature profiles 2 cm away from a 3 cm internally-cooled electrode. Multiple conditions of clinically relevant electrical conductivities (0.07-12 S m-1) and 'tumour' radius (5-30 mm) at a given background electrical conductivity (0.12 S m-1) were studied. Temperature response surfaces were plotted for six thermal conductivities, ranging from 0.3-2 W m-1 degrees C (the range of anticipated clinical and experimental systems). A temperature response surface was obtained for each thermal conductivity at 25 electrical conductivities and 17 radii (n=425 temperature data points). The simulated temperature response was fit to a mathematical model derived from prior phantom data. This mathematical model is of the form (T=a+bRc exp(dR) s(f) exp(g)(s)) for RF generator-energy dependent situations and (T=h+k exp(mR)+n?exp(p)(s)) for RF generator-current limited situations, where T is the temperature (degrees C) 2 cm from the electrode and a, b, c, d, f, g, h, k, m, n and p are fitting parameters. For each of the thermal conductivity temperature profiles generated, the mathematical model fit the response surface to an r2 of 0.97-0.99. Parameters a, b, c, d, f, k and m were highly correlated to thermal conductivity (r2=0.96-0.99). The monotonic progression of fitting parameters permitted their mathematical expression using simple functions. Additionally, the effect of thermal conductivity simplified the above equation to the extent that g, h, n and p were found to be invariant. Thus, representation of the temperature response surface could be accurately expressed as a function of electrical conductivity, radius and thermal conductivity. As a result

  20. Effects of the Chernobyl and Fukushima nuclear accidents on atmospheric electricity parameters recorded at Polish observation stations

    Science.gov (United States)

    Kubicki, Marek; Baranski, Piotr; Odzimek, Anna; Michnowski, Stanislaw; Myslek-Laurikainen, Bogna

    2013-04-01

    We analyse the atmospheric electricity parameters, measured at Polish geophysical stations in Swider, Poland, and Hornsund, Spitsbergen, in connection with the radioactive incident in Fukushima, Japan, beginning on 11 March 2011, following the 9.0 earthquake and tsunami. We compare our results with the situation during and after the Chernobyl disaster on April 26, 1986, when the radioactive fallout detected at Swider increased in the last week of April 1986, from 4.111 to 238.7 Bq/m2 and up to 967.0 Bq/m2 in the second week of May 1986 - what was more than 235 times greater than the values measured prior to that accident. Besides the electric field especially the electric conductivity is very sensitive to the radioactive contamination of the air. Thus we postulate that these two measurements should be run at geophysical stations over the world and used as a relatively simple and low-cost tool for continuous monitoring of possible hazard caused by nuclear power plant accidents.

  1. Thermally assisted electric field control of magnetism in flexible multiferroic heterostructures.

    Science.gov (United States)

    Liu, Yiwei; Zhan, Qingfeng; Dai, Guohong; Zhang, Xiaoshan; Wang, Baomin; Liu, Gang; Zuo, Zhenghu; Rong, Xin; Yang, Huali; Zhu, Xiaojian; Xie, Yali; Chen, Bin; Li, Run-Wei

    2014-11-05

    Thermal and electrical control of magnetic anisotropy were investigated in flexible Fe81Ga19 (FeGa)/Polyvinylidene fluoride (PVDF) multiferroic heterostructures. Due to the large anisotropic thermal deformation of PVDF (α1 = -13 × 10(-6) K(-1) and α2 = -145 × 10(-6) K(-1)), the in-plane uniaxial magnetic anisotropy (UMA) of FeGa can be reoriented 90° by changing the temperature across 295 K where the films are magnetically isotropic. Thus, the magnetization of FeGa can be reversed by the thermal cycling between 280 and 320 K under a constant magnetic field lower than coercivity. Moreover, under the assistance of thermal deformation with slightly heating the samples to the critical temperature, the electric field of ± 267 kV cm(-1) can well align the UMA along the two orthogonal directions. The new route of combining thermal and electrical control of magnetic properties realized in PVDF-based flexible multiferroic materials shows good prospects in application of flexible thermal spintronic devices and flexible microwave magnetic materials.

  2. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications.

    Science.gov (United States)

    Li, Ying; Xu, Fan; Lin, Zaishan; Sun, Xianxian; Peng, Qingyu; Yuan, Ye; Wang, Shasha; Yang, Zhiyu; He, Xiaodong; Li, Yibin

    2017-10-05

    Graphene is ideal filler in nanocomposites due to its unique mechanical, electrical and thermal properties. However, it is challenging to uniformly distribute the large fraction of graphene fillers into a polymer matrix because graphene is not easily functionalized. We report a novel method to introduce a large fraction of graphene into a styrene-butadiene rubber (SBR) matrix. The obtained graphene/rubber nanocomposites were mechanically enhanced, acoustically absorptive under water, and electrically and thermally conductive. The Young's modulus of the nanocomposites was enhanced by over 30 times over that for rubber. The electrical conductivity of nanocomposites was ≤219 S m-1 with 15% volume fraction of graphene content, and exhibited remarkable electromagnetic shielding efficiency of 45 dB at 8-12 GHz. The thermal conductivity of the nanocomposites was ≤2.922 W m-1 k-1, which was superior to the values of thermally conductive silicone rubber thermal interface materials. Moreover, the nanocomposites exhibited excellent underwater sound absorption (average absorption coefficient >0.8 at 6-30 kHz). Notably, the absorption performance of graphene/SBR nanocomposites increased with increasing water pressure. These multifunctional graphene/SBR nanocomposites have promising applications in electronics, thermal management and marine engineering.

  3. Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market

    Directory of Open Access Journals (Sweden)

    Hao Bai

    2015-03-01

    Full Text Available A virtual power plant takes advantage of interactive communication and energy management systems to optimize and coordinate the dispatch of distributed generation, interruptible loads, energy storage systems and battery switch stations, so as to integrate them as an entity to exchange energy with the power market. This paper studies the optimal dispatch strategy of a virtual power plant, based on a unified electricity market combining day-ahead trading with real-time trading. The operation models of interruptible loads, energy storage systems and battery switch stations are specifically described in the paper. The virtual power plant applies an optimal dispatch strategy to earn the maximal expected profit under some fluctuating parameters, including market price, retail price and load demand. The presented model is a nonlinear mixed-integer programming with inter-temporal constraints and is solved by the fruit fly algorithm.

  4. Electrical Energy Harvesting from Thermal Energy with Converged Infrared Light

    Science.gov (United States)

    Goh, S. Y.; Kok, S. L.

    2017-06-01

    Photovoltaics (PV) cell is a common energy harvester that had been used to harvest solar energy and convert it into electrical energy. However, the vast energy from the spectrum of sunlight is not fully harvested. Therefore, thermoelectric (TE) module that harvest electrical energy from heat is being proposed in this paper. Generally, the part of the sunlight spectrum that induce heat is in the spectrum band of infrared (IR). For the experimental set-up in this paper, infrared (IR) light bulb was being used to simulate the IR spectrum band of the sunlight. In order to maximize the heat energy collection, a convex lens was being used to converge the IR light and therefore focused the heat on an aluminium sheet and heat sink which was placed on top of the hot side of the TE module. The distance between convex lens and IR light bulb is varying in between 10cm and 55cm and the reading was taken at an interval of 5cm. Firstly, the temperature of the IR light and converged IR light were recorded and plotted in graph. The graph showed that the temperature of the converged IR light bulb is higher than the IR light bulb. Lastly, the voltage and power output of the TE module with different heat source was compared. The output voltage and power of the TE module increased inverse proportional to the distance between IR light bulb and TE module.

  5. Isolation and Characterization of a Thermotolerant Ammonia-Oxidizing Bacterium Nitrosomonas sp. JPCCT2 from a Thermal Power Station

    OpenAIRE

    Itoh, Yoshikane; Sakagami, Keiko; Uchino, Yoshihito; Boonmak, Chanita; Oriyama, Tetsuro; Tojo, Fuyumi; Matsumoto, Mitsufumi; Morikawa, Masaaki

    2013-01-01

    A thermotolerant ammonia-oxidizing bacterium strain JPCCT2 was isolated from activated sludge in a thermal power station. Cells of JPCCT2 are short non-motile rods or ellipsoidal. Molecular phylogenetic analysis of 16S rRNA gene sequences demonstrated that JPCCT2 belongs to the genus Nitrosomonas with the highest similarity to Nitrosomonas nitrosa Nm90 (100%), Nitrosomonas sp. Nm148 (99.7%), and Nitrosomonas communis Nm2 (97.7%). However, G+C content of JPCCT2 DNA was 49.1 mol% and clearly di...

  6. Modelling Thermal Effects of Battery Cells inside Electric Vehicle Battery Packs

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    -physical characteristics and their impact on the electrical state of battery cells(Khan, Mulder et al. 2013, Khan, Andreasen et al. 2014, Khan et al. 2014, Khan, Mulder et al. 2014, Khan, Nielsen et al. 2014). Based on this analysis, we derive strategies in achieving the goal, and then propose a battery thermal management...

  7. Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry

    NARCIS (Netherlands)

    Deachapunya, S.; Stefanov, A.; Berninger, M.; Ulbricht, H.; Reiger, E.; Doltsinis, N.L.; Arndt, M.

    2007-01-01

    The authors present new measurements of thermal and electrical properties for two porphyrin derivatives. They determine their sublimation enthalpy from the temperature dependence of the effusive beam intensity. The authors study H2TPP and Fe(TPP)Cl in matter-wave interferometry. Both molecules have

  8. Application of field-modulated generator systems to dispersed solar thermal electric generation

    Science.gov (United States)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  9. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder.

    Science.gov (United States)

    Vlassiouk, Ivan; Smirnov, Sergei; Ivanov, Ilia; Fulvio, Pasquale F; Dai, Sheng; Meyer, Harry; Chi, Miaofang; Hensley, Dale; Datskos, Panos; Lavrik, Nickolay V

    2011-07-08

    In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, IG/ID. We relate this ratio to the characteristic domain size, La, and investigate the electrical and thermal conductivity of graphene as a function of La. The electrical resistivity, ρ, measured on graphene samples transferred onto SiO2/Si substrates shows linear correlation with La(-1). The thermal conductivity, K, measured on the same graphene samples suspended on silicon pillars, on the other hand, appears to have a much weaker dependence on La, close to K∼La1/3. It results in an apparent ρ∼K3 correlation between them. Despite the progressively increasing structural disorder in graphene grown at lower temperatures, it shows remarkably high thermal conductivity (10(2)-10(3) W K(-1) m(-1)) and low electrical (10(3)-3×10(5) Ω) resistivities suitable for various applications.

  10. Layout to circuit extraction for three-dimensional thermal-electrical circuit simulation of device structures

    NARCIS (Netherlands)

    Krabbenborg, B.H.; Krabbenborg, B.H.; Bosma, A.; de Graaff, H.C.; de Graaff, H.C.; Mouthaan, A.J.

    1996-01-01

    In this paper, a method is proposed for extraction of coupled networks from layout information for simulation of electrothermal device behavior. The networks represent a three-dimensional (3-D) device structure with circuit elements. The electrical and thermal characteristics of this circuit

  11. Effect of thermal and radio frequency electric fields treatments on Escherichia coli bacteria in apple juice

    Science.gov (United States)

    The need for a non-thermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of the radio frequency electric fields (RFEF) process. However, insight into the mechanism of bacterial inactivation by this technology is ...

  12. Electrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates

    NARCIS (Netherlands)

    Brosda, S.; Bouwmeester, Henricus J.M.; Guth, U.

    1997-01-01

    Both thermal stability and electrical conductivity of alkali ion conducting Na2CO3 and Na2SO4, were improved by adding alkaline earth carbonates and sulfates, respectively, as well as insulating materials like ¿-Al2O3. The admixing of divalent compounds causes two effects. First a more or less

  13. Structural, thermal and electrical studies of a novel rubidium phosphite tellurate compound

    DEFF Research Database (Denmark)

    Beyribey, Didem Berceste; Hallinder, Jonathan

    2012-01-01

    Structural, thermal and electrical properties studies of rubidium phosphite tellurate, RbH(PO3H)·Te(OH)6, were performed. An endothermic peak, which reached a completion at about 315 °C accompanied with a weight loss of 4.6 wt.%, was attributed to dehydration. Four types of pellets were produced...

  14. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  15. Evaluating piezo-electric transducer response to thermal shock from in-cylinder pressure data

    NARCIS (Netherlands)

    Rosseel, E.; Sierens, R.; Baert, R.S.G.

    1999-01-01

    One of the major effects limiting the accuracy of piezo-electric transducers for performing in-cyclinder pressure measurements is their sensitivity to the cyclic thermal loading effects of the intermittent combustion process. This paper compares 5 different methods for evaluating the effect of this

  16. Electrical-thermal-luminous-chromatic model of phosphor-converted white light-emitting diodes

    NARCIS (Netherlands)

    Ye, H.; Koh, S.W.; Yuan, C.; Zeijl, H. van; Gielen, A.W.J.; Lee, S.W.R.; Zhang, G.

    2014-01-01

    The drive of increased electrical currents to achieve high luminous output for phosphor-converted white light-emitting diodes (PW-LED) has led to a series of thermal problems. The light performance of PW-LED is affected by the heat generated by the two major sources in a package/module: chip(s) and

  17. Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    Directory of Open Access Journals (Sweden)

    Chenmeng Xiang

    2016-04-01

    Full Text Available Dissolved gas analysis (DGA is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to simulate thermal faults in oils from 90 °C to 800 °C and electrical faults including breakdown and partial discharges in oils. The experimental results reveal that the content and proportion of dissolved gases in different types of insulating oils under the same fault condition are different, especially under thermal faults due to the obvious differences of their chemical compositions. Four different classic diagnosis methods were applied: ratio method, graphic method, and Duval’s triangle and Duval’s pentagon method. These confirmed that the diagnosis methods developed for mineral oil were not fully appropriate for diagnosis of electrical and thermal faults in vegetable insulating oils and needs some modification. Therefore, some modification aiming at different types of vegetable oils based on Duval Triangle 3 were proposed in this paper and obtained a good diagnostic result. Furthermore, gas formation mechanisms of different types of vegetable insulating oils under thermal stress are interpreted by means of unimolecular pyrolysis simulation and reaction enthalpies calculation.

  18. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  19. Planning Future Electric Vehicle Central Charging Stations Connected to Low-Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2012-01-01

    A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging...... grids. The option of DC fast-charging is only possible in the larger capacity grids, withstanding the parallel charge of one or two vehicles....

  20. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles

    Science.gov (United States)

    Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.

    2014-03-01

    Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.

  1. Sewerage Pumping Stations, File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer plants, sewer pumpstations, water plants, water tanks http://www.harfordcountymd.gov/gis/Index.cfm, Published in 2011, 1:600 (1in=50ft) scale, Harford County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Sewerage Pumping Stations dataset current as of 2011. File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer...

  2. Water Pumping Stations, File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer plants, sewer pumpstations, water plants, water tanks http://www.harfordcountymd.gov/gis/Index.cfm, Published in 2011, 1:1200 (1in=100ft) scale, Harford County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Water Pumping Stations dataset current as of 2011. File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer...

  3. Structure, thermal stability and electrical properties of reduced graphene/poly(vinylidene fluoride) nanocomposite films.

    Science.gov (United States)

    Han, Peng; Fan, Jingbo; Zhu, Lin; Min, Chunying; Shen, Xiangqian; Pan, Tiezheng

    2012-09-01

    The reduced graphene/poly(vinylidene fluoride) nanocomposite films were prepared by the solution casting-thermal reduction process using graphene oxide (GO) and poly(vinylidene fluoride) (PVDF) resin. With the presence of reduced graphene (RG) nano sheets in the nanocomposite, the structure of PVDF is transformed from alpha to beta phase, and the beta phase fraction and its crystallinity are largely affected by the RG content. The PVDF thermal stability is improved by the RG introduction, with about 15 degrees C increase of the half-life of PVDF decomposition temperature. The RG/PVDF nanocomposites show a better electrical conductivity than that for the GO/PVDF nanocomposites. At a low RG content (0.8 wt.%), the dielectric constant of RG/PVDF nanocomposite film with a very low loss tangent is dramatically increased from about 6 to 23. The mechanisms for the thermal stability and electrical property improvements are discussed.

  4. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  5. Thermal electron acceleration by localized bursts of electric field in the radiation belts

    Science.gov (United States)

    Artemyev, A. V.; Agapitov, O. V.; Mozer, F.; Krasnoselskikh, V.

    2014-08-01

    In this paper we investigate the resonant interaction of thermal ˜10-100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer-lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth's outer radiation belts. These structures propagate mostly away from the geomagnetic equator and share properties of soliton-like nonlinear electron acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (˜3000-10,000 km/s), and a spatial scale of electric field localization along the field lines is about the Debye radius of hot electrons (˜5-30 km). We model the nonlinear resonant interaction of these electric field structures and cold background electrons.

  6. Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security

    Directory of Open Access Journals (Sweden)

    Jip Kim

    2016-07-01

    Full Text Available The increasing penetration of plug-in electric vehicles (PEVs may cause a low-voltage problem in the distribution network. In particular, the introduction of charging stations where multiple PEVs are simultaneously charged at the same bus can aggravate the low-voltage problem. Unlike a distribution network operator (DNO who has the overall responsibility for stable and reliable network operation, a charging station operator (CSO may schedule PEV charging without consideration for the resulting severe voltage drop. Therefore, there is a need for the DNO to impose a coordination measure to induce the CSO to adjust its charging schedule to help mitigate the voltage problem. Although the current time-of-use (TOU tariff is an indirect coordination measure that can motivate the CSO to shift its charging demand to off-peak time by imposing a high rate at the peak time, it is limited by its rigidity in that the network voltage condition cannot be flexibly reflected in the tariff. Therefore, a flexible penalty contract (FPC for voltage security to be used as a direct coordination measure is proposed. In addition, the optimal coordinated management is formulated. Using the Pacific Gas and Electric Company (PG&E 69-bus test distribution network, the effectiveness of the coordination was verified by comparison with the current TOU tariff.

  7. Capacity Calculation of Shunt Active Power Filters for Electric Vehicle Charging Stations Based on Harmonic Parameter Estimation and Analytical Modeling

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2014-08-01

    Full Text Available The influence of electric vehicle charging stations on power grid harmonics is becoming increasingly significant as their presence continues to grow. This paper studies the operational principles of the charging current in the continuous and discontinuous modes for a three-phase uncontrolled rectification charger with a passive power factor correction link, which is affected by the charging power. A parameter estimation method is proposed for the equivalent circuit of the charger by using the measured characteristic AC (Alternating Current voltage and current data combined with the charging circuit constraints in the conduction process, and this method is verified using an experimental platform. The sensitivity of the current harmonics to the changes in the parameters is analyzed. An analytical harmonic model of the charging station is created by separating the chargers into groups by type. Then, the harmonic current amplification caused by the shunt active power filter is researched, and the analytical formula for the overload factor is derived to further correct the capacity of the shunt active power filter. Finally, this method is validated through a field test of a charging station.

  8. Solar repowering system for Texas Electric Service Company Permian Basin Steam Electric Station Unit No. 5. Final report, executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-15

    The conceptual design and economic assessment of a sodium-cooled, solar central receiver repowering system for Texas Electric Service Company's Permian Basin Steam Electric Plant Unit No. 5 are described. As expected, the economic assessment of the specific concept for that site indicates that the cost of energy is greater than that resulting from the burning of natural gas alone in the existing plant (principally as a result of the current cost of heliostats and the scheduled retirement date of Unit No. 5), Favorable economics for similar types of plants can be projected for the future. The annual fuel savings are equivalent to 218,500 barrels of crude oil, with a total dollar value of $21.5 M and $93.6 M for a 7-year life and a 25-year life, respectively. However, it has also been found, from separate studies, that favorable interpretations of the Fuel Use Act and an improved regulatory climate will be necessary for this economic viability to be reached. In particular, a subsidized program to reduce the cost of heliostats to less than $100/m/sup 2/ will be needed. All sodium components, except the receiver, are available on the basis of similar-sized or larger components that have been designed, fabricated, tested and operated in power plants for hundred of thousands of hours. Liquid sodium has been demonstrated for use as a stable, safe, and easily contained heat transfer fluid up to temperature exceeding those required for modern steam plants. (WHK)

  9. Space station common module thermal management: Design and construction of a test bed

    Science.gov (United States)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  10. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  11. ANALYSIS OF EXCESSIVE HEATING ON THE THERMAL AND ELECTRICAL RESISTANCE OF A POLYMER ELECTROLYTE

    Directory of Open Access Journals (Sweden)

    R. Atan

    2012-06-01

    Full Text Available The performance on a polymer electrolyte membrane (PEM fuel cell is evaluated based on the relationship of thermal and electrical resistances to its electrical and thermal power output. An analytical method by which the electrical resistance is evaluated based on the polarisation curve and the thermal resistance from the mass balance, was applied to a 72-cell PEM fuel cell assembly. In order to evaluate the effect of resistances at elevated stack temperatures, the cooling system was operated at half of its maximum cooling effectiveness. The increase in current and resistance due to a unit change in temperature at a particular density was evaluated and it was found that the stack has a ratio of thermal resistance rise to current rise of 1.7, or equal to 0.00584 A/W of current increase per stack heat increase. These values suggest that the internal resistance of the stack components, most probably the electrode assemblies, are very high, which should be addressed in order to obtain lower resistances to current flow.

  12. Qualitative thermal characterization and cooling of lithium batteries for electric vehicles

    Science.gov (United States)

    Mariani, A.; D'Annibale, F.; Boccardi, G.; Celata, G. P.; Menale, C.; Bubbico, R.; Vellucci, F.

    2014-04-01

    The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.

  13. Group excitation control of generators in state regional electric power plant transformer station automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gumin, M.I.; Rosman, L.V.; Tarnavskii, V.M.

    1983-01-01

    Group excitation control of electric generators according to standard methods is essential for the management of power plant conditions according to voltage and reactive power. A system is described that provides coordinated changes in the automatic excitation controller set point for generators that operate on common buses. The advantages of the excitation control system are discussed.

  14. Islanding detection and over voltage mitigation using wireless sensor networks and electric vehicle charging stations.

    Science.gov (United States)

    2016-06-01

    An islanding condition occurs when a distributed generation (DG) unit continues to energize a : part of the grid while said part has been isolated from the main electrical utility. In this event, if : the power of the DG exceeds the load, a transient...

  15. System design for a solar powered electric vehicle charging station for workplaces

    NARCIS (Netherlands)

    Chandra Mouli, G.R.; Bauer, P.; Zeman, M.

    2016-01-01

    This paper investigates the possibility of charging battery electric vehicles at workplace in Netherlands using solar energy. Data from the Dutch Meteorological Institute is used to determine the optimal orientation of PV panels for maximum energy yield in the Netherlands. The seasonal and diurnal

  16. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Science.gov (United States)

    2012-06-18

    ... classes of Yankee Atomic Electric Company stock. V In accordance with 10 CFR 2.202, any person adversely... Meta System Help Desk will not be able to offer assistance in using unlisted software. If a participant... assistance by contacting the NRC Meta System Help Desk through the ``Contact Us'' link located on the NRC Web...

  17. On the quantum magnetic oscillations of electrical and thermal conductivities of graphene

    Science.gov (United States)

    Alisultanov, Z. Z.; Reis, M. S.

    2016-05-01

    Oscillating thermodynamic quantities of diamagnetic materials, specially graphene, have been attracting attention of the scientific community due to the possibility to experimentally map the Fermi surface of the material. These have been the case of the de Haas-van Alphen and Shubnikov-de Haas effects, found on the magnetization and electrical conductivity, respectively. In this direction, managing the thermodynamic oscillations is of practical purpose, since from the reconstructed Fermi surface it is possible to access, for instance, the electronic density. The present work theoretically explores the quantum oscillations of electrical and thermal conductivities of a monolayer graphene under a crossed magnetic and electric fields. We found that the longitudinal electric field can increase the amplitude of the oscillations and this result is of practical and broad interest for both, experimental and device physics.

  18. Automatic control of electric thermal storage (heat) under real-time pricing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Daryanian, B.; Tabors, R.D.; Bohn, R.E. [Tabors Caramanis and Associates, Inc. (United States)

    1995-01-01

    Real-time pricing (RTP) can be used by electric utilities as a control signal for responsive demand-side management (DSM) programs. Electric thermal storage (ETS) systems in buildings provide the inherent flexibility needed to take advantage of variations in prices. Under RTP, optimal performance for ETS operations is achieved under market conditions where reductions in customers` costs coincide with the lowering of the cost of service for electric utilities. The RTP signal conveys the time-varying actual marginal cost of the electric service to customers. The RTP rate is a combination of various cost components, including marginal generation fuel and maintenance costs, marginal costs of transmission and distribution losses, and marginal quality of supply and transmission costs. This report describes the results of an experiment in automatic control of heat storage systems under RTP during the winter seasons of 1989--90 and 1990--91.

  19. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly ( P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  20. Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control.

    Science.gov (United States)

    Schiffres, Scott N; Harish, Sivasankaran; Maruyama, Shigeo; Shiomi, Junichiro; Malen, Jonathan A

    2013-12-23

    We demonstrate tunable electrical and thermal conductivities through freezing rate control in solution-based nanocomposites. For a prototypical suspension of 1 vol % multilayer graphene suspended in hexadecane, the solid-liquid electrical conductivity contrast ratio can be tuned from 1 to 4.5 orders of magnitude for freezing rates between 10(2) and 10(-3) °C/min. We hypothesize that this dramatic variation stems from ice-templating, whereby crystal growth drives nanoparticles into concentrated intercrystal regions, increasing the percolation pathways and reducing the internanoparticle electrical resistance. Optical microscopy supports the ice-templating hypothesis, as these dramatic property changes coincide with changing crystal size. Under the same range of freezing rates, the nanocomposite solid-liquid thermal conductivity contrast ratio varies between 2.3 and 3.0, while pure hexadecane's varies between 2.1 and 2.6. The nanocomposite's thermal conductivity contrast ratios and solid phase enhancements are greater than effective medium theory predictions. We suggest this is due to ice-templating, consistent with our electrical measurements, as well as nanoparticle-induced molecular alignment of alkanes.

  1. 3D analysis of thermal and electrical performance of wide bandgap VDMOSFETs

    Science.gov (United States)

    Manandhar, Mahesh B.; Matin, Mohammad A.

    2017-08-01

    Power electronics is based on the conversion and conditioning of electric power in its different forms. The need for higher operating voltages, temperatures and switching speeds have necessitated for the use of semiconductor materials more superior to Silicon for power electronics purposes. Wide bandgap (WBG) materials like SiC, GaN and Diamond have been known to demonstrate better material properties as compared to Silicon, like higher operating temperatures, higher breakdown voltages and reduced thermal and electrical resistances which make them ideal for high power electronic devices. This paper analyzes the thermal and electrical performance of WBG power MOSFETs, in particular the Vertical Double-diffused MOSFET (VDMOSFET) structure, modeled in the commercial simulation software COMSOL Multiphysics. VDMOSFETs are ideal for high power electronic applications owing to their higher voltage blocking capabilities as compared to the conventional lateral MOSFET structure. COMSOL uses Finite Element/Volume Analysis methods to approximate solutions to differential equations involved with complex geometries and physics. The 3D model investigated in COMSOL for this paper solved for thermal and electrical variables for VDMOSFETs using SiC and GaN as their semiconductor material. Only a quarter of the 3D VDMOSFET structure was modeled for faster computational speed as the structure itself is symmetric about two vertical planes. The temperature profiles and current densities of each WBG material VDMOSFET were analyzed for different operating voltages. These profiles were compared with a Si VDMOSFET model to determine relative similarities and differences between each material.

  2. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  3. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  4. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  5. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    Science.gov (United States)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  6. Mechatronics design and experimental verification of an electric-vehicle-based hybrid thermal management system

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2016-02-01

    Full Text Available In this study, an electric-vehicle-based thermal management system was designed for dual energy sources. An experimental platform developed in a previous study was modified. Regarding the mechanical components, a heat exchanger with a radiator, proportional valve, coolant pipes, and coolant pump was appropriately integrated. Regarding the electric components, two heaters emulating waste heat were controlled using two programmable power supply machines. A rapid-prototyping controller with two temperature inputs and three outputs was designed. Rule-based control strategies were coded to maintain optimal temperatures for the emulated proton exchange membrane fuel cells and lithium batteries. To evaluate the heat power of dual energy sources, driving cycles, energy management control, and efficiency maps of energy sources were considered for deriving time-variant values. The main results are as follows: (a an advanced mechatronics platform was constructed; (b a driving cycle simulation was successfully conducted; and (c coolant temperatures reached their optimal operating ranges when the proportional valve, radiator, and coolant pump were sequentially controlled. The benefits of this novel electric-vehicle-based thermal management system are (a high-efficiency operation of energy sources, (b low occupied volume integrated with energy sources, and (c higher electric vehicle traveling mileage. This system will be integrated with real energy sources and a real electric vehicle in the future.

  7. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kozak, Joseph P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tomerlin, Jeff J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  8. Specification Requirement for Thermal Stability of Sintered NdFeB Materials for Electrical Machines

    Institute of Scientific and Technical Information of China (English)

    Lin Yan; Jiang Daiwei; Chen Lixiang; Chen Hailing; Bi Haitao; Tang Renyuan

    2004-01-01

    Based on IEC standards and Chinese national standards of sintered NdFeB materials, in the paper the hightemperature, room-temperature properties and thermal stability of about one hundred samples of NdFeB materials for electrical machines were measured and analyzed.These materials are produced by ten representative manufactories in China.Combined with the analysis results, the paper points out that the magnetic properties of sintered NdFeB materials for electrical machines should meet not only the specific values in standards, such as Br, (BH)max ,HcJ ,but also the requirement of temperature coefficients a (Br) , a (HcJ).

  9. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  10. Water-related constraints to the development of geothermal electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  11. Electrical, Optical, and Thermal Behaviors of Transparent Film Heater Made of Reduced Graphene Oxide.

    Science.gov (United States)

    Kim, Ji Eun; Yoon, Kwan Han; Son, Young Gon; Park, Chul Ho; Lee, Young Sil

    2016-02-01

    The electrical conductivity and the thermal performance of the films made of reduced graphene oxide (rGO) spray-coated on polycarbonate substrate were investigated. The electrical conductivity and the transmittance of 10 times spray coated film made from the solution with 0.08 wt% of rGO, 0.16 wt% of surfactant were 30 komega/sq and 64%, respectively. The steady-state temperature of the films increased from 25 degrees C for 40 komega/sq to 100 degrees C for 490 omega/sq at an applied voltage of 110 V. The heat transfer coefficient of the rGO coated film, a, was obtained as 139 W/m2 K using the model equation based on the thermal balance, which includes Joule heating convectional, and radiative heat transfers. The transmittance of the films decreased continuously from 73% with the increase of surface resistivity.

  12. Synergistically tuning the electrical and thermal transport properties of CdO:Cu thermoelectric ceramics

    Science.gov (United States)

    Fu, Guangsheng; Gao, Linjie; Liu, Ran; Zha, Xinyu; Wang, Jianglong; Wang, Shufang

    2017-07-01

    The thermoelectric performance of CdO ceramics was optimized by synergistically tuning their electrical and thermal transport properties via Cu doping. The introduction of Cu led to an increase in carrier concentration and mobility simultaneously for samples with Cu content less than 3%. An improvement in power factor was obtained due to decreased electrical resistivity and a moderate Seebeck coefficient. A small amount of Cu doping was also verified to be effective in suppressing the heat transfer of CdO ceramics owing to the enhanced phonon scattering from point defects and grain boundaries. Benefiting from the increase in power factor and decrease in thermal conductivity, enhanced ZT values were achieved in all doped samples, indicating that Cu doping is an effective strategy to promote the thermoelectric performance of CdO ceramics.

  13. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.com [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Khodadadi, Jabbar [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Moradi Kurdestany, Jamshid [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65201 (United States); Yarmohammadi, Zahra [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-11-25

    Density of states, electrical and thermal conductivities of electrons in graphene, boron nitride and silicon boron single sheets are studied within the tight-binding Hamiltonian model and Green's function formalism, based on the linear response theory. The results show that while boron nitride keeps significantly the lowest amounts overall with an interval of zero value in low temperatures, due to its insulating nature, graphene exhibits the most electrical and thermal conductivities, slightly higher than silicon boron except for low temperature region where the latter surpasses, owing to its metallic character. This work might make ideas for creating new electronic devices based on honeycomb nanostructures. - Highlights: • Electronic properties of graphene, silicon boron, and boron nitride planes are compared. • Tight-binding Hamiltonian model and Green's function formalism are implemented. • This work might make ideas for creating new electronic devices based on honeycomb nanostructures.

  14. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Will [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Roux, Jordan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  15. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Directory of Open Access Journals (Sweden)

    Md Mainul Islam

    Full Text Available The electric vehicle (EV is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS planning. A novel optimization technique, called binary lightning search algorithm (BLSA, is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  16. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Science.gov (United States)

    Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  17. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    Science.gov (United States)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  18. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

    Science.gov (United States)

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396

  19. Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    OpenAIRE

    Chenmeng Xiang; Quan Zhou; Jian Li; Qingdan Huang; Haoyong Song; Zhaotao Zhang

    2016-01-01

    Dissolved gas analysis (DGA) is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to...

  20. Energy Harvesting A Nano-Scale Based Magneto-Thermal-Electric Element

    Science.gov (United States)

    2015-05-21

    Thermo-­‐magnetic   Motor ,   wherein   he   showed   how   a   thermally   oscillated   magnetic   system   could   generate...Works  Cited   1. TESLA ,  N.  Pyromagneto-­‐electric  generator.  US  Pat.  428,057  (1890).     2. Brillouin,  L

  1. Fourier Transform Infrared Spectroscopic Study of Thermal and Electrical Aging in Polyurethane

    Science.gov (United States)

    1987-03-20

    allophanate, biuret , and aromatic groups, while the soft segments co01sist of the flexible polyether, polyester, and polyalkyl groups from the polyols...results in Fig. 3a, it is a rea- sonable working hypothesis that these aging methods are achieving substantial- ly the same result by different means...formative stage of Uralane 5753 degradation via physical, thermal, and electrical methods . The changes in infrared absorbance noted in Tables 1 and 2 were

  2. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N. A. S.

    2017-01-01

    Full Text Available In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sultan Zainal Abidin (UNISZA weather station. For load profile, the information about fishing activities and the amount of subsidy spent by the government were obtained from the interview session with the fishermen and validated with Lembaga Kemajuan Ikan Malaysia (LKIM. The results acquired are compared between grid-only and grid-connected RE systems in term of net present cost (NPC, operational cost and payback period. A sensitivity analysis is done to find the minimal Feed-in Tariff (FiT rate that can be implemented in order to encourage the use of RE system in this sector. Then, the relationship between FiT and NPC, payback period and emission of pollutants are analyzed. At current FiT rates RM 0.813/kWh, hybrid grid-PV system manages to achieve its optimal in generating high income from selling the power to the grid with convincing amount of electricity production and short payback period. It is concluded at minimum RM 0.56/kWh of FiT, the grid-connected RE system is possible to be developed because its performance shows better outcome compared to the grid-only system.

  3. Construction project and its current situation of Hekinan thermal power station. Hekinan karyoku hatsudensho no kensetsu keikaku oyobi jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Mita, T. (Chubu Electric Power Co. Inc., Nagoya (Japan))

    1990-07-31

    Chubu Power Supply Co. started the construction project of No.1, 2 and 3 machines of Hekinan Thermal Power Station using coal in stable supply as its fuel on the seaside reclaimed land of Hekinan City, Aichi Prefecture in order to secure a power supply for the next term and diversify its power supplies aiming at starting of their respective commercial operations in October, 1991, June, 1992 and June, 1993. This article introduces the construction project of the above power station and its stage of construction. Concerning the steam conditions thereof, 246kg/cm {sup 2} g and 538 centigrade/566 centigrade were adopted for No.1 and 2 machines and for No.3 machine, improvement of its performance is intended by raising its reheating steam temperature to 593 centigrade. The boiler facilities are indoor type and adopt the coal burning supercritical pressure once-through type variable pressure operating system. They are designed to be able to cope with any intermediate load operation. Concerning the turbine equipment, the steam turbine is a machine of 3600 rpm which adopts 40 inch long vanes for its final stage vanes in order to improve its efficiency. For the environmental protection facility, the measures of reducing nitrogen oxides, dust and sulfur oxides, etc. are adopted. 8 figs., 3 tabs.

  4. The occurrence of single and multiple organ dysfunction in pediatric electrical versus other thermal burns.

    Science.gov (United States)

    Hundeshagen, Gabriel; Wurzer, Paul; Forbes, Abigail A; Voigt, Charles D; Collins, Vanessa N; Cambiaso-Daniel, Janos; Finnerty, Celeste C; Herndon, David N; Branski, Ludwik K

    2017-05-01

    Multiple organ failure (MOF) is a major contributor to morbidity and mortality in burned children. While various complications induced by electrical injuries have been described, the incidence and severity of single organ failure (SOF) and MOF associated with this type of injury are unknown. The study was undertaken to compare the incidence and severity of SOF and MOF as well as other complications between electrically and thermally burned children. Between 2001 and 2016, 288 pediatric patients with electrical burns (EB; n = 96) or thermal burns (CTR; n = 192) were analyzed in this study. Demographic data; length of hospitalization; and number and type of operations, amputations, and complications were statistically analyzed. Incidence of SOF and MOF was assessed using the DENVER2 classification in an additive mixed model over time. Compound scores and organ-specific scores for lung, heart, kidney, and liver were analyzed. Serum cytokine expression profiles of both groups were also compared over time. Significance was accepted at p burned (CTR, 33% ± 25%, vs EB, 32 ± 25%), and length of hospitalization (CTR, 18 ± 26 days, vs EB, 18 ± 21 days). The percentage of high-voltage injury in the EB group was 64%. The incidence of MOF was lower in the EB group (2 of 96 [2.1%]) than the CTR group (20 of 192 [10.4%]; p pediatric patients, electrical injury is associated with a lower incidence of MOF than other thermal burns. Early and radical debridement of nonviable tissue is crucial to improve outcomes in the electrical burn patient population. Retrospective chart review, level III.

  5. Bench Testing Results for the Electrical PCM-Assisted Thermal Heating System (ePATHS)

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gao, Zhiming [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-20

    Bench testing of the Electrical PCM-Assisted Thermal Heating System (ePATHS) was completed at the Building Technologies Research and Integration Center (BTRIC) at the Oak Ridge National Laboratory (ORNL). The ePATHS is a thermal energy storage device designed to reduce the energy required from the battery for cabin heating of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). ORNL s testing of the ePATHS assessed three main aspects of operation of the device: 1.ePATHS charging evaluation: measure the time to charge and the energy input needed to fully charge the PCM for a range of different ambient conditions. 2.ePATHS Discharge Evaluations: measure the energy provided by the PCM HX, both during mode 1 and mode 2 operation, and confirm the cabin heating duration that can be provided by the ePATHS. This is the primary evaluation to validate the system performance, and an array of multiple ambient conditions and operating scenarios were tested. 3.Evaluation of Thermal Losses from the ePATHS during Cold Soak: this test will evaluate the performance of the insulation system for the ePATHS. The charged ePATHS undergoes a long-term soak in cold ambient temperature conditions, and the heat losses will be evaluated to validate that the performance meets the maximum energy loss requirement.

  6. Comparison of domestic olivine and European magnesite for electrically charged thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W.R.; Gay, B.M.; Palmour, H.; Schoenhals, R.J.

    1982-01-01

    Electrically charged thermal energy storage (TES) heaters employing high heat capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these devices, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored energy from the core by forced air circulation. The recent increase in use of off-peak TES units in the U.S. has led to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but underutilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper the suitability of North Carolina olivine for heat storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two commercially available room-size TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons are made and conclusions are drawn.

  7. Higher Efficiency and Temperature Reliability of Steam Generators at Thermal Power Stations

    Directory of Open Access Journals (Sweden)

    R. F. Kelbaliev

    2010-01-01

    Full Text Available Methods for higher power unit efficiency and decrease of specific fuel consumption for electric-power generation have been considered in the paper. The paper reveals that a heat exchange intensification makes a positive effect on efficiency and temperature reliability of power engineering equipment while using coil and artificially turbulized (contoured pipes. Results of experimental investigations on metal temperature at various mode parameters are proposed in the paper. The paper contains equations for determination of conditions initiating heat-transfer drop.

  8. Thermal, Electrical and Mechanical Response to a Quench in Nb3SnSuperconducting Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, F.; Caspi, S.; Chiesa, L.; Gourlay, S.A.; Hafalia,R.R.; Imbasciati, L.; Lietzke, A.F.; Sabbi, G.; Scanlan, R.M.

    2003-11-10

    During a quench, significant temperatures can arise as a magnet's stored energy is dissipated in the normal zone. Temperature gradients during this process give rise to localized strains within the coil. Reactive forces in the magnet structure balance the electromagnetic and thermal forces and maintain on equilibrium. In this paper we present a complete 3D finite element analysis of a racetrack coil. Specifically, the analysis focuses on thermal, electrical and mechanical conditions in a 10 T Nb{sub 3}Sn coil built and tested as part of LBNL's Subscale Magnet Program. The study attempts to simulate time history of the temperature and voltage rise during quench propagation. The transient thermal stress after the quench is then evaluated and discussed.

  9. Thermal, Electrical and Mechanical Response to a Quench in Nb3Sn Superconducting Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Chiesa, L.; Gourlay, S.A.; Hafalia, R.r.; Imbasciati, L.; Lietzke, A.F.; Sabbi, G.; Scanlan, R.M.

    2003-10-01

    During a quench, significant temperatures can arise as a magnet's stored energy is dissipated in the normal zone. Temperature gradients during this process give rise to localized strains within the coil. Reactive forces in the magnet structure balance the electromagnetic and thermal forces and maintain on equilibrium. In this paper we present a complete 3D finite element analysis of a racetrack coil. Specifically, the analysis focuses on thermal, electrical and mechanical conditions in a 10T Nb{sub 3}Sn coil built and tested as part of LBNL's Subscale Magnet Program. The study attempts to simulate time history of the temperature and voltage rise during quench propagation. The transient thermal stress after the quench is then evaluated and discussed.

  10. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Science.gov (United States)

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  11. Electrical tomography and TDEM prospection in the Chianciano thermal basin (Siena, Italy

    Directory of Open Access Journals (Sweden)

    S. Floris

    2003-06-01

    Full Text Available Chianciano thermal basin in Tuscany belongs to a great structure that extends, from San Casciano Bagni to Rapolano, orientated SSE-NNW. Several springs are located in this thermal field: Acqua Santa, Macerina, Casuccini and Sillene well. They are located close to the contact between the lower complex of the «Tuscan series» (Triassic limestones and dolomites and Pliocene formations (sands and clayey sands, clays and silty clays. According to the groundwater flow scheme, the former formations represent the geothermal reservoir and, where they outcrop, the recharge areas. Thermalized fluids rise through direct faults, having an apennine orientation. In order to locate a new production well, electrical tomography and TDEM prospection were performed. Geophysical interpretation led to the construction of 1D imaged and 2D sections showing the main tectonic features. The different electrical behaviour of the hydrogeological units disclosed a fault located near the old Sillene well; this tectonic feature caused the uplifting of Triassic formations towards the north-east. A new production well was located close to the fault in the uplifted sector with excellent results as it captured the thermal aquifer at a depth of 30 m with a discharge up to 70 l/s.

  12. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    Full Text Available In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  13. Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity.

    Science.gov (United States)

    Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony

    2016-09-01

    This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Szentes

    2012-06-01

    Full Text Available The electrical resistivity and thermal properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP composites have been investigated in the presence of coupling agents applied for improving the compatibility between the nanotubes and the polymer. A novel olefin-maleic-anhydride copolymer and an olefin-maleic-anhydride copolymer based derivative have been used as compatibilizers to achieve better dispersion of MWCNTs in the polymer matrix. The composites have been produced by extrusion followed by injection moulding. They contained different amounts of MWCNTs (0.5, 2, 3 and 5 wt% and coupling agent to enhance the interactions between the carbon nanotubes and the polymer. The electrical resistivity of the composites has been investigated by impedance spectroscopy, whereas their thermal properties have been determined using a thermal analyzer operating on the basis of the periodic thermal perturbation method. Rheological properties, BET-area and adsorption-desorption isotherms have been determined. Dispersion of MWCNTs in the polymer has been studied by scanning electron microscopy (SEM.

  15. Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min-Soo; Lee, Wook-Hyun; Woo, Sang-Kuk [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2017-07-15

    The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta”-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of 900°C. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

  16. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics.

    Science.gov (United States)

    Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K

    2018-04-01

    The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effect of thermal fluctuations on Holstein polaron dynamics in electric field

    Science.gov (United States)

    Voulgarakis, Nikolaos K.

    2017-08-01

    In this work, we have studied the effects of thermal fluctuations on the stability of polaron motion under the influence of an external electric field. Zero temperature calculations have been reported previously showing the existence of critical electric field, Ecr, where the system transitions from a stable polaron motion to a Bloch-like oscillation. In this study, we further report that for intermediate polaron sizes the lifetime of such Bloch-like oscillations decay with time due to excessive phonon emission. Our numerical simulations show that the value of Ecr is finite for small temperatures. However, Ecr rapidly decreases with increasing T and becomes practically zero for T > Tcr. In this small but finite temperature window, we report how temperature affects (a) the electric current density, and (b) the Bloch-like frequencies.

  18. Effect of addition of Si on thermal and electrical properties of Al-Si-Al2O3 composites

    Science.gov (United States)

    Cao, R.; Jiang, J. X.; Wu, C.; Jiang, X. S.

    2017-06-01

    Al-5wt.%Si-Al2O3, Al-10wt.%Si-Al2O3, Al-20wt.%Si-Al2O3 composites were fabricated by powder metallurgy and in-situ reactive synthesis technology. The impact of the addition of Si on the thermal and electrical properties was tested and analysed for vary in silicon content in Al-Si-Al2O3 composites. Results show that both thermal expansion coefficient and thermal conductivity decreased as silicon content increased because Si and Al2O3 dispersed in the Al matrix uniformly to suppress the high thermal expansion of Al to a large extent as well as the interfacial thermal resistance which led to the decline in thermal conductivity. Electrical resistivity increased when silicon content was increased because low thermal expansion coefficient particles of Si and Al2O3 severely damaged the continuity of the Al matrix which hindered movement of electron in the matrix.

  19. Hierarchical control of a photovoltaic/battery based DC microgrid including electric vehicle wireless charging station

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Fan, Haodong; Guerrero, Josep M.

    2017-01-01

    controllers. Local controllers implement these functions, which include PV maximum power point tracking (MPPT) algorithm, battery charging/discharging control, voltage control of DC bus for high-frequency inverter, and onboard battery charging control. By optimizing and matching parameters of transmitting......In this paper, the hierarchical control strategy of a photovoltaic/battery based dc microgrid is presented for electric vehicle (EV) wireless charging. Considering irradiance variations, battery charging/discharging requirements, wireless power transmission characteristics, and onboard battery...... charging power change and other factors, the possible operation states are obtained. A hierarchical control strategy is established, which includes central and local controllers. The central controller is responsible for the selection and transfer of operation states and the management of the local...

  20. Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo

    Growing environmental awareness and strong political impetus have resulted in plug-in electric vehicles (PEV) becoming ever more attractive means of transportation. They are expected to have a significant impact to the overall loading of future distribution networks. Thus, current distribution...... grids need to be updated in order to accommodate PEV fleets, which are recognized in smart grid (SG) objective. The prevailing concern in that sense is the combined impact of a large number of randomly connected PEVs in the distribution network. On the other hand, continually growing PEVs are likely...... of it as secondary layer. Control design is hence carried out by following the common principle for management of both large interconnected and small distributed generation (DG) systems. For the purpose of control optimization and parameter tuning of the primary layer, detailed modeling of grid ac/dc and FESS...

  1. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  2. INVESTIGATION OF RDE THERMAL PARAMETERS CHANGES IN RESPONSE TO LONG-TERM STATION BLACK OUT

    Directory of Open Access Journals (Sweden)

    Hendro Tjahjono

    2017-05-01

    INVESTIGASI PERUBAHAN PARAMETER TERMAL RDE PADA KONDISI KEHILANGAN CATU DAYA LISTRIK DALAM JANGKA PANJANG. Akibat kehilangan catu daya listrik luar pada Reaktor Daya Eksperimental (RDE, panas sisa dari reaktor dibuang ke suatu sistem pembuang panas sisa. Penelitian ini bertujuan untuk mengetahui karakteristik transien parameter termal RDE ketika terjadi kegagalan pembuangan kalor sisa tersebut dalam jangka panjang. Untuk mencapai tujuan tersebut telah disusun model analisis perubahan parameter termal reaktor ketika terjadi Station Black Out (SBO menggunakan pemrograman Matlab dengan melibatkan persamaan-persamaan perpindahan kalor secara konduksi, konveksi dan radiasi. Dengan menggunakan program ini perubahan parameter termal RDE hingga 800 jam setelah reaktor trip telah dianalisis. Disimpulkan bahwa pada kondisi SBO dalam jangka panjang tersebut, reaktor masih tetap aman dengan temperatur maksimum teras sebesar 1140 °C, yaitu masih jauh di bawah batas aman 1600 °C yang telah ditetapkan dalam kriteria desain. Perlu diperhatikan adanya peningkatan temperatur beton hingga 600 °C jika air pendingin sudah habis. Oleh karena itu, ketersediaan air pendingin di sistem pembuang panas sisa mutlak harus dijaga. Kata kunci: reaktor daya eksperimental, pembuang panas sisa, transien, Matlab.

  3. An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency

    Science.gov (United States)

    Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

    2003-01-01

    The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

  4. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  5. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  6. Electric power and thermal energy production using photovoltaic panels; Producao de eletricidade e energia termica usando paineis fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-06-15

    Why should not be extracted the maximum of solar radiation, with the simultaneous obtention of electric power and thermal energy? This question has been the motivation of various projects which have in common the use of hybrid or refrigerated photovoltaic modules. They are closed panels, having circulating water, besides to refrigerate the photovoltaic cells, increasing the yield of the electricity conversion, and the water circulating being a source of thermal energy. (author)

  7. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    Science.gov (United States)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  8. Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applications

    Science.gov (United States)

    Chiguma, Jasper

    The design, fabrication and measurement of electrical and thermal properties of polymers loaded with nanotubes and fibers are the foci of the work presented in this dissertation. The resulting products of blending polymers with nanomaterials are called nanocomposites and are already finding applications in many areas of human endeavour. Among some of the most recent envisioned applications of nanocomposites is in electronic devices as thermal interface materials (TIMs). This potential application as TIMs, has been made more real by the realization that carbon nanotubes, could potentially transfer their high electrical, thermal and mechanical properties to polymers in the nanocomposites. In Chapter 1, the events leading to the discovery of carbon nanotubes are reviewed followed by an elaborate discussion of their structure and properties. The discussion of the structure and properties of carbon nanotubes help in understanding the envisaged applications. Chapter 2 focuses on the fabrication of insulating polymer nanocomposites, their electrical and mechanical properties. Poly (methyl methacrylate) (PMMA) and a polyimide formed by reacting pyromellitic dianhydride (PMDA) and 4, 4'-oxydianiline (ODA) (PMDA-ODA) nanocomposites with carbon nanotubes were prepared by in-situ polymerization. Poly (1-methyl-4-pentene) (TPX), Polycarbonate (PC), Poly (vinyl chloride) (PVC), Poly (acrylonitrile-butadiene-styrene) (ABS), the alloys ABS-PC, ABS-PVC, and ABS-PC-PVC nanocomposites were prepared from the respective polymers and carbon nanotubes and their mechanical and electrical properties measured. Chapter 3 covers the nanocomposites that were prepared by the in-situ polymerization of the conducting polymers Polyaniline (PANi), Polypyrrole (PPy) and Poly (3, 4-ethylenedioxythiophene) (PEDOT) by in-situ polymerization. These are evaluated for electrical conductivity. The use of surfactants in facilitating carbon nanotube dispersion is discussed and applied in the preparation of

  9. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances.

    Science.gov (United States)

    Ouyang, Zhongliang; Li, Dawen

    2016-04-07

    In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm(-2) at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density.

  10. Microstructural characterization and thermal cycling reliability of solders under isothermal aging and electrical current

    Science.gov (United States)

    Chauhan, Preeti Singh

    Solder joints on printed circuit boards provide electrical and mechanical connections between electronic devices and metallized patterns on boards. These solder joints are often the cause of failure in electronic packages. Solders age under storage and operational life conditions, which can include temperature, mechanical loads, and electrical current. Aging occurring at a constant temperature is called isothermal aging. Isothermal aging leads to coarsening of the bulk microstructure and increased interfacial intermetallic compounds at the solder-pad interface. The coarsening of the solder bulk degrades the creep properties of solders, whereas the voiding and brittleness of interfacial intermetallic compounds leads to mechanical weakness of the solder joint. Industry guidelines on solder interconnect reliability test methods recommend preconditioning the solder assemblies by isothermal aging before conducting reliability tests. The guidelines assume that isothermal aging simulates a "reasonable use period," but do not relate the isothermal aging levels with specific use conditions. Studies on the effect of isothermal aging on the thermal cycling reliability of tin-lead and tin-silver-copper solders are limited in scope, and results have been contradictory. The effect of electrical current on solder joints has been has mostly focused on current densities above 104A/cm2 with high ambient temperature (≥100oC), where electromigration, thermomigration, and Joule heating are the dominant failure mechanisms. The effect of current density below 104A/cm2 on temperature cycling fatigue of solders has not been established. This research provides the relation between isothermal aging and the thermal cycling reliability of select Sn-based solders. The Sn-based solders with 3%, 1%, and 0% silver content that have replaced tin-lead are studied and compared against tin-lead solder. The activation energy and growth exponents of the Arrhenius model for the intermetallic growth in

  11. Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Fabrice Locment

    2015-05-01

    Full Text Available This paper focuses on the evaluation of theoretical and numerical aspects related to an original DC microgrid power architecture for efficient charging of plug-in electric vehicles (PEVs. The proposed DC microgrid is based on photovoltaic array (PVA generation, electrochemical storage, and grid connection; it is assumed that PEVs have a direct access to their DC charger input. As opposed to conventional power architecture designs, the PVA is coupled directly on the DC link without a static converter, which implies no DC voltage stabilization, increasing energy efficiency, and reducing control complexity. Based on a real-time rule-based algorithm, the proposed power management allows self-consumption according to PVA power production and storage constraints, and the public grid is seen only as back-up. The first phase of modeling aims to evaluate the main energy flows within the proposed DC microgrid architecture and to identify the control structure and the power management strategies. For this, an original model is obtained by applying the Energetic Macroscopic Representation formalism, which allows deducing the control design using Maximum Control Structure. The second phase of simulation is based on the numerical characterization of the DC microgrid components and the energy management strategies, which consider the power source requirements, charging times of different PEVs, electrochemical storage ageing, and grid power limitations for injection mode. The simulation results show the validity of the model and the feasibility of the proposed DC microgrid power architecture which presents good performance in terms of total efficiency and simplified control.

  12. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  13. [Hygienic problems in the location of modern wind electric power stations in their design].

    Science.gov (United States)

    Kireeva, I S; Makhniuk, V M; Akimenko, V Ia; Dumanskiĭ, Iu D; Semashko, P V

    2013-01-01

    Hygienic aspects of the placement of wind power plants (WPP) in connection with the intensive development of wind power and the lack of systematic information on their effects of the environment and living conditions of the population are becoming more actual. In the article there are considered results of the sanitary-epidemiological expertise of the construction project of three modern large wind farm (the South - Ukrainian, Tiligulskaya and Pokrovskaya) with a total capacity offrom 180 to 500 MW of wind farms with 2.3 MW power generators of wind turbines. It is shown that in the process of wind farm construction a contamination of the environment (air soil, ground water) may take place due to the working of construction equipment and vehicle, excavation, welding and other operations, in the exploitation of wind farm there can be created elevated levels of acoustic and electromagnetic pollution in the neighborhood and emergencies with the destruction of WPP in adverse weather conditions. Based on the calculations presented in the projects, and the analysis of data on the impact offoreign windfarm on the environment it was found that the limiting factor of the influence is the wind farm noise pollution in the audio frequency range that extends beyond the territory of wind fields, electromagnetic radiation is recorded within the hygienic standards and below only in the immediate vicinity of its sources (electrical equipment and power lines). For considered modern wind farms there was grounded sanitary protective zone with dimensions of 700 mfrom the outermost wind turbines by the noise and it was recommended compliance distance of200 mfrom the wind turbine to limit any activity and people staying in times of possible emergency situations in adverse weather conditions.

  14. Managing parking pressure concerns related to charging stations for electric vehicles : data analysis on the case of daytime charging in The Hague

    NARCIS (Netherlands)

    Wolbertus, R.; van den Hoed, R.

    2017-01-01

    With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public

  15. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.

    Science.gov (United States)

    Mehta, Ruchit; Chugh, Sunny; Chen, Zhihong

    2015-03-11

    Highly conductive copper nanowires (CuNWs) are essential for efficient data transfer and heat conduction in wide ranging applications like high-performance semiconductor chips and transparent conductors. However, size scaling of CuNWs causes severe reduction in electrical and thermal conductivity due to substantial inelastic surface scattering of electrons. Here we report a novel scalable technique for low-temperature deposition of graphene around CuNWs and observe strong enhancement of electrical and thermal conductivity for graphene-encapsulated CuNWs compared to uncoated CuNWs. Fitting the experimental data with the theoretical model for conductivity of CuNWs reveals significant reduction in surface scattering of electrons at the oxide-free CuNW surfaces, translating into 15% faster data transfer and 27% lower peak temperature compared to the same CuNW without the graphene coating. Our results provide compelling evidence for improved speed and thermal management by adapting the Cu-graphene hybrid technology in future ultrascaled silicon chips and air-stable flexible electronic applications.

  16. ANALYSIS OF THERMAL STATE OF TRACTION BRUSHLESS PERMANENT MAGNET MOTOR FOR MINE ELECTRIC LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    A. V. Matyuschenko

    2016-12-01

    Full Text Available Purpose. The study was conducted to analyze thermal state of the traction permanent magnet synchronous motor for mine electric battery locomotive when operating in continuous and short-time duty modes. These operating modes are selected for study, as they are typical for mine electric locomotives. Methodology. Thermal calculation was performed by means of FEM in three-dimensional formulation of problem using Jmag-Designer. Results. The modeling results of thermal state of the PMSM in continuous and short-time duty operation modes showed good agreement with experimental results. The results showed that the temperature of PM is higher than temperature of the stator winding in continuous operation mode. It was found that PM temperature might reach excessive values because of the high presence of eddy current losses in neodymium PM. Therefore, special attention in the design and testing of PMSM should be paid to the temperature of PM in various operation modes. Practical value. It was recommended to use high temperature permanent magnets in traction PMSM to avoid demagnetization of PM and performance degradation.

  17. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    Science.gov (United States)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  18. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  19. Dependence of electrical properties on thermal temperature in nanocrystalline SnO2 thin films.

    Science.gov (United States)

    Du, Juan; Zhang, HaiJiao; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L; Chen, Zhiwen

    2011-12-01

    Nanocrystalline SnO2 thin films were prepared by pulsed laser deposition techniques on clean glass substrates, and the films were then annealed for 30 min from 50 to 550 degrees C with a step of 50 degrees C, respectively. The investigation of X-ray diffraction confirmed that the various SnO2 thin films were consisted of nanoparticles with average grain size in the range of 23.7-28.9 nm. Root-mean-square surface roughness of the as-prepared SnO2 thin film was measured to be 25.6 nm which decreases to 16.2 nm with thermal annealing. Electrical resistivity and refractive index were measured as a function of annealing temperature, and found to lie between 1.24 to 1.45 momega-cm, and 1.502 to 1.349, respectively. The results indicate that nearly opposite actions to root-mean-square surface roughness and electrical resistivity make a unique performance with thermal annealing temperature. The post annealing shows greater tendency to affect the structural and electrical properties of SnO2 thin films which composed of nanoparticles.

  20. A β-cyclodextrin based binary dopant for polyaniline: Structural, thermal, electrical, and sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanushree; Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Shimpi, Navinchandra G., E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Kalina, Mumbai 400098, Maharashtra (India)

    2017-06-15

    Highlights: • A binary dopant based on β-cyclodextrin has been proposed for PANI. • The binary dopant provided long term stability to electrically conducting PANI. • The β-cyclodextrin based binary dopant rendered PANI sensitive towards CO at RT. - Abstract: The effect of hydrochloric acid/β-cyclodextrin (HCl/β-CD) binary dopant on the morphological, thermal, electrical, and sensing properties of PANI was investigated and compared with those of the conventionally doped PANI. The PANI samples were characterized using FTIR, UV–Vis, {sup 1}H NMR, and FESEM. Significant changes were observed in the structural, thermal, and electrical character of PANI doped with the HCl/β-CD binary dopant. A higher doping level was obtained for the PANI-binary dopant system, as observed from its {sup 1}H NMR spectra. Moreover, the binary dopant imparted long-term stability to the sensor in its conductive form. In addition, the PANI-binary dopant system exhibited a significantly high gas response towards carbon monoxide gas at room temperature.

  1. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Science.gov (United States)

    Farajpour, A.; Rastgoo, A.; Mohammadi, M.

    2017-03-01

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  2. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  3. Thermal effects on the electrical properties of (methyl orange)/ (polyvinyl alcohol) composites

    Science.gov (United States)

    de Oliveira, Helinando P.; de Melo, Celso P.

    2007-04-01

    We have used electrical impedance spectroscopy to determine the dielectric characteristics of polymeric films prepared by incorporating varying amounts of methyl orange (MO), an azobenzene dye, into solid films of polyvinyl alcohol (PVA), an insulating polymer. By mapping the variation of relevant parameters such as the dielectric relaxation time, we have analyzed how thermal effects would affect the charge transport and polarization processes in the MO/PVA composite samples as the frequency of an applied external field and the temperature were varied in a controlled manner. We interpret the results in terms of number and size of the dye aggregates in the polymeric matrix, by correlating thermal and polarization effects to the temperature and the relative amount of MO in the composite films. Finally, we show that the electrical characteristics of the MO/PVA samples can be modified by light incidence, a fact that confirms the possibility of using these composites in (light written)-(electrically read) solid-state memory devices.

  4. ANALISYS OF THE EFFICENCY OF THE SOURCES OF ELECTRIC AND THERMAL ENERGY IN VIEW OF SPECIFIC FUEL CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Postolaty V.M.

    2012-12-01

    Full Text Available Methodological approach to the evaluation of specific energy consumption of the primary fuel for electricity and heat for the various types of power plants is designed. Method of reduction electrical energy to a thermal unit is offered. Analysis of changes specific energy consumption for different shares of electric and heat energy in the total production of energy is held. Advantages of combined cycle power plants are shown.

  5. Global Freshwater Thermal Pollution from Steam-Electric Power Plants with Once-Through Cooling Systems

    Science.gov (United States)

    Raptis, C. E.; van Vliet, M. T. H.; Pfister, S.

    2015-12-01

    Thermoelectric power generation requires large amounts of cooling water. In facilities employing once-through cooling systems the heat removed in the power cycle is rejected directly into a water body. Several studies have focused on the impacts of power-related thermal emissions in Europe and the U.S., in terms of river temperature increase and the capacity for power production, especially in the light of legislative measures designed to protect freshwater bodies from excessive temperature. In this work we present a comprehensive, global analysis of current freshwater thermal pollution by thermoelectric facilities. The Platts World Electric Power Plant (WEPP) database was the principal data source. Data gaps in the principal parameters of the steam-electric power cycle were filled in by regression relationships developed in this work. Some 2400 steam-electric units using once-through freshwater cooling systems, amounting to 19% of the global installed capacity of thermoelectric units, were identified and georeferenced, and a global view of thermal emission rates was achieved by systematically solving the Rankine cycle on a power generating unit level. The rejected heat rates are linearly proportional to the steam flow rate, which in turn is directly proportional to the power produced. By applying the appropriate capacity factors, the rejected heat rate can be estimated for each unit or agglomeration of units at the desired temporal resolution. We coupled mean annual emission rates with the global gridded hydrological-river temperature model VIC-RBM to obtain a first view of river temperature increases resulting from power generation. The results show that in many cases, even on a mean annual emission rate basis and a relatively large spatial resolution of 0.5 x 0.5 degrees, the local limits for temperature increase are often exceeded, especially in the U.S. and Europe.

  6. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  7. Probing whole cell currents in high-frequency electrical fields: identification of thermal effects.

    Science.gov (United States)

    Olapinski, Michael; Manus, Stephan; Fertig, Niels; Simmel, Friedrich C

    2008-01-18

    An open-end coaxial probe is combined with a planar patch-clamp system to apply electric fields with GHz frequencies during conventional patch-clamp measurements. The combination of pulsed microwave irradiation and lock-in detection allows for the separation of fast and slow effects and hence facilitates the identification of thermal effects. The setup and the influence of radiation on the patch-clamp current are thoroughly characterized. For the independent optical verification of heating effects, a temperature microscopy technique is applied with high spatial, temporal and temperature resolution. It is shown that the effect of radiation at GHz frequencies on whole cell currents is predominantly thermal in nature in the case of RBL cells with an endogenous K(ir) 2.1 channel.

  8. Thermal oxidation and electrical properties of silicon carbide metal-oxide-semiconductor structures

    Science.gov (United States)

    Singh, N.; Rys, A.

    1993-02-01

    The fabrication of metal-oxide-semiconductor (MOS) capacitors on n-type, Si-face 6H-SiC is described for both wet and dry oxidation processes, and the effect of thermal oxidation conditions on the electrical properties of MOS capacitors are investigated. The values of the oxide thickness were obtained as a function of the oxidation time at various oxidation temperatures (which were kept between 1150 and 1250 C). It was found that samples prepared by both dry and wet oxidation showed accumulation, depletion, and inversion regions under illumination, while inversion did not occur under dark conditions. The C-V characteristics of oxidized samples were improved after the oxidized samples were annealed in argon for 30 min. The relation between the oxide thickness and the oxidation time could be expressed by parabolic law, which is also used for thermal oxidation of Si.

  9. Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Yasuki; Sugiyama, Yukiteru; Kubota, Mitsuhiro [Department of Energy Engineering and Science, Nagoya University, Furo-cho, Chikusaku, Nagoya City, Aichi ken 464-8603 (Japan); Watanabe, Fujio; Hasatani, Masanobu [Department of Mechanical Engineering, Aichi Institute of Technology, Yagusa-cho 470-0392 (Japan); Kobayashi, Noriyuki [Department of Ecotopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Kanamori, Mitihito [Energy Applications Research and Development Center, Chubu Electric Power Co., Inc., Nagoya (Japan)

    2008-09-15

    In Japan, a tremendous amount of heat energy below 373 K is discharged into the atmosphere as waste heat, accounting for approximately 80% of the heat loss. The widespread utilization of such low-temperature heat energy leads to the establishment of a highly efficient energy utilization system. A closed adsorption heat pump (adsorption heat pump) is desirable for achieving the above mentioned system because it can generate cooling power below 283 K for air conditioning by utilizing the low-temperature heat energy as the regeneration heat source of the adsorbent. However, the cooling power and coefficient of performance of the conventional thermally operated adsorption heat pump significantly decrease with the regeneration temperature. We have proposed a suction-pump-assisted thermal and electrical hybrid adsorption heat pump. In this pump, a mechanical booster pump (MBP) is incorporated into the thermally operated silica gel-water-type adsorption heat pump for promoting water vapor transportation between an adsorber and an evaporator/condenser. We have experimentally studied the effect of the MBP power on the heat output performance of the adsorption heat pump. It has been demonstrated that the proposed pump can achieve a heat output performance 1.6 times that of the thermally operated adsorption heat pump. (author)

  10. Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO

    DEFF Research Database (Denmark)

    Pindoriya, N.M.; Singh, Sri Niwas; Østergaard, Jacob

    2009-01-01

    integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a dayahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the dayahead...... in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting biobjective optimization problem which has both binary and continuous optimization variables considered as constrained mixed......This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead selfscheduling for thermal power producer in competitive electricity market. The objective functions considered to model the selfscheduling problem are: 1) to maximize the profit from selling energy...

  11. The performance of solar thermal electric power systems employing small heat engines

    Science.gov (United States)

    Pons, R. L.

    1980-02-01

    The paper presents a comparative analysis of small (10 to 100 KWe) heat engines for use with a solar thermal electric system employing the point-focusing, distributed receiver (PF-DR) concept. Stirling, Brayton, and Rankine cycle engines are evaluated for a nominal overall system power level of 1 MWe, although the concept is applicable to power levels up to at least 10 MWe. Multiple concentrators are electrically connected to achieve the desired plant output. Best performance is achieved with the Stirling engine, resulting in a system Levelized Busbar Energy Cost of just under 50 mills/kWH and a Capital Cost of $900/kW, based on the use of mass-produced components. Brayton and Rankine engines show somewhat less performance but are viable alternatives with particular benefits for special applications. All three engines show excellent performance for the small community application.

  12. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene

    Science.gov (United States)

    D'Souza, Ransell; Mukherjee, Sugata

    2017-02-01

    We report the transport properties of monolayer and bilayer graphene from first-principles calculations and Boltzmann transport theory (BTE). Our resistivity studies on monolayer graphene show Bloch-Grüneisen behavior in a certain range of chemical potentials. By substituting boron nitride in place of a carbon dimer of graphene, we predict a twofold increase in the Seebeck coefficient. A similar increase in the Seebeck coefficient for bilayer graphene under the influence of a small electric field ˜0.3 eV has been observed in our calculations. Graphene with impurities shows a systematic decrease of electrical conductivity and mobility. We have also calculated the lattice thermal conductivities of monolayer graphene and bilayer graphene using phonon BTE which show excellent agreement with experimental data available in the temperature range 300-700 K.

  13. Switching fixed skyrmions with electrical field in the presence of thermal noise

    Science.gov (United States)

    Bhattacharya, Dhritiman; Al-Rashid, Md Mamun; Atulasimha, Jayasimha

    Switching deterministically and reliably between core pointing up and core pointing down states of magnetic skyrmions could lead to an energy efficient paradigm for the realization of nanomagnetic memory. Perpendicular magnetic anisotropy (PMA) in a ferromagnet/oxide interface can be modulated by employing an electric field and thereby cause core reversal of magnetic skyrmions with an electric field without needing a magnetic field or spin current. Furthermore, in devices that are switched with spin current, voltage control of magnetic anisotropy can reduce the critical current density required for such a reversal. However, switching probability (error) in the presence of thermal noise in these reversal mechanisms is key to their performance. Here, we present stochastic magnetization dynamics simulations to establish switching error at room temperature, how it is impacted by intermediate magnetic states visited and interface properties (i.e. PMA and Dzyaloshinskii-Moriya interaction). This work is supported by NSF under Career Grant CCF-1253370.

  14. The performance of solar thermal electric power systems employing small heat engines

    Science.gov (United States)

    Pons, R. L.

    1980-01-01

    The paper presents a comparative analysis of small (10 to 100 KWe) heat engines for use with a solar thermal electric system employing the point-focusing, distributed receiver (PF-DR) concept. Stirling, Brayton, and Rankine cycle engines are evaluated for a nominal overall system power level of 1 MWe, although the concept is applicable to power levels up to at least 10 MWe. Multiple concentrators are electrically connected to achieve the desired plant output. Best performance is achieved with the Stirling engine, resulting in a system Levelized Busbar Energy Cost of just under 50 mills/kWH and a Capital Cost of $900/kW, based on the use of mass-produced components. Brayton and Rankine engines show somewhat less performance but are viable alternatives with particular benefits for special applications. All three engines show excellent performance for the small community application.

  15. MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES OF MALEIC ANHYDRIDE MODIFIED RICE HUSK FILLED PVC COMPOSITES

    OpenAIRE

    Navin Chand; Bhajan Das Jhod

    2008-01-01

    Unmodified and modified rice husk powder filled PVC composites were prepared having different amounts of rice husk powder. Mechanical, thermal, and electrical properties of these composites were determined. The tensile strength of rice husk powder PVC composites having 0, 10, 20, 30, and 40 weight percent of rice husk powder was found to be 33.9, 19.4, 18.1, 14.6, and 9.5 MPa, respectively. Adding of maleic anhydride- modified rice husk powder improved the tensile strength of rice husk powder...

  16. Study on the Microscopic Figures of Power Transformer Insulation Paper Under Electrical and Thermal Stresses

    Science.gov (United States)

    Liao, Rui-Jin; Tang, Chao; Yang, Li-Jun

    In this paper, Atomic Force Microscope (AFM) was used to observe the microscopic figure of aged insulation paper in order to analyze the microscopic ageing mechanism of power transformer insulation paper under electrical and thermal stresses. The results indicate that there are obvious concaves and convexes on the surface of aged insulation paper, and the paper samples are punctured because of chain scission and the flow of discharge current, which destroyed the compact cellulose chains structures and the diameter of punctures is about 0.5 nm. In addition, this paper analyzed the influence to the physical chemistry characteristics of insulation paper caused by partial discharge and paper ageing.

  17. Thermal stress comparison in modular power converter topologies for smart transformers in the electrical distribution system

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Liserre, Marco

    2015-01-01

    A Smart Transformer (ST) can cover an important managing role in the future electrical distribution grid. For the moment, the reliability and cost are not competitive with traditional transformers and create a barrier for its application. This work conduct detail designs and analysis...... for a promising modular ST solution, which is composed of Modular Multi-level converter, Quad Active Bridge DC-DC converters, and two-level voltage source converters. The focus is put on the loading conditions and thermal stress of power semiconductor devices in order to discover critical parts of the whole...

  18. Electrical Thermal Network for Direct Contact Membrane Distillation Modeling and Analysis

    KAUST Repository

    Karam, Ayman M.

    2015-02-04

    Membrane distillation is an emerging water distillation technology that offers several advantages compared to conventional water desalination processes. Although progress has been made to model and understand the physics of the process, many studies are based on steady-state assumptions or are computationally not appropriate for real time control. This paper presents the derivation of a novel dynamical model, based on analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). The proposed model captures the dynamics of temperature distribution and distilled water flux. To demonstrate the adequacy of the proposed model, validation with transient and steady-state experimental data is presented.

  19. Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Polystyrene- (PS- graphene nanoplatelets (GNP (0.1, 1, and 10 wt.% nanofibers were successfully produced via electrospining of dimethyformamide- (DMF- stabilized GNP and PS solutions. Morphological analysis of the composite nanofibers confirmed uniform fiber formation and good GNP dispersion/distribution within the PS matrix. The good physical properties of GNP produced by liquid exfoliation were transferred to the PS nanofibers. GNP modified PS nanofibers showed a 6-fold increase in the thermal conductivity and an increase of 7-8 orders of magnitude in electrical conductivity of the nanofibers at 10 wt.% GNP loading.

  20. A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2000-01-01

    In this paper we describe a generic, multi-component and multi-channel model for the analysis of superconducting cables. The aim of the model is to treat in a general and consistent manner simultaneous thermal, electric and hydraulic transients in cables. The model is devised for most general situations, but reduces in limiting cases to most common approximations without loss of efficiency. We discuss here the governing equations, and we write them in a matrix form that is well adapted to numerical treatment. We finally demonstrate the model capability by comparison with published experimental data on current distribution in a two-strand cable.

  1. NON-LINEAR MECHANICAL, ELECTRICAL AND THERMAL PHENOMENA IN PIEZOELECTRIC CRYSTALS

    Directory of Open Access Journals (Sweden)

    F.Warkusz

    2003-01-01

    Full Text Available Mechanical, electrical and thermal phenomena occurring in piezoelectric crystals were examined by non-linear approximation. For this purpose, use was made of the thermodynamic function of state, which describes an anisotropic body. Considered was the Gibbs function. The calculations included strain tensor εij=f(σkl,En,T, induction vector Dm=f(σkl,En,T and entropy S=f(σkl,En,T as function of stress σkl, field strength En and temperature difference T. The equations obtained apply to anisotropic piezoelectric bodies provided that the "forces" σkl, En, T acting on the crystal are known.

  2. Isolation and characterization of a thermotolerant ammonia-oxidizing bacterium Nitrosomonas sp. JPCCT2 from a thermal power station.

    Science.gov (United States)

    Itoh, Yoshikane; Sakagami, Keiko; Uchino, Yoshihito; Boonmak, Chanita; Oriyama, Tetsuro; Tojo, Fuyumi; Matsumoto, Mitsufumi; Morikawa, Masaaki

    2013-01-01

    A thermotolerant ammonia-oxidizing bacterium strain JPCCT2 was isolated from activated sludge in a thermal power station. Cells of JPCCT2 are short non-motile rods or ellipsoidal. Molecular phylogenetic analysis of 16S rRNA gene sequences demonstrated that JPCCT2 belongs to the genus Nitrosomonas with the highest similarity to Nitrosomonas nitrosa Nm90 (100%), Nitrosomonas sp. Nm148 (99.7%), and Nitrosomonas communis Nm2 (97.7%). However, G+C content of JPCCT2 DNA was 49.1 mol% and clearly different from N. nitrosa Nm90, 47.9%. JPCCT2 was capable of growing at temperatures up to 48 °C, while N. nitrosa Nm90 and N. communis Nm2 could not grow at 42°C. Moreover, JPCCT2 grew similarly at concentrations of carbonate 0 and 5 gL(-1). This is the first report that Nitrosomonas bacterium is capable of growing at temperatures higher than 37°C.

  3. Construction of Hekinan thermal power station. ; Founation of stacker and reclaimer. Hekinan karyoku hatsudensho. ; Chountanki kiso no kensetsu

    Energy Technology Data Exchange (ETDEWEB)

    Kanatani, Y.; Tamaki, S. (The Chubu Electric Power Co. Inc., Nagoya (Japan)); Ando, Y.; Nagai, S. (Fudo Construction Co. Ltd., Tokyo (Japan))

    1991-10-25

    Hekinan thermal power station is now being constructed at the site on the port of Kinuura in Chita Bay, Aichi Prefecture. Its coal yard has the ground with complex soil layer structures and weak strata of various thickness. Therefore the ground has been improved for the purpose of promoting the settlement due to consolidation and increasing the ground strength. The ballast as a direct foundation of total length 3.1km has been constructed on this ground. Various tests were carried out before constructing the ballast, and the results were reflected in the design. The most important problems to be solved in this construction were how to determine the ground reaction coefficient and how to grasp the residual settlement. The ground reaction coefficient was confirmed by the large plate load test, and the residual settlement was grasped in the reevaluation of the foundation ground of the ballast by the results of promoting consolidation. Consequently, consolidation due to load banking of the improved ground has been promoted a little more than expected, and there has been only a little residual settlement dueto the load of stackers and reclaimers. Thus the reinforcement of the ballast has been minimized. 5 refs., 17 figs., 5 tabs.

  4. Characterisation of fly ashes from 4th Thermal Power Station of Ulaanbaatar city and its applicability for a zeolite synthesis

    Directory of Open Access Journals (Sweden)

    J Temuujin

    2014-09-01

    Full Text Available Fly ash from 4th thermal power station of Ulaanbaatar city have been characterised by x-ray fluorescence (XRF, x-ray diffractometry (XRD, particle size analyzer, specific surface area measurement (BET and scanning electron microscope (SEM observation. It was found that fly ash from Baganuur coal contains over 15 wt.% of calcium oxide (CaO and could be assigned as class C fly ash, according to the International classification. Specific surface area of this fly ash was 2.75 m2/g and mean particle diameter was 59.5 μm. Zeolitic compounds were synthesised by using mixture of this fly ash and a transition aluminium oxide under hydrothermal treatment at 100, 150 and 200°C temperatures for a different duration. Various zeolitic compounds including Na-faujasite and sodium aluminosilicate were synthesised as reaction products.DOI: http://dx.doi.org/10.5564/mjc.v12i0.164 Mongolian Journal of Chemistry Vol.12 2011: 16-19 

  5. PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)

    Science.gov (United States)

    Andre, Pascal; Koalaga, Zacharie

    2012-02-01

    Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal

  6. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  7. Electrical properties and oxygen functionalities in ethanol-treated and thermally modified graphene oxide

    Science.gov (United States)

    Scalese, S.; Baldo, S.; D'Angelo, D.; Filice, S.; Bongiorno, C.; Reitano, R.; Fazio, E.; Conoci, S.; La Magna, A.

    2017-04-01

    Graphene-based materials are among the most innovative and promising materials for the development of high-performance sensing devices, mainly due to the large surface area and the possibility to modify their reactivity by suitable functionalization. In the field of sensing applications, the peculiarities of innovative materials can be exploited only if chemical and physical properties are fully understood and correlated with each other. To this aim, in this work, graphene oxide (GO) and ethanol-treated GO (GOEt) were investigated from chemical and structural points of view. Electrical characterization was performed by depositing GO and GOEt between two electrodes by dielectrophoresis. All the investigations were repeated on GO materials after thermal treatment in a low temperature range (60 °C-300 °C). Furthermore, the electrical conductivity of GO was investigated by changing the temperature and the environment (air or N2) during the characterization: an increase in the conductivity of the as-deposited GO was observed when the device is cooled down and this effect is reversible with the temperature. GOEt and the thermally treated GO and GOEt show an opposite trend, confirming the key role of the oxygen functionalities in the conduction mechanisms and, therefore, in the conductivity of the GO layers.

  8. An Investigation on the Coupled Thermal-Mechanical-Electrical Response of Automobile Thermoelectric Materials and Devices

    Science.gov (United States)

    Chen, Gang; Mu, Yu; Zhai, Pengcheng; Li, Guodong; Zhang, Qingjie

    2013-07-01

    Thermoelectric (TE) materials, which can directly convert heat to electrical energy, possess wide application potential for power generation from waste heat. As TE devices in vehicle exhaust power generation systems work in the long term in a service environment with coupled thermal-mechanical-electrical conditions, the reliability of their mechanical strength and conversion efficiency is an important issue for their commercial application. Based on semiconductor TE devices wih multiple p- n couples and the working environment of a vehicle exhaust power generation system, the service conditions of the TE devices are simulated by using the finite-element method. The working temperature on the hot side is set according to experimental measurements, and two cooling methods, i.e., an independent and shared water tank, are adopted on the cold side. The conversion efficiency and thermal stresses of the TE devices are calculated and discussed. Numerical results are obtained, and the mechanism of the influence on the conversion efficiency and mechanical properties of the TE materials is revealed, aiming to provide theoretical guidance for optimization of the design and commercial application of vehicle TE devices.

  9. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery

    Science.gov (United States)

    Rahimi, Mohammad; D'Angelo, Adriana; Gorski, Christopher A.; Scialdone, Onofrio; Logan, Bruce E.

    2017-05-01

    Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m-2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m-2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m-3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process.

  10. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

    Science.gov (United States)

    Hadadian, Mahboobeh; Goharshadi, Elaheh K.; Youssefi, Abbas

    2014-12-01

    Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO-ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s-1. Thermal conductivity enhancement of 30 % was obtained for GO-ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

  11. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis

    KAUST Repository

    Karam, Ayman M.

    2016-09-19

    Membrane distillation (MD) is an emerging water desalination technology that offers several advantages compared to conventional desalination methods. Although progress has been made to model the physics of the process, there are two common limitations of existing models. Firstly, many of the models are based on the steady-state analysis of the process and secondly, some of the models are based on partial differential equations, which when discretized introduce many states which are not accessible in practice. This paper presents the derivation of a novel dynamic model, based on the analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). An analogous electrical thermal network is constructed and its elements are parameterized such that the response of the network models the DCMD process. The proposed model captures the spatial and temporal responses of the temperature distribution along the flow direction and is able to accurately predict the distilled water flux output. To demonstrate the adequacy of the proposed model, validation with time varying and steady-state experimental data is presented. (C) 2016 Elsevier Ltd. All rights reserved.

  12. Submerged AUV Charging Station

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    causes the AUV to rise, and emptying of the bladder allows the AUV to descend. This type of direct buoyancy control is much more energy efficient than using electrical pumps in that the inefficiencies of converting thermal energy to electrical energy to mechanical energy is avoided. AUV charging stations have been developed that use electricity produced by waves on floating buoys and that use electricity from solar photovoltaics on floating buoys. This is the first device that has absolutely no floating or visible parts, and is thus impervious to storms, inadvertent ocean vessel collisions, or enemy sabotage.

  13. Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping

    Science.gov (United States)

    Torres Arango, Maria A.

    Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO

  14. Carbon nanofiber reinforced epoxy matrix composites and syntactic foams - mechanical, thermal, and electrical properties

    Science.gov (United States)

    Poveda, Ronald Leonel

    The tailorability of composite materials is crucial for use in a wide array of real-world applications, which range from heat-sensitive computer components to fuselage reinforcement on commercial aircraft. The mechanical, electrical, and thermal properties of composites are highly dependent on their material composition, method of fabrication, inclusion orientation, and constituent percentages. The focus of this work is to explore carbon nanofibers (CNFs) as potential nanoscale reinforcement for hollow particle filled polymer composites referred to as syntactic foams. In the present study, polymer composites with high weight fractions of CNFs, ranging from 1-10 wt.%, are used for quasi-static and high strain rate compression analysis, as well as for evaluation and characterization of thermal and electrical properties. It is shown that during compressive characterization of vapor grown carbon nanofiber (CNF)/epoxy composites in the strain rate range of 10-4-2800 s-1, a difference in the fiber failure mechanism is identified based on the strain rate. Results from compression analyses show that the addition of fractions of CNFs and glass microballoons varies the compressive strength and elastic modulus of epoxy composites by as much as 53.6% and 39.9%. The compressive strength and modulus of the syntactic foams is also shown to generally increase by a factor of 3.41 and 2.96, respectively, with increasing strain rate when quasi-static and high strain rate testing data are compared, proving strain rate sensitivity of these reinforced composites. Exposure to moisture over a 6 month period of time is found to reduce the quasi-static and high strain rate strength and modulus, with a maximum of 7% weight gain with select grades of CNF/syntactic foam. The degradation of glass microballoons due to dealkalization is found to be the primary mechanism for reduced mechanical properties, as well as moisture diffusion and weight gain. In terms of thermal analysis results, the

  15. Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility

    Science.gov (United States)

    Neubauer, Jeremy; Wood, Eric

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility that is affected by driver aggression and effects of climate-both directly on battery temperature and indirectly through the loads of cabin and battery thermal management systems. Utility is further affected as the battery wears through life in response to travel patterns, climate, and other factors. In this paper we apply the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to driver aggression and climate effects over the life of the vehicle. We find the primary challenge to cold-climate BEV operation to be inefficient cabin heating systems, and to hot-climate BEV operation to be high peak on-road battery temperatures and excessive battery degradation. Active cooling systems appear necessary to manage peak battery temperatures of aggressive, hot-climate drivers, which can then be employed to maximize thru-life vehicle utility.

  16. THERMAL AND ELECTRIC FIELDS AT SPARK PLASMA SINTERING OF THERMOELECTRIC MATERIALS

    Directory of Open Access Journals (Sweden)

    L. P. Bulat

    2014-09-01

    Full Text Available Problem statement. Improvement of thermoelectric figure of merit is connected with the usage of nanostructured thermoelectric materials fabricated from powders by the spark plasma sintering (SPS method. Preservation of powder nanostructure during sintering is possible at optimum temperature modes of thermoelectrics fabrication. The choice of these modes becomes complicated because of anisotropic properties of semiconductor thermoelectric materials. The decision of the given problem by sintering process simulation demands the competent approach to the problem formulation, a correct specification of thermoelectric properties, the properties of materials forming working installation, and also corrects boundary conditions. The paper deals with the efficient model for sintering of thermoelectrics. Methods. Sintering process of the bismuth telluride thermoelectric material by means of SPS-511S installation is considered. Temperature dependences of electric and thermal conductivities of bismuth telluride, and also temperature dependences of installation elements materials are taken into account. It is shown that temperature distribution in the sample can be defined within the limits of a stationary problem. The simulation is carried out in the software product Comsol Multiphysics. Boundary conditions include convective heat exchange and also radiation under Stefan-Boltzmann law. Results. Computer simulation of electric and thermal processes at spark plasma sintering is carried out. Temperature and electric potential distributions in a sample are obtained at the sintering conditions. Determinative role of graphite compression mould in formation of the temperature field in samples is shown. The influence of geometrical sizes of a graphite compression mould on sintering conditions of nanostructured thermoelectrics is analyzed. Practical importance. The optimum sizes of a cylindrical compression mould for fabrication of volume homogeneous samples based on

  17. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

    Science.gov (United States)

    Salvador, James R.; Cho, Jung Y.; Ye, Zuxin; Moczygemba, Joshua E.; Thompson, Alan J.; Sharp, Jeffrey W.; König, Jan D.; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A.; Meisner, Gregory P.

    2013-07-01

    The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

  18. Electrical, Thermal, and Morphological Properties of Poly(ethylene terephthalate-Graphite Nanoplatelets Nanocomposites

    Directory of Open Access Journals (Sweden)

    Basheer A. Alshammari

    2017-01-01

    Full Text Available Graphite nanoplatelets (GNP were incorporated with poly(ethylene terephthalate (PET matrix by melt-compounding technique using minilab compounder to produce PET-GNP nanocomposites, and then the extruded nanocomposites were compressed using compression molding to obtain films of 1 mm thickness. Percolation threshold value was determined using percolation theory. The electrical conductivity, morphology, and thermal behaviors of these nanocomposites were investigated at different contents of GNP, that is, below, around, and above its percolation threshold value. The results demonstrated that the addition of GNP at loading >5 wt.% made electrically conductive nanocomposites. An excellent electrical conductivity of ~1 S/m was obtained at 15 wt.% of GNP loading. The nanocomposites showed a typical insulator-conductor transition with a percolation threshold value of 5.7 wt.% of GNP. In addition, increasing screw speed enhanced the conductivity of the nanocomposites above its threshold value by ~2.5 orders of magnitude; this behavior is attributed to improved dispersion of these nanoparticles into the PET matrix. Microscopies results exhibited no indication of aggregations at 2 wt.% of GNP; however, some rolling up at 6 wt.% of GNP contents was observed, indicating that a conductive network has been formed, whereas more agglomeration and rolling up could be seen as the GNP content is increased in the PET matrix. These agglomerations reduced their aspect ratio and then reduced their reinforcement efficiency. NP loading (>2 wt.% increased degree of crystallinity and improved thermal stability of matrix slightly, suggesting that 2 wt.% of GNP is more than enough to nucleate the matrix.

  19. Cellulose-Templated Graphene Monoliths with Anisotropic Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Zhang, Rujing; Chen, Qiao; Zhen, Zhen; Jiang, Xin; Zhong, Minlin; Zhu, Hongwei

    2015-09-02

    Assembling particular building blocks into composites with diverse targeted structures has attracted considerable interest for understanding its new properties and expanding the potential applications. Anisotropic organization is considered as a frequently used targeted architecture and possesses many peculiar properties because of its unusual shapes. Here, we show that anisotropic graphene monoliths (AGMs), three-dimensional architectures of well-aligned graphene sheets obtained by a dip-coating method using cellulose acetate fibers as templates show thermal-insulating, fire-retardant, and anisotropic properties. They exhibit a feature of higher mechanical strength and thermal/electrical conductivities in the axial direction than in the radial direction. Elastic polymer resins are then introduced into the pores of the AGMs to form conductive and flexible composites. The composites, as AGMs, retain the unique anisotropic properties, revealing opposite resistance change under compressions in different directions. The outstanding anisotropic properties of AGMs make them possible to be applied in the fields of thermal insulation, integrated circuits, and electromechanical devices.

  20. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.

    Science.gov (United States)

    Barrios-Vargas, José Eduardo; Mortazavi, Bohayra; Cummings, Aron W; Martinez-Gordillo, Rafael; Pruneda, Miguel; Colombo, Luciano; Rabczuk, Timon; Roche, Stephan

    2017-03-08

    We present a theoretical study of electronic and thermal transport in polycrystalline heterostructures combining graphene (G) and hexagonal boron nitride (hBN) grains of varying size and distribution. By increasing the hBN grain density from a few percent to 100%, the system evolves from a good conductor to an insulator, with the mobility dropping by orders of magnitude and the sheet resistance reaching the MΩ regime. The Seebeck coefficient is suppressed above 40% mixing, while the thermal conductivity of polycrystalline hBN is found to be on the order of 30-120 Wm(-1) K(-1). These results, agreeing with available experimental data, provide guidelines for tuning G-hBN properties in the context of two-dimensional materials engineering. In particular, while we proved that both electrical and thermal properties are largely affected by morphological features (e.g., by the grain size and composition), we find in all cases that nanometer-sized polycrystalline G-hBN heterostructures are not good thermoelectric materials.

  1. Aggregation of egg white proteins with pulsed electric fields and thermal processes.

    Science.gov (United States)

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu; Sun, Qianyan

    2016-08-01

    Pulsed electric field (PEF) processing is progressing towards application for liquid egg to ensure microbial safety. However, it usually causes protein aggregation, and the mechanism is still unclear. In this study, egg white protein was applied to investigate the changes in protein structure and mechanism of aggregates formation and a comparison was made with thermal treatment. Soluble protein content decreased with the increase of turbidity after both treatments. Fluorescence intensity and free sulfhydryl content were increased after being treated at 70 °C for 4 min. Less-remarkable changes of hydrophobicity were observed after PEF treatments (30 kV cm(-1) , 800 µs). Soluble and insoluble aggregates were observed by thermal treatment, and disulfide bonds were the main binding forces. The main components of insoluble aggregates formed by thermal treatment were ovotransferrin (30.58%), lysozyme (18.47%) and ovalbumin (14.20%). While only insoluble aggregates were detected during PEF processes, which consists of ovotransferrin (11.86%), lysozyme (21.11%) and ovalbumin (31.07%). Electrostatic interaction played a very important role in the aggregates formation. PEF had a minor impact on the structure of egg white protein. PEF had insignificant influence on heat-sensitive protein, indicating that PEF has potential in processing food with high biological activity and heat sensitive properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Structural, Thermal, and Electrical Properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Noorhanim Ahad

    2012-01-01

    Full Text Available Structural, thermal, and electrical properties of solid composite polymer electrolytes based on poly (vinyl alcohol complexed with sodium salicylate were studied. The polymer electrolytes at different weight percent ratios were prepared by solution casting technique. The changes in the structures of the electrolytes were characterized by XRD, which revealed the amorphous domains of the polymer which increased with increase of sodium salicylate concentration. The complexion of the polymer electrolytes were confirmed by FTIR studies. Thermal gravimetric analysis (TGA was used to study the thermal stability of the polymer below 523 K. The decomposition decreases with increasing sodium salicylate concentration. The conductivity and dielectric properties were measured using an impedance analyzer in frequency range of 20 Hz to 1 MHz and narrow temperature range of 303 to 343 K. The conductivity increased with increase of sodium salicylate concentration and temperature. The dielectric constant and dielectric loss increased with the increase in temperature and decreased with the increase in sodium salicylate concentration.

  3. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  4. Enhanced Structural, Thermal, and Electrical Properties of Multiwalled Carbon Nanotubes Hybridized with Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yusliza Yusof

    2016-01-01

    Full Text Available The objective of this study is to evaluate the structural, thermal, and electrical properties of multiwalled carbon nanotubes (MWNT hybridized with silver nanoparticles (AgNP obtained via chemical reduction of aqueous silver salt assisted with sodium dodecyl sulphate (SDS as stabilizing agent. Transmission electron microscopy (TEM reveals microstructural analysis of the MWNT-Ag hybrids. The Fourier transform infrared (FTIR spectra prove the interactions between the AgNP and carboxyl groups of the MWNT. Raman spectra reveal that the D- to G-band intensity ratios ID/IG and ID′/IG increase upon the deposition of AgNP onto the surface of the MWNT. Thermogravimetric analysis (TGA shows that the MWNT-Ag hybrids decompose at a much faster rate and the weight loss decreased considerably due to the presence of AgNP. Nonlinearity of current-voltage (I-V curves indicates that electrical transport of pristine MWNT is enhanced when AgNP is induced as charge carriers in the MWNT-Ag hybrids. The threshold voltage Vth value for the MWNT doped with a maximum of 70 vol% of AgNP was substantially reduced by 65% relative to the pristine MWNT. The MWNT-Ag hybrids have a favourable electrical characteristic with a low threshold voltage that shows enhancement mode for field-effect transistor (FET applications.

  5. Investigation of thermal and electrical stabilities of a GdBCO coil using grease as an insulation material for practical superconducting applications.

    Science.gov (United States)

    Kang, D H; Kim, K L; Kim, Y G; Park, Y J; Kim, W J; Kim, S H; Lee, H G

    2014-09-01

    This paper presents the effects of thermal grease on the electrical and thermal characteristics of GdBCO pancake coils, observed through charge-discharge, sudden discharge, over-current, and thermal quench testing. In charge-discharge and sudden discharge tests, a coil using thermal grease as an insulation material demonstrated faster charging/discharging rates compared to a coil without turn-to-turn insulation. In the case of over-current tests, the coil using thermal grease exhibited the highest electrical stability. Furthermore, thermal quench testing showed the coil employing thermal grease to possess superior thermal characteristics, with rapid cooling and low temperature rise. Overall, the use of thermal grease as an insulation material may be a potential solution to the problems observed with the existing insulation materials, possessing fast charging/discharging rates with superior thermal and electrical stabilities.

  6. Effect of water chemistry upsets on the dynamics of corrective reagent dosing systems at thermal power stations

    Science.gov (United States)

    Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min

    2016-12-01

    Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.

  7. A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yan Bao

    2018-01-01

    Full Text Available Fast charging stations enable the high-powered rapid recharging of electric vehicles. However, these stations also face challenges due to power fluctuations, high peak loads, and low load factors, affecting the reliable and economic operation of charging stations and distribution networks. This paper introduces a battery energy storage system (BESS for charging load control, which is a more user-friendly approach and is more robust to perturbations. With the goals of peak-shaving, total electricity cost reduction, and minimization of variation in the state-of-charge (SOC range, a BESS-based bi-level optimization strategy for the charging load regulation of fast charging stations is proposed in this paper. At the first level, a day-ahead optimization strategy generates the optimal planned load curve and the deviation band to be used as a reference for ensuring multiple control objectives through linear programming, and even for avoiding control failure caused by insufficient BESS energy. Based on this day-ahead optimal plan, at a second level, real-time rolling optimization converts the control process to a multistage decision-making problem. The predictive control-based real-time rolling optimization strategy in the proposed model was used to achieve the above control objectives and maintain battery life. Finally, through a horizontal comparison of two control approaches in each case study, and a longitudinal comparison of the control robustness against different degrees of load disturbances in three cases, the results indicated that the proposed control strategy was able to significantly improve the charging load characteristics, even with large disturbances. Meanwhile, the proposed approach ensures the least amount of variation in the range of battery SOC and reduces the total electricity cost, which will be of a considerable benefit to station operators.

  8. Characterization of Copper Coatings Deposited by High-Velocity Oxy-Fuel Spray for Thermal and Electrical Conductivity Applications

    Science.gov (United States)

    Salimijazi, H. R.; Aghaee, M.; Salehi, M.; Garcia, E.

    2017-11-01

    Copper coatings were deposited on steel substrates by high-velocity oxy-fuel spraying. The microstructure of the feedstock copper powders and free-standing coatings were evaluated by optical and scanning electron microscopy. The x-ray diffraction pattern was utilized to determine phase compositions of powders and coatings. Oxygen content was determined by a LECO-T300 oxygen determiner. The thermal conductivity of the coatings was measured in two directions, through-thickness and in-plane by laser flash apparatus. The electrical resistivity of the coatings was measured by the four-point probe method. Oxygen content of the coatings was two times higher than that of the initial powders (0.35-0.37%). The thermal and electrical conductivities of the coatings were different depending on the direction of the measurement. The thermal and electrical conductivity of the coatings improved after annealing for 6 h at a temperature of 600°C.

  9. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  10. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments

    Science.gov (United States)

    Knudsen, D. J.; Burchill, J. K.; Buchert, S. C.; Eriksson, A. I.; Gill, R.; Wahlund, J.-E.; Öhlen, L.; Smith, M.; Moffat, B.

    2017-02-01

    The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low-frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field B→ are determined through ion drift velocity v→i and magnetic field measurements via the relation E→⊥=-v→i×B→. Ion drift is derived from two-dimensional images of low-energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes; v→i is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature Te. The TII sensors use a microchannel-plate-intensified phosphor screen imaged by a charge-coupled device to generate high-resolution distribution images (66 × 40 pixels) at a rate of 16 s-1. Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s-1; these include v→i, E→⊥, and ion temperature Ti in addition to electron temperature Te and plasma density ne from the LPs.

  11. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation.

    Science.gov (United States)

    Agcam, E; Akyıldız, A; Akdemir Evrendilek, G

    2014-01-15

    Processing of orange juice by pulsed electric fields (PEF) and thermal pasteurisation was carried out to compare changes in total phenolic concentration, hydroxybenzoic acid, hydroxycinnamic acids, flavonols, flavones and flavonones before and after being stored at 4°C for 180days. Changes in the initial total phenolic concentration of the samples varied depending on the applied electric field intensity and thermal pasteurisation. Hesperidin and chlorogenic acids were detected as the most abounded flavonoid and phenolic acids in the orange juice, respectively. Except for syringic acid and neoeriocitrin, the concentration of the phenolic compounds indentified in the orange juice samples enhanced after the PEF or thermal pasteurisation. The samples treated with PEF had more stable flavonoids and phenolic acids than those treated with the thermal pasteurisation. The PEF-treated samples had higher sensory scores than the heat-treated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  13. A sub-μs thermal time constant electrically driven Pt nanoheater: thermo-dynamic design and frequency characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ottonello Briano, Floria, E-mail: floria@kth.se; Sohlström, Hans; Forsberg, Fredrik; Stemme, Göran; Gylfason, Kristinn B. [Micro and Nanosystems, KTH Royal Institute of Technology, Osquldas väg 10, SE-100 44 Stockholm (Sweden); Renoux, Pauline; Ingvarsson, Snorri [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík (Iceland)

    2016-05-09

    Metal nanowires can emit coherent polarized thermal radiation, work as uncooled bolometers, and provide localized heating. In this paper, we engineer the temperature dynamics of electrically driven Pt nanoheaters on a silicon-on-insulator substrate. We present three designs and we electrically characterize and model their thermal impedance in the frequency range from 3 Hz to 3 MHz. Finally, we show a temperature modulation of 300 K while consuming less than 5 mW of power, up to a frequency of 1.3 MHz. This result can lead to significant advancements in thermography and absorption spectroscopy.

  14. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    Science.gov (United States)

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  15. Effects of temperature dependence of electrical and thermal conductivities on the heating of a one dimensional conductor

    Science.gov (United States)

    Antoulinakis, Foivos; Zhang, Peng; Lau, Y. Y.; Chernin, David

    2016-10-01

    Dependence of electrical conductivity on temperature gives rise to electrotheramal instability, an important instability for Z-pinches. In other areas, ohmic heating limits the operation of nanoscale circuits such as graphene electronics, carbon nanofiber based field emitters, and nanolasers. For many applications, it is important to consider the temperature dependence of the thermal and electrical conductivities when calculating the effects of ohmic heating. We examine the effects of linear temperature dependence of the electrical and thermal conductivities on the heating of a one-dimensional conductor by solving the coupled non-linear steady state electrical and thermal conduction equations. We find that there are conditions under which no steady state solution exists. In the special case in which the temperature dependence of the electrical conductivity may be neglected, we have obtained explicit expressions for these conditions. The maximum temperature and its location within the conductor are examined for various boundary conditions. We note that the absence of a steady state solution may indicate the possibility of thermal runaway. Work supported by AFOSR No. FA9550-14-1-0309, and by L-3 Communications.

  16. A Novel Identification Method of Thermal Resistances of Thermoelectric Modules Combining Electrical Characterization Under Constant Temperature and Heat Flow Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane

    2016-11-01

    Full Text Available The efficiency of a Thermoelectric Module (TEM is not only influenced by the material properties, but also by the heat losses due to the internal and contact thermal resistances. In the literature, the material properties are mostly discussed, mainly to increase the well-known thermoelectric figure of merit ZT. Nevertheless, when a TEM is considered, the separate characterization of the materials of the p and n elements is not enough to have a suitable TEM electrical model and evaluate more precisely its efficiency. Only a few recent papers deal with thermal resistances and their influence on the TEM efficiency; mostly, the minimization of these resistances is recommended, without giving a way to determine their values. The aim of the present paper is to identify the internal and contact thermal resistances of a TEM by electrical characterization. Depending on the applications, the TEM can be used either under constant temperature gradient or constant heat flow conditions. The proposed identification approach is based on the theoretical electrical modeling of the TEM, in both conditions. It is simple to implement, because it is based only on open circuit test conditions. A single electrical measurement under both conditions (constant-temperature and constant-heat is needed. Based on the theoretical electrical models, one can identify the internal and thermal resistances.

  17. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  18. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity

    Science.gov (United States)

    Ding, Jiheng; Rahman, Obaid ur; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-01

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (˜10.0 mg ml-1) and an extraordinary production yield (˜100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 104 S m-1 and a superior thermal conductivity of 1842 W m-1 K-1. Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  19. Transport in organic semiconductors in large electric fields: From thermal activation to field emission

    Science.gov (United States)

    Worne, J. H.; Anthony, J. E.; Natelson, D.

    2010-02-01

    Understanding charge transport in organic semiconductors in large electric fields is relevant to many applications. We present transport measurements in organic field-effect transistors based on poly(3-hexylthiophene) and 6,13-bis(triisopropyl-silylethynyl) (TIPS) pentacene with short channels, from room temperature down to 4.2 K. Near 300 K transport in both systems is well described by thermally assisted hopping with Poole-Frenkel-type enhancement of the mobility. At low temperatures and large gate voltages, transport in both materials becomes nearly temperature independent, crossing over into field-driven tunneling. These data, particularly in TIPS-pentacene, show that great caution must be exercised when considering more exotic (e.g., Tomonaga-Luttinger liquid) interpretations of transport.

  20. The thermal treatment of electric arc furnace dust under low gas phase pressure

    Directory of Open Access Journals (Sweden)

    W. Derda

    2009-04-01

    Full Text Available The paper presents the results of laboratory tests on the process of thermal reduction of electric arc furnace dust (EAFD in the temperature range from 1273 to 1473 K. Before proceeding to the experimental tests, a thermodynamic analysis was made using the computer program FactSage® with the aim of determining the optimal conditions for the dust components reduction reaction to proceed. The results of tests carried out, respectively, under atmospheric pressure conditions and under reduced pressure conditions are presented, where carbon in the form of graphite and blast-furnace dust (containing approx. 40 % of carbon was used as the reducer. The test results represent the effect of reduced pressure on the potential for intensifying the process of zinc removal from the dust. The degree of zinc extraction was considerably higher compared to the results of tests carried out under atmospheric pressure conditions.

  1. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

  2. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  3. Comparative evaluation of distributed-collector solar thermal electric power plants

    Science.gov (United States)

    Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.

    1978-01-01

    Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.

  4. Synthesis of RGO-ZnO Composites for Thermal, Electrical and Antibacterial Studies

    Science.gov (United States)

    Thakur, Alpana; Kumar, Sunil; Pathania, Pooja; Pathak, Dinesh; Rangra, V. S.

    Materials composed of single or a few pure/modified graphitic layers can be easily synthesized using chemical methods. In the present work, nanocomposites of reduced graphene oxide (RGO) with zinc oxide (ZnO) have been prepared via in situ reduction of graphite oxide (GO). X-ray diffraction spectra (XRD) confirmed the coexistence of RGO and ZnO crystal planes. The XRD results were complimented by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Incorporation of ZnO phase into the graphitic layers has been identified with the help of scanning electron microscopy (SEM). Incorporation of ZnO into graphitic layers has enhanced the thermal and optical characteristics of RGO but turned out with the reduced electrical conductivity. These nanocomposites illustrated fascinating antimicrobial activities against human pathogens E. coli and S. aureus.

  5. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    Science.gov (United States)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  6. The production of electrical and thermal energy from the exhaust gas heat of preheater kilns

    Energy Technology Data Exchange (ETDEWEB)

    Lang, T.A.; Mosimann, P.

    1984-05-01

    It is shown, by means of an example, i.e., a 1600-ton/day four-stage suspension preheater kiln of a cement factory, that the waste heat present in the exhaust gases can be converted into useful electrical and thermal energy. This is possible even though the exhaust gases are heavily loaded with dust. The heat recovery system installed in 1981/1982 in a Swiss cement plant and the respective production line are described in detail. A comprehensive explanation is given concerning the experience of the first operating year, the interaction of the new plant with the existing production facilities, and the current measured technical data. The performance limits for economic operation are explained and the decision criteria quoted. Further applications of the successfully tested heat recovery system can be expected wherever heat sources in the form of heavily loaded gases are available.

  7. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  8. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Edelio Danguillecourt, E-mail: edelioalvarez42@gmail.com [Instituto Superior Minero Metalúrgico (ISMM), Moa 83300 (Cuba); Laffita, Yodalgis Mosqueda, E-mail: yodalgis@imre.uh.cu [Institute of Materials Science and Technology-Havana University, La Habana 10400 (Cuba); Montoro, Luciano Andrey, E-mail: landrey.montoro@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 (Brazil); Della Santina Mohallem, Nelcy, E-mail: nelcydsm@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 (Brazil); Cabrera, Humberto, E-mail: hcabrera@ictp.it [SPIE-ICTP Anchor Research in Optics Program Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste 34151 (Italy); Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas (IVIC), 5101 Mérida (Venezuela, Bolivarian Republic of); Pérez, Guillermo Mesa, E-mail: guille@ceaden.edu.cu [National Center for Technological Research (CEADEN), La Habana 10400 (Cuba); Frutis, Miguel Aguilar, E-mail: mafrutis@yahoo.es [CICATA-IPN, Legaria 694, Col. Irrigacion, Del., Miguel Hidalgo CP 11500 (Mexico); Cappe, Eduardo Pérez, E-mail: cappe@imre.uh.cu [Institute of Materials Science and Technology-Havana University, La Habana 10400 (Cuba)

    2017-02-15

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m{sup 2} g{sup −1}). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10{sup −7} m{sup 2} s{sup −1}) and conductivity (1.1 W m{sup −1} K{sup −1}) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173–293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g{sup −1} was reached. - Graphical abstract: TEM image and electrochemistry behavior of a new graphene oxide-like carbon. - Highlights: • A high disordered graphene oxide-like conducting carbon is reported. • The synthesis was based on palygorskite and sugar cane molasses as precursors. • The disordered conducting carbon is composed of doped- graphene heterogeneous domains. • This material combines a large specific surface area and high electric conductivity. • The thermophysical and electrochemical properties of this material reveal adequate behavior.

  9. The Effects of Cryomilling CNTs on the Thermal and Electrical Properties of CNT/PMMA Composites

    Directory of Open Access Journals (Sweden)

    Garima Mittal

    2016-04-01

    Full Text Available In this study, the cryomilling of carbon nanotubes (CNTs was carried out to accomplish better dispersion without using any hazardous chemicals. Accordingly, different samples of CNTs were prepared by varying the milling speed (10, 20, and 25 Hz and time (5, 10, and 15 min and incorporated into the poly(methyl methacrylate (PMMA matrix. The changes of the morphology were analyzed by utilizing a field emission scanning electron microscope (FESEM and a high-resolution transmission electron microscope (TEM. Qualitative analysis of the cryomilled CNTs was carried out using Raman spectroscopy, and their surface area was determined via Brunauer–Emmett–Teller (BET analysis. Subsequently, thermogravimetric analysis was conducted to evaluate the thermal properties, whereas the surface resistivity and electromagnetic interference shielding effectiveness for the electrical conductivity were also examined. It was observed that the composite with Cr-20-10 showed better thermal stability and lower resistivity in comparison to the others because, as the cryomilling time and frequency increased the distribution, dispersion and surface area also increased. Consequently, a better interaction between CNTs and PMMA took place.

  10. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    Science.gov (United States)

    Alvarez, Edelio Danguillecourt; Laffita, Yodalgis Mosqueda; Montoro, Luciano Andrey; Della Santina Mohallem, Nelcy; Cabrera, Humberto; Pérez, Guillermo Mesa; Frutis, Miguel Aguilar; Cappe, Eduardo Pérez

    2017-02-01

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmett-Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m2 g-1). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10-7 m2 s-1) and conductivity (1.1 W m-1 K-1) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173-293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g-1 was reached.

  11. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  12. Thermal, Mechanical, and Electrical Properties of Graphene Nanoplatelet/Graphene Oxide/ Polyurethane Hybrid Nanocomposite.

    Science.gov (United States)

    Pokharel, Pashupati; Lee, Sang Hyub; Lee, Dai Soo

    2015-01-01

    Hybrid nanocomposites of polyurethane (PU) were prepared by in-situ polymerization of 4,4'- diphenyl methane diisocyanate (MDI) with mixture of graphene oxide (GO) and graphene nanoplatelet (GNP) dispersed in a poly(tetramethylene ether glycol) (PTMEG). Effects of the fillers, GO and GNP, on the thermal, mechanical, and electrical properties of the nanocomposites of PU were investigated. Sonication of the hybrid of GNP and GO with PTMEG enabled effective dispersion of the fillers in the solution than the sonication of GNP alone. The addition of PTMEG in the solution prevented the GNPs from the restacking during the drying process. It was observed that the electrical conductivity and mechanical property of the nanocomposites based on the hybrid of GO and GNP were superior to the nanocomposite based on GNP alone at the same loading of the filler. At the loading of the 3 wt% hybrid filler in PU, we observed the improvement of Young's modulus -200% and the surface resistivity of 10(9.5) ohm/sq without sacrificing the elongation at break.

  13. Feasibility study of Thermal Electric Generator Configurations as Renewable Energy Sources

    Science.gov (United States)

    Akmal Johar, Muhammad; Yahaya, Zulkarnain; Faizan Marwah, Omar Mohd; Jamaludin, Wan Akashah Wan; Najib Ribuan, Mohamed

    2017-10-01

    Thermoelectric Generator is a solid state device that able to convert thermal energy into electrical energy via temperature differences. The technology is based on Seebeck effect that was discovered in year 1821, however till now there is no real application to exploit this capability in mass scale. This research will report the performance analysis of TEG module in controlled environment of lab scale model. National Instrument equipment and Labview software has been choosen and developed to measure the TEG module in various configurations. Based on the experiment result, an additional passive cooling effort has produced a better ΔT by 7°C. The optimal electrical loading of single TEG is recorded at 200Ω. As for circuit connections, series connection has shown superior power output when compared to parallel connection or single TEG. A series connection of two TEGs has produced power output of 416.82μW when compared to other type connections that only produced around 100μW.

  14. Crystallographic, Magnetic, Thermal, and Electric Transport Properties in UPtIn Single Crystal

    Science.gov (United States)

    Matsumoto, Yuji; Haga, Yoshinori; Tateiwa, Naoyuki; Yamamoto, Etsuji; Fisk, Zachary

    2018-02-01

    We have studied the crystallographic, magnetic, thermal, and electric transport properties in UPtIn, one of the UTX (T = transition metal, X = Al, Ga, In) families with the hexagonal ZrNiAl structure. A single crystal of UPtIn was prepared by the flux method for the first time. Crystallographic parameters are determined. UPtIn has strong Ising character, the magnetic easy axis being the c-axis. These results determined magnetic properties are consistent with the magnetic structure obtained by neutron scattering measurements. The residual resistivity of our single crystal is 27.9 µΩ cm which is one-third times smaller than that of polycrystalline sample. Specific heat (C) measurements show that the phase transition at 10.5 K, although the antiferromagnetic order takes place at 22 K prepared by arc melt and at 15 K prepared by solid reaction, indicating that the physical properties of UPtIn are dependent on the sample preparation. C/T deviates from T-linear behavior below 1.4 K, indicating that the electronic specific heat coefficient γ is much smaller than that of previous study. The resistivity is almost independent to the temperature below 3.7 K and A coefficient of the quadratic temperature dependence of electrical resistivity is small, indicating that the mass enhancement is small. These results indicate that UPtIn is not a heavy-fermion system.

  15. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  16. Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Rongxiang Yuan

    2016-06-01

    Full Text Available Wind power has achieved great development in Northern China, but abundant wind power is dissipated, rather than utilized, due to inflexible electricity production of combined heat and power (CHP units. In this paper, an integrated CHP system consisting of CHP units, wind power plants, and condensing power plants is investigated to decouple the power and heat production on both the power supply side and heat supply side, by incorporating electrical energy storage (EES and thermal energy storage (TES. Then the integrated CHP system dispatch (ICHPSD model is formulated to reach the target of reducing wind power curtailment and primary energy consumption. Finally, the feasibility and effectiveness of the proposed ICHPSD model are verified by the six-bus system, and the simulation results show that EES has a better effect on wind power integration than TES. The annual net benefits by incorporating EES and TES increase with increasing wind penetration, but they gradually approach saturation. Introducing both EES and TES can largely increase the amount of wind power integration and improve the operation efficiency of the system.

  17. Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites

    Energy Technology Data Exchange (ETDEWEB)

    Ding Xifeng [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, Jiangsu, 210009 (China); Liu Yingjia [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, Jiangsu, 210009 (China); Gao Ling [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, Jiangsu, 210009 (China); Guo Lucun [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, Jiangsu, 210009 (China)]. E-mail: lc-guo@163.com

    2006-11-30

    The effects of cation substitution on the sintering characteristics, thermal expansion and electrical conductivity properties of La(AE)Cr(M)O{sub 3} (AE=Mg, Ca, Sr, M=Ni, Cu, Co) were investigated. The sinterability of alkaline metal earth (AE)-doped LaCrO{sub 3} increased with AE contents in a sequence of Ca > Sr > Mg. Sr-doped LaCrO{sub 3} sample had a TEC compatible with that of 8YSZ electrolyte. The transition metals of Ni, Co and Cu substituted in Cr-site further optimized the sinterability of La{sub 0.85}Sr{sub 0.15}CrO{sub 3} in air. Ni and Co could effectively enhance the electrical conductivity from room temperature to 1123 K though the concomitant increase in TEC was distinctively large with Co doping. The TEC was controlled by co-doping Ni and Co in Cr-site, and La{sub 0.85}Sr{sub 0.15}Cr{sub 0.95}Ni{sub 0.02}Co{sub 0.02}O{sub 3} exhibited a TEC of 10.9 x 10{sup -6}/K, which was matched with that of 8YSZ, indicating that it could be suitable to be used as an SOFC interconnect material.

  18. Microscopic Evaluation of Electrical and Thermal Conduction in Random Metal Wire Networks.

    Science.gov (United States)

    Gupta, Ritu; Kumar, Ankush; Sadasivam, Sridhar; Walia, Sunil; Kulkarni, Giridhar U; Fisher, Timothy S; Marconnet, Amy

    2017-04-19

    Ideally, transparent heaters exhibit uniform temperature, fast response time, high achievable temperatures, low operating voltage, stability across a range of temperatures, and high optical transmittance. For metal network heaters, unlike for uniform thin-film heaters, all of these parameters are directly or indirectly related to the network geometry. In the past, at equilibrium, the temperature distributions within metal networks have primarily been studied using either a physical temperature probe or direct infrared (IR) thermography, but there are limits to the spatial resolution of these cameras and probes, and thus, only average regional temperatures have typically been measured. However, knowledge of local temperatures within the network with a very high spatial resolution is required for ensuring a safe and stable operation. Here, we examine the thermal properties of random metal network thin-film heaters fabricated from crack templates using high-resolution IR microscopy. Importantly, the heaters achieve predominantly uniform temperatures throughout the substrate despite the random crack network structure (e.g., unequal sized polygons created by metal wires), but the temperatures of the wires in the network are observed to be significantly higher than the substrate because of the significant thermal contact resistance at the interface between the metal and the substrate. Last, the electrical breakdown mechanisms within the network are examined through transient IR imaging. In addition to experimental measurements of temperatures, an analytical model of the thermal properties of the network is developed in terms of geometrical parameters and material properties, providing insights into key design rules for such transparent heaters. Beyond this work, the methods and the understanding developed here extend to other network-based heaters and conducting films, including those that are not transparent.

  19. Final Report Recommended Actions to Reduce Electrical Peak Loads at the Marine Corps Air Station at Camp Pendleton, California

    Energy Technology Data Exchange (ETDEWEB)

    Hail, John C.; Brown, Daryl R.; McCullough, Jeffrey J.; Underhill, Ronald M.

    2001-05-08

    PNNL conducted a walk-through audit of Marine Corps Air Station at Camp Pendleton. The audit inspected a significant portion of the site and identified a large number of similar energy saving opportunities across all building types.

  20. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  1. Constructing nanoporous carbon nanotubes/Bi2Te3 composite for synchronous regulation of the electrical and thermal performances

    Science.gov (United States)

    Zhang, Qihao; Xu, Leilei; Zhou, Zhenxing; Wang, Lianjun; Jiang, Wan; Chen, Lidong

    2017-02-01

    Porous nanograined thermoelectric materials exhibit low thermal conductivity due to scattering of phonons by pores, which are favorable for thermoelectric applications. However, the benefit is not large enough to overcome the deficiency in the electrical performance. Herein, an approach is presented to reduce the thermal conductivity and synchronously enhance the electrical conductivity through constructing a nanoporous thermoelectric composite. Carbon nanotubes (CNTs) are truncated and homogeneously dispersed within the Bi2Te3 matrix by a cryogenic grinding (CG) technique for the first time, which efficiently suppress the Bi2Te3 grain growth and create nanopores with the size ranging from dozens to hundreds of nanometers. The lattice thermal conductivity is substantially decreased by broad wavelength phonon scattering resulting from nanopores, increased grain boundaries, and newly formed interfaces. Meanwhile, the electrical conductivity is improved due to the enhanced carrier mobility, which may originate from the bridging effect between the Bi2Te3 grains and CNTs. The maximum ZT is improved by almost a factor of 2 due to the simultaneous optimization of electrical and thermal performances. Our study demonstrates the superiority of constructing a bulk thermoelectric composite with nanopores by the uniform dispersion of CNTs through a CG technique for enhanced thermoelectric properties, which provides a wider approach to thermoelectric nanostructure engineering.

  2. Investigation of the effects of LIFT printing with a KrF-excimer laser on thermally sensitive electrically conductive adhesives

    NARCIS (Netherlands)

    Perinchery, S.M.; Smits, E.C.P.; Sridhar, A.; Albert, P.; Brand, J. van den; Mandamparambil, R.; Yakimets, I.; Schoo, H.F.M.

    2014-01-01

    Laser induced forward transfer is an emerging material deposition technology. We investigated the feasibility of this technique for printing thermally sensitive, electrically conductive adhesives with and without using an intermediate dynamic release layer. A 248nm KrF-excimer laser was used to

  3. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  4. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  5. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  6. H2-norm for mesh optimization with application to electro-thermal modeling of an electric wire in automotive context

    Science.gov (United States)

    Chevrié, Mathieu; Farges, Christophe; Sabatier, Jocelyn; Guillemard, Franck; Pradere, Laetitia

    2017-04-01

    In automotive application field, reducing electric conductors dimensions is significant to decrease the embedded mass and the manufacturing costs. It is thus essential to develop tools to optimize the wire diameter according to thermal constraints and protection algorithms to maintain a high level of safety. In order to develop such tools and algorithms, accurate electro-thermal models of electric wires are required. However, thermal equation solutions lead to implicit fractional transfer functions involving an exponential that cannot be embedded in a car calculator. This paper thus proposes an integer order transfer function approximation methodology based on a spatial discretization for this class of fractional transfer functions. Moreover, the H2-norm is used to minimize approximation error. Accuracy of the proposed approach is confirmed with measured data on a 1.5 mm2 wire implemented in a dedicated test bench.

  7. Non-thermal ablation technology for arrhythmia therapy: acute and chronic electrical conduction block with photosensitization reaction

    Science.gov (United States)

    Ito, Arisa; Matsuo, Hiroki; Suenari, Tsukasa; Kajihara, Takuro; Kimura, Takehiro; Miyoshi, Shunichiro; Arai, Tsunenori

    2010-02-01

    We have examined the possibility of non-thermal ablation technology for arrhythmia therapy with photosensitization reaction, in which photochemically generated singlet molecular oxygen may induce myocardial electrical conduction block. In the most popular energy source for arrhythmia catheter ablation; radiofrequency current, the thermal tissue injury causes electrophysiological disruption resulting in electrical isolation of ectopic beats. The temperature-mediated tissue disruption is difficult to control because the tissue temperature is determined by the heating and thermal conduction process, so that severe complications due to excessive heat generation have been the problem in this ablation. We demonstrated the electrical conduction block of surgically exposed porcine heart tissue in vivo with photosensitization reaction. The acute myocardial electrical conduction block was examined by the stimulation and propagation set-up consisting of a stimulation electrode and two bipolar measurement electrodes. Fifteen to thirty minutes after the injection of 5-10 mg/kg water-soluble chlorine photosensitizer, Talaporfin sodium (NPe6, LS11), the laser light at the wavelength of 663 nm with the total energy density of 50-200 J/cm2 was irradiated several times with 3- 7 mm in spot-size to make electrical block line in myocardial tissue across the conduction pathway between the bipolar measurement electrodes. The propagation delay time of the potential waveform increased with increasing the irradiated line length. The observation of Azan-stained specimens in the irradiated area two weeks after the procedure showed that the normal tissue was replaced to the scar tissue, which might become to be permanent tissue insulation. These results demonstrated the possibility of non-thermal electrical conduction block for arrhythmia therapy by the photosensitization reaction.

  8. A thermal and electrical dynamic mathematical model for squirrel cage induction motors; Modelamento matematico dinamico termico e eletrico de motores de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Ronaldo Martins de

    1996-01-01

    A thermal and electrical dynamic mathematical model for squirrel cage induction motors is presented. The electrical model is described by Park equation and the torque equation, while the thermal model is described by a system of four first order differential equations that represent the motor heat transfer process. The model presented can be used to determine thermal and electrical performance for any operation condition. However, it is suitable mainly for machines operating under continuously transient condition. The presented mathematical model also incorporate variation of rotor winding electrical parameters due to skin effect. (author)

  9. Preparation of Bulk Graphene Nanoplatelets by Spark Plasma Sintering — Electrical and Thermal Properties

    Science.gov (United States)

    Prasad, Mattipally; Rao, Tata N.; Prasad, P. S. R.; Babu, D. Suresh

    2016-10-01

    Consolidation of graphene nanoplatelets (GNPs) by spark plasma sintering (SPS) to study the feasibility of its structure retention at extreme temperature and pressure conditions. Structural characterization of the GNP powder and pellet were carried out by Micro-Raman, SEM, and TEM. HT-XRD. A.C. and D.C. conductivity of GNP pellet is carried out at room temperature. GNPs survived its structure in the SPS processing at an extreme temperature of 1850∘C and uni-axial pressure 60MPa, vacuum at 2.5-3.2 × 10-3 Torr. Our study shows the potential for GNPs to be successfully used as a reinforcing in ceramic matrix composites using SPS. The diffraction has been accurately calibrated to waterfall the shift in 2θ values at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean thermal expansion coefficients as a function of temperature. The lattice parameters “a” and “c” for powder and pellet GNP is found to be 0.2456(1)nm and 0.6700(2)nm, respectively. The thermal expansivity of GNP powder and pellet along “a”- and “c”-axis are found to be 22.6×10-6K-1, 13.01×10-6K-1 and 15.11×10-6K-1, 10.44×10-6K-1, respectively. Electrical conductivity of GNP pellet is found to be 5700S/m.

  10. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation.

    Science.gov (United States)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-21

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  11. Charging Stations for Urban Settings the design of a product platform for electric vehicle infrastructure in Dutch cities

    NARCIS (Netherlands)

    Hatton, C.E.; Beella, S.K.; Brezet, J.C.; Wijnia, Y.C.

    2009-01-01

    This paper reflects the essential role of supportive infrastructure in the mass implementation of electric drive vehicle technology. A focus is placed on the development of comprehensive systems that provide efficient and diverse recharging solutions for vehicle drivers. Mass adoption of electric

  12. Thermal and Electronic Transport in Graphene-Based Nanostructures and Applications in Electrical Sensors

    Science.gov (United States)

    Ramnani, Pankaj Ghanshyam

    -ray photoelectron spectroscopy (XPS), and thermal treatments to repair these defects were explored. Finally, the applications of these graphene-based nanostructures as FET-based electrical nano chemical/bio-sensors were explored. The GNR-FET device showed a significant increase in sensitivity for detection of NO 2 as compared to its graphene counterpart. Analogous to GNRs, single-walled carbon nanotubes (SWNTs) based chemiresistive sensors were also developed for detection of microRNA, a cancer biomarker, and detection of mercury ions in saliva samples.

  13. Aligned Graphene Oxide Nanofillers: An Approach to Prepare Highly Thermally Conductive and Electrically Insulative Transparent Polymer Composites

    Directory of Open Access Journals (Sweden)

    Genlian Lin

    2015-01-01

    Full Text Available Graphene oxide (GO/polyvinyl alcohol composites with extremely high in-plane thermal conductivities are prepared by a simple tape casting process using water as process solvent. The in-plane thermal conductivity of the composite can reach 17.61 W/mK at only 0.1 wt% GO loading, which is close to that of fully dense alumina. The excellent thermal conducting ability, the unique two-dimensional morphology, and the all-wet handling of the GO fillers as well as the high orientation of the fillers in the polymer matrix all contribute to the high thermal conductivities achieved. Meanwhile, the composites show good electrical insulation property and decent transparency.

  14. Insulation for crack protection of brick liners at Tucson Electric Power Company's Irvington Station

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, V.A.; Hodder, T.; Olmsted, C.D.

    1986-04-01

    The chimney designed and constructed for Units 3 and 4 of the Irvington Generating Station Coal Conversion Project consists of a concrete shell with two acid-resistant brick liners. The liners incorporate an exterior layer of fiberglass insulation to reduce the temperature gradient through the brick wall and, hence, the tensile stresses in the brickwork. The reduction or elimination of cracking by means of insulation is expected to result in improved performance of the lining and reduced maintenance. This paper discusses the stresses involved, the usual crack development mechanism, stress testing background, and the Irvington Station brick liner insulation application.

  15. Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application

    Science.gov (United States)

    Huang, Congliang; Zhen, Wenkai; Huang, Zun; Luo, Danchen

    2018-01-01

    For a thermoelectric application, the thermal conductivity, electrical conductivity and figure of merit of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 are investigated in this paper. First, the composite is prepared with a solution blending method. Then, the structure, thermal and electrical conductivities are characterized with experimental methods. Finally, the thermal conductivity, electrical conductivity and figure of merit are discussed. Results turn out that with an increasing content of carbon nanotube fillers, there are different changing trends of thermal and electrical conductivities because of large difference between thermal and electrical contact resistances in the composite. With the increasing filler content, the electrical conductivity increases exponentially while thermal conductivity saturates to be a constant value. Due to the large ratio of electrical to thermal conductivities, the figure of merit with 8 wt% of fillers is more than 50 times larger than that with a low content of fillers. Our results confirm that the recently proposed concept of `electron-percolation thermal-insulator' is a feasible way to enhance the figure of merit of a polymer composite.

  16. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    Science.gov (United States)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  17. SIRIO small earth station operation in Beijing

    Science.gov (United States)

    Berardi, V.; Fabiano, L.; Jing, Y.; Kuang, Z.; Wang, J.

    The main characteristics are described for the small earth station installed at Beijing to permit joint experimentation through the SIRIO satellite. The experimental facilities and data acquisition system are illustrated, including the transmitter/receiver, digitally controlled SCPC communication and thermal control sybsystem, from both the electrical and mechanical viewpoints. The measurement layout of the system includes a 1200 bps modem, two controllers (HP9845B and HP 85F), a DVM, relay actuator, chart recorder, and two counters. RS-232C and IEEE-488 links are used. Station environmental conditions, EIRP, G/T and other specifics are noted.

  18. Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber

    Science.gov (United States)

    Hernández, Marianella; Mar Bernal, M.; Grande, Antonio M.; Zhong, Nan; van der Zwaag, Sybrand; García, Santiago J.

    2017-08-01

    In the present work we show the effect of graphene loading on the restoration of the mechanical properties and thermal and electrical conductivity of a self-healing natural rubber nanocomposite. The graphene loading led to a minimal enhancement of mechanical properties and yielded a modest increase in thermal and electrical conduction. The polymer nanocomposites were macroscopically damaged (cut) and thermally healed for 7 h in a healing cell. Different healing trends as function of the graphene content were found for each of the functionalities: (i) thermal conductivity was fully restored independently of the graphene filler loading; (ii) electrical conductivity was only restored to a high degree above the percolation threshold; and (iii) tensile strength restoration increased more or less linearly with graphene content but was never complete. A dedicated molecular dynamics analysis by dielectric spectroscopy of the pristine and healed samples highlighted the role of graphene-polymer interactions at the healed interphase on the overall restoration of the different functionalities. Based on these results it is suggested that the dependence of the various healing efficiencies with graphene content is due to a combination of the graphene induced lower crosslinking density, as well as the presence of strong polymer-graphene interactions at the healed interphase.

  19. Anisotropic electrical, thermal and magnetic properties of Al{sub 13}Ru{sub 4} decagonal quasicrystalline approximant

    Energy Technology Data Exchange (ETDEWEB)

    Wencka, Magdalena [Polish Academy of Sciences, Poznan (Poland). Inst. of Molecular Physics; Vrtnik, Stanislav; Kozelj, Primoz; Dolinsek, Janez [Ljubljana Univ. (Slovenia). Faculty of Mathematics and Physics; Jozef Stefan Institute, Ljubljana (Slovenia); Jaglicic, Zvonko [Ljubljana Univ. (Slovenia). Inst. of Mathematics, Physics and Mechanics; Gille, Peter [Muenchen Univ. (Germany). Crystallography Section

    2017-09-01

    We present measurements of the anisotropic electrical and thermal transport coefficients (the electrical resistivity, the thermoelectric power, the thermal conductivity), the magnetization and the specific heat of the Al{sub 13}Ru{sub 4} monoclinic approximant to the decagonal quasicrystal, in comparison to the isostructural Al{sub 13}Fe{sub 4}. The electrical and thermal transport parameters of Al{sub 13}Ru{sub 4} were found to exhibit significant anisotropy, qualitatively similar to that found previously in the Al{sub 13}Fe{sub 4} (P. Popcevic, et al., Phys. Rev. B 2010, 81, 184203). The crystallographic b direction, corresponding to the stacking direction of the (a,c) atomic planes, is the most conducting direction for the electricity and heat. The thermopower is strongly anisotropic with a complicated temperature dependence, exhibiting maxima, minima, crossovers and sign change. The electronic density of states (DOS) at the Fermi energy is reduced to 35% of the DOS of Al metal. The magnetic susceptibility is diamagnetic and the diamagnetism is by a factor of 2 stronger for the magnetic field along the stacking b direction.

  20. Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-12-01

    Full Text Available Aiming to relieve the large amount of wind power curtailment during the heating period in the North China region, a thermal-electric decoupling (TED approach is proposed to both bring down the constraint of forced power output of combined heat and power plants and increase the electric load level during valley load times that assist the power grid in consuming more wind power. The operating principles of the thermal-electric decoupling approach is described, the mathematical model of its profits is developed, the constraint conditions of its operation are listed, also, an improved parallel conjugate gradient is utilized to bypass the saddle problem and accelerate the optimal speed. Numerical simulations are implemented and reveal an optimal allocation of TED which with a rated power of 280 MW and 185 MWh heat storage capacity are possible. This allocation of TED could bring approximately 16.9 billion Yuan of economic profit and consume more than 80% of the surplus wind energy which would be curtailed without the participation of TED. The results in this article verify the effectiveness of this method that could provide a referential guidance for thermal-electric decoupling system allocation in practice.

  1. Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites

    Directory of Open Access Journals (Sweden)

    Aline M. F. Lima

    2012-01-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs functionalized with amine and carboxyl groups were used to prepare polyurethane/MWCNT nanocomposites in two distinct concentrations: a lower value of 1 mass% (spray coating and a higher one of ~50 mass% (buckypaper based. The MWCNT-NH2 sample contained only 0.5 mass% of amine groups, whereas MWCNT-COOH contained 5 mass% of carboxyl groups. The MWCNT functionalized with low amine group content showed improved thermal properties when compared to neat thermoplastic polyurethane (TPU and MWCNT-COOH based nanocomposites. The electrical conductivity of the polyurethane elastomer was greatly increased from 10-12 to ~10-5 S cm-1in the 1 mass% nanotube composite and to 7 S cm-1for the MWCNT-NH2 buckypaper-based nanocomposite. Furthermore, the relative high content of functional groups in the MWCNT-COOH sample, which disrupt the sp²structure in the nanotube walls, led to inferior properties; for instance the conductivity of the buckypaper based composite is one order of magnitude lower when using MWCNT-COOH in comparison with the MWCNT-NH2. These results show the range of property design possibilities available with the elastomeric polyurethane nanocomposite by tailoring the functional group content and the carbon nanotube load.

  2. Thermal, mechanical and electrical properties of polyanaline based ceramic nano-composites

    Science.gov (United States)

    Sohail, M.; Khan, M. S.; Khattak, N. S.

    2016-08-01

    Micro/nanohybrid materials have vast applications due to their great potentialities in the field of nanoscience and nanotechnology. Herein we report an investigation on the fabrication and physicochemical characterization of ceramic (Fe0.01La0.01Al0.5Zn0.98O) and hybrid ceramic-polyaniline nano-composits. Ceramic nano-particles were prepared by sol-gel technique while optimizing the molar ratios of the constituent's metal nitrates. The prepared inorganic particles were then embedded in the polymer matrix via one-pot blending method. The prepared ceramic particles and their composites with polyaniline were analysed under FT- IR, SEM and TGA. The presence of some chemical species was observed at the interface of the compositing materials. TGA analysis showed the thermal stability of the composite material. Frequency dependent dielectric properties were analysed and it was found that conducting polyaniline has an additional effect on the electrical behaviour of the composite. Rheology study showed enhanced mechanical properties of composite material as compared to their constituting counterparts.

  3. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  4. Optical, thermal and electrical properties of polybenzimidazoles derived from substituted benzimidazoles

    Science.gov (United States)

    Anand, Siddeswaran; Muthusamy, Athianna

    2017-11-01

    Three benzimidazole monomers synthesized by condensing various substituted phenolic aldehydes with 4-methylphenylenediamine were converted in to polymers by oxidative polycondensation. The structure of the monomers and polymers were confirmed by various spectroscopic techniques. Electronic distribution of molecular frontier orbitals and optimized geometries of monomers were calculated by Gaussian 09 package. The spectral results showed that the repeating units are connected through both Csbnd C and Csbnd Osbnd C linkages. Both polymers and monomers are showing good fluorescence emission in blue region. The electrical conductivity of I2 doped PBIs was measured using two point probe technique. The conductivities of PBIs were compared on the basis of the charge densities obtained from Huckel method on imidazole nitrogen which is involved in iodine coordination. The conductivity of polymers increases with increase in iodine vapour contact time. The dielectric properties of the synthesized polymers have been investigated at different temperature and frequency. Among the PBIs, PBIOP is having greater thermal stability and is shown by high carbines residues of around 50% at 500 °C in thermogravimetric analysis.

  5. Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Singh Deepankar

    2008-01-01

    Full Text Available Abstract Polyamic acid, the precursor of polyimide, was used for the preparation of polyimide/multiwalled carbon nanotubes (MWCNTs nanocomposite films by solvent casting technique. In order to enhance the chemical compatibility between polyimide matrix and MWCNTs, the latter was surface modified by incorporating acidic and amide groups by chemical treatment with nitric acid and octadecylamine (C18H39N, respectively. While the amide-MWCNT/polyimide composite shows higher mechanical properties at low loadings (<3 wt%, the acid-MWCNT/polyimide composites perform better at higher loadings (5 wt%. The tensile strength (TS and the Young’s modulus (YM values of the acid-MWCNT/polyimide composites at 5 wt% MWCNT loadings was 151 and 3360 MPa, respectively, an improvement of 54% in TS and 35% in YM over the neat polyimide film (TS = 98 MPa; YM = 2492 MPa. These MWCNT-reinforced composites show remarkable improvement in terms of thermal stability as compared to that for pure polyimide film. The electrical conductivity of 5 wt% acid modified MWCNTs/polyimide nanocomposites improved to 0.94 S cm −1(6.67 × 10 −18 S cm−1for pure polyimide the maximum achieved so far for MWCNT-polyimide composites.

  6. Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties.

    Science.gov (United States)

    Gao, Jiefeng; Hu, Mingjun; Dong, Yucheng; Li, Robert K Y

    2013-08-28

    Graphite-nanoplatelet (GNP)-decorated polymer nanofiber composites with hierarchical structures were fabricated by the combination of electrospinning and ultrasonication. It was found that GNPs could be well attached or embedded onto the nanofibers when their size was comparable to the nanofiber diameter. X-ray diffraction results indicated that ultrasonic treatment exerted no influence on the carbon crystal layer spacing. Fourier transform infrared spectra and Raman spectroscopy revealed the existence of interfacial interaction between GNPs and polyurethane nanofibers. The prepared nanofiber composite showed enhanced thermal stability and hardness, which originated from uniform dispersion of GNPs as well as strong interaction between GNPs and the nanofibers. The electrical conductivity was significantly improved, derived from the formation of a conductive percolation network in the nanofiber composite. During ultrasonication, cavitation bubbles may be formed in liquid, and microjets and shock waves were created near the GNP surface after collapse of the bubbles. These jets, causing sintering of GNPs, pushed GNPs toward the nanofiber surface at very high speeds. When the fast-moving GNPs hit the nanofiber surface, interfacial collision between GNPs and the nanofibers occurs, the nanofiber may experience partial softening or even melting at the impact sites, and then GNPs could be uniformly anchored onto the nanofibers. This method opens a new door for harvesting GNP-based nanofiber composites with improved material properties.

  7. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal [Department of Applied Sciences, Chandigarh University, Gharuan, Mohali (India); Kumar, Sanjeev [Applied Sciences Department, PEC University of Technology, Chandigarh (India); Sharma, Amit L. [Central Scientific Instrumentation Organization, Sector 30, Chandigarh (India)

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study of electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.

  8. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  9. 76 FR 59745 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Exemption

    Science.gov (United States)

    2011-09-27

    ..., ``Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20- 30, 1992... consistent with the recommendations in NUREG-1474, ``Effect of Hurricane Andrew on the Turkey Point Nuclear...) during declarations of severe weather conditions such as tropical storm and hurricane force winds at the...

  10. Towards sustainable regions: the spatial distribution of electric vehicles’ recharging stations from a socio-economic perspective

    DEFF Research Database (Denmark)

    Christensen, Linda; Kaplan, Sigal; Jensen, Thomas Christian

    . Firstly, the demand for on-road recharging of EV’s based on the national travel demand patterns is evaluated, while considering the existence of a city-wide slow recharging network. Secondly, the Edison model for the optimal deployment of EV recharging stations is applied. The model evaluates the need...

  11. Towards sustainable regions: the spatial distribution of electric vehicles’ recharging stations from a socio-economic perspective

    DEFF Research Database (Denmark)

    Christensen, Linda; Jensen, Thomas Christian; Kaplan, Sigal

    2012-01-01

    . Firstly, the demand for on-road recharging of EV’s based on the national travel demand patterns is evaluated, while considering the existence of a city-wide slow recharging network. Secondly, the Edison model for the optimal deployment of EV recharging stations is applied. The model evaluates the need...

  12. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing.

    Science.gov (United States)

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-04-01

    Worldwide, apple juice is the second most popular juice, after orange juice. It is susceptible to enzymatic browning spoilage by polyphenoloxidase, an endogenous enzyme. In this study, Royal Gala apple juice was treated by thermosonication (TS: 1.3 W/mL, 58 ℃, 10 min), pulsed electric field (PEF: 24.8 kV/cm, 60 pulses, 169 µs treatment time, 53.8 ℃) and heat (75 ℃, 20 min) and stored at 3.0 ℃ and 20.0 ℃ for 30 days. A sensory analysis was carried out after processing. The polyphenoloxidase activity, antioxidant activity and total color difference of the apple juice were determined before and after processing and during storage. The sensory analysis revealed that thermosonication and pulsed electric field juices tasted differently from the thermally treated juice. Apart from the pulsed electric field apple juice stored at room temperature, the processed juice was stable during storage, since the pH and soluble solids remained constant and fermentation was not observed. Polyphenoloxidase did not reactivate during storage. Along storage, the juices' antioxidant activity decreased and total color difference increased (up to 6.8). While the antioxidant activity increased from 86 to 103% with thermosonication and was retained after pulsed electric field, thermal processing reduced it to 67%. The processing increased the total color difference slightly. No differences in the total color difference of the juices processed by the three methods were registered after storage. Thermosonication and pulsed electric field could possibly be a better alternative to thermal preservation of apple juice, but refrigerated storage is recommended for pulsed electric field apple juice.

  13. Mathematical of Two-Dimensional Dynamic Distribution of Thermal and Production Loads Between Heat Electropower Station Turbines

    Directory of Open Access Journals (Sweden)

    Belyaev L.A.

    2015-01-01

    Full Text Available Two-dimensional dynamic programming algorithm for distribution of loads between the controlled heat electropower station (HES extractions is developed. Main recurrent correlations of sequential optimization process by using modified Bellman criterion are presented. Results of program complex implementation are shown.

  14. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  15. 78 FR 45989 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-07-30

    ... Power Corporation, Municipal Electric Authority of Georgia, and the City of Dalton, Georgia (the... finds that: A. The exemption is authorized by law; B. the exemption presents no undue risk to public...

  16. 78 FR 49551 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-08-14

    ... Company, ] Oglethorpe Power Corporation, Municipal Electric Authority of Georgia, and the City of Dalton... authorized by law; B. The exemption presents no undue risk to public health and safety; C. The exemption is...

  17. 78 FR 45987 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-07-30

    ... Power Corporation, Municipal Electric Authority of Georgia, and the City of Dalton, Georgia (the... Commission finds that: A. The exemption is authorized by law; B. the exemption presents no undue risk to...

  18. Charging Stations for Urban Settings the design of a product platform for electric vehicle infrastructure in Dutch cities

    OpenAIRE

    Hatton, C.E.; Beella, S.K.; Brezet, J.C.; Wijnia, Y.C.

    2009-01-01

    This paper reflects the essential role of supportive infrastructure in the mass implementation of electric drive vehicle technology. A focus is placed on the development of comprehensive systems that provide efficient and diverse recharging solutions for vehicle drivers. Mass adoption of electric mobility will reflect advances in the vehicles themselves, their infrastructural networks, and their position in the automotive market. Progress in these areas is highly related, and mandates coordin...

  19. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions.

    Science.gov (United States)

    Muhammad, Fahmi F; Yahya, Mohd Y; Hameed, Shilan S; Aziz, Fakhra; Sulaiman, Khaulah; Rasheed, Mariwan A; Ahmad, Zubair

    2017-01-01

    In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp) and ideality factor (n), while thermal parameters can be defined by the cells temperature (T). A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.

  20. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.