[Thermal diffusivity of dental cements].
Paroussis, D; Kakaboura, A; Chrysafidis, C; Mauroyiannakis, E
1990-08-01
Thermal insulative efficiency, is one of the desirable properties of the dental cements. In this study, the thermal diffusivity of three types of dental cements, were measured. Thermal diffusivity was determined by the following method. Two thermo-couples were used and connected to a chart record, the first was embedded in the cylindrical block of the cement specimen and the other in a mixing of ice and water (reference thermocouple). All them were set in a apparatus consisting of a double cooling bath. Calculation of thermal diffusivity were based on the curve provided of the record during cooling of the cement and a theoretical mathematic model. Values were ranged from 2,985 to 3,934 cm2.sec-1. ZOE cement exhibited the highest value, the glass-ionomers the lowest and the poly-carboxylates were average. The results showed that the thermal diffusivity of the cements is dependent from the type of the cement but the differences between them were not statistically significant. Additionally, the values obtained were about the same as the dentin, so the dental cements may consider as good thermal insulators.
Tactile perception of thermal diffusivity
Bergmann Tiest, W.M.|info:eu-repo/dai/nl/262668424; Kappers, A.M.L.|info:eu-repo/dai/nl/07445370X
2009-01-01
The thermal diffusivity of an object is a parameter that controls the rate at which heat is extracted from the hand when it touches that object. It is an important feature for distinguishing materials by means of touch. In order to quantitatively describe the ability of human observers to
Simultaneous measurements of thermal conductivity and diffusivity ...
Indian Academy of Sciences (India)
Abstract. Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se80Te20–xInx. (x = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used ...
Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings
Akoshima, Megumi; Takahashi, Satoru
2017-09-01
Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.
Tactile perception of thermal diffusivity.
Tiest, Wouter M Bergmann; Kappers, Astrid M L
2009-04-01
The thermal diffusivity of an object is a parameter that controls the rate at which heat is extracted from the hand when it touches that object. It is an important feature for distinguishing materials by means of touch. In order to quantitatively describe the ability of human observers to discriminate between materials on the basis of heat extraction rate, we conducted an experiment in which this heat extraction was performed in a controlled way. In different conditions, subjects were repeatedly asked to select from two stimuli the one that cooled faster. The discrimination threshold was around 43% of the extraction rate. A rate that was twice as slow also yielded twice the absolute threshold. When we halved the temperature difference between the beginning and end of the stimulus, the threshold did not change as much. In separate experiments, we investigated the different cues that were available in the stimulus: initial cooling rate and end temperature. Both cues were used for discrimination, but cooling rate seemed to be the most important.
Thermal neutron diffusion cooling in wet quartz
Energy Technology Data Exchange (ETDEWEB)
Drozdowicz, K. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)]. E-mail: krzysztof.drozdowicz@ifj.edu.pl; Krynicka, E. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Crakcw (Poland); Dabrowska, J. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)
2007-07-15
The thermal neutron diffusion parameters of a rock material depend on the rock matrix itself and on the water content. The effect has been studied in quartz by Monte Carlo (MC) simulations of the variable buckling experiment for nine series of samples. A hyperbolic dependence of the density-removed diffusion cooling coefficient on the water content shows a variability of this parameter by two orders of magnitude. The function obtained for wet quartz is compared with the analogous dependence for wet dolomite.
Simultaneous measurements of thermal conductivity and diffusivity ...
Indian Academy of Sciences (India)
80Te20–In ( = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used to ...
Study of variation of thermal diffusivity of advanced composite ...
Indian Academy of Sciences (India)
Administrator
Modified Angstrom method is applied to study the variation of thermal diffusivity of plain woven fabric composite in closed ... Keywords. Thermal diffusivity; composite material; cryogenic temperature; phase difference; modified Ang- strom method. .... where D is the thermal diffusivity, k the heat conductivity and ρ the thermal ...
Local measurement of thermal conductivity and diffusivity
Energy Technology Data Exchange (ETDEWEB)
Hurley, David H.; Schley, Robert S. [Materials Science and Engineering Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2209 (United States); Khafizov, Marat [Mechanical and Aerospace Engineering Department, The Ohio State University, 201 W. 19th Ave., Columbus, Ohio 43210 (United States); Wendt, Brycen L. [Nuclear Science and Engineering, Idaho State University, 921 S. 8th Ave., Pocatello, Idaho 83209-8060 (United States)
2015-12-15
Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.
Thermal diffusivity measurement system applied to polymers
Abad, B.; Díaz-Chao, P.; Almarza, A.; Amantia, D.; Vázquez-Campos, S.; Isoda, Y.; Shinohara, Y.; Briones, F.; Martín-González, M. S.
2012-06-01
In the search for cleaner energy sources, the improvement of the efficiency of the actual ones appears as a primary objective. In this way, thermoelectric materials, which are able to convert wasted heat into electricity, are reveal as an interesting way to improve efficiency of car engines, for example. Cost-effective energy harvesting from thermoelectric devices requires materials with high electrical conductivities and Seebeck coefficient, but low thermal conductivity. Conductive polymers can fulfil these conditions if they are doped appropriately. One of the most promising polymers is Polyaniline. In this work, the thermal conductivity of the polyaniline and mixtures of polyaniline with nanoclays has been studied, using a new experimental set-up developed in the lab. The novel system is based on the steady-state method and it is used to obtain the thermal diffusivity of the polymers and the nanocomposites.
Apparatus for diffusion-gap thermal desalination
Energy Technology Data Exchange (ETDEWEB)
Lowenstein, Andrew
2017-09-26
A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composed of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.
Thermal diffuse scattering in transmission electron microscopy
Energy Technology Data Exchange (ETDEWEB)
Forbes, B.D.; D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Victoria 3800 (Australia); Van Dyck, D. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); LeBeau, J.M. [North Carolina State University, Raleigh, NC 27695-7907 (United States); Stemmer, S. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)
2011-12-15
In conventional transmission electron microscopy, thermal scattering significantly affects the image contrast. It has been suggested that not accounting for this correctly is the main cause of the Stobbs factor, the ubiquitous, large contrast mismatch found between theory and experiment. In the case where a hard aperture is applied, we show that previous conclusions drawn from work using bright field scanning transmission electron microscopy and invoking the principle of reciprocity are reliable in the presence of thermal scattering. In the aperture-free case it has been suggested that even the most sophisticated mathematical models for thermal diffuse scattering lack in their numerical implementation, specifically that there may be issues in sampling, including that of the contrast transfer function of the objective lens. We show that these concerns can be satisfactorily overcome with modest computing resources; thermal scattering can be modelled accurately enough for the purpose of making quantitative comparison between simulation and experiment. Spatial incoherence of the source is also investigated. Neglect or inadequate handling of thermal scattering in simulation can have an appreciable effect on the predicted contrast and can be a significant contribution to the Stobbs factor problem. -- Highlights: Black-Right-Pointing-Pointer We determine the numerical requirements for accurate simulation of TDS in CTEM. Black-Right-Pointing-Pointer TDS can be simulated to high precision using the Born-Oppenheimer model. Black-Right-Pointing-Pointer Such calculations establish the contribution of TDS to the Stobbs factor problem. Black-Right-Pointing-Pointer Treating spatial incoherence using envelope functions increases image contrast. Black-Right-Pointing-Pointer Rigorous treatment of spatial incoherence significantly reduces image contrast.
Energetics of silicate melts from thermal diffusion studies
Energy Technology Data Exchange (ETDEWEB)
Walker, D.
1992-07-01
Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).
Proposal of novel measurement method for thermal diffusivity from infrared thermal movie
Okamoto, Yoichi; Watanabe, Shin; Ogata, Kento; Hiramatsu, Koji; Miyazaki, Hisashi; Morimoto, Jun
2017-05-01
A brand new thermal diffusivity measurement method was developed. In this new noncontact and absolute measurement method, thermal diffusivity was measured from infrared movie data. The model of one-dimensional thermal conduction was constructed by taking into account the thermal flow other than one-dimensional thermal conduction in the sample. On the basis of this thermal conduction model, the analytical equation for calculating thermal diffusivity was derived. A single-crystal sapphire plate was used as a test specimen for the new method. The test specimen was arranged to cause one-dimensional heat conduction. Infrared movies were taken by using an infrared camera at room temperature. Then, thermal diffusivity was numerically calculated from the acquired movie data using the analytical equation. It was experimentally demonstrated that thermal diffusivity was measured with an accuracy of around 10% error, from an infrared movie of a single-crystal sapphire sample.
Thermal diffusion in nanostructured porous InP
Indian Academy of Sciences (India)
Wintec
where α is the thermal diffusivity, a the slope of the graph connecting ln(f⋅S) and f , and l the thickness of the sample. Thermal conductivity (k) is then calculated using the relation κ = αρCp in units of W/m-K,. (5) where ρ is the density and Cp the specific heat capacity of bulk InP. The measured values of thermal diffusivity and.
Determination of thermal diffusivity of cement-stabilized laterite by ...
African Journals Online (AJOL)
Knowledge of thermo-physical properties of local building materials are necessary for thermal comfort design and construction of residential accommodation. Thermal diffusivity of cement-stabilized laterites were measured under conditions of transient thermal field and induced surface stress, assuming constant temperature ...
Thermal Diffusivity Identification of Distributed Parameter Systems to Sea Ice
Directory of Open Access Journals (Sweden)
Liqiong Shi
2013-01-01
Full Text Available A method of optimal control is presented as a numerical tool for solving the sea ice heat transfer problem governed by a parabolic partial differential equation. Taken the deviation between the calculated ice temperature and the measurements as the performance criterion, an optimal control model of distributed parameter systems with specific constraints of thermal properties of sea ice was proposed to determine the thermal diffusivity of sea ice. Based on sea ice physical processes, the parameterization of the thermal diffusivity was derived through field data. The simulation results illustrated that the identified parameterization of the thermal diffusivity is reasonably effective in sea ice thermodynamics. The direct relation between the thermal diffusivity of sea ice and ice porosity is physically significant and can considerably reduce the computational errors. The successful application of this method also explained that the optimal control model of distributed parameter systems in conjunction with the engineering background has great potential in dealing with practical problems.
Unstructured Polyhedral Mesh Thermal Radiation Diffusion
Energy Technology Data Exchange (ETDEWEB)
Palmer, T.S.; Zika, M.R.; Madsen, N.K.
2000-07-27
Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.
Thermal Diffusivity Mapping of Graphene Based Polymer Nanocomposites
National Research Council Canada - National Science Library
Matthieu Gresil; Zixin Wang; Quentin-Arthur Poutrel; Constantinos Soutis
2017-01-01
.... However, quantifying dispersion at macroscopic level remains a difficult task. This paper presents a quantitative dispersion characterisation method using non-contact infrared thermography mapping that measures the thermal diffusivity (α...
Periodic heat wave determination of thermal diffusivity of clays ...
African Journals Online (AJOL)
The responses of Ankaful, Tetegu (# 1 & 2) and Mamfe clays to periodic heat waves were analyzed to deter-mine the thermal diffusivity values. The temperature amplitude attenuated with depth of penetration, while the phase shift increased. The thermal diffusivity values ranged from 3.0 - 9.5 x 10P-7P mP2P/s by amplitude ...
Thermal /Soret/ diffusion effects on interfacial mass transport rates
Rosner, D. E.
1980-01-01
It is shown that thermal (Soret) diffusion significantly alters convective mass transport rates and important transition temperatures in highly nonisothermal flow systems involving the transport of 'heavy' species (vapors or particles). Introduction of the Soret transport term is shown to result in mass transfer effects similar to those of 'suction' and a homogeneous chemical 'sink'. It is pointed out that this analogy provides a simple method of correlating and predicting thermal diffusion effects in the abovementioned systems.
Characterization and modeling of thermal diffusion and aggregation in nanofluids.
Energy Technology Data Exchange (ETDEWEB)
Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)
2010-05-01
Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.
Water cooling thermal power measurement in a vacuum diffusion pump
Directory of Open Access Journals (Sweden)
Luís Henrique Cardozo Amorin
2012-04-01
Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.
Thermal diffusivity measurement by lock-in photothermal shadowgraph method
Energy Technology Data Exchange (ETDEWEB)
Cifuentes, A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain); Alvarado, S. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Heverlee B-3001 (Belgium); Cabrera, H. [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas, IVIC, Mérida 5101, Venezuela and SPIE-ICTP Anchor Research in Optics Program Lab, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Calderón, A.; Marín, E., E-mail: emarinm@ipn.mx [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico)
2016-04-28
Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.
Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave
Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.
2017-08-01
In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.
Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method
Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.
2017-07-01
The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.
Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method
Directory of Open Access Journals (Sweden)
M. Potenza
2017-07-01
Full Text Available The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity, and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg·m-3 the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
DEFF Research Database (Denmark)
Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels
2016-01-01
Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Within the geosciences, this applies to all aspects regarding the determination of terrestrial heat flow...... and subsurface temperature modelling. Several methods, including the classical divided-bar technique, are available for laboratory measurements of thermal conductivity, and much fewer for thermal diffusivity. We have generalized the divided-bar technique to the transient case, in which thermal conductivity...... and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...
Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor
DEFF Research Database (Denmark)
Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan
2003-01-01
Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...
Temperature mapping, thermal diffusivity and subsoil heat flux at ...
Indian Academy of Sciences (India)
Thermal diffusivity () of the soil has been calculated by range and lag methods and also from amplitudes and phase angles of first and second harmonics. The two methods lead to similar results. Diurnal soil heat ux and soil temperatures at different depths are modelled and found to be comparable with observations.
Thermal-Diffusivity-Based Frequency References in Standard CMOS
Kashmiri, S.M.
2012-01-01
In recent years, a lot of research has been devoted to the realization of accurate integrated frequency references. A thermal-diffusivity-based (TD) frequency reference provides an alternative method of on-chip frequency generation in standard CMOS technology. A frequency-locked loop locks the
Thermal diffusivity measurements on porous carbon fiber reinforced polymer tubes
Gruber, Jürgen; Gresslehner, Karl Heinz; Mayr, Günther; Hendorfer, Günther
2017-02-01
This work presents the application of methods for the determination of the thermal diffusivity well suited for flat bodies adapted to cylindrical bodies. Green's functions were used to get the temperature time history for small and large times, for the approach of intersecting these two straight lines. To verify the theoretical considerations noise free data are generated by finite element simulations. Furthermore effects of inhomogeneous excitation and the anisotropic heat conduction of carbon fiber reinforced polymers were taken into account in these numerical simulations. It could be shown that the intersection of the two straight lines is suitable for the determination of the thermal diffusivity, although the results have to be corrected depending on the ratio of the cylinders inner and outer radii. Inhomogeneous excitation affects the results of this approach as it lead to multidimensional heat flux. However, based on the numerical simulations a range of the azimuthal angle exists, where the thermal diffusivity is nearly independent of the angle. The method to determine the thermal diffusivity for curved geometries by the well suited Thermographic Signal Reconstruction method and taking into account deviations from the slab by a single correction factor has great advantages from an industrial point of view, just like an easy implementation into evaluation software and the Thermographic Signal Reconstruction methods rather short processing time.
Estimation of the thermal diffusivity of solids based on 'instantaneous ...
Indian Academy of Sciences (India)
A new analytical model is proposed using the exact solution to relate the instantaneous velocity of isothermal surfaces with the thermal diffusivity of solids. The experiment involves setting up a one-dimensional non-stationary heat flow inside the solid via step-temperature excitation to launch a spectrum of dissimilar 'moving ...
Study of variation of thermal diffusivity of advanced composite ...
Indian Academy of Sciences (India)
Home; Journals; Bulletin of Materials Science; Volume 32; Issue 1. Study of variation of thermal diffusivity of advanced composite materials of E-glass fibre reinforced plastic (GFRP) in temperature range 5–300 K. Kalobaran Das S M Kamaruzzaman Tapas Ranjan Middya Siddhartha Datta. Ceramics and Glasses Volume 32 ...
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
van Berkel, M.; Zwart, Heiko J.; Hogeweij, G.M.D.; van der Steen, G.; van den Brand, H.; de Baar, M.R.
2014-01-01
In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be
Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module
Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge
2017-04-01
A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.
Synthesis, Characterization and Thermal Diffusivity of Holmium and Praseodymium Zirconates
Directory of Open Access Journals (Sweden)
Stopyra M.
2016-06-01
Full Text Available A2B2O7 oxides with pyrochlore or defected fluorite structure are among the most promising candidates for insulation layer material in thermal barrier coatings. The present paper presents the procedure of synthesis of holmium zirconate Ho2Zr2O7 and praseodymium zirconate Pr2Zr2O7 via Polymerized-Complex Method (PCM. Thermal analysis of precursor revealed that after calcination at relatively low temperature (700°C fine-crystalline, single-phase material is obtained. Thermal diffusivity was measured in temperature range 25-200°C, Ho2Zr2O7 exhibits lower thermal diffusivity than Pr2Zr2O7. Additionally, PrHoZr2O7 was synthesized. The powder in as-calcined condition is single-phase, but during the sintering decomposition of solid solution took place and Ho-rich phase precipitated. This material exhibited the best insulating properties among the tested ones.
An anisotropic diffusion approximation to thermal radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Johnson, Seth R.; Larsen, Edward W., E-mail: sethrj@umich.edu, E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2011-07-01
This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)
Calculation of diffusion coefficients in airmetal thermal plasmas
2010-01-01
Abstract This paper presents the combined diffusion coefficients of metal vapours (silver, copper and iron) in air thermal plasmas for temperatures ranging from 300 to 30000K. The theory used to calculate these coefficients is remembered and validated by comparison with literature values in several cases such as Ar-He, Ar-Cu and N 2 -O 2 mixtures. The results are discussed showing the influences of the metal concentration, of the vapour nature and of the pressure. The results show rather s...
DEFF Research Database (Denmark)
Zajas, Jan Jakub; Heiselberg, Per
The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... properties with a fine resolution, down to 1 millimeter. Special attention needs to be taken when determining the specific heat capacity in the comparative method. First of all, the test and reference sample should be of nearly identical thickness. Secondly, their heat diffusion time should be comparable, so...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....
A diffusive thermal phase shifter; Dephaseur thermique diffusif
Energy Technology Data Exchange (ETDEWEB)
Lachal, B.; Hollmuller, P.; Zgraggen, J.-M. [Universite de Geneve, Centre universitaire d' etude des problemes de l' energie(CUEPE), Geneva (Switzerland)
2004-07-01
The investigations carried out in this project show that dephasing a thermal oscillation carried by an air flow by utilizing the heat exchange with a diffusive heat store made of thin layers, is possible without any significant damping of the oscillation. The practical application of this phenomenon, with a time shift of 8 to 12 hours, looks particularly attractive for space cooling of buildings during summertime or in hot climates. The possibilities of dephasing completely a thermal wave (i.e. by a half period) carried by a stream of air have been investigated both theoretically by model calculations and experimentally by building two prototypes. Promising results have been obtained for the case of a daily phase shift. In the case of a summer-winter shift the required volumes and lengths seem too large to enable such a storage system becoming cost effective.
Thermal diffusivity and chaos in metals without quasiparticles
Blake, Mike; Davison, Richard A.; Sachdev, Subir
2017-11-01
We study the thermal diffusivity DT in models of metals without quasiparticle excitations ("strange metals"). The many-body quantum chaos and transport properties of such metals can be efficiently described by a holographic representation in a gravitational theory in an emergent curved spacetime with an additional spatial dimension. We find that at generic infrared fixed points DT is always related to parameters characterizing many-body quantum chaos: the butterfly velocity vB and Lyapunov time τL through DT˜vB2τL. The relationship holds independently of the charge density, periodic potential strength, or magnetic field at the fixed point. The generality of this result follows from the observation that the thermal conductivity of strange metals depends only on the metric near the horizon of a black hole in the emergent spacetime and is otherwise insensitive to the profile of any matter fields.
Thermal diffusivity measurement of ring specimens by infrared thermography
Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; Rossi, S.
2017-05-01
The thermal diffusivity of solid materials is usually measured with the well-known flash method. In the traditional setup, the tested specimens have the shape of a small disc. However, several industrial applications need to test different typologies of samples. This work is focused on ring specimens, that are widely used as joints or sealants in various applications. The goal is investigating the possibilities and limitations of the flash method, applying minimum adjustments to the traditional experimental setup. A preliminary numerical study is conducted with the creation of a finite element model. Firstly, the model is checked with the standard case of a full disk. Then the simulation investigates the case of an aluminum oxide ring, that is taken as the reference case to determine the reliability of the proposed technique. After the simulation, an experimental measurement is performed on the aluminum oxide ring reference case. Several samples are tested and useful information on the practical feasibility of the experimental setup are collected. The obtained thermal diffusivity values fall into the expected range for the material, confirming the validity of the suggested method.
Energetics of silicate melts from thermal diffusion studies. Annual progress report
Energy Technology Data Exchange (ETDEWEB)
Walker, D.
1992-07-01
Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).
Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.
2007-01-01
Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.
On the Diffuse Non-thermal Emission from Galaxy Clusters
Donnert, J.
2011-07-01
A number of galaxy clusters show complex radio emission not associable with optical counterparts. These objects are commonly classified as radio relics, radio mini halos and giant radio halos. The latter are diffuse Mpc-sized objects centred on the intra-cluster medium (ICM) and are commonly observed in merging clusters. In this work we investigate the formation of radio halos by means of astrophysical numerical simulations. Radio halos (RH) are observed in the GHz regime and show a complex broken power-law emission spectrum. This points to a population of relativistic electrons (CRe) interacting with the magnetic field present in the intra-cluster medium and emitting radio synchrotron radiation. Furthermore RH are transient phenomena, as inferred from the bimodal distribution of radio bright and radio quiet clusters found early on. Their scaling relations with thermal cluster observables breaks the self-similar model established from X-ray observations. In general, relativistic particles are injected strongly localised by shocks and galactic outflows into the ICM with a power-law spectrum. They are then subject to energy losses via inverse Compton, synchrotron, bremsstrahlung and Coulomb processes. This results in a limited lifetime of cosmic-ray electrons at synchrotron bright energies in the intra-cluster medium of â 10^8 yrs. However, due to their interaction with the complex magnetic field of the ICM, it can be shown that cosmic-ray electrons have their effective diffusion speed limited to the Alven velocity in the thermal plasma. This poses a problem on the formation of radio halos, because it is unclear how the cluster-wide synchrotron bright population of CRe, necessary to make a radio halo, can be maintained under these conditions. Currently two competing models are heavily discussed to solve this problem. Hadronic (secondary) models consider the hadronic interaction of relativistic protons (CRp) with the thermal gas of the ICM. In contrast to CR
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites.
Borca-Tasciuc, T; Mazumder, M; Son, Y; Pal, S K; Schadler, L S; Ajayan, P M
2007-01-01
The anisotropic thermal diffusivity of aligned carbon nanotube-polymer composites was determined using a photothermoelectric technique. The composites were obtained by infiltrating poly-dimethyl siloxane (PDMS) in aligned multiwall CNT arrays grown by chemical vapor deposition on silicon substrates. The thermal diffusivities are insensitive to temperature in the range of 180 K-300 K. The thermal diffusivity values across the alignment direction are approximately 2-4 times smaller than along the alignment direction and larger than effective media theory predictions using reported values for the thermal diffusivity of millimeter thick aligned multiwall carbon nanotube arrays. The effective room temperature thermal conductivity of the composite along the carbon nanotube alignment direction is at least 6X larger than the thermal conductivity of the polymer matrix and is in good agreement with the effective media predictions. This work indicates that infiltration of long and aligned carbon nanotube arrays is currently the most efficient method to obtain high thermal conductivity polymer composites.
Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets
Energy Technology Data Exchange (ETDEWEB)
Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2017-07-01
The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)
Thermal diffusivity measurement of solid materials by the pulsed photothermal displacement technique
Bennis, G. L.; Vyas, R.; Gupta, R.; Ang, S.; Brown, W. D.
1998-10-01
A simple, noncontact technique for the measurement of thermal diffusivity of solids is experimentally demonstrated. The technique is based on the photothermal displacement effect. Excellent agreement between the quasistatic theory of photothermal displacement and the experiment has been obtained. The technique has been demonstrated by measuring the thermal diffusivities of GaAs and InGaAs/AlGaAs multiple quantum wells.
The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique
Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.
2017-09-01
The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.
Connection between diffusion coefficient and thermal conductivity of a metal matrix composite
Anisimova, M. A.; Knyazeva, A. G.; Sevostianov, I.
2017-02-01
The paper discusses the calculation of the effective thermal and diffusion properties of metal matrix composites containing diamond particles. The effective properties are calculated using Maxwell homogenization scheme. We also establish cross-property connection between overall thermal conductivity and diffusion coefficient and illustrate it on example of Al\\diamond composites.
A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow
Blanck, Harvey F.
2005-01-01
A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.
Philip, J.; Manjusha, M. V.; Soumya, H.
2011-10-01
A travelling thermal wave technique employing optical excitation and pyroelectric detection of thermal waves propagating along a material film/coating on a substrate is described. The method enables direct measurement of thermal diffusivity. The technique involves measurement of the phase lag undergone by an optically excited thermal wave as it propagates along the coating. The set up has been automated for convenient and fast data acquisition and analysis. The technique has been adapted to measurement of thermal diffusivity of a commercial paint sample coated on glass and copper substrates. It is found that thermal diffusivity of the coating is independent of the thermal conductivity of the substrate. Dependence of thermal diffusivity on coating thickness shows exponential increase, with value reaching a constant at a characteristic high thickness. Measurements have been carried out on a few other samples with wide variations in thermal diffusivity, and the results compared with available reports or results obtained following other techniques. Analyses of the results show that the technique allows measurement of thermal diffusivity of coatings and films with uncertainties better than ±2.5%.
Impacts of small-scale variability on the determination of bulk thermal diffusivity in snowpacks
Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.
2012-04-01
Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snowmelt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. Furthermore, sub grid scale phenomena may enhance these heat and mass exchanges in the snow pack due to its porous nature. We hypothesize that the heat transfer effects of these small-scale variabilities may be seen as an increased bulk thermal diffusivity of the snow. Direct measurements of snow thermal diffusivity require coupled measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity results in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.
Thermal diffusion of a stiff rod-like mutant Y21M fd-virus.
Blanco, Pablo; Kriegs, Hartmut; Lettinga, M Paul; Holmqvist, Peter; Wiegand, Simone
2011-05-09
We investigated the thermal diffusion phenomena of a rodlike mutant filamentous fd-Y21M virus in the isotropic phase by means of an improved infrared thermal-diffusion-forced Rayleigh scattering (IR-TDFRS) setup optimized for measurements of slowly diffusing systems. Because this is the first thermal diffusion study of a stiff anisotropic solute, we investigate the influence of the shape anisotropy on the thermal diffusion behavior. The influence of temperature, fd-Y21M concentration, and ionic strength in relation with the thermodiffusion properties is discussed. We characterize and eliminate the effect of these parameters on the absolute diffusion of the rods and show that diffusion determines the behavior of the Soret coefficient because the thermal diffusion coefficient is constant in the investigated regime. Our results indicate that for the thermal diffusion behavior structural changes of the surrounding water are more important than structural changes between the charged macroions. In the investigated temperature and concentration range, the fd-Y21M virus is thermophobic for the low salt content, whereas the solutions with the high salt content change from thermophobic to thermophilic behavior with decreasing temperature. A comparison with recent measurements of other charged soft and biological matter systems shows that the shape anisotropy of the fd-virus becomes not visible in the results.
Development of Reference Materials for Thermal-Diffusivity Measurements by the Flash Method
Akoshima, M.; Abe, H.; Baba, T.
2015-12-01
The thermal conductivity of solid materials used for thermal simulations and thermal designs can be obtained as the product of thermal diffusivity, specific heat capacity, and bulk density in many cases. The thermal diffusivity is usually measured by the flash method, and the specific heat capacity is usually measured by differential scanning calorimetry. In order to obtain reliable thermal conductivities for strict thermal design, it is necessary to measure the thermal diffusivity using the flash method, a well-validated apparatus. Reference materials are an effective means for validation of most practical measurement apparatus. For the flash method, isotropic graphite was selected as a candidate reference material. A batch of isotropic graphite samples was prepared and characterized in detail in order to be a certified reference material for thermal-diffusivity measurement. The detailed characterization ensures the traceability of the measurement results to the international system of units (SI). A convenient reference material for thermal conductivity was also obtained by using the known thermal-diffusivity measurements, specific heat capacity, and density of the material.
DEFF Research Database (Denmark)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2015-01-01
In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents...... of each property vary depending on the selected well-log combination. Best prediction is in the range of 2–8 per cent for the specific heat capacity, of 5–10 per cent for the thermal conductivity, and of 8–15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated...... by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is conductivity...
DEFF Research Database (Denmark)
Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie
2016-01-01
porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing....../70) in relation to physical properties, water retention, hydraulic conductivity, thermal conductivity, and gas diffusivity. We used measured basic properties and transport data to accurately parameterize the characteristic functions (particle- and pore-size distributions and water retention) and descriptive...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated...
Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.
2011-12-01
Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. However, direct measurements of snow thermal diffusivity require coupled point measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved (7.5 to 10 cm for depth and 1min for time) temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity result in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved (1 minute) thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.
Turbulent thermal diffusion: a way to concentrate dust in protoplanetary discs
Hubbard, Alexander
2016-03-01
Turbulence acting on mixes of gas and particles generally diffuses the latter evenly through the former. However, in the presence of background gas temperature gradients, a phenomenon known as turbulent thermal diffusion appears as a particle drift velocity (rather than a diffusive term). This process moves particles from hot regions to cold ones. We re-derive turbulent thermal diffusion using astrophysical language and demonstrate that it could play a major role in protoplanetary discs by concentrating particles by factors of tens. Such a concentration would set the stage for collective behaviour such as the streaming instability and hence planetesimal formation.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
Wei, Chenyu; Srivastava, Deepak; Cho, Kyeongjae
2002-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and Van der Waals forces for polymer-nanotube interfaces are used to invetigate the thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Additions of carbon nanotubes to polymer matrix are found to increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. These findings could have implic...
Directory of Open Access Journals (Sweden)
Quirijn de Jong van Lier
2013-02-01
Full Text Available Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures, as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day, the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3, the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m.
DEFF Research Database (Denmark)
Quaade, Ulrich; Johannessen, Tue; Jensen, Søren
Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....
Lateral and vertical thermal diffusivities in a dense fluidized bed with tubes bundle
Energy Technology Data Exchange (ETDEWEB)
Collantes, M.A.; Martin, G.; Le Gal, J.H. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)
1995-07-01
Dense fluidized beds are acknowledge as homogeneous systems from both temperature and composition aspects. However, some situation such as very large units or fluidized beds with tubes bundle lead to thermal gradients within the bed. These thermal gradients are due to solids motion limitation and may have detrimental effects on the process. This paper relates investigations aiming an determining lateral and vertical thermal diffusivities in a dense fluidized bed with an without a tubes bundle. These investigations have been carried out with an experimental setup of significant size (bed size = 0.6 x 1.1 x 1.3) and with small particles (less 500 microns) so as to fill some gaps of the literature. Thermal diffusivities have been deduced from temperature gradients measured between a hot wall and a cold wall in a perpendicular fluidized bed and by applying a conventional 2-D conduction model. Lateral thermal conductivities as well as vertical thermal conductivities increase with the gas velocity and the height of the bed, and when the particle size decreases. Immersing a vertical tube bundle into the fluidized bed leads to a significant reduction of the lateral thermal diffusivity, while there is no effect on the vertical thermal diffusivity. Correlations have been drawn from the experimental results. They would have to be applied for calculation of any system running at gas velocity ranging from 0.05 to 0.3 m/s and with particle size between 50 and 300 microns. (authors). 14 refs., 14 figs., 2 tabs.
Mathematical modelling of pasta dough dynamic viscosity, thermal conductivity and diffusivity
Directory of Open Access Journals (Sweden)
Andrei Ionuţ SIMION
2015-08-01
Full Text Available This work aimed to study the mathematical variation of three main thermodynamic properties (dynamic viscosity, thermal conductivity and thermal diffusivity of pasta dough obtained by mixing wheat semolina and water with dough humidity and deformation speed (for dynamic viscosity, respectively with dough humidity and temperature (for thermal diffusivity and conductivity. The realized regression analysis of existing graphical data led to the development of mathematical models with a high degree of accuracy. The employed statistical tests (least squares, relative error and analysis of variance revealed that the obtained equations are able to describe and predict the tendency of the dough thermodynamic properties.
Coefficient of Thermal Diffusivity of Insulation Brick Developed from Sawdust and Clays
Directory of Open Access Journals (Sweden)
E. Bwayo
2014-01-01
Full Text Available This paper presents an experimental result on the effect of particle size of a mixture of ball clay, kaolin, and sawdust on thermal diffusivity of ceramic bricks. A mixture of dry powders of ball clay, kaolin of the same particle size, and sawdust of different particle sizes was mixed in different proportions and then compacted to high pressures before being fired to 950°C. The thermal diffusivity was then determined by an indirect method involving measurement of thermal conductivity, density, and specific heat capacity. The study reveals that coefficient of thermal diffusivity increases with decrease in particle size of kaolin and ball clay but decreases with increase in particle size of sawdust.
CMOS Thermal Ox and Diffusion Furnace: Tystar Tytan 2000
Federal Laboratory Consortium — Description:CORAL Names: CMOS Wet Ox, CMOS Dry Ox, Boron Doping (P-type), Phos. Doping (N-Type)This four-stack furnace bank is used for the thermal growth of silicon...
Kosaka, Masataka; Monde, Masanori
2015-11-01
For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.
In-Situ Testing of the Thermal Diffusivity of Polysilicon Thin Films
Directory of Open Access Journals (Sweden)
Yi-Fan Gu
2016-10-01
Full Text Available This paper presents an intuitive yet effective in-situ thermal diffusivity testing structure and testing method. The structure consists of two doubly clamped beams with the same width and thickness but different lengths. When the electric current is applied through two terminals of one beam, the beam serves as thermal resistor and the resistance R(t varies as temperature rises. A delicate thermodynamic model considering thermal convection, thermal radiation, and film-to-substrate heat conduction was established for the testing structure. The presented in-situ thermal diffusivity testing structure can be fabricated by various commonly used micro electro mechanical systems (MEMS fabrication methods, i.e., it requires no extra customized processes yet provides electrical input and output interfaces for in-situ testing. Meanwhile, the testing environment and equipment had no stringent restriction, measurements were carried out at normal temperatures and pressures, and the results are relatively accurate.
Fujiwara, Seiji; Maki, Syou; Tanaka, Seiichi; Maekawa, Ryunosuke; Masuda, Tomoki; Hagiwara, Masayuki
2017-07-01
Thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals were examined by using the transient short hot wire method. This method is based on the conventional hot wire method, but improved by using a wire that is much shorter than conventional ones. The magneto-Archimedes levitation technique was utilized to attach the HEWL crystals onto the wire. Owing to the upward magnetic force, the HEWL crystals were deposited at the air-liquid interface of the protein buffer solution where the short hot wire was preliminarily fixed. In situ observation clarified that the wire was completely buried into the HEWL crystals. By means of these techniques, the measurement of thermal conductivity and thermal diffusivity of HEWL crystals was realized for the first time. Gadolinium chloride (a paramagnetic subject) was used as a precipitant agent of crystallization. Crystal growth was carried out over 20 h at 17.2 °C. The applied magnetic field was 4 T. Measurements were conducted during the crystal growth at two different times. The thermal conductivity and diffusivity of the HEWL crystals were determined to be 0.410 W/(m.K) and 3.77×10-8 m2/s at 14 h after, and 0.438 W/(m.K) and 5.18×10-8 m2/s at 20 h after, respectively. We emphasize that this method is versatile and applicable for other protein crystals.
Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan
2011-06-01
Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.
Temperature mapping, thermal diffusivity and subsoil heat flux at ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
the day by intense solar radiation than the lay- ers beneath, resulting in temperature gradient between the surface and subsoil on the one hand and surface and air layers near the ground on the other. Within the soil this causes heat flow downward as a thermal wave, the amplitude of which changes with depth. Estimation of ...
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew
2016-01-01
An integrated system combining diffuse ceiling ventilation with thermally activated building construction (TABS) was proposed recently. In this system, TABS is encapsulated by diffuse ceiling panel and cannot have directly heat exchange with the room. The aim of this study is to investigate the e...... an opposite effect on the heating and cooling capacity of TABS. In addition, a numerical model is built and validated by the measured data. The validated model is further applied to conduct a paramedical study on the materials of the diffuse ceiling panel.......An integrated system combining diffuse ceiling ventilation with thermally activated building construction (TABS) was proposed recently. In this system, TABS is encapsulated by diffuse ceiling panel and cannot have directly heat exchange with the room. The aim of this study is to investigate...... the effect of diffuse ceiling panel on the energy performance of TABS in both heat and cooling mode. Experiments are carried out in a full-scale test facility with the integrated system, and the cases without diffuse ceiling are also measured as references. The results indicate that the diffuse ceiling has...
Barriers to the Diffusion of Solar Thermal Technologies
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
Despite its considerable potential in household, domestic and industry sectors, the possible contribution of solar heat is often neglected in many academic and institutional energy projections and scenarios. This is best explained by the frequent failure to distinguish heat and work as two different forms of energy transfers. As a result, policy makers in many countries or States have tended to pay lesser attention to solar thermal technologies than to other renewable energy technologies.
Measurement of the Thermal Diffusivity of GaAs by Pulsed Photothermal Spectroscopy
Bennis, G. L.; Vyas, Reeta; Gupta, R.; Ang, S.; Brown, W. D.
1997-03-01
Pulsed photothermal spectroscopy has been used to measure thermal diffusivity of GaAs. In this technique, a short pulse of radiation from a Ti-Sapphire laser is used to produce local heating on a sample of GaAs wafer. The heating of the sample is monitored by deflection of a weak cw laser beam (probe beam). The thermal diffusivity of the sample is deduced from the time evolution of the deflection of the probe beam. Results of the latest measurements will be presented.
Bench-scale experimental determination of the thermal diffusivity of crushed tuff
Energy Technology Data Exchange (ETDEWEB)
Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S. [Sandia National Labs., Albuquerque, NM (United States); Connolly, J.R. [New Mexico Univ., Albuquerque, NM (United States)
1996-06-01
A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.
Photothermal radiometric determination of thermal diffusivity depth profiles in a dental resin
Energy Technology Data Exchange (ETDEWEB)
MartInez-Torres, P; Alvarado-Gil, J J [Department of Applied Physics, CINVESTAV-Unidad Merida, Antigua Carretera a Progreso Km. 6, 97310, Merida, Yucatan (Mexico); Mandelis, A, E-mail: jjag@mda.cinvestav.m [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada)
2010-03-01
The depth of curing due to photopolymerization in a commercial dental resin is studied using photothermal radiometry. The sample consists of a thick layer of resin on which a thin metallic layer is deposited guaranteeing full opacity of the sample. In this case, purely thermal-wave inverse problem techniques without the interference of optical profiles can be used. Thermal profiles are obtained by heating the coating with a modulated laser beam and performing a modulation frequency scan. Before each frequency scan, photopolymerization was induced using a high power blue LED. However due to the fact that dental resins are highly light dispersive materials, the polymerization process depends strongly on the optical absorption coefficient inducing a depth dependent thermal diffusion in the sample. It is shown that using a robust depth profilometric inverse method one can reconstruct the thermal diffusivity profile of the photopolymerized resin.
On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection
Kandula, Max
2010-01-01
A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.
Diffusion Mechanisms and Lattice Locations of Thermal-Equilibrium Defects in Si-Ge Alloys
Lyutovich, K; Touboltsev, V; Laitinen, P O; Strohm, A
2002-01-01
It is generally accepted that Ge and Si differ considerably with respect to intrinsic-point-defect-mediated diffusion. In Ge, the native point defects dominating under thermal-equilibium conditions at all solid-state temperatures accessible in diffusion experiments are vacancies, and therefore Ge self-diffusion is vacancy-controlled. In Si, by contrast, self-interstitials and vacancies co-exist in thermal equilibrium. Whereas in the most thoroughly investigated temperature regime above about 1000$^\\circ$C Si self-diffusion is self-interstitial-controlled, it is vacancy-controlled at lower temperatures. According to the scenario displayed above, self-diffusion in Si-Ge alloys is expected to change from an interstitialcy mechanism on the Si side to a vacancy mechanism on the Ge side. Therefore, $^{71}$Ge self-diffusion experiments in Si$_{1- \\it y}$Ge$_{\\it y}$ as a function of composition Y are highly interesting. In a first series of experiments the diffusion of Ge in 0.4 to 10 $\\mu$m thick, relaxed, low-disl...
A correlation of air-coupled ultrasonic and thermal diffusivity data for CFCC materials
Energy Technology Data Exchange (ETDEWEB)
Pillai, T.A.K. [Univ. of Wisconsin, LaCrosse, WI (United States). Dept. of Physics; Easler, T.E.; Szweda, A. [Dow Corning Corp., Midland, MI (United States). Advanced Ceramics Program] [and others
1997-01-01
An air-coupled (non contact) through-transmission ultrasonic investigation has been conducted on 2D multiple ply Nicalon{trademark} SiC fiber/SiNC CFCC panels as a function of number of processing cycles. Corresponding thermal diffusivity imaging was also conducted. The results of the air-coupled ultrasonic investigation correlated with thermal property variations determined via infrared methods. Areas of delaminations were detected and effects of processing cycles were also detected.
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per
The experiments are carried out in a climate chamber located at the Department of Civil Engineering Aalborg University. The objective of the experiments is to evaluate the performance of the system combining diffuse ceiling ventilation and thermally activated building construction (TABS) in terms...
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew
2015-01-01
An integrated system is proposed in this study to combine diffuse ceiling ventilation with a thermally activated building construction (TABS), aiming to provide cooling/ heating and ventilation to an office room all year around. The performance of the integrated system is evaluated by full...
Energy Technology Data Exchange (ETDEWEB)
Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)
2015-02-11
The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.
Directory of Open Access Journals (Sweden)
Sikiru Adigun Sanni
2009-05-01
Full Text Available In this article, we present a strongly coupled quasilinear parabolic combustion model with unbounded thermal conductivity and reactant diffusivity in arbitrary non-smooth domains. A priori estimates are obtained, and the existence of a unique global strong solution is proved using a Banach fixed point theorem.
Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components
Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.
2017-09-01
The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.
Thermal diffusion characteristics of atmosphere-particle two phase flow in dust storm
Wang, Xihua; Wang, Tijian; Tang, Jianping; Gu, Fan
2005-02-01
A model, coupling metrological dynamic model MM5 and dust transport model, is developed for the atmosphere-particle two phases flow of dust storm. The simulations of the dust storm events in north China with a geographic information database are performed using the model, and represent an overview of dust transport pathways and particles concentration distribution over the north China. The comparison between computations and practical observations shows that the simulations succeed in description of dust storm evolvement and particle transport behavior. Based on the computations and analysis, the characteristics of particle transport, especially well-concerning the factor of the particle thermal diffusion, are studied. A new definition of mass transfer Grd is put forward to discover the internal principle of particle thermal diffusion at various atmospheric layers. Several phenomena, such as thermal diffusion item QT Grd distribution, and relationships, Particle Grd probability function, are obtained. The investigation indicates particle thermal diffusion can be not ignored in mesoscale atmospheric-particle multiphase flow.
Thermal Diffusivity and Conductivity of Hg(1-x)Zn(x)Te Solids and Melts
Sha, Yi-Gao; Su, Ching-Hua; Mazuruk, K.; Lehoczky, S. L.
1996-01-01
The thermal diffusivity of pseudobinary Hg(1-x)Zn(x)Te solids and melts was measured by the laser flash method. The measured diffusivities for the solids of 0.10 less than or equal to x less than or equal to 0.30 are about 60% of that of the HgTe solid. Those for the melts rise rapidly with temperature but less so with increasing x. For x = 0.30, the diffusivity of the melt is about one third of that of the HgTe melt. Using the calculated beat capacity data from the associated solution model and measured density values, the thermal conductivity for the pseudobinary Hg(1-x)Zn(x)Te solids of 0.10 less than or equal to x less than or equal to 0.30 and for the melts of x = O.10, 0.16, and 0.30 was determined.
Non-local thermal spin injection to study spin diffusion in yttrium iron garnet
Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto
Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.
Modelling thermal radiation in buoyant turbulent diffusion flames
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
Thermal diffuse scattering as a probe of large-wave-vector phonons in silicon nanostructures.
Gopalakrishnan, Gokul; Holt, Martin V; McElhinny, Kyle M; Spalenka, Josef W; Czaplewski, David A; Schülli, Tobias U; Evans, Paul G
2013-05-17
Large-wave-vector phonons have an important role in determining the thermal and electronic properties of nanoscale materials. The small volumes of such structures, however, have posed significant challenges to experimental studies of the phonon dispersion. We show that synchrotron x-ray thermal diffuse scattering can be adapted to probe phonons with wave vectors spanning the entire Brillouin zone of nanoscale silicon membranes. The thermal diffuse scattering signal from flat Si nanomembranes with thicknesses from 315 to 6 nm, and a sample volume as small as 5 μm(3), has the expected linear dependence on the membrane thickness and also exhibits excess intensity at large wave vectors, consistent with the scattering signature expected from low-lying large-wave-vector modes of the membranes.
A high-resolution, nanomembrane-based, thermal diffusivity biosensor for living cells
El Afandy, Rami Tarek
2017-07-27
A method for measuring thermal diffusivity/conductivity of a microscale sample includes placing a metallic disk atop the sample, and disposing a nanomembrane over the sample and over the metallic disk so that the nanomembrane, so that the metallic disk, the nanomembrane and the sample are in thermal equilibrium with one another. A laser beam is directed to fall onto the nanomembrane over the sample, while a radiation sensor is operated to detect photoluminescent radiation emitted by the nanomembrane in response to the laser beam. A spectral shift in the detected photoluminescent radiation emitted by the nanomembrane is determined, and thermal diffusivity/conductivity is calculated from the determined spectral shift of the photoluminescence.
Pfrang, Andreas; VEYRET Damien; SIEKER Frank; Tsotridis, Georgios
2009-01-01
Three commercially available gas diffusion layers were investigated by 3D X-ray computed tomography (CT). The carbon fibers and the 3D structure of the gas diffusion layers were clearly resolved by this lab-based technique. Based on 3D structures reconstructed from tomography data, the macroscopic, anisotropic effective thermal conductivities of the gas diffusion layers were calculated by solving the energy equation considering a pure thermal conduction problem. The average in-plane therma...
Energy Technology Data Exchange (ETDEWEB)
Durham, W.B.; Abey, A.E.
1981-11-01
Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.
Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000
Energy Technology Data Exchange (ETDEWEB)
Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)
2017-04-15
The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.
Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles
Daddi-Moussa-Ider, Abdallah; Guckenberger, Achim; Gekle, Stephan
2016-01-01
The physical approach of a small particle (virus, medical drug) to the cell membrane represents the crucial first step before active internalization and is governed by thermal diffusion. Using a fully analytical theory we show that the stretching and bending of the elastic membrane by the approaching particle induces a memory in the system, which leads to anomalous diffusion, even though the particle is immersed in a purely Newtonian liquid. For typical cell membranes the transient subdiffusive regime extends beyond 10 ms and can enhance residence times and possibly binding rates up to 50%. Our analytical predictions are validated by numerical simulations.
Thermal diffusion of water vapour in porous materials: fact or fiction?
DEFF Research Database (Denmark)
Janssen, Hans
2011-01-01
The reliable evaluation of moisture transfer in porous materials is essential in many engineering applications, among which building science. One key aspect is a correct description of moisture flow phenomena and their transport potentials. While different issues can be debated in that respect...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....
Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping
2017-07-01
In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)
2015-04-01
This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.
Directory of Open Access Journals (Sweden)
Amir Reza Sadrolhosseini
2016-01-01
Full Text Available A polypyrrole-nanoparticles reduced graphene oxide nanocomposite layer was prepared using electrochemical method. The prepared samples were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and UV-visible spectroscopy. The band gap of nanocomposite layers was calculated from UV-visible spectra and the thermal diffusivity of layers was measured using a photoacoustic technique. As experimental results, the optical band gap was in the range between 3.580 eV and 3.853 eV, and thermal diffusivity was increased with increasing the layer thickness from 2.873 cm2/s to 12.446 cm2/s.
Amir Reza Sadrolhosseini; Suraya Abdul Rashid; A. S. M. Noor; Alireza Kharazmi; H N Lim; Mohd Adzir Mahdi
2016-01-01
A polypyrrole-nanoparticles reduced graphene oxide nanocomposite layer was prepared using electrochemical method. The prepared samples were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and UV-visible spectroscopy. The band gap of nanocomposite layers was calculated from UV-visible spectra and the thermal diffusivity of layers was measured using a photoacoustic technique. As experimental results, the optical band gap was in the range...
Raefat, Saad; Garoum, Mohammed; Laaroussi, Najma; Thiam, Macodou; Amarray, Khaoula
2017-07-01
In this work experimental investigation of apparent thermal diffusivity and adiabatic limit temperature of expanded granular perlite mixes has been made using the flash technic. Perlite granulates were sieved to produce essentially three characteristic grain sizes. The consolidated samples were manufactured by mixing controlled proportions of the plaster and water. The effect of the particle size on the diffusivity was examined. The inverse estimation of the diffusivity and the adiabatic limit temperature at the rear face as well as the heat losses coefficients were performed using several numerical global minimization procedures. The function to be minimized is the quadratic distance between the experimental temperature rise at the rear face and the analytical model derived from the one dimension heat conduction. It is shown that, for all granulometry tested, the estimated parameters lead to a good agreement between the mathematical model and experimental data.
Directory of Open Access Journals (Sweden)
Boričić Aleksandar Z.
2016-01-01
Full Text Available The unsteady 2-D dynamic, thermal, and diffusion magnetohydrodynamic laminar boundary layer flow over a horizontal cylinder of incompressible and electrical conductivity fluid, in mixed convection in the presence of heat source or sink and chemical reactions. The present magnetic field is homogenous and perpendicular to the body surface. It is assumed that induction of outer magnetic field is a function of longitudinal co-ordinate outer electric field is neglected and magnetic Reynolds number is significantly lower than one, i. e. considered the problem is in approximation without induction. Fluid electrical conductivity is constant. Free stream velocity, temperature, and concentration on the body are functions of longitudinal co-ordinate. The developed governing boundary layer equations and associated boundary conditions are made dimensionless using a suitable similarity transformation and similarity parameters. System of non-dimensionless equations is solved using the implicit finite difference three-diagonal and iteration method. Numerical results are obtained and presented for different Prandtl, Eckart, and Schmidt numbers, and values: magnetic parameter, temperature, and diffusion parameters, buoyancy temperature parameters, thermal parameter, and chemical reaction parameter. Variation of velocity profiles, temperature and diffusion distributions, and many integral and differential characteristics, boundary layer, are evaluated numerically for different values of the magnetic field. Transient effects of velocity, temperature and diffusion are analyzed. A part of obtained results is given in the form of figures and corresponding conclusions.
An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video
Directory of Open Access Journals (Sweden)
Dong Huilong
2016-03-01
Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.
Thermal-field emission flicker (1/f) noise and diffusive equilibrium density fluctuations
Gesley, Mark; Swanson, Lyn
1988-06-01
A model of diffusive equilibrium density fluctuations in a grand-canonical ensemble is constructed for systems of finite size. The particle number autocorrelation is developed from a Langevin-type bounded-diffusion equation. Both probe and sample geometries affect its spectrum, which factors into two terms representing the particle creation rate and diffusion according to a multidimensional Carson's theorem. The spatial decay of the kernel in the spectrum's integral equation is measured by a frequency-dependent correlation length that depends on particle lifetime, diffusivity, and probe resolution. The kernel and its transform, the mutual coherence function, collapse to the Ornstein-Zernike spatial distribution but with the new result that the classical correlation length is given by a ratio of diffusive and thermodynamic variables. For the limiting case of an unbounded system with infinite particle lifetime, Voss and Clarke's spatially correlated spectrum is rederived. However, for this ensemble a finite particle lifetime is a necessary equilibrium condition. Little's theorem is generalized when particle interactions are included. Noise-power integrals converge in all cases. Frequency exponents characterize the spectra and, when a small region is probed in a quasi-two-dimensional system, broadband 1/f noise occurs. A Lorentzian spectrum results in the limit of no diffusion. A lower length limit introduced to avoid the breakdown of the diffusion approximation at small time and space intervals can in some cases be identified with probe resolution and is measurable when a certain crossover in frequency exponents is identified. The analysis is then applied to fluctuations in the electron current, thermal field emitted from a single-crystal tungsten cathode. These are coupled to self-diffusion of surface defect adatoms on the cathode by the Fowler-Nordheim equation. Other frequency crossovers yield surface diffusivities and their activation energies, which for
Ryu, Meguya; Takezoe, Hideo; Haba, Osamu; Yonetake, Koichiro; Morikawa, Junko
2015-11-01
We measured the temperature dependences of anisotropic thermal properties, i.e., thermal diffusivity, thermal effusivity, thermal conductivity, and heat capacity per unit volume, of a nematogen 4'-n-pentyloxybiphenyl-4-carbonitrile (5OCB) containing a small amount (0.02 wt. %) of dendritic azobenzene derivatives (azo-dendrimer), using a temperature wave method. The azo-dendrimers spontaneously adsorb on cell surfaces and act as a command surface, i.e., photo-induced planar/homeotropic alignment by ultraviolet/visible light illumination. By using this effect, we demonstrated thermal property changes except for the heat capacity by almost two times within a few tens of seconds. The phenomenon can be applied to a sheet with photo-controllable thermal diffusivity or thermal conductivity.
Steckenrider, J. Scott; Ellingson, William A.; Rothermel, Scott A.
1995-03-01
Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC(f)/SiC), SiC-fiber-reinforced silicon nitride (SiC(f)/Si3N4), aluminum oxide (Al2O3)-fiber-reinforced Al2O3 (Al2O3(f)/Al2O3), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other `defects' would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide `single-shot' full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne National Laboratory has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistance coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.
Hofmeister, A.
2010-12-01
Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi
Thermal diffusivity of homogeneous SBR MOX fuel with a burn-up of 35 MWd/kgHM
Cozzo, C.; Staicu, D.; Pagliosa, G.; Papaioannou, D.; Rondinella, V. V.; Konings, R. J. M.; Walker, C. T.; Barker, M. A.; Hervé, P.
2010-05-01
The effect of burn-up on the thermal conductivity of homogeneous SBR MOX fuel is investigated and compared with standard UO 2 LWR fuel. New thermal diffusivity results obtained on SBR MOX fuel with a pellet burn-up of 35 MWd/kgHM are reported. The thermal diffusivity measurements were carried out at three radial positions using a shielded "laser-flash" device and show that the thermal diffusivity increases from the pellet periphery to the centre. The fuel thermal conductivity was found to be in the same range as for UO 2 of similar burn-up. The annealing behaviour was characterized in order to identify the degradation due to the out-of-pile auto-irradiation.
Thermal diffusivity of homogeneous SBR MOX fuel with a burn-up of 35 MWd/kgHM
Energy Technology Data Exchange (ETDEWEB)
Cozzo, C. [European Commission, Joint Research Centre, Institute for Transuranium Element, P.O. Box 2340, D-76125 Karlsruhe (Germany); Staicu, D., E-mail: dragos.staicu@ec.europa.e [European Commission, Joint Research Centre, Institute for Transuranium Element, P.O. Box 2340, D-76125 Karlsruhe (Germany); Pagliosa, G.; Papaioannou, D.; Rondinella, V.V.; Konings, R.J.M.; Walker, C.T. [European Commission, Joint Research Centre, Institute for Transuranium Element, P.O. Box 2340, D-76125 Karlsruhe (Germany); Barker, M.A. [The UK' s National Nuclear Laboratory Ltd., Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Herve, P. [LEEE, University Paris X, 1 Chemin Desvalliere, 92410 Ville d' Avray (France)
2010-05-31
The effect of burn-up on the thermal conductivity of homogeneous SBR MOX fuel is investigated and compared with standard UO{sub 2} LWR fuel. New thermal diffusivity results obtained on SBR MOX fuel with a pellet burn-up of 35 MWd/kgHM are reported. The thermal diffusivity measurements were carried out at three radial positions using a shielded 'laser-flash' device and show that the thermal diffusivity increases from the pellet periphery to the centre. The fuel thermal conductivity was found to be in the same range as for UO{sub 2} of similar burn-up. The annealing behaviour was characterized in order to identify the degradation due to the out-of-pile auto-irradiation.
Thermal and chemical diffusion in the rapid solidification of binary alloys
Conti
2000-01-01
Solidification of binary alloys is characterized by the necessity to reject away from the advancing front two conserved quantities: the latent heat released at the solid-liquid interface and the solute atoms that cannot be accommodated in the solid phase. As thermal diffusion is much faster than chemical diffusion, the latter is generally assumed to be the rate limiting mechanism for the process, and the problem is addressed through the isothermal approximation. In the present paper we use the phase-field model to study the planar growth of a solid germ, nucleated in its undercooled melt. We focus on the effects of a noninstantaneous thermal relaxation. The steady growth predicted at large supersaturation in the isothermal limit is prevented. Depending on the value of the Lewis number the growth rate is limited by either mass or heat diffusion; in the latter case we observe a sharp transition between two different regimes, in which originates a nonmonotonic time dependence of the interface temperature. The effects of this transition reflect in the composition of the solidified alloy.
AlCu alloy films prepared by the thermal diffusion technique
Energy Technology Data Exchange (ETDEWEB)
Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico); Corona, J.E.; Sosa, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico)
2010-07-15
100-nm thick films of Al{sub 1-x}Cu{sub x} alloys were prepared on glass substrates by thermal diffusion technique. The Cu atomic concentration was varied from 10% to 90%. Alloys were prepared at different temperatures into a vacuum oven with Argon atmosphere. Two thermal processes were used: i) heating the film at 400 deg. C in a single step, and ii) heating the films in sequential steps at 100, 200, 300 and 400 deg. C. Morphology, electrical resistivity, and crystalline orientation of the alloys were studied. The electrical resistivity and surface roughness of the alloys were found to depend strongly on the atomic composition and the diffusion temperature. However, we did not find differences between samples prepared under the two thermal processes. Alloys prepared with x = 0.6 and x = 0.1-0.3 as Cu at concentration exhibited values on electrical resistivity and surface roughness lower than pure Al. Different phases of the Al{sub 1} {sub -} {sub x}Cu{sub x} films were observed as a function of Cu concentration showing a good agreement with the AlCu phase diagram.
Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet
DEFF Research Database (Denmark)
Jacobsen, Lis
in ambient temperature and air exchange rate. The effect of housing equipment on environmental conditions has been examined both experimental and numerically and it was found that impervious housing equipment has a significant effect on the climatic conditions close to the wall in the occupational zone....... The wind tunnel experiments show that the diffuse material works as a heat exchanger and preheats the inlet air if the temperature in the room is higher than the inlet air. The result of the experiment is that the heat exchanging function of the inlet boundary surface is dependent on flow velocity...... of thermal comfort in terms of the operative temperature of the occupational zone. A model of the boundary condition of the diffuse inlet is necessary because the inlet is a conglomeration of an inlet and a wall boundary condition. Two methods of modelling can be chosen, a model based on the determination...
On model-free reconstruction of lattice dynamics from thermal diffuse scattering.
Bosak, Alexei; Chernyshov, Dmitry
2008-09-01
Expressions are derived for thermal diffuse scattering (TDS) using a formalism based on Born's S-matrix. It is shown that for monoatomic crystals the dynamical matrix containing the full information on lattice dynamics can be recovered from one-phonon TDS intensities. For any non-monoatomic crystal, part of the information is always lost in the kinematic approximation, but can in principle be recovered by measuring TDS in the dynamical scattering regime. In the long-wave limit the description here coincides with known results.
Thermal diffusion effects on free convection and mass transfer flow for an infinite vertical plate
Abdel-Khalek, M M
2003-01-01
A theoretical study is performed to examine the effects of thermal diffusion on free convection and mass transfer flow for an infinite vertical plate. The governing equations for the fluid flow and the heat transfer are solved subject to the relevant boundary conditions. A perturbation technique is used to obtain expressions for the velocity field and skin friction. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles as well as skin friction and the rate of mass and heat transfer is done with the aid of graphs.
Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.
2009-02-01
Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.
Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion layers
Energy Technology Data Exchange (ETDEWEB)
Ramousse, Julien; Didierjean, Sophie; Lottin, Olivier; Maillet, Denis [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, UMR 7563 CNRS-INPL-UHP, 2, avenue de la foret de Haye, BP 160, 54504 Vandoeuvre les Nancy Cedex (France)
2008-01-15
Thermal conductivity of gas diffusion layers (GDL) used in fuel cells is a key parameter for the analysis of heat transfer in membrane electrodes assembly (MEA). In this paper, we focus on non-woven carbon felts. Although correlations are available, the felts thermal conductivity is difficult to estimate due to the nature of heat transfer in porous and fibrous materials: the effective conductivity of the solid phase is roughly known and the correlations giving effective conductivity of porous media (solid and fluid phases) have restricted range of application. Consequently, we chose to associate an analytical and an experimental approach. Their results converge and clearly show that the majority of values encountered in the literature are, most probably, highly overestimated. (author)
Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.
1996-03-01
Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.
Gierl, Heribert
1995-01-01
Diffusion. - In: Handwörterbuch des Marketing / hrsg. von Bruno Tietz ... - 2., völlig neu gestalt. Aufl. - Stuttgart : Schäffer-Poeschel, 1995. - S. 469-477. - (Enzyklopädie der Betriebswirtschaftslehre ; 4)
Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.
2011-05-01
Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found
Almarcha, C; Trevelyan, P M J; Grosfils, P; De Wit, A
2013-09-01
A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact line between the two solutions as convective plumes develop in the acidic solution only. We investigate here by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A+B→C reaction the relative role of solutal versus thermal effects in the origin and location of this instability. We show that heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and nonlinear simulations.
Energy Technology Data Exchange (ETDEWEB)
Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)
1999-01-01
In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and
Directory of Open Access Journals (Sweden)
Kucypera Stanisław
2014-03-01
Full Text Available The aim of this paper is analysis of the possibility of determining the internal structure of the fibrous composite material by estimating its thermal diffusivity. A thermal diffusivity of the composite material was determined by applying inverse heat conduction method and measurement data. The idea of the proposed method depends on measuring the timedependent temperature distribution at selected points of the sample and identification of the thermal diffusivity by solving a transient inverse heat conduction problem. The investigated system which was used for the identification of thermal parameters consists of two cylindrical samples, in which transient temperature field is forced by the electric heater located between them. The temperature response of the system is measured in the chosen point of sample. One dimensional discrete mathematical model of the transient heat conduction within the investigated sample has been formulated based on the control volume method. The optimal dynamic filtration method as solution of the inverse problem has been applied to identify unknown diffusivity of multi-layered fibrous composite material. Next using this thermal diffusivity of the composite material its internal structure was determined. The chosen results have been presented in the paper.
Energy Technology Data Exchange (ETDEWEB)
Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Peterson, Byron J.; Mukai, Kiyofumi; Akiyama, Tsuyoshi; Watanabe, Takashi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Drapiko, Evgeny A. [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Alekseyev, Andrey G. [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Itomi, Muneji [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)
2014-05-15
A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.
Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi
2014-05-01
A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.
Analytic determination of the effective thermal conductivity of PEM fuel cell gas diffusion layers
Energy Technology Data Exchange (ETDEWEB)
Sadeghi, E.; Bahrami, M.; Djilali, N. [Department of Mechanical Engineering and the Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 3P6 (Canada)
2008-04-15
Accurate information on the temperature field and associated heat transfer rates are particularly important in devising appropriate heat and water management strategies in proton exchange membrane (PEM) fuel cells. An important parameter in fuel cell performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL). Estimation of the effective thermal conductivity is complicated because of the random nature of the GDL micro structure. In the present study, a compact analytical model for evaluating the effective thermal conductivity of fibrous GDLs is developed. The model accounts for conduction in both the solid fibrous matrix and in the gas phase; the spreading resistance associated with the contact area between overlapping fibers; gas rarefaction effects in microgaps; and salient geometric and mechanical features including fiber orientation and compressive forces due to cell/stack clamping. The model predictions are in good agreement with existing experimental data over a wide range of porosities. Parametric studies are performed using the proposed model to investigate the effect of bipolar plate pressure, aspect ratio, fiber diameter, fiber angle, and operating temperature. (author)
Pack, Seongchan; Kashiwagi, Takashi; Koga, Tadanori; Sokolov, Jonathan; Rafailovich, Miriam
2009-03-01
We have previously demonstrated that large aspect ratio nanoparticles such as clays or nanotubes can form in-situ grafts which become universal compatiblizing agents for polymer blends. Here we show how the same mechanism could be applied to producing flame retardant materials in the polymer matrix. In particular, the large aspect nanoclays prevent thermally induced phase segregation and disperse the flame retardants, which greatly decrease flammability and increase efficiency of the flame retardants during combustion due to a formation of ribbons-like structures. These structures could produce a lager thermal differential gradient between the two polymer phases, which could change a heat specific of the system during combustion. Therefore, a small addition of the nanoclays affects the huge reduction on heat release rate and the mass loss rates. Furthermore, using a small angle X-ray scattering (SAXS), a transmission electron microscopy (TEM), and a scanning electron microscopy (SEM) shows that the clay platelets could be transformed into tubular-like rods during combustion, which would increase of the thermal diffusivity in the polymer blend.
Transient effect of soil thermal diffusivity on performance of EATHE system
Directory of Open Access Journals (Sweden)
Anuj Mathur
2015-11-01
Full Text Available This paper presents effect of thermo-physical properties of soil on performance of an Earth Air Tunnel Heat Exchanger (EATHE. The analysis has been carried out using a validated three-dimensional, transient numerical model for three different types of soil. The governing equations, based on the k–ε model and energy equation were used to describe the turbulence and heat transfer phenomena, are solved by using finite volume method. Comparisons were made in terms of temperature drop, heat transfer rate and COP of the EATHE system by operating it continuously for 12 h duration. The study reveals that each soil exhibits different rate of heat dissipation and thermal saturation over a period of continuous operation, which adversely affects the performance of EATHE. Dissipation of heat from the EATHE pipes to its surrounding soil and subsequently to the outer subsoil region is mainly found to be depending upon the thermal conductivity of soil; even of their thermal diffusivity is of different order.
Analytic determination of the effective thermal conductivity of PEM fuel cell gas diffusion layers
Sadeghi, E.; Bahrami, M.; Djilali, N.
Accurate information on the temperature field and associated heat transfer rates are particularly important in devising appropriate heat and water management strategies in proton exchange membrane (PEM) fuel cells. An important parameter in fuel cell performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL). Estimation of the effective thermal conductivity is complicated because of the random nature of the GDL micro structure. In the present study, a compact analytical model for evaluating the effective thermal conductivity of fibrous GDLs is developed. The model accounts for conduction in both the solid fibrous matrix and in the gas phase; the spreading resistance associated with the contact area between overlapping fibers; gas rarefaction effects in microgaps; and salient geometric and mechanical features including fiber orientation and compressive forces due to cell/stack clamping. The model predictions are in good agreement with existing experimental data over a wide range of porosities. Parametric studies are performed using the proposed model to investigate the effect of bipolar plate pressure, aspect ratio, fiber diameter, fiber angle, and operating temperature.
Fujiwara, Seiji; Maki, Syou; Maekawa, Ryunosuke; Tanaka, Seiichi; Hagiwara, Masayuki
2017-08-01
Protein crystals are an essentially important biological sample to advance the analysis of X-ray structure, but their thermophysical properties, especially thermal conductivity and thermal diffusivity, have not been studied sufficiently. This current situation can be attributed to various kinds of technical problems; e.g., the fragility of protein crystals and the difficulty of nucleation control. Ideally speaking, protein crystallization should be carried out under a " containerless condition" to eliminate any mechanical distortion of the crystals from the walls. To realize the condition, we have developed an original crystallization method by means of the magneto-Archimedes effect. In this paper, a transient short hot wire method was combined with the technique of magneto-Archimedes effect to realize simultaneous measurement of thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals. As the results, thermal conductivity and thermal diffusivity of HEWL crystals were found to be 0.410-0.438 \\hbox {W}\\cdot \\hbox {m}^{-1}\\cdot \\hbox {K}^{-1} and 3.77-5.18× 10^{-8} \\hbox {m}2\\cdot \\hbox {s}^{-1}, respectively. We clarified by the crystallizing process of HEWL that the crystals were magnetically levitated at the air-liquid interface and the short hot wire was completely buried into them as the crystals grew. We also measured the HEWL solution by the same methods. The thermal conductivity of the solution had almost the same value as that of water and had little dependency on the concentration of HEWL, but the thermal diffusivity was unclear.
Energy Technology Data Exchange (ETDEWEB)
Sadeghi, E. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada); Djilali, N. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Bahrami, M. [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada)
2011-01-01
Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a PEM fuel cell. The analysis of this process requires determination of the effective thermal conductivity as well as the thermal contact resistance associated with the interface between the GDL and adjacent surfaces/layers. In the present study, a custom-made test bed that allows the separation of effective thermal conductivity and thermal contact resistance in GDLs under vacuum and ambient conditions is described. Measurements under varying compressive loads are performed using Toray carbon paper samples with a porosity of 78% for a range of thicknesses. The measurements are complemented by compact analytical models that achieve good agreement with experimental data. A key finding is that thermal contact resistance is the dominant component of the total thermal resistance; neglecting this phenomenon may result in significant errors in evaluating heat transfer rates and temperature distributions. (author)
Energy Technology Data Exchange (ETDEWEB)
Drozdowicz, K. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)]. E-mail: krzysztof.drozdowicz@ifj.edu.pl; Krynicka, E. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Dabrowska, J. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)
2005-03-01
The water content in a rock material can significantly change the thermal neutron diffusion parameters with respect to those of the dry medium. The effect has been studied for dolomite, CaMg(CO{sub 3}){sub 2}, by Monte Carlo simulations of the variable buckling experiments for 10 series of samples. The density-removed diffusion cooling coefficient C{sup M} varies hyperbolically by two orders of magnitude with water content in the range of 0-20%.
Sano, K.; Matsuura, S.
2017-11-01
Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by the interstellar radiation field (ISRF). At 1.25 and 2.2 μ {{m}}, a recent observational study shows that intensity ratios of the DGL to interstellar 100 μ {{m}} dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate the origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with the regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that the contribution of the near-IR thermal emission component to the observed DGL is lower than ∼ 20 % . We also examine the b-dependence of the scattered light, assuming a plane–parallel Galaxy with smooth distributions of the ISRF and dust density along the vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100 μ {{m}} intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model that considers the b-dependence of dust and the ISRF properties can account for the observed b-dependence of the near-IR DGL. However, the uncertainty in the correction for the 100 μ {{m}} emission is large, and other normalizing quantities may be appropriate for a more robust analysis of the DGL.
Energy Technology Data Exchange (ETDEWEB)
Pech-May, Nelson Wilbur [Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain); Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México (Mexico); Mendioroz, Arantza; Salazar, Agustín, E-mail: agustin.salazar@ehu.es [Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain)
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
Directory of Open Access Journals (Sweden)
Li Tse-Chang
2017-01-01
Full Text Available In the present study, the thermal diffusivities of the Al, Si and ITO films deposited on the SUS304 steel substrate are evaluated via the present technique. Before applying this technique, the temperature for the thin film of the multi-layered specimen is developed theoretically for the one- dimensional steady heat conduction in response to amplitude and frequency of the periodically oscillating temperature imposed by a peltier placed beneath the specimen's substrate. By the thermal-electrical data processing system excluding the lock-in amplifier, the temperature frequency a3 has been proved first to be independent of the electrical voltage applied to the peltier and the contact position of the thermocouples. The experimental data of phase difference for three kinds of specimen are regressed well by a straight line with a slope. Then, the thermal diffusivity of the thin film is thus determined if the slope value and the film- thickness are available. In the present arrangements for the thermocouples, two thermal diffusivity values are quite close each other and valid for every kind of specimen. This technique can provide an efficient, low-cost method for the thermal diffusivity measurements of thin films.
Energy Technology Data Exchange (ETDEWEB)
Brill, J. W.; Shahi, Maryam; Yao, Y. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Payne, Marcia M.; Anthony, J. E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Edberg, Jesper; Crispin, Xavier [Department of Science and Technology, Organic Electronics, Linköping University, SE-601 74 Norrköping (Sweden)
2015-12-21
We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.
Energy Technology Data Exchange (ETDEWEB)
Sadeghi, E. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada); Djilali, N. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Bahrami, M. [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada)
2010-12-15
Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a PEM fuel cell. The analysis of this process requires the determination of the effective thermal conductivity as well as the thermal contact resistance between the GDL and adjacent surfaces/layers. The Part 1 companion paper describes an experimental procedure and a test bed devised to allow separation of the effective thermal conductivity and thermal contact resistance, and presents measurements under a range of static compressive loads. In practice, during operation of a fuel cell stack, the compressive load on the GDL changes. In the present study, experiments are performed on Toray carbon papers with 78% porosity and 5% PTFE under a cyclic compressive load. Results show a significant hysteresis in the loading and unloading cycle data for total thermal resistance, thermal contact resistance (TCR), effective thermal conductivity, thickness, and porosity. It is found that after 5 loading-unloading cycles, the geometrical, mechanical, and thermal parameters reach a ''steady-state'' condition and remain unchanged. A key finding of this study is that the TCR is the dominant component of the GDL total thermal resistance with a significant hysteresis resulting in up to a 34% difference between the loading and unloading cycle data. This work aims to clarify the impact of unsteady/cyclic compression on the thermal and structural properties of GDLs and provides new insights on the importance of TCR which is a critical interfacial transport phenomenon. (author)
Energy Technology Data Exchange (ETDEWEB)
Drozdowicz, K. E-mail: Krzysztof.Drozdowicz@ifj.edu.pl; Krynicka, E.; Dabrowska, J
2003-06-01
The pulsed neutron experiment (the variable geometric buckling experiment) in spherical geometry has been simulated using the MCNP code. The time decay of the thermal neutron flux has been observed as a function of the sample size. The thermal neutron diffusion cooling coefficient C with the correction F has been determined for three basic rock minerals (quartz, calcite, dolomite) at the given specific densities. The corresponding density-removed parameters have also been obtained.
Marcano, Aristides; Gwanmesia, Gabriel; Workie, Bizenuh
2017-09-01
We have carried out the theoretical and experimental time evolution and amplitude study of the photothermal mirror signal generated by focusing a laser beam on the surface of a suite of solid samples. Based on a theoretical model that resolves the thermal diffusivity equation and the equation for thermo-elastic deformations simultaneously, we have calculated the transient time evolution and amplitude of the signal. We observe the same time evolution pattern for samples as diverse as glass, quartz, metals, and synthetic ceramic oxides. The data have yielded a linear dependence between the time build-up of the thermal mirror and the inverse of the thermal diffusivity for all the samples. For moderate power levels, we also observe a linear behavior between the stationary value of the signal and the thermally induced phase shift value. From the calibration curves, we have determined the thermally induced phase and the thermal diffusivity coefficients of two prospective nuclear reactor control rod materials, dysprosium titanate (Dy2TiO5) and dysprosium dititanate (Dy2Ti2O7) to be D = (7.0 ± 0.4) × 10^{-7} m^{2\\cdot s^{-1}}.
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.
Energy Technology Data Exchange (ETDEWEB)
Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood [Islamic Azad University, Plasma Physics Research Center, Science and Research Branch, Tehran (Iran, Islamic Republic of); Boochani, Arash [Islamic Azad University, Department of Physics, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of)
2016-05-15
The amorphous W/WN bi-layer with excellent thermal stability was successfully prepared by hot-filament chemical vapor deposition method on SiO{sub 2}/Si substrate. It was found that the W/WN bi-layer is technological importance because of its low resistivity and good diffusion barrier properties between Cu and Si up to 700 C for 30 min. The thermal stability was evaluated by X-ray diffractometer (XRD) and scanning electron microscope. The XRD results show that the Cu{sub 3}Si phase was formed by Cu diffusion through W/WN barrier for the 800 C annealed sample. The formation of the Cu-Si compounds denotes the failure of the W/WN diffusion barrier with rapid increase in sheet resistance of the film. The microstructure of the interface between W/WN and Cu reflects the stability and breakdown of the barriers. The failure of this amorphous barrier occurs with heat treatment when the deposited amorphous barrier material crystallizes. The major part of Cu diffusion in polycrystalline structure with disordered grain boundaries is controlled by grain boundaries. AFM results indicated a rapid increase in surface roughness at the diffusion barrier failure temperature. It was found that the grain size plays an important factor to control the thermally stability of the W/WN bi-layer. (orig.)
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew
2015-01-01
This paper presents and analyses the performance of an integrated system with diffuse ceiling ventilation and a thermally activated building construction. A full-scale experiment is carried out in a hot box with an office setup. The performance of the integrated system is evaluated under different...
Energy Technology Data Exchange (ETDEWEB)
Pipon, Yves [Ecole doctorale de physique et d' astrophysique, Universite Claude Bernard Lyon-I, Lyon (France)
2006-12-15
This work concerns the study of the thermal and radiation enhanced diffusion of {sup 36}Cl in uranium dioxide. It is a contribution to PRECCI programme (research programme on the long-term behaviour of the spent nuclear fuel). {sup 36}Cl is a long lived volatile activation product (T = 300 000 years) able to contribute significantly to the instant release fraction in geological disposal conditions. We simulated the presence of {sup 36}Cl by implanting a quantity of {sup 37}Cl comparable to the impurity content of chlorine in UO{sub 2}. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 deg. C; we showed that implanted chlorine was mobile from temperatures as low as 1000 deg. C and determined a thermal diffusion coefficient D{sub 1000} {sub deg.} {sub C} around 10{sup -16} cm{sup 2}s{sup -1} and deduced an activation energy of 4.3 eV. This value is one of lowest compared to that of volatile fission products such as iodine or the xenon. These parameters reflect the very mobile behaviour of chlorine; - the irradiation effects induced by fission products were studied by irradiating the samples with {sup 127}I (energy of 63.5 MeV). We showed that the implanted chlorine diffusion in the temperature range 30 - 250 deg. C is not purely athermal. In these conditions, the diffusion coefficient D{sub 250} {sub deg.} {sub C} for the implanted chlorine is around 10{sup -14} cm{sup 2}s{sup -1} and the activation energy is calculated to be 0.1 eV. Moreover, at 250 deg. C, we observed an important transport of the pristine chlorine from the bulk towards the surface. This chlorine comes from a zone where the defects are mainly produced by the nuclear energy loss process at the end of iodine range. We showed the importance of the
A method of determination of the thermal diffusivity of refractory powders in the 400-1200 K range
Energy Technology Data Exchange (ETDEWEB)
Litovskii, E.Ya.; Bondarenko, S.L.; Fedina, I.G.
1986-09-01
This paper describes a method of measurement of the thermal diffusivity of refractory powders at temperatures of 400-2100 K in different gaseous media in the p = 10/sup 2/-10/sup 5/ Pa pressure range. The method developed is based on the rules of steady heating of cylindrical specimens. The calculation equation has a form characteristic of regular conditions of the second order in an infinite cylinder with corrections for the deviation from quasisteadiness and for the nonuniformity of the temperature field in the specimen. Thermal diffusivities of magnesite powder and PIT-1 yttrium oxide powder are shown in different gaseous media. The method developed possesses satisfactory accuracy and makes it possible to obtain information on the thermal divusivity and conductivity of refractory powders in a broad temperature range and in the area of high temperature.
Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees.
Bush, Susan E; Hultine, Kevin R; Sperry, John S; Ehleringer, James R
2010-12-01
Thermal dissipation probes (the Granier method) are routinely used in forest ecology and water balance studies to estimate whole-tree transpiration. This method utilizes an empirically derived equation to measure sap flux density, which has been reported as independent of wood characteristics. However, errors in calculated sap flux density may occur when large gradients in sap velocity occur along the sensor length or when sensors are inserted into non-conducting wood. These may be conditions routinely associated with ring-porous species, yet there are few cases in which the original calibration has been validated for ring-porous species. We report results from laboratory calibration measurements conducted on excised stems of four ring-porous species and two diffuse-porous species. Our calibration results for ring-porous species were considerably different compared with the original calibration equation. Calibration equation coefficients obtained in this study differed by as much as two to almost three orders of magnitude when compared with the original equation of Granier. Coefficients also differed between ring-porous species across all pressure gradient conditions considered; however, no differences between calibration slopes were observed for data collected within the range of expected in situ pressure gradients. In addition, dye perfusions showed that in three of the four ring-porous species considered, active sapwood was limited to the outermost growth ring. In contrast, our calibration results for diffuse-porous species showed generally good agreement with the empirically derived Granier calibration, and dye perfusions showed that active sapwood was associated with many annual growth rings. Our results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibration coefficients may be
A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.
2017-06-01
Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical
Holmes, Jesse; Zerkle, Michael; Heinrichs, David
2017-09-01
The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
Weres, Jerzy; Kujawa, Sebastian; Olek, Wiesław; Czajkowski, Łukasz
2016-04-01
Knowledge of physical properties of biomaterials is important in understanding and designing agri-food and wood processing industries. In the study presented in this paper computational methods were developed and combined with experiments to enhance identification of agri-food and forest product properties, and to predict heat and water transport in such products. They were based on the finite element model of heat and water transport and supplemented with experimental data. Algorithms were proposed for image processing, geometry meshing, and inverse/direct finite element modelling. The resulting software system was composed of integrated subsystems for 3D geometry data acquisition and mesh generation, for 3D geometry modelling and visualization, and for inverse/direct problem computations for the heat and water transport processes. Auxiliary packages were developed to assess performance, accuracy and unification of data access. The software was validated by identifying selected properties and using the estimated values to predict the examined processes, and then comparing predictions to experimental data. The geometry, thermal conductivity, specific heat, coefficient of water diffusion, equilibrium water content and convective heat and water transfer coefficients in the boundary layer were analysed. The estimated values, used as an input for simulation of the examined processes, enabled reduction in the uncertainty associated with predictions.
A new model for thermal contact resistance between fuel cell gas diffusion layers and bipolar plates
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2014-11-01
A new analytical model is developed to predict the thermal contact resistance (TCR) between fibrous porous media such as gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs) and flat surfaces (bipolar plates). This robust model accounts for the salient geometrical parameters of GDLs, mechanical deformation, and thermophysical properties of the contacting bodies. The model is successfully validated against experimental data, and is used to perform in a comprehensive parametric study to investigate the effects of fiber parameters such as waviness and GDL properties on the TCR. Fiber waviness, diameter and surface curvature, as well as GDL porosity, are found to have a strong influence on TCR whereas fiber length does not affect the TCR when the porosity is kept constant. Such findings provide useful guidance for design and manufacturing of more effective GDLs for PEMFC heat management. The analytic model can be readily implemented in simulation and modeling of PEMFCs, and can be extended with minor modifications to other fibrous porous media such as fibrous catalysts, insulating media and sintered metals.
Directory of Open Access Journals (Sweden)
D. Lourdu Immaculate
2015-06-01
Full Text Available The present paper deals with the influence of thermophoretic particle deposition on the MHD mixed convective heat and mass transfer flow in a vertical channel in the presence of radiative heat flux with thermal-diffusion and diffusion-thermo effects. The resulting nonlinear coupled equations are solved under appropriate boundary conditions using the homotopy analysis method. The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is presented graphically. It is noted that fluid velocity is an increasing function of radiation parameter, Dufour number, Buoyancy ratio parameter and mixed convection parameter whereas the magnetic parameter, thermophoresis constant, Soret number and Schimidt number lead to suppress the velocity. The fluid temperature increases with increasing radiation parameter and Dufour number. The convergence of homotopy analysis method (HAM solutions is discussed and a good agreement is found between the analytical and the numerical solution.
Choi, M H; Park, C H; Kim, S W; Hahn, S H; Seong, D J; Kim, J C
1999-01-01
The thermal diffusivity in a direction perpendicular to an epoxy resin film sandwiched between two identical metal layers was measured not only by using a pulsed transient analysis but also by using AC calorimetry. The pulsed transient analysis utilized the surface-temperature decay of the heating pulse from a Q-switched, 2nd harmonic generated Nd:YAG laser. The temperature decay was measured with a HgCdTe infrared detector. After data collection, a nonlinear least-squares regression was performed to estimate the optimal values of several separate thermal parameters by fitting the data to the solutions. Additionally, the thermal diffusivity of the samples was obtained by using the AC calorimetric method which measured the frequency-dependent phase changes of the samples. The thermal diffusivities obtained by the two methods were in the range of 0.07 approx 0.09 x 10 sup - sup 2 cm sup 2 /s, agreed within 8 %, but were lower than the literature values. To improve the results, the contact heat resistance from t...
In-Situ Testing of the Thermal Diffusivity of Polysilicon Thin Films
National Research Council Canada - National Science Library
Gu, Yi-Fan; Zhou, Zai-Fa; Sun, Chao; Li, Wei-Hua; Huang, Qing-An
2016-01-01
...(t) varies as temperature rises. A delicate thermodynamic model considering thermal convection, thermal radiation, and film-to-substrate heat conduction was established for the testing structure...
Srivastava, R.; Rosner, D. E.
1979-01-01
A rational approach to the correlation of boundary layer mass transport rates, applicable to many commonly encountered laminar flow conditions with thermal diffusion and/or variable properties, is outlined. The correlation scheme builds upon already available constant property blowing/suction solutions by introducing appropriate correction factors to account for the additional ('pseudo' blowing and source) effects identified with variable properties and thermal diffusion. Applications of the scheme to the particular laminar boundary layer mass transfer problems considered herein (alkali and transition metal compound vapor transport) indicates satisfactory accuracy up to effective blowing factors equivalent to about one third of the 'blow off' value. As a useful by-product of the variable property correlation, we extend the heat-mass transfer analogy, for a wide range of Lewis numbers, to include variable property effects.
Energy Technology Data Exchange (ETDEWEB)
Yeh, H.-M. [Department of Chemical and Materials Engineering, Tamkang University Tansui, 151 Ying-Chuan Rd, Taipei County 251, Taiwan (China)], E-mail: hmyeh@mail.tku.edu.tw
2009-01-15
The modeling simulation for the separation of H-D gas mixture in batch-type concentric-tube thermal diffusion columns have been analyzed from the transport equation coupled with the application of mass balance. The most important assumption is that the concentrations of H{sub 2}, HD and D{sub 2} are locally equilibrium at every points in the column as H{sub 2} + D{sub 2} {r_reversible} 2HD. The concentration distribution equation was derived and the concentration difference between the bottom and top ends of the column could be estimated. The degree of separation and separation factor for recovery of deuterium from H-D gas mixture in the batch-type cryogenic-wall thermal diffusion column were estimated.
Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio
2016-02-29
This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.
Directory of Open Access Journals (Sweden)
José Manuel Andújar Márquez
2016-02-01
Full Text Available This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain. Experimental results validate the proposed approach.
Hamour, M.; Garnier, J. P.; Grandidier, J. C.; Ouibrahim, A.; Martemianov, S.
2011-05-01
Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m-1 · K-1) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the robustness of the developed method and apparatus for this type of application.
Energy Technology Data Exchange (ETDEWEB)
Garcia Fite, J.
1959-07-01
The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs.
Balachandar, Settu; Shivaprakash, NC; Rao, Kameswara L
2016-01-01
supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a `moving optical-mark' at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. `Product of velo...
Energy Technology Data Exchange (ETDEWEB)
Jafarian, Mojtaba [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rizi, Mohsen Saboktakin, E-mail: M.saboktakin@Pa.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jafarian, Morteza [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Honarmand, Mehrdad [Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Javadinejad, Hamid Reza; Ghaheri, Ali [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahramipour, Mohammad Taghi [Materials Engineering Department, Hakim Sabzevari University, Sabzevar, 397 (Iran, Islamic Republic of); Ebrahimian, Marzieh [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)
2016-06-01
The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.
Directory of Open Access Journals (Sweden)
Terpiłowski Janusz
2014-09-01
Full Text Available Transient heat transfer is studied and compared in two planeparallel composite walls and one EPIDIAN 53 epoxy resin wall acting as a matrix for both composites. The first of the two walls is made of carbonepoxy composite; the other wall is made of glass-epoxy composite, both with comparable thickness of about 1 mm and the same number of carbon and glass fabric layers (four layers. The study was conducted for temperatures in the range of 20-120 °C. The results of the study of thermal diffusivity which characterizes the material as a heat conductor under transient conditions have a preliminary character. Three series of tests were conducted for each wall. Each series took about 24 h. The results from the three series were approximated using linear functions and were found between (0.7-1.35×10−7m2/s. In the whole range of temperature variation, the thermal diffusivity values for carbon-epoxy composite are from 1.2 to 1.5 times higher than those for the other two materials with nearly the same thermal diffusivity characteristics.
Branlund, J. M.; Hofmeister, A.; Dong, J.
2013-12-01
Over the course of several years, we have measured heat transport to high temperatures for a large number (ca. 200) of minerals, rocks, glasses and melts using laser flash analysis which eliminates systematic errors (contact losses and boundary-to-boundary radiative transfer gains) that limit utility of conventional, contact techniques. The database is large enough to elucidate patterns. For most samples and particularly for our >60 non-metallic, large single-crystals, >30 glasses and >12 polycrystals, we show that thermal diffusivity is consistently represented by D(T) =F/T ^G + HT, permitting confident extrapolation from conditions in the laboratory to those in the mantle. The two distinct temperature terms describing D(T) suggest that two microscopic mechanisms of conduction exist in the electrical insulators explored. We propose that phonon scattering (the F/T^G term) sums with radiative diffusion of infrared (IR) light in the form of polaritons (the HT term). Speeds near that of sound over unit cell scale lengths exist for the polariton mechanism due to phonon-photon coupling, thereby distinguishing this proposed mechanism from high frequency diffusive radiative transfer which travels near the speed of light, and only is important following transient heating. For 63 single-crystals and many glasses unaffected by disordering or reconstructive phase transitions, G ranges from 0.3 to 2, depending on structure, and H is ~0.0001/ K, and so HT crosses F/T^G by ~1300 K (for most oxides), meaning that radiative diffusion of IR light is more important than phonon scattering inside the Earth. Importantly, the increase in heat transport due to elevated temperature is augmented by the increase due to high P inside planets, providing stability against convection. The popular view of a vigorously convecting interior needs revisiting, given known feedback in the temperature equation and the large size of the HT term. To understand the microscopic basis of HT term, we re
Directory of Open Access Journals (Sweden)
Mir Hamid Reza Ghoreishy
2017-05-01
Full Text Available This research work is devoted to the study of the thermal diffusivity of SBR/BR compounds used as the tread of radial tires. Three series of rubber compounds were prepared, in which two solution SBR grades (with and without extra oil as well as an emulsion SBR were selected. Five compounds with different CB/silica ratios were designed for each of the three series. Moreover, three compounds without fillers were prepared as reference samples. Thermal diffusivities of the compounds were determined by a novel technique to solve an inverse heat transfer problem. Abaqus and Isight codes were used to carry out the finite element solution and optimization. It is shown that, in all the compounds the thermal diffusivities were reduced with increasing the temperature. In addition, the macro- and micro- structures of SBR as well as the CB/silica ratios greatly affected the variations in thermal diffusivities with temperature. The thermal diffusivity and its variabilities were studied and discussed by different structural and functional parameters such as intermolecular distance, molecular vibrational energy, difference between the thermal diffusivities of the polymer and filler, and the chemical bonds between the polymer and silica.
Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.
Energy Technology Data Exchange (ETDEWEB)
Cox, K.E.
1978-01-01
Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.
Energy Technology Data Exchange (ETDEWEB)
Prokert, F. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Ionenstrahlphysik und Materialforschung; Savenko, B.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). LNP; Balagurov, A.M. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). LNP
1995-03-01
Thermal diffuse scattering (TDS) from single crystals of barium strontium niobate (SBN) and from a partly deuterated single crystal of tris(sarcosine) calcium chloride (TSCC) measured on the time-of-flight (TOF) Laue single-crystal diffractometer DN-2/IBR-2, Dubna, Russia, are presented. Various characteristic distributions of the TDS were measured and could be interpreted for the elastically (nearly) isotropic SBN crystals as well as for the anisotropic TSCC sample in accordance with the theory. The velocities of sound propagation are determined in both cases. Temperature-dependent changes of the TDS are qualitatively analysed for SBN crystals. (orig.).
Hussanan, Abid; Salleh, Mohd Zuki; Tahar, Razman Mat; Khan, Ilyas
2015-02-01
Thermal-diffusion and chemical reaction effects on mixed convection heat and mass transfer flow past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a system of linear partial differential equations using appropriate non-dimensional variables. Using Laplace transform method the resulting equations are solved analytically and the expression for velocity, temperature and concentration are obtained. They satisfy all imposed initial and boundary conditions. Numerical results for temperature and concentration are shown in various graphs for embedded flow parameters and discussed in details.
Bisetti, Fabrizio
2012-12-01
Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.
Murthy, P.V.S.N.
2011-12-26
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.
Delugas, P; Caddeo, C; Filippetti, A; Mattoni, A
2016-07-07
We study the diffusion of point defects in crystalline methylammonium lead halide (MAPI) at finite temperatures by using all-atoms molecular dynamics. We find that, for what concerns intrinsic defects, iodine diffusion is by far the dominant mechanism of ionic transport in MAPI, with diffusivities as high as 7.4 × 10(-7) and 4.3 × 10(-6) cm(2) s(-1) at 300 K and single activation energies of 0.24 and 0.10 eV, for interstitials and vacancies, respectively. The comparison with common covalent and oxide crystals reveals the ultrahigh mobility of defects in MAPI. Though at room temperature the vacancies are about 1 order of magnitude more diffusive, the anisotropic interstitial dynamics increases more rapidly with temperature, and it can be dominant at high temperatures. Present results are fully consistent with the involvement of iodide ions in hysteresis and have implications for improvement of the material quality by better control of defect diffusion.
Dentzer, Jacques; Violette, Sophie; Lopez, Simon; Bruel, Dominique
2017-11-01
This study is the first quantification of the combined impact of diffusive and advective paleoclimatic phenomena to explain the weak vertical thermal flux anomaly in the upper part of the Anglo-Paris intracratonic sedimentary basin in northern France. The aim of the research is to understand the mechanisms at the origin of the thermal flux anomaly at the level of the Meso-Cenozoic sediment pile. Based on a temperature profile representative of the basin, transient thermo-hydraulic simulations were performed along a representative vertical cross-section of about 400 km within the Lower Cretaceous multi-layer aquifer. Four paleoclimatic scenarios are the combination of two paleotemperature climatic forcings and two hydrodynamic regimes, one of them taking into account the interruption of the recharge linked to permafrost development. The simulation results clearly show the transient nature of the basin's thermal regime. Then, for the reference well, the majority of the thermal flux anomaly can be explained by advective and paleoclimatic mechanisms with a decrease in geothermal flux simulated up to a little over 30 mW/m2, depending on the scenarios. Decrease in heat flux because of basin-scale subsurface flows in the Lower Cretaceous is around 15 mW/m2. There are several ways forward from this first simple model, including simulation of development of permafrost and also the integration of vertical flows in the basin by use of a three-dimensional model to better explain the data.
Directory of Open Access Journals (Sweden)
Othuman Mydin M.A.
2014-01-01
Full Text Available With the quest for green construction and affordable housing systems for both rural and urban populations in Malaysia, various proposals focusing on cutting down on conventional building material costs have been put forward. One vanguard suggestion has been the sourcing, development and use of alternative, non-conventional local construction materials including the prospect of using some agricultural wastes as construction materials. This research describes experimental studies on the use of coconut coir fibre as an enhancer of foamed concrete with a focus on 2 parameters which are morphology properties and thermal properties of different percentages of coconut fibre (0%, 0.2% and 0.4%. In this study the addition of coconut fibre significantly improved all the properties investigated. The results of the tests showed that the thermal properties of foamed concrete improved with an increase in the proportion of coconut fibre. Findings from this research will also be used to address the knowledge gap on the subject of foamed concrete and will provide an improved understanding and raised awareness of the potential for using waste materials for domestic construction.
Pizzigoni, G.; Bagliani, D.; Biasotti, M.; Corsini, D.; De Gerone, M.; Gatti, F.; Macculi, C.; Piro, L.
2014-05-01
Low temperature detectors operated at about 0.1K have achieved excellent spectral performances in the soft X-rays, becoming appealing for new challenging measurements with space missions in Astrophysics. In order to exploit their full sensitivity, it is necessary to minimize the background signals generated by the cosmic rays, i.e., high energy protons and light nuclei, that leave sizable amounts of energy in the same spectral window of the astrophysics signals. Detectors for GeV protons and nuclei operating few millimeters from the X-ray detector at 0.1K can act as anti-coincidence to disentangle the fake signal of cosmics. Fast and large detectors are designed and fabricated. These operate by mixing the fast a-thermal phonon signal with the slow diffusive thermal ones. A greater uniformity in the response should be obtained using large shaped superconducting aluminium films that acts as phonon collectors: the quasi-particles created by high energy phonons diffuse along the film toward a small Ir TES sensor giving out to a fast rise time. Here we present the measurement of an operating prototype of a superconducting anticoincidence detector for the proposed space mission ATHENA+.
Thermal field diffusion in one, two and three-dimensional half space
Directory of Open Access Journals (Sweden)
Cividjian Grigore A.
2011-01-01
Full Text Available The diffusion of suddenly occurring local high temperature in homogeneous half-infinite space is studied in the cases of one, two and three-dimensional half space. Comparison of the three cases is made. Applications of theoretically analyzed models are suggested. Errors induced by assumptions are evaluated.
Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility
DEFF Research Database (Denmark)
Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes
1996-01-01
We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip and the su...
Ikuo Kurachi; Kentaro Yoshioka
2016-01-01
An atmospheric pressure chemical vapor deposition (AP-CVD) system has been newly developed for boron silicate glass (BSG) film deposition dedicating to solar cell manufacturing. Using the system, thermal boron diffusion from the BSG film is investigated and confirmed in terms of process stability for surface property before BSG deposition and BSG thickness. No degradation in carrier lifetime is also confirmed. A boron diffusion simulator has been newly developed and demonstrated for optimizat...
Energy Technology Data Exchange (ETDEWEB)
Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2016-04-04
The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.
DEFF Research Database (Denmark)
Yu, Tao
As a response to new stringent energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need in both summer and winter. This study proposes a novel system combining natural ventilation with diffuse ceiling inlet...... and thermally activated building systems (TABS) for cooling and ventilation in future Danish office buildings. The new solution would have the special potential of using natural ventilation all year round even in the extremely cold seasons without any draught risk. The main focuses of this study are the energy...... saving potential and the steady-state and dynamic energy performance of this system. The presented work utilizes building simulation method to investigate the energy saving potential of this novel system. Afterwards, an experimental set-up is built in the laboratory to simulate a real office environment...
Raarup, Merete K.; Fjorback, Anja W.; Jensen, Stig M. R.; Müller, Heidi K.; Kjærgaard, Maj M.; Poulsen, Hanne; Wiborg, Ove; Nyengaard, Jens R.
2009-05-01
Ongoing research efforts into fluorescent proteins continuously generates new mutation variants, some of which can become photoactivated or photoconverted to a red-shifted color upon intense UV or blue light illumination. We report a built-in propensity for enhanced yellow fluorescent protein (EYFP) to undergo irreversible photoconversion into a cyan fluorescent protein (CFP)-like species upon green-light illumination. The photoconversion is thermally activated, happens mainly in fixed, nonsealed cell samples, and may result in a very bright and relatively photostable CFP-like species. The photoconversion efficiency depends on the sample diffusivity and is much increased in dehydrated, oxygenated samples. Given the large variations in conversion efficiency observed among samples as well as within a sample, photoconversion cannot be appropriately accounted for in the analysis of acceptor photobleaching fluorescence resonance energy transfer (pbFRET) images and should rather be completely avoided. Thus, samples should always be checked and discarded if photoconversion is observed.
Directory of Open Access Journals (Sweden)
A. O. Morais
2015-06-01
Full Text Available AbstractEnhanced heat transfer in tubes under laminar flow conditions can be found in coils or corrugated tubes or in the presence of high wall relative roughness, curves, pipe fittings or mechanical vibration. Modeling these cases can be complex because of the induced secondary flow. A modification of the Graetz problem for non-Newtonian power-law flow is proposed to take into account the augmented heat transfer by the introduction of an effective radial thermal diffusivity. The induced mixing was modeled as an increased radial heat transfer in a straight tube. Three experiments using a coiled tube and a tubular heat exchanger with high relative wall roughness are presented in order to show how this parameter can be obtained. Results were successfully correlated with Reynolds number. This approach can be useful for modeling laminar flow reactors (LFR and tubular heat exchangers available in the chemical and food industries.
Energy Technology Data Exchange (ETDEWEB)
Alvarez Rivas, J. L.
1963-07-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PUGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs.
Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu
2017-04-01
An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.
Directory of Open Access Journals (Sweden)
Kira Homola
2015-02-01
Full Text Available Abstract Thermal diffusivity (TD is a measure of the temperature response of a material to external thermal forcing. In this study, TD values for marine sediments were determined in situ at two locations on the Cascadia Margin using an instrumented sediment probe deployed by a remotely operated vehicle. TD measurements in this area of the NE Pacific Ocean are important for characterizing the upslope edge of the methane hydrate stability zone, which is the climate-sensitive boundary of a global-scale carbon reservoir. The probe was deployed on the Cascadia Margin at water depths of 552 and 1049 m for a total of 6 days at each site. The instrumented probe consisted of four thermistors aligned vertically, one sensor exposed to the bottom water and one each at 5, 10, and 15 cm within the sediment. Results from each deployment were analyzed using a thermal conduction model applying a range of TD values to obtain the best fit with the experimental data. TD values corresponding to the lowest standard deviations from the numerical model runs were selected as the best approximations. Overall TDs of Cascadia Margin sediments of 4.33 and 1.15 × 10–7 m2 s–1 were calculated for the two deployments. These values, the first of their kind to be determined from in situ measurements on a methane hydrate-rich continental margin, are expected to be useful in the development of models of bottom-water temperature increases and their implications on a global scale.
Directory of Open Access Journals (Sweden)
J. B. McQuaid
2009-06-01
Full Text Available A new Thermal Gradient ice nucleation Diffusion Chamber (TGDC capable of investigating ice nucleation efficiency of atmospherically important aerosols, termed Ice Nuclei (IN, has been designed, constructed and validated. The TGDC can produce a range of supersaturations with respect to ice (SS_{i} over the temperature range of −10 to −34°C for sufficiently long time needed to observe the ice nucleation by the particles. The novel aspect of this new TGDC is that the chamber is run in static mode with aerosol particles supported on a Teflon substrate, which can be raised and lowered in a controlled way through the SS_{i} profile within the chamber, and nucleation events are directly observed using digital photography. The TGDC consists of two ice coated plates to which a thermal gradient is applied to produce the range of SS_{i}. The design of the TGDC gives the ability to understand time-related ice nucleation event information and to perform experiments at different temperatures and SS_{i} conditions for different IN without changing the thermal gradient within the TGDC. The temperature and SS_{i} conditions of the experimental system are validated by observing (NH_{4}_{2}SO_{4} deliquescence and the results are in good agreement with the literature data. First results are presented of the onset ice nucleation for mineral dust sampled from the Saharan Desert, including images of nucleation and statistical distributions of onset ice nucleation SS_{i} as a function of temperature. This paper illustrates how useful this new TGDC is for process level studies of ice nucleation and more experimental investigations are needed to better quantify the role of ice formation in the atmosphere.
Sealing ability and thermal diffusivity of cavity lining materials: An in vitro study
Directory of Open Access Journals (Sweden)
Prabhakar A
2008-10-01
Full Text Available Aims: The purpose of this study was to evaluate and compare the sealing ability and the thermal insulating capability of four different cavity lining materials. Materials and Methods: Forty noncarious human mandibular second premolars that were extracted for orthodontic treatment were collected, cleaned, and stored in distilled water. These premolars were randomly divided into four groups of ten teeth each for treatment with the different cavity lining materials. Group I teeth were treated with cavity varnish, group II teeth with amorphous calcium phosphate (ACP, group III teeth with dentin bonding agent, and group IV teeth with resin-modified glass ionomer cement (RMGIC. Electrical resistance and the difference in the time-temperature curve of the external surface and the pulp side [A D -A P ] of each tooth following heat and cold application for 120 s were measured before and after cavity lining placement to determine the sealing ability and thermal insulating property, respectively. Data collected were subjected to statistical analysis. For paired data, paired t-test and Wilcoxon′s signed rank test were used. One-way ANOVA was used for comparisons between multiple groups and the Mann-Whitney U test for comparisons between pairs. Results: The mean difference in electrical resistance (in KΩ of different cavity lining materials were as follows: group I = +3.53, group II = −1.00, group III = +20.43, and group IV = +11.44. The mean differences in the area (A D -A P under the time-temperature curve following heat application were as follows: group I = 6.6 mm 2 , group II = 15.3 mm 2 , group III = 130.5 mm 2 , and group IV = 412.0 mm 2 . The mean differences in the area (A D -A P under the time-temperature curve following cold application were as follows: group I = 24.5 mm 2 , group II = 3.2 mm 2 , group III = 314.9 mm 2 , and group IV = 480.5 mm 2 . Conclusion: Dentin bonding agent and RMGIC provided effective sealing of the dentinal tubules
Jones, Rhian H.; Rubie, David C.
1991-01-01
The petrologic sequence observed in the CO3 chondrite group has been suggested to be the result of thermal metamorphism on a parent body. A model developed to examine the possibility that chondrule and matrix olivines equilibrated in situ, during parent body metamorphism is presented. The model considers Fe-Mg interdiffusion between chondrule and matrix olivines. Zoning profiles comparable to those observed in chondrule olivines from partially equilibrated members of the series are reproduced successfully. Metamorphism of CO3 chondrites on a parent body is therefore a viable model for the observed equilibration. Results indicate that peak metamorphic temperatures experienced by the CO3 chondrites were around 500 C, and that the range of peak temperatures between unequilibrated and equilibrated subtypes was relatively narrow, around 100 C.
Thermal stability of tungsten-boron-nitride thin film as diffusion barrier
Park, Y K; Kim, Y T; Lee, C W
2000-01-01
The electrical and the structural properties of tungsten boron nitride (W-B-N) thin films were studied to investigate the effects of boron and nitrogen in the 10000 A W-B-N diffusion barrier. The W-B-N thin films were deposited by using the RF magnetron sputtering method. The impurities provided a stuffing effect that was very effective for preventing interdiffusion between the interconnection metal and the silicon during the subsequent high-temperature annealing process. The resistivities of the W-B-N thin films were in the range of 140 - 406 mu OMEGA-cm, depending on the partial pressure ratio of the N sub 2 gas and the RF power density of the W sub 2 B sub 5 target. XRD and electrical property analyses showed that the W-B-N barrier did not react with Si during the annealing in N sub 2 gas ambient, even for annealing at 1000 .deg. C for 30 min.
Soltanolkotabi, M.; Bennis, G. L.; Gupta, R.
1999-01-01
We have measured the variation of the value of the thermal diffusivity of semi-insulating GaAs in the 100-305 K range. The method used is the pulsed photothermal displacement technique. This is a noncontact technique, and the value of the thermal diffusivity is derived from the temporal evolution of the signal rather than its amplitude. This makes the technique less susceptible to uncertainties. We find that the temperature dependence of the thermal conductivity of semi-insulating GaAs follows a power law as T-1.62, in disagreement with results obtained previously. Possible reasons for the deviation within this very important intermediate temperature range are discussed.
Dillon, Christopher R; Rieke, Viola; Ghanouni, Pejman; Payne, Allison
2017-06-26
This study investigates the feasibility of non-invasively determining thermal diffusivity (α) and the Pennes perfusion parameter (w) from pre-clinical and clinical magnetic resonance-guided focussed ultrasound (MRgFUS) temperature data. Pre-clinical MRgFUS experiments were performed in rabbit muscle (N = 3, 28 sonications) using three-dimensional MR thermometry. Eight sonications were made in a clinical QA phantom with two-dimensional thermometry. Retrospective property determination was performed on clinical uterine fibroid (N = 8, 9 sonications) and desmoid tumour (N = 4, 7 sonications) data. The property determination method fits an analytical solution to MRgFUS temperatures in the coronal MR plane, including all temperatures acquired during heating and one cooling image. When possible, additional cooling data were acquired for property determination. Rabbit α and w from Heating Data (α = 0.164 mm2s-1, w = 7.9 kg m-3 s-1) and Heating and Cooling Data (α = 0.146 mm2s-1, w = 3.3 kg m-3 s-1) were within the range of gold-standard invasive measurements, with >50% reduction in variability by including cooling data. QA phantom property determination with cooling data yielded properties within 3% of expected values (α = 0.144 mm2s-1, w = 0.0 kg m-3 s-1), a difference that was not statistically significant (p = 0.053). Uterine fibroid (Heating Data: α = 0.212 mm2s-1, w = 11.0 kg m-3 s-1) and desmoid tumour (Heating & Cooling Data: α = 0.245 mm2s-1, w = 4.7 kg m-3 s-1) properties are feasible but lack independent verification. Thermal diffusivity and the Pennes perfusion parameter can be obtained from in vivo data and with clinical MRgFUS protocols. Property values are consistently improved by including cooling data. The utility of this property determination method will increase as clinical protocols implement improved temperature imaging.
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2015-01-01
This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.
Botelho, S. J.; Bazylak, A.
2014-12-01
In this work, the effect of fibre surface morphology on the effective thermal conductivity of the gas diffusion layer of a polymer electrolyte membrane fuel cell is presented. Atomic force microscopy was used to measure the fibre surface roughness and asperity height distributions for various fibres for Toray carbon paper. Hertzian contact mechanics was used to determine individual micro-contact areas and thermal resistances, and results were compared with the smooth cylinder approximation. The effective thermal contact resistance between rough fibres was determined using resistance network theory. The thermal contact resistance and total contact area were determined for various angles of fibre orientation and contact forces; results are presented as empirical formulations. It was found that the effective thermal contact resistance is significantly affected by fibre roughness features when compared to the smooth fibre case, which is often used in the literature. The analysis conducted provides an alternative to computationally expensive surface feature analyses by providing a tool which can be used to implement the nano-scale features of gas diffusion layer fibres into existing effective thermal conductivity models.
Friedson, A. James; Gonzales, Erica J.
2017-11-01
We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for
Mandelis, Andreas; Feng, Chris
2002-02-01
A three-dimensional theory of the frequency-domain thermal-wave field generated inside a turbid medium with optical and thermal properties of human tissue is presented. The optical source is treated as a three-dimensional harmonically modulated diffuse-photon-density wave (DPDW) field in the diffusion approximation of the radiative transfer theory. Unlike earlier Green-function-based theoretical models, exact boundary conditions are used based on the requirement that there should be no diffuse photon intensity entering the turbid medium from the outside. Explicit analytical expressions for the DPDW field and for the dependent thermal-wave field are obtained in the spatial Hankel-transform domain. The formalism is further extended to the calculation of the infrared photothermal radiometric signal arising from the nonradiatively generated thermal-wave distribution in turbid media with instantaneous nonradiative deexcitation as well as in media with nonzero fluorescence relaxation lifetimes. Numerical inversions have been performed and presented as examples of selected special cases of the theory. It is found that the present theory with exact DPDW-field boundary conditions is valid throughout the entire domain of the turbid medium, with the exception of the very near-surface ballistic photon "skin layer" (7-50 microm). Photothermal radiometric signals were found to be more reliably predicted than DPDW signals within this layer, due to the depth-integration nature of this detection methodology.
Hemberger, F.; Göbel, A.; Ebert, H.-P.
2010-12-01
The adoption of the popular laser-flash method at temperatures far below 300 K is restricted by the weak signal-to-noise ratio and the limited spectral bandwidth of the commonly used mercury cadmium tellurite (MCT) infrared (IR) detector used as a non-contacting temperature probe. In this work, a different approach to measure the temperature rise in pulse heating experiments is described and evaluated. This method utilizes the change of the temperature-dependent electrical resistance of a thin strip of sputtered gold for the detection of a temperature rise as it was proposed by Kogure et al. The main advantage of this method at lower temperatures is the significantly higher signal-to-noise ratio compared to the commonly used IR detectors. A newly developed laser-flash apparatus using this detection method for the determination of the thermal diffusivity in the temperature range from 80 K to 300 K is presented. To test the accuracy of the new detection method, the thermal diffusivity of a borosilicate crown glass (BK7) specimen at 300 K was determined and compared to results derived with a MCT detector. Good agreement of the derived thermal diffusivity values within 3 % was found. The thermal diffusivity of BK7 and polycrystalline aluminum nitride (AlN) was measured at temperatures between 80 K and 300 K by a laser-flash method to test the functionality of the apparatus. Finally, the thermal conductivity was calculated using values for the specific heat capacity determined by temperature modulated differential scanning calorimetry (MDSC). Comparisons with literature data confirm the reliability of the experimental setup.
Raj, S. V.
2017-10-01
This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
Raj, S. V.
2017-11-01
This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
Raj, S. V.
2017-01-01
This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
DEFF Research Database (Denmark)
Lestinen, Sami; Kilpeläinen, Simo; Kosonen, Risto
2018-01-01
(width) x 3.2 m (height) with symmetrical set-up of cylindrical heat sources that gave a thermal load of 40–80 W/floor-m2. The ventilation air was supplied through a diffuse ceiling with 0.5% degree of perforation. The observations indicate that the mean air speed and the airflow fluctuation increase......Airflow interaction between thermal plumes and vertical air distribution may cause significant effects on airflow characteristics such as velocity and temperature fields, turbulence intensity and fluctuation frequency. The flow interaction creates a random flow motion, vortical structures...... with thermal load. Furthermore, the results show that a range of length scales increases with thermal load and with mean air speed. The results indicate that it can be difficult to fulfill the standard air velocity criteria for highly occupied spaces, where the maximum allowable mean air velocity is relatively...
Tlijani, M.; Ben Younes, R.; Durastanti, J. F.; Boudenne, A.
2010-11-01
A periodic method is used to determine simultaneously both thermal conductivity and diffusivity of various insulate materials at room temperature. The sample is placed between two metallic plates and temperature modulation is applied on the front side of one of the metallic plates. The temperature at the front and rear sides of both plates is measured and the experimental transfer function is calculated. The theoretical thermal heat transfer function is calculated by the quadripole method. Thermal conductivity and diffusivity are simultaneously identified from both real and imaginary parts of the experimental transfer function. The thermophysical parameters of several wood scale samples obtained from palm wood trees and common trees with unknown thermal properties (E) with different thicknesses were studied. The value identified for the thermal conductivity 0.03 Wm-1 K-1 compared with different insulate solid material such as glass, glass-wool and PVC is much better and close to the air conductivity, It allowed us to consider the wood scale extracted from palm wood trees, bio and renewable material as good heat insulator aiming in the future as a use for lightness applications, insulating or as a reinforcement in a given matrix. These potentialities still unknown are stengthened by the enormous quantity of such kind of wood gathered annually from palm trees and considered as wastes.
Directory of Open Access Journals (Sweden)
Settu Balachandar
2016-01-01
Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.
Energy Technology Data Exchange (ETDEWEB)
Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)
2015-01-10
Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.
Alhazmi, N.; Ingham, D. B.; Ismail, M. S.; Hughes, K.; Ma, L.; Pourkashanian, M.
2014-12-01
The thermal conductivity of the components of the membrane electrode assembly (MEA) and GDL must be accurately estimated in order to better understand the heat transfer processes in the proton exchange membrane (PEM) fuel cells. In this study, an experimental investigation has been performed to measure the through-plane thermal conductivity and the contact resistance for a number of gas diffusion layer (GDL) materials. The sensitivity of these quantities to the temperature, PTFE content and micro porous layer (MPL) coating has been undertaken. In addition, the through-plane thermal conductivity of the membrane has been measured and reported as a function of temperature and water content. Further, the through-plane thermal conductivity of the catalyst layer has been determined as a function of temperature and platinum loading. It has been found that the through-plane thermal conductivity of the components of the MEA decreases when the temperature increases, and the through-plane thermal conductivity of the GDL is significantly lower than its in-plane thermal conductivity.
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2018-01-01
Temperature dependences of current-voltage characteristics of the photoelectric converter with an antireflective film of porous silicon and an n + -p-junction formed by thermal diffusion of phosphorus from a porous film is studied. The porous silicon film was saturated with phosphorus during its growing by electrochemical method. It is shown that the current flow processes in the structure under study are significantly influenced by traps.
Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.
2016-10-01
A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, I.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of
Directory of Open Access Journals (Sweden)
Shoya Uchida
2017-07-01
Full Text Available Phase-separated polymer blend composite films exhibiting high thermal diffusivity were prepared by blending a soluble polyimide (BPADA-MPD and a bismaleimide (BMI with needle-shaped zinc oxide (n-ZnO particles followed by high-temperature curing at 250 °C. Images recorded with a field-emission scanning electron microscope (FE-SEM equipped with wavelength-dispersive spectroscopy (WDS demonstrated that the spontaneously separated phases in the composite films were aligned along the out-of-plane direction, and the n-ZnO particles were selectively incorporated into the BMI phase. The out-of-plane thermal diffusivity of the composite films was significantly higher than those of the previously reported composite films at lower filler contents. Based on wide-angle X-ray diffraction (WAXD patterns and image analysis, the enhanced thermal diffusivity was attributed to the confinement of the anisotropically shaped particles and their nearly isotropic orientation in one phase of the composite films.
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2014-02-01
Through-plane thermal conductivity of 14 SIGRACET gas diffusion layers (GDLs), including series 24 & 34, as well as 25 & 35, and of micro porous layer (MPL) is accurately measured under different compression, ranging from 2 to 14 bar, at a nominal temperature of 60 °C. The effect of compression, PTFE loading, and of MPL on thermal conductivity and contact resistance is investigated experimentally, and measurements are presented for the first time for the contact resistance between an MPL and a GDL for an MPL-coated GDL substrate. A new and robust mechanistic model is presented for predicting the through-plane thermal conductivity of GDLs treated with PTFE and is successfully verified with the present experimental data. The model predicts the experimentally-observed reduction in thermal conductivity as a result of PTFE treatment, and provides detailed insights on the functional dependence of thermal conductivity on geometric parameters, compression, and PTFE. The model can be used in performance modeling and in design of polymer electrolyte membrane fuel cells.
Vanacore, G. M.; Zani, M.; Bollani, M.; Bonera, E.; Nicotra, G.; Osmond, J.; Capellini, Giovanni; Isella, G.; Tagliaferri, A.
2014-04-01
In this paper we experimentally study the growth of self-assembled SiGe islands formed on Si(001) by exploiting the thermally activated surface diffusion of Ge atoms from a local Ge source stripe in the temperature range 600-700 °C. This new growth strategy allows us to vary continuously the Ge coverage from 8 to 0 monolayers as the distance from the source increases, and thus enables the investigation of the island growth over a wide range of dynamical regimes at the same time, providing a unique birds eye view of the factors governing the growth process and the dominant mechanism for the mass collection by a critical nucleus. Our results give experimental evidence that the nucleation process evolves within a diffusion limited regime. At a given annealing temperature, we find that the nucleation density depends only on the kinetics of the Ge surface diffusion resulting in a universal scaling distribution depending only on the Ge coverage. An analytical model is able to reproduce quantitatively the trend of the island density. Following the nucleation, the growth process appears to be driven mainly by short-range interactions between an island and the atoms diffusing within its vicinities. The islands volume distribution is, in fact, well described in the whole range of parameters by the Mulheran’s capture zone model. The complex growth mechanism leads to a strong intermixing of Si and Ge within the island volume. Our growth strategy allows us to directly investigate the correlation between the Si incorporation and the Ge coverage in the same experimental conditions: higher intermixing is found for lower Ge coverage. This confirms that, besides the Ge gathering from the surface, also the Si incorporation from the substrate is driven by the diffusion kinetics, thus imposing a strict constraint on the initial Ge coverage, its diffusion properties and the final island volume
Hassanien, I. A.; Rashed, Z. Z.
2011-04-01
In this paper, the effects of variable viscosity and thermal conductivity on coupled heat and mass transfer by free convection about a permeable horizontal cylinder embedded in porous media using Ergun mode are studied. The fluid viscosity and thermal conductivity and are assumed to vary as a linear function of temperature while the mass diffusion is assumed to vary as linear function of concentration. The surface of the horizontal cylinder is maintained at a uniform wall temperature and a uniform wall concentration. The transformed governing equations are obtained and solved by using the implicit finite difference method. Numerical results for dimensionless temperature and concentration profiles as well as Nusselt and Sherwood numbers are presented for various values of parameters namely, Ergun number, transpiration parameter, Rayleigh and Lewis numbers and buoyancy ratio parameter.
Directory of Open Access Journals (Sweden)
S. Abdul Gaffar
2015-09-01
Full Text Available Buoyancy-driven convective heat and mass transfer in boundary layer flow of a viscoelastic Jeffrey fluid from a permeable isothermal sphere embedded in a porous medium is studied. Thermal radiation flux and heat generation/absorption are also incorporated in the model. A non-Darcy drag force model is employed to simulate the effects of linear porous media drag and second order Forchheimer drag. The Rosseland diffusion algebraic approximation is utilized to simulate thermal radiation effects. The non-dimensionalized boundary layer equations are solved using implicit, finite-difference scheme. The influence of Darcy number (Da, Deborah number (De, ratio of relaxation to retardation times (λ, radiation parameter (F, Forchheimer inertial parameter (Λ and heat generation/absorption parameter (Δ, on normalized velocity, temperature, concentration, skin friction, heat and mass transfer rates are also studied. The present study has applications in the storage of nuclear waste materials.
Energy Technology Data Exchange (ETDEWEB)
Lemarechal-Dupuis, A. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires
1968-04-01
Thermal diffusion constants of the mixtures H{sub 2}-HD and H{sub 2}-HT, where HD and HT were at trace concentrations, have been measured between 90 deg. K and 450 deg. K for H{sub 2}-HD and between 190 deg. K and 450 deg. K for H{sub 2}-HT, by using the elementary effect. Furthermore, the ratio of these constants has been measured by using a thermo-gravitational column of Clusius and Dickel, at temperatures of the hot wire between 455 deg. K and 1200 deg. K, the cold wall being at room temperature. Comparison with the predictions of existing theories shows that the Chapman-Enskog theory cannot account for the thermal diffusion of mixtures containing asymmetric molecules; the possible reasons for this disagreement are discussed. Our set of measurements, combined with the results of other authors, yields precise values at well defined conditions of temperature and concentration, useful for the determination of the coefficients of the semi-empirical expansion of Waldmann and Klemm. Furthermore some aspects of the column theory according to Furry and Jones have been tested. (author) [French] Les constantes de diffusion thermique des melanges H{sub 2}-HD et H{sub 2}-HT ou HD et HT figuraient, a l'etat de traces, ont ete mesurees a l'aide de l'effet elementaire entre 90 deg. K et 450 deg. K pour le melange H{sub 2}-HD,et entre 190 deg. K et 450 deg. K pour le melange H{sub 2}-HT. D'autre part, le rapport de ces constantes a ete mesure a l'aide d'une colonne de Clusius et Dickel pour des temperatures du fil chaud variant entre 455 deg. K et 1200 deg. K, la temperature de la paroi froide etant la temperature ambiante. La comparaison avec les predictions des theories existantes montre que la theorie de Chapman- Enskog ne peut rendre compte de la constante de diffusion thermique de melanges de molecules asymetriques; les raisons de ce desaccord sont discutees. L'ensemble de ces mesures, combine aux resultats d'autres auteurs, permet d
Energy Technology Data Exchange (ETDEWEB)
Zankel, K. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1967-07-01
Angstroem method has been reviewed for its application to measurements of thermal diffusivity and conductivity on short specimens. An apparatus and a technique have been developed for rapid and precise measurements of a large variety of materials, which might also contain heat sources. This technique allows measurements at both high and low temperatures. Stainless steel, nickel and uranium monocarbide specimens were tested and the results of the thermal diffusivity measurements between 50 deg. C and 700 deg. C are presented. (author) [French] L'application de la methode d'Angstroem pour la mesure de la diffusivite et de la conductivite thermique sur des echantillons courts est examinee. Un appareillage est decrit, qui permet non seulement des mesures sur une grande variete de materiaux, mais qui est aussi concu pour des mesures rapides, precises et ou des sources thermiques peuvent etre introduites au sein de l'echantillon. La methode s'adapte egalement aux mesures a basses et hautes temperatures. Des resultats de mesure sur un echantillon en acier inoxydable, en nickel et en carbure d'uranium pour des temperatures comprises entre 50 et 700 deg. C sont reportes. (auteur)
Elsawy, Abdel Raouf
This project was carried out at the University of Toronto and Cametoid Ltd of Whitby, Ontario. Ohno continuous casting; a novel net shape casting technique, was used to generate, Al-Y, Al-Ce, Al-La, and Al-Si-Y, in form of 1.6 to 1.7 mm diameter alloy wires. These alloy wires exhibited suitable properties for use as feed materials to an Ion Vapor Deposition facility. The deposition parameters were optimized to provide coatings with a compact and cohesive columnar structure with reduced porosity and diffusion barriers that were essential to ensure the success of the diffusion process in the subsequent stage. Solid-state diffusion heat treatment processes were developed in order to form the stable aluminide phases, AlNi and FeAl, on IN738 and S310 substrates, respectively. Experiments simulating the coating service conditions and environments encountered during the prospective aerospace and fuel cell applications were conducted to evaluate the performance of each aluminide coating developed during this study. Thermal cyclic oxidation and molten sulfate corrosion studies were performed on coated IN738 pins at 1050°C and 900°C, respectively, simulating the service environment of turbine engine blades and other hot section components. Molten carbonate corrosion behavior was investigated for coated S310 coupons that were immersed in, or covered with a thin film of molten carbonate, at 650°C, in air plus 30%CO2, to simulate the operating conditions of the cathode-side separator plates of molten carbonate fuel cells. The behavior of the reactive elements, yttrium, cerium, lanthanum, and silicon in enhancing the adhesion of the protective aluminum oxide scale was determined by weight variation experiments, structural examination and compositional analysis. The influence of the base material elements, nickel, chromium, and iron, on the formation of protective oxides was investigated. All coatings were found to provide significant improvement for thermal cyclic oxidation
Energy Technology Data Exchange (ETDEWEB)
Reimus, Paul W [Los Alamos National Laboratory
2010-12-08
A semi-analytical model was developed to conduct rapid scoping calculations of responses of thermally degrading and diffusing tracers in multi-well tracer tests in enhanced geothermal systems (EGS). The model is based on an existing Laplace transform inversion model for solute transport in dual-porosity media. The heat- and mass-transfer calculations are decoupled and conducted sequentially, taking advantage of the fact that heat transfer between fractures and the rock matrix is much more rapid than mass transfer and therefore mass transfer will effectively occur in a locally isothermal system (although the system will be nonisothermal along fracture flow pathways, which is accounted for by discretizing the flow pathways into multiple segments that have different temperature histories). The model takes advantage of the analogies between heat and mass transfer, solving the same governing equations with k{sub m}/({rho}C{sub p}){sub w} being substituted for {phi}D{sub m} in the equation for fracture transport and k{sub m}/({rho}C{sub p}){sub m} being subsituted for D{sub m} in the equation for matrix transport; where k = thermal conductivity (cal/cm-s-K), {rho} = density (g/cm{sup 3}), C{sub p} = heat capacity (at constant pressure) (cal/g-K), {phi} = matrix porosity, and D = tracer diffusion coefficient (cm{sup 2}/s), with the subscripts w and m referring to water and matrix, respectively. A significant advantage of the model is that it executes in a fraction of second on a single-CPU personal computer, making it very amenable for parameter estimation algorithms that involve repeated runs to find global minima. The combined thermal-mass transport model was used to evaluate the ability to estimate when thermal breakthrough would occur in a multi-well EGS configuration using thermally degrading tracers. Calculations were conducted to evaluate the range of values of Arrhenius parameters, A and E{sub {alpha}} (pre-exponential factor, 1/s, and activation energy, cal
Energy Technology Data Exchange (ETDEWEB)
Pereira, Thiago Martini
2009-07-01
In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 {mu}m to 9 {mu}m) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser ({lambda} = 2,78 {mu}m). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 {+-} 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)
Measurement of the thermal diffusivity of a silica fiber bundle using a laser and an IR camera
Vignoles, Gérard; BRESSON, Grégory; Lorrette, Christophe; AHMADI-SENICHAULT, Azita
2012-01-01
International audience; We propose a lightweight method for the determination of heat diffusivity of silica fiber bundles based on the use of a laser and an IR camera. The fiber bundle is maintained in traction in a holder; exposition is made as a step function, followed by a laser shutdown. The movie obtained by the IR camera is then processed : frame averaging, backgraound computation and substraction, image smoothing, extraction of the IR signal along the fiber bundle. A 1D model has been ...
Energy Technology Data Exchange (ETDEWEB)
Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-02-01
The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH _{1.65} - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052 glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.
Energy Technology Data Exchange (ETDEWEB)
Chen, Xingyuan; Miller, Gretchen R.; Rubin, Yoram; Baldocchi, Dennis
2012-09-13
The heat pulse method is widely used to measure water flux through plants; it works by inferring the velocity of water through a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale; and consequently, to up-scale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for estimating the wood thermal diffusivity and probe spacing simutaneously from in-situ heat response curves collected by the implanted probes of a heat ratio apparatus. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential to obtain reliable and accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it is shown to be affected by both moisture content and temperature. Empirical factors are often introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they are estimated in this study as well. The proposed methodology can be applied for
DEFF Research Database (Denmark)
Tousek, J.; Touskova, J.; Ludvík, J.
2016-01-01
The electron work function, hole concentration and diffusion length were compared for poly(3-hexylthiophene) polymer (P3HT) that is commonly used for construction of solar cells, and two types of native polythiophene (PT) samples which are prospective candidates for this purpose. The polythiophene...... of conjugated polymer materials in solar cells, was measured by a modified surface photovoltage method. The approach allowed us to identify the differences in the material properties related to the processing method. Morphology of the samples determined by AFM was another tool showing these differences....... It is stated that a native polythiophene prepared by treatment with acids is a prospective material for solar cells and shows a similar quality as that produced by a thermal process. © 2015 Elsevier Ltd. All rights reserved....
Directory of Open Access Journals (Sweden)
S. S. Motsa
2012-01-01
Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.
Gontrand, C.; Sellitto, P.; Tabikh, S.; Latreche, S.; Kaminski, A.
1997-01-01
This work provides an experimental insight into the physical mechanisms involved in the co-diffusion of arsenic and boron in polysilicon/monocrystalline Si bilayers, during the formation of shallow N^+ emitters for the BiCMOS technology. The RTA-induced redistribution of As and B successively implanted in a 380 nm LPCVD polysilicon layer is studied by SIMS measurements. Hall effect, as well as sheet resistance measurements, show that the electrical activation of dopants in the co-implanted structures is satisfactory from a RTA temperature of 1100 °C. Nous présentons ici un travail expérimental mettant en évidence les mécanismes physiques intervenant dans la co-diffusion de l'arsenic et du bore dans une bicouche polysilicium sur silicium polycrystallin, durant la formation des émetteurs étroits N^+ destinés à la technologie BiCMOS. La redistribution de As et B induite par un RTA, successivement implantés dans une couche de polysilicium de 380 nm, est appréhendée par des mesures SIMS. Des mesures par effet Hall et par résistances par carrés mettent en évidence que l'activité électrique des dopants dans les structures implantées est satisfaisante à partir d'une température de 1100 °C.
Devi, Ksh. Devarani; Ojha, Sunil; Singh, Fouran
2018-03-01
Gold nanoparticles (AuNPs) embedded in fused silica and sapphire dielectric matrices were synthesized by Au ion implantation. Systematic investigations were carried out to study the influence of implantation dose, post annealing temperature, swift heavy ion (SHI) irradiation and radiation enhanced diffusion (RED). Rutherford Backscattering Spectrometry (RBS) measurements were carried out to quantify concentration and depth profile of Au present in the host matrices. X-ray diffraction (XRD) was employed to characterize AuNPs formation. As-implanted and post-annealed films were irradiated using 100 MeV Ag ions to investigate the effect of electronic energy deposition on size and shape of NPs, which is estimated indirectly by the peak shape analysis of surface plasmon resonance (SPR). The effect of volume fraction of Au and their redistribution is also reported. A strong absorption in near infra red region is also noticed and understood by the formation of percolated NPs in dielectric matrices. It is quite clear from these results that the effect of RED assisted Oswald ripening is much more pronounced than the conventional Oswald ripening for the growth of NPs in the case of silica host matrices. However for sapphire matrices, it seems that growth of NPs already completed during implantation and it may be attributed to the high diffusivity of Au in sapphire matrices during implantation process.
Mameri, A.; Tabet, F.; Hadef, A.
2017-08-01
This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.
Chen, Xingyuan; Miller, Gretchen R; Rubin, Yoram; Baldocchi, Dennis D
2012-12-01
The heat pulse method is widely used to measure water flux through plants; it works by using the speed at which a heat pulse is propagated through the system to infer the velocity of water through a porous medium. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale and subsequently to upscale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for sampling and simultaneously estimating the tree's thermal diffusivity and probe spacing from in situ heat response curves collected by the implanted probes of a heat ratio measurement device. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require knowledge of probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential for obtaining reliable and accurate solutions. When applied to field conditions, these tests can be obtained in different seasons and can be automated using the existing data logging system. Empirical factors are introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and are estimated in this study as well. The proposed methodology may be tested for its applicability to realistic field conditions, with an ultimate goal of calibrating heat ratio sap flow systems in practical applications.
Directory of Open Access Journals (Sweden)
Pushpalatha K.
2017-04-01
Full Text Available The problem of an unsteady MHD Casson fluid flow towards a stretching surface with cross diffusion effects is considered. The governing partial differential equations are converted into a set of nonlinear coupled ordinary differential equations with the help of suitable similarity transformations. Further, these equations have been solved numerically by using Runge-Kutta fourth order method along with shooting technique. Finally, we studied the influence of various non-dimensional governing parameters on the flow field through graphs and tables. Results indicate that Dufour and Soret numbers have tendency to enhance the fluid velocity. It is also found that Soret number enhances the heat transfer rate where as an opposite result is observed with Casson parameter. A comparison of the present results with the previous literature is also tabulated to show the accuracy of the results.
Pushpalatha, K.; Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.
2017-04-01
The problem of an unsteady MHD Casson fluid flow towards a stretching surface with cross diffusion effects is considered. The governing partial differential equations are converted into a set of nonlinear coupled ordinary differential equations with the help of suitable similarity transformations. Further, these equations have been solved numerically by using Runge-Kutta fourth order method along with shooting technique. Finally, we studied the influence of various non-dimensional governing parameters on the flow field through graphs and tables. Results indicate that Dufour and Soret numbers have tendency to enhance the fluid velocity. It is also found that Soret number enhances the heat transfer rate where as an opposite result is observed with Casson parameter. A comparison of the present results with the previous literature is also tabulated to show the accuracy of the results.
Kim, Ho Jun; Lee, Hae June
2017-08-01
To achieve rapid, uniform deposition of an amorphous hydrogenated silicon (a-Si:H) film, a capacitively coupled plasma (CCP) is often used at an intermediate pressure (>100 Pa), with a silane (SiH4)-based mixture. At these pressures, heavy particle interactions (such as ion-ion, ion-neutral, and neutral-neutral reactions) contribute significantly to the formation of precursor radicals. By adding a consideration of the thermal diffusion effects to the neutral transport equation, the chemical processes have been numerically analyzed with variation in the number fraction of SiH4 and electrode spacing using a two-dimensional fluid model of radio frequency discharges in a cylindrically symmetric CCP reactor. The non-uniformity of the deposition rate profiles increases consistently as electrode spacing increases, although the non-uniformity of the plasma parameters decreases with the increase of electrode spacing. The simulated deposition rate profiles match well with the experimental data for the change of electrode spacing. Based on the validation of our model, we propose predictive designs to potentially improve the reactor and process by modifying the thermal and electrical surface conditions.
Directory of Open Access Journals (Sweden)
M. Umamaheswar
2016-09-01
Full Text Available A numerical investigation is carried out on an unsteady MHD free convection flow of a well-known non-Newtonian visco elastic second order Rivlin-Erickson fluid past an impulsively started semi-infinite vertical plate in the presence of homogeneous chemical reaction, thermal radiation, thermal diffusion, radiation absorption and heat absorption with constant mass flux. The presence of viscous dissipation is also considered at the plate under the influence of uniform transverse magnetic field. The flow is governed by a coupled nonlinear system of partial differential equations which are solved numerically by using finite difference method. The effects of various physical parameters on the flow quantities viz. velocity, temperature, concentration, Skin friction, Nusselt number and Sherwood number are studied numerically. The results are discussed with the help of graphs. We observed that the velocity decreases with an increase in magnetic field parameter, Schmidt number, and Prandtl number while it increases with an increase in Grashof number, modified Grashof number, visco-elastic parameter and Soret number. Temperature increases with an increase in radiation absorption parameter, Eckert number and visco-elastic parameter while it decreases with increasing values of radiation parameter, Prandtl number and heat absorption parameter. Concentration increases with increase in Soret number while it decreases with an increase in Schmidt number and chemical reaction parameter.
Directory of Open Access Journals (Sweden)
Saul D. Sarria
2004-04-01
Full Text Available O resfriamento e/ou congelamento de produtos hortícolas, depois da colheita, é realizado com o objetivo de retirar o calor desses produtos, permitindo-lhes, em função disso, um tempo maior de conservação. Portanto, o conhecimento das propriedades físicas que envolvem transferência de calor do figo "Roxo de Valinhos" é útil para o cálculo de projetos e a análise de sistemas de engenharia de alimentos em geral, assim como para o emprego em equações de modelos matemáticos termodinâmicos. Neste trabalho, foram determinadas, experimentalmente, a condutividade e a difusividade térmica do figo inteiro no estádio rami e, a partir desses valores, foi determinado o calor específico. Foi utilizado o método transiente da Fonte Linear de Calor. Foi introduzida nas frutas uma sonda que contém resistência elétrica e termopares. Para manter constante a temperatura da fruta, montou-se um sistema de resfriamento a água. Encontrou-se que o figo rami apresentou um valor de condutividade térmica de 0,52 W m-1 °C, difusividade térmica de 1,56 x 10-7 m² s-1, massa específica do figo de 815,6 kg m-3 e calor específico de 4,07 kJ kg-1 °C.The post harvest cooling and/or freezing processes for horticultural products have been carried out with the objective of removing the heat from these products, allowing them a bigger period of conservation. Therefore, the knowledge of the physical properties that involve heat transference in the fig fruit "Roxo de Valinhos" is useful for calculating projects and systems of food engineering in general, as well as, for using in equations of thermodynamic mathematical models. The values of conductivity and thermal diffusivity of the whole fig fruit-rami index were determined, and from these values it was determined the value of the specific heat. For these determination it was used the transient method of the Line Heat Source. The results shown that the fig fruit has a thermal conductivity of 0.52 W m-1
Impact of dilution of deuterium on ion thermal diffusivity and turbulence in C-Mod Ohmic plasmas
Porkolab, Miklos; Ennever, P.; Edlund, E.; Rice, J.; Rost, J. C.; Ernst, D.; Fiore, C.; Hubbard, A.; Hughes, J.; Terry, J.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team
2015-11-01
Past experiments on C-Mod and gyrokinetic studies indicated that dilution of the deuterium ion species decreases the ion diffusivity in Ohmically heated deuterium plasmas. Comparison of recent controlled seeding experiments to TGLF and GYRO simulations shows that main ion dilution reduces the ion transport in low density (LOC) plasmas by increasing the critical gradient, while in high density (SOC) plasmas ion dilution primarily decreased the stiffness (1). Meanwhile, there is still a deficit in the predicted electron transport in simulations that are restricted to wavenumbers kρs <= 1 . Importantly, measurements of the turbulent spectrum were also carried out with a Phase Contrast Imaging (PCI) diagnostic with a new detector array with an improved frequency response (now up to 1 MHz), and the results are in good agreement with synthetic diagnostic predictions. References: (1) Paul Ennever, Invited Talk at this meeting. Work supported by US DOE awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.
Energy Technology Data Exchange (ETDEWEB)
Garcia B, F. B.; Arreola V, G.; Vazquez R, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rvr@xanum.uam.mx
2009-10-15
In this work the thermal neutrons diffusion is studied with interfacial effects in a fuel-moderator arrangement that consist of an infinite series of plane fuel plates and of moderator willing so that each plate of multiplicative material has in each end a moderator plate. The developed pattern is an unidimensional model for the thermal group obtained of equation of volumetric diffusion average. One analysis of parametric sensibility was realized to find the correction constants for the diffusion coefficient, the absorption term and the new transfer or current term in the fuel-moderator interface. The obtained results are compared against the classic theory, being obtained a good agreement among both theories. (Author)
Directory of Open Access Journals (Sweden)
Katy Regina Peotta Zanini
2011-07-01
Full Text Available Para alimentos que se aquecem por condução, o conhecimento da propriedade difusividade térmica permite predizer a velocidade de penetração de calor no interior do alimento. Dessa maneira, ela é fundamental para o cálculo do processamento térmico, pois conhecendo o microrganismo alvo do processo, sua resistência térmica e o perfil de penetração de calor no alimento é possível estabelecer o processo térmico adequado de forma a garantir a inativação bacteriana capaz de causar risco à saúde e assegurar a possibilidade de deterioração de um mínimo determinado. Empregando o modelo da difusão e o princípio dos processos divididos, este trabalho mostrou que é possível otimizar o tratamento térmico de modo a ser possível reduzir a perda de nutrientes de alimentos enlatados convencionalmente.For foods that are warmed by conduction, knowledge of the thermal diffusivity property makes it possible to predict the rate of heat penetration inside the food to calculate thermal treatment. Other important variables in this process are the target organism, its heat resistance and the profile of heat penetration in food, making it possible to establish the appropriate thermal process to ensure the inactivation of bacteria capable of causing health risks and ensure the minimum possible deterioration of nutrients. Using the diffusion model and the principle of divided processes, this study showed it is possible to optimize the heat treatment in order to be able to reduce loss of nutrients in canned foods.
Directory of Open Access Journals (Sweden)
I.L. Animasaun
2016-06-01
Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.
Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka
2017-10-01
This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.
Energy Technology Data Exchange (ETDEWEB)
Roy, W.K.; Ryon, M.G.; Hinzman, R.L. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.
1996-03-01
The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.
Energy Technology Data Exchange (ETDEWEB)
Roy, W.K.
1999-01-01
The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.
Directory of Open Access Journals (Sweden)
Panpan Jing
2015-06-01
Full Text Available In this letter, we report a novel V-doped SrTiO3 photocatalyst synthesized via electrospinning followed by a thermal diffusion process at low temperature. The morphological and crystalline structural investigations reveal not only that the V-doped SrTiO3 photocatalyst possesses a uniform, porous, fibrous structure, but also that some V5+ ions are introduced into the SrTiO3 lattice. The photocatalytic capability of V-doped SrTiO3 porous nanofibers was evaluated through photodegrading methyl orange (MO in aqueous solution under artificial UV–vis light. The results indicated that V-doped SrTiO3 porous nanofibers have excellent catalytic efficiency. Furthermore, the excellent catalytic activity was maintained even after five cycle tests, indicating that they have outstanding photocatalytic endurance. It is suggested that the excellent photocatalytic performance of doped SrTiO3 nanofibers is possibly attributed to the V5+ ion doping increasing the light utilization as well as to the outstanding porous features, the excellent component and structure stability.
DEFF Research Database (Denmark)
Zhang, Chen
Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...... momentum supply. In addition, this ventilation system uses a ceiling plenum to deliver air and requires less energy consumption for air transport than full-ducted systems. There is a growing interest in applying diffuse ceiling ventilation in offices and other commercial buildings due to the benefits from...... both thermal comfort and energy efficient aspects. The present study aims to characterize the air distribution and thermal comfort in the rooms with diffuse ceiling ventilation. Both the stand-alone ventilation system and its integration with a radiant ceiling system are investigated. This study also...
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
-cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... in applying diffuse ceiling ventilation in offices and other commercial buildings because of the benefits from both thermal comfort and energy efficiency aspects. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation and the design...
Energy Technology Data Exchange (ETDEWEB)
Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan)
2015-12-21
The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.
Energy Technology Data Exchange (ETDEWEB)
Martins, Patricia de Andrade
2012-07-01
Radioisotopes of gallium have been studied and evaluated for medical applications since 1949. Over the past 50 years {sup 67}Ga has been widely used in the diagnosis of various diseases, including acute and chronic inflammatory lesions, bacterial or sterile and several types of tumors. In Brazil 30% of clinics that provide services for Nuclear Medicine use {sup 67}Ga citrate and the demand for 67{sup G}a at IPEN-CNEN/SP is 37 GBq (1 Ci)/week. The {sup 67}Ga presents physical half-life of 3.26 days (78 hours) and decays 100% by electron capture to stable {sup 67}Zn. Its decay includes the emission of {gamma} rays with energies of 93.3 keV (37%), 184.6 keV (20.4%), 300.2 keV (16.6%) and 888 keV (26%). In the past {sup 67}Ga was produced by the reaction {sup 68}Zn (p, 2n) {sup 67}Ga at IPEN-CNEN/SP. After irradiation, the target was dissolved in concentrated HCl and the solution percolated through a cationic resin DOWEX 50W-X8, 200-400 mesh, conditioned with 10 mol L{sup -1} HCl. Zinc, nickel and copper were eluted in 10 mol L{sup -1} HCl and {sup 67}Ga 3.5 mol L{sup -1} HCl. The final product was obtained as {sup 67}Ga citrate. This work presents a new, fast, direct and efficient method for the chemical separation of 67{sup G}a by thermal diffusion (heating of the target) combined with concentrated acetic acid extraction. Purification was performed by ion exchange chromatography. Natural zinc electrodeposition was performed on nickel/copper plates as substrate and the zinc deposits were adherent to the substrate, slightly shiny and uniform. The targets were irradiated with 26 MeV protons and integrated current of 10 {mu}A.h. After irradiation, the targets were heated at 300 deg C for 2 hours and placed in contact with concentrated acetic acid for 1 hour. The average yield of extraction of {sup 67}Ga was (72 {+-} 10)%. This solution was evaporated and the residue was taken up in 0.5 mol L{sup -1} NH{sub 4}OH. The 67{sup G}a was purified on cationic resin Dowex 50WX8
Directory of Open Access Journals (Sweden)
Pedro A. P. Borges
2009-10-01
Full Text Available A medição da difusividade térmica de grãos, como trigo, arroz e cevada torna-se impraticável com métodos que dependam da introdução de sensores no interior do grão. Propôs-se, neste trabalho, um método para a determinação da difusividade do grão com base nas variações da difusividade da massa de grãos submetida a diferentes níveis de compactação e em curvas de temperatura por tempo, medidas em pontos internos e na fronteira de cilindros da massa de grãos. O problema de transferência de calor (problema direto foi resolvido numericamente pelo método das diferenças finitas. A difusividade da massa de grãos foi estimada resolvendo o problema inverso. Com os valores da difusividade se sugeriu uma função de ajuste relacionando-se a difusividade e a densidade da massa de grãos. Esta função foi usada para projetar o valor da difusividade do grão com base na medida da sua densidade, cujo resultado obtido é compatível com os dados da literatura. A precisão do método depende bastante da qualidade dos dados experimentais e da posição da densidade do grão, no intervalo de dados pesquisados da densidade da massa de grãos.The measurement of thermal diffusivity of grains such as wheat, rice and barley becomes impracticable with methods that depend on the introduction of sensors inside the grain. In this study a method was proposed to determine the thermal diffusivity of grain considering the variations of the mass diffusivity of grains submitted to different compacting levels. Temperature was measured in internal points and in the border of cylinders of grain mass, for three compacting levels. The thermal diffusivity of grain mass was estimated solving the inverse problem. The heat transfer problem (direct problem was solved numerically by the finite differences method. With the values of the thermal diffusivity for the three compacting levels, a function was fitted relating the grain mass diffusivity and density. This
DEFF Research Database (Denmark)
Krusaa, Marie Rugholm; Hviid, Christian Anker; Kolarik, Jakub
Renewable energy resources for heating and cooling of buildings have temperatures close to room temperature and therefore a limited convertibility potential, i.e. they are of low value. To exploit low-valued energy sources Low Temperature Heating and High Temperature Cooling (LTH-HTC) systems must...... ceiling panels. These panels make it possible to combine the heating/cooling ceiling with the diffuse ventilation method. The diffuse ventilation method or leak ventilation use larger surfaces to provide air into the room instead of diffusers. An office building is investigated an analysed on an annual...... basis in the dynamic building simulation tool IDA Indoor Climate and Energy (IDA ICE). The office building contains both offices and meeting rooms. Worst-case scenarios are investigated in the office building considering heat gains, solar gains and the temperature offset between supply water temperature...
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.
2014-01-01
As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role on...... temperature as well as optimizing the radiant cooling potential by combining with thermal mass is conducted and gives a direction for further investigation....
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
-cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...... cooling capacity, energy saving, low investment cost and low noise level; while the limitations include condensation risk and the limit on the room geometry. Furthermore, the crucial design parameters are summarized and their effects on the system performance are discussed. In addition to the stand...
Diffusion in liquids a theoretical and experimental study
Tyrrell, H J V
1984-01-01
Diffusion in Liquids: A Theoretical and Experimental Study aims to discuss the principles, applications, and advances in the field of diffusion, thermal diffusion, and thermal conduction in liquid systems. The book covers topics such as the principles of non-equilibrium thermodynamics; diffusion in binary and multicompetent systems; and experimental methods of studying diffusion processes in liquids. Also covered in the book are topics such as the theoretical interpretations of diffusion coefficients; hydrodynamic and kinetic theories; and diffusion in electrolyte systems. The text is recommen
Directory of Open Access Journals (Sweden)
Collantes M. A.
2006-11-01
dimensionnement d'unités de grandes tailles. Dense fluidized beds are acknowledged as homogeneous systems from both temperature and composition aspects. However, some situations such as very large units or fluidized beds with tubes bundle lead to thermal gradients within the bed. These thermal gradients are due to solids motion limitation and may have detrimental effects on the process. This paper relates investigations aiming at determining lateral and vertical thermal diffusivities in a dense fluidized bed with and without a tubes bundle. These investigations have been carried out with an experimental setup of significant size (bed size = 0. 6 x 1. 1 x 1. 3 and with small particles (less 500 microns so as to fill some gaps of the literature. Thermal diffusivities have been deduced from temperature gradients measured between a hot wall and a cold wall in a perpendicular fluidized bed and by applying a conventional 2-D conduction model. Lateral thermal conductivities as well as vertical thermal conductivities increase with the gas velocity and the height of the bed, and when the particle size decreases. Immersing a vertical tube bundle into the fluidized bed leads to a significant reduction of the lateral thermal diffusivity, while there is no effect on the vertical thermal diffusivity. Correlations have been drawn from the experimental results. They would have to be applied for calculation of any system running at gas velocity ranging from 0. 05 to 0. 3 m/s and with particle size between 50 and 300 microns.
Diffusion of Ca and Mg in Calcite
Energy Technology Data Exchange (ETDEWEB)
Cygan, R.T.; Fisler, D.K.
1999-02-10
The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.
Pal, Dulal; Talukdar, Babulal
2012-04-01
The influence of thermal radiation and first-order chemical reaction on unsteady MHD convective flow, heat and mass transfer of a viscous incompressible electrically conducting fluid past a semi-infinite vertical flat plate in the presence of transverse magnetic field under oscillatory suction and heat source in slip-flow regime is studied. The dimensionless governing equations for this investigation are formulated and solved analytically using two-term harmonic and non-harmonic functions. Comparisons with previously published work on special cases of the problem are performed and results are found to be in excellent agreement. A parametric study illustrating the effects of various physical parameters on the fluid velocity, temperature and concentration fields as well as skin-friction coefficient, the Nusselt and Sherwood numbers in terms of amplitude and phase is conducted. The numerical results of this parametric study are presented graphically and in tabular form to highlight the physical aspects of the problem.
Directory of Open Access Journals (Sweden)
Dulal Pal
2017-03-01
Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.
Energy Technology Data Exchange (ETDEWEB)
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Integrated Temperature Sensors based on Heat Diffusion
Van Vroonhoven, C.P.L.
2015-01-01
This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and
Energy Technology Data Exchange (ETDEWEB)
Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; Crocker, N. A.; Peebles, W. A. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2016-05-15
Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ{sub ⊥}) is presented. This model is used to derive χ{sub ⊥} at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that χ{sub ⊥} at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ{sub ⊥} are often attributed to turbulence driven transport, the reduction of the O-point χ{sub ⊥} is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced χ{sub ⊥} at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced χ{sub ⊥} at the O-point on NTM saturation.
Theoretical consideration and evaluation of thermal diffusivity ...
African Journals Online (AJOL)
The aim of this study was to theoretically consider and evaluate the transient temperature-time response of resin/ionomer materials between ~2EC (melting ice temperature) and ~50EC, and indicate their suitability as lining materials. Specimens of materials, cylindrical in geometry, (6 mm diameter and 10 mm in length), ...
Fractional thermal diffusion and the heat equation
Gómez, Francisco; Morales, Luis; González, Mario; Alvarado, Victor; López, Guadalupe
2015-02-01
Fractional calculus is the branch of mathematical analysis that deals with operators interpreted as derivatives and integrals of non-integer order. This mathematical representation is used in the description of non-local behaviors and anomalous complex processes. Fourier's lawfor the conduction of heat exhibit anomalous behaviors when the order of the derivative is considered as 0 Mittag-Leffler function. The generalization of the equations in spacetime exhibit different cases of anomalous behavior and Non-Fourier heat conduction processes. An illustrative example is presented.
Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?
Directory of Open Access Journals (Sweden)
G. Salvatella
2016-09-01
Full Text Available Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.
Study of diffusion of Ag in Cu single crystals
Wang, R
2002-01-01
4.0 MeV sup 7 Li sup + sup + RBS and AES were used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498 to 613 K. The element depth concentration profiles transformed from RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.
Diffusion of indium in silicon inert and oxidizing ambients
Antoniadis, D. A.; Moskowitz, I.
1982-12-01
The diffusion of indium in silicon at 1000 °C has been measured in inert (dry nitrogen) and oxidizing (dry oxygen) ambients. It was found that, similarly to phosphorous, boron, and arsenic, indium experiences significant oxidation-enhanced diffusion. This result indicates that indium, like the other elements mentioned above, diffuses in silicon by a mixed interstitialcy and vacancy mechanism. It was also found that indium, similarly to gallium, segregates readily and diffuses rapidly in thermal silicon dioxide.
Molecular Modeling of Diffusion on a Crystalline PETN Surface
Energy Technology Data Exchange (ETDEWEB)
Lin, P; Khare, R; Gee, R H; Weeks, B L
2007-07-13
Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.
Mechanical, Hygric and Thermal Properties of Flue Gas Desulfurization Gypsum
Directory of Open Access Journals (Sweden)
P. Tesárek
2004-01-01
Full Text Available The reference measurements of basic mechanical, thermal and hygric parameters of hardened flue gas desulfurization gypsum are carried out. Moisture diffusivity, water vapor diffusion coefficient, thermal conductivity, volumetric heat capacity and linear thermal expansion coefficient are determined with the primary aim of comparison with data obtained for various types of modified gypsum in the future.
Diffusion archeology for diffusion progression history reconstruction.
Sefer, Emre; Kingsford, Carl
2016-11-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.
Diffusion archeology for diffusion progression history reconstruction
Sefer, Emre; Kingsford, Carl
2015-01-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data. PMID:27821901
Starvation driven diffusion as a survival strategy of biological organisms.
Cho, Eunjoo; Kim, Yong-Jung
2013-05-01
The purpose of this article is to introduce a diffusion model for biological organisms that increase their motility when food or other resource is insufficient. It is shown in this paper that Fick's diffusion law does not explain such a starvation driven diffusion correctly. The diffusion model for nonuniform Brownian motion in Kim (Einstein's random walk and thermal diffusion, preprint http://amath.kaist.ac.kr/papers/Kim/31.pdf , 2013) is employed in this paper and a Fokker-Planck type diffusion law is obtained. Lotka-Volterra type competition systems with spatial heterogeneity are tested, where one species follows the starvation driven diffusion and the other follows the linear diffusion. In heterogeneous environments, the starvation driven diffusion turns out to be a better survival strategy than the linear one. Various issues such as the global asymptotic stability, convergence to an ideal free distribution, the extinction and coexistence of competing species are discussed.
Thermal Pyrolytic Graphite Enhanced Components
Hardesty, Robert E. (Inventor)
2015-01-01
A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.
FRACTIONAL PEARSON DIFFUSIONS.
Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla
2013-07-15
Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.
Energy Technology Data Exchange (ETDEWEB)
Sallaberry, F.; Garcia de Jalon, A.; Ramirez, L.; Olano, X.; Bernad, I.; Erice, R.
2008-07-01
In this paper we will show the results of the analysis of factors that influence the estimation of optical efficiency of solar thermal collectors testes according to the European standard UNE-EN 12975-2. Indoor tests with solar simulator involve control of the spectrum of its lamps to ensure that the difference with the Sun one does not change the optical efficiency {eta}{sub 0} of the collector. For outdoor tests, the diffuse radiation should be control as well. In the laboratory (LCS) of CENER, solar collectors tests are done according to part 6.1 of the standard UNE{sub E}N 12975-2 in continuous solar simulator. This study estimated the spectral correction applied to the estimation of optical efficiency of some solar collectors, with different selective materials. Likewise, we will weight the influence of terms related to diffuse radiation and spectral distribution. (Author)
SOME MOISTURE DEPENDENT THERMAL PROPERTIES AND ...
African Journals Online (AJOL)
The thermal heat conductivity, specific heat capacity, thermal heat diffusivity and bulk density of Prosopis africana seeds were determined as a function of moisture content. Specific heat capacity was measured by the method of mixture while the thermal heat conductivity was measured by the guarded hot plate method.
Ganguly, Jibamitra; Tirone, Massimiliano; Domanik, Kenneth
2016-11-01
We have carried out detailed thermometric and cooling history studies of several LL-, L- and H-chondrites of petrologic types 5 and 6. Among the selected samples, the low-temperature cooling of St. Séverin (LL6) has been constrained in an earlier study by thermochronological data to an average rate of ∼2.6 °C/My below 500 °C. However, numerical simulations of the development of Fe-Mg profiles in Opx-Cpx pairs using this cooling rate grossly misfit the measured compositional profiles. Satisfactory simulation of the latter and low temperature thermochronological constraints requires a two-stage cooling model with a cooling rate of ∼50-200 °C/ky from the peak metamorphic temperature of ∼875 °C down to 450 °C, and then transitioning to very slow cooling with an average rate of ∼2.6 °C/My. Similar rapid high temperature cooling rates (200-600 °C/ky) are also required to successfully model the compositional profiles in the Opx-Cpx pairs in the other samples of L5, L6 chondrites. For the H-chondrite samples, the low temperature cooling rates were determined earlier to be 10-20 °C/My by metallographic method. As in St. Séverin, these cooling rates grossly misfit the compositional profiles in the Opx-Cpx pairs. Modeling of these profiles requires very rapid cooling, ∼200-400 °C/ky, from the peak temperatures (∼810-830 °C), transitioning to the metallographic rates at ∼450-500 °C. We interpret the rapid high temperature cooling rates to the exposure of the samples to surface or near surface conditions as a result of fragmentation of the parent body by asteroidal impacts. Using the thermochronological data, the timing of the presumed impact is constrained to be ∼4555-4560 My before present for St. Séverin. We also deduced similar two stage cooling models in earlier studies of H-chondrites and mesosiderites that could be explained, using the available geochronological data, by impact induced fragmentation at around the same time. Diffusion kinetic
Directory of Open Access Journals (Sweden)
Kishore P.M.
2012-01-01
Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.
Thermal properties of methyltrimethoxysilane aerogel thin films
Directory of Open Access Journals (Sweden)
Leandro N. Acquaroli
2016-10-01
Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.
Contribution of thermal expansion and
Directory of Open Access Journals (Sweden)
O.I.Pursky
2007-01-01
Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.
Salinity transfer in bounded double diffusive convection
Yang, Yantao; van der Poel, Erwin; Ostilla Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef
2015-01-01
The double diffusive convection between two parallel plates is numerically studied for a series of parameters. The flow is driven by the salinity difference and stabilised by the thermal field. Our simulations are directly compared with experiments by Hage & Tilgner (Phys. Fluids, vol. 22, 2010,
Isotope Fractionation by Diffusion in Liquids (Final Technical Report)
Energy Technology Data Exchange (ETDEWEB)
Richter, Frank [Univ. of Chicago, IL (United States)
2016-11-09
The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the key for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.
Air Distribution in a Room with Ceiling-Mounted Diffusers
DEFF Research Database (Denmark)
Nielsen, Peter V.; Heby, Thomas; Moeller-Jensen, Bertil
2006-01-01
distribution generated by a radial diffuser is partly controlled by the momentum flow from the diffusers and partly from gravity forces where the thermal load and the temperature difference between room air and supply air deflect the radial wall jet down into the occupied zone. The ceiling diffuser......Experiments with air distribution in rooms generated by a radial ceiling-mounted diffuser and a diffuser generating flow with swirl are compared with the air distribution obtained by mixing ventilation from a wall-mounted diffuser, vertical ventilation and displacement ventilation. The air...... with swirling flow generates a flow pattern in the room which is rather uninfluenced by the thermal load. The flow is highly mixed above the occupied zone and the air movement penetrates the occupied zone close to the walls. All systems are tested in the same room with the same heat load consisting of two...
Fission enhanced diffusion of uranium in zirconia
Bérerd, N.; Chevarier, A.; Moncoffre, N.; Sainsot, Ph.; Faust, H.; Catalette, H.
2005-11-01
This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin 235UO2 layer in direct contact with an oxidised zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 1011 ions cm-2 s-1 and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10-15 cm2 s-1 at 480 °C and compared to uranium thermal diffusion data in ZrO2 in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.
Investigation Of Thermal Properties Of Naturally Seasoned Dry ...
African Journals Online (AJOL)
Steady-state thermal conductivity measurements of naturally seasoned African thorn tree (Macaranga barteri) timer boards were carried out. Other thermal and physical properties such as specific heat capacity, thermal resistivity, density, thermal absorptivity and diffusivity as well as percentage of dead air space (v/v) were ...
Determination of oxygen diffusion kinetics during thin film ruthenium oxidation
Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik
2015-01-01
In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a
He, Guangli; Yamazaki, Yohtaro; Abudula, Abuliti
A three-dimensional and two-phase model was employed to investigate the effect of the anisotropic GDL thermal conductivity on the heat transfer and liquid water removal in the PEMFCs with serpentine flow field and semi-counter flow operation. The GDL with different anisotropic thermal conductivity in the three directions (x, y, z) was simulated for four cases. As a result, the water saturation, temperature, species, current, potential distribution and proton conductivity were obtained. According to the comparison between the results of each case, some new conclusions are obtained and listed as below: (1) The anisotropic GDL produces the high temperature difference than that of isotropic case, and the in-plane thermal conductivity perpendicular to the gas channels is more important than that of along channels, which may produce the larger temperature difference. (2) Water saturation decreases due to the large temperature difference in the anisotropic case, but some water vapor may condense in the area neighbor to the channel ribs due to the cool function of the current collector and the great temperature difference. (3) The anisotropic thermal conductivity in the through-plane direction and the in-plane direction perpendicular to the gas channels can lead to the decrease of the membrane conductivity. (4) The isotropic GDL is better than that of anisotropic one for the uniform current density. Also, in-plane thermal conductivity perpendicular to the channels has more negative effect on the current density distribution in the membrane than that of the along channels one.
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Thermally induced morphological transition of silver fractals
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari
2014-01-01
We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...
Transient thermal camouflage and heat signature control
Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong
2016-09-01
Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.
Thermal Properties of G-348 Graphite
Energy Technology Data Exchange (ETDEWEB)
McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)
2017-04-01
Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.
Fire suppression as a thermal implosion
Novozhilov, Vasily
2017-01-01
The present paper discusses the possibility of the thermal implosion scenario. This process would be a reverse of the well known thermal explosion (autoignition) phenomenon. The mechanism for thermal implosion scenario is proposed which involves quick suppression of the turbulent diffusion flame. Classical concept of the thermal explosion is discussed first. Then a possible scenario for the reverse process (thermal implosion) is discussed and illustrated by a relevant mathematical model. Based on the arguments presented in the paper, thermal implosion may be observed as an unstable equilibrium point on the generalized Semenov diagram for turbulent flame, however this hypothesis requires ultimate experimental confirmation.
Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V
2009-01-01
Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.
... medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. This ...
Diffuse charge dynamics in ionic thermoelectrochemical systems
Stout, Robert F.; Khair, Aditya S.
2017-08-01
Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1 /D κ2 , where D is the Brownian diffusion coefficient of both ion species, and κ-1 is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L2/D , where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion
Kutzner, Mickey; Pearson, Bryan
2017-01-01
Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration…
Handbook on atmospheric diffusion
Energy Technology Data Exchange (ETDEWEB)
Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.
1982-01-01
Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)
Microclimatic control in the museum environment: Air diffusion performance
Energy Technology Data Exchange (ETDEWEB)
Ascione, Fabrizio; Minichiello, Francesco [DETEC, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, NA (Italy)
2010-06-15
For the conservation of cultural heritage, museums need appropriate HVAC systems. Besides the time stability of the microclimatic parameters in the exhibition rooms, a high spatial uniformity is necessary and, thus, an optimal performance of the air diffusion systems. Using numerical codes based on Building Energy Performance Simulation (BEPS) and Computational Fluid Dynamics (CFD) techniques, in this paper an analysis has been carried out to compare different suitable air diffusion equipments, as regards uniformity of thermal-hygrometric and kinetic fields in a modelled typical exhibition room. For various part load conditions, the values of thermal-hygrometric parameters in different volumes of the room have been evaluated, as well as an innovative spatial thermal-hygrometric performance index. Globally estimating indoor temperature, relative humidity and their uniformity, for high exhibition rooms (5 m) the swirling diffusers have shown the best average performances, followed by the perimetrical stripes of slot diffusers, while for very high rooms (9 m) nozzles have resulted preferable. (author)
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Zhao, Dongliang; Qian, Xin; Gu, Xiaokun; Jajja, Saad Ayub; Yang, Ronggui
2016-01-01
Thermal conductivity and interfacial thermal conductance play crucial roles in the design of engineering systems where temperature and thermal stress are of concerns. To date, a variety of measurement techniques are available for both bulk and thin film solid-state materials with a broad temperature range. For thermal characterization of bulk material, the steady-state absolute method, laser flash diffusivity method, and transient plane source method are most used. For thin film measurement, ...
Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada
2017-01-01
model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...... dependence of the diffusion tensors, which causes the measured isotropic diffusivity to depend on gradient frame orientation. In turn, this conflates orientation dispersion with ensemble variance in isotropic diffusivity. Second, additional contributions to the apparent variance in isotropic diffusivity...
Cherniak, D. J.; Watson, E. B.
2010-09-01
Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0-1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O-CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703-1.151°C at 1 atm for experiments run with the spodumene source: D_{text{Li}} = 7.17 × 10^{ - 7} { exp }( - 275 ± 11 {text{kJmol}}^{ - 1} /{text{RT}}){text{m}}2 {text{s}}^{ - 1}. Diffusivities are similar for transport parallel to the c-axis, indicating little anisotropy for Li diffusion in zircon. Similar Li diffusivities were also found for experiments run under fluid-present conditions and for the experiment run with the Dy-bearing source. Li diffusion is considerably faster than diffusion of other cations in zircon, with a smaller activation energy for diffusion. Although Li diffusion in zircon is comparatively rapid, zircons will be moderately retentive of Li signatures at mid-crustal metamorphic temperatures, but they are unlikely to retain this information for geologically significant times under high-grade metamorphism.
Chudzik, S.
2017-03-01
The paper presents results of research on an innovative method for determining thermal parameters of thermal insulating materials. The method is based on harmonic thermal excitations. Temperature measurements at selected points of a specimen under test are performed by means of semiconductor infrared sensors. The study also employs a 3D model of thermal diffusion. To obtain a solution of the coefficient inverse problem a method based on an artificial neural network is presented. The heat transfer coefficient on the specimen surface is estimated on the basis of a reference specimen. The validity of the adopted model of heat diffusion and the usefulness of the method proposed are verified experimentally.
Thermal properties of composite materials: a complex systems approximation
Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor
We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.
Improved Inversion of Needle Probe Data for the Determination of Rock Thermal Properties
DEFF Research Database (Denmark)
Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.
Heat flow, thermal conductivity and thermal diffusivity are essential properties in subsurface temperature modelling. We present initial results of a novel inversion approach for laboratory measurements of rock thermal conductivity and thermal diffusivity by the needle probe method. Instead...... of analytical expressions, we use a numerical finite element procedure for the forward temperature response. A Markov Chain Monte Carlo Metropolis Hastings inversion procedure produces estimates of rock thermal parameters with uncertainties. .....
Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas
Energy Technology Data Exchange (ETDEWEB)
Ramshaw, J.D.; Chang, C.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1995-12-31
Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.
CSIR Research Space (South Africa)
Osburn, L
2010-01-01
Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...
Thermal properties of WC-10 wt. (% Co alloys
Directory of Open Access Journals (Sweden)
Francisco de Assis Léo Machado
2008-03-01
Full Text Available In this article, photothermal techniques were used in order to determine some thermal properties: diffusivity, conductivity, effusivity and specific heat capacity of WC-10 wt. (% Co six samples subjected to different sintering processes. The samples were sintered using high pressure - high temperature (HPHT sintering system. The open cell photoacoustic (OPC used to measure thermal diffusivity is described in detail. The values of thermal properties here measured and evaluated are consistent to those previously reported in the literature.
Metric diffusion along foliations
Walczak, Szymon M
2017-01-01
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.
Diffusion formalism and applications
Dattagupta, Sushanta
2013-01-01
Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion-physical and stochastic-introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and
Inpainting using airy diffusion
Lorduy Hernandez, Sara
2015-09-01
One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.
Experimental study of vortex diffusers
Energy Technology Data Exchange (ETDEWEB)
Shakerin, S.; Miller, P.L. [National Renewable Energy Lab., Golden, CO (United States)
1995-11-01
This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.
Confusion, Diffusion, and Innovation
Eyestone, Robert
1977-01-01
Examines several possible models of public policy diffusion, then presents and illustrates the use of a technique for identifying clusters of similar policies on the bases of their diffusion patterns. Available from: American Political Science Association, 1527 New Hampshire Avenue, N.W., Washington, DC 20036; $10.50 single copy. (JG)
Galactic Diffuse Polarized Emission
Indian Academy of Sciences (India)
Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission ...
Speckle reducing anisotropic diffusion.
Yu, Yongjian; Acton, Scott T
2002-01-01
This paper provides the derivation of speckle reducing anisotropic diffusion (SRAD), a diffusion method tailored to ultrasonic and radar imaging applications. SRAD is the edge-sensitive diffusion for speckled images, in the same way that conventional anisotropic diffusion is the edge-sensitive diffusion for images corrupted with additive noise. We first show that the Lee and Frost filters can be cast as partial differential equations, and then we derive SRAD by allowing edge-sensitive anisotropic diffusion within this context. Just as the Lee and Frost filters utilize the coefficient of variation in adaptive filtering, SRAD exploits the instantaneous coefficient of variation, which is shown to be a function of the local gradient magnitude and Laplacian operators. We validate the new algorithm using both synthetic and real linear scan ultrasonic imagery of the carotid artery. We also demonstrate the algorithm performance with real SAR data. The performance measures obtained by means of computer simulation of carotid artery images are compared with three existing speckle reduction schemes. In the presence of speckle noise, speckle reducing anisotropic diffusion excels over the traditional speckle removal filters and over the conventional anisotropic diffusion method in terms of mean preservation, variance reduction, and edge localization.
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon
2007-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Modelling of Innovation Diffusion
Directory of Open Access Journals (Sweden)
Arkadiusz Kijek
2010-01-01
Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon
2006-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Michaud, Georges; Richer, Jacques
2015-01-01
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling. In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...
Ion assisted growth of B4C diffusion barrier layers in Mo/Si multilayered structures
Bruijn, S.; Bruijn, S.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik
2012-01-01
We investigated the thermal stability of e-beam deposited Mo/B 4C/Si/B 4C layered systems, with and without ion assistance during the growth of the B 4C diffusion barrier layers. The thermal stability was investigated by in situ thermal annealing during grazing incidence X-ray reflection. By
Diffusion in late stages of stellar evolution
Michaud, Georges
The abundances of the chemical elements observed at the surface of white dwarfs are the result of diffussion in the external regions of these stars. It is described how diffusion determines the abundances of such elements as carbon, that are now being observed in the far UV Diffusion is shown to play a minor role in giants but its effects start to appear rapidly after the planetary nebula stage. While the basic physical process of gravitational settling is well understood, the quantitative values of the diffusion coefficients involved are uncertain in some cases. They pose interesting statistical physics problems specially for the thermal diffusion coefficients. Depending on the model used it can vary by orders of magnitude. A number of the possible sources of uncertainty of the diffusion coefficients are described as well as the astrophysical context where the coefficients are most uncertain. L'abondance des éléments chimiques à la surface des naines blanches est le fruit de la diffusion des particules dans les régions externes de ces étoiles. On décrit comment la diffusion détermine l'abondance du carbone que l'on observe dans l'UV. La diffusion joue une rôle mineur dans les géantes mais ses effets commencent à faire sentir peu après l'étape des nébuleuses planétaires. Le tri gravitationnel est un processus bien compris mais les coefficients de diffusion impliqués sont incertains dans plusieurs cas. Leur détermination, en particulier celle du coefhcient de diffusion thermique, pose des problèmes intéressants de physique statistique. Dépendant du modèle utilisé, la valeur du coefficient de diffusion thermique peut varier par plusieurs ordres de grandeur. Plusieurs des causes d'incertitude sont décrites de même que le contexte astrophysique où les coefficients sont le plus incertains.
Thermodynamic properties and diffusion of water + methane binary mixtures
Energy Technology Data Exchange (ETDEWEB)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au [Centre for Molecular Simulation, Swinburne University of Technology, PO Box 218 Hawthorn, Victoria 3122 (Australia)
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.
Suppressing drift chamber diffusion without magnetic field
Martoff, C J; Ohnuki, T; Spooner, N J C; Lehner, M
2000-01-01
The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 mu m has been achieved over a 15 cm drift path at 40 torr with ze...
Diffuse infiltrating lipomatosis
Energy Technology Data Exchange (ETDEWEB)
Grabbe, E.; Boecker, W.; Buecheler, E.
1984-06-01
Nineteen patients with various types of lipoma in the pelvis are described. Clinical findings, radiological examinations, and follow-up studies constitute a particular type of lipoma, diffuse infiltrating lipomatosis; this can be distinguished from other fatty tumours because of its localisation, extent, therapeutic results and long course. Computed tomography enables us to differentiate simple lipomatosis pelvis from diffuse infiltrating lipomatosis. Histological examination is essential for excluding a liposarcoma. Growth or malignant change of diffuse infiltrating lipomatosis is most easily recognized by computed tomographic serial observation.
Infrared diffuse interstellar bands
Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.
2017-05-01
We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.
Theories on diffusion of technology
DEFF Research Database (Denmark)
Munch, Birgitte
Tracing the body of the diffusion proces by analysing the diffusion process from historical, sociological, economic and technical approaches. Discussing central characteristics of the proces of diffusion og CAD/CAM in Denmark....
National Research Council Canada - National Science Library
McQuaid, M
1999-01-01
...) the technique developed by Miller and Kotlar ("Technique for Measuring Thermal Diffusivity/Conductivity of Small Thermal Insulator Specimens," Review of Scientific instruments, vol. 64, p. 2954, 1993) and (2...
Peppin, Stephen S. L.
2009-01-01
Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.
Isomorphism, Diffusion and Decoupling
DEFF Research Database (Denmark)
Boxenbaum, Eva; Jonsson, Stefan
2017-01-01
This chapter traces the evolution of the core theoretical constructs of isomorphism, decoupling and diffusion in organizational institutionalism. We first review the original theoretical formulations of these constructs and then examine their evolution in empirical research conducted over the past...
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2014-01-01
Both the practice and the research literature on information systems attach great value to the identification and dissemination of information on “best practices”. In the philosophy of science, this type of knowledge is regarded as technological knowledge because it becomes manifest...... in the successful techniques in one context. While the value for other contexts is unproven, knowledge of best practices circulates under an assumption that the practices will usefully self-diffuse through innovation and adoption in other contexts. We study diffusion of best practices using a design science...... approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...
Temperature-dependent thermal properties of spark plasma sintered alumina
Directory of Open Access Journals (Sweden)
Saheb Nouari
2017-01-01
Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Advanced manufacturing: Technology diffusion
Energy Technology Data Exchange (ETDEWEB)
Tesar, A.
1995-12-01
In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.
Directory of Open Access Journals (Sweden)
Aleksei V. Chechkin
2017-04-01
Full Text Available A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.
Diffuse scattering and the fundamental properties of materials
EIce, Gene; Barabash, Rozaliya
2009-01-01
Diffuse Scattering-the use of off-specular X-Rays and neutrons from surfaces and interfaces-has grown rapidly as a tool for characterizing the surface properties of materials and related fundamental structural properties. It has proven to be especially useful in the understanding of local properties within materials. This book reflects the efforts of physicists and materials scientists around the world who have helped to refine the techniques and applications of diffuse scattering. Major topics specifically covered include: -- Scattering in Low Dimensions -- Elastic and Thermal Diffuse Scattering from Alloys -- Scattering from Complex and Disordered Materials -- Scattering from Distorted Crystals.
Detection of damage in concrete using diffuse ultrasound.
Deroo, Frederik; Kim, Jin-Yeon; Qu, Jianmin; Sabra, Karim; Jacobs, Laurence J
2010-06-01
This letter demonstrates the potential for using diffuse ultrasound measurements to detect damage in concrete. Two different solutions to the diffusion equation, an infinite three-dimensional (3D) volume model that neglects geometric boundaries and a finite 3D cuboid model, are used for the required curve fitting procedure to determine the influence of geometric boundaries on the solution. The measurements consider two types of microcrack damage in concrete, alkali-silica reaction and thermal damage, and show that the measured diffusivity parameter is related to the amount of damage in each specimen.
On the coupling between molecular diffusion and solvation shell exchange
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Rey, Rossend; Masia, Marco
2005-01-01
are proposed which allow, by means of simulation;to extract the quantitative speed-up in diffusion induced by the exchange events. Second,. it is shown by simple kinematic considerations that the instantaneous velocity of the solute conditions to a considerable extent the character of the exchanges. Analytic...... formulas are derived which quantitatively estimate this effect, and which are of general applicability to molecular diffusion in any thermal fluid. Despite the simplicity of the kinematic considerations, they are shown to well describe many aspects of solvent exchange/diffusion coupling features...... for nontrivial systems. (c) 2005 American Institute of Physics....
Rheology modulated non-equilibrium fluctuations in time-dependent diffusion processes
Maity, Debonil; Bandopadhyay, Aditya; Chakraborty, Suman
2016-11-01
The effect of non-Newtonian rheology, manifested through a viscoelastic linearized Maxwell model, on the time-dependent non-equilibrium concentration fluctuations due to free diffusion as well as thermal diffusion of a species is analyzed theoretically. Contrary to the belief that non-equilibrium Rayleigh line is not influenced by viscoelastic effects, through rigorous calculations, we put forward the fact that viscoelastic effects do influence the non-equilibrium Rayleigh line, while the effects are absent for the equilibrium scenario. The non-equilibrium process is quantified through the concentration fluctuation auto-correlation function, also known as the structure factor. The analysis reveals that the effect of rheology is prominent for both the cases of free diffusion and thermal diffusion at long times, where the influence of rheology dictates not only the location of the peaks in concentration dynamic structure factors, but also the magnitudes; such peaks in dynamic structure factors are absent in the case of Newtonian fluid. At smaller times, for the case of free diffusion, presence of time-dependent peak(s) are observed, which are weakly dependent on the influence of rheology, a phenomenon which is absent in the case of thermal diffusion. Different regimes of the frequency dependent overall dynamic structure factor, depending on the interplay of the fluid relaxation time and momentum diffusivity, are evaluated. The static structure factor is not affected to a great extent for the case of free-diffusion and is unaffected for the case of thermal diffusion.
Boettcher, Philipp Andreas
sufficiently rapidly undergoes only a moderate amount of thermal decomposition and explodes quite violently. This behavior can also be captured and analyzed using a one-step reaction model, where the heat release is in competition with the depletion of reactants. Hot surface ignition is examined using a glow plug or heated nickel element in a series of premixed n-hexane air mixtures. High-speed schlieren photography, a thermocouple, and a fast response pressure transducer are used to record flame characteristics such as ignition temperature, flame speed, pressure rises, and combustion mode. The ignition event is captured by considering the dominant balance of diffusion and chemical reaction that occurs near a hot surface. Experiments and models show a dependence of ignition temperature on mixture composition, initial pressure, and hot surface size. The mixtures exhibit the known lower flammability limit where the maximum temperature of the hot surface was insufficient at igniting the mixture. Away from the lower flammability limit, the ignition temperature drops to an almost constant value over a wide range of equivalence ratios (0.7 to 2.8) with large variations as the upper flammability limit is approached. Variations in the initial pressure and equivalence ratio also give rise to different modes of combustion: single flame, re-ignition, and puffing flames. These results are successfully compared to computational results obtained using a flamelet model and a detailed chemical mechanism for n-heptane. These different regimes can be delineated by considering the competition between inertia, i.e., flame propagation, and buoyancy, which can be expressed in the Richardson number. In experiments of hot surface ignition and subsequent flame propagation a 10 Hz puffing flame instability is visible in mixtures that are stagnant and premixed prior to the ignition sequence. By varying the size of the hot surface, power input, and combustion vessel volume, we determined that the
Thermal dynamics of thermoelectric phenomena from frequency resolved methods
Directory of Open Access Journals (Sweden)
J. García-Cañadas
2016-03-01
Full Text Available Understanding the dynamics of thermoelectric (TE phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.
Bicarbonate diffusion through mucus.
Livingston, E H; Miller, J; Engel, E
1995-09-01
The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.
On q dependence of thermal transport in tokamaks
Hirose, A.; Livingstone, S.; Singh, A. K.
2005-12-01
Analysis based on a gyro-kinetic ballooning stability code predicts that both the ion and electron thermal diffusivities, due to the ion temperature gradient (ITG) and electron temperature gradient (ETG) modes, respectively, increase with the safety factor q almost linearly. In the case of ITG driven ion thermal diffusivity, the q dependence originates from the coupling to the ion acoustic mode, and in the case of the electron thermal diffusivity due to the ETG mode, it emerges from the coupling to the skin size drift mode. In the ETG mode, charge neutrality does not hold for typical tokamak discharges, and mixing length estimates yield a thermal diffusivity large enough to be relevant to experiments.
Energy Technology Data Exchange (ETDEWEB)
Azmi, B Z; Noroozi, M; Sulaiman, Z A; Wahab, Z A; Moksin, M M, E-mail: azmizak@gmail.co [Physics Department, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)
2010-03-01
The optical fibre thermal wave resonator cavity (OF-TWRC) technique was used to measure thermal diffusivity of a two-layer sample; air-liquid. The thermal waves were generated by transmitting the modulated laser beam through one end of optical fibre and illuminating the other fibre end surface that metalised with silver paint. The cavity length scan was done by moving the fibre end surface towards the pyroelectric detector continuously through air and then into the liquid. A good linear relationship of pyroelectric amplitude with respect to cavity length was obtained in thermally thick region in both media; air and liquid. The thermal diffusivity of air, glycerol and water obtained were closed to the literature values.
Thermal transport properties of grey cast irons
Energy Technology Data Exchange (ETDEWEB)
Hecht, R.L. [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin [Oak Ridge National Lab., TN (United States)
1996-10-01
Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.
1980-05-01
Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S.
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
Diffusion processes in freely suspended smectic films
Śliwa, I.; Zakharov, A. V.
2017-08-01
A molecular model describing translational diffusion in freely suspended smectic films (FSSFs) in air is proposed. This model is based on the random walk theory and allows calculation of the translational diffusion coefficient (TDC) across smectic layers (along the director). All values necessary for calculating the TDC are obtained within the generalized mean-field model considering not only anisotropic interactions between nearest neighbors of molecules forming FSSFs, but also the stabilizing effect of the smectic/air interface. The spatial inhomogeneity of order parameters over the FSSF section, arising in this case, results in the fact that the surface tension at the smectic/air interface not only suppresses thermal fluctuations in surface layers, but also completely suppresses translational diffusion of molecules from the FSSF to air. The results of calculations of dimensional translational diffusion in the bulk of the FSSF formed by 5- n-alkyl-2-(4- n-(perfluoroalkyl-metyleneoxy))pentyl molecules during its thinning show that the TDC monotonically increases as the smectic film is thinned.
Phase transformation and diffusion
Kale, G B; Dey, G K
2008-01-01
Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g
Diffusion in advanced materials
Murch, Graeme; Belova, Irina
2014-01-01
In the first chapter Prof. Kozubski and colleagues present atomisticsimulations of superstructure transformations of intermetallic nanolayers.In Chapter 2, Prof. Danielewski and colleagues discuss a formalism for themorphology of the diffusion zone in ternary alloys. In Chapter 3, ProfessorsSprengel and Koiwa discuss the classical contributions of Boltzmann andMatano for the analysis of concentration-dependent diffusion. This isfollowed by Chapter 4 by Professor Cserháti and colleagues on the use of Kirkendall porosity for fabricating hollow hemispheres. In Chapter 5,Professor Morton-Blake rep
SOLITON DIFFUSION IN POLYACETYLENE
Maki, K.
1983-01-01
Making use of the Su, Schrieffer and Heeger (SSH) model for polyacetylene, we study theoretically the soliton difusion in pristine trans-(CH)x. The soliton in the SSH model couples linearly both optical and acoustic phonons. Since the coupling to the optical phonon is stronger, the optical phonon dominates the soliton diffusion in high temperature (T>400K). However, below the room temperature the acoustic phonon dominates the soliton diffusion. For temperature T>To≡2mc2, where m is the solito...
Directory of Open Access Journals (Sweden)
R.T. DeHoff
2002-09-01
Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete
Communication: Memory effects and active Brownian diffusion
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Pulak K. [Department of Chemistry, Presidency University, Kolkata 700073 (India); Li, Yunyun, E-mail: yunyunli@tongji.edu.cn [Center for Phononics and Thermal Energy Science, Tongji University, Shanghai 200092 (China); Marchegiani, Giampiero [Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Marchesoni, Fabio [Center for Phononics and Thermal Energy Science, Tongji University, Shanghai 200092 (China); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy)
2015-12-07
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer’s diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer’s propulsion are exponentially correlated in time, whereas in the second one, we account for possible damped fluctuations of the propulsion velocity around the swimmer’s axis. The corresponding swimmer’s diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.
2012-03-08
interface. – Acoustic mismatch theory ( AMM ) (Little, 1959) – Diffuse mismatch theory (DMM) (Swartz and Pohl 1989) • Both of these theories offer...limited accuracy for nanoscale interfacial resistance predictions because of they neglect the atomic details of actual interfaces. – e.g. The AMM model
Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics
van de Kruijs, Robbert Wilhelmus Elisabeth; Bruijn, S.; Yakshin, Andrey; Nedelcu, I.; Bijkerk, Frederik; van de Kruijs, R.W.E.
2011-01-01
The internal structure of Mo/Si multilayers is investigated during and after thermal annealing. Multilayer period compaction is shown to result from diffusion induced MoSi2 interlayer growth, reducing optical contrast and changing the reflected wavelength. We focus on early-stage interface growth
Accurate determination of specific heat at high temperatures using the flash diffusivity method
Vandersande, J. W.; Zoltan, A.; Wood, C.
1989-01-01
The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn
2015-12-15
Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of
Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield
Energy Technology Data Exchange (ETDEWEB)
Loh, G. C., E-mail: jgloh@mtu.edu [Institute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)
2013-11-14
Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.
Energy Technology Data Exchange (ETDEWEB)
Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David; Turchi, Craig S.; Cath, Tzahi Y.
2018-02-01
Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.
Reaction-diffusion pulses: a combustion model
Energy Technology Data Exchange (ETDEWEB)
Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)
2004-07-02
We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.
Defects and diffusion in semiconductors XIV
Fisher, David J
2012-01-01
This 14th volume in the series covers the latest results in the field of Defects and Diffusion in Semiconductor. The issue also includes some original papers: An Experimental Study of the Thermal Properties of Modified 9Cr-1Mo Steel; Physico-Mechanical Properties of Sintered Iron-Silica Sand Nanoparticle Composites: A Preliminary Study; Defect and Dislocation Density Parameters of 5251 Al Alloy Using Positron Annihilation Lifetime Technique; A Novel Computational Strategy to Enhance the Ability of Elaborate Search by Entire Swarm to Find the Best Solution in Optimization of AMCs; Synthesis and
Pelleg, Joshua
2016-01-01
This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...
Sack, Jeff
2005-01-01
OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.
Bronnen van diffuse bodembelasting
Lijzen JPA; Ekelenkamp A; LBG; DGM/BO
1995-01-01
The aim of this study was to support the policy on preventive soil protection with information on the diffuse (non-local) emissions to soil and the influence on future soil quality. This study is related to inventories on (potential) sources of local soil pollution (e.g. industrial areas,
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole
2008-01-01
. To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...
Hartjen, Raymond H.
1981-01-01
Address at the 66th Convention of the International Association of Pupil Personnel Workers, Baltimore, Maryland, October 1980, describes the National Diffusion Network, the marketing arm of the Department of Education. State facilitators share innovations in education with school systems. Many adaptions from Maryland schools are usable in other…
Field Study of Diffuse Ceiling Ventilation Performance in a Landscape Office
DEFF Research Database (Denmark)
Zukowska-Tejsen, Daria; Wolsing, Marie; Grysbæk, Malene
2016-01-01
Performance of diffuse ceiling ventilation with regard to thermal comfort and limits of the cooling capacity of the system was studied in a 97 m2-landscape office. Seven operation scenarios were tested: two for mixing ventilation with ceiling mounted fan coils and five with diffuse ceiling ventil...
Parametrical analysis on the diffuse ceiling ventilation by experimental and numerical studies
DEFF Research Database (Denmark)
Zhang, Chen; Kristensen, Martin Heine; Jensen, Jakob Sølund
2016-01-01
ventilation provides a satisfied thermal comfort level in the occupied zone even under a high ventilation rate and a high heat load condition. A design chart method is adopted to compare different diffuse ceiling configurations, and the results indicate that the system with a 18% diffuse ceiling opening area...
Active Teaching of Diffusion through History of Science, Computer Animation and Role Playing
Krajsek, Simona Strgulc; Vilhar, Barbara
2010-01-01
We developed and tested a lesson plan for active teaching of diffusion in secondary schools (grades 10-13), which stimulates understanding of the thermal (Brownian) motion of particles as the principle underlying diffusion. During the lesson, students actively explore the Brownian motion through microscope observations of irregularly moving small…
Li, J.; Oudriss, A.; Metsue, A.; Bouhattate, J.; Feaugas, X.
2017-03-01
Hydrogen diffusion has an important role in solute-dependent hydrogen embrittlement in metals and metallic alloys. In spite of extensive studies, the complexity of hydrogen diffusion in solids remains a phenomenon that needs to be clarified. In this paper, we investigate the anisotropy of hydrogen diffusion in pure nickel single crystals using both an experimental approach and a thermodynamic development. As a first approximation, experimental data from electrochemical permeation and thermal desorption spectroscopy are described using the classical Fick’s laws and an apparent diffusion tensor. Within a thermodynamic framework, the diffusion equation can be derived from Fick’s laws with an apparent diffusion coefficient which contains an added solute content dependent term β. This term is due to the elastic strain field associated with the insertion of solute atoms. For nickel crystals, the dependence of β on the crystallographic orientation arises from the elastic anisotropy. Additionally, our results elucidate the discrepancies between the thermodynamic model and experimental observations of the effect of the solute concentration on the diffusion process. Moreover, this highlights the importance of the impact of hydrogen on vacancy formation and the subsequent consequences on the anisotropy of the apparent diffusion coefficient.
Variable helium diffusion characteristics in fluorite
Wolff, R.; Dunkl, I.; Kempe, U.; Stockli, D.; Wiedenbeck, M.; von Eynatten, H.
2016-09-01
Precise analysis of the diffusion characteristics of helium in fluorite is crucial for establishing the new fluorite (U-Th-Sm)/He thermochronometer (FHe), which potentially provides a powerful tool for dating ore deposits unsuitable for the application of conventional geochronometers. Incremental helium outgassing experiments performed on fluorites derived from a spectrum of geological environments suggest a thermally activated volume diffusion mechanism. The diffusion behaviour is highly variable and the parameters range between log D0/a2 = 0.30 ± 0.27-7.27 ± 0.46 s-1 and Ea = 96 ± 3.5-182 ± 3.8 kJ/mol. Despite the fact that the CaF2 content of natural fluorites in most cases exceeds 99 weight percent, the closure temperature (Tc) of the fluorite (U-Th-Sm)/He thermochronometer as calculated from these diffusion parameters varies between 46 ± 14 °C and 169 ± 9 °C, considering a 125 μm fragment size. Here we establish that minor substitutions of calcium by rare earth elements and yttrium (REE + Y) and related charge compensation by sodium, fluorine, oxygen and/or vacancies in the fluorite crystal lattice have a significant impact on the diffusivity of helium in the mineral. With increasing REE + Y concentrations F vacancies are reduced and key diffusion pathways are narrowed. Consequently, a higher closure temperature is to be expected. An empirical case study confirms this variability: two fluorite samples from the same deposit (Horni Krupka, Czech Republic) with ca. 170 °C and ca. 43 °C Tc yield highly different (U-Th-Sm)/He ages of 290 ± 10 Ma and 79 ± 10 Ma, respectively. Accordingly, the fluorite sample with the high Tc could have quantitatively retained helium since the formation of the fluorite-bearing ores in the Permian, despite subsequent Mesozoic burial and associated regional hydrothermal heating. In contrast, the fluorite with the low Tc yields a Late Cretaceous age close to the apatite fission track (AFT) and apatite (U-Th)/He ages (AHe
DEFF Research Database (Denmark)
d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor
2014-01-01
Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...
Thermal radiation heat transfer.
Siegel, R.; Howell, J. R.
1972-01-01
A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
The Pearson diffusions: A class of statistically tractable diffusion processes
DEFF Research Database (Denmark)
Forman, Julie Lyng; Sørensen, Michael
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the corresponding...
Free quantum motion exactly equals sub-quantum ballistic diffusion
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert
2010-01-01
By modelling quantum systems with the aid of (classical) non-equilibrium thermodynamics, the quantum mechanical "decay of the wave packet" is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion on the sub-quantum level. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said sub-quantum ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviour are obtained which cannot be formulated in any other existing model for quantum systems.
Diffusion of $^{6}$Li in Ta and W
Vacik, J
2006-01-01
The objective of this work was the study of 6Li diffusion in the Ta and W refractory metals. The samples were prepared by ion implantation of 380 keV 6Li+ ions into W and Ta thin foils (up to the fluence of 1016 ions/cm2) and annealed up to the temperature 1940 °C. The depth profiles of 6Li were determined using the Thermal Neutron Depth Profiling (TNDP) technique. The results showed that diffusion of 6Li in both W and Ta foils is very complex and cannot be described by simple Fick’s laws. Trapping centers (in the subsurface layers of both W and Ta metals) were supposed in a trial to explain the 6Li diffusion behaviour. However, the 6Li depth profiles were only partly explained. Other aspects are necessary to take into account for more proper quantification; such as spatially dependent diffusion coefficients, etc.
Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells
Elafandy, Rami T.
2016-11-23
Knowledge of materials\\' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes\\' emission spectrally shift based on the material\\'s thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.
Synthesis And Thermal Characterization Of Polypropylene ...
African Journals Online (AJOL)
The present work investigates the heat transfer and specifically, thermal conductivity, diffusivity and specific heat in Aluminium composite materials. The composites were obtained by mixing polypropylene (PP) with oxidized Aluminium (Al) under various volume fractions. Two sizes of filler are used in the sample composite ...
The negative perception some consumers hold regarding agricultural chemicals has resulted in an increased demand for organic foods and fibers, and in increasing political pressure for the regulation of agricultural production practices. This has revived interest in thermal defoliation of cotton and ...
Balasubramanian, V.; Bernamonti, A.; de Boer, J.; Copland, N.; Craps, B.; Keski-Vakkuri, E.; Müller, B.; Schäfer, A.; Shigemori, M.; Staessens, W.
2011-01-01
Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint approximation these probes are computed in AdS space
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Thermal cycling tests of actively cooled beryllium copper joints
Energy Technology Data Exchange (ETDEWEB)
Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)
1998-01-01
Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)
Comparative study of thermal insulation boards from leaf and bark ...
African Journals Online (AJOL)
The aim of this study was to compare the performance of insulation boards made from leave and bark fibres of Pilios tigma thonningii L.in terms of density, water absorption, apparent thermal conductivity, specific heat and thermal diffusivity. The leave and the bark fibres were prepared in form of squared boards of 200 mm x ...
Thermal Properties of Kerstingiella geocarpa Seeds as Influenced ...
African Journals Online (AJOL)
The specific heat capacity, thermal conductivity and thermal diffusivity of Kerstingiella geocarpa seeds were determined as a function of moisture content. The initial moisture content of the seeds determined using the ASAE standard test was 10.0 % (d.b). The specific heat capacity of Kerstingiella geocarpa seed increased ...
Directory of Open Access Journals (Sweden)
V. S. Niss
2015-01-01
Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power
Directory of Open Access Journals (Sweden)
Roberto Cipriani
2011-06-01
Full Text Available It is quite likely that the origins of prayer are to be found in ancient mourning and bereavement rites. Primeval ritual prayer was codified and handed down socially to become a deep-rooted feature of people’s cultural behavior, so much so, that it may surface again several years later, in the face of death, danger, need, even in the case of relapse from faith and religious practice. Modes of prayer depend on religious experience, on relations between personal prayer and political action, between prayer and forgiveness, and between prayer and approaches to religions. Various forms of prayer exist, from the covert-hidden to the overt-manifest kind. How can they be investigated? How can one, for instance, explore mental prayer? These issues regard the canon of diffused religion and, therefore, of diffused prayer.
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2014-01-01
Both the practice and the research literature on information systems attach great value to the identification and dissemination of information on “best practices”. In the philosophy of science, this type of knowledge is regarded as technological knowledge because it becomes manifest...... in the successful techniques in one context. While the value for other contexts is unproven, knowledge of best practices circulates under an assumption that the practices will usefully self-diffuse through innovation and adoption in other contexts. We study diffusion of best practices using a design science...... in the presence of two concordant factors. On the context side, the qualities of the selected opinion leader were necessary to provide the subjective norm described in TPB. On the best practice side, the technological qualities of the best practice itself were necessary to instill the ideal attitude (belief...
Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon
2017-01-01
Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials. PMID:28106156
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.
2013-11-01
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).
Energy Technology Data Exchange (ETDEWEB)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)
2013-11-21
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)
Improved diffusion Monte Carlo
Hairer, Martin; Weare, Jonathan
2012-01-01
We propose a modification, based on the RESTART (repetitive simulation trials after reaching thresholds) and DPR (dynamics probability redistribution) rare event simulation algorithms, of the standard diffusion Monte Carlo (DMC) algorithm. The new algorithm has a lower variance per workload, regardless of the regime considered. In particular, it makes it feasible to use DMC in situations where the "na\\"ive" generalisation of the standard algorithm would be impractical, due to an exponential e...
Barker, John A.
2016-01-01
The field of hydrogeology is primarily concerned with the flow of water below the ground surface and with transport, normally of solutes and heat, within that water. Many disciplines have contributed to this endeavor which requires skills from across the spectrum of science, engineering and beyond. The diffusion equation describes not only solute transport but also the flow of water, via Darcy’s law. Of particular interest is transport in fractured rock where most of the flow is through th...
Ramiro-H, Manuel; Cruz-A, Enrique
2016-01-01
Between August 19 and 21, the Feria del Libro de las Ciencias de la Salud (Healthcare Book Fair) took place in the Palacio de Medicina in Mexico City. Archives of Medical Research, Revista Médica del IMSS, and Saber IMSS, three of the main instruments of knowledge diffusion of the Instituto Mexicano del Seguro Social, assisted to this book fair, which was organized by the Facultad de Medicina of UNAM.
Thermal Hardware for the Thermal Analyst
Steinfeld, David
2015-01-01
The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.
Construction of a Novel Method of Measuring Thermal Conductivity for Nanostructures
Directory of Open Access Journals (Sweden)
Hiroya Ikeda
2015-04-01
Full Text Available With the aim of characterizing the thermal conduction in a nanometer-scaled materials, we have constructed a novel method on the basis of an ac calorimetric method. In this method, periodic sample heating is performed by light irradiation and the corresponding periodic temperature is detected by infrared irradiative thermometer. This makes us measure the thermal diffusivity out of contact with the objective sample. In the present study, we confirm to measure the thermal diffusivity of bulk Si and Cu by this non-contact method with halogen-lamp irradiation. In determining the thermal diffusivity from the relationship between distance deviation and delay time, the simplest wave equation is used, and the obtained values of thermal diffusivity for Si and Cu are close to those reported. Therefore, this non-contact method is useful for evaluating the thermal conduction and applicable for nanometer-scaled materials by improving local heating and local detecting systems.
Solute diffusion in liquid metals
Bhat, B. N.
1973-01-01
A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.
Thermal properties of simulated Hanford waste glasses
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington USA; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington USA; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington USA; Canfield, Nathan L. [Pacific Northwest National Laboratory, Richland Washington USA; Rönnebro, Ewa C. E. [Pacific Northwest National Laboratory, Richland Washington USA; Vienna, John D. [Pacific Northwest National Laboratory, Richland Washington USA; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington
2017-03-20
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flash diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.
Electrophoresis of diffuse soft particles
Duval, J.F.L.; Ohshima, H.
2006-01-01
A theory is presented for the electrophoresis of diffuse soft particles in a steady dc electric field. The particles investigated consist of an uncharged impenetrable core and a charged diffuse polyelectrolytic shell, which is to some extent permeable to ions and solvent molecules. The diffuse
Contribution to the thermal properties of selected steels
Directory of Open Access Journals (Sweden)
P. Jonšta
2015-01-01
Full Text Available The paper deals with the influence of structural changes on heat transport phenomena of steels samples. Three samples of 10GN2MFA steel were thermally treated at quenching temperatures equal to 900 °C, 1 000 °C and 1 100 °C, and temperature of the tempering was 670 °C. Both thermal diffusivity and thermal conductivity increase with the quenching temperature. Specific heat capacity of steel samples after thermal treatment does not change significantly. Further three different high manganese steels were measured. Maximal content of Mn and C was 27 and 0,5 mass percent. From results of thermophysical properties after ageing, one can see the increase of thermal diffusivity up to 20 percent, thermal conductivity up to 15 percent, decrease of specific heat capacity is not significant. All measured values of thermophysical properties are in good agreement with literary data (before ageing.
Thermo-Mechanical and Thermal behavior of High-Temperature Structural Materials.
1982-12-31
reached a value at which in many candidate materials, such as tar-bonded magnesite refractories , substantial soften- L. ing and creep may occur. If so...number) Thermal shock, thermal stress, thermal diffusivity, thermal conductivity; refractories , composites, radiation heat transfer, cyclic heating...Bentsen and D. P. H. Hasselman, "The Measurement of the Thermal Conductivity of Refractories by the Laser-Flash Method." IV J. R. Thomas, J. I
Thermophysical properties of selected powders for thermal barrier coatings
M. Drajewicz; M. Góral; M. Pytel; J. Sieniawski
2012-01-01
Purpose: Plasma-sprayed thermal barrier coatings often have the problems of spallation and cracking in service owing to their poor bond strength and high residual stresses. Functionally graded thermal barrier coatings with a gradual compositional variation from heat resistant ceramics to fracture-resistant metals are proposed to mitigate these problems.Design/methodology/approach: The results of measurements of thermal diffusivity by using one of the most modern experimental sets LFA 427 (Las...
1997-01-01
Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.
Micha, Raphael; Micha, Raphael; Tkachev, Igor I.
2004-01-01
We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and...
Advanced diffusion processes and phenomena
Öchsner, Andreas; Belova, Irina
2014-01-01
This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the
Self-diffusion in sheared suspensions by dynamic simulation
Foss, David R.; Brady, John F.
1999-12-01
The behaviour of the long-time self-diffusion tensor in concentrated colloidal dispersions is studied using dynamic simulation. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Péclet number, Pe, which measures the relative importance of shear and Brownian forces, and the volume fraction, [phi]. Here, Pe = &[gamma]dot;a2/D0, where &[gamma]dot; is the shear rate, a the particle size and D0 = kT/6[pi][eta]a is the Stokes Einstein diffusivity of an isolated particle of size a with thermal energy kT in a solvent of viscosity [eta]. Two simulations algorithms are used: Stokesian Dynamics for inclusion of the many-body hydrodynamic interactions, and Brownian Dynamics for suspensions without hydrodynamic interactions. A new procedure for obtaining high-quality diffusion data based on averaging the results of many short simulations is presented and utilized. At low shear rates, low Pe, Brownian diffusion due to a random walk process dominates and the characteristic scale for diffusion is the Stokes Einstein diffusivity, D0. At zero Pe the diffusivity is found to be a decreasing function of [phi]. As Pe is slowly increased, O(Pe) and O(Pe3/2) corrections to the diffusivity due to the flow are clearly seen in the Brownian Dynamics system in agreement with the theoretical results of Morris & Brady (1996). At large shear rates, large Pe, both systems exhibit diffusivities that grow linearly with the shear rate by the non-Brownian mechanism of shear-induced diffusion. In contrast to the behaviour at low Pe, this shear-induced diffusion mode is an increasing function of [phi]. Long-time rotational self-diffusivities are of interest in the Stokesian Dynamics system and show similar behaviour to their translational analogues. An off-diagonal long-time self-diffusivity, Dxy, is reported for both systems. Results for both the translational and rotational Dxy show a sign change from low Pe to high Pe due to different
Thermal lensing in ocular media
Vincelette, Rebecca Lee
2009-12-01
This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam
Directory of Open Access Journals (Sweden)
X. Yang
2009-07-01
Full Text Available A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF, is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF and the Diffuse Ensemble Transform Kalman Filter (DETKF, are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious
Diffusion in silicon isotope heterostructures
Energy Technology Data Exchange (ETDEWEB)
Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)
2004-01-01
The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and ^{28}Si enriched layers, enables the observation of ^{30}Si self-diffusion from the natural layers into the ^{28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh
2007-01-01
A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... The prototype relies on a simple virtual machine with a dedicated instruction set, allowing mobile programs to migrate between the modules that constitute a robot. Through a number of simulated experiments, we should how a single rule-based controller program implemented using distributed control diffusion can...
Giant Transversal Particle Diffusion in a Longitudinal Magnetic Ratchet
Tierno, Pietro; Reimann, Peter; Johansen, Tom H.; Sagués, Francesc
2010-12-01
We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D0≈3×10-4μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.
Modelling and simulation of diffusive processes methods and applications
Basu, SK
2014-01-01
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport
Diffusion-trapped Airy beams in photorefractive media.
Jia, Shu; Lee, Joyce; Fleischer, Jason W; Siviloglou, Georgios A; Christodoulides, Demetrios N
2010-06-25
We report the first experimental observation of self-trapped Airy beams in a nonlinear medium. As opposed to screening or photovoltaic spatial solitons, this new class of self-localized beams owes its existence to carrier diffusion effects. The asymmetric action of two-wave mixing supports the asymmetric intensity profile of the Airy states, with a balance that is independent of the beam intensity (unlike solitons). Further, the self-trapped wave packets self-bend during propagation at an acceleration rate that is independent of the thermal energy associated with the diffusive nonlinearity.
Factors Affecting the Thickness of Thermal Aureoles
Directory of Open Access Journals (Sweden)
Catherine Annen
2017-10-01
Full Text Available Intrusions of magma induce thermal aureoles in the country rock. Analytical solutions predict that the thickness of an aureole is proportional to the thickness of the intrusion. However, in the field, thermal aureoles are often significantly thinner or wider than predicted by simple thermal models. Numerical models show that thermal aureoles are wider if the heat transfer in the magma is faster than in the country rock due to contrasts in thermal diffusivities or the effect of magma convection. Large thermal aureoles can also be caused by repeated injection close to the contact. Aureoles are thin when heat transfer in the country rock is faster than heat transfer within the magma or in case of incrementally, slowly emplaced magma. Absorption of latent heat due to metamorphic reactions or water volatilization also affects thermal aureoles but to a lesser extent. The way these parameters affect the thickness of a thermal aureole depends on the isotherm under consideration, hence on which metamorphic phase is used to draw the limit of the aureole. Thermal aureoles provide insight on the dynamics of intrusions emplacement. Although available examples are limited, asymmetric aureoles point to magma emplacement by over-accretion for mafic cases and by under-accretion for felsic cases, consistent with geochronological data.
S and Te inter-diffusion in CdTe/CdS hetero junction
Energy Technology Data Exchange (ETDEWEB)
Enriquez, J. Pantoja [Cuerpo Academico-Energia y Sustentabilidad, Universidad Politecnica de Chiapas, Eduardo J. Selvas S/N, Col. Magisterial, Tuxtla Gutierrez 29010, Chiapas (Mexico); Gomez Barojas, E. [CIDS-ICUAP, Apdo. Postal 1651, 72000 Puebla (Mexico); Silva Gonzalez, R.; Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)
2007-09-22
Effects of post formation thermal annealing of the CdTe-CdS device on the inter-diffusion of S and Te at the junction in a substrate configuration device have been studied by Auger electron spectroscopy. While the migration of S and Te atoms increases with annealing temperature, the extent of S diffusion is always higher than the diffusion of Te atoms. Inter-diffusion of S and Te causes the formation of CdTe{sub 1-x}S{sub x} ternary compound at the CdTe-CdS interface. (author)
Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes
Mehrer, Helmut
2007-01-01
Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.
Thermal properties of spinel based solid solutions
O'Hara, Kelley Rae
Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in
Directory of Open Access Journals (Sweden)
Yohannes Nigatie
2017-09-01
Full Text Available Nowadays, kidney failure is a problem of many peoples in the world. We know that the main function of kidney is maintaining the chemical quality of blood particularly removing urea through urine. But when they malfunction, the pathologic state known as uremia results in a condition in which the urea is retained in the body. Failure of the kidney results in building up of harmful wastes and excess fluids in the body. Kidney diseases (failures can be due to infections, high blood pressure (hypertension, diabetes, and/or extensive use of medication. The best form of treatment is the implantation of a healthy kidney from a donor. However, this is often not possible due to the limited availability of human organs. Chronic kidney failure requires the treatment using a tube dialyzer called dialysis. Blood is taken out of the body and passes through a special membrane that removes waste and extra fluids. The clean blood is then returned to the body. The process is controlled by a dialysis machine (tube dialyzer which is equipped with a blood pump and monitoring systems to ensure safety. So this article investigates the real application of mathematics (diffusion in medical science, and it also contains the mathematical formulation and interpretation of tube dialyzer in relation to diffusion.
The diffusion of microfinance.
Banerjee, Abhijit; Chandrasekhar, Arun G; Duflo, Esther; Jackson, Matthew O
2013-07-26
To study the impact of the choice of injection points in the diffusion of a new product in a society, we developed a model of word-of-mouth diffusion and then applied it to data on social networks and participation in a newly available microfinance loan program in 43 Indian villages. Our model allows us to distinguish information passing among neighbors from direct influence of neighbors' participation decisions, as well as information passing by participants versus nonparticipants. The model estimates suggest that participants are seven times as likely to pass information compared to informed nonparticipants, but information passed by nonparticipants still accounts for roughly one-third of eventual participation. An informed household is not more likely to participate if its informed friends participate. We then propose two new measures of how effective a given household would be as an injection point. We show that the centrality of the injection points according to these measures constitutes a strong and significant predictor of eventual village-level participation.
Thermal Transport Model for Heat Sink Design
Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.
2009-01-01
A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.
1985-07-16
A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.
Apparent diffusion profile estimation from high angular resolution diffusion images
Descoteaux, Maxime; Angelino, Elaine; Fitzgibbons, Shaun; Deriche, Rachid
2006-03-01
High angular resolution diffusion imaging (HARDI) has recently been of great interest to characterize non-Gaussian diffusion process. In the white matter of the brain, this occurs when fiber bundles cross, kiss or diverge within the same voxel. One of the important goal is to better describe the apparent diffusion process in these multiple fiber regions, thus overcoming the limitations of classical diffusion tensor imaging (DTI). In this paper, we design the appropriate mathematical tools to describe noisy HARDI data. Using a meaningful modified spherical harmonics basis to capture the physical constraints of the problem, we propose a new regularization algorithm to estimate a smoother and closer diffusivity profile to the true diffusivities without noise. We exploit properties of the spherical harmonics to define a smoothing term based on the Laplace-Beltrami for functions defined on the unit sphere. An additional contribution of the paper is the derivation of the general transformation taking the spherical harmonics coefficients to the high order tensor independent elements. This allows the careful study of the state of the art high order anisotropy measures computed from either spherical harmonics or tensor coefficients. We analyze their ability to characterize the underlying diffusion process. We are able to recover voxels with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion. We test and validate the approach on diffusion profiles from synthetic data and from a biological rat phantom.
A thermal study of an encapsulated electrical transformer
Energy Technology Data Exchange (ETDEWEB)
Garcia, A. [Unidad Geotermia, Temixco (Mexico). Instituto de Investigaciones Electricas; Espinosa-Paredes, G. [Universidad Autonoma Metropolitana, Vicentina (Mexico). Dpto. de Ingenieria de Procesos e Hidraulica; Hernandez, I. [Centro de Sistemas de Manufactura, Nuevo Leon (Mexico). Instituto Tecnologico y de Estudios Superiores de Monterrey
2002-11-01
A thermal study of a 45 KVA-prototype encapsulated transformer is described. Casting resin systems were used as insulating systems for encapsulated electric transformers. Normal transformer operation is at full load and, thus the conductor and insulating system becomes hot owing to current circulation through the winding. To determine the various temperature distributions throughout the transformer, the thermal properties of the insulating system and boundary conditions must be known, so that hot spots are located via numerical modelling and maximum permissible temperatures are not attained. Results presented herein include thermal conductivity, thermal diffusivity, and specific heat capacity. Thermal conductivity was obtained experimentally by means of the line-source technique at various temperatures, between room temperature and 155{sup o}C which is the thermal limit of class F insulators. The thermal diffusivity was obtained by parameter estimation by fitting an approximate analytical model to the temperature-time data of the thermal conductivity experiment. Specific heat capacity was obtained from the definition of thermal diffusivity and the insulating-system density. In order to improve the electrical performance of the transformer criteria, a numerical simulation of the different dielectric structures was made using computer program. The boundary conditions for the thermal simulation stage were also determined experimentally from temperature test runs. Finally, in order to obtain data for thermal design, a numerical simulation of the high tension winding was carried out. The thermal simulation stage was performed at different current densities in the conductor with and without electrostatic shields to determine the temperature field and maximum attainable temperatures. Maximum transformer temperature were found to be 15-20{sup o}C below its thermal limit and a correlation of maximum temperature as function of circulating current was developed for design
Solute diffusivity in undisturbed soil
DEFF Research Database (Denmark)
Lægdsmand, Mette; Møldrup, Per; Schjønning, Per
2012-01-01
Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...... tracers) for a better determination of the diffusivity. The diffusivity was higher in the below-till soil than the plowed soil at the same soil water matric potential due to higher water content but also due to higher continuity and lower tortuosity of the soil pores. We measured identical solute...... diffusivities independent of the tracer set used. We analyzed the whole data set using Archie's law and found a linear relation between Archie's exponent and the logarithm of the soil water matric suction in centimeters of water (pF). An analysis of seven data sets from the literature showed...
Apoplastic Diffusion Barriers in Arabidopsis
Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka
2013-01-01
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172
Post-processing interstitialcy diffusion from molecular dynamics simulations
Bhardwaj, U.; Bukkuru, S.; Warrier, M.
2016-01-01
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.
Post-processing interstitialcy diffusion from molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Bhardwaj, U., E-mail: haptork@gmail.com [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Bukkuru, S. [Nuclear Physics Dept., Andhra University, Visakhapatnam, 530003 (India); Warrier, M. [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India)
2016-01-15
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.
Driven diffusion in nanoscaled materials
Albers, Tony; Bauer, Michael; Borczyskowski, Christian Von; Gerlach, Frank; Heidernätsch, Mario; Kärger, Jörg; Kondrashova, Daria; Radons, Günter; Schubert, Sebastian; Shakhov, Alexander; Täuber, Daniela; Valiullin, Rustem; Zeigermann, Philipp
2016-01-01
Mass transfer processes in which specific interactions with environments lead to complex diffusion patterns, such as the occurrence of transient sub-diffusive behaviors or of heterogeneous diffusion, were studied by means of two different experimental techniques, namely single-particle tracking operating with single molecules and nuclear magnetic resonance operating with large molecular ensembles. As an important point, the combined application of these techniques allowed for a deeper insight...
Fractal model of anomalous diffusion
Gmachowski, Lech
2015-01-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...
Osmosis and Diffusion Conceptual Assessment
Fisher, Kathleen M.; Williams, Kathy S; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified from the previously published Diffusion and Osmosis Diagnostic Test (DODT) and some newly developed items. The ODCA, a validated instrument containing ...
Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.
Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo
2013-10-01
Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing
DEFF Research Database (Denmark)
Schulz, Alexander
2015-01-01
symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...
Hereditary diffuse gastric cancer
DEFF Research Database (Denmark)
van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima
2015-01-01
Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects......, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3......) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given...
DEFF Research Database (Denmark)
Schulz, Alexander
2015-01-01
is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Diffuse parenchymal lung disease
Directory of Open Access Journals (Sweden)
Sara Tomassetti
2017-04-01
Full Text Available Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs. For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.
Disintegration of beech wood char during thermal conversion
DEFF Research Database (Denmark)
Hindsgaul, Claus
In the present work the processes occurring in the structures of slowly pyrolysed beech wood char during thermal gasification have been investigated. Emphasis was put on physical changes and gas transport properties during conversion. The highly anisotropic structure of wood was preserved in its...... differences of 3—4 orders of magnitude between the longitudinal and other directions in freshly pyrolysed beech wood char. Diffusion in the longitudinal direction of the beech wood char before gasification corresponded to direct, unobstructed diffusion through its vessel cells. Radial and tangential diffusion...... were limited by Knudsen diffusion through the pits in the wood cell walls for degrees of conversion by gasification up to at least 0.5. A computer model of slab gasification based on the diffusion measurements successfully predicted the mass loss rate during diffusion-limited gasification of beech wood...
Sodium diffusion in boroaluminosilicate glasses
DEFF Research Database (Denmark)
Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.
2011-01-01
Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...... of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O...
Driven Anisotropic Diffusion at Boundaries: Noise Rectification and Particle Sorting
Bo, Stefano; Eichhorn, Ralf
2017-08-01
We study the diffusive dynamics of a Brownian particle in the proximity of a flat surface under nonequilibrium conditions, which are created by an anisotropic thermal environment with different temperatures being active along distinct spatial directions. By presenting the exact time-dependent solution of the Fokker-Planck equation for this problem, we demonstrate that the interplay between anisotropic diffusion and hard-core interaction with the plain wall rectifies the thermal fluctuations and induces directed particle transport parallel to the surface, without any deterministic forces being applied in that direction. Based on current micromanipulation technologies, we suggest a concrete experimental setup to observe this novel noise-induced transport mechanism. We furthermore show that it is sensitive to particle characteristics, such that this setup can be used for sorting particles of different sizes.
Diffusion in higher dimensional SYK model with complex fermions
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Thermal properties of selected cheeses samples
Directory of Open Access Journals (Sweden)
Monika BOŽIKOVÁ
2016-02-01
Full Text Available The thermophysical parameters of selected cheeses (processed cheese and half hard cheese are presented in the article. Cheese is a generic term for a diverse group of milk-based food products. Cheese is produced throughout the world in wide-ranging flavors, textures, and forms. Cheese goes during processing through the thermal and mechanical manipulation, so thermal properties are one of the most important. Knowledge about thermal parameters of cheeses could be used in the process of quality evaluation. Based on the presented facts thermal properties of selected cheeses which are produced by Slovak producers were measured. Theoretical part of article contains description of cheese and description of plane source method which was used for thermal parameters detection. Thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat were measured during the temperature stabilisation. The results are presented as relations of thermophysical parameters to the temperature in temperature range from 13.5°C to 24°C. Every point of graphic relation was obtained as arithmetic average from measured values for the same temperature. Obtained results were statistically processed. Presented graphical relations were chosen according to the results of statistical evaluation and also according to the coefficients of determination for every relation. The results of thermal parameters are in good agreement with values measured by other authors for similar types of cheeses.
A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law
Donev, Aleksandar; Fai, Thomas G.; Vanden-Eijnden, Eric
2014-04-01
We study diffusive mixing in the presence of thermal fluctuations under the assumption of large Schmidt number. In this regime we obtain a limiting equation that contains a diffusive stochastic drift term with diffusion coefficient obeying a Stokes-Einstein relation, in addition to the expected advection by a random velocity. The overdamped limit correctly reproduces both the enhanced diffusion in the ensemble-averaged mean and the long-range correlated giant fluctuations in individual realizations of the mixing process, and is amenable to efficient numerical solution. Through a combination of Eulerian and Lagrangian numerical methods we demonstrate that diffusion in liquids is not most fundamentally described by Fick’s irreversible law; rather, diffusion is better modeled as reversible random advection by thermal velocity fluctuations. We find that the diffusion coefficient is effectively renormalized to a value that depends on the scale of observation. Our work reveals somewhat unexpected connections between flows at small scales, dominated by thermal fluctuations, and flows at large scales, dominated by turbulent fluctuations.
Sinai Diffusion at Quasi-1D Topological Phase Transitions
Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex
2016-11-01
We consider critical quantum transport in disordered topological quantum wires at the transition between phases with different topological indices. Focusing on the example of thermal transport in class D ("Majorana") quantum wires, we identify a transport universality class distinguished for anomalous retardation in the propagation of excitations—a quantum generalization of Sinai diffusion. We discuss the expected manifestations of this transport mechanism for heat propagation in topological superconductors near criticality and provide a microscopic theory explaining the phenomenon.
Study on the effect of thermal property of metals in ultrasonic-assisted laser machining
Energy Technology Data Exchange (ETDEWEB)
Lee, Hu Seung; Kim, Gun Woo; Park, Jong Eun [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cho, Sung Hak; Yang, Min Yang; Park, Jong Kweon [Korea Institute of Machinery and Materials, Deajeon (Korea, Republic of)
2015-08-15
The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity.
Denoising of diffusion MRI using random matrix theory
Veraart, Jelle; Novikov, Dmitry S.; Christiaens, Daan; Ades-aron, Benjamin; Sijbers, Jan; Fieremans, Els
2016-01-01
We introduce and evaluate a post-processing technique for fast denoising diffusion-weighted MR images. By exploiting the intrinsic redundancy in diffusion MRI using universal properties of the eigenspectrum of random covariance matrices, we remove noise-only principal components, thereby enabling signal-to-noise ratio enhancements, yielding parameter maps of improved quality for visual, quantitative, and statistical interpretation. By studying statistics of residuals, we demonstrate that the technique suppresses local signal fluctuations that solely originate from thermal noise rather than from other sources such as anatomical detail. Furthermore, we achieve improved precision in the estimation of diffusion parameters and fiber orientations in the human brain without compromising the accuracy and/or spatial resolution. PMID:27523449
Self-diffusion in silicon - Change of a paradigm
Energy Technology Data Exchange (ETDEWEB)
Seeger, Alfred [Universitaet Stuttgart, Institut fuer Theoretische und Angewandte Physik, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Max-Planck-Institut fuer Metallforschung, Heisenbergstr. 3, 70569 Stuttgart (Germany)
2011-12-15
Diffusion processes play a key role in the fabrication of semiconductor devices. For a long time the underlying mechanisms were thought to be analogous to those in metals, based on vacancies as thc dominant lattice defects in thermal equilibrium. From the mid-sixties onwards it became clear that this picture is invalid for Si, where strongly relaxed self-interstitials are dominant and responsible for self- and Group-III- diffusion. Inter alia, this change of a paradigm led to novel concepts and to the quantitative explanation of the diffusion of so-called hybrids such as Au, Pt, and Zn in Si by the so-called kick-out mechanism. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Diffuse scattering study of aspirin forms (I) and (II).
Chan, E J; Welberry, T R; Heerdegen, A P; Goossens, D J
2010-12-01
Full three-dimensional diffuse scattering data have been recorded for both polymorphic forms [(I) and (II)] of aspirin and these data have been analysed using Monte Carlo computer modelling. The observed scattering in form (I) is well reproduced by a simple harmonic model of thermally induced displacements. The data for form (II) show, in addition to thermal diffuse scattering (TDS) similar to that in form (I), diffuse streaks originating from stacking fault-like defects as well as other effects that can be attributed to strain induced by these defects. The present study has provided strong evidence that the aspirin form (II) structure is a true polymorph with a structure quite distinct from that of form (I). The diffuse scattering evidence presented shows that crystals of form (II) are essentially composed of large single domains of the form (II) lattice with a relatively small volume fraction of intrinsic planar defects or faults comprising misoriented bilayers of molecular dimers. There is evidence of some local aggregation of these defect bilayers to form small included regions of the form (I) structure. Evidence is also presented that shows that the strain effects arise from the mismatch of molecular packing between the defect region and the surrounding form (II) lattice. This occurs at the edges of the planar defects in the b direction only.
Design, implementation, and extension of thermal invisibility cloaks
Zhang, Youming; Xu, Hongyi; Zhang, Baile
2015-05-01
A thermal invisibility cloak, as inspired by optical invisibility cloaks, is a device which can steer the conductive heat flux around an isolated object without changing the ambient temperature distribution so that the object can be "invisible" to external thermal environment. While designs of thermal invisibility cloaks inherit previous theories from optical cloaks, the uniqueness of heat diffusion leads to more achievable implementations. Thermal invisibility cloaks, as well as the variations including thermal concentrator, rotator, and illusion devices, have potentials to be applied in thermal management, sensing and imaging applications. Here, we review the current knowledge of thermal invisibility cloaks in terms of their design and implementation in cloaking studies, and their extension as other functional devices.
Models of diffuse solar radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)
2008-04-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)
Anomalous diffusion in one dimension
Balakrishnan, V.
1985-09-01
In view of the interest in the occurrence of anomalous diffusion ( ∼ t 2H, 0 ∼ t2 H; the diffusive spread of the initial condition is given by xε( t) ∼ tH; and the first passage time from the origin to the point x has a stable Lévy distribution with an exponent equal to H.
Persistent diffusion on a line
Balakrishnan, V.; Chaturvedi, S.
1988-02-01
We consider solutions to the telegraph equation describing persistent diffusion on a line under various initial conditions. The first passage time distribution is evaluated in closed form. Biased persistent diffusion is also considered. A direct derivation of the telegraph equation from the stochastic equation for the displacement is presented in an appendix.
Osmosis and Diffusion Conceptual Assessment
Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…
Rodriguez-Grande, Beatriz; Konsman, Jan-Pieter
2018-02-01
Gases have been long known to have essential physiological functions in the CNS such as respiration or regulation of vascular tone. Since gases have been classically considered to freely diffuse, research in gas biology has so far focused on mechanisms of gas synthesis and gas reactivity, rather than gas diffusion and transport. However, the discovery of gas pores during the last two decades and the characterization of diverse diffusion patterns through different membranes has raised the possibility that modulation of gas diffusion is also a physiologically relevant parameter. Here we review the means of gas movement into and within the brain through "free" diffusion and gas pores, notably aquaporins, discussing the role that gas diffusion may play in the modulation of gas function. We highlight how diffusion is relevant to neuronal signaling, volume transmission, and cerebrovascular control in the case of NO, one of the most extensively studied gases. We point out how facilitated transport can be especially relevant for gases with low permeability in lipid membranes like NH3 and discuss the possible implications of NH3 -permeable channels in physiology and hyperammonemic encephalopathy. We identify novel research questions about how modulation of gas diffusion could intervene in CNS pathologies. This emerging area of research can provide novel and interesting insights in the field of gas biology. © 2017 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Bruun, Georg
2011-01-01
We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures...
The diffusion of constitutional rights
Goderis, B.V.G.; Versteeg, M.
Constitutions are commonly regarded as uniquely national products, shaped by domestic ideals and politics. This paper develops and empirically investigates a novel hypothesis, which is that constitutions are also shaped by transnational influence, or “diffusion.” Constitutional rights can diffuse
Diffusion measurements by Raman spectroscopy
DEFF Research Database (Denmark)
Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.
Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...
Mobile telecommunications’ diffusion in Russia
Rachinskiy, Andrey
2010-01-01
In the beginning of the 21st century mobile telecommunications spread out rapidly in Russia and became basic commodity Mobile technology arises first in large and rich regions with developed infrastructure Speed of technological diffusion grows over time; regions where mobile technology came lately catch up leaders Infrastructure development positively affects speed of technological diffusion
Reduced thermal conductivity of isotopically modulated silicon multilayer structures
DEFF Research Database (Denmark)
Bracht, H.; Wehmeier, N.; Eon, S.
2012-01-01
-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can......We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time...
Rapid thermal processing and beyond applications in semiconductor processing
Lerch, W
2008-01-01
Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a
Thermal conductivity of halide solid solutions: measurement and prediction.
Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice
2014-09-14
The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed.
Lee, G D; Lu, Z Y; Ho, K M
1999-01-01
The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer.
Heat transfer, diffusion, and evaporation
Nusselt, Wilhelm
1954-01-01
Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.
Lithium diffusion in silicate melts
Cunningham, G. J.; Henderson, P.; Lowry, R. K.; Nolan, J.; Reed, S. J. B.; Long, J. V. P.
1983-10-01
The diffusion properties of Li in an andesitic and pitchstone melt have been determined over the temperature range 1300-1400°C. The diffusion data have been fitted to an Arrhenius relationship between log D0 and 1/ T, and give relatively small activation energies of diffusion: 21.4±5.8 kcal mol -1 in the andesite and 20.1±2.8 kcal mol -1 in the pitchstone. Li +, unlike several other cations, shows similar diffusivities in these melt compositions to that in a basaltic melt. Despite the similar ionic radius of Li + to that of Co 2+, the diffusion properties of the two ions are very different from each other.
Diffusion in membranes: Toward a two-dimensional diffusion map
Directory of Open Access Journals (Sweden)
Toppozini Laura
2015-01-01
Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.
Electrical and thermal spin accumulation in germanium
Jain, A.; Vergnaud, C.; Peiro, J.; Le Breton, J. C.; Prestat, E.; Louahadj, L.; Portemont, C.; Ducruet, C.; Baltz, V.; Marty, A.; Barski, A.; Bayle-Guillemaud, P.; Vila, L.; Attané, J.-P.; Augendre, E.; Jaffrès, H.; George, J.-M.; Jamet, M.
2012-07-01
In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then, by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any charge current. We show that temperature gradients yield larger spin accumulations than electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation remains surprisingly unchanged under the application of a gate voltage.
Multidimensional diffusion processes
Stroock, Daniel W
1997-01-01
From the reviews: "… Both the Markov-process approach and the Itô approach … have been immensely successful in diffusion theory. The Stroock-Varadhan book, developed from the historic 1969 papers by its authors, presents the martingale-problem approach as a more powerful - and, in certain regards, more intrinsic-means of studying the foundations of the subject. […] … the authors make the uncompromising decision not "to proselytise by intimidating the reader with myriad examples demonstrating the full scope of the techniques", but rather to persuade the reader "with a careful treatment of just one problem to which they apply". […] Most of the main tools of stochastic-processes theory are used, ..but it is the formidable combination of probability theory with analysis … which is the core of the work. […] I have emphasized the great importance of the Stroock-Varadhan book. It contains a lot more than I have indicated; in particular, its many exercises conain much interesting material. For immediat...
OH{sup +} IN DIFFUSE MOLECULAR CLOUDS
Energy Technology Data Exchange (ETDEWEB)
Porras, A. J.; Federman, S. R. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Welty, D. E. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ritchey, A. M., E-mail: steven.federman@utoledo.edu, E-mail: aporras@live.unc.edu, E-mail: dwelty@oddjob.uchicago.edu, E-mail: aritchey@astro.washington.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)
2014-01-20
Near ultraviolet observations of OH{sup +} and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH{sup +} arises from a main component seen in CH{sup +} (that with the highest CH{sup +}/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH{sup +} detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH{sup +} as well, confirming OH{sup +} and H{sub 2}O{sup +} observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH{sup +} leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.
Thermal Conductivity and Raman Spectra of Carbon Fibers
Liu, Xuebo; Dong, Hua; Li, Yan; Mei, Ning
2017-10-01
Due to its unique physical properties, carbon fiber (CF) has been widely studied for extensive application in aerospace and machinery. In this study, the thermal diffusivity of three kinds of CF sample is characterized by the transient electrothermal technique at room temperature. By subtracting the effect of radiative losses, the effective thermal diffusivity of CFs can be calculated as 6.46× 10^{-6} m2\\cdot s^{-1}, 6.58× 10^{-6} m2\\cdot s^{-1} and 2.01× 10^{-4} m2\\cdot s^{-1}, respectively. For the first time, the emissivity coefficient of carbon fiber is calibrated as 0.78. Combined with Raman spectra and phonon scattering, we found that the better crystalline structure and low defect in CF have an obvious impact on its thermal diffusivity.
2016-01-23
microstructures using Johnson noise electro- thermal technique, Applied Physics A, (2 2015): 0. doi: 10.1007/s00339-015-9056-9 Number of Papers published...conductivity of sub-5?nm Ir film: Defect-electron scattering quantified by residual thermal resistivity , Journal of Applied Physics, (01 2015): 0. doi...inverse of phonon thermal diffusivity as a new parameter: thermal reffusivity (Θ). This parameter was used to identify the thermal resistivity in the
Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?
Filoche, Marcel; Sapoval, Bernard
2000-12-01
A process based on particle evaporation, diffusion, and redeposition is applied iteratively to a two-dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphology, converging to branched structures. Independently of initial geometry, the structures found after a long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-redeposition operator. The ensemble of these fractal shapes can be considered to be the dynamical equilibrium geometry of a diffusion-controlled self-transformation process.
Effect of particle size on the thermo-optic properties of gold nanofluids – A thermal lens study
Energy Technology Data Exchange (ETDEWEB)
Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma [Photonics Lab, Department of Physics, Catholicate College, Pathanamthitta (India); George, Sajan D., E-mail: sajan.george@manipal.edu [Centre for Atomic and Molecular Physics, Manipal University, Manipal, Karnataka (India)
2014-01-28
Spherical gold nanoparticles having particle size in the range 30 to 50 nm are prepared using citrate reduction of gold chloride trihydrate in water. The influence of particle size on the thermal diffusivity value of gold nanofluid is measured using dual beam thermal lens technique. The present study shows that the particle size influences the effective thermal diffusivity value of the nanofluid substantially and the value decreases with decrease in particle size for the investigated samples.
The Impacts of Platinum Diffusion to the Reverse Recovery Lifetime of a High Power Diode Devices
Directory of Open Access Journals (Sweden)
Cheh C.M.
2016-01-01
Full Text Available The reverse recovery lifetime of a diode is one the key parameter in power electronics market. To make a diode with fast switching speed, diodes are often doped with impurities such as gold and platinum to improve its lifetime. In this works, we present the reverse recovery lifetime improvement of a power rectifier diode through platinum diffusion in the intrinsic region in between P-N junction using Design of Experiment (DOE approach. A commercial available power rectifier is used in this study. We factored in the temperature and thermal diffusion time during the platinum diffusion process in our DOE. From results, DOE 2 (with shorter thermal duration and high temperature for diffusion is selected based on meeting requirement for forward voltage and reverse recovery specifications i.e. forward voltage at 1.8V and reverse recovery time at 27ns.
Seasonal thermal energy storage
Energy Technology Data Exchange (ETDEWEB)
Allen, R.D.; Kannberg, L.D.; Raymond, J.R.
1984-05-01
This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.
Fundamentals of Thermal Expansion and Thermal Contraction
Liu, Zi-Kui; Shang, Shun-Li; Wang, Yi
2017-01-01
Thermal expansion is an important property of substances. Its theoretical prediction has been challenging, particularly in cases the volume decreases with temperature, i.e., thermal contraction or negative thermal expansion at high temperatures. In this paper, a new theory recently developed by the authors has been reviewed and further examined in the framework of fundamental thermodynamics and statistical mechanics. Its applications to cerium with colossal thermal expansion and Fe3Pt with th...
Thermal characterization and properties of a copper-diamond composite
Energy Technology Data Exchange (ETDEWEB)
Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavez, Thomas P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DiAntonio, Christopher Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coker, Eric Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.
Efficient thermal spin injection in metallic nanostructures
Nomura, Tatsuya; Ariki, Taisei; Hu, Shaojie; Kimura, Takashi
2017-11-01
Thermal spin injection is a unique and fascinating method for generating spin current. If magnetization can be controlled by thermal spin injection, various advantages will be provided in spintronic devices, through its wireless controllability. However, the generation efficiency of thermal spin injection is believed to be lower than that of electrical spin injection. Here, we explore a suitable ferromagnetic metal for an efficient thermal spin injection, via systematic experiments based on diffusive spin transport under temperature gradients. Since a ferromagnetic metal with strong spin splitting is expected to have a large spin-dependent Seebeck coefficient, a lateral spin valve based on CoFe electrodes has been fabricated. However, the superior thermal spin injection property has not been observed, because the CoFe electrode retained its crystalline signature—where s-like electrons dominate the transport property in the ferromagnet. To suppress the crystalline signature, we adopt a CoFeAl electrode, in which the Al impurity significantly reduces the contribution from s-like electrons. Highly efficient thermal spin injection has been demonstrated using this CoFeAl electrode. Further optimization for thermal spin injection has been demonstrated by adjusting the Co and Fe composition.
Interstitial Condensation Risk at Thermal Rehabilitated Buildings
Baran, I.; Bliuc, I.; Iacob, A.; Dumitrescu, L.; Pescaru, R. A.; Helepciuc, C.
2016-11-01
The increasing thermal insulation degree of existing residential buildings, aiming to reduce the energy requirements for ensuring the indoor comfort, has as expected effect the elimination of condensation risk. However, in some cases this phenomenon occurs, both on the inner surface of the closing element and also in its structure. The surface condensation causes can be identified and can be easily removed. Instead, the causes and even the presence of interstitial condensation are more difficult to be observed. But the moistening of the insulation materials and the reduction of thermal insulation capacity or even its total degradation, contravene into a large extent or totally to the main purpose of the additional thermal protection. To avoid such situations, it is necessary to respect some principles concerning the structure, resulted from the knowledge of the water vapour diffusion behaviour of various materials. It is known that condensation vulnerability is higher for the additional thermal protection solutions by disposing the insulating material on the inside surface of the closing element. But practice has shown that the condensation phenomenon is not totally excluded neither in the case of outside thermal insulation - which is the current solution applied to the rehabilitation works - if the principles mentioned above are not known and respected. In this paper two models are compared on which the risk of interstitial condensation can be checked. The analysis made on two structures of exterior walls with thermal insulation demonstrates the need for additional verifications before proposing a solution for thermal rehabilitation of the envelope elements.
Plasmonic thermal transport in graphene nanodisk waveguides
Ramirez, Francisco V.; McGaughey, Alan J. H.
2017-10-01
The thermal radiation properties of guided surface plasmons in one-dimensional co-planar graphene nanodisk arrays are predicted using a semi-analytical electrostatic model. The plasmonic band structure contains nonlocalized dispersion bands that are well-described by the electrostatic model for disk diameters smaller than 200 nm. A nondimensional model is proposed that enables systematic analysis of the waveguiding properties based on scaling laws. The thermal transport is dominated by the lowest-order radial modes and can be controlled by tuning the disk size, the substrate optical properties, and graphene's doping concentration and electron mobility. The maximum predicted thermal conductivity and thermal diffusivity are 4.5 Wm -1K-1 and 1.3 ×10-3m2 /s, orders of magnitude larger than predictions of thermal transport by guided surface plasmon- or phonon-polaritons in other materials. The results suggest that graphene surface plasmons, which can be thermally-activated at room temperature, are a suitable platform for tunable and fast thermal transport, with potential application as photon-based thermotronic interconnects.
Diffusion tensor optical coherence tomography
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Enhanced photocoagulation with catheter-based diffusing optical device
Kang, Hyun Wook; Kim, Jeehyun; Oh, Jungwhan
2012-11-01
A novel balloon catheter-based diffusing optical device was designed and evaluated to assist in treating excessive menstrual bleeding. A synthetic fused-silica fiber was micro-machined precisely to create scattering segments on a 25 mm long fiber tip for uniform light distribution. A visible wavelength (λ=532 nm) was used to specifically target the endometrium due to the high vascularity of the uterine wall. Optical simulation presented 30% wider distribution of photons along with approximately 40% higher irradiance induced by addition of a glass cap to the diffuser tip. Incorporation of the optical diffuser with a polyurethane balloon catheter considerably enhanced coagulation depth and area (i.e., 3.5 mm and 18.9 cm2 at 1 min irradiation) in tissue in vitro. The prototype device demonstrated the coagulation necrosis of 2.8±1.2 mm (n=18) and no thermal damage to myometrium in in vivo caprine models. A prototype 5 cm long balloon catheter-assisted optical diffuser was also evaluated with a cadaveric human uterus to confirm the coagulative response of the uterine tissue as well as to identify the further design improvement and clinical applicability. The proposed catheter-based diffusing optical device can be a feasible therapeutic tool to photocoagulate endometrial cell layers in an efficient and safe manner.
Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments
Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.
2006-01-01
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Surface Diffusion of Cr Adatoms on Au(111) by Quantum Tunneling
Ohresser, P.; Bulou, H.; Dhesi, S. S.; Boeglin, C.; Lazarovits, B.; Gaudry, E.; Chado, I.; Faerber, J.; Scheurer, F.
2005-11-01
The low-temperature surface diffusion of isolated Cr adatoms on Au(111) has been determined using nonperturbing x rays. Changes in the x-ray magnetic circular dichroism spectral line shape together with Monte Carlo calculations demonstrate that adatom nucleation proceeds via quantum tunneling diffusion rather than over-barrier hopping for temperatures <40K. The jump rates are shown to be as much as 35 orders of magnitude higher than that expected for thermal over-barrier hopping at 10 K.
Voronkov, Vladimir V.; Falster, Robert; Pichler, Peter
2014-01-01
Vacancy depth profiles in silicon wafersinstalled by Rapid Thermal Annealing and monitored by Pt diffusionshow, upon subsequent annealing at 975 or 950 °C, a peculiar evolution: the concentration profile goes down without any trace of vacancy out-diffusion. The estimated apparent diffusivity is less than 1E7 cm2/s at 975 °C. The monitored vacancy species is tentatively identified as a "slow vacancy" that was recently concluded to exist along with other (highly mobile) vacancy species.
Genetics Home Reference: hereditary diffuse gastric cancer
... Health Conditions Hereditary diffuse gastric cancer Hereditary diffuse gastric cancer Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Hereditary diffuse gastric cancer (HDGC) is an inherited disorder that greatly increases ...
Improved diffuser for augmenting a wind turbine
Foreman, K.M.; Gilbert, B.L.
A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.
Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids
Directory of Open Access Journals (Sweden)
Monir Noroozi
2014-01-01
Full Text Available Nanofluids containing Al2O3 nanoparticles (either 11 or 30 nm in size dispersed in distilled water at low concentrations (0.125–0.5 wt% were prepared using two different ultrasonic devices (a probe and a bath sonicator as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.
Cherstvy, Andrey G; Chechkin, Aleksei V; Metzler, Ralf
2014-03-14
We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.
Diffusion thermique et sous irradiation du chlore dans le dioxyde d'uranium
Pipon, Yves
2006-01-01
ACE; This work concerns the study of the thermal and radiation enhanced diffusion of 36Cl in uranium dioxide. We simulated the presence of 36Cl by implanting a quantity of 37Cl comparable to the impurity content of chlorine in UO2. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments:- the influence of the temperature was studied by carrying out thermal annealings in th...
Nguyen, Trung Hau; Park, Suhyun; Hlaing, Kyu Kyu; Kang, Hyun Wook
2016-05-01
To minimize thermal injury, the current study evaluated the real-time temperature monitoring with a proportional-integrative-derivative (PID) controller during 980-nm photothermal treatment with a radially-diffusing applicator. Both simulations and experiments demonstrated comparable thermal behaviors in temperature distribution and the degree of irreversible tissue denaturation. The PID-controlled application constantly maintained the pre-determined temperature of 353 K (steady-state error = temperature feedback with diffuser-assisted photothermal treatments can provide a feasible therapeutic modality to treat pancreatic tumors in an effective manner.
Microdefects and self-interstitial diffusion in crystalline silicon
Energy Technology Data Exchange (ETDEWEB)
Knowlton, W.B.
1998-05-01
In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Li{sup +}) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Li{sup +} drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Li{sup +} drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Li{sup +} drifting. TEM was performed on a samples from the partially Li{sup +} drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Li{sup +} drifted. This result indicates D-defects are responsible for the precipitation that halts the Li{sup +} drift process. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. Li{sup +} drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Li{sup +} drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.
System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics
Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita
2012-01-01
The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.
Thermal properties of metals alloy by electrical pyroelectric method (EPE)
Energy Technology Data Exchange (ETDEWEB)
Bennaji, N; Mellouki, I; Yacoubi, N, E-mail: bennajin@yahoo.f
2010-03-01
In present work, we propose a new technique based on uniform electrical heating of pyroelectric detector which investigated simultaneous thermal conductivity and diffusivity of samples. A new one-dimensional theoretical model was developed to determinate thermal proprieties of steel alloy. The obtained values of thermal conductivity are 13 Wm{sup -1}K{sup -1}, 18 Wm{sup -1}K{sup -1} and 24 Wm{sup -1}K{sup -1} and of thermal diffusivity are 7x10{sup -6} m{sup 2}s{sup -1}, 15x10{sup -6} m{sup 2}s{sup -1} and 8x10{sup -6} m{sup 2}s{sup -1} respectively for sheet steel, galvanized steel and stainless steel. These results are given with an uncertainty at the 1{sigma} level.
Diffusion of single oxidation pond
Directory of Open Access Journals (Sweden)
Song Ruo-Yuan
2016-01-01
Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.
Fractional-calculus diffusion equation.
Ajlouni, Abdul-Wali Ms; Al-Rabai'ah, Hussam A
2010-05-21
Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis.
Simulation of multivariate diffusion bridges
DEFF Research Database (Denmark)
Bladt, Mogens; Finch, Samuel; Sørensen, Michael
We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges....... The new method is much more generally applicable than previous methods. Another advantage is that the new method works well for diffusion bridges in long intervals because the computational complexity of the method is linear in the length of the interval. In a simulation study the new method performs well...
Fractional-calculus diffusion equation
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677
Nonlinear Diffusion and Transient Osmosis
National Research Council Canada - National Science Library
Akira Igarashi Lamberto Rondon Antonio Botrugno Marco Pizzi
2011-01-01
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation...
Ergodic Control of Switching Diffusions
National Research Council Canada - National Science Library
Ghosh, Mrinal K; Arapostathis, Aristotle; Marcus, Steven I
1996-01-01
We study the ergodic control problem of switching diffusions representing a typical hybrid system that arises in numerous applications such as fault tolerant control systems, flexible manufacturing systems, etc...
Kurtosis as a diffuseness measure
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2016-01-01
This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. In the early part of an impulse response, sound pressure samples do not constitute a Gaussian distribution due to the direct sound and strong reflections. Such deterministic reflections...... are extreme events, which prevent the pressure samples from being normally distributed, leading to a high kurtosis. As the reflections are sparser and stronger, the sound field becomes less diffuse and the kurtosis systematically increases, indicating that it can be used as a diffuseness measure. The kurtosis...... converges to zero, as the reflection overlap becomes heavier, which is an important condition for a perfect diffuse field. Two rooms are analyzed. A small rectangular room shows that a non-uniform surface absorption distribution tends to increase the kurtosis significantly. A full scale reverberation...
Geometric diffusion of quantum trajectories
Yang, Fan; Liu, Ren-Bao
2015-07-01
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.
Research Clusters and Technology Diffusion
Deng, Paul
2011-01-01
Much of the debate over income convergence hinges on whether technology diffusion is “global” or “local”. In this paper, I address this question in a developing country setting and focus on the role of major research clusters in promoting domestic technology diffusion. I identify four de facto research centers in China and investigate whether the effect of R&D spillovers from these research clusters is related to both geographic and technological distances. I find that firms’ productivity gai...
Ogawa, Naohisa
2011-01-01
The diffusion of particles in confining walls forming a tube is discussed. Such a transport phenomenon is observed in biological cells and porous media. We consider the case in which the tube is winding with curvature and torsion, and the thickness of the tube is sufficiently small compared with its curvature radius. We discuss how geomerical quantities appear in a quasi-one-dimensional diffusion equation.
Boron diffusion in silicon devices
Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian
2010-09-07
Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-12-31
This workshop on the applications of new computer tools to thermal engineering has been organized by the French society of thermal engineers. Seven papers have been presented, from which two papers dealing with thermal diffusivity measurements in materials and with the optimization of dryers have been selected for ETDE. (J.S.)
Thermal Effusivity and Thermal Conductivity of Biodiesel/Diesel and Alcohol/Water Mixtures
Guimarães, A. O.; Machado, F. A. L.; da Silva, E. C.; Mansanares, A. M.
2012-11-01
The photopyroelectric (PPE) technique was used for the determination of the thermal effusivity and thermal conductivity of biodiesel in diesel and other binary liquid mixtures, precisely, ethanol, and ethylene glycol in water. The front configuration (FPPE) has been explored in the frequency scan approach for obtaining thermal-effusivity values. Measurements show good reproducibility, with uncertainties around 1 % to 2 %, and the results for reference samples, such as ethanol and water, are in good agreement with literature values. The thermal-conductivity values of all samples were determined using the thermal-effusivity data presented here and the thermal-diffusivity data of exactly the same set of samples, reported elsewhere. Based on these results, the different strengths in the molecular interactions related to the several mixtures were evidenced, as proposed by Dadarlat et al. It was shown that, indeed, the thermal effusivity is the property presenting the smallest sensitivity for the molecular association phenomenon, while the thermal conductivity presents an intermediate sensitivity. Nevertheless, the analysis of both properties revealed the existence of weak cohesive interactions among the hydrocarbons of diesel and the esters of biodiesel.