WorldWideScience

Sample records for thermal adaptation revealed

  1. Molecular evolution and thermal adaptation

    Science.gov (United States)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  2. Understanding the adaptive approach to thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, M.A. [Oxford Univ. (United Kingdom). Centre for the Study of Christianity and Culture; Nicol, J.F. [Oxford Brookes Univ. (United Kingdom). School of Architecture

    1998-10-01

    This paper explains the adaptive approach to thermal comfort, and an adaptive model for thermal comfort is presented. The model is an example of a complex adaptive system (Casti 1996) whose equilibria are determined by the restrictions acting upon it. People`s adaptive actions are generally effective in securing comfort, which occurs at a wide variety of indoor temperatures. These comfort temperatures depend upon the circumstances in which people live, such as the climate and the heating or cooling regime. The temperatures may be estimated from the mean outdoor temperature and the availability of a heating or cooling plant. The evaluation of the parameters of the adaptive model requires cross-sectional surveys to establish current norms and sequential surveys (with and without intervention) to evaluate the rapidity of people`s adaptive actions. Standards for thermal comfort will need revision in the light of the adaptive approach. Implications of the adaptive model for the HVAC industry are noted.

  3. Soft Thermal Sensor with Mechanical Adaptability.

    Science.gov (United States)

    Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong

    2016-11-01

    A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Smart thermal patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-11-12

    A smart thermal patch for adaptive thermotherapy is provided. In an embodiment, the patch can be a stretchable, non-polymeric, conductive thin film flexible and non-invasive body integrated mobile thermal heater with wireless control capabilities that can be used to provide adaptive thermotherapy. The patch can be geometrically and spatially tunable on various pain locations. Adaptability allows the amount of heating to be tuned based on the temperature of the treated portion.

  5. A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV)

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [School of Construction Management and Engineering, The University of Reading (United Kingdom); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Li, Baizhan [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Liu, Jing [School of Construction Management and Engineering, The University of Reading (United Kingdom)

    2009-10-15

    This paper presents in detail a theoretical adaptive model of thermal comfort based on the ''Black Box'' theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient ({lambda}) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results. (author)

  6. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  7. Revealing Adaptive Management of Environmental Flows

    Science.gov (United States)

    Allan, Catherine; Watts, Robyn J.

    2018-03-01

    Managers of land, water, and biodiversity are working with increasingly complex social ecological systems with high uncertainty. Adaptive management (learning from doing) is an ideal approach for working with this complexity. The competing social and environmental demands for water have prompted interest in freshwater adaptive management, but its success and uptake appear to be slow. Some of the perceived "failure" of adaptive management may reflect the way success is conceived and measured; learning, rarely used as an indicator of success, is narrowly defined when it is. In this paper, we document the process of adaptive flow management in the Edward-Wakool system in the southern Murray-Darling Basin, Australia. Data are from interviews with environmental water managers, document review, and the authors' structured reflection on their experiences of adaptive management and environmental flows. Substantial learning occurred in relation to the management of environmental flows in the Edward-Wakool system, with evidence found in planning documents, water-use reports, technical reports, stakeholder committee minutes, and refereed papers, while other evidence was anecdotal. Based on this case, we suggest it may be difficult for external observers to perceive the success of large adaptive management projects because evidence of learning is dispersed across multiple documents, and learning is not necessarily considered a measure of success. We suggest that documentation and sharing of new insights, and of the processes of learning, should be resourced to facilitate social learning within the water management sector, and to help demonstrate the successes of adaptive management.

  8. Adaptive phase estimation with squeezed thermal light

    DEFF Research Database (Denmark)

    Berni, A. A.; Madsen, Lars Skovgaard; Lassen, Mikael Østergaard

    2013-01-01

    Summary form only given. The use of quantum states of light in optical interferometry improves the precision in the estimation of a phase shift, paving the way for applications in quantum metrology, computation and cryptography. Sub-shot noise phase sensing can for example be achieved by injecting...... investigate the performances of such protocol under the realistic assumption of thermalization of the probe state. Indeed, adaptive phase estimation schemes with squeezed states and Bayesian processing of homodyne data have been shown to be asymptotically optimal in the pure case, thus approaching the quantum...... Cramér-Rao bound. In our protocol we take advantage of the enhanced sensitivity of homodyne detection in proximity of the optimal phase which maximizes the homodyne Fisher information. A squeezed thermal probe state (signal) undergoes an unknown phase shift. The first estimation step involves...

  9. Camelid genomes reveal evolution and adaptation to desert environments.

    Science.gov (United States)

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  10. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    International Nuclear Information System (INIS)

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images

  11. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    2015-11-01

    Full Text Available Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

  12. Adaptive Responses to Thermal Stress in Mammals

    OpenAIRE

    Yasser Lenis Sanin; Angélica María Zuluaga Cabrera; Ariel Marcel Tarazona Morales

    2015-01-01

    The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated...

  13. Thermal adaptation in North American cicadas (Hemiptera: Cicadidae).

    Science.gov (United States)

    Sanborn, Allen F; Heath, James E; Heath, Maxine S; Phillips, Polly K

    2017-10-01

    We determine and summarize the thermal responses for 118 species and subspecies of North American cicadas representing more than 50 years of fieldwork and experimentation. We investigate the role that habitat and behavior have on the thermal adaptation of the North American cicadas. There are general patterns of increasing thermal responses in warmer floristic provinces and increasing maximum potential temperature within a habitat. Altitude shows an inverse relationship with thermal responses. Comparison of thermal responses of species emerging early or late in the season within the same habitat show increases in the thermal responses along with the increasing environmental temperatures late in the summer. However, behavior, specifically the use of endothermy as a thermoregulatory strategy, can influence the values determined in a particular habitat. Subspecies generally do not differ in their thermal tolerances and thermal tolerances are consistent within a species over distances of more than 7600km. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On the unification of thermal perception and adaptive actions

    Energy Technology Data Exchange (ETDEWEB)

    Haldi, Frederic; Robinson, Darren [Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2010-11-15

    Occupants exercise adaptive actions in response to discomforting environmental stimuli in an attempt to restore their comfort. These responses to adaptive actions are either ignored (conventional PMV models) or handled in an aggregated way (adaptive thermal comfort models). Furthermore the availability of adaptive actions and their effectiveness tends to be particular to a given building and climatic context. A good model should predict the probability with which available adaptive actions will be exercised and the feedback to occupants' perceived comfort from these specific actions. In this paper we introduce a new modelling framework which does just that. Informed by results from detailed monitoring campaigns we first present a model to predict the probability distribution of thermal sensation in non air-conditioned buildings and a new method for deducing comfort zones in such buildings. We then introduce a methodology for combining recent advances in the prediction of occupants' adaptive actions with the comfort feedback from these actions. We demonstrate how thermal sensation probability distribution may be deduced accounting for exercised adaptive actions and develop a comprehensive model for predicting comfort temperature which explicitly accounts for probable adaptive actions and their thermal feedback. We go on to describe how this modelling framework, which may be readily applied for thermal comfort prediction in specific building and climatic contexts, significantly deepens our understanding of adaptive thermal comfort mechanisms. Finally, we also describe ways of handling individuals' diversity within this new framework as well as how it may be applied to evaluate visual and olfactory comfort. (author)

  15. A candidate multimodal functional genetic network for thermal adaptation

    Directory of Open Access Journals (Sweden)

    Katharina C. Wollenberg Valero

    2014-09-01

    Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and

  16. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    Science.gov (United States)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  17. Dispersal, behavioral responses and thermal adaptation in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    were obtained with flies held for several generations in a laboratory common garden setting, therefore we suggest that exposure to and avoidance of high temperatures under natural conditions has been an important selective agent causing the suggested adaptive differentiation between the populations.......Behavioral traits can have great impact on an organism’s ability to cope with or avoidance of thermal stress, and are therefore of evolutionary importance for thermal adaptation. We compared the morphology, heat resistance, locomotor (walking and flying) activity and flight performance of three...

  18. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    NARCIS (Netherlands)

    Hoof, van J.; Hensen, J.L.M.

    2007-01-01

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national

  19. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.

    Science.gov (United States)

    Alcaide, María; Stogios, Peter J; Lafraya, Álvaro; Tchigvintsev, Anatoli; Flick, Robert; Bargiela, Rafael; Chernikova, Tatyana N; Reva, Oleg N; Hai, Tran; Leggewie, Christian C; Katzke, Nadine; La Cono, Violetta; Matesanz, Ruth; Jebbar, Mohamed; Jaeger, Karl-Erich; Yakimov, Michail M; Yakunin, Alexander F; Golyshin, Peter N; Golyshina, Olga V; Savchenko, Alexei; Ferrer, Manuel

    2015-02-01

    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Vascular thermal adaptation in tumors and normal tissue in rats

    International Nuclear Information System (INIS)

    Nah, Byung Sik; Choi, Ihl-Bohng; Oh, Won Young; Osborn, James L.; Song, Chang W.

    1996-01-01

    Purpose: The vascular thermal adaptation in the R3230 adenocarcinoma, skin and muscle in the legs of Fischer rats was studied. Methods and Materials: The legs of Fischer rats bearing the R3230 AC adenocarcinoma (subcutaneously) were heated once or twice with a water bath, and the blood flow in the tumor, skin and muscle of the legs was measured with the radioactive microsphere method. Results: The blood flow in control R3230 AC tumors was 23.9 ml/100 g/min. The tumor blood flow increased about 1.5 times in 30 min and then markedly decreased upon heating at 44.5 deg. C for 90 min. In the tumors preheated 16 h earlier at 42.5 deg. C for 60 min, reheating at 44.5 deg. C increased the tumor blood flow by 2.5-fold in 30 min. Contrary to the decline in blood flow following an initial increase during the 44.5 deg. C heating without preheating, the tumor blood flow remained elevated throughout the 90 min reheating at 44.5 deg. C. These results indicated that thermal adaptation or thermotolerance developed in the tumor vasculatures after the preheating at 42.5 deg. C for 60 min. The magnitude of vascular thermal adaptation in the tumors 24 h and 48 h after the preheating, as judged from the changes in blood flow, were smaller than that 16 h after the preheating. Heating at 42.5 deg. C for 60 min induced vascular thermal adaptation also in the skin and muscle, which peaked in 48 h and 24 h, respectively, after the heating. Conclusion: Heating at 42.5 deg. C for 1 h induced vascular thermal adaptation in the R3230 AC tumor, skin, and muscle of rats that peaked 16-48 h after the heating. When the tumor blood vessels were thermally adapted, the tumor blood flow increased upon heating at temperatures that would otherwise reduce the tumor blood flow. Such an increase in tumor blood flow may hinder raising the tumor temperature while it may increase tumor oxygenation.

  1. Adaptive thermal modeling of Li-ion batteries

    International Nuclear Information System (INIS)

    Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.

    2013-01-01

    Highlights: • A simple, accurate and adaptive thermal model is proposed for Li-ion batteries. • Equilibrium voltages, overpotentials and entropy changes are quantified from experimental results. • Entropy changes are highly dependent on the battery State-of-Charge. • Good agreement between simulated and measured heat development is obtained under all conditions. • Radiation contributes to about 50% of heat dissipation at elevated temperatures. -- Abstract: An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials’ details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent entropy is a significant heat source and is therefore essential to correctly predict the thermal behavior of Li-ion batteries under a wide variety of operating conditions. An adaptive model is introduced to obtain these entropy values. A temperature-dependent equation for heat transfer to the environment is also taken into account. Good agreement between the simulations and measurements is obtained in all cases. The parameters for both the heat generation and heat transfer processes can be applied to the thermal design of advanced battery packs. The proposed methodology is generic and independent on the cell chemistry and battery design. The parameters for the adaptive model can be determined by performing simple cell potential/current and temperature measurements for a limited number of charge/discharge cycles

  2. Adaptive implicit method for thermal compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)

    2008-10-15

    As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.

  3. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  4. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.

    Science.gov (United States)

    Lin, Tzu-Ping; Hwang, Ruey-Lung; Huang, Kuo-Tsang; Sun, Chen-Yi; Huang, Ying-Che

    2010-05-01

    While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.

  5. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoof, Joost van; Hensen, Jan L.M. [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2007-01-15

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures. (author)

  6. Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO)

    International Nuclear Information System (INIS)

    Beck, T.; Bieler, A.; Thomas, N.

    2012-01-01

    We present structural and thermal model (STM) tests of the BepiColombo laser altimeter (BELA) receiver baffle with emphasis on the correlation of the data with a thermal mathematical model. The test unit is a part of the thermal and optical protection of the BELA instrument being tested under infrared and solar irradiation at University of Bern. An iterative optimization method known as particle swarm optimization has been adapted to adjust the model parameters, mainly the linear conductivity, in such a way that model and test results match. The thermal model reproduces the thermal tests to an accuracy of 4.2 °C ± 3.2 °C in a temperature range of 200 °C after using only 600 iteration steps of the correlation algorithm. The use of this method brings major benefits to the accuracy of the results as well as to the computational time required for the correlation. - Highlights: ► We present model correlations of the BELA receiver baffle to thermal balance tests. ► Adaptive particle swarm optimization has been adapted for the correlation. ► The method improves the accuracy of the correlation and the computational time.

  7. Thermal and cardiorespiratory newborn adaptations during hot tub bath

    Directory of Open Access Journals (Sweden)

    Gentil Gomes da Fonseca Filho

    2017-03-01

    Full Text Available Objective: To evaluate thermal and cardiorespiratory adaptation during hot tub bath and shower in healthy newborns in the first hours of life. Study design: This is a randomized blind controlled trial, registered in ReBEC (No. RBR-4z26f3 with 184 newborns divided into hot tub group (n=84 and shower (n=100. Newborns from intervention group were immersed in a hot tub with warm water up to the neck, without exposure to air flow, and control group received traditional shower. Heart rate, respiratory rate and temperature were measured before and immediately after bath by an investigator blinded to the type of bath. Results: Groups were similar in gender, gestational age, birth weight, Apgar score at 5th minute and hours of life, p => 0.05. To analyze thermal and cardiorespiratory adjustments, difference between post-bath variables and pre-bath was calculated. In this analysis, it was found statistically significant difference between two types of bath regarding heart rate, respiratory rate and temperature. Hot tub bath decreases heart and respiratory rates and increases temperature, whereas shower provides the opposite effect (0.0001. Conclusion: This study demonstrates that hot tub baths and shower, in healthy newborns, promote thermal and cardiorespiratory adaptations, reflecting thermal, cardiac and respiratory positive reactions after hot tub bath.

  8. Adaptive thermal comfort for buildings in Portugal based on occupants' thermal perception

    Energy Technology Data Exchange (ETDEWEB)

    Matias, L.; Pina Santos, C.; Rebelo, M. [LNEC National Laboratory for Civil Engineering, Lisbon (Portugal); Almeida, S. [FCT Foundation for Science and Technology, Lisbon (Portugal); Correia Guedes, M. [IST Higher Technical Inst., Lisbon (Portugal)

    2009-07-01

    The use of air conditioning systems in Portugal has increased in recent years. Most new service buildings are equipped with mechanical air conditioning systems, either due to commercial reasons, productivity, or due to high internal thermal loads, and solar gains through windows. However, a large percentage of older service buildings are still naturally ventilated. In ASHRAE 55 thermal comfort standard, an adaptive model was adopted as an optional method for determining acceptable thermal conditions in naturally conditioned spaces. Recently, Portugal's National Laboratory for Civil Engineering (LNEC) initiated an interdisciplinary research study in this field. The research team of physicists, social scientists, and civil engineers developed better modeling of adaptive thermal strategies. This paper described the adaptive approach that defined indoor thermal comfort requirements applicable to Portuguese buildings. The study focused on assessing, in real use conditions, indoor environments and the response of occupants of office and educational buildings, and homes for the elderly. The results were obtained from 285 field surveys carried out on 40 buildings and a set of 2367 questionnaires completed by occupants. Field surveys assessed and measured the main indoor environmental parameters during summer, winter and mid-season. This paper included the results of the analysis to the occupants' thermal perception and expectation, by relating them to both measured and collected indoor thermal environments and outdoor climate. The relation between the occupants' thermal sensation and preference was analysed for different types of activities, throughout different seasons. Results showed that occupants may tolerate broader temperature ranges than those indicated in current standards, particularly in the heating season. 10 refs., 3 tabs., 9 figs.

  9. In vitro adaptation of Plasmodium falciparum reveal variations in cultivability

    OpenAIRE

    White, John; Mascarenhas, Anjali; Pereira, Ligia; Dash, Rashmi; Walke, Jayashri T.; Gawas, Pooja; Sharma, Ambika; Manoharan, Suresh Kumar; Guler, Jennifer L.; Maki, Jennifer N.; Kumar, Ashwani; Mahanta, Jagadish; Valecha, Neena; Dubhashi, Nagesh; Vaz, Marina

    2016-01-01

    Background Culture-adapted Plasmodium falciparum parasites can offer deeper understanding of geographic variations in drug resistance, pathogenesis and immune evasion. To help ground population-based calculations and inferences from culture-adapted parasites, the complete range of parasites from a study area must be well represented in any collection. To this end, standardized adaptation methods and determinants of successful in vitro adaption were sought. Methods Venous blood was collected f...

  10. Feedback effect of human physical and psychological adaption on time period of thermal adaption in naturally ventilated building

    DEFF Research Database (Denmark)

    liu, weiwei; Huangfu, Hao; Xiong, Jing

    2014-01-01

    This study proposed a method to determine time period of thermal adaption for occupants in naturally ventilated building, and analyzed the synergistic and separate feedback effect of the physical and psychological adaption modes on the time period of thermal adaption. Using the method, the values...... of the time period of thermal adaption were obtained on the basis of the data from a long-term field survey conducted in two typical naturally ventilated offices located in Changsha, China. The results showed that the occupants need to take 4.25 days to fully adapt to a step-change in outdoor air temperature...

  11. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  12. Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot-humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-Shin Road, Taichung 404 (China); Cheng, Ming-Jen [Department of Architecture, Feng Chia University, 100 Wen-Hwa Road, Seatwen, Taichung 407 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-Hua Road, Huwei, Yunlin 632 (China); Ho, Ming-Chin [Architecture and Building Research Institute, Ministry of the Interior, 13F, No. 200, Sec. 3, Bei-sin Road, Sindian City, Taipei County 231 (China)

    2009-06-15

    A field study conducted in workplaces and residences in Taiwan is carried out to clarify two questions in detail: (1) do people in the tropical climate regions demonstrate a correlation between thermal sensation and thermal dissatisfaction the same as the PMV-PPD formula in the ISO 7730; and (2) does the difference in opportunities to choose from a variety of methods to achieve thermal comfort affects thermal perceptions of occupants? A new predicted formula of percentage of dissatisfied (PD) relating to mean thermal sensation votes (TSVs) is proposed for hot and humid regions. Besides an increase in minimum rate of dissatisfied from 5% to 9%, a shift of the TSV with minimum PD to the cool side of sensation scale is suggested by the new proposed formula. It also reveals that the limits of TSV corresponding to 80% acceptability for hot and humid regions are -1.45 and +0.65 rather than -0.85 and +0.85 suggested by ISO 7730. It is revealed in the findings that the effectiveness, availability and cost of a thermal adaptation method can affect the interviewees' thermal adaptation behaviour. According to the discussion of interviewees' idea about the trade-off between thermal comfort and energy saving, it is found that an energy-saving approach at the cost of sacrificing occupant's thermal comfort is difficult to set into action, but those ensure the occupant's comfort are more acceptable and can be easily popularized. (author)

  13. Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation.

    Science.gov (United States)

    Hudson, Todd E; Landy, Michael S

    2016-02-01

    A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. In vitro adaptation of Plasmodium falciparum reveal variations in cultivability.

    Science.gov (United States)

    White, John; Mascarenhas, Anjali; Pereira, Ligia; Dash, Rashmi; Walke, Jayashri T; Gawas, Pooja; Sharma, Ambika; Manoharan, Suresh Kumar; Guler, Jennifer L; Maki, Jennifer N; Kumar, Ashwani; Mahanta, Jagadish; Valecha, Neena; Dubhashi, Nagesh; Vaz, Marina; Gomes, Edwin; Chery, Laura; Rathod, Pradipsinh K

    2016-01-22

    Culture-adapted Plasmodium falciparum parasites can offer deeper understanding of geographic variations in drug resistance, pathogenesis and immune evasion. To help ground population-based calculations and inferences from culture-adapted parasites, the complete range of parasites from a study area must be well represented in any collection. To this end, standardized adaptation methods and determinants of successful in vitro adaption were sought. Venous blood was collected from 33 P. falciparum-infected individuals at Goa Medical College and Hospital (Bambolim, Goa, India). Culture variables such as whole blood versus washed blood, heat-inactivated plasma versus Albumax, and different starting haematocrit levels were tested on fresh blood samples from patients. In vitro adaptation was considered successful when two four-fold or greater increases in parasitaemia were observed within, at most, 33 days of attempted culture. Subsequently, parasites from the same patients, which were originally cryopreserved following blood draw, were retested for adaptability for 45 days using identical host red blood cells (RBCs) and culture media. At a new endemic area research site, ~65% of tested patient samples, with varied patient history and clinical presentation, were successfully culture-adapted immediately after blood collection. Cultures set up at 1% haematocrit and 0.5% Albumax adapted most rapidly, but no single test condition was uniformly fatal to culture adaptation. Success was not limited by low patient parasitaemia nor by patient age. Some parasites emerged even after significant delays in sample processing and even after initiation of treatment with anti-malarials. When 'day 0' cryopreserved samples were retested in parallel many months later using identical host RBCs and media, speed to adaptation appeared to be an intrinsic property of the parasites collected from individual patients. Culture adaptation of P. falciparum in a field setting is formally shown to be

  15. Local adaptation to altitude underlies divergent thermal physiology in tropical killifishes of the genus Aphyosemion.

    Directory of Open Access Journals (Sweden)

    David J McKenzie

    Full Text Available In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion occur in discrete altitudinal ranges, low altitude species (LA, sea level to ∼350 m or high altitude species (HA, 350 to 900 m. We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass ∼350 mg were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation were compared with animals raised in captivity at 25°C (F1 generation to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required ∼14 h to complete the SDA, whereas the HA required only ∼7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another.

  16. Thermally adapted design strategy of colonial houses in Surabaya

    Science.gov (United States)

    Antaryama, I. G. N.; Ekasiwi, S. N. N.; Mappajaya, A.; Ulum, M. S.

    2018-03-01

    Colonial buildings, including houses, have been considered as a representation of climate-responsive architecture. The design was thought to be a hybrid model of Dutch and tropical architecture. It was created by way of reinventing tropical and Dutch architecture design principles, and expressed in a new form, i.e. neither resembling Dutch nor tropical building. Aside from this new image, colonial house does show good climatic responses. Previous researches on colonial house generally focus on qualitative assessment of climate performance of the building. Yet this kind of study tends to concentrate on building elements, e.g. wall, window, etc. The present study is designed to give more complete picture of architecture design strategy of the house by exploring and analysing thermal performance of colonial buildings and their related architecture design strategies. Field measurements are conducted during the dry season in several colonial building in Surabaya. Air temperature and humidity are both taken, representing internal and external thermal conditions of the building. These data are then evaluated to determine thermal performance of the house. Finally, various design strategies are examined in order to reveal their significant contributions to its thermal performance. Results of the study in Surabaya confirm findings of the previous researches that are conducted in other locations, which stated that thermal performance of the house is generally good. Passive design strategies such as mass effect and ventilation play an important role in determining performance of the building.

  17. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which repres...... in genetic adaptation to high altitude.......Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which...... represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency...

  18. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.

    Science.gov (United States)

    Kashiwagi, Akiko; Sugawara, Ryu; Sano Tsushima, Fumie; Kumagai, Tomofumi; Yomo, Tetsuya

    2014-10-01

    Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and

  19. Knowing beans: Human mirror mechanisms revealed through motor adaptation

    Directory of Open Access Journals (Sweden)

    Arthur M Glenberg

    2010-11-01

    Full Text Available Human mirror mechanisms (MMs respond during both performed and observed action and appear to underlie action goal recognition. We introduce a behavioral procedure for discovering and clarifying functional MM properties: Blindfolded participants repeatedly move beans either toward or away from themselves to induce motor adaptation. Then, the bias for perceiving direction of ambiguous visual movement in depth is measured. Bias is affected by a number of beans moved, b movement direction, and c similarity of the visual stimulus to the hand used to move beans. This cross-modal adaptation pattern supports both the validity of human MMs and functionality of our testing instrument. We also discuss related work that extends the motor adaptation paradigm to investigate contributions of MMs to speech perception and language comprehension.

  20. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    International Nuclear Information System (INIS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Meng, Dennis Desheng

    2011-01-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA

  1. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Science.gov (United States)

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  2. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Yosuke Koga

    2012-01-01

    Full Text Available The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1 the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2 the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3 the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.”

  3. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  4. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  5. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Science.gov (United States)

    Guest, James R; Baird, Andrew H; Maynard, Jeffrey A; Muttaqin, Efin; Edwards, Alasdair J; Campbell, Stuart J; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pBleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  6. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales

    Directory of Open Access Journals (Sweden)

    Jordan T Bird

    2016-08-01

    Full Text Available The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus (Ca. Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, we sequenced a single cell amplified genome (SAG, WOR_SCG_SM1, and used it to identify and refine two high-quality genomes from metagenomes, WOR_79 and WOR_86-2, from the same site in a different year. These three genomic reconstructions form a monophyletic group which also includes three previously published genomes from metagenomes from terrestrial springs and a SAG from Sakinaw Lake in a group previously designated as pMC2A384. A synapomorphic mutation in the Altiarchaeales tRNA synthetase β subunit, pheT, causes the protein to be encoded as two subunits at distant loci. Consistent with the terrestrial spring clades, our estuarine genomes contain a near-complete autotrophic metabolism, H2 or CO as potential electron donors, a reductive acetyl-CoA pathway for carbon fixation, and methylotroph-like NADP(H-dependent dehydrogenase. Phylogenies based on 16S rRNA genes and concatenated conserved proteins identify two distinct sub-clades of Altiarchaeales, Alti-1 populated by organisms from actively flowing springs, and Alti-2 which is more widespread, diverse, and not associated with visible mats. The core Alti-1 genome supports Alti-1 as adapted for the stream environment, with lipopolysaccharide production capacity, extracellular hami structures. The core Alti-2 genome members of this clade are free-living, with distinct mechanisms for energy maintenance, motility, osmoregulation, and sulfur redox reactions. These

  7. Talaromyces marneffei Genomic, Transcriptomic, Proteomic and Metabolomic Studies Reveal Mechanisms for Environmental Adaptations and Virulence

    Directory of Open Access Journals (Sweden)

    Susanna K. P. Lau

    2017-06-01

    Full Text Available Talaromyces marneffei is a thermally dimorphic fungus causing systemic infections in patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors, enzymes which process pheromones, and proteins involved in pheromone response pathway are present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs (milRNAs and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells. Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in yeast phase, generating protein polymorphism among cells, evading host’s immunity. Comparative proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase, up-regulated in hyphal cells, is an adhesion factor for conidial attachment.

  8. Adaptive Thermal Comfort in Japanese Houses during the Summer Season: Behavioral Adaptation and the Effect of Humidity

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2015-09-01

    Full Text Available In order to clarify effect of humidity on the room temperatures reported to be comfortable, an occupant thermal comfort and behavior survey was conducted for five summers in the living rooms and bedrooms of residences in the Kanto region of Japan. We have collected 13,525 thermal comfort votes from over 239 residents of 120 homes, together with corresponding measurements of room temperature and humidity of the air. The residents were generally well-satisfied with the thermal environment of their houses, with or without the use of air-conditioning, and thus were well-adapted to their thermal conditions. The humidity was found to have very little direct effect on the comfort temperature. However, the comfort temperature was strongly related to the reported skin moisture. Behavioral adaptation such as window opening and fan use increase air movement and improve thermal comfort.

  9. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster.

    Science.gov (United States)

    Lockwood, B L; Gupta, T; Scavotto, R

    2018-02-01

    Many terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioural thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. We further report that embryos live closer to their upper thermal limits than adults - that is, thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting the dominance of heat-tolerant alleles. Together, our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages to better predict adaptive limits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species

    DEFF Research Database (Denmark)

    Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy

    2016-01-01

    across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth.......The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response...

  11. Adaptive thermal comfort opportunities for dwellings: Providing thermal comfort only when and where needed in dwellings in the Netherlands

    Directory of Open Access Journals (Sweden)

    Noortje Alders

    2016-08-01

    Full Text Available The aim of the research presented in this thesis is to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants. An Adaptive Thermal Comfort System is defined as the whole of passive and active comfort components of the dwelling that dynamically adapts its settings to varying user comfort demands and weather conditions (seasonal, diurnal and hourly depending on the aspects adapted, thus providing comfort only where, when and at the level needed by the user, to improve possibilities of harvesting the environmental energy (e.g. solar gain and outdoor air when available and storing it when abundant. In order to be able to create an Adaptive Thermal Comfort System to save energy knowledge is needed as to where, when, what kind and how much energy is needed to provide the thermal comfort. Therefore, this research aimed to gain insight in the dynamic behaviour of the weather and the occupant and the opportunities to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants answering the main research question;  What are the most efficient strategies for delivering thermal comfort in the residential sector with respect to better energy performances and an increasing demand for flexibility in use and comfort conditions? To answer the main research question three steps were taken, which also represent the three parts of the research: 1. The dynamic information of the factors influencing the thermal heat balance of the dwelling was gathered in order to determine their opportunities for adaptivity. A multidisciplinary approach to Thermal Comfort Systems is followed taking into account the dynamic of occupancy profiles, weather, building physics, HVAC and controls. A

  12. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

  13. Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus

    Directory of Open Access Journals (Sweden)

    Elias Giannakis

    2016-10-01

    Full Text Available The development of green space along urban rivers could mitigate urban heat island effects, enhance the physical and mental well-being of city dwellers, and improve flood resilience. A linear park has been recently created along the ephemeral Pedieos River in the urban area of Nicosia, Cyprus. Questionnaire surveys and micrometeorological measurements were conducted to explore people’s perceptions and satisfaction regarding the services of the urban park. People’s main reasons to visit the park were physical activity and exercise (67%, nature (13%, and cooling (4%. The micrometeorological measurements in and near the park revealed a relatively low cooling effect (0.5 °C of the park. However, the majority of the visitors (84% were satisfied or very satisfied with the cooling effect of the park. Logistic regression analysis indicated that the odds of individuals feeling very comfortable under a projected 3 °C future increase in temperature would be 0.34 times lower than the odds of feeling less comfortable. The discrepancies between the observed thermal comfort index and people’s perceptions revealed that people in semi-arid environments are adapted to the hot climatic conditions; 63% of the park visitors did not feel uncomfortable at temperatures between 27 °C and 37 °C. Further research is needed to assess other key ecosystems services of this urban green river corridor, such as flood protection, air quality regulation, and biodiversity conservation, to contribute to integrated climate change adaptation planning.

  14. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  15. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments.

    Science.gov (United States)

    Hwang, R-L; Chen, C-P

    2010-06-01

    This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal

  16. Adaptive thermal modeling of Li-ion batteries

    NARCIS (Netherlands)

    Rad, M.S.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.

    2013-01-01

    An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials’ details and cell design are normally not provided. In this work

  17. Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Liu, Jing [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); Li, Baizhan [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing 400042 (China)

    2010-03-15

    A year-long field study of the thermal environment in university classrooms was conducted from March 2005 to May 2006 in Chongqing, China. This paper presents the occupants' thermal sensation votes and discusses the occupants' adaptive response and perception of the thermal environment in a naturally conditioned space. Comparisons between the Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) have been made as well as between the Actual Percentage of Dissatisfied (APD) and Predicted Percentage of Dissatisfied (PPD). The adaptive thermal comfort zone for the naturally conditioned space for Chongqing, which has hot summer and cold winter climatic characteristics, has been proposed based on the field study results. The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004 in general, but in the extreme cold and hot months, it is narrower. The thermal conditions in classrooms in Chongqing in summer and winter are severe. Behavioural adaptation such as changing clothing, adjusting indoor air velocity, taking hot/cold drinks, etc., as well as psychological adaptation, has played a role in adapting to the thermal environment. (author)

  18. Adapting Local Features for Face Detection in Thermal Image

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-11-01

    Full Text Available A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses. We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.

  19. Thermal adaptation in Drosophila serrata under conditions linked to ...

    Indian Academy of Sciences (India)

    Unknown

    Centre for Environmental Stress and Adaptation Research, La Trobe .... appear to exhibit quiescence, where reproduction is imme- ..... an effect on the wing length of either sex. ..... perature and male territorial success in Drosophila melano-.

  20. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    Science.gov (United States)

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  1. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    Science.gov (United States)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  2. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.

    Science.gov (United States)

    Tattersall, Glenn J; Andrade, Denis V; Abe, Augusto S

    2009-07-24

    The toco toucan (Ramphastos toco), the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, from serving as a sexual ornament to being a refined adaptation for feeding. However, it is also a significant surface area for heat exchange. Here we show the remarkable capacity of the toco toucan to regulate heat distribution by modifying blood flow, using the bill as a transient thermal radiator. Our results indicate that the toucan's bill is, relative to its size, one of the largest thermal windows in the animal kingdom, rivaling elephants' ears in its ability to radiate body heat.

  3. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    Chamberlin, E.P.; Olivares, J.A.

    1996-01-01

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  4. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    International Nuclear Information System (INIS)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    Research highlights: → In conventional buildings thermal mass is a permanent building characteristic. → Permanent thermal mass concepts are not optimal in all operational conditions. → We propose a concept that combines the benefits of low and high thermal mass. → Building simulation shows the concept is able to reduce the energy demand with 35%. → Furthermore, the concept increases the performance robustness of the building. -- Abstract: In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal variations and future climate changes. Building performance simulation is used to investigate the potential of the novel concept for reducing heating energy demand and increasing thermal comfort. Simulation results of a case study in the Netherlands show that the optimal quantity of the thermal mass is sensitive to the change of seasons. This implies that the building performance will benefit from implementing HATS. Furthermore, the potential of HATS is quantified using a simplified HATS model. Calculations show heating energy demand reductions of up to 35% and increased thermal comfort compared to conventional thermal mass concepts.

  5. Rotational Kinematics Model Based Adaptive Particle Filter for Robust Human Tracking in Thermal Omnidirectional Vision

    Directory of Open Access Journals (Sweden)

    Yazhe Tang

    2015-01-01

    Full Text Available This paper presents a novel surveillance system named thermal omnidirectional vision (TOV system which can work in total darkness with a wild field of view. Different to the conventional thermal vision sensor, the proposed vision system exhibits serious nonlinear distortion due to the effect of the quadratic mirror. To effectively model the inherent distortion of omnidirectional vision, an equivalent sphere projection is employed to adaptively calculate parameterized distorted neighborhood of an object in the image plane. With the equivalent projection based adaptive neighborhood calculation, a distortion-invariant gradient coding feature is proposed for thermal catadioptric vision. For robust tracking purpose, a rotational kinematic modeled adaptive particle filter is proposed based on the characteristic of omnidirectional vision, which can handle multiple movements effectively, including the rapid motions. Finally, the experiments are given to verify the performance of the proposed algorithm for human tracking in TOV system.

  6. The Adaptive Thermal Comfort model may not always predict thermal effects on performance

    DEFF Research Database (Denmark)

    Wyon, David Peter; Wargocki, Pawel

    2014-01-01

    A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues.......A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues....

  7. People who live in a cold climate: thermal adaptation differences based on availability of heating.

    Science.gov (United States)

    Yu, J; Cao, G; Cui, W; Ouyang, Q; Zhu, Y

    2013-08-01

    Are there differences in thermal adaptation to cold indoor environments between people who are used to living in heating and non-heating regions in China? To answer this question, we measured thermal perceptions and physiological responses of young men from Beijing (where there are indoor space heating facilities in winter) and Shanghai (where there are not indoor space heating facilities in winter) during exposures to cold. Subjects were exposed to 12°C, 14°C, 16°C, 18°C, 20°C for 1 h. Subjects from Beijing complained of greater cold discomfort and demonstrated poorer physiological acclimatization to cold indoor environments than those from Shanghai. These findings indicate that people's chronic indoor thermal experience might be an important determinant of thermal adaptation. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Thermal Adaptation Methods of Urban Plaza Users in Asia's Hot-Humid Regions: A Taiwan Case Study.

    Science.gov (United States)

    Wu, Chen-Fa; Hsieh, Yen-Fen; Ou, Sheng-Jung

    2015-10-27

    Thermal adaptation studies provide researchers great insight to help understand how people respond to thermal discomfort. This research aims to assess outdoor urban plaza conditions in hot and humid regions of Asia by conducting an evaluation of thermal adaptation. We also propose that questionnaire items are appropriate for determining thermal adaptation strategies adopted by urban plaza users. A literature review was conducted and first hand data collected by field observations and interviews used to collect information on thermal adaptation strategies. Item analysis--Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA)--were applied to refine the questionnaire items and determine the reliability of the questionnaire evaluation procedure. The reliability and validity of items and constructing process were also analyzed. Then, researchers facilitated an evaluation procedure for assessing the thermal adaptation strategies of urban plaza users in hot and humid regions of Asia and formulated a questionnaire survey that was distributed in Taichung's Municipal Plaza in Taiwan. Results showed that most users responded with behavioral adaptation when experiencing thermal discomfort. However, if the thermal discomfort could not be alleviated, they then adopted psychological strategies. In conclusion, the evaluation procedure for assessing thermal adaptation strategies and the questionnaire developed in this study can be applied to future research on thermal adaptation strategies adopted by urban plaza users in hot and humid regions of Asia.

  9. Thermal insulating system particularly adapted for building construction

    International Nuclear Information System (INIS)

    Dyar, H.G.

    1985-01-01

    This disclosure relates to an insulating system which is particularly adapted for insulating the walls, floors, ceilings and like structure of buildings and includes a panel having a hollow chamber or interior under negative pressure (vacuum) and being of a variety of external peripheral sizes and shapes to fit within areas defined by wall and/or floor and/or ceiling studs, beams, or the like, a plurality of springs, chains or the like for supporting the panel in generally spaced relationship to an associated building wall, ceiling, floor or like structure, and a plurality of pin-like elements of relatively small cross-sectional configuration normally spaced from the exterior surface of the panel for contacting a limited exterior surface area of the panel only upon the springs, chains or the like becoming inoperative which would in the absence of the pin-like elements result in direct contact between the panel and the associated building wall, ceiling, floor or like structure and thus reduce the insulating efficiency thereof

  10. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  11. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Anna Koczula

    2017-02-01

    Full Text Available Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq. In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism. In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  12. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations.

    Science.gov (United States)

    Zheng, Jinshui; Zhao, Xin; Lin, Xiaoxi B; Gänzle, Michael

    2015-12-11

    Lactobacillus reuteri is a dominant member of intestinal microbiota of vertebrates, and occurs in food fermentations. The stable presence of L. reuteri in sourdough provides the opportunity to study the adaptation of vertebrate symbionts to an extra-intestinal habitat. This study evaluated this adaptation by comparative genomics of 16 strains of L. reuteri. A core genome phylogenetic tree grouped L. reuteri into 5 clusters corresponding to the host-adapted lineages. The topology of a gene content tree, which includes accessory genes, differed from the core genome phylogenetic tree, suggesting that the differentiation of L. reuteri is shaped by gene loss or acquisition. About 10% of the core genome (124 core genes) were under positive selection. In lineage III sourdough isolates, 177 genes were under positive selection, mainly related to energy conversion and carbohydrate metabolism. The analysis of the competitiveness of L. reuteri in sourdough revealed that the competitivess of sourdough isolates was equal or higher when compared to rodent isolates. This study provides new insights into the adaptation of L. reuteri to food and intestinal habitats, suggesting that these two habitats exert different selective pressure related to growth rate and energy (carbohydrate) metabolism.

  13. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    Science.gov (United States)

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients. © 2013 John Wiley & Sons Ltd.

  14. Cone and Rod Loss in Stargardt Disease Revealed by Adaptive Optics Scanning Light Ophthalmoscopy

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A.; Latchney, Lisa; Bessette, Angela; Stone, Edwin; Hunter, Jennifer J.; Williams, David R.; Chung, Mina

    2015-01-01

    Importance Stargardt disease (STGD1) is characterized by macular atrophy and flecks in the retinal pigment epithelium. The causative ABCA4 gene encodes a protein localizing to photoreceptor outer segments. The pathologic steps by which ABCA4 mutations lead to clinically detectable retinal pigment epithelium changes remain unclear. We investigated early STGD1 using adaptive optics scanning light ophthalmoscopy. Observations Adaptive optics scanning light ophthalmoscopy imaging of 2 brothers with early STGD1 and their unaffected parents was compared with conventional imaging. Cone and rod spacing were increased in both patients (P optics scanning light ophthalmoscopy reveals increased cone and rod spacing in areas that appear normal in conventional images, suggesting that photoreceptor loss precedes clinically detectable retinal pigment epithelial disease in STGD1. PMID:26247787

  15. Differentially expressed genes associated with adaptation to different thermal environments in three sympatric Cuban Anolis lizards.

    Science.gov (United States)

    Akashi, Hiroshi D; Cádiz Díaz, Antonio; Shigenobu, Shuji; Makino, Takashi; Kawata, Masakado

    2016-05-01

    How animals achieve evolutionary adaptation to different thermal environments is an important issue for evolutionary biology as well as for biodiversity conservation in the context of recent global warming. In Cuba, three sympatric species of Anolis lizards (Anolis allogus, A. homolechis and A. sagrei) inhabit different thermal microhabitats, thereby providing an excellent opportunity to examine how they have adapted to different environmental temperatures. Here, we performed RNA-seq on the brain, liver and skin tissues from these three species to analyse their transcriptional responses at two different temperatures. In total, we identified 400, 816 and 781 differentially expressed genes (DEGs) between the two temperatures in A. allogus, A. homolechis and A. sagrei, respectively. Only 62 of these DEGs were shared across the three species, indicating that global transcriptional responses have diverged among these species. Gene ontology (GO) analysis showed that large numbers of ribosomal protein genes were DEGs in the warm-adapted A. homolechis, suggesting that the upregulation of protein synthesis is an important physiological mechanism in the adaptation of this species to hotter environments. GO analysis also showed that GO terms associated with circadian regulation were enriched in all three species. A gene associated with circadian regulation, Nr1d1, was detected as a DEG with opposite expression patterns between the cool-adapted A. allogus and the hot-adapted A. sagrei. Because the environmental temperature fluctuates more widely in open habitats than in forests throughout the day, the circadian thermoregulation could also be important for adaptation to distinct thermal habitats. © 2016 John Wiley & Sons Ltd.

  16. Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic

    Directory of Open Access Journals (Sweden)

    Vincent J. Lynch

    2015-07-01

    Full Text Available Woolly mammoths and living elephants are characterized by major phenotypic differences that have allowed them to live in very different environments. To identify the genetic changes that underlie the suite of woolly mammoth adaptations to extreme cold, we sequenced the nuclear genome from three Asian elephants and two woolly mammoths, and we identified and functionally annotated genetic changes unique to woolly mammoths. We found that genes with mammoth-specific amino acid changes are enriched in functions related to circadian biology, skin and hair development and physiology, lipid metabolism, adipose development and physiology, and temperature sensation. Finally, we resurrected and functionally tested the mammoth and ancestral elephant TRPV3 gene, which encodes a temperature-sensitive transient receptor potential (thermoTRP channel involved in thermal sensation and hair growth, and we show that a single mammoth-specific amino acid substitution in an otherwise highly conserved region of the TRPV3 channel strongly affects its temperature sensitivity.

  17. Adaptation of thermal power plants: The (ir)relevance of climate (change) information

    International Nuclear Information System (INIS)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, Michelle T.H. van

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate and hydrological projections, is then numerically solved to analyze the adaptation decisions of a selection of real power plants. We find that operators that base their decisions on current climatic conditions are likely to make identical choices and perform just as well as operators that are fully ‘informed’ about climate change. Where electricity supply is mainly generated by thermal power plants, heat waves, droughts and low river flow may impact electricity supply for decades to come. - Highlights: • We analyze adaptation to climate change by thermal power plants. • A numerical investment model is applied to a coal plant and a nuclear power plant. • The numerical analysis is based on climate and hydrological projections. • Climate change information has a relatively small effect on a power plant's NPV. • Uncertainty and no-regret benefits lower the value of climate change information.

  18. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2017-01-01

    Highlights: • Self-adaptive Jaya algorithm is proposed for optimal design of thermal devices. • Optimization of heat pipe, cooling tower, heat sink and thermo-acoustic prime mover is presented. • Results of the proposed algorithm are better than the other optimization techniques. • The proposed algorithm may be conveniently used for the optimization of other devices. - Abstract: The present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of selected thermal devices viz; heat pipe, cooling tower, honeycomb heat sink and thermo-acoustic prime mover. Four different optimization case studies of the selected thermal devices are presented. The researchers had attempted the same design problems in the past using niched pareto genetic algorithm (NPGA), response surface method (RSM), leap-frog optimization program with constraints (LFOPC) algorithm, teaching-learning based optimization (TLBO) algorithm, grenade explosion method (GEM) and multi-objective genetic algorithm (MOGA). The results achieved by using self-adaptive Jaya algorithm are compared with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM and MOGA algorithms. The self-adaptive Jaya algorithm is proved superior as compared to the other optimization methods in terms of the results, computational effort and function evalutions.

  19. In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Agarwal, Tushar

    2018-01-01

    Indoor thermal comfort is generally assessed using the PMV or the adaptive model. This research presents the results obtained by in-situ real time measurements of thermal comfort and thermal comfort perception in 17 residential dwellings in the Netherlands. The study demonstrates the new

  20. Trade-offs in thermal adaptation: the need for a molecular to ecological integration.

    Science.gov (United States)

    Pörtner, Hans O; Bennett, Albert F; Bozinovic, Francisco; Clarke, Andrew; Lardies, Marco A; Lucassen, Magnus; Pelster, Bernd; Schiemer, Fritz; Stillman, Jonathon H

    2006-01-01

    Through functional analyses, integrative physiology is able to link molecular biology with ecology as well as evolutionary biology and is thereby expected to provide access to the evolution of molecular, cellular, and organismic functions; the genetic basis of adaptability; and the shaping of ecological patterns. This paper compiles several exemplary studies of thermal physiology and ecology, carried out at various levels of biological organization from single genes (proteins) to ecosystems. In each of those examples, trade-offs and constraints in thermal adaptation are addressed; these trade-offs and constraints may limit species' distribution and define their level of fitness. For a more comprehensive understanding, the paper sets out to elaborate the functional and conceptual connections among these independent studies and the various organizational levels addressed. This effort illustrates the need for an overarching concept of thermal adaptation that encompasses molecular, organellar, cellular, and whole-organism information as well as the mechanistic links between fitness, ecological success, and organismal physiology. For this data, the hypothesis of oxygen- and capacity-limited thermal tolerance in animals provides such a conceptual framework and allows interpreting the mechanisms of thermal limitation of animals as relevant at the ecological level. While, ideally, evolutionary studies over multiple generations, illustrated by an example study in bacteria, are necessary to test the validity of such complex concepts and underlying hypotheses, animal physiology frequently is constrained to functional studies within one generation. Comparisons of populations in a latitudinal cline, closely related species from different climates, and ontogenetic stages from riverine clines illustrate how evolutionary information can still be gained. An understanding of temperature-dependent shifts in energy turnover, associated with adjustments in aerobic scope and performance

  1. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae.

    Directory of Open Access Journals (Sweden)

    Allen F Sanborn

    Full Text Available The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  2. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae).

    Science.gov (United States)

    Sanborn, Allen F; Heath, James E; Phillips, Polly K; Heath, Maxine S; Noriega, Fernando G

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  3. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    Science.gov (United States)

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  4. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization.

    Science.gov (United States)

    Müller, Daniel B; Schubert, Olga T; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A

    2016-10-01

    Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization*

    Science.gov (United States)

    Müller, Daniel B.; Schubert, Olga T.; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A.

    2016-01-01

    Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. PMID:27457762

  6. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles.

    Science.gov (United States)

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-Yu; Zhang, Xiao-Mei; Song, Da-Feng; Zhang, Chen

    2016-08-01

    In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate.

  7. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    Science.gov (United States)

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  8. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance.

    Science.gov (United States)

    Miller, Corwin; Kong, Jiayi; Tran, Truc T; Arias, Cesar A; Saxer, Gerda; Shamoo, Yousif

    2013-11-01

    With increasing numbers of hospital-acquired antibiotic resistant infections each year and staggering health care costs, there is a clear need for new antimicrobial agents, as well as novel strategies to extend their clinical efficacy. While genomic studies have provided a wealth of information about the alleles associated with adaptation to antibiotics, they do not provide essential information about the relative importance of genomic changes, their order of appearance, or potential epistatic relationships between adaptive changes. Here we used quantitative experimental evolution of a single polymorphic population in continuous culture with whole-genome sequencing and allelic frequency measurements to study daptomycin (DAP) resistance in the vancomycin-resistant clinical pathogen Enterococcus faecalis S613. Importantly, we sustained both planktonic and nonplanktonic (i.e., biofilm) populations in coculture as the concentration of antibiotic was raised, facilitating the development of more ecological complexity than is typically observed in laboratory evolution. Quantitative experimental evolution revealed a clear order and hierarchy of genetic changes leading to resistance, the signaling and metabolic pathways responsible, and the relative importance of these mutations to the evolution of DAP resistance. Despite the relative simplicity of this ex vivo approach compared to the ecological complexity of the human body, we showed that experimental evolution allows for rapid identification of clinically relevant adaptive molecular pathways and new targets for drug design in pathogens.

  9. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau.

    Science.gov (United States)

    Zeng, Xingquan; Long, Hai; Wang, Zhuo; Zhao, Shancen; Tang, Yawei; Huang, Zhiyong; Wang, Yulin; Xu, Qijun; Mao, Likai; Deng, Guangbing; Yao, Xiaoming; Li, Xiangfeng; Bai, Lijun; Yuan, Hongjun; Pan, Zhifen; Liu, Renjian; Chen, Xin; WangMu, QiMei; Chen, Ming; Yu, Lili; Liang, Junjun; DunZhu, DaWa; Zheng, Yuan; Yu, Shuiyang; LuoBu, ZhaXi; Guang, Xuanmin; Li, Jiang; Deng, Cao; Hu, Wushu; Chen, Chunhai; TaBa, XiongNu; Gao, Liyun; Lv, Xiaodan; Abu, Yuval Ben; Fang, Xiaodong; Nevo, Eviatar; Yu, Maoqun; Wang, Jun; Tashi, Nyima

    2015-01-27

    The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called "Qingke" in Chinese and "Ne" in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The diploid nature and adaptation to diverse environments of the highland give it unique resources for genetic research and crop improvement. Here we produced a 3.89-Gb draft assembly of Tibetan hulless barley with 36,151 predicted protein-coding genes. Comparative analyses revealed the divergence times and synteny between barley and other representative Poaceae genomes. The expansion of the gene family related to stress responses was found in Tibetan hulless barley. Resequencing of 10 barley accessions uncovered high levels of genetic variation in Tibetan wild barley and genetic divergence between Tibetan and non-Tibetan barley genomes. Selective sweep analyses demonstrate adaptive correlations of genes under selection with extensive environmental variables. Our results not only construct a genomic framework for crop improvement but also provide evolutionary insights of highland adaptation of Tibetan hulless barley.

  10. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal

    Science.gov (United States)

    Seim, Inge; Ma, Siming; Zhou, Xuming; Gerashchenko, Maxim V.; Lee, Sang-Goo; Suydam, Robert; George, John C.; Bickham, John W.; Gladyshev, Vadim N.

    2014-01-01

    Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases. PMID:25411232

  12. Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes

    Directory of Open Access Journals (Sweden)

    Xiaodong Fang

    2014-09-01

    Full Text Available Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber. Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.

  13. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  14. Thermoregulation and thermal perception in the cold and heat before and after intermittent heat adaptation

    Science.gov (United States)

    Issing, K.; Fuhr, E.

    1986-09-01

    Students wearing swim suits were exposed for 30 min to neutral room temperature (TR=28‡C). During the following 60 min they were subjected to gradual decreases or increases of room temperature reaching 12‡C or 45‡C, respectively. Static thermal stimuli were applied to the palms of the right (38‡C) and left (25‡C) hands. Hands and feet of all subjects were thermally isolated at 22‡C ambient temperature. General thermal comfort (GTC), local thermal comfort (LTC), skin blood flow (which is proportional to heat transport index λ) several body temperatures, oxygen-consumption(dot V_{O_2 } ), and sweat rate (S), were measured. After moderate intermittent heat exposures (7 times for 1h at TR=42.5‡C) the experiments started again. From GTC, LTC, or λ as functions of TR, no new knowledge about thermoregulatory or adaptive mechanisms was available. The high λ in the cold stimulated left hand, however, and the oscillatory thresholds (λOSC) for rhythmic vasomotion indicated the peripheral influence of skin temperature, as well as local, mean skin temperature (¯Ts) and core temperature. When exposed to moderate temperature decreases or increases the body seems to react only with increasing thermal resistance by vasoconstriction or an increase of sweat rate, respectively. Moderate heat adaptation is only able to raise sweat rate, but not the thresholds and gain of the S-function. We assume that functional studies of adaptive modifications in humans must be conducted at temperatures greatly beyond those used in these experiments.

  15. Design and testing of botanical thermotropic actuator mechanisms in thermally adaptive building coverings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.

    2017-09-01

    This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.

  16. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  17. Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

    Science.gov (United States)

    2013-01-01

    Background Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. Results Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. Conclusions Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data. PMID:24059747

  18. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    Science.gov (United States)

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  19. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    Science.gov (United States)

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  20. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  1. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  2. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    KAUST Repository

    Olsen, Jeanine L.

    2016-01-27

    Seagrasses colonized the sea1 on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet2. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes3, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae4 and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming5, 6, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants7.

  3. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution.

    Science.gov (United States)

    Reznick, D N; Ghalambor, C K

    2001-01-01

    Under what conditions might organisms be capable of rapid adaptive evolution? We reviewed published studies documenting contemporary adaptations in natural populations and looked for general patterns in the population ecological causes. We found that studies of contemporary adaptation fall into two general settings: (1) colonization of new environments that established newly adapted populations, and (2) local adaptations within the context of a heterogeneous environments and metapopulation structure. Local ecological processes associated with colonizations and introductions included exposure to: (1) a novel host or food resource; (2) a new biophysical environment; (3) a new predator community; and (4) a new coexisting competitor. The new environments that were colonized often had depauperate communities, sometimes because of anthropogenic disturbance. Local adaptation in heterogeneous environments was also often associated with recent anthropogenic changes, such as insecticide and herbicide resistance, or industrial melanism. A common feature of many examples is the combination of directional selection with at least a short-term opportunity for population growth. We suggest that such opportunities for population growth may be a key factor that promotes rapid evolution, since directional selection might otherwise be expected to cause population decline and create the potential for local extinction, which is an ever-present alternative to local adaptation. We also address the large discrepancy between the rate of evolution observed in contemporary studies and the apparent rate of evolution seen in the fossil record.

  4. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.

    Science.gov (United States)

    Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili

    2015-12-09

    Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.

  5. Analysis and research on thermal infrared properties and adaptability of the camouflage net

    Science.gov (United States)

    Cui, Guangzhen; Hu, Jianghua; Jian, Chaochao; Yang, Juntang

    2016-10-01

    As camouflage equipment, camouflage net which covers or obstruct the enemy reconnaissance and attack, have the compatibility such as optics, infrared, radar wave band performance. To improve the adaptive between the camouflage net with background in infrared wavelengths, the heat shield and heat integration requirements on the surface of the camouflage net was analyzed. The condition that satisfied the heat shield was when the average thermal infrared transmittance was less than 25.38% on camouflage screen surface. Studies have shown that camouflage nets and the background field fused together when infrared radiation temperature difference control is within the scope of ± 4K . Experiment on temperature contrast was tested in situ background, thermal camouflage spots and camouflage net with sponge material, the infrared heat maps was recorded in the period of experiment through the thermal imager. Results showed that the thermal inertia of camouflage net was markedly lower than the background and the exposed signs were obvious. It was difficult to reach camouflage thermal infrared fusion requirements by relying on camouflage spot emissivity, but sponge which mix with polymer resin can reduce target significance in the context of mottled and realize the fusion effect.

  6. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  7. THERMAL ADAPTATION, CAMPUS GREENING AND OUTDOOR USE IN LAUTECH CAMPUS, OGBOMOSO, NIGERIA

    Directory of Open Access Journals (Sweden)

    Joseph Adeniran ADEDEJI

    2011-12-01

    Full Text Available The interwoven relationship between the use of indoors and outdoors in the tropics as means of thermal adaptation has long been recognized. In the case of outdoors, this is achieved by green intervention of shading trees as adaptive mechanisms through behavioural thermoregulation. Unfortunately, the indoor academic spaces of LAUTECH campus was not provided with necessary outdoor academic learning environment in the general site planning of the campus for use at peak indoor thermal dissatisfaction period considering the tropical climatic setting of the university. The students’ departmental and faculty associations tried to provide parks for themselves as alternatives which on casual observation are of substandard quality and poorly maintained because of lack of institutional coordination and low funding. This study examined the quality and use of these parks for thermal comfort through behavioral adjustment from subjective field evidence with the goal of improvement. To achieve this, twelve parks were selected within the campus. Questionnaires containing use and quality variables were administered randomly upon 160 users of these parks. The data obtained was subjected to descriptive statistical analysis. Results show that the quality of the parks, weather condition, period of the day, and personal psychological reasons of users has great influence on the use of the parks. The study concludes with policy recommendations on improvement of the quality of the parks and the campus outdoors and greenery in general.

  8. Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chaney, Larry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hepokoski, Mark [ThermoAnalytics Inc.; Curran, Allen [ThermoAnalytics Inc.; Burke, Richard [Measurement Technology NW; Maranville, Clay [Ford Motor Company

    2015-04-14

    Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.

  9. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.

  10. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses.

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic

  11. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Xiaodong Zai

    2017-11-01

    Full Text Available Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular

  12. A self-driven temperature and flow rate co-adjustment mechanism based on Shape-Memory-Alloy (SMA) assembly for an adaptive thermal control coldplate module with on-orbit service characteristics

    International Nuclear Information System (INIS)

    Guo, Wei; Li, Yunhua; Li, Yun-Ze; Zhong, Ming-Liang; Wang, Sheng-Nan; Wang, Ji-Xiang; Zhang, Jia-Xun

    2017-01-01

    Highlights: • A self-driven temperature and flow rate co-adjustment mechanism based on SMA assembly is proposed. • An adaptive thermal control coldplate module (TCCM) is introduced. • A testbed is set up to investigate the TCCM adaptive thermal management performances. • The TCCM has the potential for spacecrafts on-orbit services. - Abstract: An adaptive thermal control coldplate module (TCCM) was proposed in this paper to fulfill the requirements of modular thermal control systems for spacecrafts on-orbit services. The TCCM could provide flow rate and temperature co-adjustment by using Shape-Memory-Alloy (SMA) assembly which possesses self-driven abilities. In this paper, the adaptive thermal management mechanism of the TCCM integrated with a single phase mechanically pumped fluid loop (SPMPFL) is described in detail, a verification testbed was established to examine the TCCM dynamic characteristics. Various working conditions such as inlet temperature, flow rate and thermal load disturbances were imposed on the TCCM to inspect its startup and transient performance. It was observed that the TCCM may present robust temperature control results with low overshoot (maximum 16.8%) and small temperature control error (minimum 0.18%), fast time response (minimum 600 s) was also revealed. The results demonstrated that the well-designed TCCM provided effective autonomous flow-rate and temperature co-adjustment operations, which may be a promising candidate for realizing modular level adaptive thermal management for spacecrafts on-orbit services.

  13. An adaptive control application in a large thermal combined power plant

    International Nuclear Information System (INIS)

    Kocaarslan, Ilhan; Cam, Ertugrul

    2007-01-01

    In this paper, an adaptive controller was applied to a 765 MW large thermal power plant to decrease operating costs, increase quality of generated electricity and satisfy environmental concerns. Since power plants may present several operating problems such as disturbances and severe effects at operating points, design of their controllers needs to be carried out adequately. For these reasons, first, a reduced mathematical model was developed under Computer Aided Analysis and Design Package for Control (CADACS), so that the results of the experimental model have briefly been discussed. Second, conventional PID and adaptive controllers were designed and implemented under the real-time environment of the CADACS software. Additionally, the design of the adaptive model-reference and conventional PID controllers used in the power plant for real-time control were theoretically presented. All processes were realized in real-time. Due to safety restrictions, a direct connection to the sensors and actuators of the plant was not allowed. Instead a coupling to the control system was realized. This offers, in addition, the usage of the supervisory functions of an industrial process computer system. Application of the controllers indicated that the proposed adaptive controller has better performances for rise and settling times of electrical power, and enthalpy outputs than the conventional PID controller does

  14. Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud.

    Science.gov (United States)

    Liao, Chang-Zhong; Zeng, Lingmin; Shih, Kaimin

    2015-07-01

    Red mud is a worldwide environmental problem, and many authorities are trying to find an economic solution for its beneficial application or/and safe disposal. Ceramic production is one of the potential waste-to-resource strategies for using red mud as a raw material. Before implementing such a strategy, an unambiguous understanding of the reaction behavior of red mud under thermal conditions is essential. In this study, the phase compositions and transformation processes were revealed for the Pingguo red mud (PRM) heat-treated at different sintering temperatures. Hematite, perovskite, andradite, cancrinite, kaolinite, diaspore, gibbsite and calcite phases were observed in the samples. However, unlike those red mud samples from the other regions, no TiO2 (rutile or anatase) or quartz were observed. Titanium was found to exist mainly in perovskite and andradite while the iron mainly existed in hematite and andradite. A new silico-ferrite of calcium and aluminum (SFCA) phase was found in samples treated at temperatures above 1100°C, and two possible formation pathways for SFCA were suggested. This is the first SFCA phase to be reported in thermally treated red mud, and this finding may turn PRM waste into a material resource for the iron-making industry. Titanium was found to be enriched in the perovskite phase after 1200°C thermal treatment, and this observation indicated a potential strategy for the recovery of titanium from PRM. In addition to noting these various resource recovery opportunities, this is also the first study to quantitatively summarize the reaction details of PRM phase transformations at various temperatures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    Science.gov (United States)

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  16. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  17. Transcriptome analysis of poplar rust telia reveals overwintering adaptation and tightly coordinated karyogamy and meiosis processes

    Directory of Open Access Journals (Sweden)

    Stéphane eHACQUARD

    2013-11-01

    Full Text Available Most rust fungi have a complex life cycle involving up to five different spore-producing stages. The telial stage that produces melanised overwintering teliospores is one of these and plays a fundamental role for generating genetic diversity as karyogamy and meiosis occur at that stage. Despite the importance of telia for the rust life cycle, almost nothing is known about the fungal genetic programs that are activated in this overwintering structure. In the present study, the transcriptome of telia produced by the poplar rust fungus M. larici-populina has been investigated using whole genome exon oligoarrays and RT-qPCR. Comparative expression profiling at the telial and uredinial stages identifies genes specifically expressed or up-regulated in telia including osmotins/thaumatin-like proteins and aquaporins that may reflect specific adaptation to overwintering as well numerous lytic enzymes acting on plant cell wall, reflecting extensive cell wall remodelling at that stage. The temporal dynamics of karyogamy was followed using combined RT-qPCR and DAPI-staining approaches. This reveals that fusion of nuclei and induction of karyogamy-related genes occur simultaneously between the 25-39 days post inoculation time frame. Transcript profiling of conserved meiosis genes indicate a preferential induction right after karyogamy and corroborate that meiosis begins prior to overwintering and is interrupted in Meiosis I (prophase I, diplonema stage until teliospore germination in early spring.

  18. Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians' energetics.

    Science.gov (United States)

    Nespolo, Roberto F; Figueroa, Julio; Solano-Iguaran, Jaiber J

    2017-08-01

    A fundamental problem in evolutionary biology is the understanding of the factors that promote or constrain adaptive evolution, and assessing the role of natural selection in this process. Here, comparative phylogenetics, that is, using phylogenetic information and traits to infer evolutionary processes has been a major paradigm . In this study, we discuss Ornstein-Uhlenbeck models (OU) in the context of thermal adaptation in ectotherms. We specifically applied this approach to study amphibians's evolution and energy metabolism. It has been hypothesized that amphibians exploit adaptive zones characterized by low energy expenditure, which generate specific predictions in terms of the patterns of diversification in standard metabolic rate (SMR). We complied whole-animal metabolic rates for 122 species of amphibians, and adjusted several models of diversification. According to the adaptive zone hypothesis, we expected: (1) to find "accelerated evolution" in SMR (i.e., diversification above Brownian Motion expectations, BM), (2) that a model assuming evolutionary optima (i.e., an OU model) fits better than a white-noise model and (3) that a model assuming multiple optima (according to the three amphibians's orders) fits better than a model assuming a single optimum. As predicted, we found that the diversification of SMR occurred most of the time, above BM expectations. Also, we found that a model assuming an optimum explained the data in a better way than a white-noise model. However, we did not find evidence that an OU model with multiple optima fits the data better, suggesting a single optimum in SMR for Anura, Caudata and Gymnophiona. These results show how comparative phylogenetics could be applied for testing adaptive hypotheses regarding history and physiological performance in ectotherms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thermal limits validation of gamma thermometer power adaption in CFE Laguna Verde 2 reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G.; Banfield, J. [GE-Hitachi Nuclear Energy Americas LLC, Global Nuclear Fuel, Americas LLC, 3901 Castle Hayne Road, Wilmingtonm, North Carolina (United States); Avila N, A., E-mail: Gabriel.Cuevas-Vivas@ge.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2016-09-15

    This paper presents the status of GEH work on Gamma Thermometer (GT) validation using the signals of the instruments installed in the Laguna Verde Unit 2 reactor core. The long-standing technical collaboration between Comision Federal de Electricidad (CFE), Global Nuclear Fuel - Americas LLC (GNF) and GE-Hitachi Nuclear Energy Americas LLC (GEH) is moving forward with solid steps to a final implementation of GTs in a nuclear reactor core. Each GT is integrated into a slightly modified Local Power Range Monitor (LPRM) assembly. Six instrumentation strings are equipped with two gamma field detectors for a total of twenty-four bundles whose calculated powers are adapted to the instrumentation readings in addition to their use as calibration instruments for LPRMs. Since November 2007, the six GT instrumentation strings have been operable with almost no degradation by the strong neutron and gamma fluxes in the Laguna Verde Unit 2 reactor core. In this paper, the thermal limits, Critical Power Ratio (CPR) and maximum Linear Heat Generation Rate (LHGR), of bundles directly monitored by either Traverse In-core Probes (TIPs) or GTs are used to establish validation results that confirm the viability of TIP system replacement with automatic fixed in-core probes (AFIPs, GTs, in a Boiling Water Reactor. The new GNF steady-state reactor core simulator AETNA02 is used to obtain power and exposure distribution. Using this code with an updated methodology for GT power adaption, a reduced value of the GT interpolation uncertainty is obtained that is fed into the LHGR calculation. This new method achieves margin recovery for the adapted thermal limits for use in the Economic Simplified Boiling Water Reactor (ESBWR) or any other BWR in the future that employs a GT based AFIP system for local power measurements. (Author)

  20. Thermal limits validation of gamma thermometer power adaption in CFE Laguna Verde 2 reactor core

    International Nuclear Information System (INIS)

    Cuevas V, G.; Banfield, J.; Avila N, A.

    2016-09-01

    This paper presents the status of GEH work on Gamma Thermometer (GT) validation using the signals of the instruments installed in the Laguna Verde Unit 2 reactor core. The long-standing technical collaboration between Comision Federal de Electricidad (CFE), Global Nuclear Fuel - Americas LLC (GNF) and GE-Hitachi Nuclear Energy Americas LLC (GEH) is moving forward with solid steps to a final implementation of GTs in a nuclear reactor core. Each GT is integrated into a slightly modified Local Power Range Monitor (LPRM) assembly. Six instrumentation strings are equipped with two gamma field detectors for a total of twenty-four bundles whose calculated powers are adapted to the instrumentation readings in addition to their use as calibration instruments for LPRMs. Since November 2007, the six GT instrumentation strings have been operable with almost no degradation by the strong neutron and gamma fluxes in the Laguna Verde Unit 2 reactor core. In this paper, the thermal limits, Critical Power Ratio (CPR) and maximum Linear Heat Generation Rate (LHGR), of bundles directly monitored by either Traverse In-core Probes (TIPs) or GTs are used to establish validation results that confirm the viability of TIP system replacement with automatic fixed in-core probes (AFIPs, GTs, in a Boiling Water Reactor. The new GNF steady-state reactor core simulator AETNA02 is used to obtain power and exposure distribution. Using this code with an updated methodology for GT power adaption, a reduced value of the GT interpolation uncertainty is obtained that is fed into the LHGR calculation. This new method achieves margin recovery for the adapted thermal limits for use in the Economic Simplified Boiling Water Reactor (ESBWR) or any other BWR in the future that employs a GT based AFIP system for local power measurements. (Author)

  1. Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex.

    Science.gov (United States)

    Ghisovan, N; Nemri, A; Shumikhina, S; Molotchnikoff, S

    2009-12-15

    In the adult brain, sensory cortical neurons undergo transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In cat V1, orientation-selective cells shift their preferred orientation after being adapted to a non-preferred orientation. There are conflicting reports as to the direction of those shifts, towards (attractive) or away (repulsive) from the adapter. Moreover, the mechanisms underlying attractive shifts remain unexplained. In the present investigation we show that attractive shifts are the most frequent outcome of a 12 min adaptation. Overall, cells displaying selectivity for oblique orientations exhibit significantly larger shifts than cells tuned to cardinal orientations. In addition, cells selective to cardinal orientations had larger shift amplitudes when the absolute difference between the original preferred orientation and the adapting orientation increased. Conversely, cells tuned to oblique orientations exhibited larger shift amplitudes when this absolute orientation difference was narrower. Hence, neurons tuned to oblique contours appear to show more plasticity in response to small perturbations. Two different mechanisms appear to produce attractive and repulsive orientation shifts. Attractive shifts result from concurrent response depression on the non-adapted flank and selective response facilitation on the adapted flank of the orientation tuning curve. In contrast, repulsive shifts are caused solely by response depression on the adapted flank. We suggest that an early mechanism leads to repulsive shifts while attractive shifts engage a subsequent late facilitation. A potential role for attractive shifts may be improved stimulus discrimination around the adapting orientation.

  2. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  3. Adaptive radiation along a thermal gradient: preliminary results of habitat use and respiration rate divergence among whitefish morphs.

    Directory of Open Access Journals (Sweden)

    Kimmo Kalevi Kahilainen

    Full Text Available Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L. morphs (two pelagic, one littoral and one profundal using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.

  4. Facial Expression Aftereffect Revealed by Adaption to Emotion-Invisible Dynamic Bubbled Faces

    Science.gov (United States)

    Luo, Chengwen; Wang, Qingyun; Schyns, Philippe G.; Kingdom, Frederick A. A.; Xu, Hong

    2015-01-01

    Visual adaptation is a powerful tool to probe the short-term plasticity of the visual system. Adapting to local features such as the oriented lines can distort our judgment of subsequently presented lines, the tilt aftereffect. The tilt aftereffect is believed to be processed at the low-level of the visual cortex, such as V1. Adaptation to faces, on the other hand, can produce significant aftereffects in high-level traits such as identity, expression, and ethnicity. However, whether face adaptation necessitate awareness of face features is debatable. In the current study, we investigated whether facial expression aftereffects (FEAE) can be generated by partially visible faces. We first generated partially visible faces using the bubbles technique, in which the face was seen through randomly positioned circular apertures, and selected the bubbled faces for which the subjects were unable to identify happy or sad expressions. When the subjects adapted to static displays of these partial faces, no significant FEAE was found. However, when the subjects adapted to a dynamic video display of a series of different partial faces, a significant FEAE was observed. In both conditions, subjects could not identify facial expression in the individual adapting faces. These results suggest that our visual system is able to integrate unrecognizable partial faces over a short period of time and that the integrated percept affects our judgment on subsequently presented faces. We conclude that FEAE can be generated by partial face with little facial expression cues, implying that our cognitive system fills-in the missing parts during adaptation, or the subcortical structures are activated by the bubbled faces without conscious recognition of emotion during adaptation. PMID:26717572

  5. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs.

    Directory of Open Access Journals (Sweden)

    Kunzhe Dong

    Full Text Available High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP that is well adapted to the high altitude and Dahe pig (DHP that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19 for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16 were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9 were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.

  6. Coping with temperature at the warm edge--patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum.

    Directory of Open Access Journals (Sweden)

    Sascha Krenek

    Full Text Available Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness.In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia. The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths.Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change.

  7. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  8. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    KAUST Repository

    Olsen, Jeanine L.; Rouzé , Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Tö pel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boströ m, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W.; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T.; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J.; Pearson, Gareth A.; Procaccini, Gabriele; Duarte, Carlos M.; Schmutz, Jeremy; Reusch, Thorsten B. H.; Van de Peer, Yves

    2016-01-01

    studies from adaptation of marine ecosystems under climate warming5, 6, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants7.

  9. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes

    OpenAIRE

    Kumar, Vikas; Kutschera, Verena E.; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    Background The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated...

  10. Thermal Error Modelling of the Spindle Using Data Transformation and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Yanlei Li

    2015-01-01

    Full Text Available This paper proposes a new method for predicting spindle deformation based on temperature data. The method introduces the adaptive neurofuzzy inference system (ANFIS, which is a neurofuzzy modeling approach that integrates the kernel and geometrical transformations. By utilizing data transformation, the number of ANFIS rules can be effectively reduced and the predictive model structure can be simplified. To build the predictive model, we first map the original temperature data to a feature space with Gaussian kernels. We then process the mapped data with the geometrical transformation and make the data gather in the square region. Finally, the transformed data are used as input to train the ANFIS. A verification experiment is conducted to evaluate the performance of the proposed method. Six Pt100 thermal resistances are used to monitor the spindle temperature, and a laser displacement sensor is used to detect the spindle deformation. Experimental results show that the proposed method can precisely predict the spindle deformation and greatly improve the thermal performance of the spindle. Compared with back propagation (BP networks, the proposed method is more suitable for complex working conditions in practical applications.

  11. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.

    Science.gov (United States)

    Zhang, Zhimin; Li, Dapeng

    2018-05-31

    Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in

  12. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.

    Science.gov (United States)

    Artemov, Artem V; Mugue, Nikolai S; Rastorguev, Sergey M; Zhenilo, Svetlana; Mazur, Alexander M; Tsygankova, Svetlana V; Boulygina, Eugenia S; Kaplun, Daria; Nedoluzhko, Artem V; Medvedeva, Yulia A; Prokhortchouk, Egor B

    2017-09-01

    The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.

    Science.gov (United States)

    Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2013-12-17

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.

  14. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon

    Science.gov (United States)

    Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.

    2017-01-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could

  15. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane; Kuo, Alan; Brueggeman, Andrew; Dunigan, David D.; Gurnon, James; Ladunga, Istvan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Proschold, Thomas; Salamov, Asaf; Schmutz, Jeremy; Weeks, Donald; Tamada, Takashi; Lomsadze, Alexandre; Borodovsky, Mark; Claverie, Jean-Michel; Grigoriev, Igor V.; Van Etten, James L.

    2012-02-13

    Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.

  16. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears

    DEFF Research Database (Denmark)

    Liu, Shiping; Lorenzen, Eline; Fumagalli, Matteo

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and sho...

  17. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    Science.gov (United States)

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  18. Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Rabasa, Cristina; Muñoz-Abellán, Cristina; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2011-05-03

    Factors involved in adaptation to repeated stress are not well-characterized. For instance, acute footshock (FS) of high intensity appears to be less severe than immobilization (IMO) in light of the speed of post-stress recovery of the hypothalamic-pituitary-adrenal (HPA) axis and other physiological variables. However, repeated exposure to IMO consistently resulted in reduction of the HPA response to the same stressor (adaptation), whereas failure to adapt has been usually reported after FS. Thus, in the present work we directly compared the activation of HPA axis and other physiological changes in response to both acute and repeated exposure to IMO and two intensities of FS (medium and high) in adult male rats. Control rats were exposed to the FS boxes but they did not receive shocks. Daily repeated exposure to IMO resulted in significant adaptation of the overall ACTH and corticosterone responses to the stressor. Such a reduction was also observed with repeated exposure to FS boxes and FS-medium, whereas repeated exposure to FS-high only resulted in a small reduction of the corticosterone response during the post-stress period. This suggests that some properties of FS-high make adaptation to it difficult. Interestingly, overall changes in food intake and body weight gain throughout the week of exposure to the stressors reveal a greater impact of IMO than FS-high, indicating that factors other than the intensity of a stressor, at least when evaluated in function of the above physiological variables, can influence HPA adaptation. Since FS exposure is likely to cause more pain than IMO, activation of nociceptive signals above a certain level may negatively affect HPA adaptation to repeated stressors. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S J

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  20. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs

    Science.gov (United States)

    Li, Hu; Leavengood, John M.; Chapman, Eric G.; Burkhardt, Daniel; Song, Fan; Jiang, Pei; Liu, Jinpeng; Cai, Wanzhi

    2017-01-01

    Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character state reconstruction and divergence time estimation suggest that the success of true bugs (Heteroptera) is probably due to angiosperm coevolution, but key adaptive innovations (e.g. prognathous mouthpart, predatory behaviour, and haemelytron) facilitated multiple independent shifts among diverse feeding habits and multiple independent colonizations of aquatic habitats. PMID:28878063

  1. Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte; Mørup, Morten; Pedersen, Søren Damkiær

    2013-01-01

    is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas...... aeruginosa isolated from the airways of cystic fibrosis patients. RESULTS: Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene....... This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. CONCLUSIONS: Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering...

  2. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Feizi, Amir; Bisschops, Markus M. M.

    2017-01-01

    Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions....... Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether...... factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending...

  3. Adaptation options to future climate of maize crop in Southern Italy examined using thermal sums

    Science.gov (United States)

    Di Tommasi, P.; Alfieri, S. M.; Bonfante, A.; Basile, A.; De Lorenzi, F.; Menenti, M.

    2012-04-01

    Future climate scenarios predict substantial changes in air temperature within a few decades and agriculture needs to increase the capacity of adaptation both by changing spatial distribution of crops and shifting timing of management. In this context the prediction of future behaviour of crops with respect to present climate could be useful for farm and landscape management. In this work, thermal sums were used to simulate a maize crop in a future scenario, in terms of length of the growing season and of intervals between the main phenological stages. The area under study is the Sele plain (Campania Region), a pedo-climatic homogeneous area, one of the most agriculturally advanced and relevant flatland in Southern Italy. Maize was selected for the present study since it is extensively grown in the Sele Plain for water buffalofeeding,. Daily time-series of climatic data of the area under study were generated within the Italian project AGROSCENARI, and include maximum and minimum temperature and precipitation. The 1961-1990 and the 1998-2008 periods were compared to a future climate scenario (2021-2050). Future time series were generated using a statistical downscaling technique (Tomozeiu et al., 2007) from general circulation models (AOGCM). Differences in crop development length were calculated for different maize varieties under 3 management options for sowing time: custom date (typical for the area), before and after custom date. The interactions between future thermal regime and the length of growing season under the different management options were analyzed. Moreover, frequency of spells of high temperatures during the anthesis was examined. The feasibility of the early sowing option was discussed in relation with field trafficability at the beginning of the crop cycle. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  4. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    OpenAIRE

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investig...

  5. The extracellular proteome of two Bifidobacterium species reveals different adaptation strategies to low iron conditions

    OpenAIRE

    Vazquez-Gutierrez, Pamela; Stevens, Marc J. A.; Gehrig, Peter; Barkow-Oesterreicher, Simon; Lacroix, Christophe; Chassard, Christophe

    2017-01-01

    Background Bifidobacteria are among the first anaerobic bacteria colonizing the gut. Bifidobacteria require iron for growth and their iron-sequestration mechanisms are important for their fitness and possibly inhibit enteropathogens. Here we used combined genomic and proteomic analyses to characterize adaptations to low iron conditions of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2, 2 strains isolated from the feces of iron-deficient African infants and selected for their high iron-seq...

  6. Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation.

    Directory of Open Access Journals (Sweden)

    James B Pease

    2016-02-01

    Full Text Available Speciation events often occur in rapid bursts of diversification, but the ecological and genetic factors that promote these radiations are still much debated. Using whole transcriptomes from all 13 species in the ecologically and reproductively diverse wild tomato clade (Solanum sect. Lycopersicon, we infer the species phylogeny and patterns of genetic diversity in this group. Despite widespread phylogenetic discordance due to the sorting of ancestral variation, we date the origin of this radiation to approximately 2.5 million years ago and find evidence for at least three sources of adaptive genetic variation that fuel diversification. First, we detect introgression both historically between early-branching lineages and recently between individual populations, at specific loci whose functions indicate likely adaptive benefits. Second, we find evidence of lineage-specific de novo evolution for many genes, including loci involved in the production of red fruit color. Finally, using a "PhyloGWAS" approach, we detect environment-specific sorting of ancestral variation among populations that come from different species but share common environmental conditions. Estimated across the whole clade, small but substantial and approximately equal fractions of the euchromatic portion of the genome are inferred to contribute to each of these three sources of adaptive genetic variation. These results indicate that multiple genetic sources can promote rapid diversification and speciation in response to new ecological opportunity, in agreement with our emerging phylogenomic understanding of the complexity of both ancient and recent species radiations.

  7. tRNA-dependent cysteine biosynthetic pathway represents a strategy to increase cysteine contents by preventing it from thermal degradation: thermal adaptation of methanogenic archaea ancestor.

    Science.gov (United States)

    Qu, Ge; Wang, Wei; Chen, Ling-Ling; Qian, Shao-Song; Zhang, Hong-Yu

    2009-10-01

    Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in thermophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaea ancestor.

  8. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress.

    Science.gov (United States)

    Chen, Shuisen; Ding, Guangda; Wang, Zhenhua; Cai, Hongmei; Xu, Fangsen

    2015-03-18

    Given low solubility and immobility in many soils of the world, phosphorus (P) may be the most widely studied macronutrient for plants. In an attempt to gain an insight into the adaptability of Brassica napus to P deficiency, proteome alterations of roots and leaves in two B. napus contrasting genotypes, P-efficient 'Eyou Changjia' and P-inefficient 'B104-2', under long-term low P stress and short-term P-free starvation conditions were investigated, and proteomic combined with comparative genomic analyses were conducted to interpret the interrelation of differential abundance protein species (DAPs) responding to P deficiency with quantitative trait loci (QTLs) for P deficiency tolerance. P-efficient 'Eyou Changjia' had higher dry weight and P content, and showed high tolerance to low P stress compared with P-inefficient 'B104-2'. A total of 146 DAPs were successfully identified by MALDI TOF/TOF MS, which were categorized into several groups including defense and stress response, carbohydrate and energy metabolism, signaling and regulation, amino acid and fatty acid metabolism, protein process, biogenesis and cellular component, and function unknown. 94 of 146 DAPs were mapped to a linkage map constructed by a B. napus population derived from a cross between the two genotypes, and 72 DAPs were located in the confidence intervals of QTLs for P efficiency related traits. We conclude that the identification of these DAPs and the co-location of DAPs with QTLs in the B. napus linkage genetic map provide us novel information in understanding the adaptability of B. napus to P deficiency, and helpful to isolate P-efficient genes in B. napus. Low P seriously limits the production and quality of B. napus. Proteomics and genetic linkage map were widely used to study the adaptive strategies of B. napus response to P deficiency, proteomic combined with comparative genetic analysis to investigate the correlations between DAPs and QTLs are scarce. Thus, we herein investigated

  9. Fortune Favours the Bold: An Agent-Based Model Reveals Adaptive Advantages of Overconfidence in War

    Science.gov (United States)

    Johnson, Dominic D. P.; Weidmann, Nils B.; Cederman, Lars-Erik

    2011-01-01

    Overconfidence has long been considered a cause of war. Like other decision-making biases, overconfidence seems detrimental because it increases the frequency and costs of fighting. However, evolutionary biologists have proposed that overconfidence may also confer adaptive advantages: increasing ambition, resolve, persistence, bluffing opponents, and winning net payoffs from risky opportunities despite occasional failures. We report the results of an agent-based model of inter-state conflict, which allows us to evaluate the performance of different strategies in competition with each other. Counter-intuitively, we find that overconfident states predominate in the population at the expense of unbiased or underconfident states. Overconfident states win because: (1) they are more likely to accumulate resources from frequent attempts at conquest; (2) they are more likely to gang up on weak states, forcing victims to split their defences; and (3) when the decision threshold for attacking requires an overwhelming asymmetry of power, unbiased and underconfident states shirk many conflicts they are actually likely to win. These “adaptive advantages” of overconfidence may, via selection effects, learning, or evolved psychology, have spread and become entrenched among modern states, organizations and decision-makers. This would help to explain the frequent association of overconfidence and war, even if it no longer brings benefits today. PMID:21731627

  10. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira

    Science.gov (United States)

    Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi

    2016-01-01

    Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181

  11. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    Science.gov (United States)

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds. Copyright © 2017 the American Physiological Society.

  12. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    Science.gov (United States)

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-04

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.

  13. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  14. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  15. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Science.gov (United States)

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  16. Analysis of adaptive evolution in Lyssavirus genomes reveals pervasive diversifying selection during species diversification.

    Science.gov (United States)

    Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G

    2014-11-19

    Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  17. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    NARCIS (Netherlands)

    Olsen, Jeanine; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-01-01

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals

  18. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  19. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought

    Directory of Open Access Journals (Sweden)

    Ranjan Alok

    2012-11-01

    Full Text Available Abstract Background Root length and its architecture govern the adaptability of plants to various stress conditions, including drought stress. Genetic variations in root growth, length, and architecture are genotypes dependent. In this study, we compared the drought-induced transcriptome of four genotypes of Gossypium herbaceum that differed in their drought tolerance adaptability. Three different methodologies, namely, microarray, pyrosequencing, and qRT–PCR, were used for transcriptome analysis and validation. Results The variations in root length and growth were found among four genotypes of G.herbaceum when exposed to mannitol-induced osmotic stress. Under osmotic stress, the drought tolerant genotypes Vagad and GujCot-21 showed a longer root length than did by drought sensitive RAHS-14 and RAHS-IPS-187. Further, the gene expression patterns in the root tissue of all genotypes were analyzed. We obtained a total of 794 differentially expressed genes by microarray and 104928 high-quality reads representing 53195 unigenes from the root transcriptome. The Vagad and GujCot-21 respond to water stress by inducing various genes and pathways such as response to stresses, response to water deprivation, and flavonoid pathways. Some key regulatory genes involved in abiotic stress such as AP2 EREBP, MYB, WRKY, ERF, ERD9, and LEA were highly expressed in Vagad and GujCot-21. The genes RHD3, NAP1, LBD, and transcription factor WRKY75, known for root development under various stress conditions, were expressed specifically in Vagad and GujCot-21. The genes related to peroxidases, transporters, cell wall-modifying enzymes, and compatible solutes (amino acids, amino sugars, betaine, sugars, or sugar alcohols were also highly expressed in Vagad and Gujcot-21. Conclusion Our analysis highlights changes in the expression pattern of genes and depicts a small but highly specific set of drought responsive genes induced in response to drought stress. Some of these

  20. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  1. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Directory of Open Access Journals (Sweden)

    Hui Xia

    Full Text Available The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP technique. Great alterations (52.9~54.3% of total individual-locus combinations of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187 was detected on the highly divergent epiloci (HDE. The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  2. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Science.gov (United States)

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  3. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Luo, Qijun; Zhu, Zhenggang; Zhu, Zhujun; Yang, Rui; Qian, Feijian; Chen, Haimin; Yan, Xiaojun

    2014-01-01

    Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  4. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Qijun Luo

    Full Text Available Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1 At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2 After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3 Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  5. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.

    Science.gov (United States)

    Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J

    2010-03-03

    Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.

  6. Thermal and radiation history of meteorites as revealed by their thermoluminescence records

    International Nuclear Information System (INIS)

    Bhandari, N.

    1985-01-01

    Attempts are described to derive information about important parameters of the thermal and radiation history of meteorites from a study of depth profile of thermoluminescence coupled to appropriate annealing studies. In this review some possibilities are examined, emphasizing various factors cardinal to any meaningful application of TL in meteoritics. (author)

  7. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.

  8. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2010-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  9. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  10. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities

    DEFF Research Database (Denmark)

    Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.

    2013-01-01

    to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer...... and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible...... a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling....

  11. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays

    Science.gov (United States)

    Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal

    2018-01-01

    While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459

  12. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears.

    Science.gov (United States)

    Liu, Shiping; Lorenzen, Eline D; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C; Doherty, Aoife; O'Connell, Mary J; McInerney, James O; Born, Erik W; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-05-08

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification

    KAUST Repository

    Dineshram, R.; Q., Quan; Sharma, Rakesh; Chandramouli, Kondethimmanahalli; Yalamanchili, Hari Krishna; Chu, Ivan; Thiyagarajan, Vengatesen

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).

  14. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification

    KAUST Repository

    Dineshram, R.

    2015-10-28

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world\\'s edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).

  15. Three-dimensionally preserved integument reveals hydrodynamic adaptations in the extinct marine lizard Ectenosaurus (Reptilia, Mosasauridae.

    Directory of Open Access Journals (Sweden)

    Johan Lindgren

    Full Text Available The physical properties of water and the environment it presents to its inhabitants provide stringent constraints and selection pressures affecting aquatic adaptation and evolution. Mosasaurs (a group of secondarily aquatic reptiles that occupied a broad array of predatory niches in the Cretaceous marine ecosystems about 98-65 million years ago have traditionally been considered as anguilliform locomotors capable only of generating short bursts of speed during brief ambush pursuits. Here we report on an exceptionally preserved, long-snouted mosasaur (Ectenosaurus clidastoides from the Santonian (Upper Cretaceous part of the Smoky Hill Chalk Member of the Niobrara Formation in western Kansas, USA, that contains phosphatized remains of the integument displaying both depth and structure. The small, ovoid neck and/or anterior trunk scales exhibit a longitudinal central keel, and are obliquely arrayed into an alternating pattern where neighboring scales overlap one another. Supportive sculpturing in the form of two parallel, longitudinal ridges on the inner scale surface and a complex system of multiple, superimposed layers of straight, cross-woven helical fiber bundles in the underlying dermis, may have served to minimize surface deformation and frictional drag during locomotion. Additional parallel fiber bundles oriented at acute angles to the long axis of the animal presumably provided stiffness in the lateral plane. These features suggest that the anterior torso of Ectenosaurus was held somewhat rigid during swimming, thereby limiting propulsive movements to the posterior body and tail.

  16. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats.

    Science.gov (United States)

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-06-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.

  17. Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons.

    Science.gov (United States)

    Peplowski, Patrick N; Beck, Andrew W; Lawrence, David J

    2016-03-01

    Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near-surface (depth lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands. We observe that the regions of lowest neutron absorption, which correspond to estimated plagioclase concentrations of >85%, are generally associated with large impact basins and are colocated with clusters of nearly pure plagioclase identified with spectral reflectance data.

  18. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

    Science.gov (United States)

    Stöckl, Anna L; Kihlström, Klara; Chandler, Steven; Sponberg, Simon

    2017-04-05

    Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  19. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts

    KAUST Repository

    Cziesielski, Maha J.

    2018-04-18

    Corals and their endosymbiotic dinoflagellates of the genus Symbiodinium have a fragile relationship that breaks down under heat stress, an event known as bleaching. However, many coral species have adapted to high temperature environments such as the Red Sea (RS). To investigate mechanisms underlying temperature adaptation in zooxanthellate cnidarians we compared transcriptome- and proteome-wide heat stress response (24 h at 32°C) of three strains of the model organism Aiptasia pallida from regions with differing temperature profiles; North Carolina (CC7), Hawaii (H2) and the RS. Correlations between transcript and protein levels were generally low but inter-strain comparisons highlighted a common core cnidarian response to heat stress, including protein folding and oxidative stress pathways. RS anemones showed the strongest increase in antioxidant gene expression and exhibited significantly lower reactive oxygen species (ROS) levels in hospite However, comparisons of antioxidant gene and protein expression between strains did not show strong differences, indicating similar antioxidant capacity across the strains. Subsequent analysis of ROS production in isolated symbionts confirmed that the observed differences of ROS levels in hospite were symbiont-driven. Our findings indicate that RS anemones do not show increased antioxidant capacity but may have adapted to higher temperatures through association with more thermally tolerant symbionts.

  20. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts

    KAUST Repository

    Cziesielski, Maha J.; Liew, Yi Jin; Cui, Guoxin; Schmidt-Roach, Sebastian; Campana, Sara; Marondedze, Claudius; Aranda, Manuel

    2018-01-01

    Corals and their endosymbiotic dinoflagellates of the genus Symbiodinium have a fragile relationship that breaks down under heat stress, an event known as bleaching. However, many coral species have adapted to high temperature environments such as the Red Sea (RS). To investigate mechanisms underlying temperature adaptation in zooxanthellate cnidarians we compared transcriptome- and proteome-wide heat stress response (24 h at 32°C) of three strains of the model organism Aiptasia pallida from regions with differing temperature profiles; North Carolina (CC7), Hawaii (H2) and the RS. Correlations between transcript and protein levels were generally low but inter-strain comparisons highlighted a common core cnidarian response to heat stress, including protein folding and oxidative stress pathways. RS anemones showed the strongest increase in antioxidant gene expression and exhibited significantly lower reactive oxygen species (ROS) levels in hospite However, comparisons of antioxidant gene and protein expression between strains did not show strong differences, indicating similar antioxidant capacity across the strains. Subsequent analysis of ROS production in isolated symbionts confirmed that the observed differences of ROS levels in hospite were symbiont-driven. Our findings indicate that RS anemones do not show increased antioxidant capacity but may have adapted to higher temperatures through association with more thermally tolerant symbionts.

  1. Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2018-06-01

    Full Text Available Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection. A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.

  2. Musical training generalises across modalities and reveals efficient and adaptive mechanisms for reproducing temporal intervals.

    Science.gov (United States)

    Aagten-Murphy, David; Cappagli, Giulia; Burr, David

    2014-03-01

    Expert musicians are able to time their actions accurately and consistently during a musical performance. We investigated how musical expertise influences the ability to reproduce auditory intervals and how this generalises across different techniques and sensory modalities. We first compared various reproduction strategies and interval length, to examine the effects in general and to optimise experimental conditions for testing the effect of music, and found that the effects were robust and consistent across different paradigms. Focussing on a 'ready-set-go' paradigm subjects reproduced time intervals drawn from distributions varying in total length (176, 352 or 704 ms) or in the number of discrete intervals within the total length (3, 5, 11 or 21 discrete intervals). Overall, Musicians performed more veridical than Non-Musicians, and all subjects reproduced auditory-defined intervals more accurately than visually-defined intervals. However, Non-Musicians, particularly with visual stimuli, consistently exhibited a substantial and systematic regression towards the mean interval. When subjects judged intervals from distributions of longer total length they tended to regress more towards the mean, while the ability to discriminate between discrete intervals within the distribution had little influence on subject error. These results are consistent with a Bayesian model that minimizes reproduction errors by incorporating a central tendency prior weighted by the subject's own temporal precision relative to the current distribution of intervals. Finally a strong correlation was observed between all durations of formal musical training and total reproduction errors in both modalities (accounting for 30% of the variance). Taken together these results demonstrate that formal musical training improves temporal reproduction, and that this improvement transfers from audition to vision. They further demonstrate the flexibility of sensorimotor mechanisms in adapting to

  3. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis.

    Science.gov (United States)

    Davies, Kalina T J; Bennett, Nigel C; Tsagkogeorga, Georgia; Rossiter, Stephen J; Faulkes, Christopher G

    2015-12-01

    During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein-protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Tse, Herman; Teng, Jade L L; Curreem, Shirly O T; Tsang, Alan K L; Fan, Rachel Y Y; Wong, Gilman K M; Huang, Yi; Loman, Nicholas J; Snyder, Lori A S; Cai, James J; Huang, Jian-Dong; Mak, William; Pallen, Mark J; Lok, Si; Yuen, Kwok-Yung

    2009-03-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other

  5. Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Yuan, Shuai; Song, Jia-liang

    2014-01-01

    PTC (positive temperature coefficient) material is a kind of thermo-sensitive material. In this study, a series of novel PTC materials adapted to thermal control of electron devices are prepared. By adding different low-melting-point blend matrixes into GP (graphite powder)/LDPE (low density polyethylene) composite, the Curie temperatures are adjusted to 9 °C, 25 °C, 34 °C and 41 °C, and the resistance–temperature coefficients are enhanced to 1.57/°C–2.15/°C. These PTC materials remain solid in the temperature region of PTC effect, which makes it possible to be used as heating element to achieve adaptive temperature control. In addition, the adaptive thermal control performances of this kind of materials are investigated both experimentally and theoretically. The result shows that the adaptive effect becomes more significant while the resistance–temperature coefficient increases. A critical heating power defined as the initial heating power which makes the equilibrium temperature reach terminal temperature is presented. The adaptive temperature control will be effective only if the initial power is below this value. The critical heating power is determined by the Curie temperature and resistance–temperature coefficient of PTC materials, and a higher Curie temperature or resistance–temperature coefficient will lead to a larger critical heating power. - Highlights: • A series of novel PTC (positive temperature coefficient) materials were prepared. • The Curie point of PTC material can be adjusted by choosing different blend matrixes. • The resistance–temperature coefficient of PTC materials is enhanced to 2.15/°C. • The material has good adaptive temperature control ability with no auxiliary method. • A mathematical model is established to analyze the performance and applicability

  6. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    International Nuclear Information System (INIS)

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  7. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci.

    Science.gov (United States)

    Pidgeon, Sean E; Pires, Marcos M

    2017-07-21

    Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.

  8. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis).

    Science.gov (United States)

    Saarman, Norah P; Kober, Kord M; Simison, W Brian; Pogson, Grant H

    2017-10-01

    Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage

  9. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  10. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history

    Science.gov (United States)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi

    2018-02-01

    Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.

  11. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae.

    Science.gov (United States)

    Badilatti, Sandro D; Christen, Patrik; Parkinson, Ian; Müller, Ralph

    2016-12-08

    Osteoporosis is a major medical burden and its impact is expected to increase in our aging society. It is associated with low bone density and microstructural deterioration. Treatments are available, but the critical factor is to define individuals at risk from osteoporotic fractures. Computational simulations investigating not only changes in net bone tissue volume, but also changes in its microstructure where osteoporotic deterioration occur might help to better predict the risk of fractures. In this study, bone remodeling simulations with a mechanical feedback loop were used to predict microstructural changes due to osteoporosis and their impact on bone fragility from 50 to 80 years of age. Starting from homeostatic bone remodeling of a group of seven, mixed sex whole vertebrae, five mechanostat models mimicking different biological alterations associated with osteoporosis were developed, leading to imbalanced bone formation and resorption with a total net loss of bone tissue. A model with reduced bone formation rate and cell sensitivity led to the best match of morphometric indices compared to literature data and was chosen to predict postmenopausal osteoporotic bone loss in the whole group. Thirty years of osteoporotic bone loss were predicted with changes in morphometric indices in agreement with experimental measurements, and only showing major deviations in trabecular number and trabecular separation. In particular, although being optimized to match to the morphometric indices alone, the predicted bone loss revealed realistic changes on the organ level and on biomechanical competence. While the osteoporotic bone was able to maintain the mechanical stability to a great extent, higher fragility towards error loads was found for the osteoporotic bones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Adaptive principles for thermal comfort in dwellings: From comfort temperatures to avoiding discomfort

    OpenAIRE

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the actual perceived thermal comfort. This paper analyses the knowledge of the different disciplines and integrates it to get a holistic image of comfort and its delivery systems as well as opportunities ...

  13. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  14. A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management

    International Nuclear Information System (INIS)

    Wang, Ji-Xiang; Li, Yun-Ze; Zhang, Hong-Sheng; Wang, Sheng-Nan; Liang, Yi-Hao; Guo, Wei; Liu, Yang; Tian, Shao-Ping

    2016-01-01

    Highlights: • A highly self-adaptive cold plate integrated with paraffin-based actuator is proposed. • Higher operating economy is attained due to an energy-efficient strategy. • A greater compatibility of the current space control system is obtained. • Model was entrenched theoretically to design the system efficiently. • A strong self-adaptability of the cold plate is observed experimentally. - Abstract: Aiming to improve the conventional single-phase mechanically pumped fluid loop applied in spacecraft thermal control system, a novel actively-pumped loop using distributed thermal control strategy was proposed. The flow control system for each branch consists primarily of a thermal control valve integrated with a paraffin-based actuator residing in the front part of each corresponding cold plate, where both coolant’s flow rate and the cold plate’s heat removal capability are well controlled sensitively according to the heat loaded upon the cold plate due to a conversion between thermal and mechanical energies. The operating economy enhances remarkably owing to no energy consumption in flow control process. Additionally, realizing the integration of the sensor, controller and actuator systems, it simplifies structure of the traditional mechanically pumped fluid loop as well. Revolving this novel scheme, mathematical model regarding design process of the highly specialized cold plate was entrenched theoretically. A validating system as a prototype was established on the basis of the design method and the scheduled objective of the controlled temperature (43 °C). Then temperature control performances of the highly self-adaptive cold plate under various operating conditions were tested experimentally. During almost all experiments, the controlled temperature remains within a range of ±2 °C around the set-point. Conclusions can be drawn that this self-driven control system is stable with sufficient fast transient responses and sufficient small steady

  15. Adaptive principles for thermal comfort in dwellings : From comfort temperatures to avoiding discomfort

    NARCIS (Netherlands)

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the

  16. Immunohistochemical characterization of the chemosensory pulmonary neuroepithelial bodies in the naked mole-rat reveals a unique adaptive phenotype.

    Directory of Open Access Journals (Sweden)

    Jie Pan

    Full Text Available The pulmonary neuroepithelial bodies (NEBs constitute polymodal airway chemosensors for monitoring and signaling ambient gas concentrations (pO2, pCO2/H+ via complex innervation to the brain stem controlling breathing. NEBs produce the bioactive amine, serotonin (5-HT, and a variety of peptides with multiple effects on lung physiology and other organ systems. NEBs in mammals appear prominent and numerous during fetal and neonatal periods, and decline in the post-natal period suggesting an important role during perinatal adaptation. The naked mole-rat (NMR, Heterocephalus glaber, has adapted to the extreme environmental conditions of living in subterranean burrows in large colonies (up to 300 colony mates. The crowded, unventilated burrows are environments of severe hypoxia and hypercapnia. However, NMRs adjust readily to above ground conditions. The chemosensory NEBs of this species were characterized and compared to those of the conventional Wistar rat (WR to identify similarities and differences that could explain the NMR's adaptability to environments. A multilabel immunohistochemical analysis combined with confocal microscopy revealed that the expression patterns of amine, peptide, neuroendocrine, innervation markers and chemosensor component proteins in NEBs of NMR were similar to that of WR. However, we found the following differences: 1 NEBs in both neonatal and adult NMR lungs were significantly larger and more numerous as compared to WR; 2 NEBs in NMR had a more variable compact cell organization and exhibited significant differences in the expression of adhesion proteins; 3 NMR NEBs showed a significantly greater ratio of 5-HT positive cells with an abundance of 5-HT; 4 NEBs in NMR expressed the proliferating cell nuclear antigen (PCNA and the neurogenic gene (MASH1 indicating active proliferation and a state of persistent differentiation. Taken together our findings suggest that NEBs in lungs of NMR are in a hyperactive, functional

  17. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Directory of Open Access Journals (Sweden)

    Georg Berding

    Full Text Available Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation. The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  18. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Science.gov (United States)

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  19. Immunohistochemical characterization of the chemosensory pulmonary neuroepithelial bodies in the naked mole-rat reveals a unique adaptive phenotype.

    Science.gov (United States)

    Pan, Jie; Park, Thomas J; Cutz, Ernest; Yeger, Herman

    2014-01-01

    The pulmonary neuroepithelial bodies (NEBs) constitute polymodal airway chemosensors for monitoring and signaling ambient gas concentrations (pO2, pCO2/H+) via complex innervation to the brain stem controlling breathing. NEBs produce the bioactive amine, serotonin (5-HT), and a variety of peptides with multiple effects on lung physiology and other organ systems. NEBs in mammals appear prominent and numerous during fetal and neonatal periods, and decline in the post-natal period suggesting an important role during perinatal adaptation. The naked mole-rat (NMR), Heterocephalus glaber, has adapted to the extreme environmental conditions of living in subterranean burrows in large colonies (up to 300 colony mates). The crowded, unventilated burrows are environments of severe hypoxia and hypercapnia. However, NMRs adjust readily to above ground conditions. The chemosensory NEBs of this species were characterized and compared to those of the conventional Wistar rat (WR) to identify similarities and differences that could explain the NMR's adaptability to environments. A multilabel immunohistochemical analysis combined with confocal microscopy revealed that the expression patterns of amine, peptide, neuroendocrine, innervation markers and chemosensor component proteins in NEBs of NMR were similar to that of WR. However, we found the following differences: 1) NEBs in both neonatal and adult NMR lungs were significantly larger and more numerous as compared to WR; 2) NEBs in NMR had a more variable compact cell organization and exhibited significant differences in the expression of adhesion proteins; 3) NMR NEBs showed a significantly greater ratio of 5-HT positive cells with an abundance of 5-HT; 4) NEBs in NMR expressed the proliferating cell nuclear antigen (PCNA) and the neurogenic gene (MASH1) indicating active proliferation and a state of persistent differentiation. Taken together our findings suggest that NEBs in lungs of NMR are in a hyperactive, functional and

  20. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet

    Science.gov (United States)

    Liu, Han; Chen, Chunhai; Gao, Zexia; Min, Jiumeng; Gu, Yongming; Jian, Jianbo; Jiang, Xiewu; Cai, Huimin; Ebersberger, Ingo; Xu, Meng; Zhang, Xinhui; Chen, Jianwei; Luo, Wei; Chen, Boxiang; Chen, Junhui; Liu, Hong; Li, Jiang; Lai, Ruifang; Bai, Mingzhou; Wei, Jin; Yi, Shaokui; Wang, Huanling; Cao, Xiaojuan; Zhou, Xiaoyun; Zhao, Yuhua; Wei, Kaijian; Yang, Ruibin; Liu, Bingnan; Zhao, Shancen; Fang, Xiaodong

    2017-01-01

    Abstract The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation. PMID:28535200

  1. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    Terumasa Ikeda

    2018-04-01

    Full Text Available HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs.

  2. The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation.

    Science.gov (United States)

    Eckhart, V M; Geber, M A; Morris, W F; Fabio, E S; Tiffin, P; Moeller, D A

    2011-10-01

    Potential causes of species' geographic distribution limits fall into two broad classes: (1) limited adaptation across spatially variable environments and (2) limited opportunities to colonize unoccupied areas. Combining demographic studies, analyses of demographic responses to environmental variation, and species distribution models, we investigated the causes of range limits in a model system, the eastern border of the California annual plant Clarkia xantiana ssp. xantiana. Vital rates of 20 populations varied with growing season temperature and precipitation: fruit number and overwinter survival of 1-year-old seeds declined steeply, while current-year seed germination increased modestly along west-to-east gradients in decreasing temperature, decreasing mean precipitation, and increasing variation in precipitation. Long-term stochastic finite rate of increase, λ(s), exhibited a fourfold range and varied among geologic surface materials as well as with temperature and precipitation. Growth rate declined significantly toward the eastern border, falling below 1 in three of the five easternmost populations. Distribution models employing demographically important environmental variables predicted low habitat favorability beyond the eastern border. Models that filtered or weighted population presences by λ(s) predicted steeper eastward declines in favorability and assigned greater roles in setting the distribution to among-year variation in precipitation and to geologic surface material. These analyses reveal a species border likely set by limited adaptation to declining environmental quality.

  3. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  4. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Science.gov (United States)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagye, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-01-01

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics. PMID:23045686

  5. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hilden, Kristiina; Kues, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wosten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-04-27

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the button mushroom forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  6. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche.

    Science.gov (United States)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G; Ohm, Robin A; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L; Bailey, Andrew M; Billette, Christophe; Coutinho, Pedro M; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; Labutti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lucas, Susan M; Murat, Claude; Riley, Robert W; Salamov, Asaf A; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A B; Xu, Jianping; Eastwood, Daniel C; Foster, Gary D; Sonnenberg, Anton S M; Cullen, Dan; de Vries, Ronald P; Lundell, Taina; Hibbett, David S; Henrissat, Bernard; Burton, Kerry S; Kerrigan, Richard W; Challen, Michael P; Grigoriev, Igor V; Martin, Francis

    2012-10-23

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  7. Adaptation, validation and application of the chemo-thermal oxidation method to quantify black carbon in soils

    International Nuclear Information System (INIS)

    Agarwal, Tripti; Bucheli, Thomas D.

    2011-01-01

    The chemo-thermal oxidation method at 375 o C (CTO-375) has been widely used to quantify black carbon (BC) in sediments. In the present study, CTO-375 was tested and adapted for application to soil, accounting for some matrix specific properties like high organic carbon (≤39%) and carbonate (≤37%) content. Average recoveries of standard reference material SRM-2975 ranged from 25 to 86% for nine representative Swiss and Indian samples, which is similar to literature data for sediments. The adapted method was applied to selected samples of the Swiss soil monitoring network (NABO). BC content exhibited different patterns in three soil profiles while contribution of BC to TOC was found maximum below the topsoil at all three sites, however at different depths (60-130 cm). Six different NABO sites exhibited largely constant BC concentrations over the last 25 years, with short-term (6 months) prevailing over long-term (5 years) temporal fluctuations. - Research highlights: → The CTO-375 method was adapted and validated for BC analysis in soils. → Method validation figures of merit proofed satisfactory. → Application is shown with soil cores and topsoil temporal variability. → BC content can be elevated in subsurface soils. → BC contents in surface soils were largely constant over the last 25 years. - Although widely used also for soils, the chemo-thermal oxidation method at 375 o C to quantify black carbon has never been properly validated for this matrix before.

  8. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  9. Adaptive Thermal Comfort in Learning Spaces: A Study of the Cold Period in Ensenada, Baja California

    Directory of Open Access Journals (Sweden)

    Julio Rincón

    2017-12-01

    Full Text Available Environmental thermal conditions decisively influence people’s performance, comfort, well-being and mood. In closed spaces, where people spend 80% of their time, thermal perception is a phenomenon studied from a multidisciplinary methodological approach. In Mexico, thermal comfort has been studied in isolation in different cities in the country, specifically at sites with warm, temperate or semi-cold bioclimate. The thermal estimates presented in this paper are the result of a thermal comfort study carried out during the cold period in the city of Ensenada, Baja California, which has a dry temperate bioclimate. The study was carried out from January 30th to March 3rd 2017 and consisted of the application of a questionnaire and the simultaneous recording of temperature, relative humidity and wind speed. The questionnaire was designed based on the subjective assessment scale suggested in ISO 10551 and ANSI/ASHRAE 55, while the instruments for measuring and recording environmental variables were selected and used based on ISO 7726. A database with 983 observations was created, and the data were processed using the Averages Intervals Thermal Sensation method. The thermal comfort range estimated for indoor spaces was 16.8 °C to 23.8 °C, with an ideal neutral temperature of 20.3 °C. The percentage of satisfaction vote with these results was 91%.

  10. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures

    Directory of Open Access Journals (Sweden)

    Pride David T

    2008-09-01

    Full Text Available Abstract Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC, where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of

  11. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures.

    Science.gov (United States)

    Pride, David T; Schoenfeld, Thomas

    2008-09-17

    Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs

  12. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow

    Science.gov (United States)

    Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang

    2018-05-01

    Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.

  13. Signs of long-term adaptation to permanent brain damage as revealed by prehension studies of children with spastic hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.; Latash, M.L.; Levin, M.

    2003-01-01

    This chapter focusses on signs of long-term adaptation to permanent brain damage in children with spastic hemiparesis. First, we recognize that adaptation processes may occur at various time scales. Then, we formulate a tentative strategy to infer signs of adaptation from behavioral data.

  14. Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications.

    Directory of Open Access Journals (Sweden)

    Weibing Shi

    Full Text Available Metagenome analysis of the gut symbionts of three different insects was conducted as a means of comparing taxonomic and metabolic diversity of gut microbiomes to diet and life history of the insect hosts. A second goal was the discovery of novel biocatalysts for biorefinery applications. Grasshopper and cutworm gut symbionts were sequenced and compared with the previously identified metagenome of termite gut microbiota. These insect hosts represent three different insect orders and specialize on different food types. The comparative analysis revealed dramatic differences among the three insect species in the abundance and taxonomic composition of the symbiont populations present in the gut. The composition and abundance of symbionts was correlated with their previously identified capacity to degrade and utilize the different types of food consumed by their hosts. The metabolic reconstruction revealed that the gut metabolome of cutworms and grasshoppers was more enriched for genes involved in carbohydrate metabolism and transport than wood-feeding termite, whereas the termite gut metabolome was enriched for glycosyl hydrolase (GH enzymes relevant to lignocellulosic biomass degradation. Moreover, termite gut metabolome was more enriched with nitrogen fixation genes than those of grasshopper and cutworm gut, presumably due to the termite's adaptation to the high fiber and less nutritious food types. In order to evaluate and exploit the insect symbionts for biotechnology applications, we cloned and further characterized four biomass-degrading enzymes including one endoglucanase and one xylanase from both the grasshopper and cutworm gut symbionts. The results indicated that the grasshopper symbiont enzymes were generally more efficient in biomass degradation than the homologous enzymes from cutworm symbionts. Together, these results demonstrated a correlation between the composition and putative metabolic functionality of the gut microbiome and host

  15. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    International Nuclear Information System (INIS)

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-01-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode

  16. Fine-scale thermal adaptation in a green turtle nesting population

    NARCIS (Netherlands)

    Weber, Sam B.; Broderick, Annette C.; Groothuis, Ton G. G.; Ellick, Jacqui; Godley, Brendan J.; Blount, Jonathan D.

    2012-01-01

    The effect of climate warming on the reproductive success of ectothermic animals is currently a subject of major conservation concern. However, for many threatened species, we still know surprisingly little about the extent of naturally occurring adaptive variation in heat-tolerance. Here, we show

  17. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Juliana Durack

    Full Text Available The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation.

  18. Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments.

    Science.gov (United States)

    Xing, Zhuqing; Geng, Weitao; Li, Chao; Sun, Ye; Wang, Yanping

    2017-10-09

    It is important for probiotics that are currently utilized in the dairy industry to have clear genetic backgrounds. In this study, the genetic characteristics of Lactobacillus kefiranofaciens ZW3 were studied by undertaking a comparative genomics study, and key genes for adaptation to different environments were investigated and validated in vitro. Evidence for horizontal gene transfer resulting in strong self-defense mechanisms was detected in the ZW3 genome. We identified a series of genes relevant for dairy environments and the intestinal tract, particularly for extracellular polysaccharide (EPS) production. Reverse transcription-qPCR (RT-qPCR) revealed significant increases in the relative expression of pgm, ugp, and uge during the mid-logarithmic phase, whereas the expression of pgi was higher at the beginning of the stationary phase. The enzymes encoded by these four genes concertedly regulated carbon flux, which in turn modulated the production of EPS precursors. Moreover, ZW3 tolerated pH 3.5 and 3% bile salt and retained cell surface hydrophobicity and auto-aggregation. In conclusion, we explored the potential of ZW3 for utilization in both the dairy industry and in probiotic applications. Additionally, we elucidated the regulation of the relevant genes involved in EPS production.

  19. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangailinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Etten, James L. Van

    2010-05-06

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

  20. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    2009-01-01

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f ν (24 μm)/f ν (R) ∼> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ∼ 2 ± 0.5. Extreme mid-IR luminosities (L IR > 10 12-14 ) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ∼1 kpc, circumstantial evidence for ongoing mergers.

  1. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    Science.gov (United States)

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  2. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library.

    Science.gov (United States)

    Laia, Marcelo L; Moreira, Leandro M; Dezajacomo, Juliana; Brigati, Joice B; Ferreira, Cristiano B; Ferro, Maria I T; Silva, Ana C R; Ferro, Jesus A; Oliveira, Julio C F

    2009-01-16

    Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the

  3. Adaptation of existent thermal park to the new regulatory frame sustainable

    International Nuclear Information System (INIS)

    Lopez Alvarez, L.

    2010-01-01

    In the last decade 2000-2010), both energy demand and peak capacity needs have experienced an important increase. Moratorium on new nuclear units and the reduced potential for new hydro projects have led to new installed capacity being basically covered by thermal power plants. Also in these latest years, the regulatory frame has developed different initiative destined to get a more environmentally sustainable energy sector. to name a few, the strong support to renewable energy, the drastic reduction in acid emissions to atmosphere (NO x , SO x and particulate matter) and carbon emissions reduction policies have had a great impact on operation profiles and requirements on thermal plants, leading to investment on new equipment and on the existing assets. Along this period, electric utilities have added these sustainability criteria to the development and management of their thermal portfolio, taking some decisions that have shaped the current generation map in Spain. Nonetheless, in the short and mid term, utilities are facing new challenges such as greater operation flexibility to allow the increasing market share of non-manageable energies or the applicability of more ambitious goals in the global reduction of acid an carbon emissions. (Author)

  4. An adaptive thermal comfort model for hot humid South-East Asia

    OpenAIRE

    Nguyen, Anh Tuan; Singh, Manoj Kumar; Reiter, Sigrid

    2012-01-01

    The present paper presents a full procedure to develop an adaptive comfort model for South-East Asia. Meta-analysis on large number of observations from field surveys which were conducted in this region was employed. Standardization and bias control of the database were fully reported. Statistical tests of significance and weighted regression method applied in the analyses strengthened the reliability of the findings. This paper found a great influence of ‘Griffiths constant’ on the establish...

  5. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation.

    Science.gov (United States)

    Ruan, Yunfeng; Shen, Lu; Zou, Yan; Qi, Zhengnan; Yin, Jun; Jiang, Jie; Guo, Liang; He, Lin; Chen, Zijiang; Tang, Zisheng; Qin, Shengying

    2015-02-25

    Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. Prevotella intermedia ZT

  6. El enfoque adaptativo del confort térmico en Sevilla = The adaptive approach to thermal comfort in Seville.

    Directory of Open Access Journals (Sweden)

    D. Sánchez

    2016-04-01

    Full Text Available Aunque los estándares de confort en los edificios de oficinas acondicionados con medios mecánicos se han estudiado ampliamente a través de la norma ISO 7730 basada en los estudios de Fanger, todavía no existe un enfoque consensuado para el confort térmico en las viviendas. Muchas de esas viviendas, que componen un bloque, se han construido antes de que se introdujeran normas de ahorro de energía, por lo que existe un alto consumo energético que tiene un efecto sobre el medio ambiente y la economía. A través de los años, el modelo de confort térmico más utilizado se basa en un modelo estático, en el que el ser humano es similar a un receptor pasivo de los estímulos térmicos, mientras que el modelo adaptativo deja en manos del ocupante hacer algunos ajustes y lograr confort a través de acciones y de la adaptación psicológica. La presente investigación tiene como objetivo estudiar los límites de confort adaptativo en una vivienda similar a la mencionada anteriormente, con el fin de regular el uso de aire acondicionado y calefacción, y además reducir el exceso de consumo de energía. Abstract Although comfort standards in mechanically conditioned office buildings have been widely studied through ISO 7730 developed by Fanger, there is not a consensual approach to thermal comfort in dwellings yet. Many of those dwellings, which compose the housing block, have been built before the energy saving regulations were introduced and are generally neglected, so there is a high energy consumption which has an effect on environment and economy. Through the years, the comfort model applied to thermal comfort is a static model, in which the human being is similar to a passive recipient of thermal stimuli, while the adaptive model let the occupant make some adjustments and achieve their comfort through behavioral and psychological adaption. The present research is aimed to study the adaptive comfort limits in a dwelling similar to the ones

  7. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea

    KAUST Repository

    Ngugi, David

    2014-08-08

    The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate \\'switch\\' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.

  8. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea

    Science.gov (United States)

    Kamanda Ngugi, David; Blom, Jochen; Alam, Intikhab; Rashid, Mamoon; Ba-Alawi, Wail; Zhang, Guishan; Hikmawan, Tyas; Guan, Yue; Antunes, Andre; Siam, Rania; El Dorry, Hamza; Bajic, Vladimir; Stingl, Ulrich

    2015-01-01

    The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate ‘switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA. PMID:25105904

  9. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea

    KAUST Repository

    Ngugi, David; Blom, Jochen; Alam, Intikhab; Rashid, Mamoon; Ba Alawi, Wail; Zhang, Guishan; Hikmawan, Tyas I.; Guan, Yue; Antunes, Andre; Siam, Rania; El-Dorry, Hamza A A; Bajic, Vladimir B.; Stingl, Ulrich

    2014-01-01

    The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.

  10. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea.

    Science.gov (United States)

    Kamanda Ngugi, David; Blom, Jochen; Alam, Intikhab; Rashid, Mamoon; Ba-Alawi, Wail; Zhang, Guishan; Hikmawan, Tyas; Guan, Yue; Antunes, Andre; Siam, Rania; El Dorry, Hamza; Bajic, Vladimir; Stingl, Ulrich

    2015-02-01

    The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.

  11. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    2012-12-01

    Full Text Available Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90 interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red, but not osmotic stress (NaCl. We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling.

  12. An Adaptive Neuro-Fuzzy Inference System for Sea Level Prediction Considering Tide-Generating Forces and Oceanic Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Li-Ching Lin Hsien-Kuo Chang

    2008-01-01

    Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.

  13. Human tracking in thermal images using adaptive particle filters with online random forest learning

    Science.gov (United States)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  14. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    Science.gov (United States)

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  15. Adaptation of the HCPB DEMO TBM as breeding blanket for ITER : Neutronic and thermal analyses

    International Nuclear Information System (INIS)

    Aquaro, D.; Morellini, D.; Cerullo, N.

    2006-01-01

    Two breeding blanket are presently developed in Europe for the DEMO reactor: the first one, the Helium Cooled Lithium Lead (HCLL) uses a liquid breeder while the other , the Helium Cooled Pebble Bed (HCPB), uses a solid breeder in form of pebble bed. The modules of these blankets, called Test Blanket Modules (TBM) will be located in correspondence of the equatorial ports of ITER in order to be tested. ITER FEAT was designed with shielding blankets, therefore in the final stage of the experiment, in the foreseen tritium -deuterium operation phase, the tritium will be supplied to the reactor and not produced inside it. Since the production of tritium is of main importance for the feasibility of a nuclear fusion reactor, perhaps in the ITER final stage, the shielding blanket could be substituted by means of a breeding blanket. The geometry and composition of this breeding blanket would be, of course, similar to that of TBM which demonstrated to have the best performances. This paper illustrates a neutronic and thermal analysis of an hypothetical triziogen blanket for ITER FEAT made similar to a HCPB test module. The main aims of the performed analyses are to determine the Tritium Breeding Ratio (TBR) considering different solid breeders (Li 4 SiO 4 and Li 2 TiO 3 ) with different enrichment in 6 Li and different structural materials (a 9%CRWVTa reduced activation ferritic martensitic steel (EUROFER) or ceramic matrix composites like SiCf/SiC). The breeding blanket design is compared considering the highest value of TBR and the verification of the temperature constraints ( 550 o C for the steel, 950 o C for the breeder and 650 o C for the Beryllium). The neutronic analyses have been performed by means of MCNP-4C code and the thermal analyses using the MSC-MARC code. A TBR about equal 1 was obtained with a SiCf/SiC structural material and a Li 4 SiO 4 breeder. The performed analyses have to be considered preliminary and an academic exercise, nevertheless they could give

  16. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].

    Science.gov (United States)

    Liu, Xiuying; He, Xiuping; Lu, Ying; Zhang, Borun

    2011-07-01

    Ethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, in the process of industrial production of ethanol, both cell growth and fermentation of ethanologenic S. cerevisiae are dramatically affected by environmental stresses, such as thermal stress. In this study, we improved both the thermotolerance and fermentation performance of industrial ethanologenic S. cerevisiae by combined usage of chemical mutagenesis and genomic DNA mutagenesis-based genetic recombination method. The recombinant S. cerevisiae strain T44-2 could grow at 44 degrees C, 3 degrees C higher than that of the original strain CE6. The survival rate of T44-2 was 1.84 and 1.87-fold of that of CE6 when heat shock at 48 degrees C and 52 degrees C for 1 h respectively. At temperature higher than 37 degrees C, recombinant strain T44-2 always gave higher cell growth and ethanol production than those of strain CE6. Meanwhile, from 30 degrees C to 40 degrees C, recombinant strain T44-2 produces 91.2-83.8 g/L of ethanol from 200 g/L of glucose, which indicated that the recombinant strain T44-2 had both thermotolerance and broad thermal adaptability. The work offers a novel method, called genomic DNA mutagenesis-based genetic recombination, to improve the physiological functions of S. cerevisiae.

  17. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  18. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Science.gov (United States)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  19. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau

    Science.gov (United States)

    Qiao, Qin; Wang, Qia; Han, Xi; Guan, Yanlong; Sun, Hang; Zhong, Yang; Huang, Jinling; Zhang, Ticao

    2016-02-01

    The extreme environment of the Qinghai-Tibet Plateau (QTP) provides an ideal natural laboratory for studies on adaptive evolution. Few genome/transcriptome based studies have been conducted on how plants adapt to the environments of QTP compared to numerous studies on vertebrates. Crucihimalaya himalaica is a close relative of Arabidopsis with typical QTP distribution, and is hoped to be a new model system to study speciation and ecological adaptation in extreme environment. In this study, we de novo generated a transcriptome sequence of C. himalaica, with a total of 49,438 unigenes. Compared to five relatives, 10,487 orthogroups were shared by all six species, and 4,286 orthogroups contain putative single copy gene. Further analysis identified 487 extremely significantly positively selected genes (PSGs) in C. himalaica transcriptome. Theses PSGs were enriched in functions related to specific adaptation traits, such as response to radiation, DNA repair, nitrogen metabolism, and stabilization of membrane. These functions are responsible for the adaptation of C. himalaica to the high radiation, soil depletion and low temperature environments on QTP. Our findings indicate that C. himalaica has evolved complex strategies for adapting to the extreme environments on QTP and provide novel insights into genetic mechanisms of highland adaptation in plants.

  20. Leptin Signaling Is Required for Adaptive Changes in Food Intake, but Not Energy Expenditure, in Response to Different Thermal Conditions

    Science.gov (United States)

    Kaiyala, Karl J.; Ogimoto, Kayoko; Nelson, Jarrell T.; Schwartz, Michael W.; Morton, Gregory J.

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity. PMID:25756181

  1. Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Pedersen, Margit; LaCroix, Ryan A.

    2014-01-01

    Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental c...... targets for additional ameliorating mutations. Overall, the results of this study provide insight into the adaptation process and yield lessons important for the future implementation of ALE as a tool for scientific research and engineering....

  2. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity.

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Jiang, Huan-Xin; Huang, Jing-Hao; Chen, Li-Song

    2014-10-28

    Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. C. sinensis

  3. Local adaptation of Ruellia nudiflora (Acanthaceae) to biotic counterparts: complex scenarios revealed when two herbivore guilds are considered

    OpenAIRE

    Ortegón-Campos, I.; Parra-Tabla, Víctor; Abdala-Roberts, Luis; Herrera, Carlos M.

    2009-01-01

    This study evaluated whether the herb Ruellia nudiflora is locally adapted to a specialist insect seed predator (SP) and insect folivores, and if plant local adaptation (LA) to the former is more likely. A reciprocal transplant experiment was conducted using three sites in Yucatan (Mexico) (n = 864 plants). A third of the plants of each origin were placed at each site, and we recorded the following during a 9-month period: fruit number, leaf ...

  4. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration.

    Directory of Open Access Journals (Sweden)

    Luis Concha-Marambio

    Full Text Available Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1-2 μM at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown

  5. Proteomic analysis of the intestinal adaptation response reveals altered expression of fatty acid binding proteins following massive small bowel resection.

    Science.gov (United States)

    Stephens, Andrew N; Pereira-Fantini, Prue M; Wilson, Guineva; Taylor, Russell G; Rainczuk, Adam; Meehan, Katie L; Sourial, Magdy; Fuller, Peter J; Stanton, Peter G; Robertson, David M; Bines, Julie E

    2010-03-05

    Intestinal adaptation in response to the loss of the small intestine is essential to restore enteral autonomy in patients who have undergone massive small bowel resection (MSBR). In a proportion of patients, intestinal function is not restored, resulting in chronic intestinal failure (IF). Early referral of such patients for transplant provides the best prognosis; however, the molecular mechanisms underlying intestinal adaptation remain elusive and there is currently no convenient marker to predict whether patients will develop IF. We have investigated the adaptation response in a well-characterized porcine model of intestinal adaptation. 2D DIGE analysis of ileal epithelium from piglets recovering from massive small bowel resection (MSBR) identified over 60 proteins that changed specifically in MSBR animals relative to nonoperational or sham-operated controls. Three fatty acid binding proteins (L-FABP, FABP-6, and I-FABP) showed changes in MSBR animals. The expression changes and localization of each FABP were validated by immunoblotting and immunohistochemical analysis. FABP expression changes in MSBR animals occurred concurrently with altered triglyceride and bile acid metabolism as well as weight gain. The observed FABP expression changes in the ileal epithelium occur as part of the intestinal adaptation response and could provide a clinically useful marker to evaluate adaptation following MSBR.

  6. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  7. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  8. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.

    Science.gov (United States)

    Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian

    2018-01-01

    Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.

  9. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp.

    Science.gov (United States)

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-05-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Interactions between concentric form-from-structure and face perception revealed by visual masking but not adaptation

    Science.gov (United States)

    Feczko, Eric; Shulman, Gordon L.; Petersen, Steven E.; Pruett, John R.

    2014-01-01

    Findings from diverse subfields of vision research suggest a potential link between high-level aspects of face perception and concentric form-from-structure perception. To explore this relationship, typical adults performed two adaptation experiments and two masking experiments to test whether concentric, but not nonconcentric, Glass patterns (a type of form-from-structure stimulus) utilize a processing mechanism shared by face perception. For the adaptation experiments, subjects were presented with an adaptor for 5 or 20 s, prior to discriminating a target. In the masking experiments, subjects saw a mask, then a target, and then a second mask. Measures of discriminability and bias were derived and repeated measures analysis of variance tested for pattern-specific masking and adaptation effects. Results from Experiment 1 show no Glass pattern-specific effect of adaptation to faces; results from Experiment 2 show concentric Glass pattern masking, but not adaptation, may impair upright/inverted face discrimination; results from Experiment 3 show concentric and radial Glass pattern masking impaired subsequent upright/inverted face discrimination more than translational Glass pattern masking; and results from Experiment 4 show concentric and radial Glass pattern masking impaired subsequent face gender discrimination more than translational Glass pattern masking. Taken together, these findings demonstrate interactions between concentric form-from-structure and face processing, suggesting a possible common processing pathway. PMID:24563526

  11. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau.

    Science.gov (United States)

    Miao, Benpeng; Wang, Zhen; Li, Yixue

    2017-03-01

    The Tibetan Mastiff (TM), a native of the Tibetan Plateau, has quickly adapted to the extreme highland environment. Recently, the impact of positive selection on the TM genome was studied and potential hypoxia-adaptive genes were identified. However, the origin of the adaptive variants remains unknown. In this study, we investigated the signature of genetic introgression in the adaptation of TMs with dog and wolf genomic data from different altitudes in close geographic proximity. On a genome-wide scale, the TM was much more closely related to other dogs than wolves. However, using the 'ABBA/BABA' test, we identified genomic regions from the TM that possibly introgressed from Tibetan gray wolf. Several of the regions, including the EPAS1 and HBB loci, also showed the dominant signature of selective sweeps in the TM genome. We validated the introgression of the two loci by excluding the possibility of convergent evolution and ancestral polymorphisms and examined the haplotypes of all available canid genomes. The estimated time of introgression based on a non-coding region of the EPAS1 locus mostly overlapped with the Paleolithic era. Our results demonstrated that the introgression of hypoxia adaptive genes in wolves from the highland played an important role for dogs living in hypoxic environments, which indicated that domestic animals could acquire local adaptation quickly by secondary contact with their wild relatives. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Science.gov (United States)

    Emmanuelle Morin; Annegret Kohler; Adam R. Baker; Marie Foulongne-Oriol; Vincent Lombard; Laszlo G. Nagy; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Annick Brun; Andrea L. Aerts; Andrew M. Bailey; Christophe Billette; Pedro M. Coutinho; Greg Deakin; Harshavardhan Doddapaneni; Dimitrios Floudas; Jane Grimwood; Kristiina Hild& #233; n; Ursula K& #252; es; Kurt M. LaButti; Alla Lapidus; Erika A. Lindquist; Susan M. Lucas; Claude Murat; Robert W. Riley; Asaf A. Salamov; Jeremy Schmutz; Venkataramanan Subrananian; Han A.B. W& #246; sten; Jianping Xu; Daniel C. Eastwood; Gary D. Foster; Anton S.M. Sonnenberg; Daniel Cullen; Ronald P. de Vries; Taina Lundell; David S. Hibbett; Bernard Henrissat; Kerry S. Burton; Richard W. Kerrigan; Michael P. Challen; Igor V. Grigoriev; Francis Martin

    2012-01-01

    Agaricus bisporus is the model fungus for the adaptation, persistence,and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar...

  13. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus)

    Science.gov (United States)

    Andrew J. Eckert; Andrew D. Bower; Kathleen D. Jermstad; Jill L. Wegrzyn; Brian J. Knaus; John V. Syring; David B. Neale

    2013-01-01

    Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne). Ample variation for these estimates, however, remains even when...

  14. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  15. About the nature of regional thermal anomaly in the Semipalatinsk Test Site region revealed basing on remote space sensing data

    International Nuclear Information System (INIS)

    Melent'ev, M.I.; Velikanov, A.E.

    2003-01-01

    A thermal anomaly, (more than 20,000 sq. km) discovered in the Semipalatinsk Test Site region in the pictures from space, is observed every year on certain days mainly in winter-spring season. Appearance of the thermal anomaly often coincides with days of intensive fall of atmospheric precipitation and possible thawing of snow cover together with decreasing of ozone concentration in atmosphere. The explanation of thermal anomaly in the Semipalatinsk Test Site region due to nuclear reaction caused by the energy of radionuclide radioactive decay deposited in a soil layer after ground and air nuclear explosions and radiolysis processes in soil solutions is given in this article. (author)

  16. Local adaptation of Ruellia nudiflora (Acanthaceae) to biotic counterparts: complex scenarios revealed when two herbivore guilds are considered.

    Science.gov (United States)

    Ortegón-Campos, I; Parra-Tabla, V; Abdala-Roberts, L; Herrera, C M

    2009-11-01

    This study evaluated whether the herb Ruellia nudiflora is locally adapted to a specialist insect seed predator (SP) and insect folivores, and if plant local adaptation (LA) to the former is more likely. A reciprocal transplant experiment was conducted using three sites in Yucatan (Mexico) (n = 864 plants). A third of the plants of each origin were placed at each site, and we recorded the following during a 9-month period: fruit number, leaf damage, and fruits attacked by SP. Results indicated lack of plant LA for all the variables measured. Instead, seed predation was c. 100% greater for native plants at one study site, suggesting insect LA or plant maladaptation; folivory was homogeneous across sites/origins. Based on these results, we discuss differences in the potential each herbivore guild has to promote plant LA, as well as divergent evolutionary outcomes of plant-herbivore interactions across sites.

  17. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Pedersen, Søren Damkiær; Khademi, Seyed Mohammad Hossein

    2014-01-01

    the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth...... advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive...... might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. IMPORTANCE Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability...

  18. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Directory of Open Access Journals (Sweden)

    Morroll Shaun

    2009-08-01

    Full Text Available Abstract Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins. HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as

  19. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Science.gov (United States)

    Winter, Jody A; Christofi, Panayiotis; Morroll, Shaun; Bunting, Karen A

    2009-01-01

    Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA) to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins). HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as opposed to simply surviving in

  20. Adaptive evolution to a high purine and fat diet of carnivorans revealed by gut microbiomes and host genomes.

    Science.gov (United States)

    Zhu, Lifeng; Wu, Qi; Deng, Cao; Zhang, Mengjie; Zhang, Chenglin; Chen, Hua; Lu, Guoqing; Wei, Fuwen

    2018-05-01

    Carnivorous members of the Carnivora reside at the apex of food chains and consume meat-only diets, rich in purine, fats and protein. Here, we aimed to identify potential adaptive evolutionary signatures compatible with high purine and fat metabolism based on analysis of host genomes and symbiotic gut microbial metagenomes. We found that the gut microbiomes of carnivorous Carnivora (e.g., Felidae, Canidae) clustered in the same clade, and other clades comprised omnivorous and herbivorous Carnivora (e.g., badgers, bears and pandas). The relative proportions of genes encoding enzymes involved in uric acid degradation were higher in the gut microbiomes of meat-eating carnivorans than plant-eating species. Adaptive amino acid substitutions in two enzymes, carnitine O-palmitoyltransferase 1 (CPT1A) and lipase F (LIPF), which play a role in fat digestion, were identified in Felidae-Candidae species. Carnivorous carnivorans appear to endure diets high in purines and fats via gut microbiomic and genomic adaptations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum

    International Nuclear Information System (INIS)

    Zhang, Z.; Sun, X.-H.; Tong, G.-N.; Huang, Z.-C.; He, Z.-H.; Pauw, A.; Es, J. van; Battiston, R.; Borsini, S.; Laudi, E.; Verlaat, B.; Gargiulo, C.

    2011-01-01

    A mechanically pumped CO 2 two-phase loop cooling system was developed for the temperature control of the silicon tracker of AMS-02, a cosmic particle detector to work in the International Space Station. The cooling system (called TTCS, or Tracker Thermal Control System), consists of two evaporators in parallel to collect heat from the tracker's front-end electronics, two radiators in parallel to emit the heat into space, and a centrifugal pump that circulates the CO 2 fluid that carries the heat to the radiators, and an accumulator that controls the pressure, and thus the temperature of the evaporators. Thermal vacuum tests were performed to check and qualify the system operation in simulated space thermal environment. In this paper, we reported the test results which show that the TTCS exhibited excellent temperature control ability, including temperature homogeneity and stability, and self-adaptive ability to the various external heat flux to the radiators. Highlights: → The active-pumped CO 2 two-phase cooling loop passed the thermal vacuum test. → It provides high temperature homogeneity and stability thermal boundaries. → Its working temperature is controllable in vacuum environment. → It possesses self-adaptive ability to imbalanced external heat fluxes.

  2. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha

    2007-03-01

    Metabolomics of tumors may allow discovery of tumor biomarkers and metabolic therapeutic targets. Metabolomics by two-dimensional proton high-resolution magic angle spinning nuclear magnetic resonance spectroscopy was applied to investigate metabolite disorders following treatment by chloroethylnitrosourea of murine B16 melanoma (n = 33) and 3LL pulmonary carcinoma (n = 31) in vivo. Treated tumors of both types resumed growth after a delay. Nitrosoureas provoke DNA damage but the metabolic consequences of genotoxic stress are little known yet. Although some differences were observed in the metabolite profile of untreated tumor types, the prominent metabolic features of the response to nitrosourea were common to both. During the growth inhibition phase, there was an accumulation of glucose (more than x10; P < 0.05), glutamine (x3 to 4; P < 0.01), and aspartate (x2 to 5; P < 0.01). This response testified to nucleoside de novo synthesis down-regulation and drug efficacy. However, this phase also involved the increase in alanine (P < 0.001 in B16 melanoma), the decrease in succinate (P < 0.001), and the accumulation of serine-derived metabolites (glycine, phosphoethanolamine, and formate; P < 0.01). This response witnessed the activation of pathways implicated in energy production and resumption of nucleotide de novo synthesis, thus metabolic pathways of DNA repair and adaptation to treatment. During the growth recovery phase, it remained polyunsaturated fatty acid accumulation (x1.5 to 2; P < 0.05) and reduced utilization of glucose compared with glutamine (P < 0.05), a metabolic fingerprint of adaptation. Thus, this study provides the proof of principle that metabolomics of tumor response to an anticancer agent may help discover metabolic pathways of drug efficacy and adaptation to treatment.

  3. The genome sequence of Polymorphum gilvum SL003B-26A1(T reveals its genetic basis for crude oil degradation and adaptation to the saline soil.

    Directory of Open Access Journals (Sweden)

    Yong Nie

    Full Text Available Polymorphum gilvum SL003B-26A1(T is the type strain of a novel species in the recently published novel genus Polymorphum isolated from saline soil contaminated with crude oil. It is capable of using crude oil as the sole carbon and energy source and can adapt to saline soil at a temperature of 45°C. The Polymorphum gilvum genome provides a genetic basis for understanding how the strain could degrade crude oil and adapt to a saline environment. Genome analysis revealed the versatility of the strain for emulsifying crude oil, metabolizing aromatic compounds (a characteristic specific to the Polymorphum gilvum genome in comparison with other known genomes of oil-degrading bacteria, as well as possibly metabolizing n-alkanes through the LadA pathway. In addition, COG analysis revealed Polymorphum gilvum SL003B-26A1(T has significantly higher abundances of the proteins responsible for cell motility, lipid transport and metabolism, and secondary metabolite biosynthesis, transport and catabolism than the average levels found in all other genomes sequenced thus far, but lower abundances of the proteins responsible for carbohydrate transport and metabolism, defense mechanisms, and translation than the average levels. These traits support the adaptability of Polymorphum gilvum to a crude oil-contaminated saline environment. The Polymorphum gilvum genome could serve as a platform for further study of oil-degrading microorganisms for bioremediation and microbial-enhanced oil recovery in harsh saline environments.

  4. Adaptations to "Thermal Time" Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change.

    Science.gov (United States)

    Scriber, J Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-21

    Adaptations to "thermal time" (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the "converse of Bergmann's size Rule", with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3-4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general "voltinism/size/D-day" model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local "climatic cold pockets" in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these "cold pockets" are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus

  5. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus

    Directory of Open Access Journals (Sweden)

    Schoville Sean D

    2012-09-01

    Full Text Available Abstract Background Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. Results Observed differences in gene expression between the southern (San Diego and the northern (Santa Cruz populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps and genes involved in ubiquitination and proteolysis. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Among other sets of genes, cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were down-regulated in both populations. Conclusions Marked changes in gene expression were observed in response to acute sub-lethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations, the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s involved in acute temperature stress may offer at

  6. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation.

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    Full Text Available Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU. Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.

  7. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    Science.gov (United States)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  8. Multi-omic profiling of EPO-producing CHO cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    The Chinese hamster ovary (CHO) cell line is the predominant mammalian cell factory for production of therapeutic glycoproteins. In this work, we aimed to study bottlenecks in the secretory pathway associated with the production of human erythropoietin (EPO) in CHO cells. In connection to this, we...... discovered indications of metabolic adaptation of the amino acid catabolism in favor of heterologous protein production. We established a panel of stably EPO expressing CHO-K1 clones spanning a 25-fold productivity range and characterized the clones in batch and chemostat cultures. For this, we employed...... a multi-omic physiological characterization including metabolic foot printing of amino acids, metabolite fingerprinting of glycolytic intermediates, NAD(P)H-/NAD(P)+ and adenosine nucleotide phosphates. We used qPCR, qRT-PCR, western blots and Affymetrix CHO microarrays to assess EPO gene copy numbers...

  9. Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling

    Directory of Open Access Journals (Sweden)

    Ezekiel K. Bore

    2017-05-01

    Full Text Available Although biogeochemical models designed to simulate carbon (C and nitrogen (N dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control, -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.

  10. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.

    Science.gov (United States)

    Robson, Anthony G; Kulikowski, Janus J

    2012-11-01

    The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.

  11. Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution.

    Science.gov (United States)

    Kishimoto, Toshihiko; Iijima, Leo; Tatsumi, Makoto; Ono, Naoaki; Oyake, Ayana; Hashimoto, Tomomi; Matsuo, Moe; Okubo, Masato; Suzuki, Shingo; Mori, Kotaro; Kashiwagi, Akiko; Furusawa, Chikara; Ying, Bei-Wen; Yomo, Tetsuya

    2010-10-21

    It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution.

  12. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.

  13. Influence of thermal barrier effect of grain boundaries on bulk cascades in alpha-zirconium revealed by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yanan; Lai, Wensheng, E-mail: wslai@tsinghua.edu.cn

    2016-03-15

    The effect of grain boundaries (GBs) on bulk cascades in nano-structured alpha-zirconium has been studied by molecular dynamics (MD) simulations. It turns out that the existence of GBs increases the defect productivity in grains, suggesting that the GBs may act as a thermal barrier and postpone the annihilation of defects within grains. Moreover, it is found that the thermal barrier effect of GBs facilitates the shift of symmetric tilt GBs to the grain with higher temperature, and the smaller the tilt angle is, the easier the boundary shift will be. Thus, the influence of GBs on radiation damage in the nano-structured materials comes from the competition between damage increase in grains and defect annihilation at GBs.

  14. The Plasmid Complement of the Cheese Isolate Lactococcus garvieae IPLA 31405 Revealed Adaptation to the Dairy Environment

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-01-01

    Lactococcus garvieae is a lactic acid bacterium found in raw-milk dairy products as well as a range of aquatic and terrestrial environments. The plasmids in L. garvieae have received little attention compared to those of dairy Lactococcus lactis, in which the genes carried by these extrachromosomal elements are considered of adaptive value. The present work reports the sequencing and analysis of the plasmid complement of L. garvieae IPLA 31405, a strain isolated from a traditional, Spanish, starter-free cheese made from raw-milk. It consists of pLG9 and pLG42, of 9,124 and 42,240 nucleotides, respectively. Based on sequence and structural homology in the putative origin of replication (ori) region, pLG9 and pLG42 are predicted to replicate via a theta mechanism. Real-time, quantitative PCR showed the number of copies per chromosome equivalent of pLG9 and pLG42 to be around two and five, respectively. Sequence analysis identified eight complete open reading frames (orfs) in pLG9 and 36 in pLG42; these were organized into functional modules or cassettes containing different numbers of genes. These modules were flanked by complete or interrupted insertion sequence (IS)-like elements. Among the modules of pLG42 was a gene cluster encoding specific components of a phosphoenolpyruvate-phosphotransferase (PEP-PTS) system, including a phospho-β-galacosidase. The cluster showed a complete nucleotide identity respect to that in plasmids of L. lactis. Loss of pLG42 showed this to be involved in lactose assimilation. In the same plasmid, an operon encoding a type I restriction/modification (R/M) system was also identified. The specificity of this R/M system might be broadened by different R/M specificity subunits detected in pLG9 and in the bacterial chromosome. However, challenges of L. garvieae IPLA 31405 against L. lactis phages proved that the R/M system was not involved in phage resistance. Together, these results support the hypothesis that, as in L. lactis, pLG42

  15. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    Science.gov (United States)

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  16. Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process.

    Directory of Open Access Journals (Sweden)

    Cheng Lv

    2015-03-01

    Full Text Available Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems.

  17. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses.

    Science.gov (United States)

    Pride, David T; Salzman, Julia; Relman, David A

    2012-09-01

    Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants.

    Science.gov (United States)

    Cui, Na; Yang, Peng-Cheng; Guo, Kun; Kang, Le; Cui, Feng

    2017-06-01

    Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme-copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR-1-like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Genome-Wide Comparative Functional Analyses Reveal Adaptations of Salmonella sv. Newport to a Plant Colonization Lifestyle

    Directory of Open Access Journals (Sweden)

    Marcos H. de Moraes

    2018-05-01

    Full Text Available Outbreaks of salmonellosis linked to the consumption of vegetables have been disproportionately associated with strains of serovar Newport. We tested the hypothesis that strains of sv. Newport have evolved unique adaptations to persistence in plants that are not shared by strains of other Salmonella serovars. We used a genome-wide mutant screen to compare growth in tomato fruit of a sv. Newport strain from an outbreak traced to tomatoes, and a sv. Typhimurium strain from animals. Most genes in the sv. Newport strain that were selected during persistence in tomatoes were shared with, and similarly selected in, the sv. Typhimurium strain. Many of their functions are linked to central metabolism, including amino acid biosynthetic pathways, iron acquisition, and maintenance of cell structure. One exception was a greater need for the core genes involved in purine metabolism in sv. Typhimurium than in sv. Newport. We discovered a gene, papA, that was unique to sv. Newport and contributed to the strain’s fitness in tomatoes. The papA gene was present in about 25% of sv. Newport Group III genomes and generally absent from other Salmonella genomes. Homologs of papA were detected in the genomes of Pantoea, Dickeya, and Pectobacterium, members of the Enterobacteriacea family that can colonize both plants and animals.

  20. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome.

    Science.gov (United States)

    Pech, Markus; Spreter, Thomas; Beckmann, Roland; Beatrix, Birgitta

    2010-06-18

    Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.

  1. Comparative Transcriptomic Analysis Reveals Novel Insights into the Adaptive Response of Skeletonema costatum to Changing Ambient Phosphorus

    Directory of Open Access Journals (Sweden)

    Shu-Feng Zhang

    2016-09-01

    Full Text Available Phosphorus (P is a limiting macronutrient for diatom growth and productivity in the ocean. Much effort has been devoted to the physiological response of marine diatoms to ambient P change, however, the whole-genome molecular mechanisms are poorly understood. Here, we utilized RNA-Seq to compare the global gene expression patterns of a marine diatom Skeletonema costatum grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions. In total 34,942 unique genes were assembled and 20.8% of them altered significantly in abundance under different P conditions. Genes encoding key enzymes/proteins involved in P utilization, nucleotide metabolism, photosynthesis, glycolysis and cell cycle regulation were significantly up-regulated in P-deficient cells. Genes participating in circadian rhythm regulation, such as circadian clock associated 1, were also up-regulated in P-deficient cells. The response of S. costatum to ambient P deficiency shows several similarities to the well-described responses of other marine diatom species, but also has its unique features. S. costatum has evolved the ability to re-program its circadian clock and intracellular biological processes in response to ambient P deficiency. This study provides new insights into the adaptive mechanisms to ambient P deficiency in marine diatoms.

  2. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Mahajabeen, Padamsee; Kumas, T. K. Arun; Riley, Robert; Binder, Manfred; Boyd, Alex; Calvo, Ann M.; Furukawa, Kentaro; Hesse, Cedar; Hohmann, Stefan; James, Tim Y.; LaButti, Kurt; Lapidus, Alla; Lindquist, Erika; Lucas, Susan; Miller, Kari; Shantappa, Sourabha; Grigoriev, Igor V.; Hibbett, David S.; McLaughlin, David J.; Spatafora, Joseph W.; Aime, Mary C.

    2011-09-03

    Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identied 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebito colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is conrmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were idented although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic

  3. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases.

    Science.gov (United States)

    Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A

    2016-03-01

    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. High-contrast imaging of the close environment of HD 142527. VLT/NaCo adaptive optics thermal and angular differential imaging

    Science.gov (United States)

    Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Thébault, P.; Milli, J.; Girard, J. H.; Bonnefoy, M.

    2012-10-01

    Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and even more so since the recent discoveries of embedded substellar companions. According to models, the planet-disk interaction may create large structures, gaps, rings, or spirals in the disk. In that sense, the Herbig star HD 142527 is particularly compelling, as its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature. Aims: Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence. Methods: We obtained high-contrast images with the NaCo adaptive optics system at the Very Large Telescope in L'-band. We applied different analysis strategies using both classical PSF-subtraction and angular differential imaging to probe for any extended structures or point-like sources. Results: The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the subarcsecond level for the first time at 3.8 μm. Our images reveal important radial and azimuthal asymmetries that invalidate an elliptical shape for the disk. It instead suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables exploration of the planetary mass regime for projected physical separations as close as 40 AU. Use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely limit any presence of massive giant planets with semi-major axis beyond 50 AU, i

  5. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires.

    Science.gov (United States)

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P; Smokvina, Tamara; de Vos, Willem M; Knol, Jan; Kleerebezem, Michiel

    2016-07-02

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence-absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains' core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Inhibiting PKMζ reveals dorsal lateral and dorsal medial striatum store the different memories needed to support adaptive behavior.

    Science.gov (United States)

    Pauli, Wolfgang M; Clark, Alexandra D; Guenther, Heidi J; O'Reilly, Randall C; Rudy, Jerry W

    2012-06-20

    Evidence suggests that two regions of the striatum contribute differential support to instrumental response selection. The dorsomedial striatum (DMS) is thought to support expectancy-mediated actions, and the dorsolateral striatum (DLS) is thought to support habits. Currently it is unclear whether these regions store task-relevant information or just coordinate the learning and retention of these solutions by other brain regions. To address this issue, we developed a two-lever concurrent variable-interval reinforcement operant conditioning task and used it to assess the trained rat's sensitivity to contingency shifts. Consistent with the view that these two regions make different contributions to actions and habits, injecting the NMDA antagonist DL-AP5 into the DMS just prior to the shift impaired the rat's performance but enhanced performance when injected into the DLS. To determine if these regions support memory content, we first trained rats on a biased concurrent schedule (Lever 1: VI 40" and Lever 2: VI 10"). With the intent of "erasing" the memory content stored in striatum, after this training we inhibited the putative memory-maintenance protein kinase C isozyme protein kinase Mζ (PKMζ). Infusing zeta inhibitory peptide (ZIP) into the DLS enhanced the rat's ability to adapt to the contingency shift 2 d later, whereas injecting it into the DMS had the opposite effect. Infusing GluR2(3Y) into the DMS 1 h before ZIP infusions prevented ZIP from impairing the rat's sensitivity to the contingency shift. These results support the hypothesis that the DMS stores information needed to support actions and the DLS stores information needed to support habits.

  7. Adaptation to human populations is revealed by within-host polymorphisms in HIV-1 and hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Art F Y Poon

    2007-03-01

    Full Text Available CD8(+ cytotoxic T-lymphocytes (CTLs perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1 and hepatitis C virus (HCV. As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately "toggle" in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1- (n > or = 3,000 and HCV-infected patients (n > or = 2,600 by screening bulk RT-PCR sequences for sequencing "mixtures" (i.e., ambiguous nucleotides, which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design.

  8. Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence

    Directory of Open Access Journals (Sweden)

    Yue Song

    2018-06-01

    Full Text Available An aluminum gallium indium arsenic (AlGaInAs material system is indispensable as the active layer of diode lasers emitting at 1310 or 1550 nm, which are used in optical fiber communications. However, the course of the high-temperature instability of a quantum well structure, which is closely related to the diffusion of indium atoms, is still not clear due to the system’s complexity. The diffusion process of indium atoms was simulated by thermal treatment, and the changes in the optical and structural properties of an AlGaInAs quantum well are investigated in this paper. Compressive strained Al0.07Ga0.22In0.71As quantum wells were treated at 170 °C with different heat durations. A significant decrement of photoluminescence decay time was observed on the quantum well of a sample that was annealed after 4 h. The microscopic cathodoluminescent (CL spectra of these quantum wells were measured by scanning electron microscope-cathodoluminescence (SEM-CL. The thermal treatment effect on quantum wells was characterized via CL emission peak wavelength and energy density distribution, which were obtained by spatially resolved cathodoluminescence. The defect area was clearly observed in the Al0.07Ga0.22In0.71As quantum wells layer after thermal treatment. CL emissions from the defect core have higher emission energy than those from the defect-free regions. The defect core distribution, which was associated with indium segregation gradient distribution, showed asymmetric character.

  9. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells

    Directory of Open Access Journals (Sweden)

    Kristin eSurmann

    2014-08-01

    Full Text Available Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549, and human embryonic kidney cells (HEK 293. Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen´s proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2x106 bacteria, roughly 1,450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreases in levels of ribosomal proteins and metabolic enzymes or increases in amounts of proteins involved in arginine and lysine biosynthesis, coding for terminal oxidases and stress responsive genes or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and

  10. Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality

    Directory of Open Access Journals (Sweden)

    Geethu Elizabath Thomas

    2016-12-01

    continuous, sexual and genetically diverse, but were susceptible, whereas populations inhabiting the revenue land were fragmented and monoclonal, but were resistant. It may be possible that, when genetic recombination becomes at a premium due to the genetic constraints imparted by habitat fragmentation or pathogen pressure, Z. zerumbet trigger asexual methods in order to preserve genotypes with adaptive fitness. A co-evolutionary feedback seems to occur between defense and reproduction in Z. zerumbet. Presumably, species with hemiclonal potential may have a fair chance to survive ecological undulations.

  11. Thermal stability and chemical bonding states of AlOxNy/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy

    International Nuclear Information System (INIS)

    He, G.; Toyoda, S.; Shimogaki, Y.; Oshima, M.

    2010-01-01

    Annealing-temperature dependence of the thermal stability and chemical bonding states of AlO x N y /SiO 2 /Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlO x N y samples in N 2 ambient in 600-800 deg. C promotes the formation of SiO 2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlO x N y to form volatile SiO and Al 2 O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 deg. C. The released N due to the breakage of the Al-N bonding will react with the SiO 2 interfacial layer and lead to the formation of the Si 3 -N-O/Si 2 -N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlO x N y /Si gate stacks in future CMOS devices.

  12. Atomic structure and thermal stability of interfaces between metallic glass and embedding nano-crystallites revealed by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.Z.; Yang, G.Q.; Xu, B.; Qi, C.; Kong, L.T., E-mail: konglt@sjtu.edu.cn; Li, J.F.

    2015-10-25

    Molecular dynamics simulations were performed to investigate the atomic structure and thermal stability of interfaces formed between amorphous Cu{sub 50}Zr{sub 50} matrix and embedding B2 CuZr nano-crystallites. The interfaces are found to be rather abrupt, and their widths show negligible dependence on the nano-crystallite size. Local atomic configuration in the interfacial region is dominated by geometry characterized by Voronoi polyhedra <0,5,2,6> and <0,4,4,6>, and the contents of these polyhedra also exhibit apparent size dependence, which in turn results in an increasing trend in the interfacial energy against the nano-crystallite size. Annealing of the interface models at elevated temperatures will also enrich these characterizing polyhedra. While when the temperature is as high as the glass transition temperature of the matrix, growth of the nano-crystallites will be appreciable. The growth activation energy also shows size dependence, which is lower for larger nano-crystallites, suggesting that large nano-crystallites are prone to grow upon thermal disturbance. - Highlights: • Special clusters characterizing the local geometry are abundant in the interfaces. • Their content varies with the size of the embedding nano-crystallite. • In turn, size dependences in interfacial thermodynamics and kinetics are observed.

  13. Natural selection on thermal preference, critical thermal maxima and locomotor performance.

    Science.gov (United States)

    Gilbert, Anthony L; Miles, Donald B

    2017-08-16

    Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).

  14. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    Science.gov (United States)

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  15. Combined genomic and structural analyses of a cultured magnetotactic bacterium reveals its niche adaptation to a dynamic environment

    Directory of Open Access Journals (Sweden)

    Ana Carolina Vieira Araujo

    2016-10-01

    Full Text Available Abstract Background Magnetotactic bacteria (MTB are a unique group of prokaryotes that have a potentially high impact on global geochemical cycling of significant primary elements because of their metabolic plasticity and the ability to biomineralize iron-rich magnetic particles called magnetosomes. Understanding the genetic composition of the few cultivated MTB along with the unique morphological features of this group of bacteria may provide an important framework for discerning their potential biogeochemical roles in natural environments. Results Genomic and ultrastructural analyses were combined to characterize the cultivated magnetotactic coccus Magnetofaba australis strain IT-1. Cells of this species synthesize a single chain of elongated, cuboctahedral magnetite (Fe3O4 magnetosomes that cause them to align along magnetic field lines while they swim being propelled by two bundles of flagella at velocities up to 300 μm s−1. High-speed microscopy imaging showed the cells move in a straight line rather than in the helical trajectory described for other magnetotactic cocci. Specific genes within the genome of Mf. australis strain IT-1 suggest the strain is capable of nitrogen fixation, sulfur reduction and oxidation, synthesis of intracellular polyphosphate granules and transporting iron with low and high affinity. Mf. australis strain IT-1 and Magnetococcus marinus strain MC-1 are closely related phylogenetically although similarity values between their homologous proteins are not very high. Conclusion Mf. australis strain IT-1 inhabits a constantly changing environment and its complete genome sequence reveals a great metabolic plasticity to deal with these changes. Aside from its chemoautotrophic and chemoheterotrophic metabolism, genomic data indicate the cells are capable of nitrogen fixation, possess high and low affinity iron transporters, and might be capable of reducing and oxidizing a number of sulfur compounds. The relatively

  16. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host.

    Directory of Open Access Journals (Sweden)

    Roman Leontovyč

    2016-02-01

    Full Text Available To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation, peptidases (cathepsins and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.

  17. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    2011-01-01

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  18. Thermal tolerance of acid-adapted and unadapted Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice.

    Science.gov (United States)

    Sharma, M; Adler, B B; Harrison, M D; Beuchat, L R

    2005-01-01

    A study was performed to determine D values of acid-adapted and unadapted cells of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. Salmonella enterica serotype Poona, S. enterica serotype Saphra, two strains of E. coli O157:H7, and two strains of L. monocytogenes were grown in tryptic soy broth (TSB) and TSB supplemented with 1% glucose for 24 h at 37 degrees C. Decimal reduction times (D values) of cells suspended in unpasteurized cantaloupe juice and watermelon juice were determined. Acid-adapted cells of Salmonella and E. coli O157:H7, but not L. monocytogenes, had increased thermal tolerance compared with cells that were not acid-adapted. There was no correlation between soluble solids content of the two types of juice and thermal resistance. Growth of Salmonella and E. coli O157:H7 in cantaloupe juice, watermelon juice, or other acidic milieu, either in preharvest or postharvest environments, may result in cross protection to heat. The pasteurization conditions necessary to achieve elimination of pathogens from these juices would consequently have to be more severe if cells are habituated to acidic environments. Insights from this study provide guidance to developing pasteurization processes to eliminate Salmonella, E. coli O157:H7, and L. monocytogenes in cantaloupe juice and watermelon juice.

  19. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Science.gov (United States)

    Pernice, Mathieu; Dunn, Simon R; Miard, Thomas; Dufour, Sylvie; Dove, Sophie; Hoegh-Guldberg, Ove

    2011-01-24

    Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. The PRESENT study reports the impacts of different stressors (colchicine and heat stress) on three phases of apoptosis: (i) the potential initiation by differential expression of Bcl-2 members, (ii) the execution of apoptotic events by activation of caspase 3-like proteases and (iii) and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  20. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    2011-01-01

    Full Text Available Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts.The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity.In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  1. Characterization of VuMATE1 expression in response to iron nutrition and aluminum stress reveals adaptation of rice bean (Vigna umbellata to acid soils through cis regulation

    Directory of Open Access Journals (Sweden)

    Meiya eLiu

    2016-04-01

    Full Text Available Rice bean (Vigna umbellata VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acidic soils where Al stress imposed but Fe deficiency pressure released.

  2. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  3. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    Science.gov (United States)

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  4. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun

    2018-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. On the Unusual Homeoviscous Adaptation of the Membrane Fatty Acyl Components against the Thermal Stress in RhiΖobium meliloti

    International Nuclear Information System (INIS)

    Kang, Seb Yung; Jung, Seun Ho; Choi, Yong Hoon; Yang, Chul Hak; Kim, Hyun Won

    1999-01-01

    In order to maintain the optimal fluidity in membrane, microorganism genetically regulates the ratio of the unsaturated fatty acids (Ufos) to saturated ones of its biological membrane in response to external perturbing condition such as the change of temperature. The remodelling of fatty acyl chain composition is the most frequently observed response to altered growth temperature. It is reflected in the elevated proportions of unsaturated fatty acid (UFAs) at low temperature. Because cis double bonds, normally positioned at the middle of fatty acyl chains, introduce a kink of approximately 30 .deg. into acyl chain, UFAs pack less compactly and exhibit lower melting points than their saturated homologues. Thus, enrichment of membranes with UFAs offsets, to a significant degree, the increase in membrane order caused by a drop in temperature. This is so called homeoviscous adaptation of the membrane fatty acyl chains against thermal stress. Membrane maintains the optimal viscosity using homeoviscous adaptation.

  6. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK.

    Science.gov (United States)

    Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti

    2011-07-01

    Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.

  7. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose Syndrome pathogen, Pseudogymnoascus destructans, in North America.

    Science.gov (United States)

    Forsythe, Adrian; Giglio, Victoria; Asa, Jonathan; Xu, Jianping

    2018-06-18

    White-nose Syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungus, Pseudogymnoascus destructans Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains were investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of times. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion. Importance The causal agent of White-nose Syndrome in bats is Pseudogymnoascus destructans , a filamentous fungus recently introduced from its native range in Europe. Infections caused by P. destructans have progressed across the eastern parts of Canada and the United States over the last ten years. It is not clear how the disease is spread as the pathogen is unable to grow above 23°C and ambient

  8. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation.

    Science.gov (United States)

    Kim, Sang Hu; Clark, Shawn T; Surendra, Anuradha; Copeland, Julia K; Wang, Pauline W; Ammar, Ron; Collins, Cathy; Tullis, D Elizabeth; Nislow, Corey; Hwang, David M; Guttman, David S; Cowen, Leah E

    2015-11-01

    The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients

  9. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation.

    Directory of Open Access Journals (Sweden)

    Sang Hu Kim

    2015-11-01

    Full Text Available The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1 with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from

  10. The microbial temperature sensitivity to warming is controlled by thermal adaptation and is independent of C-quality across a pan-continental survey

    Science.gov (United States)

    Berglund, Eva; Rousk, Johannes

    2017-04-01

    Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation

  11. Thermal room modelling adapted to the test of HVAC control systems; Modele de zone adapte aux essais de regulateurs de systemes de chauffage et de climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Riederer, P.

    2002-01-15

    Room models, currently used for controller tests, assume the room air to be perfectly mixed. A new room model is developed, assuming non-homogeneous room conditions and distinguishing between different sensor positions. From measurement in real test rooms and detailed CFD simulations, a list of convective phenomena is obtained that has to be considered in the development of a model for a room equipped with different HVAC systems. The zonal modelling approach that divides the room air into several sub-volumes is chosen, since it is able to represent the important convective phenomena imposed on the HVAC system. The convective room model is divided into two parts: a zonal model, representing the air at the occupant zone and a second model, providing the conditions at typical sensor positions. Using this approach, the comfort conditions at the occupant zone can be evaluated as well as the impact of different sensor positions. The model is validated for a test room equipped with different HVAC systems. Sensitivity analysis is carried out on the main parameters of the model. Performance assessment and energy consumption are then compared for different sensor positions in a room equipped with different HVAC systems. The results are also compared with those obtained when a well-mixed model is used. A main conclusion of these tests is, that the differences obtained, when changing the position of the controller's sensor, is a function of the HVAC system and controller type. The differences are generally small in terms of thermal comfort but significant in terms of overall energy consumption. For different HVAC systems the cases are listed, in which the use of a simplified model is not recommended. (author)

  12. Neutron thermalization in quality control of asphalts content in mixtures for paving. Adaptation of nuclear densimeters for this purpose

    International Nuclear Information System (INIS)

    Bravo R, T.; Montanez M, P.O.

    1995-01-01

    This paper shows how the neutron source of the nuclear densimeters, used for measure the humidity, can be used for measuring and making the quality control of the asphalt percentage in mixtures used for street paving. The measures are based in the neutronic thermalization processes, because the hydrogen is the main part of chemical composition of the asphalts. A calibration method for the equipment is presented. (author). 6 refs, 3 figs, 3 tabs

  13. The effect of real-time context-aware feedback on occupants' heating behaviour and thermal adaptation

    OpenAIRE

    Vellei, Marika; Natarajan, Sukumar; Biri, Benjamin; Padget, Julian; Walker, Ian

    2016-01-01

    Studies have shown that building energy demand in identical dwellings could vary by a factor of three. Differences in occupant behaviour – i.e. purchase, operation and maintenance – have been implicated as a strong source of these differences. The literature suggests that feedback on energy use to building occupants – particularly real-time feedback – can be used to prompt lower operation-related energy behaviours. This is particularly true for thermal demand which, in cold countries, account...

  14. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region.

    Science.gov (United States)

    McDonough, Molly M; Šumbera, Radim; Mazoch, Vladimír; Ferguson, Adam W; Phillips, Caleb D; Bryja, Josef

    2015-10-01

    Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity. © 2015 John Wiley & Sons Ltd.

  15. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kitagaki, Hiroshi; Cowart, L Ashley; Matmati, Nabil; Montefusco, David; Gandy, Jason; de Avalos, Silvia Vaena; Novgorodov, Sergei A; Zheng, Jim; Obeid, Lina M; Hannun, Yusuf A

    2009-04-17

    Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.

  16. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    Science.gov (United States)

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  17. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test.

    Science.gov (United States)

    Berlin, Sofia; Smith, Nick G C

    2005-11-10

    Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive biology. We have attempted to apply this approach to the study of a female reproductive protein, zona pellucida C (ZPC), which has been previously shown by the use of likelihood ratio tests (LRTs) to be under positive selection in mammals. We tested for evidence of adaptive evolution of ZPC in 15 mammalian species, in 11 avian species and in six fish species using three different LRTs (M1a-M2a, M7-M8, and M8a-M8). The only significant findings of adaptive evolution came from the M7-M8 test in mammals and fishes. Since LRTs of adaptive evolution may yield false positives in some situations, we examined the properties of the LRTs by several different simulation methods. When we simulated data to test the robustness of the LRTs, we found that the pattern of evolution in ZPC generates an excess of false positives for the M7-M8 LRT but not for the M1a-M2a or M8a-M8 LRTs. This bias is strong enough to have generated the significant M7-M8 results for mammals and fishes. We conclude that there is no strong evidence for adaptive evolution of ZPC in any of the vertebrate groups we studied, and that the M7-M8 LRT can be biased towards false inference of adaptive evolution by certain patterns of non-adaptive evolution.

  18. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Ali Asad

    Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate

  19. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings

    Directory of Open Access Journals (Sweden)

    Daoqian eChen

    2016-01-01

    Full Text Available Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of ten maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**, but not to drought resistance (r = 0.332. Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874*** and Fv/Fm (r = 0.626* under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes.

  20. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol.

    Science.gov (United States)

    Wang, Xin; Li, Bing-Zhi; Ding, Ming-Zhu; Zhang, Wei-Wen; Yuan, Ying-Jin

    2013-03-01

    During hydrolysis of lignocellulosic biomass, a broad range of inhibitors are generated, which interfere with yeast growth and bioethanol production. In order to improve the strain tolerance to multiple inhibitors--acetic acid, furfural, and phenol (three representative lignocellulose-derived inhibitors) and uncover the underlying tolerant mechanism, an adaptation experiment was performed in which the industrial Saccharomyces cerevisiae was cultivated repeatedly in a medium containing multiple inhibitors. The adaptation occurred quickly, accompanied with distinct increase in growth rate, glucose utilization rate, furfural metabolism rate, and ethanol yield, only after the first transfer. A similar rapid adaptation was also observed for the lab strains of BY4742 and BY4743. The metabolomic analysis was employed to investigate the responses of the industrial S. cereviaise to three inhibitors during the adaptation. The results showed that higher levels of 2-furoic acid, 2, 3-butanediol, intermediates in glycolytic pathway, and amino acids derived from glycolysis, were discovered in the adapted strains, suggesting that enhanced metabolic activity in these pathways may relate to resistance against inhibitors. Additionally, through single-gene knockouts, several genes related to alanine metabolism, GABA shunt, and glycerol metabolism were verified to be crucial for the resistance to multiple inhibitors. This study provides new insights into the tolerance mechanism against multiple inhibitors, and guides for the improvement of tolerant ethanologenic yeast strains for lignocellulose-bioethanol fermentation.

  1. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq.

    Science.gov (United States)

    Dennenmoser, Stefan; Vamosi, Steven M; Nolte, Arne W; Rogers, Sean M

    2017-01-01

    Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence. © 2016 John Wiley & Sons Ltd.

  2. Chlorophyll fluorescence analysis revealed essential roles of FtsH 11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature

    Science.gov (United States)

    Background: Photosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively “normal” level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloro...

  3. Repeated exposure of human fibroblasts to ionizing radiation reveals an adaptive response that is not mediated by interleukin-6 or TGF-β

    International Nuclear Information System (INIS)

    Dieriks, Birger; De Vos, Winnok; Baatout, Sarah; Van Oostveldt, Patrick

    2011-01-01

    Exposing cells to a low dose can protect them against a subsequent higher exposure. This phenomenon is known as adaptive response and is frequently observed in a variety of cells. Even though similarities are suspected with other non-targeted effects, such as bystander effects, the exact mechanism behind adaptive response is not fully clarified. In this study human primary fibroblasts were tested for their response to ionizing radiation (IR) after administrating a low priming dose (0.1-0.5 Gy). Both the abundance of γH2AX as a marker for double-stranded breaks and the levels of cytokines, secreted in the medium, were monitored in time. Upon challenge, IR-primed cells showed modified γH2AX spot size distributions and altered repair kinetics, consistent with an adaptive response. In addition, 24 h after priming with IR, four cytokines were significantly upregulated in the medium - GM-CSF (1.33x); IL6 (4.24x); IL8 (1.33x); TGF-β (1.46x). In order to mimick the protective effect of IR priming, we primed the cells with either IL6 or TGF-β. This did not elicit an altered γH2AX response as observed in IR-primed cells, indicating that the adaptive response in these primary fibroblasts is regulated in an IL-6 and TGF-β independent manner.

  4. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    International Nuclear Information System (INIS)

    Wörmann, Xenia; Lesch, Markus; Welke, Robert-William; Okonechnikov, Konstantin; Abdurishid, Mirshat; Sieben, Christian; Geissner, Andreas; Brinkmann, Volker; Kastner, Markus; Karner, Andreas; Zhu, Rong; Hinterdorfer, Peter; Anish, Chakkumkal; Seeberger, Peter H.; Herrmann, Andreas

    2016-01-01

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA_1 D130E, HA_2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  5. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wörmann, Xenia [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Lesch, Markus [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee (Germany); Welke, Robert-William [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Okonechnikov, Konstantin; Abdurishid, Mirshat [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Sieben, Christian [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Geissner, Andreas [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Brinkmann, Volker [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Kastner, Markus [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Karner, Andreas [Center for Advanced Bioanalysis GmbH (CBL), Linz (Austria); Zhu, Rong; Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Anish, Chakkumkal [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Seeberger, Peter H. [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Herrmann, Andreas [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); and others

    2016-05-15

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA{sub 1} D130E, HA{sub 2} I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  6. Time-Resolved Tracking of Mutations Reveals Diverse Allele Dynamics during Escherichia coli Antimicrobial Adaptive Evolution to Single Drugs and Drug Pairs

    DEFF Research Database (Denmark)

    Hickman, Rachel A.; Munck, Christian; Sommer, Morten Otto Alexander

    2017-01-01

    + CHL and CHL + CIP). We find that lineages evolved to antibiotic combinations exhibit different resistance allele dynamics compared with those of single-drug evolved lineages, especially for a drug pair with reciprocal collateral sensitivity. During adaptation, we observed interfering, superimposing...

  7. Genome scans on experimentally evolved populations reveal candidate regions for adaptation to plant resistance in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Eoche-Bosy, D; Gautier, M; Esquibet, M; Legeai, F; Bretaudeau, A; Bouchez, O; Fournet, S; Grenier, E; Montarry, J

    2017-09-01

    Improving resistance durability involves to be able to predict the adaptation speed of pathogen populations. Identifying the genetic bases of pathogen adaptation to plant resistances is a useful step to better understand and anticipate this phenomenon. Globodera pallida is a major pest of potato crop for which a resistance QTL, GpaV vrn , has been identified in Solanum vernei. However, its durability is threatened as G. pallida populations are able to adapt to the resistance in few generations. The aim of this study was to investigate the genomic regions involved in the resistance breakdown by coupling experimental evolution and high-density genome scan. We performed a whole-genome resequencing of pools of individuals (Pool-Seq) belonging to G. pallida lineages derived from two independent populations having experimentally evolved on susceptible and resistant potato cultivars. About 1.6 million SNPs were used to perform the genome scan using a recent model testing for adaptive differentiation and association to population-specific covariables. We identified 275 outliers and 31 of them, which also showed a significant reduction in diversity in adapted lineages, were investigated for their genic environment. Some candidate genomic regions contained genes putatively encoding effectors and were enriched in SPRYSECs, known in cyst nematodes to be involved in pathogenicity and in (a)virulence. Validated candidate SNPs will provide a useful molecular tool to follow frequencies of virulence alleles in natural G. pallida populations and define efficient strategies of use of potato resistances maximizing their durability. © 2017 John Wiley & Sons Ltd.

  8. Partitioning of Multivariate Phenotypes using Regression Trees Reveals Complex Patterns of Adaptation to Climate across the Range of Black Cottonwood (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Regis Wendpouire Oubida

    2015-03-01

    Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.

  9. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    Science.gov (United States)

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.

  10. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China

    Directory of Open Access Journals (Sweden)

    Yun Jia

    2017-07-01

    Full Text Available The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii (Notopterygium, Apiaceae are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant–pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence

  11. Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment.

    Science.gov (United States)

    Dias E Silva, Tairon Pannunzio; Costa Torreão, Jacira Neves da; Torreão Marques, Carlo Aldrovandi; de Araújo, Marcos Jácome; Bezerra, Leílson Rocha; Kumar Dhanasekaran, Dinesh; Sejian, Veerasamy

    2016-07-01

    This study was conducted to evaluate the effect of multiple stress factors (thermal, nutritional and pregnancy type) on two different native track breeds of ewes as reflected by their adaptive capability under semi-arid environment. The multiple stressor experiment was conducted in twenty-four ewes (12 Santa Inês and 12 Morada Nova ewes). Both heat stress and pregnancy stress was common to all four groups. However, the animals were divided into further two groups within each breed on the basis of nutrition regimen. According the groupings were: Group 1 (Six Santa Ines ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 2 (Six Santa Ines ewes; heat stress; nutrition at 1.5% BW; twin pregnancy); groups Group 3 (Six Morada Nova ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 4 (Six Morada Nova ewes; heat stress; nutrition at 1.5% BW; twin pregnancy). All the animals in the experiment were pregnant. Heat stress was induced by exposing all animals to summer heat stress in outside environment while the nutritional regimen followed was at 0.5% and 1.5% level of body weight (BW) respectively in each breed. The experiment was conducted in a completely randomized design with two breeds, two nutritional treatments and two pregnancy types, 10 repetitions for physiological parameters and six for blood parameters, with repeated measures over time. Physiological parameters (respiratory rate, pulse rate and rectal temperature) were measured with the animals at rest in the morning and afternoon, 0600-0700 and 1300-1400h, respectively, every seven days. Blood samples were collected every 14d for determination of serum glucose, triglycerides, cholesterol, urea and creatinine. We found interaction effect between breed and pregnancy type on respiratory rate and rectal temperature with greater values in Santa Inês ewes than Morada Nova ewes. However, there was no significant fixed effect of pregnancy type and supplementation level on physiological

  12. Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change

    Science.gov (United States)

    Scriber, J. Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-01

    Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the “converse of Bergmann’s size Rule”, with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3–4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general “voltinism/size/D-day” model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local “climatic cold pockets” in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these “cold pockets” are in contrast to non-significant changes for other Papilio populations seen across the latitudinal

  13. Adaptive Laboratory Evolution Of Escherichia Coli Reveals Arduous Resistance Development To A Combination Of Three Novel Antimicrobial Compounds And To The Short Amp P9-4

    DEFF Research Database (Denmark)

    Citterio, Linda; Franzyk, Henrik; Gram, Lone

    2015-01-01

    Antimicrobial peptides (AMPs) were for long considered as promising new antimicrobials since resistance was not expected. However, adaptive evolution experiments have demonstrated that bacteria may indeed develop resistance also to AMPs. However, we and others hypothesize that the risk...... of resistance development decreases when two or more compounds are combined as compared to single-drug treatments. The purpose of this study was to determine if resistance could develop in Escherichia coli ATCC 25922 to the peptidomimetic HF-1002 2 and the AMPs novicidin and P9-4. The mentioned compounds were...... adaptation to 32 x MIC. This shows that resistance to novicidin and HF-1002 2, administered alone, developed more easily than it occurred in lineages exposed to the combination of three drugs. This result further supports combinatorial treatment as a way to circumvent resistance development. Surprisingly...

  14. Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available BACKGROUND: Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. METHODOLOGY: A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs and a panel of 1127 landraces from the Americas (270 SNPs. Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset. CONCLUSIONS: The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress

  15. Is food-related lifestyle (FRL) able to reveal food consumption patterns in non-western cultural environments? Its adaptation and application in urban China

    DEFF Research Database (Denmark)

    Grunert, Klaus G.; Perrea, Toula; Zhou, Yanfeng

    Research related to food-related behaviour in China is still scarce, one reason being the fact that food consumption patterns in East Asia do not appear to be easily analyzed by models originating in Western cultures. The objective of the present work is to examine the ability of the Food Related...... for the conceptual meaningfulness and applicability of FRL in non-Western food culture environments, when appropriately adapted....

  16. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Directory of Open Access Journals (Sweden)

    Timothée Bonnet

    2017-01-01

    Full Text Available In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative genetic models are able to provide us with an understanding of the causes and consequences of

  17. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    Science.gov (United States)

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  18. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population

    Science.gov (United States)

    Wandeler, Peter; Camenisch, Glauco

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  19. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    OpenAIRE

    Timothée Bonnet; Peter Wandeler; Glauco Camenisch; Erik Postma

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions: Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called ‘stasis paradox’ highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic enviro...

  20. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    Science.gov (United States)

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  1. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  2. Face-to-Face Packing of 2,3,9,10-Tetrasubstituted Pentacene Derivatives Revealed through a Solid State [4 + 4] Thermal Cycloaddition and Molecular Dynamic Simulation.

    Science.gov (United States)

    Pal, Bikash; Lin, Bo-Chao; Dela Cerna, Mark Vincent Carreon; Hsu, Chao-Ping; Lin, Chih-Hsiu

    2016-08-05

    2,3,9,10-Substituted pentacene tetraesters and pentacene diester-dinitriles were synthesized. These pentacene derivatives underwent an unusual solid state [4 + 4] thermal dimerization with good efficiency and complete stereoselectivity. This observation indicates this series of pentacene derivatives adopt π-π stacking geometry with large mutual overlap in solid state. This notion was confirmed by molecualr dynamic simulation.

  3. Examination of food chain-derived Listeria monocytogenes strains of different serotypes reveals considerable diversity in inlA genotypes, mutability, and adaptation to cold temperatures.

    Science.gov (United States)

    Kovacevic, Jovana; Arguedas-Villa, Carolina; Wozniak, Anna; Tasara, Taurai; Allen, Kevin J

    2013-03-01

    Listeria monocytogenes strains belonging to serotypes 1/2a and 4b are frequently linked to listeriosis. While inlA mutations leading to premature stop codons (PMSCs) and attenuated virulence are common in 1/2a, they are rare in serotype 4b. We observed PMSCs in 35% of L. monocytogenes isolates (n = 54) recovered from the British Columbia food supply, including serotypes 1/2a (30%), 1/2c (100%), and 3a (100%), and a 3-codon deletion (amino acid positions 738 to 740) seen in 57% of 4b isolates from fish-processing facilities. Caco-2 invasion assays showed that two isolates with the deletion were significantly more invasive than EGD-SmR (P cold temperature following a downshift from 37°C to 4°C. Overall, three distinct cold-adapting groups (CAG) were observed: 46% were fast (200 h) adaptors. Intermediate CAG strains (70%) more frequently possessed inlA PMSCs than did fast (20%) and slow (10%) CAGs; in contrast, 87% of fast adaptors lacked inlA PMSCs. In conclusion, we report food chain-derived 1/2a and 4b serotypes with a 3-codon deletion possessing invasive behavior and the novel association of inlA genotypes encoding a full-length InlA with fast cold-adaptation phenotypes.

  4. Canine parvovirus type 2 (CPV-2) and Feline panleukopenia virus (FPV) codon bias analysis reveals a progressive adaptation to the new niche after the host jump.

    Science.gov (United States)

    Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele

    2017-09-01

    Based on virus dependence from host cell machinery, their codon usage is expected to show a strong relation with the host one. Even if this association has been stated, especially for bacteria viruses, the linkage is considered to be less consistent for more complex organisms and a codon bias adaptation after host jump has never been proven. Canine parvovirus type 2 (CPV-2) was selected as a model because it represents a well characterized case of host jump, originating from Feline panleukopenia virus (FPV). The current study demonstrates that the adaptation to specific tissue and host codon bias affected CPV-2 evolution. Remarkably, FPV and CPV-2 showed a higher closeness toward the codon bias of the tissues they display the higher tropism for. Moreover, after the host jump, a clear and significant trend was evidenced toward a reduction in the distance between CPV-2 and the dog codon bias over time. This evidence was not confirmed for FPV, suggesting that an equilibrium has been reached during the prolonged virus-host co-evolution. Additionally, the presence of an intermediate pattern displayed by some strains infecting wild species suggests that these could have facilitated the host switch also by acting on codon bias. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Structural Adaptation of Cold-Active RTX Lipase from Pseudomonas sp. Strain AMS8 Revealed via Homology and Molecular Dynamics Simulation Approaches

    Directory of Open Access Journals (Sweden)

    Mohd. Shukuri Mohamad Ali

    2013-01-01

    Full Text Available The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8 (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus maintained its stability more than the noncatalytic domain (C-terminus, but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.

  6. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  7. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection

    Directory of Open Access Journals (Sweden)

    Yuka Matsumoto

    2017-09-01

    Full Text Available Ileocecal resection (ICR, one of several types of intestinal resection that results in short bowel syndrome (SBS, causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.

  8. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry.

    Directory of Open Access Journals (Sweden)

    Pierre J G M de Wit

    Full Text Available We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu (syn. Passalora fulva and Dothistroma septosporum (Dse that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs, but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb, which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse. Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.

  9. The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    Energy Technology Data Exchange (ETDEWEB)

    de Wit, Pierre J. G. M.; van der Burgt, Ate; Okmen, Bilal; Stergiopoulos, Ioannis; Abd-Elsalam, Kamel A.; Aerts, Andrea L.; Bahkali, Ali H.; Beenen, Henriek G.; Chettri, Oranav; Cos, Murray P.; Datema, Erwin; de Vries, Ronald P.; DHillon, Braham; Ganley, Austen R.; Griffiths, Scott A.; Guo, Yanan; Gamelin, Richard C.; Henrissat, Bernard; Kabir, M. Shahjahan; Jashni, Mansoor Karimi; Kema, Gert; Klaubauf, Sylvia; Lapidus, Alla; Levasseur, Anthony; Lindquist, Erika; Mehrabi, Rahim; Ohm, Robin A.; Owen, Timothy J.; Salamov, Asaf; Schwelm, Arne; Schijlen, Elio; Sun, Hui; van den Burg, Harrold A.; van Burg, Roeland C. H. J.; Zhang, Shuguang; Goodwin, Stephen B.; Grigoriev, Igor V.; Collemare, Jerome; Bradshaw, Rosie E.

    2012-05-04

    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70percent of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2percent in Cfu versus 3.2percent in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.

  10. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    OpenAIRE

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a tempera...

  11. THE LOCATION OF NON-THERMAL VELOCITY IN THE EARLY PHASES OF LARGE FLARES—REVEALING PRE-ERUPTION FLUX ROPES

    International Nuclear Information System (INIS)

    Harra, Louise K.; Matthews, Sarah; Culhane, J. L.; Cheung, Mark C. M.; Kontar, Eduard P.; Hara, Hirohisa

    2013-01-01

    Non-thermal velocity measurements of the solar atmosphere, particularly from UV and X-ray emission lines have demonstrated over the decades that this parameter is important in understanding the triggering of solar flares. Enhancements have often been observed before intensity enhancements are seen. However, until the launch of Hinode, it has been difficult to determine the spatial location of the enhancements to better understand the source region. The Hinode EUV Imaging Spectrometer has the spectral and spatial resolution to allow us to probe the early stages of flares in detail. We analyze four events, all of which are GOES M- or X-classification flares, and all are located toward the limb for ease of flare geometry interpretation. Three of the flares were eruptive and one was confined. In all events, pre-flare enhancement in non-thermal velocity at the base of the active region and its surroundings has been found. These enhancements seem to be consistent with the footpoints of the dimming regions, and hence may be highlighting the activation of a coronal flux rope for the three eruptive events. In addition, pre-flare enhancements in non-thermal velocity were found above the looptops for the three eruptive events

  12. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    Science.gov (United States)

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice.

    Science.gov (United States)

    Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin

    2017-01-01

    Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds.

    Science.gov (United States)

    Lagerholm, Vendela K; Sandoval-Castellanos, Edson; Vaniscotte, Amélie; Potapova, Olga R; Tomek, Teresa; Bochenski, Zbigniew M; Shepherd, Paul; Barton, Nick; Van Dyck, Marie-Claire; Miller, Rebecca; Höglund, Jacob; Yoccoz, Nigel G; Dalén, Love; Stewart, John R

    2017-04-01

    Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum. © 2016 John Wiley & Sons Ltd.

  15. SNP analyses of postprandial responses in (an)orexigenic hormones and feelings of hunger reveal long-term physiological adaptations to facilitate homeostasis.

    Science.gov (United States)

    den Hoed, M; Smeets, A J P G; Veldhorst, M A B; Nieuwenhuizen, A G; Bouwman, F G; Heidema, A G; Mariman, E C M; Westerterp-Plantenga, M S; Westerterp, K R

    2008-12-01

    The postprandial responses in (an)orexigenic hormones and feelings of hunger are characterized by large inter-individual differences. Food intake regulation was shown earlier to be partly under genetic control. This study aimed to determine whether the postprandial responses in (an)orexigenic hormones and parameters of food intake regulation are associated with single nucleotide polymorphisms (SNPs) in genes encoding for satiety hormones and their receptors. Peptide YY (PYY), glucagon-like peptide 1 and ghrelin levels, as well as feelings of hunger and satiety, were determined pre- and postprandially in 62 women and 41 men (age 31+/-14 years; body mass index 25.0+/-3.1 kg/m(2)). Dietary restraint, disinhibition and perceived hunger were determined using the three-factor eating questionnaire. SNPs were determined in the GHRL, GHSR, LEP, LEPR, PYY, NPY, NPY2R and CART genes. The postprandial response in plasma ghrelin levels was associated with SNPs in PYY (215G>C, PG and 688A>G, PGHRL (-501A>C, PA, PG and 585T>C, PA, PA and 204T>C, P<0.05). Part of the inter-individual variability in postprandial responses in (an)orexigenic hormones can be explained by genetic variation. These postprandial responses represent either long-term physiological adaptations to facilitate homeostasis or reinforce direct genetic effects.

  16. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land.

    Science.gov (United States)

    Caputi, Lorenzo; Malnoy, Mickael; Goremykin, Vadim; Nikiforova, Svetlana; Martens, Stefan

    2012-03-01

    For almost a decade, our knowledge on the organisation of the family 1 UDP-glycosyltransferases (UGTs) has been limited to the model plant A. thaliana. The availability of other plant genomes represents an opportunity to obtain a broader view of the family in terms of evolution and organisation. Family 1 UGTs are known to glycosylate several classes of plant secondary metabolites. A phylogeny reconstruction study was performed to get an insight into the evolution of this multigene family during the adaptation of plants to life on land. The organisation of the UGTs in the different organisms was also investigated. More than 1500 putative UGTs were identified in 12 fully sequenced and assembled plant genomes based on the highly conserved PSPG motif. Analyses by maximum likelihood (ML) method were performed to reconstruct the phylogenetic relationships existing between the sequences. The results of this study clearly show that the UGT family expanded during the transition from algae to vascular plants and that in higher plants the clustering of UGTs into phylogenetic groups appears to be conserved, although gene loss and gene gain events seem to have occurred in certain lineages. Interestingly, two new phylogenetic groups, named O and P, that are not present in A. thaliana were discovered. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  17. In silico analysis of HIV-1 Env-gp120 reveals structural bases for viral adaptation in growth-restrictive cells

    Directory of Open Access Journals (Sweden)

    Masaru eYokoyama

    2016-02-01

    Full Text Available Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1 envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.

  18. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface.

    Science.gov (United States)

    Ahn, Chun-Seob; Kim, Jeong-Geun; Han, Xiumin; Bae, Young-An; Park, Woo-Jae; Kang, Insug; Wang, Hu; Kong, Yoon

    2017-02-03

    Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.

  19. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces destructans.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available Current investigations of bat White Nose Syndrome (WNS and the causative fungus Pseudogymnoascus (Geomyces destructans (Pd are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD and culture-independent (CI methods to catalogue all fungi ('mycobiome'. CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS. The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS.

  20. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans.

    Science.gov (United States)

    Zhang, Tao; Victor, Tanya R; Rajkumar, Sunanda S; Li, Xiaojiang; Okoniewski, Joseph C; Hicks, Alan C; Davis, April D; Broussard, Kelly; LaDeau, Shannon L; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi ('mycobiome'). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS.

  1. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    Science.gov (United States)

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  2. Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Melissa D. Kurman

    2017-05-01

    acidification in the long term, it is possible that some genotypes may prove to be more resilient than others, particularly to short perturbations of the carbonate system. These results provide evidence that populations of L. pertusa in the Gulf of Mexico may contain the genetic variability necessary to support an adaptive response to future ocean acidification.

  3. From Crustal Anatexis to Pluton Emplacement: High-Precision Zircon Geochronology Reveals the Thermal History of the Larderello-Travale Geothermal System (Italy)

    Science.gov (United States)

    Farina, F.; Dini, A.; Ovtcharova, M.; Davies, J.; Bouvier, A. S.; Baumgartner, L. P.; Caricchi, L.; Schaltegger, U.

    2017-12-01

    Late Miocene to recent post-collisional extension in Tuscany (Italy) led to the emplacement of shallow-level granitic plutons and to the eruption of small rhyolitic bodies. The intrusion of peraluminous two-mica and tourmaline-bearing granites triggered the formation of the steam-dominated Larderello-Travale geothermal system. In this study, zircon crystals from granite samples obtained from drill holes at 3.0-4.5 km depth were investigated by combining in-situ oxygen isotopes analysis and high-precision CA-ID-TIMS U-Pb age determinations to gain insight into the nature of the magmatic heat source fuelling the geothermal field. Magmatic zircon crystals display δ18O values ranging from 8.6 to 13.5‰ and crystals from individual samples exhibit inter- and intra-grain oxygen isotope variability exceeding 3‰. The geochronological data indicates the existence of three magmatic pulses with ages between 3.637 ± 0.008 and 1.671 ± 0.004 Ma. More importantly, zircon crystals from individual samples exhibit an age spread as large as 200-400 ky. This age dispersion, which is more than one order of magnitude greater than the uncertainty on a single date, suggest that most of the zircon did not crystallize at the emplacement level, but within isolated and isotopically distinct magma batches before large-scale homogenization in a magmatic reservoir at depth. The rate of assembly and final volume of this reservoir is estimated using the distribution of precise U-Pb zircon dates following the approach of Caricchi et al. (2014). Thermal modelling indicates that the heat flow at the surface in the geothermal field cannot be sustained by the inferred reservoir or by heat advection from the mantle. Our data suggest the existence of a younger shallow-level intrusion, whose occurrence also accounts for the existence of confined magmatic fluids at the top of the Larderello-Travale intrusion. We conclude that a multi-disciplinary approach, integrating high-precision zircon dating, in

  4. Thermal comfort in urban transitional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Chungyoon Chun [Yonsei University, Seoul (Korea). College of Human Ecology, Department of Housing and Interior Design; Tamura, A. [Yokohama National University (Japan). Department of Architecture and Building Science

    2005-05-15

    This paper deals with thermal comfort in urban transitional spaces. This topic investigates thermal comfort during walking activities through transitional spaces-urban corridors, shopping streets, and open-ended passageways. The study involves a field study and a laboratory study with a sequenced walk through an environmental control chamber. Subjects in both studies wore the same clothing ensembles, walked the same speed, and evaluated their thermal comfort at 20 designated point in the field and in specific rooms in the control chamber. Air temperature, relative humidity, and air velocity were measured concurrently as the thermal comfort votes completed. Findings revealed that the previously experienced temperatures determined thermal comfort at the following point in the sequence. Because thermal comfort at a point can be influenced widely by relative placement of temperatures in sequence, thermal comfort in transitional spaces can be adapted very widely compared to comfort inside of buildings. Thermal comfort along the experimental courses was evaluated by averaging the temperature of a course. (author)

  5. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  6. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Thermal pressure and isochoric thermal conductivity of solid CO2

    International Nuclear Information System (INIS)

    Purs'kij, O.Yi.

    2005-01-01

    The analysis of the correlation between the thermal pressure and the isochoric thermal conductivity of solid CO 2 has been carried out. The temperature dependences of the thermal pressure and isochoric thermal conductivity for samples with various molar volumes have been obtained. The isothermal pressure dependences of the thermal conductivity of solid CO 2 have been calculated. The form of the temperature dependence of the isochoric thermal conductivity taking the thermal pressure into account has been revealed. Behaviour of the isochoric thermal conductivity is explained by phonon-phonon interaction and additional influence of the thermal pressure

  8. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland

    Directory of Open Access Journals (Sweden)

    Jan K. Kazak

    2018-04-01

    Full Text Available The increasing level of antropopression has a negative impact on environmental resources and has reached the level of our planetary boundaries. One limitation is land use change caused by urbanization. Global policies prove the need to undertake action in order to develop more sustainable human settlements, which would be adapted better to potential future climate change effects. Among such changes are the increase of average temperatures and extreme events like heat waves. Those changes are more severe in urban areas due to land use development, and result in the urban heat island effect (UHI, which has a negative impact on the thermal comfort of citizens. The paper presents a decision support system that can be used for the assessment of areas to the potential exposure to the UHI effect. The system integrates scenario analysis, land use modelling in cellular automata (Metronamica, and an indicator-based assessment in a geographic information system (ArcGIS. The applicability of the model is illustrated through developing scenarios for the future land use allocation of the Wrocław Larger Urban Zone (Poland. The results of the calculations show which scenario is the least vulnerable to UHI effects. Moreover, for each scenario, cores of urban areas were identified, in which certain urban design patterns accounting for adaptation to climate change could be implemented. The study provides a guideline for local authorities on where to focus actions in order to create more sustainable urban structures and to better adapt to climate change and environmental extremes.

  9. Heat death in the crayfish Austropotamobius pallipes: thermal inactivation of muscle membrane-bound ATPases in warm and cold adapted animals

    Energy Technology Data Exchange (ETDEWEB)

    Gladwell, R T

    1976-01-01

    The thermal sensitivity of the membrane-bound Mg/sup 2 +/ and Na/sup +/ + K/sup +/ + Mg/sup 2 +/ ATPases from the abdominal flexor muscles of 10 and 25/sup 0/C acclimated animals was investigated. The Mg/sup 2 +/ ATPase was inactivated by milder heat treatments than the Na/sup +/ + K/sup +/ + Mg/sup 2 +/ ATPase. The effect of high lethal temperatures on the Mg/sup 2 +/ ATPase was dependent on the previous thermal history of the animal, the enzyme preparations from 10/sup 0/C acclimated animals being more sensitive than those from 25/sup 0/C acclimated animals. The thermal sensitivity of the Na/sup +/ + K/sup +/ + Mg/sup 2 +/ ATPase was not altered by temperature acclimation. The change in the thermal sensitivity of the Mg/sup 2 +/ ATPase with the acclimation temperature of the whole animal was correlated with the survival times of 10 and 25/sup 0/C acclimated animals. The K/sub m/ and V/sub max/ of the ATPases was investigated and the K/sub m/ of both enzymes was found to decrease with acclimation of the whole animal to lower temperatures, so that enzyme/substrate affinity increased with cold acclimation. It was concluded that the inactivation of the muscle Mg/sup 2 +/ ATPase was the primary lesion of heat death in the crayfish, and that the changes in the kinetic properties of the ATPases were an important mechanism in the process of physiological temperature acclimation.

  10. Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment

    Science.gov (United States)

    Sejian, Veerasamy; Maurya, Vijai P.; Naqvi, Sayeed M. K.

    2010-11-01

    A study was conducted to assess the effect of combined stresses (thermal and nutritional) on endocrine and biochemical responses in Malpura ewes. Twenty eight adult Malpura ewes (average body weight 33.56 kg) were used in the present study. The ewes were divided into four groups viz., GI ( n = 7; control), GII ( n = 7; thermal stress), GIII ( n = 7; nutritional stress) and GIV ( n = 7; combined stress). The animals were stall fed with a diet consisting of 60% roughage and 40% concentrate. GI and GII ewes were provided with ad libitum feeding while GIII and GIV ewes were provided with restricted feed (30% intake of GI ewes) to induce nutritional stress. GII and GIV ewes were kept in climatic chamber at 40°C and 55% RH for 6 h a day between 1000 hours and 1600 hours to induce thermal stress. The study was conducted for a period of two estrus cycles. The parameters studied were Hb, PCV, glucose, total protein, total cholesterol, ACP, ALP, cortisol, T4, T3, and insulin. Combined stress significantly ( P ewes. It can be concluded from this study that two stressors occurring simultaneously may impact severely on the biological functions necessary to maintain homeostasis in sheep.

  11. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  12. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  13. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    International Nuclear Information System (INIS)

    Fainberg, J; Schaefer, W

    2015-01-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples. (paper)

  14. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    Science.gov (United States)

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  15. Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8 locus.

    Directory of Open Access Journals (Sweden)

    Sophie Bouchet

    Full Text Available The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide

  16. Adaptive Rationality, Adaptive Behavior and Institutions

    Directory of Open Access Journals (Sweden)

    Volchik Vyacheslav, V.

    2015-12-01

    Full Text Available The economic literature focused on understanding decision-making and choice processes reveals a vast collection of approaches to human rationality. Theorists’ attention has moved from absolutely rational, utility-maximizing individuals to boundedly rational and adaptive ones. A number of economists have criticized the concepts of adaptive rationality and adaptive behavior. One of the recent trends in the economic literature is to consider humans irrational. This paper offers an approach which examines adaptive behavior in the context of existing institutions and constantly changing institutional environment. It is assumed that adaptive behavior is a process of evolutionary adjustment to fundamental uncertainty. We emphasize the importance of actors’ engagement in trial and error learning, since if they are involved in this process, they obtain experience and are able to adapt to existing and new institutions. The paper aims at identifying relevant institutions, adaptive mechanisms, informal working rules and practices that influence actors’ behavior in the field of Higher Education in Russia (Rostov Region education services market has been taken as an example. The paper emphasizes the application of qualitative interpretative methods (interviews and discourse analysis in examining actors’ behavior.

  17. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1991-01-01

    An adaptive response to radiation stress was found in cultured Chinese hamster V79 cells, as a suppressed induction of micronuclei (MNs) and sister chromatid exchanges (SCEs) in the cells conditioned by very low doses. The important characteristics of the novel chromosomal response, called radio-adaptive response (RAR), that have newly emerged in this study are: 1) Low doses of beta-rays from tritiated water (HTO) as well as tritiated thymidine can cause the RAR. 2) Thermal neutrons, a high LET radiation, can not act as tritium beta-rays or gamma-rays. 3) The RAR expression is suppressed by an inhibition of protein synthesis. 4) Several proteins are newly synthesized concurrently with the RAR expression after adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggest that the RAR is an adaptive chromosomal DNA repair induced by very low doses of low LET radiations under restricted conditions, accompanying the inducible specific gene expression. (author)

  18. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  19. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  20. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  1. From thermal boredom to thermal pleasure: a brief literature review

    Directory of Open Access Journals (Sweden)

    Christhina Candido

    Full Text Available The most recent review of the ASHRAE Standard 55 (2010 incorporates the dialectic between static and adaptive approaches to thermal comfort by proposing different recommendations for airconditioned and naturally ventilated buildings. Particularly in naturally ventilated buildings, this standard aligns with three important topics in research field of thermal comfort during the last decades: (i air movement enhancement versus draft, (ii control availability and its impact on occupants' satisfaction, and (iii the search for thermal pleasure. This paper presents the rationale behind these three research topics and discusses its positive influence when moving from thermal comfort towards thermal pleasure.

  2. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses.

    Directory of Open Access Journals (Sweden)

    Tanguy Lafarge

    Full Text Available Fertilization sensitivity to heat in rice is a major issue within climate change scenarios in the tropics. A panel of 167 indica landraces and improved varieties was phenotyped for spikelet sterility (SPKST under 38°C during anthesis and for several secondary traits potentially affecting panicle micro-climate and thus the fertilization process. The panel was genotyped with an average density of one marker per 29 kb using genotyping by sequencing. Genome-wide association analyses (GWAS were conducted using three methods based on single marker regression, haplotype regression and simultaneous fitting of all markers, respectively. Fourteen loci significantly associated with SPKST under at least two GWAS methods were detected. A large number of associations was also detected for the secondary traits. Analysis of co-localization of SPKST associated loci with QTLs detected in progenies of bi-parental crosses reported in the literature allowed to narrow -down the position of eight of those QTLs, including the most documented one, qHTSF4.1. Gene families underlying loci associated with SPKST corresponded to functions ranging from sensing abiotic stresses and regulating plant response, such as wall-associated kinases and heat shock proteins, to cell division and gametophyte development. Analysis of diversity at the vicinity of loci associated with SPKST within the rice three thousand genomes, revealed widespread distribution of the favourable alleles across O. sativa genetic groups. However, few accessions assembled the favourable alleles at all loci. Effective donors included the heat tolerant variety N22 and some Indian and Taiwanese varieties. These results provide a basis for breeding for heat tolerance during anthesis and for functional validation of major loci governing this trait.

  3. Thermal comfort following immersion.

    Science.gov (United States)

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Adaptive Education.

    Science.gov (United States)

    Anderson, Lorin W.

    1979-01-01

    Schools have devised several ways to adapt instruction to a wide variety of student abilities and needs. Judged by criteria for what adaptive education should be, most learning for mastery programs look good. (Author/JM)

  5. Josephson Thermal Memory

    Science.gov (United States)

    Guarcello, Claudio; Solinas, Paolo; Braggio, Alessandro; Di Ventra, Massimiliano; Giazotto, Francesco

    2018-01-01

    We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of approximately 0.2 ns for a Nb-based SQUID in thermal contact with a phonon bath at 4.2 K. We suggest a noninvasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits.

  6. Thermal comfort: research and practice.

    Science.gov (United States)

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  7. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  8. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  9. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  10. Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors

    Science.gov (United States)

    Mills, S. C.; Beldade, R.; Chabanet, P.; Bigot, L.; O'Donnell, J. L.; Bernardi, G.

    2015-12-01

    Individual exposure to stressors can induce changes in physiological stress responses through modulation of the hypothalamic-pituitary-interrenal (HPI) axis. Despite theoretical predictions, little is known about how individuals will respond to unpredictable short-lived stressors, such as thermal events. We examine the primary neuroendocrine response of coral reef fish populations from the Îles Eparses rarely exposed to anthropogenic stress, but that experienced different thermal histories. Skunk anemonefish, Amphiprion akallopisos, showed different cortisol responses to a generic stressor between islands, but not along a latitudinal gradient. Those populations previously exposed to higher maximum temperatures showed greater responses of their HPI axis. Archive data reveal thermal stressor events occur every 1.92-6 yr, suggesting that modifications to the HPI axis could be adaptive. Our results highlight the potential for adaptation of the HPI axis in coral reef fish in response to a climate-induced thermal stressor.

  11. ADAPT Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Diagnostics and Prognostics Testbed (ADAPT) Project Lead: Scott Poll Subject Fault diagnosis in electrical power systems Description The Advanced...

  12. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    2017-01-01

    We investigate the connection between contract duration, relational mechanisms, and premature relationship termination. Based on an analysis of a large sample of exchange relationships in the global service-provider industry, we argue that investments in either longer contract duration or more in...... ambiguous reference points for adaption and thus increase the likelihood of premature termination by restricting the parties' set of adaptive actions....

  13. Climate adaptation

    Science.gov (United States)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  14. Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis

    OpenAIRE

    Désert , Colette; Baeza , Elisabeth; Aite , Meziane; Boutin , Morgane; Le Cam , Aurélie; Montfort , Jérôme; Houee-Bigot , M.; Blum , Yuna; Roux , Pierre-François; Hennequet-Antier , Christelle; Berri , Cécile; Metayer-Coustard , Sonia; Collin , Anne; Allais , Sophie; Le Bihan , Elisabeth

    2018-01-01

    The 178 microarrays are MIAME compliant and available in Gene Expression Omnibus (GEO) through GEO Series accession number GSE104042 andplatform number GPL19630.; Background: Because the cost of cereals is unstable and represents a large part of production charges for meattype chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The ...

  15. Adaptive steganography

    Science.gov (United States)

    Chandramouli, Rajarathnam; Li, Grace; Memon, Nasir D.

    2002-04-01

    Steganalysis techniques attempt to differentiate between stego-objects and cover-objects. In recent work we developed an explicit analytic upper bound for the steganographic capacity of LSB based steganographic techniques for a given false probability of detection. In this paper we look at adaptive steganographic techniques. Adaptive steganographic techniques take explicit steps to escape detection. We explore different techniques that can be used to adapt message embedding to the image content or to a known steganalysis technique. We investigate the advantages of adaptive steganography within an analytical framework. We also give experimental results with a state-of-the-art steganalysis technique demonstrating that adaptive embedding results in a significant number of bits embedded without detection.

  16. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed......Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  17. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  18. Face adaptation improves gender discrimination.

    Science.gov (United States)

    Yang, Hua; Shen, Jianhong; Chen, Juan; Fang, Fang

    2011-01-01

    Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern. However, the functional roles of adaptation, especially in high-level vision, are still equivocal. In the present study, we performed three experiments to investigate if face gender adaptation could affect gender discrimination. Experiments 1 and 2 revealed that adapting to a male/female face could selectively enhance discrimination for male/female faces. Experiment 3 showed that the discrimination enhancement induced by face adaptation could transfer across a substantial change in three-dimensional face viewpoint. These results provide further evidence suggesting that, similar to low-level vision, adaptation in high-level vision could calibrate the visual system to current inputs of complex shapes (i.e. face) and improve discrimination at the adapted characteristic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Decision Making and Revealed Preference

    DEFF Research Database (Denmark)

    de la Rosa, Leonidas Enrique

    If our decision-making processes are to some extent shaped by evolutionary pressures and our environment is different from that to which we adapted, some of our choices will not be in our best interest. But revealed preference is the only tool that we have so far to conduct a normative analysis...

  20. High precision automated face localization in thermal images: oral cancer dataset as test case

    Science.gov (United States)

    Chakraborty, M.; Raman, S. K.; Mukhopadhyay, S.; Patsa, S.; Anjum, N.; Ray, J. G.

    2017-02-01

    Automated face detection is the pivotal step in computer vision aided facial medical diagnosis and biometrics. This paper presents an automatic, subject adaptive framework for accurate face detection in the long infrared spectrum on our database for oral cancer detection consisting of malignant, precancerous and normal subjects of varied age group. Previous works on oral cancer detection using Digital Infrared Thermal Imaging(DITI) reveals that patients and normal subjects differ significantly in their facial thermal distribution. Therefore, it is a challenging task to formulate a completely adaptive framework to veraciously localize face from such a subject specific modality. Our model consists of first extracting the most probable facial regions by minimum error thresholding followed by ingenious adaptive methods to leverage the horizontal and vertical projections of the segmented thermal image. Additionally, the model incorporates our domain knowledge of exploiting temperature difference between strategic locations of the face. To our best knowledge, this is the pioneering work on detecting faces in thermal facial images comprising both patients and normal subjects. Previous works on face detection have not specifically targeted automated medical diagnosis; face bounding box returned by those algorithms are thus loose and not apt for further medical automation. Our algorithm significantly outperforms contemporary face detection algorithms in terms of commonly used metrics for evaluating face detection accuracy. Since our method has been tested on challenging dataset consisting of both patients and normal subjects of diverse age groups, it can be seamlessly adapted in any DITI guided facial healthcare or biometric applications.

  1. Thermal comfort assessment in civil aircraft cabins

    OpenAIRE

    Pang Liping; Qin Yue; Liu Dong; Liu Meng

    2014-01-01

    Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft ...

  2. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  3. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI to Other Outdoor Thermal Comfort Indices

    Directory of Open Access Journals (Sweden)

    Iacopo Golasi

    2016-07-01

    Full Text Available Outdoor thermal comfort is an essential factor of people’s everyday life and deeply affects the habitability of outdoor spaces. However the indices used for its evaluation were usually developed for indoor environments assuming still air conditions and absence of solar radiation and were only later adapted to outdoor spaces. For this reason, in a previous study the Mediterranean Outdoor Comfort Index (MOCI was developed, which is an empirical index able to estimate the thermal perception of people living in the Mediterranean area. In this study it was compared numerically (by using the data obtained through a field survey with other selected thermal indices. This comparison, performed in terms of Spearman’s rho correlation coefficient, association Gamma, percentage of correct predictions and cross-tabulation analysis, led to identify the MOCI as the most suitable index to examine outdoor thermal comfort in the interested area. As a matter of fact it showed a total percentage of correct predictions of 35.5%. Good performances were reported even in thermophysiological indices as the Physiological Equivalent Temperature (PET and Predicted Mean Vote (PMV. Moreover it was revealed that adaptation and acclimatization phenomena tend to have a certain influence as well.

  4. Assessing climate adaptation options and uncertainties for cereal systems in West Africa

    Science.gov (United States)

    Guan, K.; Sultan, B.; Biasutti, M.; Lobell, D. B.

    2015-12-01

    The already fragile agriculture production system in West Africa faces further challenges in meeting food security in the coming decades, primarily due to a fast increasing population and risks of climate change. Successful adaptation of agriculture should not only benefit in the current climate but should also reduce negative (or enhance positive) impacts for climate change. Assessment of various possible adaptation options and their uncertainties provides key information for prioritizing adaptation investments. Here, based on the several robust aspects of climate projections in this region (i.e. temperature increases and rainfall pattern shifts), we use two well-validated crop models (i.e. APSIM and SARRA-H) and an ensemble of downscaled climate forcing to assess five possible and realistic adaptation options (late sowing, intensification, thermal time increase, water harvesting and increased resilience to heat stress) in West Africa for the staple crop production of sorghum. We adopt a new assessment framework to account for both the impacts of adaptation options in current climate and their ability to reduce impacts of future climate change, and also consider changes in both mean yield and its variability. Our results reveal that most proposed "adaptation options" are not more beneficial in the future than in the current climate, i.e. not really reduce the climate change impacts. Increased temperature resilience during grain number formation period is the main adaptation that emerges. We also find that changing from the traditional to modern cultivar, and later sowing in West Sahel appear to be robust adaptations.

  5. Adaptation Insights

    International Development Research Centre (IDRC) Digital Library (Canada)

    Addressing Climate Change Adaptation in Africa through Participatory Action Research. A Regional Observatory ... while the average annual rainfall recorded between. 1968 and 1999 was .... the region of Thies. For sustainability reasons, the.

  6. Adaptation Stories

    International Development Research Centre (IDRC) Digital Library (Canada)

    By Reg'

    adaptation to climate change from various regions of the Sahel. Their .... This simple system, whose cost and maintenance were financially sustainable, brought ... method that enables him to learn from experience and save time, which he ...

  7. Thermally actuated linkage arrangement

    International Nuclear Information System (INIS)

    Anderson, P.M.

    1981-01-01

    A reusable thermally actuated linkage arrangement includes a first link member having a longitudinal bore therein adapted to receive at least a portion of a second link member therein, the first and second members being sized to effect an interference fit preventing relative movement there-between at a temperature below a predetermined temperature. The link members have different coefficients of thermal expansion so that when the linkage is selectively heated by heating element to a temperature above the predetermined temperature, relative longitudinal and/or rotational movement between the first and second link members is enabled. Two embodiments of a thermally activated linkage are disclosed which find particular application in actuators for a grapple head positioning arm in a nuclear reactor fuel handling mechanism to facilitate back-up safety retraction of the grapple head independently from the primary fuel handling mechanism drive system. (author)

  8. Is adaptation. Truly an adaptation? Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2008-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning. The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition

  9. Strategic Adaptation

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    2015-01-01

    This article provides an overview of theoretical contributions that have influenced the discourse around strategic adaptation including contingency perspectives, strategic fit reasoning, decision structure, information processing, corporate entrepreneurship, and strategy process. The related...... concepts of strategic renewal, dynamic managerial capabilities, dynamic capabilities, and strategic response capabilities are discussed and contextualized against strategic responsiveness. The insights derived from this article are used to outline the contours of a dynamic process of strategic adaptation....... This model incorporates elements of central strategizing, autonomous entrepreneurial behavior, interactive information processing, and open communication systems that enhance the organization's ability to observe exogenous changes and respond effectively to them....

  10. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Kongshaug, Jesper; Søndergaard, Karin

    2015-01-01

    offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... to be static, and no longer acts as a kind of spatial constancy maintaining stability and order? Moreover, what new potentials open in lighting design? This book is one of four books that is published in connection with the research project entitled LED Lighting; Interdisciplinary LED Lighting Research...

  11. Adaptive test

    DEFF Research Database (Denmark)

    Kjeldsen, Lars Peter; Eriksen, Mette Rose

    2010-01-01

    Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale.......Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale....

  12. Periodic and stochastic thermal modulation of protein folding kinetics.

    Science.gov (United States)

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  13. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  14. Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2006-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning.

  15. Time to adapt

    International Nuclear Information System (INIS)

    Parry, M.

    2008-01-01

    As every month goes by it becomes increasingly clear that we will need to adapt to climate change. Of course, early action needs to be taken to mitigate it by reducing emissions of greenhouse gases, but this must be complemented by investment in adaptation in the places most affected. The sooner we put resources into adaptation the less damage will be sustained. The latest assessment by the Intergovernmental Panel on Climate Change (IPCC) came to the new conclusion that the effects of climate change are occurring now. The Earth has already warmed by 0.5 degrees C due to increases in atmospheric greenhouse gases, and we can observe the effects of this on every continent - most troublingly the current drying and warming in Africa's Sahelian region, and the effects of sea-level rise on coastal flood plains and small islands. Inevitably, some adaptation is also occurring now but little of this is planned and almost no additional resources have yet been deployed toward it. Some further warming is inevitable. Even if we were to cut emissions both immediately and so enormously that greenhouse gas concentrations in the atmosphere are stabilised at current levels - an impossible task - a temperature increase of a further 0.6 degrees C would still be inevitable due to thermal lag of the oceans and atmosphere. So 1.1 degrees C of climate change is the very least that we should plan for. The impacts from such an increase will probably include: reduced water availability - with consequent falls in agricultural productivity - in the dry tropics; increased coastal flooding; and increased morbidity and mortality from heat waves and droughts. Adaptation is the only way of avoiding or reducing these

  16. Adaptation is...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC

    vital sector is under threat. While it is far from the only development challenge facing local farmers, extreme variations in the climate of West Africa in the past several decades have dealt the region a bad hand. Drought and flood now follow each other in succession. Adaptation is... “The floods spoiled our harvests and we.

  17. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    and reciprocal adaptation of informal governance structure create ambiguity in situations of contingencies, which, subsequently, increases the likelihood of premature relationship termination. Using a large sample of exchange relationships in the global service provider industry, we find support for a hypothesis...

  18. A structure-based approach to evaluation product adaptability in adaptable design

    International Nuclear Information System (INIS)

    Cheng, Qiang; Liu, Zhifeng; Cai, Ligang; Zhang, Guojun; Gu, Peihua

    2011-01-01

    Adaptable design, as a new design paradigm, involves creating designs and products that can be easily changed to satisfy different requirements. In this paper, two types of product adaptability are proposed as essential adaptability and behavioral adaptability, and through measuring which respectively a model for product adaptability evaluation is developed. The essential adaptability evaluation proceeds with analyzing the independencies of function requirements and function modules firstly based on axiomatic design, and measuring the adaptability of interfaces secondly with three indices. The behavioral adaptability reflected by the performance of adaptable requirements after adaptation is measured based on Kano model. At last, the effectiveness of the proposed method is demonstrated by an illustrative example of the motherboard of a personal computer. The results show that the method can evaluate and reveal the adaptability of a product in essence, and is of directive significance to improving design and innovative design

  19. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  20. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, T.

    1992-01-01

    An adaptive response to radiation stress was found as a suppressed induction of chromosomal damage including micronuclei and sister chromatid exchanges in cultured Chinese hamster V79 cells pre-exposed to very low doses of ionizing radiations. The mechanism underlying this novel chromosomal response, called 'radio-adaptive response (RAR)' has been studied progressively. The following results were obtained in recent experiments. 1. Low doses of β-rays from tritiated water (HTO) as well as tritium-thymidine can cause RAR. 2. Thermal neutrons, a high LET radiation, can not act as tritium β-rays or γ-rays. 3. The RAR expression is suppressed not only by the treatment with an inhibitor of protein synthesis but also by RNA synthesis inhibition. 4. Several proteins are newly synthesized concurrently with the RAR expression after the adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggests that the RAR might be a cellular stress response to a signal produced preferentially by very low doses of low LET radiation under restricted conditions, accompany the inducible specific gene expression. (author)

  1. Hedonic "adaptation"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2008-02-01

    Full Text Available People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to dead bodies as disgust elicitors, by measuring specific types of disgust sensitivity in medical students before and after they have spent a few months dissecting a cadaver. Using the Disgust Scale, we find a significant reduction in disgust responses to death and body envelope violation elicitors, but no significant change in any other specific type of disgust. There is a clear reduction in discomfort at touching a cold dead body, but not in touching a human body which is still warm after death.

  2. Adaptation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul

    2011-11-15

    Efforts to help the world's poor will face crises in coming decades as climate change radically alters conditions. Action Research for Community Adapation in Bangladesh (ARCAB) is an action-research programme on responding to climate change impacts through community-based adaptation. Set in Bangladesh at 20 sites that are vulnerable to floods, droughts, cyclones and sea level rise, ARCAB will follow impacts and adaptation as they evolve over half a century or more. National and international 'research partners', collaborating with ten NGO 'action partners' with global reach, seek knowledge and solutions applicable worldwide. After a year setting up ARCAB, we share lessons on the programme's design and move into our first research cycle.

  3. Adaptable positioner

    International Nuclear Information System (INIS)

    Labrador Pavon, I.

    1993-01-01

    This paper describes the circuits and programs in assembly language, developed to control the two DC motors that give mobility to a mechanical arm with two degrees of freedom. As a whole, the system is based in a adaptable regulator designed around a 8 bit microprocessor that, starting from a mode of regulation based in the successive approximation method, evolve to another mode through which, only one approximation is sufficient to get the right position of each motor. (Author) 22 fig. 6 ref

  4. Adaptive positioner

    International Nuclear Information System (INIS)

    Labrador Pavon, I.

    1993-01-01

    This paper describes the circuits and programs in assembly language, developed to control the two DC motors that give mobility to a mechanical arm with two degrees of freedom. As a whole, the system is based in a adaptable regulator designed around a 8 bit microprocessor that, starting from a mode of regulation based in the successive approximation method, evolve to another mode through which, only one approximation is sufficient to get the right position of each motor. (Author) 6 refs

  5. Adaptive ethnography

    DEFF Research Database (Denmark)

    Berth, Mette

    2005-01-01

    This paper focuses on the use of an adaptive ethnography when studying such phenomena as young people's use of mobile media in a learning perspective. Mobile media such as PDAs and mobile phones have a number of affordances which make them potential tools for learning. However, before we begin to...... formal and informal learning contexts. The paper also proposes several adaptive methodological techniques for studying young people's interaction with mobiles.......This paper focuses on the use of an adaptive ethnography when studying such phenomena as young people's use of mobile media in a learning perspective. Mobile media such as PDAs and mobile phones have a number of affordances which make them potential tools for learning. However, before we begin...... to design and develop educational materials for mobile media platforms we must first understand everyday use and behaviour with a medium such as a mobile phone. The paper outlines the research design for a PhD project on mobile learning which focuses on mobile phones as a way to bridge the gap between...

  6. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  7. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  8. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  9. Adaptive electrothermal protection of power converters

    Directory of Open Access Journals (Sweden)

    Baraniuk G. A.

    2017-06-01

    Full Text Available Thermal management for power converters during normal operation and transient modes when electrical components are warmed up is an actual problem. This can be particularly important for converters with intermittent duty operation, e.g. power supplies for resistance welding. According to some research, nearly 60% of failures are temperature-induced, and for every 10°C temperature rise in operating environment the failure rate nearly doubles. In this paper, thermal motion of state equations eigenvalue is analysed. It is shown, that in semiconductor converters with an output smoothing filter it is appropriate to use thermal protection devices based on thermal normalisation of the converter filter and, while for cases when short circuits are possible it is appropriate to use a soft start system with thermal adaptation for soft start time factor. Based on these results, two systems of thermal protections operating for semiconductor power converters are introduced. Simulation of combined electromagnetic and thermal processes in buck converter operating with both thermal management systems in overlapping environments MATLAB/Simulink and PLECS showed the possibility to significantly reduce thermal shock on semiconductor components. Using the system of filter parameters normalisation decreases the temperature of the crystal from 210°C to 85°C, using the adaptive soft start system decreases the temperature from 180°C to 80°C. The simulation results are confirmed by tests on real devices.

  10. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  11. Adaptive therapy.

    Science.gov (United States)

    Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy

    2009-06-01

    A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant

  12. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  13. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  14. Thermal comfort assessment in civil aircraft cabins

    Directory of Open Access Journals (Sweden)

    Pang Liping

    2014-04-01

    Full Text Available Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to control ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET∗ of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80–90% of the thermal acceptability levels of passengers.

  15. Quantum Transduction with Adaptive Control

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  16. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  17. Thermal Properties and Thermal Analysis:

    Science.gov (United States)

    Kasap, Safa; Tonchev, Dan

    The chapter provides a summary of the fundamental concepts that are needed to understand the heat capacity C P, thermal conductivity κ, and thermal expansion coefficient α L of materials. The C P, κ, and α of various classes of materials, namely, semiconductors, polymers, and glasses, are reviewed, and various typical characteristics are summarized. A key concept in crystalline solids is the Debye theory of the heat capacity, which has been widely used for many decades for calculating the C P of crystals. The thermal properties are interrelated through Grüneisen's theorem. Various useful empirical rules for calculating C P and κ have been used, some of which are summarized. Conventional differential scanning calorimetry (DSC) is a powerful and convenient thermal analysis technique that allows various important physical and chemical transformations, such as the glass transition, crystallization, oxidation, melting etc. to be studied. DSC can also be used to obtain information on the kinetics of the transformations, and some of these thermal analysis techniques are summarized. Temperature-modulated DSC, TMDSC, is a relatively recent innovation in which the sample temperature is ramped slowly and, at the same time, sinusoidally modulated. TMDSC has a number of distinct advantages compared with the conventional DSC since it measures the complex heat capacity. For example, the glass-transition temperature T g measured by TMDSC has almost no dependence on the thermal history, and corresponds to an almost step life change in C P. The new Tzero DSC has an additional thermocouple to calibrate better for thermal lags inherent in the DSC measurement, and allows more accurate thermal analysis.

  18. Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming

    KAUST Repository

    Fusi, Marco; Giomi, Folco; Babbini, Simone; Daffonchio, Daniele; Mcquaid, Christopher D.; Porri, Francesca; Cannicci, Stefano

    2014-01-01

    The broad prediction that ectotherms will be more vulnerable to climate change in the tropics than in temperate regions includes assumptions about centre/edge population effects that can only be tested by within-species comparisons across wide latitudinal gradients. Here, we investigated the thermal vulnerability of two mangrove crab species, comparing populations at the centre (Kenya) and edge (South Africa) of their distributions. At the same time, we investigated the role of respiratory mode (water- versus air-breathing) in determining the thermal tolerance in amphibious organisms. To do this, we compared the vulnerability to acute temperature fluctuations of two sympatric species with two different lifestyle adaptations: the free living Perisesarma guttatum and the burrowing Uca urvillei, both pivotal to the ecosystem functioning of mangroves. The results revealed the air-breathing U. urvillei to be a thermal generalist with much higher thermal tolerances than P. guttatum. Importantly, however, we found that, while U. urvillei showed little difference between edge and centre populations, P. guttatum showed adaptation to local conditions. Equatorial populations had elevated tolerances to acute heat stress and mechanisms of partial thermoregulation, which make them less vulnerable to global warming than temperate conspecifics. The results reveal both the importance of respiratory mode to thermal tolerance and the unexpected potential for low latitude populations/species to endure a warming climate. The results also contribute to a conceptual model on the latitudinal thermal tolerance of these key species. This highlights the need for an integrated population-level approach to predict the consequences of climate change. © 2014 The Authors.

  19. Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming

    KAUST Repository

    Fusi, Marco

    2014-11-18

    The broad prediction that ectotherms will be more vulnerable to climate change in the tropics than in temperate regions includes assumptions about centre/edge population effects that can only be tested by within-species comparisons across wide latitudinal gradients. Here, we investigated the thermal vulnerability of two mangrove crab species, comparing populations at the centre (Kenya) and edge (South Africa) of their distributions. At the same time, we investigated the role of respiratory mode (water- versus air-breathing) in determining the thermal tolerance in amphibious organisms. To do this, we compared the vulnerability to acute temperature fluctuations of two sympatric species with two different lifestyle adaptations: the free living Perisesarma guttatum and the burrowing Uca urvillei, both pivotal to the ecosystem functioning of mangroves. The results revealed the air-breathing U. urvillei to be a thermal generalist with much higher thermal tolerances than P. guttatum. Importantly, however, we found that, while U. urvillei showed little difference between edge and centre populations, P. guttatum showed adaptation to local conditions. Equatorial populations had elevated tolerances to acute heat stress and mechanisms of partial thermoregulation, which make them less vulnerable to global warming than temperate conspecifics. The results reveal both the importance of respiratory mode to thermal tolerance and the unexpected potential for low latitude populations/species to endure a warming climate. The results also contribute to a conceptual model on the latitudinal thermal tolerance of these key species. This highlights the need for an integrated population-level approach to predict the consequences of climate change. © 2014 The Authors.

  20. Adaptive management

    DEFF Research Database (Denmark)

    Rist, Lucy; Campbell, Bruce Morgan; Frost, Peter

    2013-01-01

    Adaptive management (AM) emerged in the literature in the mid-1970s in response both to a realization of the extent of uncertainty involved in management, and a frustration with attempts to use modelling to integrate knowledge and make predictions. The term has since become increasingly widely used...... in scientific articles, policy documents and management plans, but both understanding and application of the concept is mixed. This paper reviews recent literature from conservation and natural resource management journals to assess diversity in how the term is used, highlight ambiguities and consider how...... the concept might be further assessed. AM is currently being used to describe many different management contexts, scales and locations. Few authors define the term explicitly or describe how it offers a means to improve management outcomes in their specific management context. Many do not adhere to the idea...

  1. Application of self-adaptive procedure to the thermal problems analysis under steady-state and transient regimens; Aplicacao de procedimento auto-adaptativo na analise de problemas termicos no regime permanente e transiente

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Paulo Roberto Maciel [Pernambuco Univ., Recife, PE (Brazil). Dept. de Engenharia Civil

    1991-12-31

    This work describes a procedure for the adaptive time dependent Finite Element Method using an automatic mesh refinement (H-Version) that efficiently reduces estimated errors ( a posteriori) below pre-assigned limits. Classical model problem for steady-state heat transfer are investigated, and the results are compared with the analytical solution. Then some typical time-dependent problem are qualitatively analysed. (author) 10 refs., 7 figs.

  2. Occupants’ behavioural adaptation in workplaces with non-central heating and cooling systems

    International Nuclear Information System (INIS)

    Liu Jing; Yao Runming; Wang Juan; Li Baizhan

    2012-01-01

    Occupants’ behaviour when improving the indoor environment plays a significant role in saving energy in buildings. Therefore the key step to reducing energy consumption and carbon emissions from buildings is to understand how occupants interact with the environment they are exposed to in terms of achieving thermal comfort and well-being; though such interaction is complex. This paper presents a dynamic process of occupant behaviours involving technological, personal and psychological adaptations in response to varied thermal conditions based on the data covering four seasons gathered from the field study in Chongqing, China. It demonstrates that occupants are active players in environmental control and their adaptive responses are driven strongly by ambient thermal stimuli and vary from season to season and from time to time, even on the same day. Positive, dynamic, behavioural adaptation will help save energy used in heating and cooling buildings. However, when environmental parameters cannot fully satisfy occupants’ requirements, negative behaviours could conflict with energy saving. The survey revealed that about 23% of windows are partly open for fresh air when air-conditioners are in operation in summer. This paper addresses the issues how the building and environmental systems should be designed, operated and managed in a way that meets the requirements of energy efficiency without compromising wellbeing and productivity. - Highlights: ► A year-long field study of observing user behaviour in workplace. ► Occupants’ behavioural adaptation plays an important role in reducing energy from buildings. ► Occupants actively and dynamically respond to outdoor climate change. ► Positive behavioural adaptations will eliminate the use of heating/cooling facilities. ► The poor use of heating/cooling facilities will cause a significant waste of energy.

  3. Adaptive oxide electronics: A review

    Science.gov (United States)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may

  4. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  5. Livelihood Resilience and Adaptive Capacity

    DEFF Research Database (Denmark)

    Thulstrup, Andreas Waaben

    2015-01-01

    This article analyses the implementation and outcomes of national development programs in a mountainous commune in Vietnam. The article traces the history of State intervention and the capacity of households and the community to adapt to change. The assessment reveals unintended consequences of t...

  6. Hydrologic Cycle Response to the Paleocene-Eocene Thermal Maximum at Austral, High-Latitude Site 690 as Revealed by In Situ Measurements of Foraminiferal Oxygen Isotope and Mg/Ca Ratios

    Science.gov (United States)

    Kozdon, R.; Kelly, D.; Fournelle, J.; Valley, J. W.

    2012-12-01

    Earth surface temperatures warmed by ~5°C during an ancient (~55.5 Ma) global warming event termed the Paleocene-Eocene thermal maximum (PETM). This transient (~200 ka) "hyperthermal" climate state had profound consequences for the planet's surficial processes and biosphere, and is widely touted as being an ancient analog for climate change driven by human activities. Hallmarks of the PETM are pervasive carbonate dissolution in the ocean basins and a negative carbon isotope excursion (CIE) recorded in variety of substrates including soil and marine carbonates. Together these lines of evidence signal the rapid (≤30 ka) release of massive quantities (≥2000 Gt) of 13C-depleted carbon into the exogenic carbon cycle. Paleoenvironmental reconstructions based on pedogenic features in paleosols, clay mineralogy and sedimentology of coastal and continental deposits, and land-plant communities indicate that PETM warmth was accompanied by a major perturbation to the hydrologic cycle. Micropaleontological evidence and n-alkane hydrogen isotope records indicate that increased poleward moisture transport reduced sea-surface salinities (SSSs) in the central Arctic Ocean during the PETM. Such findings are broadly consistent with predictions of climate model simulations. Here we reassess a well-studied PETM record from the Southern Ocean (ODP Site 690) in light of new δ18O and Mg/Ca data obtained from planktic foraminiferal shells by secondary ion mass spectrometry (SIMS) and electron microprobe analysis (EMPA), respectively. The unparalleled spatial resolution of these in situ techniques permits extraction of more reliable δ18O and Mg/Ca data by targeting of minute (≤10 μm spots), biogenic domains within individual planktic foraminifera that retain the original shell chemistry (Kozdon et al. 2011, Paleocean.). In general, the stratigraphic profile and magnitude of the δ18O decrease (~2.2‰) delimiting PETM warming in our SIMS-generated record are similar to those of

  7. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  8. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  9. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (V