WorldWideScience

Sample records for therapy facility medapp

  1. Dose-response relationship of dicentric chromosomes in human lymphocytes obtained for the fission neutron therapy facility MEDAPP at the research reactor FRM II.

    Science.gov (United States)

    Schmid, E; Wagner, F M; Romm, H; Walsh, L; Roos, H

    2009-02-01

    The biological effectiveness of neutrons from the neutron therapy facility MEDAPP (mean neutron energy 1.9 MeV) at the new research reactor FRM II at Garching, Germany, has been analyzed, at different depths in a polyethylene phantom. Whole blood samples were exposed to the MEDAPP beam in special irradiation chambers to total doses of 0.14-3.52 Gy at 2-cm depth, and 0.18-3.04 Gy at 6-cm depth of the phantom. The neutron and gamma-ray absorbed dose rates were measured to be 0.55 Gy min(-1) and 0.27 Gy min(-1) at 2-cm depth, while they were 0.28 and 0.25 Gy min(-1) at 6-cm depth. Although the irradiation conditions at the MEDAPP beam and the RENT beam of the former FRM I research reactor were not identical, neutrons from both facilities gave a similar linear-quadratic dose-response relationship for dicentric chromosomes at a depth of 2 cm. Different dose-response curves for dicentrics were obtained for the MEDAPP beam at 2 and 6 cm depth, suggesting a significantly lower biological effectiveness of the radiation with increasing depth. No obvious differences in the dose-response curves for dicentric chromosomes estimated under interactive or additive prediction between neutrons or gamma-rays and the experimentally obtained dose-response curves could be determined. Relative to (60)Co gamma-rays, the values for the relative biological effectiveness at the MEDAPP beam decrease from 5.9 at 0.14 Gy to 1.6 at 3.52 Gy at 2-cm depth, and from 4.1 at 0.18 Gy to 1.5 at 3.04 Gy at 6-cm depth. Using the best possible conditions of consistency, i.e., using blood samples from the same donor and the same measurement techniques for about two decades, avoiding the inter-individual variations in sensitivity or the differences in methodology usually associated with inter-laboratory comparisons, a linear-quadratic dose-response relationship for the mixed neutron and gamma-ray MEDAPP field as well as for its fission neutron part was obtained. Therefore, the debate on whether the fission

  2. First steps towards real-time radiography at the NECTAR facility

    Science.gov (United States)

    Bücherl, T.; Wagner, F. M.; v. Gostomski, Ch. Lierse

    2009-06-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  3. First steps towards real-time radiography at the NECTAR facility

    International Nuclear Information System (INIS)

    Buecherl, T.; Wagner, F.M.; Lierse von Gostomski, Ch.

    2009-01-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  4. Thermal neutron converter for irradiations with fission neutrons

    International Nuclear Information System (INIS)

    Wagner, F.M.; Kampfer, S.; Kastenmuller, A.; Waschkowski, W.; Bucherl, Th.; Kampfer, S.

    2007-01-01

    The new research reactor FRM II at Garching started operation in March 2004. The compact core is cooled by light water, and moderated by heavy water. Two fuel plates mounted in the heavy water tank convert thermal to fast neutrons. The fast neutron flux in the connected beam tube is up to 7 centre dot 10 8 s -1 cm -2 (depending on filters and collimation); the mean neutron energy is about 1.6 MeV. There are two irradiation rooms along the beam. The first is mainly used for medical therapy (MEDAPP facility), the second for materials characterization (NECTAR facility). At the former therapy facility RENT at the old research reactor FRM, the same beam quality was available until July 2000. Therefore, only a small program is run for the determination of the biological effectiveness of the new beam. The neutron and gamma dose rates in the medical beam are 0.54 and 0.20 Gy/min, respectively. The therapy facility MEDAPP is still under examination according to European regulations for medical devices. Full medical operation will start in 2007. The radiography and tomography facility NECTAR is in operation and aims at non-destructive inspection of objects up to 400 kg mass and 80 centre dot 80 centre dot 80 cm 3 in size. As for fission neutrons the macroscopic cross section of hydrogen is much higher than for other materials (e. g. Fe and Pb), one special application is the detection of hydrogen-containing materials (e. g. oil) in dense materials

  5. First steps towards real-time radiography at the NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM) (Germany)], E-mail: thomas.buecherl@radiochemie.de; Wagner, F.M. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM) (Germany)

    2009-06-21

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm{sup -2} s{sup -1} (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  6. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  7. Radiation therapy facilities in the United States

    International Nuclear Information System (INIS)

    Ballas, Leslie K.; Elkin, Elena B.; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-01-01

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care

  8. General considerations for neutron capture therapy at a reactor facility

    International Nuclear Information System (INIS)

    Binney, S.E.

    2001-01-01

    In addition to neutron beam intensity and quality, there are also a number of other significant criteria related to a nuclear reactor that contribute to a successful neutron capture therapy (NCT) facility. These criteria are classified into four main categories: Nuclear design factors, facility management and operations factors, facility resources, and non-technical factors. Important factors to consider are given for each of these categories. In addition to an adequate neutron beam intensity and quality, key requirements for a successful neutron capture therapy facility include necessary finances to construct or convert a facility for NCT, a capable medical staff to perform the NCT, and the administrative support for the facility. The absence of any one of these four factors seriously jeopardizes the overall probability of success of the facility. Thus nuclear reactor facility management considering becoming involved in neutron capture therapy, should it be proven clinically successful, should take all these factors into consideration. (author)

  9. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  10. Radionuclide therapy practice and facilities in Europe

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.; Clarke, S.E.M.; Fischer, M.; Chatal, J.F.; Lewington, V.J.; Nilsson, S.; Troncone, L.; Vieira, M.R.

    1999-01-01

    Using a questionnaire the EANM Task Group Radionuclide Therapy in 1993 collected data on the current practice of radionuclide therapy in European countries. Subsequently, at the request of the EANM Executive Committee, the EANM Radionuclide Therapy Committee has made an inventory of the distribution of facilities for radionuclide therapy and undertaken an assessment of the total number of patients treated throughout Europe and of the types of treatment provides, with the aim of supporting the development of policy to adjust the available capacity to the needs by the year 2000. For this purpose, a second, more detailed questionnaire was sent out the members and national advisors of the Committee (see below), who gathered the data for each country that was a member of the EANM at the time. It is concluded that a wide bariation in therapy practice exists across Europe, particularly in the utilisation of radionuclide therapy, the requirement and availability of proper isolation facilities and the background training of those undertaking therapy. More uniform guidelines and legislation are required, although changes in legislation may have a significant impact in some countries. Although there is wide variation in the therapies used in each country, one the whole it appears that there is an underutilisation of nuclear medicine as a therapeutic modality. A rapidly increasing role may be expected, in particular for oncological indications requiring high-dose radionuclide treatment. Therefore there is an urgent need for a greater number of isolation beds in dedicated centers throughout Europe

  11. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  12. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  13. TU-G-BRCD-01: Will the High Cost of Proton Therapy Facilities Limit the Availability of Proton Therapy Treatment?

    Science.gov (United States)

    Maughan, R

    2012-06-01

    The potential dose distribution advantages associated with proton therapy, and particularly with pencil beam scanning (PBS) techniques, have lead to considerable interest in this modality in recent years. However, the large capital expenditure necessary for such a project requires careful financial consideration and business planning. The complexity of the beam delivery systems impacts the capital expenditure and the PBS only systems presently being advocated can reduce these costs. Also several manufacturers are considering "one-room" facilities as less expensive alternatives to multi-room facilities. This presentation includes a brief introduction to beam delivery options (passive scattering, uniform and modulated scanning) and some of the new technologies proposed for providing less expensive proton therapy systems. Based on current experience, data on proton therapy center start-up costs, running costs and the financial challenges associated with making this highly conformal therapy more widely available will be discussed. Issues associated with proton therapy implementation that are key to project success include strong project management, vendor cooperation and collaboration, staff recruitment and training. Time management during facility start up is a major concern, particularly in multi-room systems, where time must be shared between continuing vendor system validation, verification and acceptance testing, and user commissioning and patient treatments. The challenges associated with facility operation during this period and beyond are discussed, focusing on how standardization of process, downtime and smart scheduling can influence operational efficiency. 1. To understand the available choices for proton therapy facilities, the different beam delivery systems and the financial implications associated with these choices. 2. To understand the key elements necessary for successfully implementing a proton therapy program. 3. To understand the challenges

  14. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  15. The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)

    Science.gov (United States)

    Peters, Andreas

    The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References

  16. Geographic access to radiation therapy facilities and disparities of early-stage breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2018-05-01

    Full Text Available Few studies of breast cancer treatment have focused on the Northern Plains of the United States, an area with a high mastectomy rate. This study examined the association between geographic access to radiation therapy facilities and receipt of breast cancer treatments among early-stage breast cancer patients in South Dakota. Based on 4,209 early-stage breast cancer patients diagnosed between 2001 and 2012 in South Dakota, the study measured geographic proximity to radiation therapy facilities using the shortest travel time for patients to the closest radiation therapy facility. Two-level logistic regression models were used to estimate for early stage cases i the odds of mastectomy versus breast conserving surgery (BCS; ii the odds of not receiving radiation therapy after BCS versus receiving follow-up radiation therapy. Covariates included race/ethnicity, age at diagnosis, tumour grade, tumour sequence, year of diagnosis, census tract-level poverty rate and urban/rural residence. The spatial scan statistic method was used to identify geographic areas with significantly higher likelihood of experiencing mastectomy. The study found that geographic accessibility to radiation therapy facilities was negatively associated with the likelihood of receiving mastectomy after adjustment for other covariates, but not associated with radiation therapy use among patients receiving BCS. Compared with patients travelling less than 30 minutes to a radiation therapy facility, patients travelling more than 90 minutes were about 1.5 times more likely to receive mastectomy (odds ratio, 1.51; 95% confidence interval, 1.08-2.11 and patients travelling more than 120 minutes were 1.7 times more likely to receive mastectomy (odds ratio, 1.70; 95% confidence interval, 1.19-2.42. The study also identified a statistically significant cluster of patients receiving mastectomy who were located in south-eastern South Dakota, after adjustment for other factors. Because

  17. Proton therapy detector studies under the experience gained at the CATANA facility

    International Nuclear Information System (INIS)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F.; Lojacono, P.A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I.V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M.G.; Salamone, V.; Valastro, L.M.

    2007-01-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility

  18. Proton therapy detector studies under the experience gained at the CATANA facility

    Energy Technology Data Exchange (ETDEWEB)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Lojacono, P.A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Lo Nigro, S.; Marino, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Mongelli, V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Patti, I.V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Pittera, S. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Raffaele, L. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Russo, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Sabini, M.G. [A.O. Cannizzaro, Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Salamone, V.; Valastro, L.M. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy)

    2007-10-15

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  19. Proton therapy detector studies under the experience gained at the CATANA facility

    Science.gov (United States)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  20. Development of cancer therapy facility of HANARO

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Hwang, S. Y.; Kim, M. J. and others

    2000-04-01

    Facilities of the research and clinical treatments of neutron capture therapy using HANARO are developed, and they are ready to install. They are BNCT irradiation facility and prompt gamma neutron activatiion analysis facility. Since every horizontal neutron facility of HANARO is long and narrow tangential beam tube, it is analysed that sufficient epithermal neutrons for the BNCT cannot be obtained but sufficient thermal neutrons can be obtained by a filter composed of silicon and bismuth single crystals. Since the thermal neutron penetaration increases significantly when the crystals are cooled, a filter cooled by liquid nitrogen is developed. So as to avoid interference with the reactor operation, a water shutter is developed. The irradiation room is designed for the temporary surgical operation as well. Handling tools to remove activated beam port plug and to install water shutter and filter are developed. The basic structure of the irradiation room is already installed and most of other parts are ready to install. Since no free beam port is available for the prompt gamma neutron activation analysis, a method obtaining almost pure thermal neutrons by the vertical diffraction of extra beam for the polarized neutron spectrometer is developed. This method is confirmed by analysis and experiments to give high enough neutron beam. Equipment and devices are provided to install this facility

  1. Development of cancer therapy facility of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Jin; Hwang, S. Y.; Kim, M. J. and others

    2000-04-01

    Facilities of the research and clinical treatments of neutron capture therapy using HANARO are developed, and they are ready to install. They are BNCT irradiation facility and prompt gamma neutron activatiion analysis facility. Since every horizontal neutron facility of HANARO is long and narrow tangential beam tube, it is analysed that sufficient epithermal neutrons for the BNCT cannot be obtained but sufficient thermal neutrons can be obtained by a filter composed of silicon and bismuth single crystals. Since the thermal neutron penetaration increases significantly when the crystals are cooled, a filter cooled by liquid nitrogen is developed. So as to avoid interference with the reactor operation, a water shutter is developed. The irradiation room is designed for the temporary surgical operation as well. Handling tools to remove activated beam port plug and to install water shutter and filter are developed. The basic structure of the irradiation room is already installed and most of other parts are ready to install. Since no free beam port is available for the prompt gamma neutron activation analysis, a method obtaining almost pure thermal neutrons by the vertical diffraction of extra beam for the polarized neutron spectrometer is developed. This method is confirmed by analysis and experiments to give high enough neutron beam. Equipment and devices are provided to install this facility.

  2. Animal-assisted interventions: A national survey of health and safety policies in hospitals, eldercare facilities, and therapy animal organizations.

    Science.gov (United States)

    Linder, Deborah E; Siebens, Hannah C; Mueller, Megan K; Gibbs, Debra M; Freeman, Lisa M

    2017-08-01

    Animal-assisted intervention (AAI) programs are increasing in popularity, but it is unknown to what extent therapy animal organizations that provide AAI and the hospitals and eldercare facilities they work with implement effective animal health and safety policies to ensure safety of both animals and humans. Our study objective was to survey hospitals, eldercare facilities, and therapy animal organizations on their AAI policies and procedures. A survey of United States hospitals, eldercare facilities, and therapy animal organizations was administered to assess existing health and safety policies related to AAI programs. Forty-five eldercare facilities, 45 hospitals, and 27 therapy animal organizations were surveyed. Health and safety policies varied widely and potentially compromised human and animal safety. For example, 70% of therapy animal organizations potentially put patients at risk by allowing therapy animals eating raw meat diets to visit facilities. In general, hospitals had stricter requirements than eldercare facilities. This information suggests that there are gaps between the policies of facilities and therapy animal organizations compared with recent guidelines for animal visitation in hospitals. Facilities with AAI programs need to review their policies to address recent AAI guidelines to ensure the safety of animals and humans involved. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Neutron field characterization and dosimetry at the TRIUMF proton therapy facility

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: In 1972 the 500 MeV H' Cyclotron of the TRIUMF (Tri University Meson Factory) located in Vancouver, Canada became operational. Beside Meson Physics, high-energy protons of various energy and beam current levels from the TRIUMF Cyclotron are used for scientific research and biomedical applications. Recently, a 500 MeV proton beam from the cyclotron was used as the booster beam for the radioactive ion beam facility, ISAC (Isotope Separator Accelerator) and a second beam as primary irradiation source for the Proton Irradiation Facility (PIF). The major commercial applications of the PIF are the provision of high-energy proton beams for radiation hardness testing of electronic components used in space applications (NASA) and proton therapy of ocular tumors (British Columbia Proton Therapy Facility). The PIF vault was constructed within the main accelerator hall of the TRIUMF using stacks of large concrete blocks. An intense field of fast neutrons is produced during the interaction of high-energy proton beam with target materials, such as, beam stops, collimators and beam energy degraders. The leakage of such neutrons due to insufficient radiological shielding or through the shielding discontinuities may constitute a major share of the personnel radiation exposure of the radiation workers. The neutron energy distribution and dose equivalent near a lead beam stopper bombarded with 116 MeV and 65 MeV collimated proton beams at the Ocular Tumor irradiation facility were evaluated using a Bonner-Sphere Spectrometer and a REM counter respectively. The results were utilized to investigate efficacy of the existing radiological shielding of the PIF. This paper highlights experimental methods to analyze the high-energy accelerator produced neutron beam and basic guideline for the radiological shielding designs of irradiation vault of Proton Therapy facilities

  4. Australian proton therapy facilities - status report

    International Nuclear Information System (INIS)

    Bleasel, S.; Jackson, M.

    2000-01-01

    may be funded by a combination of Private Enterprise and Government. This presentation describes the steps taken to date and the proposed 'road map' for the future. Physicists are invited to consider how they would use such a facility. In partnership with Mitsubishi and Toshiba, Hitachi built the rotating gantries for the proton facility at the National Cancer Centre in Kashiwa, Japan. Subsequently, they built the scientific/medical proton facility at Wakasa Bay in Japan. In March 2000 Hitachi will commission a facility at Tsukuba University Hospital dedicated to proton therapy and related basic research

  5. Two years of operating experience with the Seattle clinical neutron therapy facility

    International Nuclear Information System (INIS)

    Risler, R.; Brossard, S.; Eenmaa, J.; Kalet, I.; Wootton, P.

    1987-01-01

    After five years of planning, equipment acquisition, facility construction and beam testing the Seattle Clinical Neutron Therapy facility became operational in October 1984. In the past two years nearly 300 people have been treated in clinical trials. During this time 82 % of the planned treatment sessions were performed on schedule, 3 % had to be rescheduled for patient related reasons and 15 % because of equipment problems. The facility is at present running on a 5 days/week schedule: Three ten-hour treatment days, one maintenance day and one research day (radiobiology, therapy related physics). Short runs for short lived isotopes are done between patient treatments. The isocentric gantry, capable of 360 rotation is equipped with a variable collimator with 40 independent leaves. This collimation system allows the use of complex field shapes without the necessity of handling radioactive components like collimator inserts or blocks. It has turned out to be a very essential part for the efficient operation of the facility. Major causes for equipment downtime were associated with the control system, the beryllium target system, RF and magnet systems and the treatment gantry. (author)

  6. Does Nursing Facility Use of Habilitation Therapy Improve Performance on Quality Measures?

    Science.gov (United States)

    Fitzler, Sandra; Raia, Paul; Buckley, Fredrick O; Wang, Mei

    2016-12-01

    The purpose of the project, Centers for Medicare & Medicaid Services (CMS) Innovation study, was to evaluate the impact on 12 quality measures including 10 Minimum Data Set (MDS) publicly reported measures and 2 nursing home process measures using habilitation therapy techniques and a behavior team to manage dementia-related behaviors. A prospective design was used to assess the changes in the measures. A total of 30 Massachusetts nursing homes participated in the project over a 12-month period. Project participation required the creation of an interdisciplinary behavior team, habilitation therapy training, facility visit by the program coordinator, attendance at bimonthly support and sharing calls, and monthly collection of process measure data. Participating facilities showed improvement in 9 of the 12 reported measures. Findings indicate potential quality improvement in having nursing homes learn habilitation therapy techniques and know how to use the interdisciplinary team to manage problem behaviors. © The Author(s) 2016.

  7. The Swedish facility for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skoeld, K.; Capala, J. [Studsvik Medical AB (Sweden); Kierkegaard, J.; Haakansson, R. [Studsvik Nuclear AB (Sweden); Gudowska, I. [Karolinska Institute (Sweden)

    2000-10-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  8. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  9. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    International Nuclear Information System (INIS)

    Kroc, T.K.

    2009-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  10. Job-Related Stress in Forensic Interviewers of Children with Use of Therapy Dogs Compared with Facility Dogs or No Dogs.

    Science.gov (United States)

    Walsh, Diane; Yamamoto, Mariko; Willits, Neil H; Hart, Lynette A

    2018-01-01

    Sexually abused children providing essential testimony regarding crimes in forensic interviews now sometimes are provided facility dogs or therapy dogs for comfort. Facility dogs are extensively trained to work with forensic interviewers; when using therapy dogs in interviews, volunteers are the dog handlers. Interviews can impact child welfare workers' mental health causing secondary traumatic stress (STS). To investigate this stress, first data were gathered on stress retrospectively for when interviewers initially started the job prior to working with a dog, and then currently, from forensic interviewers using a facility dog, a therapy or pet dog, or no dog. These retrospective and secondary traumatic stress scale (STSS) data compared job stress among interviewers of children using: a certified, workplace facility dog ( n  = 16), a volunteer's trained therapy dog or the interviewer's pet dog ( n  = 13/3), or no dog ( n  = 198). Retrospective scores of therapy dog and no dog interviewers' stress were highest for the first interviewing year 1 and then declined. Extremely or very stressful retrospective scores differed among the three groups in year 1 ( p  therapy dog group as compared with the facility dog group ( p  therapy dog users than no dog users ( p  dog users more consistently used dogs during interviews and conducted more interviews than therapy/pet dog users; both groups favored using dogs. Interviewers currently working with therapy dogs accompanied by their volunteers reported they had experienced heightened stress when they began their jobs; their high stress levels still persisted, indicating lower inherent coping skills and perhaps greater empathy among interviewers who later self-selected to work with therapy dogs. Results reveal extreme avoidant stress for interviewers witnessing children who are suffering and their differing coping approaches.

  11. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  12. Job-Related Stress in Forensic Interviewers of Children with Use of Therapy Dogs Compared with Facility Dogs or No Dogs

    Directory of Open Access Journals (Sweden)

    Diane Walsh

    2018-03-01

    Full Text Available Sexually abused children providing essential testimony regarding crimes in forensic interviews now sometimes are provided facility dogs or therapy dogs for comfort. Facility dogs are extensively trained to work with forensic interviewers; when using therapy dogs in interviews, volunteers are the dog handlers. Interviews can impact child welfare workers’ mental health causing secondary traumatic stress (STS. To investigate this stress, first data were gathered on stress retrospectively for when interviewers initially started the job prior to working with a dog, and then currently, from forensic interviewers using a facility dog, a therapy or pet dog, or no dog. These retrospective and secondary traumatic stress scale (STSS data compared job stress among interviewers of children using: a certified, workplace facility dog (n = 16, a volunteer’s trained therapy dog or the interviewer’s pet dog (n = 13/3, or no dog (n = 198. Retrospective scores of therapy dog and no dog interviewers’ stress were highest for the first interviewing year 1 and then declined. Extremely or very stressful retrospective scores differed among the three groups in year 1 (p < 0.038, and were significantly elevated for the therapy dog group as compared with the facility dog group (p < 0.035. All interviewing groups had elevated STSS scores; when compared with other healthcare groups that have been studied, sub-scores were especially high for Avoidance: a psychological coping mechanism to avoid dealing with a stressor. STSS scores differed among groups (p < 0.016, primarily due to Avoidance sub-scores (p < 0.009, reflecting higher Avoidance scores for therapy dog users than no dog users (p < 0.009. Facility dog users more consistently used dogs during interviews and conducted more interviews than therapy/pet dog users; both groups favored using dogs. Interviewers currently working with therapy dogs accompanied by their volunteers reported

  13. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  14. Superconducting ring magnets of the PIOTRON Pi-meson therapy facility at SIN

    Energy Technology Data Exchange (ETDEWEB)

    Maix, R K; Meyer, G; Roman, T; Horvath, I; Vecsey, G; Zellweger, J

    1982-01-01

    Negative Pi-mesons seem to be very promising for cancer therapy, because of their well defined penetration depth and their enhanced energy deposition in the absorption region. A prototype Pi-meson therapy facility, called PIOTRON, has been constructed at SIN, where also pion beams of sufficient intensity are available. The central part of this system are two ring magnets, consisting each of 60 superconducting flat coils, with the aid of which 60 pion beams can be guided around a heavy iron shield and focused on the patient. In this paper the fabrication and the initial operation of these magnets is discussed.

  15. Ion chambers compliance results of Brazilian radiation therapy facilities.

    Science.gov (United States)

    Joana, G; Salata, C; Leal, P; Vasconcelos, R; Couto, N do; Teixeira, F C; Soares, A D; Santini, E S; Gonçalves, M

    2018-03-01

    The Brazilian Nuclear Energy Commission (cnen) has been making a constant effort to keep up to date with international standards and national needs to strengthen the status of radiological protection of the country. The guidelines related to radiation therapy facilities have been revised in the last five years in order to take into consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance in this matter. In the present work, we discuss the effectiveness of regulation and inspections to the enforcement of instrument calibration accuracy for the improvement of patient dosimetry and quality control. As a result, we observed that the number of calibrated instruments, mainly well chambers, is increasing each year. The same behavior is observed for instruments employed in technologically advanced radiation treatments such as intensity modulated radiotherapy, volumetric therapy and stereotatic radiosurgery. We ascribe this behavior to the new regulation.

  16. Job-Related Stress in Forensic Interviewers of Children with Use of Therapy Dogs Compared with Facility Dogs or No Dogs

    Science.gov (United States)

    Walsh, Diane; Yamamoto, Mariko; Willits, Neil H.; Hart, Lynette A.

    2018-01-01

    Sexually abused children providing essential testimony regarding crimes in forensic interviews now sometimes are provided facility dogs or therapy dogs for comfort. Facility dogs are extensively trained to work with forensic interviewers; when using therapy dogs in interviews, volunteers are the dog handlers. Interviews can impact child welfare workers’ mental health causing secondary traumatic stress (STS). To investigate this stress, first data were gathered on stress retrospectively for when interviewers initially started the job prior to working with a dog, and then currently, from forensic interviewers using a facility dog, a therapy or pet dog, or no dog. These retrospective and secondary traumatic stress scale (STSS) data compared job stress among interviewers of children using: a certified, workplace facility dog (n = 16), a volunteer’s trained therapy dog or the interviewer’s pet dog (n = 13/3), or no dog (n = 198). Retrospective scores of therapy dog and no dog interviewers’ stress were highest for the first interviewing year 1 and then declined. Extremely or very stressful retrospective scores differed among the three groups in year 1 (p pet dog users; both groups favored using dogs. Interviewers currently working with therapy dogs accompanied by their volunteers reported they had experienced heightened stress when they began their jobs; their high stress levels still persisted, indicating lower inherent coping skills and perhaps greater empathy among interviewers who later self-selected to work with therapy dogs. Results reveal extreme avoidant stress for interviewers witnessing children who are suffering and their differing coping approaches. PMID:29594160

  17. Analysis of touch used by occupational therapy practitioners in skilled nursing facilities.

    Science.gov (United States)

    Morris, Douglas; Henegar, J; Khanin, S; Oberle, G; Thacker, S

    2014-09-01

    Instrumental touch is identified as having purposeful physical contact in order to complete a task. Expressive touch is identified as warm, friendly physical contact and is not solely for performing a task. Expressive touch has been associated with improved client status, increased rapport and greater gains made during therapy. The purpose of the study was to observe the frequency of expressive and instrumental touch utilized by an occupational therapist during an occupational therapy session. Thirty-three occupational therapy professionals, including occupational therapists and occupational therapy assistants, employed at skilled nursing facilities in southwest Florida were observed. Data were collected on the Occupational Therapy Interaction Assessment. The results of the data analysis showed a positive relationship between the gender of the therapist and the frequency of expressive touch. The data also showed that a large majority of touches were instrumental touch and pertained to functional mobility. The results of the study can contribute to a better understanding of the holistic aspects of occupational therapy. By the use of more expressive touch, occupational therapy practitioners may have a positive, beneficial effect on both the client and the therapy process as a whole. Further research is needed to determine the effect an occupational therapy setting has on the frequency of instrumental and expressive touch. A larger sample size and a distinction between evaluation and treatment sessions would benefit future studies. Copyright © 2014 John Wiley & Sons, Ltd.

  18. The effects of light therapy on depression and sleep disruption in older adults in a long-term care facility.

    Science.gov (United States)

    Wu, Mann-Chian; Sung, Huei-Chuan; Lee, Wen-Li; Smith, Graeme D

    2015-10-01

    This study aims to evaluate the effect of light therapy on depression and sleep disruption in older adults residing in a long-term care facility. Psychological morbidity is a problem commonly seen in older adults residing in long-term care facilities. Limited research has addressed the effect of light therapy on depression in this population. A quasi-experimental pretest and posttest design was used. Thirty-four participants in the experimental group received light therapy by sitting in front of a 10000-lux light box 30 min in the morning, three times a week for 4 weeks. Thirty-one participants in the control group received routine care without light therapy. Depression was measured by Geriatric Depression Scale-Short Form at baseline and week 4. After receiving 4 weeks of light therapy, the mean depression score in the experimental group decreased from 7.24 (SD3.42) at pretest to 5.91 (SD 3.40) at posttest, and had a significant reduction (t = 2.22, P = 0.03). However, there was no significant difference in depression score and sleep disruption between the experimental group and control group. Light therapy might have the potential to reduce depressive symptoms and sleep disruption and may be a viable intervention to improve mental health of older adults in the long-term care facilities. © 2014 Wiley Publishing Asia Pty Ltd.

  19. The Clatterbridge high-energy neutron therapy facility: specification and performance

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Blake, S.W.; Shaw, J.E.; Bewley, D.K.

    1988-01-01

    A high energy neutron therapy facility has been installed at the Douglas Cyclotron Centre, Clatterbridge Hospital Merseyside, to extend M.R.C. clinical trials of fast neutrons. The neutron beam is produced by bombarding a beryllium target with 62 MeV protons. The target is isocentrically mounted with potential for 360 0 rotation, with a fully variable collimator, giving a range of rectilinear field sizes from 5 cm x 5 cm to 30 cm x 30 cm. Basic neutron beam data including output, field flatness, penumbra and depth-dose data have been measured. For a 10 cm x 10 cm field, 50% depth dose occurs at 16.2 cm in water and output is 1.63 cGy μ A -1 min -1 at maximum dose depth. Effectiveness of the target shielding and neutron-induced radioactivity in the treatment head were also measured. It is concluded that the equipment meets design specifications and fully satisfies criticisms of earlier neutron therapy equipment. A full radiation survey showed that radiation levels present no significant staff hazard. (UK)

  20. BCI and FES Based Therapy for Stroke Rehabilitation Using VR Facilities

    Directory of Open Access Journals (Sweden)

    Robert Gabriel Lupu

    2018-01-01

    Full Text Available In recent years, the assistive technologies and stroke rehabilitation methods have been empowered by the use of virtual reality environments and the facilities offered by brain computer interface systems and functional electrical stimulators. In this paper, a therapy system for stroke rehabilitation based on these revolutionary techniques is presented. Using a virtual reality Oculus Rift device, the proposed system ushers the patient in a virtual scenario where a virtual therapist coordinates the exercises aimed at restoring brain function. The electrical stimulator helps the patient to perform rehabilitation exercises and the brain computer interface system and an electrooculography device are used to determine if the exercises are executed properly. Laboratory tests on healthy people led to system validation from technical point of view. The clinical tests are in progress, but the preliminary results of the clinical tests have highlighted the good satisfaction degree of patients, the quick accommodation with the proposed therapy, and rapid progress for each user rehabilitation.

  1. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  2. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    Nakano, Takashi; Yamamoto, Kazutaka; Hishikawa, Yoshio; Totoki, Tadahide; Hoshino, Junichi; Aoki, Takashi; Yoshiyuki, Takeshi; Hirabayashi, Masayuki; Nakamura, Fumito

    2011-01-01

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  3. Risk management of radiation therapy. Survey by north Japan radiation therapy oncology group

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Yamada, Shogo; Hareyama, Masato; Nakamura, Ryuji; Sugita, Tadashi; Miyano, Takashi

    2004-01-01

    A North Japan Radiation Oncology Group (NJRTOG) survey was carried out to disclose the risk management of radiation therapy. During April 2002, we sent questionnaires to radiation therapy facilities in northern Japan. There were 31 replies from 27 facilities. Many incidents and accidents were reported, including old cases. Although 60% of facilities had a risk management manual and/or risk manager, only 20% had risk management manuals for radiation therapy. Eighty five percent of radiation oncologists thought that incidents may be due to a lack of manpower. Ninety percent of radiation oncologists want to know the type of cases happened in other facilities. The risk management system is still insufficient for radiation therapy. We hope that our data will be a great help to develop risk management strategies for radiation therapy for all radiation oncologists in Japan. (author)

  4. The neutron therapy facility at the University of Pennsylvania-Fox Chase Cancer Center

    International Nuclear Information System (INIS)

    Bloch, P.; Chu, J.; Larsen, R.

    1983-01-01

    The fusion of deuterium and tritium nuclei results in the formation of a helium-4 nucleus and a 14 MEV neutron. This reaction readily takes place when deuterium and tritium ions are accelerated to potentials between 150-200 kV. These energy ions can be obtained in a moderate size accelerator. A DT neutron facility has been installed in the radiation therapy department of the University of Pennsylvania Hospital-Fox Chase Cancer Center. The system is being commissioned in a hospital setting to test the efficacy of fast neutron radiotherapy

  5. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  6. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea

    International Nuclear Information System (INIS)

    Kim, J. W.; Kwon, J. W.; Lee, J.

    2005-01-01

    The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept -1 in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipments will begin a few months later. (authors)

  7. Beamlines of the biomedical imaging and therapy facility at the Canadian light source-Part 1

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2007-01-01

    The BioMedical Imaging and Therapy (BMIT) Facility will provide synchrotron-specific imaging and therapy capabilities. This paper describes one of the BMIT beamlines: the bend magnet (BM) beamline 05B1-1. It plays a complementary role to the insertion device (ID) beamline 051D-2 and allows either monochromatic or filtered white beam to be used in the experimental hutch. The monochromatic spectral range will span 8-40 keV, and the beam is more than 200 mm wide in the experimental hutch for imaging studies of small and medium-size animals (up to sheep size). The experimental hutch will have a positioning system that will allow imaging (computed tomography and planar imaging) as well as radiation therapy applications with both filtered white and monochromatic X-ray beams and will handle subjects up to 120 kg. Several different focal plane detectors (cameras) will be available with resolutions ranging from 10 to 150 μm

  8. Measurement of the tissue to A-150 tissue equivalent plastic kerma ratio at two p(66)Be neutron therapy facilities

    International Nuclear Information System (INIS)

    Langen, K M; Binns, P J; Schreuder, A N; Lennox, A J; Deluca, P M Jr.

    2003-01-01

    The ICRU tissue to A-150 tissue equivalent plastic kerma ratio is needed for neutron therapy dosimetry. The current ICRU protocol for neutron dosimetry recommends using a common conversion factor of 0.95 at all high-energy neutron therapy facilities. In an effort to determine facility specific ICRU tissue to A-150 plastic kerma ratios, an experimental approach was pursued. Four low pressure proportional counters that differed in wall materials (i.e. A-150, carbon, zirconium and zirconium-oxide) were used as dosimeters and integral kerma ratios were determined directly in the clinical beam. Measurements were performed at two p(66)Be facilities: iThemba LABS near Cape Town and Fermilab near Chicago. At the iThemba facility the clinical neutron beam is routinely filtered by a flattening and hardening filter combination. The influence of beam filtration on the kerma ratio was evaluated. Using two recent gas-to-wall dose conversion factor (r m,g value) evaluations a mean ICRU tissue to A-150 plastic kerma ratio of 0.93 ± 0.05 was determined for the clinical beam at iThemba LABS. The respective value for the Fermilab beam is 0.95 ± 0.05. The experimentally determined ICRU tissue to A-150 plastic kerma ratios for the two clinical beams are in agreement with theoretical evaluations. Beam filtration reduces the kerma ratio by 3 ± 2%

  9. Research and design of pulsed switching power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Shi Chunfeng; Zhao Jiang; Yan Hongbin; Wu Fengjun; Gao Daqing

    2012-01-01

    The pulsed switching power supply was developed for deep tumor therapy facility with heavy ions in cooler-storage-ring of the heavy ions research facility in Lanzhou (HIRFL-CSR). The control principle of the dual closed-loop scheme was described and the open-loop Bode diagrams were given. The results of simulation and prototype experiment show that the current error gets much smaller than that of the single closed-loop pulsed switching power supply. Moreover, the simulation and test results were analyzed, and the circuit configuration and dual closed-loop strategy selected are practicable. (authors)

  10. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    International Nuclear Information System (INIS)

    Langen, K.M.

    1997-01-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 ± 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e * and R, with field size and depth in tissue. Maximal variation in e * and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated

  11. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  12. The Idaho Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program overview

    International Nuclear Information System (INIS)

    Dorn, R.V. III; Griebenow, M.L.; Ackermann, A.L.; Miller, L.G.; Miller, D.L.; Wheeler, F.J.; Bradshaw, K.M.; Wessol, D.E.; Harker, Y.D.; Nigg, D.W.; Randolph, P.D.; Bauer, W.F.; Gavin, P.R.; Richards, T.L.

    1992-01-01

    The Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program has been funded since 1988 to evaluate brain tumor treatment using Na 2 B 12 H 11 SH (borocaptate sodium or BSH) and epithermal neutrons. The PBF/BNCT Program pursues this goal as a comprehensive, multidisciplinary, multiorganizational endeavor applying modern program management techniques. The initial focus was to: (1) establish a representative large animal model and (2) develop the generic analytical and measurement capabilities require to control treatment repeatability and determine critical treatment parameters independent of tumor type and body location. This paper will identify the PBF/BNCT Program elements and summarize the status of some of the developed capabilities

  13. Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group.

    Science.gov (United States)

    Dosanjh, Manjit; Jones, Bleddyn; Pawelke, Jörg; Pruschy, Martin; Sørensen, Brita Singers

    2018-04-24

    Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  15. Research and design of scanning power supply for deep tumor therapy facility with heavy ions accelerator in Lanzhou

    International Nuclear Information System (INIS)

    Huang Yuzhen; Liu Yuntao; Chen Youxin; Gao Daqing; Zhang Shu; Gao Yalin

    2009-01-01

    This paper describes the technique targets and operation principle of the scanning power supply for the deep tumor therapy facility with heavy ions in Cooler-Storage-Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). To ensure the specified accuracy of the current, the hysteresis loop control strategy was adopted, and tracking error was constrained in the specified tolerance. One prototype was designed and installed. And the simulation results and test results were listed in the paper. The results show that all the targets can meet the design requirements, and that the circuit configuration and hysteresis loop control strategy selected are practicable. (authors)

  16. What happens to patients on antiretroviral therapy who transfer out to another facility?

    Directory of Open Access Journals (Sweden)

    Joseph Kwong-Leung Yu

    Full Text Available BACKGROUND: Long term retention of patients on antiretroviral therapy (ART in Africa's rapidly expanding programmes is said to be 60% at 2 years. Many reports from African ART programmes make little mention of patients who are transferred out to another facility, yet Malawi's national figures show a transfer out of 9%. There is no published information about what happens to patients who transfer-out, but this is important because if they transfer-in and stay alive in these other facilities then national retention figures will be better than previously reported. METHODOLOGY/PRINCIPAL FINDINGS: Of all patients started on ART over a three year period in Mzuzu Central Hospital, North Region, Malawi, those who transferred out were identified from the ART register and master cards. Clinic staff attempted to trace these patients to determine whether they had transferred in to a new ART facility and their outcome status. There were 805 patients (19% of the total cohort who transferred out, of whom 737 (92% were traced as having transferred in to a new ART facility, with a median time of 1.3 months between transferring-out and transferring-in. Survival probability was superior and deaths were lower in the transfer-out patients compared with those who did not transfer. CONCLUSION/SIGNIFICANCE: In Mzuzu Central Hospital, patients who transfer-out constitute a large proportion of patients not retained on ART at their original clinic of registration. Good documentation of transfer-outs and transfer-ins are needed to keep track of national outcomes. Furthermore, the current practice of regarding transfer-outs as being double counted in national cohorts and subtracting this number from the total national registrations to get the number of new patients started on ART is correct.

  17. Proposal of cancer therapy system without rotating gantry

    International Nuclear Information System (INIS)

    Kodaira, Masanobu

    2002-01-01

    Beam therapy is one of useful methods for cancer therapy. Many results in National Institute of Radiological Sciences (NIRS) show many abilities of beam therapy for cancer therapy. In Japan, several beam therapy facilities are constructed or under construction. If its construction budget becomes to be smaller, beam therapy may be used as the general cancer therapy. But in the present beam therapy facilities, the budget of its construction is very large. One of the reasons of big budget is the construction of the big buildings equipped with thick shielding walls. Most of space of the facilities with thick shielding walls is devoted to the treatment equipments such as rotating gantries and beam transport lines. This proposal is that using oblique beam line and rotating treatment bed, multi-portal irradiation is realized without rotating gantry. At the same time, we designed adequate beam lines to minimize the total facilities. (author)

  18. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  19. Neutron shielding calculations in a proton therapy facility based on Monte Carlo simulations and analytical models: Criterion for selecting the method of choice

    International Nuclear Information System (INIS)

    Titt, U.; Newhauser, W. D.

    2005-01-01

    Proton therapy facilities are shielded to limit the amount of secondary radiation to which patients, occupational workers and members of the general public are exposed. The most commonly applied shielding design methods for proton therapy facilities comprise semi-empirical and analytical methods to estimate the neutron dose equivalent. This study compares the results of these methods with a detailed simulation of a proton therapy facility by using the Monte Carlo technique. A comparison of neutron dose equivalent values predicted by the various methods reveals the superior accuracy of the Monte Carlo predictions in locations where the calculations converge. However, the reliability of the overall shielding design increases if simulation results, for which solutions have not converged, e.g. owing to too few particle histories, can be excluded, and deterministic models are being used at these locations. Criteria to accept or reject Monte Carlo calculations in such complex structures are not well understood. An optimum rejection criterion would allow all converging solutions of Monte Carlo simulation to be taken into account, and reject all solutions with uncertainties larger than the design safety margins. In this study, the optimum rejection criterion of 10% was found. The mean ratio was 26, 62% of all receptor locations showed a ratio between 0.9 and 10, and 92% were between 1 and 100. (authors)

  20. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  1. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  2. Use of the Power Burst Facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Crocker, J.G.; Griebenow, M.L.; Leatham, J.

    1990-01-01

    A program is under development at the Idaho National Engineering Laboratory (INEL) that involves using the Power Burst Facility (PBF) for research into boron neutron capture therapy (BNCT). BNCT utilizes the ionizing energy from boron-neutron capture to stop reproduction of or destroy cells in cancerous tissue in a two-step process. The first step is to selectively concentrate a boron isotope within the tumor cell, that when activated by neutron capture emits highly ionizing, short range particles. The second step involves activation of the isotope only in the vicinity of the tumor with a narrow neutron beam. The ( 10 B[n, 4 He] 7 Li) reaction with thermal neutrons produces fission products with track lengths approximately equal to a cell diameter. The INEL program includes the modification of the PBF by the addition of a filter and treatment area. The filter will down-scatter high energy neutrons into the epithermal range and remove thermal neutrons and excessively damaging gamma components. The intense source of epithermal neutrons from PBF is considered necessary to achieve optimum therapy for deep-seated tumors with minimum damage to surface tissue. THe neutron filter conceptualized for PBF utilizes aluminum and heavy water to down-scatter neutrons into the proper energy range. Bismuth will be used for gamma shielding and cadmium will remove the thermal neutron contaminant from the beam. The INEL program leads to human clinical trials at PBF which are intended to prove that brain tumors can be successfully treated through noninvasive techniques. Further research into BNCT at PBF for other cancer types is also anticipated

  3. Characteristics of neutron irradiation facility and dose estimation method for neutron capture therapy at Kyoto University research reactor institute

    International Nuclear Information System (INIS)

    Kobayashi, T.; Sakurai, Y.; Kanda, K.

    2001-01-01

    The neutron irradiation characteristics of the Heavy Water Neutron Irradiation Facility (HWNIF) at the Kyoto University Research Reactor Institute (KIJRRI) for boron neutron capture therapy (BNCT), is described. The present method of dose measurement and its evaluation at the KURRI, is explained. Especially, the special feature and noticeable matters were expounded for the BNCT with craniotomy, which has been applied at present only in Japan. (author)

  4. Heavy ion facility for radiation therapy

    International Nuclear Information System (INIS)

    Leemann, C.; Alonso, J.; Clark, D.; Grunder, H.; Hoyer, E.; Lou, K.; Staples, J.; Voelker, F.

    1977-03-01

    The accelerator requirements of particle radiation therapy are reviewed and a preliminary design of a heavy ion synchrotron for hospital installation is presented. Beam delivery systems and multi-treatment room arrangements are outlined

  5. Association Between Facility-Level Utilization of Non-pharmacologic Chronic Pain Treatment and Subsequent Initiation of Long-Term Opioid Therapy.

    Science.gov (United States)

    Carey, Evan P; Nolan, Charlotte; Kerns, Robert D; Ho, P Michael; Frank, Joseph W

    2018-05-01

    Expert guidelines recommend non-pharmacologic treatments and non-opioid medications for chronic pain and recommend against initiating long-term opioid therapy (LTOT). We examined whether veterans with incident chronic pain receiving care at facilities with greater utilization of non-pharmacologic treatments and non-opioid medications are less likely to initiate LTOT. Retrospective cohort study PARTICIPANTS: Veterans receiving primary care from a Veterans Health Administration facility with incident chronic pain between 1/1/2010 and 12/31/2015 based on either of 2 criteria: (1) persistent moderate-to-severe patient-reported pain and (2) diagnoses "likely to represent" chronic pain. The independent variable was facility-level utilization of pain-related treatment modalities (non-pharmacologic, non-opioid medications, LTOT) in the prior calendar year. The dependent variable was patient-level initiation of LTOT (≥ 90 days within 365 days) in the subsequent year, adjusting for patient characteristics. Among 1,094,569 veterans with incident chronic pain from 2010 to 2015, there was wide facility-level variation in utilization of 10 pain-related treatment modalities, including initiation of LTOT (median, 16%; range, 5-32%). Veterans receiving care at facilities with greater utilization of non-pharmacologic treatments were less likely to initiate LTOT in the year following incident chronic pain. Conversely, veterans receiving care at facilities with greater non-opioid and opioid medication utilization were more likely to initiate LTOT; this association was strongest for past year facility-level LTOT initiation (adjusted rate ratio, 2.10; 95% confidence interval, 2.06-2.15, top vs. bottom quartile of facility-level LTOT initiation in prior calendar year). Facility-level utilization patterns of non-pharmacologic, non-opioid, and opioid treatments for chronic pain are associated with subsequent patient-level initiation of LTOT among veterans with incident chronic pain

  6. The effect of facility-based antiretroviral therapy programs on outpatient services in Kenya and Uganda.

    Science.gov (United States)

    Wollum, Alexandra; Dansereau, Emily; Fullman, Nancy; Achan, Jane; Bannon, Kelsey A; Burstein, Roy; Conner, Ruben O; DeCenso, Brendan; Gasasira, Anne; Haakenstad, Annie; Hanlon, Michael; Ikilezi, Gloria; Kisia, Caroline; Levine, Aubrey J; Masters, Samuel H; Njuguna, Pamela; Okiro, Emelda A; Odeny, Thomas A; Allen Roberts, D; Gakidou, Emmanuela; Duber, Herbert C

    2017-08-16

    Considerable debate exists concerning the effects of antiretroviral therapy (ART) service scale-up on non-HIV services and overall health system performance in sub-Saharan Africa. In this study, we examined whether ART services affected trends in non-ART outpatient department (OPD) visits in Kenya and Uganda. Using a nationally representative sample of health facilities in Kenya and Uganda, we estimated the effect of ART programs on OPD visits from 2007 to 2012. We modeled the annual percent change in non-ART OPD visits using hierarchical mixed-effects linear regressions, controlling for a range of facility characteristics. We used four different constructs of ART services to capture the different ways in which the presence, growth, overall, and relative size of ART programs may affect non-ART OPD services. Our final sample included 321 health facilities (140 in Kenya and 181 in Uganda). On average, OPD and ART visits increased steadily in Kenya and Uganda between 2007 and 2012. For facilities where ART services were not offered, the average annual increase in OPD visits was 4·2% in Kenya and 13·5% in Uganda. Among facilities that provided ART services, we found average annual OPD volume increases of 7·2% in Kenya and 5·6% in Uganda, with simultaneous annual increases of 13·7% and 12·5% in ART volumes. We did not find a statistically significant relationship between annual changes in OPD services and the presence, growth, overall, or relative size of ART services. However, in a subgroup analysis, we found that Ugandan hospitals that offered ART services had statistically significantly less growth in OPD visits than Ugandan hospitals that did not provide ART services. Our findings suggest that ART services in Kenya and Uganda did not have a statistically significant deleterious effects on OPD services between 2007 and 2012, although subgroup analyses indicate variation by facility type. Our findings are encouraging, particularly given recent recommendations

  7. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.

    1981-01-01

    The use of a spherical tissue-equivalent proportional counter for measurements of the lineal energy (y) and derivations of the linear energy transfer (LET) for fast neutrons has the advantage of giving distributions of dose and dose equivalent as functions of either LET or y. A measurement next to the target shielding of the neutron therapy facility at the University of Chicago Hospitals and Clinics (UCHC) is described, and the data processing is outlined. The distributions are presented and compared to those from measurements in the neutron beam. The average quality factors are presented

  8. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The impact of the prospective payment system for skilled nursing facilities on therapy service provision: a transaction cost approach.

    Science.gov (United States)

    Zinn, Jacqueline S; Mor, Vincent; Intrator, Orna; Feng, Zhanlian; Angelelli, Joseph; Davis, Jullet A

    2003-12-01

    To examine skilled nursing facilities (SNFs) "make-or-buy" decisions with respect to rehabilitation therapy service provision in the 1990s, both before and after implementation of Medicare's Prospective Payment System (PPS) for SNFs. Longitudinal On-line Survey Certification and Reporting (OSCAR) data (1992-2001) on a sample of 10,241 freestanding urban SNFs. We estimated a longitudinal multinomial logistic regression model derived from transaction cost economic theory to predict the probability of the outcome in each of four service provision categories (all employed staff, all contract, mixed, and no services provided). Transaction frequency, uncertainty, and complexity result in greater control over therapy services through employment as opposed to outside contracting. For-profit status and chain affiliation were associated with greater control over therapy services. Following PPS, nursing homes acted to limit transaction costs by either exiting the rehabilitation market or exerting greater control over therapy services by managing rehabilitation services in-house. The financial incentives associated with changes in reimbursement methodology have implications that extend beyond the boundaries of the health care industry segment directly affected. Unintended quality and access consequences need to be carefully monitored by the Medicare program.

  10. Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility

    Science.gov (United States)

    Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.

    The world's first hospital-based proton treatment center opened at Loma Linda University Medical Center in 1990, following two decades of development. Patients' needs were the driving force behind its conception, development, and execution; the primary needs were delivery of effective conformal doses of ionizing radiation and avoidance of normal tissue to the maximum extent possible. The facility includes a proton synchrotron and delivery system developed in collaboration with physicists and engineers at Fermi National Accelerator Laboratory and from other high-energy-physics laboratories worldwide. The system, operated and maintained by Loma Linda personnel, was designed to be safe, reliable, flexible in utilization, efficient in use, and upgradeable to meet demands of changing patient needs and advances in technology. Since the facility opened, nearly 14,000 adults and children have been treated for a wide range of cancers and other diseases. Ongoing research is expanding the applications of proton therapy, while reducing costs.

  11. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom

  12. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

    Science.gov (United States)

    Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao

    2015-01-01

    Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned

  13. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  14. Radiation therapy sources, equipment and installations

    International Nuclear Information System (INIS)

    2011-03-01

    The safety code for Telegamma Therapy Equipment and Installations, (AERB/SC/MED-1) and safety code for Brachytherapy Sources, Equipment and Installations, (AERB/SC/MED-3) were issued by AERB in 1986 and 1988 respectively. These codes specified mandatory requirements for radiation therapy facilities, covering the entire spectrum of operations ranging from the setting up of a facility to its ultimate decommissioning, including procedures to be followed during emergency situations. The codes also stipulated requirements of personnel and their responsibilities. With the advent of new techniques and equipment such as 3D-conformal radiation therapy, intensity modulated radiation therapy, image guided radiation therapy, treatment planning system, stereotactic radiosurgery, stereotactic radiotherapy, portal imaging, integrated brachytherapy and endovascular brachytherapy during the last two decades, AERB desires that these codes be revised and merged into a single code titled Radiation Therapy Sources, Equipment, and Installations

  15. Analysis of rehabilitation activities within skilled nursing and inpatient rehabilitation facilities after hip replacement for acute hip fracture.

    Science.gov (United States)

    Munin, Michael C; Putman, Koen; Hsieh, Ching-Hui; Smout, Randall J; Tian, Wenqiang; DeJong, Gerben; Horn, Susan D

    2010-07-01

    To characterize rehabilitation services in two types of postacute facilities in patients who underwent hip replacement following a hip fracture. Multisite prospective observational cohort from 6 freestanding skilled nursing facilities and 11 inpatient rehabilitation facilities. Patients (n = 218) with hip fracture who had either hemiarthroplasty or total hip arthroplasty followed by rehabilitation at skilled nursing facilities or inpatient rehabilitation facilities were enrolled. Using a point-of-care methodology, we recorded data from actual physical therapy and occupational therapy sessions completed including functional outcomes during the postacute admission. Onset time from surgical repair to rehabilitation admission was not significantly different between sites. Average skilled nursing facilities length of stay was 24.7 +/- 13.6 days, whereas inpatient rehabilitation facilities was 13.0 +/- 5.7 days (P inpatient rehabilitation facilities. For weekdays only, these data changed to 1.6 in skilled nursing facilities and 2.6 hrs per patient in inpatient rehabilitation facilities (P inpatient rehabilitation facilities accrued more time for gait training and exercise in physical therapy, which was found to be 48% and 40% greater, respectively, through day 8. In occupational therapy, patients of inpatient rehabilitation facilities had more time allocated to lower body dressing and transfers. Significant differences in rehabilitation activities were observed, and intensity was notably different within the first 8 therapy days even though baseline demographics and medical complexity were comparable across facility types. Our data suggest that after more complex hip replacement surgery, hip fracture patients can tolerate more intensive therapy earlier within the rehabilitation program.

  16. Proton Therapy at the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    1996-03-01

    The brochure deals with the following topics: radiation therapy and its significance, proton therapy - worldwide and at PSI, advantages of the protons, the new proton therapy facility at PSI, therapy at PSI using the spot-scan technique. figs., tabs., refs

  17. Particle therapy for noncancer diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Planckstrasse 1, 64291 Darmstadt (Germany); Philipps-University Marburg, Center for Radiology, Department of Radiation Therapy, Baldinger Strasse, 35043 Marburg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universitaet Darmstadt, Institut fuer Festkoerperphysik, Hochschulstrasse 3, 64289 Darmstadt (Germany) and Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.

  18. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  19. Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire.

    Science.gov (United States)

    Weber, Damien C; Abrunhosa-Branquinho, André; Bolsi, Alessandra; Kacperek, Andrzej; Dendale, Rémi; Geismar, Dirk; Bachtiary, Barbara; Hall, Annika; Heufelder, Jens; Herfarth, Klaus; Debus, Jürgen; Amichetti, Maurizio; Krause, Mechthild; Orecchia, Roberto; Vondracek, Vladimir; Thariat, Juliette; Kajdrowicz, Tomasz; Nilsson, Kristina; Grau, Cai

    2017-08-01

    We performed a survey using the modified EORTC Facility questionnaire (pFQ) to evaluate the human, technical and organizational resources of particle centers in Europe. The modified pFQ consisted of 235 questions distributed in 11 sections accessible on line on an EORTC server. Fifteen centers from 8 countries completed the pFQ between May 2015 and December 2015. The average number of patients treated per year and per particle center was 221 (range, 40-557). The majority (66.7%) of centers had pencil beam or raster scanning capability. Four (27%) centers were dedicated to eye treatment only. An increase in the patients-health professional FTE ratio was observed for eye tumor only centers when compared to other centers. All centers treated routinely chordomas/chondrosarcomas, brain tumors and sarcomas but rarely breast cancer. The majority of centers treated pediatric cases with particles. Only a minority of the queried institutions treated non-static targets. As the number of particle centers coming online will increase, the experience with this treatment modality will rise in Europe. Children can currently be treated in these facilities in a majority of cases. The majority of these centers provide state of the art particle beam therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Planning guide for radiologic installations. fascicle 1 -- radiation therapy installations

    International Nuclear Information System (INIS)

    Tuddenham, W.J.

    1976-01-01

    Five articles dealing with the development and operation of radiation therapy facilities present recommendations for the design of various types of radiation therapy facilities, including the university center, the free-standing private oncology center, and the community hospital radiation therapy department. Different concepts of department design are represented. In one article, the planning room is conceived to be the central feature of a facility; in another article, radiation therapy is designed around examination rooms. Shielding requirements are also discussed, as are the advantages and space and licensing requirements of various types of equipment. There is a need for planning appropriate computer facilities in conjunction with other equipment plans, and a critique of one radiation therapy unit is provided. The concept of a regional network for the delivery of radiation therapy services is then explored. The volume contains extensive illustrations in the form of floor plans, drawings, figures, and tables. Many of the articles include a bibliography. This is the first in a series of publications on radiation department design which will be useful to architects, engineers, and hospital planners

  1. Bevalac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described

  2. Bevalac Radiotherapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.R.; Howard, J.; Criswell, T.

    1979-03-01

    Patient Treatment Room at the Bevalac is now in full operation. In the design of this facility, emphasis has been placed on creating an atmosphere appropriate to a clinical facility; the usual features of an irradiation cave have been hidden behind carpets, curtains and paint. Patient positioning is done with a Philips Ram-style couch, with additional fixtures to accommodate a patient in the seated or standing, as well as the supine, position. Dosimetry apparatus, collimators, ion chambers and the beam flattening system used to produce the highly uniform 20 cm diameter therapy field are described.

  3. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  4. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  5. Effect of distance to radiation treatment facility on use of radiation therapy after mastectomy in elderly women

    International Nuclear Information System (INIS)

    Punglia, Rinaa S.; Weeks, Jane C.; Neville, Bridget A.; Earle, Craig C.

    2006-01-01

    Purpose: We sought to study the effect of distance to the nearest radiation treatment facility on the use of postmastectomy radiation therapy (PMRT) in elderly women. Methods and Materials: Using data from the linked Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we analyzed 19,787 women with Stage I or II breast cancer who received mastectomy as definitive surgery during 1991 to 1999. Multivariable logistic regression was used to investigate the association of distance with receipt of PMRT after adjusting for clinical and sociodemographic factors. Results: Overall 2,075 patients (10.5%) treated with mastectomy received PMRT. In addition to cancer and patient characteristics, in our primary analysis, increasing distance to the nearest radiation treatment facility was independently associated with a decreased likelihood of receiving PMRT (OR 0.996 per additional mile, p = 0.01). Secondary analyses revealed that the decline in PMRT use appeared at distances of more than 25 miles and was statistically significant for those patients living more than 75 miles from the nearest radiation facility (odds of receiving PMRT of 0.58 [95% CI 0.34-0.99] vs. living within 25 miles of such a facility). The effect of distance on PMRT appeared to be more pronounced with increasing patient age (>75 years). Variation in the effect of distance on radiation use between regions of the country and nodal status was also identified. Conclusions: Oncologists must be cognizant of the potential barrier to quality care that is posed by travel distance, especially for elderly patients; and policy makers should consider this fact in resource allocation decisions about radiation treatment centers

  6. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  7. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  8. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  10. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    Science.gov (United States)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  11. Implementation of co-trimoxazole preventive therapy policy for malaria in HIV-infected pregnant women in the public health facilities in Tanzania.

    Science.gov (United States)

    Kamuhabwa, Appolinary Ar; Gordian, Richard; Mutagonda, Ritah F

    2016-01-01

    In 2011, Tanzania adopted a policy for provision of daily co-trimoxazole prophylaxis to HIV-infected pregnant women for prevention of malaria and other opportunistic infections. As per the policy, HIV-infected pregnant women should not be given sulfadoxine-pyrimethamine (SP) for intermittent preventive therapy. The challenges associated with this policy change and the extent to which the new policy for prevention of malaria in pregnant women coinfected with HIV was implemented need to be assessed. To assess the implementation of malaria-preventive therapy policy among HIV-infected pregnant women in the public health facilities in Dar es Salaam, Tanzania. The study was conducted in Kinondoni Municipality, Dar es Salaam, Tanzania, from January 2015 to July 2015. Three hundred and fifty-three HIV-infected pregnant women who were attending antenatal clinics (ANCs) and using co-trimoxazole for prevention of malaria were interviewed. Twenty-six health care workers working at the ANCs were also interviewed regarding provision of co-trimoxazole prophylaxis to pregnant women. A knowledge scale was used to grade the level of knowledge of health care providers. Focus group discussions were also conducted with 18 health care workers to assess the level of implementation of the policy and the challenges encountered. Twenty-three (6.5%) pregnant women with known HIV serostatus were using co-trimoxazole for prevention of opportunistic infections even before they became pregnant. Out of the 353 HIV-infected pregnant women, eight (2.5%) were coadministered with both SP and co-trimoxazole. Sixty (16.7%) pregnant women had poor adherence to co-trimoxazole prophylaxis. Out of the 26 interviewed health care providers, 20 had high level of knowledge regarding malaria-preventive therapy in HIV-infected pregnant women. Lack of adequate supply of co-trimoxazole in health facilities and inadequate training of health care providers were among the factors causing poor implementation of co

  12. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1994-01-01

    A consortium organized by the Texas National Research Laboratory Commission under a Department of Energy grant proposes to build and operate a Regional Medical Technology Center to function as a combined medical radioisotope production complex and proton cancer therapy facility using the Linear Accelerator (Linac) assets of the Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications for linear accelerator technology

  13. Quality of antiretroviral therapy in public health facilities in Nigeria and perceptions of end users.

    Science.gov (United States)

    Chiegil, Robert J; Zungu, Lindiwe I; Jooste, Karien

    2014-04-01

    This paper describes perceptions of the end users on quality of antiretroviral therapy (ART) in public health facilities in Nigeria. Health care services in Nigeria face challenges of meeting end users' requirements and expectations for quality ART service provision. A qualitative design was followed. Unstructured focus group discussions were conducted with end users (n = 64) in six locations across the six geopolitical zones of Nigeria. The findings indicate that end users were satisfied with uninterrupted antiretroviral drug supplies, courtesy treatment, volunteerism of support group members and quality counselling services. End users expect effective collaboration between healthcare providers and support group members, to enhance the quality of life of people living with HIV. A best practice guideline for the provision of end user focused ART service provision was developed for nurse managers. © 2013 John Wiley & Sons Ltd.

  14. CERN launches new cancer therapy initiative

    CERN Multimedia

    2002-01-01

    "The first meeting of a new European network for research in cancer therapy was held at CERN, in February 2002. ENLIGHT, the European Network for Research in Light Ion Therapy aims to coordinate the development of a variety of projects at European facilities for "light ion therapy" - a form of radiation therapy that uses beams of the nuclei of lightweight atoms" (1/2 page).

  15. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  16. Workshop on the accelerator for particle therapy

    International Nuclear Information System (INIS)

    Inoue, M.; Ujeno, Y.

    1991-02-01

    A two-day workshop on the accelerator for particle therapy was held on August 22-23, 1990, with the aim of mutual understanding of medical accelerators among investigators. The state-of-the-art facilities in Japan and medical proton accelerators in Japan and other countries were introduced. This is a compilation of papers presented at the workshop: (1) particle radiotherapy at the National Institute of Radiological Sciences (NIRS); (2) proton therapy; (3) treatment planning, especially for photon and electron therapies; (4) heavy ion synchrotron project at the NIRS; (5) medical proton accelerator project of Tsukuba University and recent status of Loma Linda University Medical Center Proton Beam Facility; (6) inspection report on the Loma Linda University Medical Center Proton Beam Facility; (7) accelerator project of Kyoto University; (8) actual conditions of the 7 MeV proton linear accelerator; (9) design study of superconducting compact cyclotron prototype model; (10) medical superconducting prototype cyclotron; (11) RCNP cyclotron cascade project; (12) beam extraction from synchrotron; (13) radiation safety design in high energy particle accelerator facilities. (N.K.)

  17. Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in urban health facilities in Yaoundé, central province, Cameroon

    Directory of Open Access Journals (Sweden)

    Bley Daniel

    2009-07-01

    Full Text Available Abstract Background After adoption of artesunate-amodiaquine (AS/AQ as first-line therapy for the treatment of uncomplicated malaria by the malaria control programme, this study was designed to assess the availability of anti-malarial drugs, treatment practices and acceptability of the new protocol by health professionals, in the urban health facilities and drugstores of Yaoundé city, Cameroon. Methods Between April and August 2005, retrospective and current information was collected by consulting registers and interviewing health practitioners in urban health facilities using a structured questionnaire. Results In 2005, twenty-seven trade-named drugs have been identified in drugstores; quinine tablets (300 mg were the most affordable anti-malarial drugs. Chloroquine was restricted to food market places and no generic artemisinin derivative was available in public health centres. In public health facilities, 13.6% of health professionals were informed about the new guidelines; 73.5% supported the use of AS-AQ as first-line therapy. However, 38.6% apprehended its use due to adverse events attributed to amodiaquine. Malaria treatment was mainly based on the diagnosis of fever. Quinine (300 mg tablets was the most commonly prescribed first-line anti-malarial drug in adults (44.5% and pregnant women (52.5%. Artequin® was the most cited artemsinin-based combination therapy (ACT (9.9%. Medical sales representatives were the main sources of information on anti-malarials. Conclusion The use of AS/AQ was not implemented in 2005 in Yaoundé, despite the wide range of anti-malarials and trade-named artemisinin derivatives available. Nevertheless, medical practitioners will support the use of this combination, when it is available in a paediatric formulation, at an affordable price. Training, information and participation of health professionals in decision-making is one of the key elements to improve adherence to new protocol guidelines. This baseline

  18. Specific horticulture therapy guidelines in the landscaping of Cluj-Napoca hospital facilities – improving mental and behavioural healthcare

    Directory of Open Access Journals (Sweden)

    Hitter Timea

    2017-12-01

    Full Text Available In the beginning, nature was an irreplaceable environment for humans. The concept of horticulture therapy (HT denotes the use of ornamental plants to improve people’s health based on the connection between landscape architecture principles, design elements, and guidelines in healthcare facility gardens. In HT, people can improve and maintain health; so, gardens must provide only beneficial effects for users (patient, family, staff, testing design elements, which can be a scroll direction in garden, point of interest, connection with nature. This paper presents a case study analysis of the current landscape architecture standpoint: one of the Cluj-Napoca clinics, where HT can improve patients’ well-being.

  19. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  20. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1995-01-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology. (orig.)

  1. A medical facility proposal to use the SSC linac

    Science.gov (United States)

    Warren Funk, L.

    1995-05-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology.

  2. Better antiretroviral therapy outcomes at primary healthcare facilities: an evaluation of three tiers of ART services in four South African provinces.

    Science.gov (United States)

    Fatti, Geoffrey; Grimwood, Ashraf; Bock, Peter

    2010-09-21

    There are conflicting reports of antiretroviral therapy (ART) effectiveness comparisons between primary healthcare (PHC) facilities and hospitals in low-income settings. This comparison has not been evaluated on a broad scale in South Africa. A retrospective cohort study was conducted including ART-naïve adults from 59 facilities in four provinces in South Africa, enrolled between 2004 and 2007. Kaplan-Meier estimates, competing-risks Cox regression, generalised estimating equation population-averaged models and logistic regression were used to compare death, loss to follow-up (LTFU) and virological suppression (VS) between PHC, district and regional hospitals. 29 203 adults from 47 PHC facilities, nine district hospitals and three regional hospitals were included. Patients at PHC facilities had more advanced WHO stage disease when starting ART. Retention in care was 80.1% (95% CI: 79.3%-80.8%), 71.5% (95% CI: 69.1%-73.8%) and 68.7% (95% CI: 67.0%-69.7%) at PHC, district and regional hospitals respectively, after 24 months of treatment (Phospitals (aHR 2.19; 95% CI: 1.94-2.47) and mortality was independently elevated at district hospitals (aHR 1.60; 95% CI: 1.30-1.99) compared to PHC facilities after 12 months of ART. District and regional hospital patients had independently reduced probabilities of VS, aOR 0.76 (95% CI: 0.59-0.97) and 0.64 (95% CI: 0.56-0.75) respectively compared to PHC facilities over 24 months of treatment. ART outcomes were superior at PHC facilities, despite PHC patients having more advanced clinical stage disease when starting ART, suggesting that ART can be adequately provided at this level and supporting the South African government's call for rapid up-scaling of ART at the primary level of care. Further prospective research is required to determine the degree to which outcome differences are attributable to either facility level characteristics or patient co-morbidity at hospital level.

  3. Better antiretroviral therapy outcomes at primary healthcare facilities: an evaluation of three tiers of ART services in four South African provinces.

    Directory of Open Access Journals (Sweden)

    Geoffrey Fatti

    Full Text Available BACKGROUND: There are conflicting reports of antiretroviral therapy (ART effectiveness comparisons between primary healthcare (PHC facilities and hospitals in low-income settings. This comparison has not been evaluated on a broad scale in South Africa. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective cohort study was conducted including ART-naïve adults from 59 facilities in four provinces in South Africa, enrolled between 2004 and 2007. Kaplan-Meier estimates, competing-risks Cox regression, generalised estimating equation population-averaged models and logistic regression were used to compare death, loss to follow-up (LTFU and virological suppression (VS between PHC, district and regional hospitals. 29 203 adults from 47 PHC facilities, nine district hospitals and three regional hospitals were included. Patients at PHC facilities had more advanced WHO stage disease when starting ART. Retention in care was 80.1% (95% CI: 79.3%-80.8%, 71.5% (95% CI: 69.1%-73.8% and 68.7% (95% CI: 67.0%-69.7% at PHC, district and regional hospitals respectively, after 24 months of treatment (P<0.0001. In adjusted regression analyses, LTFU was independently increased at regional hospitals (aHR 2.19; 95% CI: 1.94-2.47 and mortality was independently elevated at district hospitals (aHR 1.60; 95% CI: 1.30-1.99 compared to PHC facilities after 12 months of ART. District and regional hospital patients had independently reduced probabilities of VS, aOR 0.76 (95% CI: 0.59-0.97 and 0.64 (95% CI: 0.56-0.75 respectively compared to PHC facilities over 24 months of treatment. CONCLUSIONS/SIGNIFICANCE: ART outcomes were superior at PHC facilities, despite PHC patients having more advanced clinical stage disease when starting ART, suggesting that ART can be adequately provided at this level and supporting the South African government's call for rapid up-scaling of ART at the primary level of care. Further prospective research is required to determine the degree to which

  4. Play Therapy: Facilitative Use of Child's Play in Elementary School Counseling.

    Science.gov (United States)

    Landreth, Garry L.

    1987-01-01

    Reviews five major developments in play therapy: psychoanalysis, release therapy, relationship therapy, nondirective therapy, and play therapy in school settings. Suggests ways school counselors can use play therapy. Describes play therapy facilities, location selection, and play materials. Lists objectives of play therapy and how teachers can aid…

  5. Beamlines of the biomedical imaging and therapy facility at the Canadian light source - part 3

    Science.gov (United States)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1-4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6-9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20-100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to -7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT, described

  6. A questionnaire survey of medical physicist and quality manager for radiation therapy

    International Nuclear Information System (INIS)

    Nishio, Teiji; Ashino, Yasuo; Onishi, Hiroshi

    2008-01-01

    A questionnaire survey of medical physicists and quality managers for radiation therapy was performed by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO) Future Planning Committee. We mailed the questionnaire to 726 radiotherapy facilities with the answers returned from 353 radiotherapy facilities. The result showed 178 facilities were staffed by radiotherapy workers who were licensed medical physicists or quality managers. A staff of 289 was licensed radiotherapy workers. Most of the staff were radiotherapy technologists. Quality control for radiation therapy was rated satisfactory according to each facility's assessment. Radiation therapy of high quality requires continued education of medical physicists and quality managers, in addition to keeping up with times for quality control. (author)

  7. Review of ion beam therapy: Present and Future

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    First therapy efforts at the Bevalac using neon ions took place in the 70's and 80's. Promising results led to construction of HIMAC in Chiba Japan, and more recently to therapy trials at GSI. Both these facilities are now treating patients with carbon beams. Advances in both accelerator technology and beam delivery have taken place at these two centers. Plans are well along for new facilities in Europe and Japan

  8. Proton Therapy Research and Treatment Center

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.E. Jr. (University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center); Alonso, J.R. (Lawrence Berkeley Lab., CA (United States))

    1992-05-01

    This Grant proposal outlines the steps that will be undertaken to bring the UC Davis Proton Therapy Research and Treatment, known locally as the Proton Therapy Facility (PTF), through its design and construction phases. This application concentrates on the design phase of the PTF project.

  9. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    Label, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  10. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  11. Delivery of electroconvulsive therapy in Canada: a first national survey report on usage, treatment practice, and facilities.

    Science.gov (United States)

    Martin, Barry A; Delva, Nicholas John; Graf, Peter; Gosselin, Caroline; Enns, Murray W; Gilron, Ian; Jewell, Mark; Lawson, James Stuart; Milev, Roumen; Patry, Simon; Chan, Peter K Y

    2015-06-01

    The aims of this study were to document electroconvulsive therapy use in Canada with respect to treatment facilities and caseloads based on a survey of practice (Canadian Electroconvulsive Therapy Survey/Enquete Canadienne Sur Les Electrochocs-CANECTS/ECANEC) and to consider these findings in the context of guideline recommendations. All 1273 registered hospitals in Canada were contacted, and 175 sites were identified as providing electroconvulsive therapy; these sites were invited to complete a comprehensive questionnaire. The survey period was calendar year 2006 or fiscal year 2006/2007. National usage rates were estimated from the responses. Sixty-one percent of the sites completed the questionnaire; a further 10% provided caseload data. Seventy were identified as general; 31, as university teaching; and 21, as provincial psychiatric/other single specialty (psychiatric) hospitals. Caseload volumes ranged from a mean of fewer than 2 to greater than 30 treatments per week. Estimated national usage during the 1-year survey period was 7340 to 8083 patients (2.32-2.56 per 10,000 population) and 66,791 to 67,424 treatments (2.11-2.13 per 1000 population). The diagnostic indications, admission status, and protocols for course end points are described. The usage rates are in keeping with earlier Canadian data and with those from other jurisdictions. The difficulty obtaining caseload data from individual hospitals is indicative of the need for standardized data collection to support both clinical research and quality assurance. The wide variation in protocols for number of treatments per course indicates a need for better informed clinical guidelines. The broad range of caseload volumes suggests the need to review the economies of scale in the field.

  12. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-01-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  13. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  14. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  15. Biomedical neutron research at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1998-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy. (author)

  16. Implementation of co-trimoxazole preventive therapy policy for malaria in HIV-infected pregnant women in the public health facilities in Tanzania

    Directory of Open Access Journals (Sweden)

    Kamuhabwa AAR

    2016-12-01

    Full Text Available Appolinary AR Kamuhabwa, Richard Gordian, Ritah F Mutagonda Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania Background: In 2011, Tanzania adopted a policy for provision of daily co-trimoxazole prophylaxis to HIV-infected pregnant women for prevention of malaria and other opportunistic infections. As per the policy, HIV-infected pregnant women should not be given sulfadoxine-pyrimethamine (SP for intermittent preventive therapy. The challenges associated with this policy change and the extent to which the new policy for prevention of malaria in pregnant women coinfected with HIV was implemented need to be assessed. Aim: To assess the implementation of malaria-preventive therapy policy among HIV-infected pregnant women in the public health facilities in Dar es Salaam, Tanzania. Methodology: The study was conducted in Kinondoni Municipality, Dar es Salaam, Tanzania, from January 2015 to July 2015. Three hundred and fifty-three HIV-infected pregnant women who were attending antenatal clinics (ANCs and using co-trimoxazole for prevention of malaria were interviewed. Twenty-six health care workers working at the ANCs were also interviewed regarding provision of co-trimoxazole prophylaxis to pregnant women. A knowledge scale was used to grade the level of knowledge of health care providers. Focus group discussions were also conducted with 18 health care workers to assess the level of implementation of the policy and the challenges encountered. Results: Twenty-three (6.5% pregnant women with known HIV serostatus were using co-trimoxazole for prevention of opportunistic infections even before they became pregnant. Out of the 353 HIV-infected pregnant women, eight (2.5% were coadministered with both SP and co-trimoxazole. Sixty (16.7% pregnant women had poor adherence to co-trimoxazole prophylaxis. Out of the 26 interviewed health care providers, 20 had high

  17. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  18. The application of accelerator for medical therapy in Indonesia

    International Nuclear Information System (INIS)

    Yunasfi; Mudjiono; Irwati, Dwi; Hanifa

    2003-01-01

    The study of the application of accelerator for medical therapy in Indonesia was carried out. Accelerator that used for therapy is an electron lintier accelerator (Linac) which can radiate electron beam and X-ray. This study shows that there are 8 unit of Linac distributed at 6 big hospitals in Indonesia, especially in Jakarta. This study also shows that radiotherapy facilities in Indonesia is un sufficient of. Therefore, providing radiotherapy facilities for hospitals, especially the big hospitals in Indonesia is necessary

  19. Where Do Patients With Cancer in Iowa Receive Radiation Therapy?

    Science.gov (United States)

    Ward, Marcia M.; Ullrich, Fred; Matthews, Kevin; Rushton, Gerard; Tracy, Roger; Goldstein, Michael A.; Bajorin, Dean F.; Kosty, Michael P.; Bruinooge, Suanna S.; Hanley, Amy; Jacobson, Geraldine M.; Lynch, Charles F.

    2014-01-01

    Purpose: Multiple studies have shown survival benefits in patients with cancer treated with radiation therapy, but access to treatment facilities has been found to limit its use. This study was undertaken to examine access issues in Iowa and determine a methodology for conducting a similar national analysis. Patients and Methods: All Iowa residents who received radiation therapy regardless of where they were diagnosed or treated were identified through the Iowa Cancer Registry (ICR). Radiation oncologists were identified through the Iowa Physician Information System (IPIS). Radiation facilities were identified through IPIS and classified using the Commission on Cancer accreditation standard. Results: Between 2004 and 2010, 113,885 invasive cancers in 106,603 patients, 28.5% of whom received radiation treatment, were entered in ICR. Mean and median travel times were 25.8 and 20.1 minutes, respectively, to the nearest facility but 42.4 and 29.1 minutes, respectively, to the patient's chosen treatment facility. Multivariable analysis predicting travel time showed significant relationships for disease site, age, residence location, and facility category. Residents of small and isolated rural towns traveled nearly 3× longer than urban residents to receive radiation therapy, as did patients using certain categories of facilities. Conclusion: Half of Iowa patients could reach their nearest facility in 20 minutes, but instead, they traveled 30 minutes on average to receive treatment. The findings identified certain groups of patients with cancer who chose more distant facilities. However, other groups of patients with cancer, namely those residing in rural areas, had less choice, and some had to travel considerably farther to radiation facilities than urban patients. PMID:24443730

  20. Overview of the MGH-Northeast Proton Therapy Center plans and progress

    International Nuclear Information System (INIS)

    Flanz, J.; Durlacher, S.; Goitein, M.; Levine, A.; Reardon, P.; Smith, A.

    1995-01-01

    The Northeast Proton Therapy Center (NPTC) is currently being designed and is scheduled for completion in 1998. The goal of the project is to provide the northeast region of the United States with a first class proton therapy facility which has the capabilities needed for the conduct of innovative research, and proven treatments using proton therapy. The NPTC will be built on the Massachusetts General Hospital (MGH) campus. MGH has contracted Bechtel Corporation to coordinate the design and building of the civil construction. Ion Beam Applications (IBA) who is teamed with General Atomics, is responsible for the equipment. The specifications for the facility are written in terms of the clinical performance requirements and will be presented. Aspects of the facility design, status and plans will also be presented. (orig.)

  1. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.

    Science.gov (United States)

    Yan, Jian; Peng, Xifeng; Cai, Yulian; Cong, Wendong

    2018-06-01

    The present anti-angiogenic therapies for neovascular age-related macular degeneration require effective drug delivery systems for transfer drug molecules. Ranibizumab is an active humanized monoclonal antibody that counteracts active forms of vascular endothelial growth factor A in the neovascular age-related macular degeneration therapy. The development of ranibizumab-related therapies, we have designed the effective drug career with engineered magnetic nanoparticles (Fe 3 O 4 ) as a facile platform of ranibizumab delivery for the treatment of neovascular age-related macular degeneration. Ranibizumab conjugated iron oxide (Fe 3 O 4 )/PEGylated poly lactide-co-glycolide (PEG-PLGA) was successfully designed and the synthesized materials are analyzed different analytical techniques. The microscopic techniques (Scanning Electron Microscopy (SEM) & Transmission Electron Microscopy (TEM)) are clearly displayed that spherical nanoparticles into the PEG-PLGA matrix and presence of elements and chemical interactions confirmed by the results of energy dispersive X-ray analysis (EDX) and Fourier trans-form infrared (FTIR) spectroscopic methods. The in vitro anti-angiogenic evaluation of Fe 3 O 4 /PEG-PLGA polymer nanomaterial efficiently inhibits the tube formation in the Matrigel-based assay method by using human umbilical vein endothelial cells. Ranibizumab treated Fe 3 O 4 /PEG-PLGA polymer nanomaterials not disturbed cell proliferation and the results could not display the any significant differences in human endothelial cells. The present investigated results describe that Fe 3 O 4 /PEG-PLGA polymer nanomaterials can be highly favorable and novel formulation for the treatment of neovascular age-related macular degeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Facilities for radiotherapy with ion beams status and worldwide developments

    CERN Document Server

    Wolf, B H

    1999-01-01

    Forty-five years after the first ion beam therapy in Berkeley around 25,000 cancer patients worldwide have been treated successfully. Ion accelerators, designed for nuclear research, delivered most of this treatment. The first hospital-based facility started operation in 1998 at Loma Linda California, the first for heavier ions at Chiba, Japan in 1994 and the first commercially delivered facilities started operation in 1998 at Kashiwa, Japan. In 2000, the Harvard Medical Centre, Boston, US, will commence operation and several new facilities are planned or under construction worldwide, although none in Australia. This paper will discuss the physical and biological advantages of ion beams over x-rays and electrons. In the treatment of cancer patients ion beam therapy is especially suited for localised tumours in radiation sensitive areas like skull or spine. Heavier ions are also effective in anoxic tumour cells (found around the normally oxygenated cell population). An additional advantage of the heavier carbo...

  3. Fertility and cancer therapy

    International Nuclear Information System (INIS)

    Maguire, L.C.

    1979-01-01

    With increased survival of increasing numbers of cancer patients as a result of therapy, the consequences, early and late, of the therapies must be realized. It is the treating physician's duty to preserve as much reproductive potential as possible for patients, consistent with adequate care. With radiotherapy this means shielding the gonads as much as possible, optimal but not excessive doses and fields, oophoropexy, or sperm collection and storage prior to irradiation. With chemotherapy it means the shortest exposure to drugs consistent with best treatment and prior to therapy the collection and storage of sperm where facilities are available. At present this is still an experimental procedure. Artificial insemination for a couple when the male has received cancer therapy is another alternative. Finally, it is the responsibility of physicians caring for patients with neoplasms to be knowledgeable about these and all other effects of therapy so that patients may be counseled appropriately and understand the implications of therapy for their life

  4. Parental views on acute otitis media (AOM) and its therapy in children--results of an exploratory survey in German childcare facilities.

    Science.gov (United States)

    Kautz-Freimuth, Sibylle; Redaèlli, Marcus; Samel, Christina; Civello, Daniele; Altin, Sibel V; Stock, Stephanie

    2015-12-01

    Acute otitis media (AOM) is one of the main reasons for medical consultation and antibiotic use during childhood. Although 80% of AOM cases are self-limiting, antibiotic prescription is still high, either for physician- or for parent-related factors. This study aims to identify parental knowledge about, beliefs and attitudes towards, and experiences with AOM and its therapy and thus to gain insights into parents' perspectives within the German health care system. An exploratory survey was conducted among German-speaking parents of children aged 2 to 7 years who sent their children to a childcare facility. Childcare facilities were recruited by convenience sampling in different urban and rural sites in Germany, and all parents with children at those facilities were invited to participate. Data were evaluated using descriptive statistical analyses. One-hundred-thirty-eight parents participated. Of those, 75.4% (n = 104) were AOM-experienced and 75.4% (n = 104) had two or more children. Sixty-six percent generally agree that bacteria cause AOM. 20.2% generally agree that viruses cause AOM. 30.5% do not generally agree that viruses cause AOM. Eight percent generally agree that AOM resolves spontaneously, whereas 53.6% do not generally agree. 92.5% generally (45.7%) and partly (42.8%) agree that AOM needs antibiotic treatment. With respect to antibiotic effects, 56.6% generally agree that antibiotics rapidly relieve earache. 60.1% generally agree that antibiotics affect the gastrointestinal tract and 77.5% generally agree that antibiotics possibly become ineffective after frequent use. About 40% generally support and about 40% generally reject a "wait-and-see" strategy for AOM treatment. Parental-reported experiences reveal that antibiotics are by far more often prescribed (70.2%) than actively requested by parents (26.9%). Parental views on AOM, its therapy, and antibiotic effects reveal uncertainties especially with respect to causes, the natural course of the disease

  5. Current status of neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT.

  6. Current status of neutron capture therapy

    International Nuclear Information System (INIS)

    2001-05-01

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT

  7. Drug Therapy Problems in Patients on Antihypertensives and ...

    African Journals Online (AJOL)

    Drug therapy problems (DTPs), with the associated risks inherent in antihypertensive and antidiabetic therapy require utmost attention. This present study was aimed at assessing the DTPs observed in the management of hypertension and diabetes mellitus (DM) in two tertiary health facilities in Niger Delta region. In this ...

  8. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  9. A Survey of Hadron Therapy Accelerator Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  10. The Thermal Neutron Beam Option for NECTAR at MLZ

    Science.gov (United States)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  11. Advances in particle therapy a multidisciplinary approach

    CERN Document Server

    Bernier, Jacques

    2018-01-01

    Hadron therapy is a groundbreaking new method of treating cancer. Boasting greater precision than other therapies, this therapy is now utilised in many clinical settings and the field is growing. More than 50 medical facilities currently perform (or are planned to perform) this treatment, with this number set to double by 2020. This new text covers the most recent advances in hadron therapy, exploring the physics, technology, biology, diagnosis, clinical applications, and economics behind the therapy. Providing essential and up-to-date information on recent developments in the field, this book will be of interest to current and aspiring specialists from a wide range of backgrounds.

  12. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  13. Design of an irradiation facility with thermal, epithermal and fast neutron beams

    International Nuclear Information System (INIS)

    Pfister, G.; Bernnat, W.; Seidel, R.; Schatz, A.K.; Wagner, F.M.; Waschkowski, W.; Schraube, H.

    1992-01-01

    The main features of a neutron irradiation facility to be installed at the planned research reactor FRM-II are presented. In addition to the operational possibilities of the existing facility at the reactor FRM-I, the new facility will produce quasi-monoenergetic neutron fields and a neutron beam in the keV region whose spectrum can be modified by application of suitable filters and scatterers. For this beam, which is well suited for boron capture therapy, calculated boron reaction rates inside a phantom and an experimental verification of the calculations at the existing facility are presented. (orig.) [de

  14. Building the first music therapy programme… - a reflection on new music therapy in new place

    OpenAIRE

    Ludwika Konieczna

    2009-01-01

    This story presents the reflections on building a music therapy programme in a new place. The description of the experiences of a young clinician who started music therapy programme in a facility for abused and neglected children in Poland is given. Both professional and personal challenges that were faced by the music therapist are discussed. The story of the author might not be different from those that happen to music therapists in similar situations all over the world. Therefore, the auth...

  15. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    Science.gov (United States)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  16. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  17. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  18. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-09-01

    This monthly bulletin describes activities in the following project areas during this reporting period: supporting technology development, large animal model studies, neutron source and facility preparation, administration and common support, and PBF operations. (FI)

  19. The Australian National Proton Facility

    International Nuclear Information System (INIS)

    Jackson, M.; Rozenfeld, A.; Bishop, J.

    2002-01-01

    Full text: Protons have been used in the treatment of cancer since 1954 and over 30,000 patients have been treated around the world. Their precise dose distribution allows the treatment of small tumours in critical locations such as the base of skull and orbit and is an alternative to stereotactic radiotherapy in other sites. With the development of hospital-based systems in the 1990's, common tumours such as prostate, breast and lung cancer can now also be treated using simple techniques. The therapeutic ratio is improved as the dose to the tumour can be increased while sparing normal tissues. The well defined high dose region and low integral dose compared with photon treatments is a particular advantage in children and other situations where long-term survival is expected and when used in combination with chemotherapy. In January 2002, the NSW Health Department initiated a Feasibility Study for an Australian National Proton Facility. This Study will address the complex medical, scientific, engineering, commercial and legal issues required to design and build a proton facility in Australia. The Facility will be mainly designed for patient treatment but will also provide facilities for biological, physical and engineering research. The proposed facility will have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre will enable the conduct of randomised clinical trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. Cost-utility comparisons with other medical treatments will also be made and further facilities developed if the expected benefit is confirmed. When patients are not being treated, the beam will be available for commercial and research purposes. This presentation will summarize the progress of the Study and discuss the important issues that need to be resolved before the Facility is approved and constructed

  20. Examining appropriate diagnosis and treatment of malaria: availability and use of rapid diagnostic tests and artemisinin-based combination therapy in public and private health facilities in south east Nigeria

    Directory of Open Access Journals (Sweden)

    Uzochukwu Benjamin SC

    2010-08-01

    Full Text Available Abstract Background Rapid diagnostic tests (RDTs and Artemisinin-based combination therapy (ACT have been widely advocated by government and the international community as cost-effective tools for diagnosis and treatment of malaria. ACTs are now the first line treatment drug for malaria in Nigeria and RDTs have been introduced by the government to bridge the existing gaps in proper diagnosis. However, it is not known how readily available these RDTs and ACTs are in public and private health facilities and whether health workers are actually using them. Hence, this study investigated the levels of availability and use of RDTs and ACTs in these facilities. Methods The study was undertaken in Enugu state, southeast Nigeria in March 2009. Data was collected from heads of 74 public and private health facilities on the availability and use of RDTs and ACTs. Also, the availability of RDTs and the types of ACTs that were available in the facilities were documented. Results Only 31.1% of the health facilities used RDTs to diagnose malaria. The majority used the syndromic approach. However, 61.1% of healthcare providers were aware of RDTs. RDTs were available in 53.3% of the facilities. Public health facilities and health facilities in the urban areas were using RDTs more and these were mainly bought from pharmacy shops and supplied by NGOs. The main reasons given for non use are unreliability of RDTs, supply issues, costs, preference for other methods of diagnosis and providers' ignorance. ACTs were the drug of choice for most public health facilities and the drugs were readily available in these facilities. Conclusion Although many providers were knowledgeable about RDTs, not many facilities used it. ACTS were readily available and used in public but not private health facilities. However, the reported use of ACTs with limited proper diagnosis implies that there could be high incidence of inappropriate case management of malaria which can also increase

  1. Current situation and problems of cancer-reproductive therapy from the standpoint of male reproductive therapy

    International Nuclear Information System (INIS)

    Shin, Takeshi; Tanaka, Takashi; Nishio, Koujiro; Arai, Manabu; Okada, Horoshi; Nozaki, Miwako; Kaji, Yasushi

    2017-01-01

    This paper reviewed the current situation and problems of cancer - reproductive therapy from the standpoint of male reproductive therapy. Common causes for male infertility include spermatogenic dysfunction, seminal duct dysfunction, and sexual dysfunction. Causes of male infertility in cancer patients include the presence of cancer itself, as well as pathological conditions due to surgery, radiation therapy, or chemotherapy for cancer, namely spermatogenic dysfunction, seminal duct dysfunction, and sexual dysfunction. The American Society of Clinical Oncology (ASCO) presents the risk classification of infertility due to anti-cancer drugs or radiotherapy. Cancer treating physicians evaluate infertility risk associated with treatment according to this risk classification and provide patients with information. If a patient wishes to preserve fertility, it is recommended in ASCO's fertility preservation guidelines to introduce the facilities that can store frozen sperm. Questionnaire surveys on sperm cryopreservation to blood physician show that the description of sperm cryopreservation is made at only about two-thirds of facilities and there is a problem that the systemization of cryopreservation has not progressed. The only way to acquire a baby in a patient who has undergone cancer treatment without cryopreservation and became permanent azoospermia is microscopic testis sperm collection and microinsemination. (A.O.)

  2. The Effect of Art Therapy on Cognitive Performance among Ethnically Diverse Older Adults

    Science.gov (United States)

    Pike, Amanda Alders

    2013-01-01

    This study examined the effect of art therapy on the cognitive performance of a multisite, ethnically diverse sample ("N" = 91) of older adults. Participants were recruited from several U.S. facilities that included a community center, a retirement center, an adult daycare, an assisted living facility, and a skilled nursing facility.…

  3. Pediatric radiation therapy. A Japanese nationwide survey

    International Nuclear Information System (INIS)

    Nemoto, Kenji; Nagata, Yasushi; Hirokawa, Yutaka

    2006-01-01

    A national survey on the current status of pediatric radiation therapy was performed in October 2004. We sent questionnaires to 638 radiotherapy facilities in Japan (except for Kansai area) and 245 responses were analyzed. According to the database of committee of Japanese Society of Therapeutic Radiology and Oncology (JASTRO), the number of pediatric patients who received radiation therapy during 2003 in Japan was 1,101. The most frequent pediatric malignancy was brain tumor, followed by leukemia and lymphoma. The total effort of radiation therapy for children was two to six times larger than that for adult patients. An additional fee seems to be necessary for the highly technical and laborious radiation therapy required for children. (author)

  4. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  5. Regulation of advanced therapy medicinal products in Europe and the role of academia.

    Science.gov (United States)

    Pearce, Kim F; Hildebrandt, Martin; Greinix, Hildegard; Scheding, Stefan; Koehl, Ulrike; Worel, Nina; Apperley, Jane; Edinger, Matthius; Hauser, Andrea; Mischak-Weissinger, Eva; Dickinson, Anne M; Lowdell, Mark W

    2014-03-01

    Advanced therapy medicinal products (ATMP) are gene therapy, somatic cell therapy or tissue-engineered products regulated under (EC) No. 1394/2007 to ensure their free movement within the European Union while guaranteeing the highest level of health protection for patients. Academic good manufacturing practice (GMP) centers are major contributors in the development of ATMPs and this study assessed the impact of regulations on them. European academic and non-industrial facilities (n = 747) were contacted, and a representative sample of 50 replied to a detailed questionnaire. Experienced centres were further selected in every Member State (MS) for semi-structured interviews. Indicators of ATMP production and development success were statistically assessed, and opinions about directive implementation were documented. Facilities experienced in manufacturing cell therapy transplant products are the most successful in developing ATMPs. New centres lacking this background struggle to enter the field, and there remains a shortage of facilities in academia participating in translational research. This is compounded by heterogeneous implementation of the regulations across MS. GMP facilities successfully developing ATMPs are present in all MS. However, the implementation of regulations is heterogeneous between MS, with substantial differences in the definition of ATMPs and in the approved manufacturing environment. The cost of GMP compliance is underestimated by research funding bodies. This is detrimental to development of new ATMPs and commercialization of any that are successful in early clinical trials. Academic GMP practitioners should strengthen their political visibility and contribute to the development of functional and effective European Union legislation in this field. Copyright © 2014 International Society for Cellular Therapy. All rights reserved.

  6. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    Science.gov (United States)

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to

  7. Robotic Seals as Therapeutic Tools in an Aged Care Facility: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Melanie Birks

    2016-01-01

    Full Text Available Robots, including robotic seals, have been used as an alternative to therapies such as animal assisted therapy in the promotion of health and social wellbeing of older people in aged care facilities. There is limited research available that evaluates the effectiveness of robot therapies in these settings. The aim of this study was to identify, explore, and describe the impact of the use of Paro robotic seals in an aged care facility in a regional Australian city. A qualitative, descriptive, exploratory design was employed. Data were gathered through interviews with the three recreational therapists employed at the facility who were also asked to maintain logs of their interactions with the Paro and residents. Data were transcribed and thematically analysed. Three major themes were identified from the analyses of these data: “a therapeutic tool that’s not for everybody,” “every interaction is powerful,” and “keeping the momentum.” Findings support the use of Paro as a therapeutic tool, revealing improvement in emotional state, reduction of challenging behaviours, and improvement in social interactions of residents. The potential benefits justify the investment in Paro, with clear evidence that these tools can have a positive impact that warrants further exploration.

  8. Translational research on advanced therapies

    Directory of Open Access Journals (Sweden)

    Filippo Belardelli

    2011-01-01

    Full Text Available Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  9. Translational research on advanced therapies.

    Science.gov (United States)

    Belardelli, Filippo; Rizza, Paola; Moretti, Franca; Carella, Cintia; Galli, Maria Cristina; Migliaccio, Giovanni

    2011-01-01

    Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP) are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP) facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues) is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  10. ART Attrition across Health Facilities Implementing Option B+ in Haiti.

    Science.gov (United States)

    Myrtil, Martine Pamphile; Puttkammer, Nancy; Gloyd, Stephen; Robinson, Julia; Yuhas, Krista; Domercant, Jean Wysler; Honoré, Jean Guy; Francois, Kesner

    2018-01-01

    Describing factors related to high attrition is important in order to improve the implementation of the Option B+ strategy in Haiti. We conducted a retrospective cohort study to describe the variability of antiretroviral therapy (ART) retention across health facilities among pregnant and lactating women and assess for differences in ART retention between Option B+ clients and other ART patients. There were 1989 Option B+ clients who initiated ART in 45 health facilities. The percentage of attrition varied from 9% to 81% across the facilities. The largest health facilities had 38% higher risk of attrition (relative risk [RR]: 1.38, 95% confidence interval [CI]: 1.08-1.77, P = .009). Private institutions had 18% less risk of attrition (RR: 0.82, 95% CI: 0.70-0.96, P = .020). Health facilities located in the West department and the South region had lower risk of attrition. Being on treatment in a large or public health facility or a facility located in the North region was a significant risk factor associated with high attrition among Option B+ clients. The implementation of the Option B+ strategy must be reevaluated in order to effectively eliminate mother-to-child HIV transmission.

  11. Optimizing proton therapy at the LBL medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  12. Hadron therapy takes off in Europe

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A joint meeting of ULICE, ENLIGHT and PARTNER recently took place in Marburg (Germany). The three initiatives are shaping both the present and the future of hadron therapy in Europe, where new cutting-edge facilities have started to fight cancer with beams of protons and carbon ions.   A pictorial representation of a raster scan on a tumour. (Photo courtesy of HIT/GSI/Siemens.) Thanks to a very active multidisciplinary community consisting of physicists, biologists, radiobiologists, engineers, IT specialists and medical doctors, hadron therapy is taking off in Europe. Indeed, after a few decades during which the innovative technique was mainly used experimentally in Japan, the US and a couple of pioneering laboratory-based facilities in Europe, today an increasing number of hospitals are being equipped with synchrotrons and dedicated treatment rooms. “Asia and Europe are at the forefront of research and use of carbon ions in the treatment of some rare and radio-resistant t...

  13. Availability of thrombolytic therapy in rural Newfoundland and Labrador.

    OpenAIRE

    Marshall, S; Godwin, M; Miller, R

    1995-01-01

    OBJECTIVE: To determine the availability of thrombolytic therapy in rural Newfoundland and Labrador. DESIGN: Self-administered questionnaire mailed to staff at health care facilities. Respondents were sent two reminders by mail, and questionnaires not returned were completed through telephone interviews. SETTING: Rural health care facilities, including hospitals, 24-hour clinics and satellite clinics. PARTICIPANTS: All chief medical officers, nursing supervisors and administrators in the 34 g...

  14. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  15. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    International Nuclear Information System (INIS)

    Pozzi, E.; Nigg, D.W.; Miller, M.; Thorp, S.I.; Heber, E.M.; Zarza, L.; Estryk, G.; Monti Hughes, A.; Molinari, A.J.; Garabalino, M.; Itoiz, M.E.; Aromando, R.F.; Quintana, J.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10 9 n cm -2 s -1 and the fast neutron flux was 2.5x10 6 n cm -2 s -1 , indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in 6 Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  16. Present status of quality assurance system for radiation therapy in the national hospital and sanatorium

    International Nuclear Information System (INIS)

    Uno, Takashi; Itami, Jun; Kotaka, Kikuo; Terui, Takashi

    1994-01-01

    In order to improve the precision of radiation therapy and structure of radiation oncology, the state of quality assurance (QA) system for external radiation therapy in Japanese national hospitals and sanatoriums were investigated, by a questionnaire method. The questionnaire included the equipments, the personnel, and a frequency in quality assurance check of each radiation therapy facilities. The results clarified that real photon energy of megavoltage equipment was measured in only 57% of 58% institutions; frequency of the dose monitor calibration was suboptimal; personnel scale was markedly insufficient; some treatment-related apparatus was inappropriately arranged between institutions. Based on these results, it was considered that the precision of radiation therapy and its QA state could not be improved without personnel sufficiency. In the present situation, we should consider the arrangement of treatment facilities in each area and specialization of radiation therapy between institutions. (author)

  17. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  18. [Cost and effectiveness of exercise therapy for patients with essential hypertension].

    Science.gov (United States)

    Harada, A; Kawakubo, K; Lee, J S; Fukuda, T; Kobayashi, Y

    2001-09-01

    While exercise therapy is established as an appropriate treatment for essential hypertension, its economic profile has not been fully evaluated. The purpose of this study is to evaluate cost and effectiveness in comparison with drug therapy. The study subjects were hypertensive patients under treatment at an outpatient clinic. Fifty-seven were selected on a non-randomized manner for exercise therapy and the same number of patients was chosen for drug therapy after matching age, sex, medication and complications. The following data were collected during three months of intervention. 1) Effectiveness: Change of systolic blood pressure before and after the intervention. 2) Cost: equipment, personnel expenses for exercise therapy and fees for health check-ups (exercise therapy); fees for consultation, laboratory examination and medications (drug therapy), 3) Cost-effectiveness: cost per 1 mmHg systolic blood pressure reduction. We evaluated the variance of cost-effectiveness by controlling the number of program participants, personnel expenses, and equipment expenses of exercise therapy. We also simulated how the cost-effectiveness of exercise therapy would improve by modifying the number of exercise participants, personnel and equipment expenses. The cost-effectiveness per 1 mmHg systolic blood pressure reduction was yen 11,268 for exercise therapy and yen 2,441 for drug therapy. Extending program facilities and increasing the number of participants would improve the cost-effectiveness of exercise therapy, but there were limitations to how far this could be achieved in the hospital setting. Differences in cost-effectiveness between exercise and drug therapies are attributed to differences in personnel expenses. Although they could be reduced by managerial effort of the hospital to some extent, outsourcing of exercise therapy to community-based facilities should be considered.

  19. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  20. Proton therapy of cancer: Potential clinical advantages and cost-effectiveness

    International Nuclear Information System (INIS)

    Lundkvist, Jonas; Ekman, Mattias; Rehn Ericsson, Suzanne; Glimelius, Bengt; Akademiska sjukhuset, Uppsala

    2005-01-01

    Proton therapy may offer potential clinical advantages compared with conventional radiation therapy for many cancer patients. Due to the large investment costs for building a proton therapy facility, however, the treatment cost with proton radiation is higher than with conventional radiation. It is therefore important to evaluate whether the medical benefits of proton therapy are large enough to motivate the higher costs. We assessed the cost-effectiveness of proton therapy in the treatment of four different cancers: left-sided breast cancer, prostate cancer, head and neck cancer, and childhood medulloblastoma. A Markov cohort simulation model was created for each cancer type and used to simulate the life of patients treated with radiation. Cost and quality adjusted life years (QALYs) were used as primary outcome measures. The results indicated that proton therapy was cost-effective if appropriate risk groups were chosen. The average cost per QALY gained for the four types of cancer assessed was about Euro 10,130. If the value of a QALY was set to Euro 55,000, the total yearly net benefit of treating 925 cancer patients with the four types of cancer was about Euro 20.8 million. Investment in a proton facility may thus be cost-effective. The results must be interpreted with caution, since there is a lack of data, and consequently large uncertainties in the assumptions used

  1. The History of Art Therapy at the National Institutes of Health

    Science.gov (United States)

    Robb, Megan

    2012-01-01

    The National Institutes of Health (NIH) Clinical Research Center is a government facility that has a long history of groundbreaking research. Art therapy research began at NIH in 1958 with Hanna Kwiatkowska, whose work contributed to the foundation of art therapy with families, and with Harriet Wadeson, who conducted psychodynamic art therapy…

  2. Planning of radiation therapy department: criteria and considerations

    International Nuclear Information System (INIS)

    Aggarwal, Lalit M.; Singh, Subhash; Gupta, B.D.

    2001-01-01

    Incidence of cancer is on increasing side and the facilities available to combat and treat this dreaded disease are inadequate in India. With awareness among the people about health becoming more and more with the advancement and availability of diagnostic facilities, detection of cancer is increasing. Now it has become almost mandatory to have treatment facilities for cancer at every district or at least in every medical college of India along with proper diagnostic facilities in addition to private hospitals. Facilities of surgery, chemotherapy, radiotherapy are the bare minimum requirements for the treatment of cancer. Out of above three, setting up of radiotherapy facility is the costliest and requires proper approval from regulatory authorities of the country for radiation safety. Planning of radiation therapy involves site selection, designing an appropriate layout and selection of proper equipment for planning and treatment. Some of the problems faced in starting from zero level are discussed and highlighted

  3. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Martin, R.C.; Laxson, R.R.; Knauer, J.B.

    1996-01-01

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed 252 Cf neutron source for university and research loans. Within the CF, the 252 Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests

  4. Rapid analysis of hyperbaric oxygen therapy registry data for reimbursement purposes: Technical communication.

    Science.gov (United States)

    Fife, Caroline E; Gelly, Helen; Walker, David; Eckert, Kristen Allison

    2016-01-01

    To explain how Hyperbaric Oxygen Therapy Registry (HBOTR) data of the US Wound Registry (USWR) helped establish a fair analysis of the physician work of hyperbaric chamber supervision for reimbursement purposes. We queried HBOTR data from January 1, 2013, to December 31, 2013, on patient comorbidities and medications as well as the number of hyperbaric oxygen (HBO₂) therapy treatments supervised per physician per day from all hyperbaric facilities participating in the USWR that had been using the electronic medical record (EHR) for more than six months and had passed data completeness checks. Among 11,240 patients at the 87 facilities included, the mean number of comorbidities and medications was 10 and 12, respectively. The mean number of HBO₂ treatments supervised per physician per day was 3.7 at monoplace facilities and 5.4 at multiplace facilities. Following analysis of these data by the RUC, the reimbursement rate of chamber supervision was decreased to $112.06. Patients undergoing HBO₂ therapy generally suffer from multiple, serious comorbidities and require multiple medications, which increase the risk of HBO₂ and necessitate the presence of a properly trained hyperbaric physician. The lack of engagement by hyperbaric physicians in registry reporting may result in lack of adequate data being available to counter future challenges to reimbursement.

  5. The current status of proton therapy in the world, the European Union and Slovakia

    International Nuclear Information System (INIS)

    Ruzicka, J.

    2011-01-01

    Proton therapy is considered to be very promising cancer treatment modality, and therefore many countries of the world are trying to (regardless of the high investment costs) to build their own atomic centre (or other proton centres if they operate already some). Proton therapy allows better control of therapeutic doses of radiation to which the patient is exposed. Proton irradiation of the tumor can kill more cancer cells while minimizing damage of healthy tissue. Currently there is about 33 facilities in operation in the world where proton therapy can be carried out. Proton therapy complex with new, highly sophisticated equipment is also being constructed in Slovakia - in The Central Military Hospital in Ruzomberok. The project is in its final stage of implementation. The paper describes the current status of proton therapy in the world, the European Union (EU) and Slovakia. In conclusion principally new Proton therapy unit complex built in Slovakia with similar facilities currently existing in EU countries (old 15 member states) is compared (especially from technical and medical aspects). (author)

  6. Academic Training Lecture Regular Programme: Particle Therapy

    CERN Multimedia

    2012-01-01

    Particle Therapy using Proton and Ion Beams - From Basic Principles to Daily Operations and Future Concepts by Andreas Peter (Head of Accelerator Operations, Heidelberg Ion Beam Theraps Centre (HIT), Germany) Part I: Tuesday, September 11, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 222-R-001 - Filtration Plant ) • An introduction about the historical developments of accelerators and their use for medical applications: tumour treatment from X-rays to particle therapy • Description of the underlying physics and biology of particle therapy; implications on the requirements for the needed beam parameters (energy, intensity, focus, beam structure) • Accelerator technology used for particle therapy so far: cyclotrons and synchrotrons • Particle therapy facilities worldwide: an overview and some examples in detail: PSI/Switzerland, Loma Linda/USA, HIMAC/Japan, HIT/Heidelberg, CNAO/Italy Part II: Wednesday, September 12, 2012 from 11:00 to 12:00 (Europe/Zurich) at CER...

  7. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  8. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  9. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    Science.gov (United States)

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  10. Distance to Radiation Facility and Treatment Choice in Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Hsieh, Samantha; Michalski, Jeff M. [Department of Radiation Oncology, Washington University School of Medicine-St. Louis, St. Louis, Missouri (United States); Shinohara, Eric T. [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Perkins, Stephanie M., E-mail: sperkins@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine-St. Louis, St. Louis, Missouri (United States)

    2016-03-15

    Purpose: Breast-conserving therapy (BCT) is a recommended alternative to mastectomy (MT) for early-stage breast cancer. Limited access to radiation therapy (RT) may result in higher rates of MT. We assessed the association between distance to the nearest RT facility and the use of MT, in a modern cohort of women. Methods and Materials: Women with stage 0-II breast cancer eligible for BCT diagnosed from 2004 to 2010 were identified from the Florida Cancer Data System (FCDS). Distances from patient census tracts to the nearest RT facility census tract were calculated. Multivariate logistic regression was used to identify explanatory variables that influenced MT use. Results: Of the 27,489 eligible women, 32.1% (n=8841) underwent MT, and 67.8% (n=18,648) underwent BCS. Thirty-two percent of patients lived in a census tract that was >5 miles from an RT facility. MT use increased with increasing distance to RT facility (31.1% at ≤5 miles, 33.8% at >5 to <15 miles, 34.9% at 15 to <40 miles, and 51% at ≥40 miles, P<.001). The likelihood was that MT was independently associated with increasing distance to RT facility on multivariate analysis (P<.001). Compared to patients living <5 miles away from an RT facility, patients living 15 to <40 miles away were 1.2 times more likely to be treated with MT (odds ratio [OR]: 1.19, 95% confidence interval [CI]: 1.05-1.35, P<.01), and those living ≥40 miles away were more than twice as likely to be treated with MT (OR: 2.17, 95% CI: 1.48-3.17, P<.001). However, in patients younger than 50 years (n=5179), MT use was not associated with distance to RT facility (P=.235). Conclusions: MT use in a modern cohort of women is independently associated with distance to RT facility. However, for young patients, distance to RT is not a significant explanatory variable for MT use.

  11. Preliminary safety evaluation for a medical therapy reactor

    International Nuclear Information System (INIS)

    Jones, J.L.; Neuman, W.A.

    1989-01-01

    A conceptual design of a passively safe reactor facility for boron neutron capture therapy has been previously described. The medical therapy reactor (MTR) has a maximum power level of 10 MW(thermal) and utilizes 45 wt% uranium in UZrH, 20 wt% 235 U enriched hydride fuel matrix with 1 wt% erbium, which is a burnable poison and provides prompt negative reactivity feedback. The facility has five beam ports for patient treatment and advanced neutron beam research and is capable of 2,000 to 10,000 treatments per year, assuming single 8h/day, 5 day/week operation. The epithermal treatment flux from the beam ports is large, enabling single-session treatment of brain cancers of <10-min duration, with minimal fast neutron and gamma contaminants. The reactor core is designed with sufficient excess reactivity to yield a core lifetime equal to a facility lifetime of 30 yr. A preliminary safety evaluation was performed using the RELAP5 thermal-hydraulic code. The analysis addressed accidents in several major categories, including a pump coastdown, a loss of secondary heat sink, and a $0.5 step reactivity insertion

  12. Accessing antiretroviral therapy for children: Caregivers' voices

    Directory of Open Access Journals (Sweden)

    Margaret (Maggie Williams

    2016-10-01

    Full Text Available Despite efforts to scale up access to antiretroviral therapy (ART, particularly at primary health care (PHC facilities, antiretroviral therapy (ART continues to be out of reach formany human immunodeficiency virus (HIV-positive children in sub-Saharan Africa. In resource limited settings decentralisation of ART is required to scale up access to essential medication. Traditionally, paediatric HIV care has been provided in tertiary care facilities which have better human and material resources, but limited accessibility in terms of distance for caregivers of HIV-positive children. The focus of this article is on the experiences of caregivers whilst accessing ART for HIV-positive children at PHC (decentralised care facilities in Nelson Mandela Bay (NMB in the Eastern Cape, South Africa. A qualitative, explorative, descriptive and contextual research design was used. The target population comprised caregivers of HIV-positive children. Data were collected by means of indepth individual interviews, which were thematically analysed. Guba's model was usedto ensure trustworthiness. Barriers to accessing ART at PHC clinics for HIV-positive children included personal issues, negative experiences, lack of support and finance, stigma and discrimination. The researchers recommend standardised programmes be developed and implemented in PHC clinics to assist in providing treatment, care and support for HIV positive children.

  13. Accessing antiretroviral therapy for children: Caregivers' voices

    Directory of Open Access Journals (Sweden)

    Margaret (Maggie Williams

    2016-12-01

    Full Text Available Despite efforts to scale up access to antiretroviral therapy (ART, particularly at primary health care (PHC facilities, antiretroviral therapy (ART continues to be out of reach for many human immunodeficiency virus (HIV-positive children in sub-Saharan Africa. In resource limited settings decentralisation of ART is required to scale up access to essential medication. Traditionally, paediatric HIV care has been provided in tertiary care facilities which have better human and material resources, but limited accessibility in terms of distance for caregivers of HIV-positive children. The focus of this article is on the experiences of caregivers whilst accessing ART for HIV-positive children at PHC (decentralised care facilities in Nelson Mandela Bay (NMB in the Eastern Cape, South Africa. A qualitative, explorative, descriptive and contextual research design was used. The target population comprised caregivers of HIV-positive children. Data were collected by means of in-depth individual interviews, which were thematically analysed. Guba's model was used to ensure trustworthiness. Barriers to accessing ART at PHC clinics for HIV-positive children included personal issues, negative experiences, lack of support and finance, stigma and discrimination. The researchers recommend standardised programmes be developed and implemented in PHC clinics to assist in providing treatment, care and support for HIV-positive children.

  14. Cobalt, Linac, or Other: What Is the Best Solution for Radiation Therapy in Developing Countries?

    Energy Technology Data Exchange (ETDEWEB)

    Page, Brandi R., E-mail: bpage@wakehealth.edu [Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina (United States); Hudson, Alana D.; Brown, Derek W. [Tom Baker Cancer Centre, University of Calgary, Calgary (Canada); Shulman, Adam C. [Overlook Medical Center, Summit, New Jersey (United States); Abdel-Wahab, May [Cleveland Clinic and Cleveland Clinic Lerner School of Medicine, Cleveland, Ohio (United States); Fisher, Brandon J. [Gamma West Cancer Services, Layton, Utah (United States); Radiating Hope, Midvale, Utah (www.radiatinghope.org) (United States); Patel, Shilpen [University of Washington, Seattle, Washington (United States)

    2014-07-01

    The international growth of cancer and lack of available treatment is en route to become a global crisis. With >60% of cancer patients needing radiation therapy at some point during their treatment course, the lack of available facilities and treatment programs worldwide is extremely problematic. The number of deaths from treatable cancers is projected to increase to 11.5 million deaths in 2030 because the international population is aging and growing. In this review, we present how best to answer the need for radiation therapy facilities from a technical standpoint. Specifically, we examine whether cobalt teletherapy machines or megavoltage linear accelerator machines are best equipped to handle the multitudes in need of radiation therapy treatment in the developing world.

  15. Standard on microbiological management of fluids for hemodialysis and related therapies by the Japanese Society for Dialysis Therapy 2008.

    Science.gov (United States)

    Kawanishi, Hideki; Akiba, Takashi; Masakane, Ikuto; Tomo, Tadashi; Mineshima, Michio; Kawasaki, Tadayuki; Hirakata, Hideki; Akizawa, Tadao

    2009-04-01

    The Committee of Scientific Academy of the Japanese Society for Dialysis Therapy (JSDT) proposes a new standard on microbiological management of fluids for hemodialysis and related therapies. This standard is within the scope of the International Organization for Standardization (ISO), which is currently under revision. This standard is to be applied to the central dialysis fluid delivery systems (CDDS), which are widely used in Japan. In this standard, microbiological qualities for dialysis water and dialysis fluids are clearly defined by endotoxin level and bacterial count. The qualities of dialysis fluids were classified into three levels: standard, ultrapure, and online prepared substitution fluid. In addition, the therapeutic application of each dialysis fluid is clarified. Since high-performance dialyzers are frequently used in Japan, the standard recommends that ultrapure dialysis fluid be used for all dialysis modalities at all dialysis facilities. It also recommends that the dialysis equipment safety management committee at each facility should validate the microbiological qualities of online prepared substitution fluid.

  16. Racial disparities in travel time to radiotherapy facilities in the Atlanta metropolitan area.

    Science.gov (United States)

    Peipins, Lucy A; Graham, Shannon; Young, Randall; Lewis, Brian; Flanagan, Barry

    2013-07-01

    Low-income women with breast cancer who rely on public transportation may have difficulty in completing recommended radiation therapy due to inadequate access to radiation facilities. Using a geographic information system (GIS) and network analysis we quantified spatial accessibility to radiation treatment facilities in the Atlanta, Georgia metropolitan area. We built a transportation network model that included all bus and rail routes and stops, system transfers and walk and wait times experienced by public transportation system travelers. We also built a private transportation network to model travel times by automobile. We calculated travel times to radiation therapy facilities via public and private transportation from a population-weighted center of each census tract located within the study area. We broadly grouped the tracts by low, medium and high household access to a private vehicle and by race. Facility service areas were created using the network model to map the extent of areal coverage at specified travel times (30, 45 and 60 min) for both public and private modes of transportation. The median public transportation travel time to the nearest radiotherapy facility was 56 min vs. approximately 8 min by private vehicle. We found that majority black census tracts had longer public transportation travel times than white tracts across all categories of vehicle access and that 39% of women in the study area had longer than 1 h of public transportation travel time to the nearest facility. In addition, service area analyses identified locations where the travel time barriers are the greatest. Spatial inaccessibility, especially for women who must use public transportation, is one of the barriers they face in receiving optimal treatment. Published by Elsevier Ltd.

  17. Electroconvulsive Therapy Practice in New Zealand.

    Science.gov (United States)

    Fisher, Mark Wilkinson; Morrison, John; Jones, Paul Anthony

    2017-06-01

    The aim of this study was to describe the contemporary practice of electroconvulsive therapy (ECT) in New Zealand. A 53-item questionnaire was sent to all services providing ECT as of December 2015. Electroconvulsive therapy was provided by 16 services covering 15 district health boards funded by the New Zealand government. No private facilities provided ECT. All services providing ECT responded to an online survey questionnaire. Rates of ECT utilization were low relative to similar countries. Survey results indicated ECT was practiced to an overall good standard. Several resource and logistical issues potentially contributing to low ECT utilization were identified. Electroconvulsive therapy in New Zealand is provided using modern equipment and practices. However, overall rates of utilization remain low, perhaps as a result of controversy surrounding ECT and some resourcing issues.

  18. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    Science.gov (United States)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  19. Food Insecurity, Nutritional Status, and Factors Associated with Malnutrition among People Living with HIV/AIDS Attending Antiretroviral Therapy at Public Health Facilities in West Shewa Zone, Central Ethiopia.

    Science.gov (United States)

    Gebremichael, Delelegn Yilma; Hadush, Kokeb Tesfamariam; Kebede, Ermiyas Mulu; Zegeye, Robel Tezera

    2018-01-01

    In resource limited settings, HIV/AIDS patients lack access to sufficient nutritious foods, which poses challenges to the success of antiretroviral therapy. HIV/AIDS and malnutrition are still major public health problems in Ethiopia. Though measuring nutritional status is an essential part of ART program, little evidence exists on food insecurity and nutritional status of HIV/AIDS patients in Ethiopia. Hence, the study aimed to determine food insecurity and nutritional status and contextual determinants of malnutrition among HIV/AIDS patients in West Shewa Zone, Ethiopia. Institution-based cross-sectional study was conducted among HIV/ADIS patients who have been attending antiretroviral therapy at public health facilities in West Shewa Zone from April to May 2016, Ethiopia. The sample size was 512 and study participants were selected from each facilities using systematic random sampling method. Data were collected using pretested questionnaire by trained data collectors. Data were entered to Epi-Info 3.5.1 for Windows and analyzed using SPSS version 22. Logistic regression analyses were conducted to determine independent factors associated with malnutrition. Prevalence of malnutrition was 23.6% (95% CI: 19.7%-27.4%) and prevalence of household food insecurity was 35.2% (95% CI: 31.1%-39.0%). Factors significantly associated with malnutrition among HIV/AIDS patients were unemployment (AOR = 3.4; 95% CI: 1.8-5.3), WHO clinical stages III/IV (AOR = 3.3; 95% CI: 1.8-6.5), CD4 count less than 350 cells/ μ l (AOR = 2.0; 95% CI: 1.8-4.2), tuberculosis (AOR = 2.3; 95% CI: 1.3-4.9), duration on antiretroviral therapy (AOR = 1.8; 95% CI: 1.2-2.9), and household food insecurity (AOR = 5.3; 95% CI: 2.5-8.3). The findings revealed high prevalence of malnutrition and household food insecurity among HIV/AIDS patients attended ART. The negative interactive effects of undernutrition, inadequate food consumption, and HIV infection demand effective cross-sectorial integrated

  20. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... of the biological dose is out of scope of the current work. Materials and methods The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose...... fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2...

  1. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  2. Optimizing proton therapy at the LBL medical accelerator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  3. Strategic level proton therapy patient admission planning: a Markov decision process modeling approach.

    Science.gov (United States)

    Gedik, Ridvan; Zhang, Shengfan; Rainwater, Chase

    2017-06-01

    A relatively new consideration in proton therapy planning is the requirement that the mix of patients treated from different categories satisfy desired mix percentages. Deviations from these percentages and their impacts on operational capabilities are of particular interest to healthcare planners. In this study, we investigate intelligent ways of admitting patients to a proton therapy facility that maximize the total expected number of treatment sessions (fractions) delivered to patients in a planning period with stochastic patient arrivals and penalize the deviation from the patient mix restrictions. We propose a Markov Decision Process (MDP) model that provides very useful insights in determining the best patient admission policies in the case of an unexpected opening in the facility (i.e., no-shows, appointment cancellations, etc.). In order to overcome the curse of dimensionality for larger and more realistic instances, we propose an aggregate MDP model that is able to approximate optimal patient admission policies using the worded weight aggregation technique. Our models are applicable to healthcare treatment facilities throughout the United States, but are motivated by collaboration with the University of Florida Proton Therapy Institute (UFPTI).

  4. SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility

    International Nuclear Information System (INIS)

    Cheng, C; Wessels, B; Hamilton, H; Difranco, T; Mansur, D

    2014-01-01

    Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of a number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT

  5. Using music therapy to help a client with Alzheimer's disease adapt to long-term care.

    Science.gov (United States)

    Kydd, P

    2001-01-01

    The purpose of this case study is to illustrate how music therapy can be used to help the elderly successfully adjust to living in a long-term care (LTC) facility. LTC residents, particularly those with Alzheimer's disease or related dementia, may exhibit behaviors such as depression, withdrawal, anxiety, emotional liability, confusion, and memory difficulties, frequently related to the disorder, but often exacerbated by difficulty in adjustment to the change in lifestyle. The subject of this case study demonstrated these symptoms. Music therapy helped him adjust to life in a LTC setting by improving his quality of life and enhancing his relationships with those around him. As chronicled in this study, music therapy may facilitate a resident's adjustment to life in a LTC facility. N.B. Names and identifying information have been changed to protect privacy.

  6. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  7. Utilizing horizontal reactors channels for neutron therapy

    International Nuclear Information System (INIS)

    Stankovsky, E.Yu.; Kurachenko, Yu.A.

    2000-01-01

    Two experimental heterogeneous reactors have been considered. The reactors may be applied in neutron capture therapy and in a conventional manner. The channel out of the core serves as the neutron source. At each of these facilities, both fast and epithermal neutron fluxes for BNCT research, human clinical trials, and characterized common computational techniques have been evaluated. (authors)

  8. Prevalence of myofascial chronic pelvic pain and the effectiveness of pelvic floor physical therapy.

    Science.gov (United States)

    Bedaiwy, Mohamed A; Patterson, Betsy; Mahajan, Sangeeta

    2013-01-01

    To determine the prevalence of myofascial pain and the outcome of transvaginal pelvic floor physical therapy for the treatment of chronic pelvic pain caused by myofascial pelvic pain in a tertiary care facility. A retrospective chart review was performed on all women who presented to our facility between January 2005 and December 2007. Those diagnosed with myofascial pelvic pain and referred for transvaginal pelvic floor physical therapy over this 3-year period were evaluated. Participants with an initial pain score of > or = 4, myofascial pelvic pain on examination, and who attended 2 or more physician visits were included in the analysis. Patient physical examination findings, symptoms, and verbal pain ratings were reviewed. In all, 146 (13.2%) of 1,106 initially screened patients were diagnosed with myofascial pain. Seventy-five (51%) of the 146 patients who were referred for physical therapy were included, and 75% had an initial pain score of > or = 7. Pain scores significantly improved proportional to the number of physical therapy visits completed, with 63% of patients reporting significant pain improvement. Transvaginal physical therapy is an effective treatment for chronic pelvic pain resulting from myofascial pelvic pain.

  9. Review of occupational exposure patterns in Indian Health Care Facilities

    International Nuclear Information System (INIS)

    Senthilkumar, M.; Nehru, R.M.; Sonawane, A.U.

    2016-01-01

    Monitoring of individual radiation is a prime part of the radiation protection programme. The primary justification for monitoring helps achieve and demonstrate an appropriate level of protection and can demonstrate compliance with regulatory requirements, contribute to the control of operations and design of installations. Atomic Energy (Radiation Protection) Rules 2004 advocates that radiation surveillance is mandatory for all radiation workers. The largest group of individuals exposed occupationally to artificial radiation sources is that employed in health care facilities such as Diagnostic Radiology, Radiation Therapy and Nuclear Medicine. In this work, a comprehensive analysis was carried out on occupational exposure data for the period 2000 to 2014 to bring a measure of radiation protection infrastructure quality in health care facilities

  10. Design and development of semi-automatic radiation test and calibration facility

    International Nuclear Information System (INIS)

    Yadav, Ashok Kumar; Chouhan, V.K.; Narayan, Pradeep

    2008-01-01

    Semi-automatic gamma radiation test and calibration facility have been designed, developed and commissioned at Defence Laboratory Jodhpur (DLJ). The facility comprises of medium and high dose rate range setup using 30 Ci Cobalt-60 source, in a portable remotely operated Techops camera and a 15000 Ci 60 Co source in a Tele-therapy machine. The radiation instruments can be positioned at any desired position using a computer controlled positioner having three translational and one rotational motion. User friendly software helps in positioning the Device Under Test (DUT) at any desired dose rate or distance and acquire the data automatically. The servo and stepper motor controlled positioner helps in achieving the required precision and accuracy for the radiation calibration of the instruments. This paper describes the semi-automatic radiation test and calibration facility commissioned at DLJ. (author)

  11. [Holistic therapy of chronic heart failure].

    Science.gov (United States)

    Feldmann, C; Ertl, G; Angermann, C E

    2014-06-01

    The rising prevalence and increasing disease-related costs render chronic heart failure a rapidly growing socioeconomic challenge. The concerted action of guideline-adjusted therapy and holistic patient care is essential to achieve improvements in mortality, morbidity, functional status and quality of life of patients with symptomatic heart failure. Holistic care strategies comprise consideration of comorbidities and individual needs, lifestyle recommendations and multidisciplinary management programs for high-risk symptomatic patients in addition to basic medication and surgical therapies. For optimal patient care and coaching, seamless interaction is required between in-hospital treatment and outpatient facilities. Moreover, the palliative needs of heart failure patients need to be considered, a topic that is currently not receiving enough attention.

  12. Use of health services by residents at a seniors-only living facility

    Directory of Open Access Journals (Sweden)

    Elen Ferraz Teston

    2013-10-01

    Full Text Available The objective of the study was to compare the use of medical and dental services by seniors residing at a seniors-only living facility and in the general community. It was a quantitative study, among 50 residents of the living facility and 173 in the general community. The data were collected between November 2011 and February 2012 through a questionnaire, and subjected to statistical analysis. Performance of clinical exams and satisfaction with health services was greater among seniors living in the general community; however, physical therapy treatment was more common among those living in the facility. The use of medical and dental services showed a statistically significant difference. The seniors in both groups need oral health monitoring and those living in the facility also require coverage by the Family Health Strategy. The presence of professionals with the right profile to adequately serve residents and the network of available services are determining factors for the success of this new housing policy.

  13. HIV screening among TB patients and co-trimoxazole preventive therapy for TB/HIV patients in Addis Ababa: facility based descriptive study.

    Science.gov (United States)

    Denegetu, Amenu Wesen; Dolamo, Bethabile Lovely

    2014-01-01

    Collaborative TB/HIV management is essential to ensure that HIV positive TB patients are identified and treated appropriately, and to prevent tuberculosis (TB) in HIV positive patients. The purpose of this study was to assess HIV case finding among TB patients and Co-trimoxazole Preventive Therapy (CPT) for HIV/TB patients in Addis Ababa. A descriptive cross-sectional, facility-based survey was conducted between June and July 2011. Data was collected by interviewing 834 TB patients from ten health facilities in Addis Ababa. Both descriptive and inferential statistics were used to summarize and analyze findings. The proportion of TB patients who (self reported) were offered for HIV test, tested for HIV and tested HIV positive during their anti-TB treatment follow-up were; 87.4%, 69.4% and 20.2%; respectively. Eighty seven HIV positive patients were identified, who knew their status before diagnosed for the current TB disease, bringing the cumulative prevalence of HIV among TB patients to 24.5%. Hence, the proportion of TB patients who knew their HIV status becomes 79.9%. The study revealed that 43.6% of those newly identified HIV positives during anti-TB treatment follow-up were actually treated with CPT. However, the commutative proportion of HIV positive TB patients who were ever treated with CPT was 54.4%; both those treated before the current TB disease and during anti-TB treatment follow-up. HIV case finding among TB patients and provision of CPT for TB/HIV co-infected patients needs boosting. Hence, routine offering of HIV test and provision of CPT for PLHIV should be strengthened in-line with the national guidelines.

  14. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Vanderstraeten, Barbara, E-mail: barbara.vanderstraeten@uzgent.be [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium); Verstraete, Jan [Department of Radiation Oncology, University Hospital Gasthuisberg, Leuven (Belgium); De Croock, Roger [Belgian Hadron Therapy Center Foundation, Brussels (Belgium); De Neve, Wilfried; Lievens, Yolande [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium)

    2014-05-01

    Purpose: To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. Methods and Materials: The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Results: Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Conclusions: Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context.

  15. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility

    International Nuclear Information System (INIS)

    Vanderstraeten, Barbara; Verstraete, Jan; De Croock, Roger; De Neve, Wilfried; Lievens, Yolande

    2014-01-01

    Purpose: To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. Methods and Materials: The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Results: Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Conclusions: Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context

  16. Patients' perceptions of a rural decentralised anti-retroviral therapy ...

    African Journals Online (AJOL)

    Background: Geographical and financial barriers hamper accessibility to HIV services for rural communities. The government has introduced the nurse initiated management of anti-retroviral therapy at primary health care level, in an effort to improve patient access and reduce patient loads on facilities further up the system.

  17. Attention Therapy Improves Reading Comprehension in Adjudicated Teens in a Residential Facility

    Science.gov (United States)

    Shelley-Tremblay, John; Langhinrichsen-Rohling, Jennifer; Eyer, Joshua

    2012-01-01

    This study quantified the influence of visual Attention Therapy (AT) on reading skills and Coherent Motion Threshold (CMT) in adjudicated teens with moderate reading disabilities (RD) residing in a residential alternative sentencing program. Forty-two students with below-average reading scores were identified using standardized reading…

  18. Food Insecurity, Nutritional Status, and Factors Associated with Malnutrition among People Living with HIV/AIDS Attending Antiretroviral Therapy at Public Health Facilities in West Shewa Zone, Central Ethiopia

    Directory of Open Access Journals (Sweden)

    Delelegn Yilma Gebremichael

    2018-01-01

    Full Text Available Background. In resource limited settings, HIV/AIDS patients lack access to sufficient nutritious foods, which poses challenges to the success of antiretroviral therapy. HIV/AIDS and malnutrition are still major public health problems in Ethiopia. Though measuring nutritional status is an essential part of ART program, little evidence exists on food insecurity and nutritional status of HIV/AIDS patients in Ethiopia. Hence, the study aimed to determine food insecurity and nutritional status and contextual determinants of malnutrition among HIV/AIDS patients in West Shewa Zone, Ethiopia. Methods. Institution-based cross-sectional study was conducted among HIV/ADIS patients who have been attending antiretroviral therapy at public health facilities in West Shewa Zone from April to May 2016, Ethiopia. The sample size was 512 and study participants were selected from each facilities using systematic random sampling method. Data were collected using pretested questionnaire by trained data collectors. Data were entered to Epi-Info 3.5.1 for Windows and analyzed using SPSS version 22. Logistic regression analyses were conducted to determine independent factors associated with malnutrition. Results. Prevalence of malnutrition was 23.6% (95% CI: 19.7%–27.4% and prevalence of household food insecurity was 35.2% (95% CI: 31.1%–39.0%. Factors significantly associated with malnutrition among HIV/AIDS patients were unemployment (AOR = 3.4; 95% CI: 1.8–5.3, WHO clinical stages III/IV (AOR = 3.3; 95% CI: 1.8–6.5, CD4 count less than 350 cells/μl (AOR = 2.0; 95% CI: 1.8–4.2, tuberculosis (AOR = 2.3; 95% CI: 1.3–4.9, duration on antiretroviral therapy (AOR = 1.8; 95% CI: 1.2–2.9, and household food insecurity (AOR = 5.3; 95% CI: 2.5–8.3. Conclusions. The findings revealed high prevalence of malnutrition and household food insecurity among HIV/AIDS patients attended ART. The negative interactive effects of undernutrition, inadequate food

  19. A critical appraisal of the clinical utility of proton therapy in oncology

    Science.gov (United States)

    Wang, Dongxu

    2015-01-01

    Proton therapy is an emerging technology for providing radiation therapy to cancer patients. The depth dose distribution of a proton beam makes it a preferable radiation modality as it reduces radiation to the healthy tissue outside the tumor, compared with conventional photon therapy. While theoretically beneficial, its clinical values are still being demonstrated from the increasing number of patients treated with proton therapy, from several dozen proton therapy centers around the world. High equipment and facility costs are often the major obstacle for its wider adoption. Because of the high cost and lack of definite clinical evidence of its superiority, proton therapy treatment faces criticism on its cost-effectiveness. Technological development is causing a gradual lowering of costs, and research and clinical studies are providing further evidence on its clinical utility. PMID:26604838

  20. Robot-assisted therapy for improving social interactions and activity participation among institutionalized older adults: a pilot study.

    Science.gov (United States)

    Sung, Huei-Chuan; Chang, Shu-Min; Chin, Mau-Yu; Lee, Wen-Li

    2015-03-01

    Animal-assisted therapy is gaining popularity as part of therapeutic activities for older adults in many long-term care facilities. However, concerns about dog bites, allergic responses to pets, disease, and insufficient available resources to care for a real pet have led to many residential care facilities to ban this therapy. There are situations where a substitute artificial companion, such as robotic pet, may serve as a better alternative. This pilot study used a one-group pre- and posttest design to evaluate the effect of a robot-assisted therapy for older adults. Sixteen eligible participants participated in the study and received a group robot-assisted therapy using a seal-like robot pet for 30 minutes twice a week for 4 weeks. All participants received assessments of their communication and interaction skills using the Assessment of Communication and Interaction Skills (ACIS-C) and activity participation using the Activity Participation Scale at baseline and at week 4. A total of 12 participants completed the study. Wilcoxon signed rank test showed that participants' communication and interaction skills (z = -2.94, P = 0.003) and activity participation (z = -2.66, P = 0.008) were significantly improved after receiving 4-week robot-assisted therapy. By interacting with a robot pet, such as Paro, the communication, interaction skills, and activity participation of the older adults can be improved. The robot-assisted therapy can be provided as a routine activity program and has the potential to improve social health of older adults in residential care facilities. Copyright © 2014 Wiley Publishing Asia Pty Ltd.

  1. End-user centeredness in antiretroviral therapy services in Nigerian ...

    African Journals Online (AJOL)

    Objective: To describe the perception of end users with regard to end-user centeredness in antiretroviral therapy (ART) service provision in Nigerian public health facilities. Design: A qualitative design was followed. Subjects and setting: Unstructured focus group discussions were conducted with end users (n = 64) in six ...

  2. Implementation of methadone therapy for opioid use disorder in Russia - a modeled cost-effectiveness analysis.

    Science.gov (United States)

    Idrisov, Bulat; Murphy, Sean M; Morrill, Tyler; Saadoun, Mayada; Lunze, Karsten; Shepard, Donald

    2017-01-20

    Opioid agonist therapy using methadone, an effective treatment of opioid use disorders (OUD) for people who inject drugs (PWID), is recommended by the World Health Organization as essential to curtail the growing HIV epidemic. Yet, despite increasing prevalence of OUD and HIV, methadone therapy has not yet been implemented in Russia. The aim of this modeling study was to estimate the cost-effectiveness of methadone therapy for Russian adults with a diagnosed OUD. We modeled the projected program implementation costs and estimated disability-adjusted life years (DALYs) averted over a 10-year period, associated with the provision of methadone therapy for a hypothetical, unreplenished cohort of Russian adults with an OUD (n = 249,000), in comparison to the current therapies at existing addiction treatment facilities. Our model compared four distinct scenarios of treatment coverage in the cohort ranging from 3.1 to 55%. Providing methadone therapy to as few as 3.1% of adults with an OUD amounted to an estimated almost 50,000 DALYs averted over 10 years at a cost of just over USD 17 million. Further expanding service coverage to 55% resulted in an estimated almost 900,000 DALYs averted, at a cost of about USD 308 million. Our study indicated that implementing opioid agonist therapy with methadone to treat OUD at existing facilities in Russia is highly cost-effective.

  3. Review of clinical results of fast neutron therapy in the USA

    International Nuclear Information System (INIS)

    Peters, L.J.; Maor, M.H.; Laramore, G.E.; Griffin, T.W.; Hendrickson, F.R.

    1986-01-01

    Fast neutron radiotherapy in the United States is entering a new era in which dedicated hospital-based generators with isocentric beam capability are replacing treatment facilities based on fixed beams extracted from physics accelerators. All available clinical data, however, come from the older facilities. The majority of randomized trials conducted in the U.S. have used neutrons in a mixed schedule with photons, in which the aim was to deliver two-fifths of the total dose with neutrons; the neutron dose per fraction was set as the estimated equivalent of 2 Gy photons in terms of late normal tissue injury. Overall treatment time was held constant compared with the control photon therapy regimens (usually 6-8 weeks). Random studies of this type showed no evidence of a therapeutic gain in the treatment of advanced primary carcinomas of the head and neck, lung, uterine cervix, or pancreas. Based on a reassessment of all the available clinical and radiobiological data, and taking advantage of the greater technical flexibility offered by hospital-based facilities, the strategy of fast neutron therapy for future trials has been changed. In these trials neutrons are being used in a 12 fraction, 4 week regimen to treat gross disease, with elective therapy given wherever possible using low LET irradiation. Concomitantly, research is proceeding to define predictors of tumor response to high LET radiations in order to better select patients for fast neutron radiotherapy

  4. The BNCT facility at the HFR Petten: Quality assurance for reactor facilities in clinical trials

    International Nuclear Information System (INIS)

    Moss, R.; Watkins, P.; Vroegindeweij, C.; Stecher-Rasmussen, F.; Huiskamp, R.; Ravensberg, K.; Appelman, K.; Sauerwein, W.; Hideghety, K.; Gabel, D.

    2001-01-01

    The first clinical trial in Europe of Boron Neutron Capture Therapy (BNCT) for the treatment of glioblastoma was opened in July 1997. The trial is a Phase I study with the principal aim to establish the maximum tolerated radiation dose and the dose limiting toxicity under defined conditions. It is the first time that a clinical application could be realised on a completely multi-national scale. The treatment takes place at the High Flux Reactor (HFR) in Petten, the Netherlands, is operated by an international team of experts under the leadership of a German radiotherapist, and treats patients coming from different European countries. It has therefore been necessary to create a very specialised organisation and contractual structure with the support of administrations from different countries, who had to find and adapt solutions within existing laws that had never foreseen such a situation. Furthermore, the treatment does not take place in an hospital environment and even more so, the facility is at a nuclear research reactor. Hence, special efforts were made on quality assurance, in order that the set-up at the facility and the personnel involved complied, as closely as possible, with similar practices in conventional radiotherapy departments. (author)

  5. The Practice of Electroconvulsive Therapy in US Correctional Facilities: A Nationwide Survey.

    Science.gov (United States)

    Surya, Sandarsh; McCall, W Vaughn; Iltis, Ana S; Rosenquist, Peter B; Hogan, Elizabeth

    2015-09-01

    There are little data regarding the practice of electroconvulsive therapy (ECT) in correctional settings in the United States. A survey was conducted to study the current practice of ECT in US prisons. We hypothesize that ECT is underutilized in the correctional setting. We also review the ethical aspects of using ECT for the treatment of mental illness in the prison population. A 12-question survey via a Survey Monkey link was emailed to chiefs of psychiatry, or the equivalent, of each state's department of corrections. We examined the frequency of Likert-type responses, tabulated individual comments for qualitative review, and grouped for comparison. Email contacts for chiefs of psychiatry, or the equivalent, for the department of corrections in 45 states (90%) were obtained and a survey link was sent. Thirty-one (68.9%) of 45 responded to the survey. Respondent estimates of the number of inmates with mental illness in 31 prison systems varied from less than 500 to more than 4500. Of these 31, 12 (38.7%) had more than 4500 inmates with mental illness. Four systems reported the use of ECT within the last 5 years. Of those, one reported use in the last 1 to 6 months, and 3 reported use in the last 2 to 5 years. Of these 4 prison systems, all felt that they had up to 10 patients who would benefit if ECT continued to be offered or became available in the future. None of these systems provided ECT within the prison. The inmates were referred to a local state psychiatric facility, a university hospital, or other institutions. The reasons for not using ECT as reported by the respondents are grouped under subheadings of stigma, ethical concerns, logistical concerns, and others. Considering the high prevalence of mental illness in prisons, one might expect a high prevalence of ECT responsive mental illness and, hence, provision of ECT to some prisoners with mental illness. However, our survey suggests that the use of ECT in prisons in the United States is low. Stigma

  6. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.

    Directory of Open Access Journals (Sweden)

    Chaeyeong Lee

    Full Text Available Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1 was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators.

  7. Informal interprofessional education on placement: the views and experiences of postgraduate (preregistration) occupational therapy students

    OpenAIRE

    Quinn, P.; Morris, Karen

    2017-01-01

    The purpose of this research was to integrate and extend knowledge of two contemporary areas of occupational therapy practice, those of role emerging practice and ‘green care’ horticultural activities (Fieldhouse & Sempik, 2014). The context was a new role emerging placement, in a horticultural community with no previous occupational therapy input. The study evaluated the effects of occupational therapy on one individual’s recovery and the wider contribution to the mental health facility. A q...

  8. Proton and heavy ion beam (charged particle therapy)

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    2003-01-01

    There are distinguished therapeutic irradiation facilities of proton and heavy ion beam in Japan. The beam, due to its physical properties, is advantageous for focusing on the lesion in the body and for reducing the exposure dose to normal tissues, relative to X-ray. This makes it possible to irradiate the target lesion with the higher dose. The present review describes physical properties of the beam, equipments for the therapeutic irradiation, the respiratory-gated irradiation system, the layer-stacking irradiation system, therapy planning, and future prospect of the therapy. More than 1,400 patients have received the therapy in National Institute of Radiological Sciences (NIRS) and given a good clinical outcome. The targets are cancers of the head and neck, lung, liver, uterine and prostate, and osteosarcoma. The therapy of osteosarcoma is particularly important, which bringing about the high cure rate. Severe adverse effects are not seen with exception for the digestive tract ulcer. Many attempts like the respiratory-gated and layer-stacking systems and to shorten the therapy period to within 1 week are in progress. (N.I.)

  9. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  10. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  11. Asymptomatic Bacteriuria in Pregnant Women in Outpatient Facilities

    Directory of Open Access Journals (Sweden)

    Maral G. Nogayeva

    2015-02-01

    Full Text Available Urinary tract morbidity has increased by 7% in Kazakhstan between 2007 to 2011. Pregnant women with extragenital pathologies or kidney diseases had the greatest prevalence of morbidity. Asymptomatic bacteriuria (AB is one of the most important risk factors of pyelonephritis development in pregnant women, and it can affect the course and outcome of pregnancy, delivery, and postnatal period. AB prevention requires prevention of pregnancy complications including early diagnostic of urinary tract infections, timely optimization of therapy at outpatient facilities, and dynamic follow-up.

  12. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  13. “Putting the Occupation Back in Occupational Therapy:” A Survey of Occupational Therapy Practitioners’ Use of Gardening as an Intervention

    Directory of Open Access Journals (Sweden)

    Amy Wagenfeld

    2014-10-01

    Full Text Available Background. This study examines how and why occupational therapy practitioners across practice areas use gardening as an intervention. Respondents’ interpretation of the best and least desirable aspects of their facility’s garden and whether they contributed to its design was also examined. Method. A description and link to a 15-question online survey about gardening as an occupational therapy intervention was emailed to Western Michigan University Occupational Therapy alumni and posted on four OT Connections groups and the AOTA LinkedIn site. Results. Gardening as an occupational therapy intervention is meaningful and purposeful (93.66%, n = 56, motivating (80%, n = 48, fun 61.67% (n = 37, and client-centered (31.67%, n =19. Frequency of gardening as a therapeutic intervention and practitioner involvement in designing the garden was significant (p = .007, suggesting that for respondents, environmental context supports engagement and heightens the meaningfulness and purposefulness of gardening. Conclusion. Based on results of this study, a suggested next step is evidence-based translational and intervention research to validate the efficacy of gardening as an occupational therapy intervention and occupational therapy practitioners’ professional value as implementers of such intervention. Assessing the effectiveness of the role of occupational therapy practitioners in facility garden design is also important to consider.

  14. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    International Nuclear Information System (INIS)

    Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M.G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility

  15. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  16. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Cuttone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Di Rosa, F. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Raffaele, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Russo, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Guatelli, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genova (Italy); Pia, M.G. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genova (Italy)

    2006-01-15

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  17. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy.

    Science.gov (United States)

    He, Haozhe; Zheng, Xiaohua; Liu, Shi; Zheng, Min; Xie, Zhigang; Wang, Yong; Yu, Meng; Shuai, Xintao

    2018-06-01

    The development of a simple and straightforward strategy to synthesize multifunctional carbon dots for photodynamic therapy (PDT) has been an emerging focus. In this work, diketopyrrolopyrrole-based fluorescent carbon dots (DPP CDs) were designed and synthesized through a facile one-pot hydrothermal method by using diketopyrrolopyrrole (DPP) and chitosan (CTS) as raw materials. DPP CDs not only maintained the ability of DPP to generate singlet oxygen (1O2) but also have excellent hydrophilic properties and outstanding biocompatibility. In vitro and in vivo experiments demonstrated that DPP CDs greatly inhibited the growth of tumor cells under laser irradiation (540 nm). This study highlights the potential of the rational design of CDs for efficient cancer therapy.

  18. FERMILAB: operation resumes in meson area; fast neutron therapy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Improvements and modifications in the Meson Area at Fermilab are described. The target train was rebuilt and energy range of some beams raised to 400 GeV with provisions for Tevatron beams of 1000 GeV in the future. The work of the fast neutron therapy facility is summarised. (W.D.L.).

  19. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  20. Control system specification for a cyclotron and neutron therapy facility

    International Nuclear Information System (INIS)

    Jacky, J.; Risler, R.; Kalet, I.; Wootton, P.; Barke, A.; Brossard, S.; Jackson, R.

    1991-01-01

    It is usually considered an essential element of good practice in engineering to produce a specification for a system before building it. However, it has been found to be quite difficult to produce useful specifications of large software systems. The authors have nearly completed a comprehensive specification for the computer control system of a cyclotron and treatment facility that provides particle beams for cancer treatments with fast neutrons, production of medical isotopes, and physics experiments. They describe the control system as thoroughly as is practical using standard technical English, supplemented by tables, diagrams, and some algebraic equations. This specification comprises over 300 single-spaced pages. A more precise and compact specification might be achieved by making greater use of formal mathematical notations instead of English. They have begun work on a formal specification of the system, using the Z and Petri net notations

  1. Radiopharmaceutical therapy in Dominican Republic. Present and future

    International Nuclear Information System (INIS)

    Johny Osvaldo de los Santos

    2005-01-01

    Full text: In this paper we present experience in Dominican Republic on Radiopharmaceutical Therapy. In our country, there are 8 Center with Nuclear Medicine Department. Only, 7 centers are working with Radiopharmaceutical Therapy. Radioiodine treatment with I-131 in Thyroid diseases(Thyroid Cancer and Hyperthyroidism). This is only Nuclear Medicine therapy available in Dominican Republic. The objectives of this paper are to analyze and assess the difficulties and facilities for the development of Radiopharmaceutical Therapy in Dominican Republic. We made surveys with the help of Nuclear Medicine Physicians of different Nuclear Medicine departments. 8 Nuclear Physicians accepted the interview. Two of these Nuclear Medicine Centers are Department of a Cancer Center and they have many patients for therapies. In the majority opinion of Physicians, Cost of Radiopharmaceuticals is principal problem to use Therapy in Dominican Republic. In addition the following problems were identified: Lack of awareness about new therapy in Nuclear Medicine among Physicians of other specialties, lack of adequate training in the current trends of radionuclide therapy and finally lack of basic infrastructure, equipment and finances to buy radiopharmaceuticals and introduce radionuclide therapy. For this reason, Nuclear Medicine Centers prefer to work with only I-131 Therapy and they do not have new programs to start other therapies. In the near future, our department of Nuclear Medicine will work with I-131, pain palliation, treatment of metastatic disease and Treatment of benign diseases. We have interest in offering other therapies in the department and we hope that other departments with more resources, have the same interest, to enhance practice of radionuclide therapy in our country. (author)

  2. Quality assurance in proton therapy: a systematic approach in progress at Orsay

    International Nuclear Information System (INIS)

    Mazal, A.; Habrand, J.L.; Laforture, F.; Breteau, N.; Mazal, A.; Habrand, J.L.; Breteau, N.

    1996-01-01

    The degree of accuracy and reliability required in proton therapy can only be guaranteed of a comprehensive quality assurance (QA) programme is established. Such a programme obviously has common features with general QA in radiotherapy, but some aspects are specific to the use of protons and particularly to the characteristics of each facility. A study is in progress at Orsay to convert a series of quality controls into a systematic quality assurance programme. It includes some basic steps on organisation, setting up a QA committee and QA task groups, organizing meetings, policies, procedures, records qualifications, and determining some examples of tolerance in controls. Among some critical and specific points identified in this process are the combined treatment with photons at different institutions, the specificity of a non-hospital and complex facility, the high degree of precision required for the patient setup, and the need to develop in-house basic tools such as the treatment planning system. The inclusion of all the patients in prospective well-defined clinical trials, the comparison with alternative techniques and the radiobiological studies are considered as fundamentals for the QA programme. Present dosimetric and radiobiological intercomparisons between proton-therapy centres are considered as partial audits. A study is in progress to establish common dosimetric and clinical protocols, radiological models and dose and volume specifications. In spite of the differences between the existing facilities, it should be possible to obtain international consensus on general guidelines for a QA programme in proton therapy. (author)

  3. Retention in care under universal antiretroviral therapy for HIV-infected pregnant and breastfeeding women ('Option B+') in Malawi.

    Science.gov (United States)

    Tenthani, Lyson; Haas, Andreas D; Tweya, Hannock; Jahn, Andreas; van Oosterhout, Joep J; Chimbwandira, Frank; Chirwa, Zengani; Ng'ambi, Wingston; Bakali, Alan; Phiri, Sam; Myer, Landon; Valeri, Fabio; Zwahlen, Marcel; Wandeler, Gilles; Keiser, Olivia

    2014-02-20

    To explore the levels and determinants of loss to follow-up (LTF) under universal lifelong antiretroviral therapy (ART) for pregnant and breastfeeding women ('Option B+') in Malawi. We examined retention in care, from the date of ART initiation up to 6 months, for women in the Option B+ program. We analysed nationwide facility-level data on women who started ART at 540 facilities (n = 21,939), as well as individual-level data on patients who started ART at 19 large facilities (n = 11,534). Of the women who started ART under Option B+ (n = 21,939), 17% appeared to be lost to follow-up 6 months after ART initiation. Most losses occurred in the first 3 months of therapy. Option B+ patients who started therapy during pregnancy were five times more likely than women who started ART in WHO stage 3/4 or with a CD4 cell count 350 cells/μl or less, to never return after their initial clinic visit [odds ratio (OR) 5.0, 95% confidence interval (CI) 4.2-6.1]. Option B+ patients who started therapy while breastfeeding were twice as likely to miss their first follow-up visit (OR 2.2, 95% CI 1.8-2.8). LTF was highest in pregnant Option B+ patients who began ART at large clinics on the day they were diagnosed with HIV. LTF varied considerably between facilities, ranging from 0 to 58%. Decreasing LTF will improve the effectiveness of the Option B+ approach. Tailored interventions, like community or family-based models of care could improve its effectiveness.

  4. Moving out. Technology transfer from hospitals to outpatient facilities.

    Science.gov (United States)

    Freedman, G

    1991-02-01

    The Temple Radiology Group opened on July 1, 1977 in the Temple Medical Center. The initial 10-room, full-service department has grown with new technology into approximately 25 rooms. The original four-room Temple surgery center has grown to 10 rooms. Additional support facilities that have evolved include: 1) a computer company; 2) physical therapy for orthopedic, neurological and cardiac patients; 3) a brain trauma center; 4) a collection agency; and most recently, 5) a 100-bed medical hotel.

  5. No Racial Difference in Rehabilitation Therapy Across All Post-Acute Care Settings in the Year Following a Stroke.

    Science.gov (United States)

    Skolarus, Lesli E; Feng, Chunyang; Burke, James F

    2017-12-01

    Black stroke survivors experience greater poststroke disability than whites. Differences in post-acute rehabilitation may contribute to this disparity. Therefore, we estimated racial differences in rehabilitation therapy utilization, intensity, and the number of post-acute care settings in the first year after a stroke. We used national Medicare data to study 186 168 elderly black and white patients hospitalized with a primary diagnosis of stroke in 2011. We tabulated the proportion of stroke survivors receiving physical, occupational, and speech and language therapy in each post-acute care setting (inpatient rehabilitation facility, skilled nursing facility, and home health agency), minutes of therapy, and number of transitions between settings. We then used generalized linear models to determine whether racial differences in minutes of physical therapy were influenced by demographics, comorbidities, thrombolysis, and markers of stroke severity. Black stroke patients were more likely to receive each type of therapy than white stroke patients. Compared with white stroke patients, black stroke patients received more minutes of physical therapy (897.8 versus 743.4; P rehabilitation therapy utilization or intensity after accounting for patient characteristics. It is unlikely that differences in rehabilitation utilization or intensity are important contributors to racial disparities in poststroke disability. © 2017 American Heart Association, Inc.

  6. Factors influencing the use of outcome measures in physical therapy practice.

    Science.gov (United States)

    Wedge, Frances M; Braswell-Christy, Jennifer; Brown, Cynthia J; Foley, Kathleen T; Graham, Cecilia; Shaw, Sharon

    2012-02-01

    Use of outcome measures in physical therapy practice is central to evaluating the effectiveness of treatment interventions, providing accountability and addressing quality of physical therapy programs. There is limited discussion on barriers and facilitators to using outcome measures in physical therapy practice. The purpose of this study was to identify factors that influence a physical therapist when deciding to use outcome measures in clinical practice. Participants were 21 physical therapists, seven each from skilled nursing facilities, outpatient clinics, and inpatient rehabilitation facilities. A grounded theory approach was used for interview and data collection. Common themes were determined from the data and a theory developed to explain the rationale behind physical therapists' decisions to use or not use outcome measures in clinical practice. Three overlapping themes related to (1) concepts of time, (2) knowledge, and (3) facility culture were indentified as factors influencing the use of outcome measures. A fourth encompassing theme, professionalism, identified the value placed on the use of outcome measures in practice. Data revealed that therapists require more information on the outcome measures available, and this information needs to be easily accessible within the workplace. Therapists value information generated by using outcome measures in the clinical setting, but need information on what measures are available and psychometric properties. Information must be easily accessible and measures easy to use. Newer graduates and recent learners have a foundation in the use of outcome measures, but more needs to be done in the clinic and through continuing education to promote increased use and understanding.

  7. Effect of Vision Therapy on Accommodation in Myopic Chinese Children

    Directory of Open Access Journals (Sweden)

    Martin Ming-Leung Ma

    2016-01-01

    Full Text Available Introduction. We evaluated the effectiveness of office-based accommodative/vergence therapy (OBAVT with home reinforcement to improve accommodative function in myopic children with poor accommodative response. Methods. This was a prospective unmasked pilot study. 14 Chinese myopic children aged 8 to 12 years with at least 1 D of lag of accommodation were enrolled. All subjects received 12 weeks of 60-minute office-based accommodative/vergence therapy (OBAVT with home reinforcement. Primary outcome measure was the change in monocular lag of accommodation from baseline visit to 12-week visit measured by Shinnipon open-field autorefractor. Secondary outcome measures were the changes in accommodative amplitude and monocular accommodative facility. Results. All participants completed the study. The lag of accommodation at baseline visit was 1.29 ± 0.21 D and it was reduced to 0.84 ± 0.19 D at 12-week visit. This difference (−0.46 ± 0.22 D; 95% confidence interval: −0.33 to −0.58 D is statistically significant (p<0.0001. OBAVT also increased the amplitude and facility by 3.66 ± 3.36 D (p=0.0013; 95% confidence interval: 1.72 to 5.60 D and 10.9 ± 4.8 cpm (p<0.0001; 95% confidence interval: 8.1 to 13.6 cpm, respectively. Conclusion. Standardized 12 weeks of OBAVT with home reinforcement is able to significantly reduce monocular lag of accommodation and increase monocular accommodative amplitude and facility. A randomized clinical trial designed to investigate the effect of vision therapy on myopia progression is warranted.

  8. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    International Nuclear Information System (INIS)

    Jia, S. Bijan; Romano, F.; Cirrone, Giuseppe A.P.; Cuttone, G.; Hadizadeh, M.H.; Mowlavi, A.A.; Raffaele, L.

    2016-01-01

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  9. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    Jia, S. Bijan [Physics Department, University of Bojnord, Bojnord (Iran, Islamic Republic of); Romano, F. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Cirrone, Giuseppe A.P. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Cuttone, G. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Hadizadeh, M.H. [Physics Department, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mowlavi, A.A. [Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); ICTP, Associate Federation Scheme, Medical Physics Field, Trieste (Italy); Raffaele, L. [Azienda Ospedaliero-Universitaria “Policlinico – Vittorio Emanuele”, Catania (Italy)

    2016-01-11

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  10. Quality assurance in radiation therapy: clinical aspects

    International Nuclear Information System (INIS)

    Souhami, L.

    1984-01-01

    A survey was conducted in Latin America to evaluate the clinical aspects of quality assurance in radiotherapy. A questionnaire was prepared and sent to 46 institutions. Twenty-seven centers (58.5%), from nine countries, answered the questionnaire. The study was divided into three topics: a) patient-related statistics; b) staffing and education; and c) equipment and facilities. Radiotherapy training programs are available in only 37% of the centers studied. A large number of megavoltage units are old, operating at a shorter than optimum distance with sources of very low activity. The number of high energy linear accelerators is unsatisfactory. Problems in treatment planning facilities were also identified. Regionalization of radiation therapy services is recommended as a possible way to improve quality at a reasonable cost

  11. CYCLONE. Neutron therapy facility at Louvain-la-Neuve

    International Nuclear Information System (INIS)

    Meulders, J.P.; Saedeleer, G. de; Winant, M.; Wambersie, A.

    1979-01-01

    The neutrontherapy program at Louvain-la-Neuve is carried out with the cyclotron CYCLONE of the Catholic University. This isochronous variable energy cyclotron, produced by CSF (Corbeville, France), accelerates different types of charged particles; in particular, deuterons can be accelerated at energies ranging from 13 to 50 MeV. Neutrons used for therapeutic applications are produced by bombarding a thick (10 mm) water cooled, Beryllium target with 50 MeV deuterons. A beam current of about 5 μA is used for patient treatments, which produces dose rates of about 0,5 Gy/min at a target-skin-distance (TSD) of 157 cm. The treatment room, and related medical facilities, are located one level below the main level of the cyclotron. This permits the use of a vertical therapeutic neutron beam by bending the deuteron beam at 90 0 . This vertical beam appears to be more adequate for positioning the majority of the patients. The collimation system consists of a fixed shielding and of a series of interchangeable inserts. The inserts are cylindrical in shape; their height is 80 cm and their external diameter 40 cm. The proximal part (50 cm) is a mixture of iron (equivalent thickness 22 cm) and epoxy, and the distal part (30 cm) is a mixture (50%) of borax and epoxy. The emphasis is made on the radioprotection conditions. A series of measurements made in the treatment room and in the entry maze have shown that their special configuration provides a satisfactory protection of the staff. (author)

  12. ALARA implementation in 131I therapeutic capsule production facility

    International Nuclear Information System (INIS)

    Kumawat, Lalit; Swaminathan, N.; Sudheer, T.S.; Sachdev, S.S.; Arora, S.S.; Vairalkar, K.G.

    2005-01-01

    Sodium iodide 131 I solution had been invariably administered to patients for both diagnosis and therapy of thyrotoxicosis. The undue exposure to non-target organs has been over come by introducing NaI ( 131 I) in a gelatin capsule. BRIT has set up experimental facility for the preparation and the production volume has augmented into four fold due to increase in demand and the same facility is being used to cater the need. However, the adequately shielded facility (fume hood) used for (manual) dispensing activity in capsules, capsules and product vial capping, transfer of the vials into lead pots and activity measurement of each vial has resulted in significant increase in the personnel exposure. The sources had been identified and efforts were made to reduce the exposure in these operations. An annular shield was introduced around the dispenser, resulted in the reduction of radiation field at wrist level by a factor of three. Introduction of shielded automated dispenser and usage of longer tools for transfer and capping of vials has effected in two times reduction of collective wrist dose. Currently, the relocated capping station two meters away from the source certainly will bring down further exposure. (author)

  13. Shieldings for X-ray radiotherapy facilities calculated by computer

    International Nuclear Information System (INIS)

    Pedrosa, Paulo S.; Farias, Marcos S.; Gavazza, Sergio

    2005-01-01

    This work presents a methodology for calculation of X-ray shielding in facilities of radiotherapy with help of computer. Even today, in Brazil, the calculation of shielding for X-ray radiotherapy is done based on NCRP-49 recommendation establishing a methodology for calculating required to the elaboration of a project of shielding. With regard to high energies, where is necessary the construction of a labyrinth, the NCRP-49 is not very clear, so that in this field, studies were made resulting in an article that proposes a solution to the problem. It was developed a friendly program in Delphi programming language that, through the manual data entry of a basic design of architecture and some parameters, interprets the geometry and calculates the shields of the walls, ceiling and floor of on X-ray radiation therapy facility. As the final product, this program provides a graphical screen on the computer with all the input data and the calculation of shieldings and the calculation memory. The program can be applied in practical implementation of shielding projects for radiotherapy facilities and can be used in a didactic way compared to NCRP-49.

  14. How we make cell therapy in Italy

    Directory of Open Access Journals (Sweden)

    Montemurro T

    2015-08-01

    Full Text Available Tiziana Montemurro, Mariele Viganò, Silvia Budelli, Elisa Montelatici, Cristiana Lavazza, Luigi Marino, Valentina Parazzi, Lorenza Lazzari, Rosaria GiordanoCell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, ItalyAbstract: In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product.Keywords: advanced therapy medicinal product, good manufacturing practices, stem cells

  15. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  16. How we make cell therapy in Italy.

    Science.gov (United States)

    Montemurro, Tiziana; Viganò, Mariele; Budelli, Silvia; Montelatici, Elisa; Lavazza, Cristiana; Marino, Luigi; Parazzi, Valentina; Lazzari, Lorenza; Giordano, Rosaria

    2015-01-01

    In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product.

  17. The influence of travel time on breast cancer characteristics, receipt of primary therapy, and surveillance mammography.

    Science.gov (United States)

    Onega, Tracy; Cook, Andrea; Kirlin, Beth; Shi, Xun; Alford-Teaster, Jennifer; Tuzzio, Leah; Buist, Diana S M

    2011-08-01

    Travel time has been shown to influence some aspects of cancer characteristics at diagnosis and care for women with breast cancer, but important gaps remain in our understanding of its impact. We examined the influence of travel time to the nearest radiology facility on breast cancer characteristics, treatment, and surveillance for women with early-stage invasive breast cancer. We included 1,012 women with invasive breast cancer (stages I and II) who had access to care within an integrated health care delivery system in western Washington State. The travel times to the nearest radiology facility were calculated for all the U.S. Census blocks within the study area and assigned to women based on residence at diagnosis. We collected cancer characteristics, primary and adjuvant therapies, and surveillance mammography for at least 2.5 years post diagnosis and used multivariable analyses to test the associations of travel time. The majority of women (68.6%) lived within 20 min of the nearest radiology facility, had stage I disease (72.7%), received breast conserving therapy (68.7%), and had annual surveillance mammography the first 2 years after treatment (73.7%). The travel time was not significantly associated with the stage or surveillance mammography after adjusting for covariates. Primary therapy was significantly related to travel time, with greater travel time (>30 min vs. ≤ 10 min) associated with a higher likelihood of mastectomy compared to breast conserving surgery (RR = 1.53; 95% CI, 1.16-2.01). The travel time was not associated with the stage at diagnosis or surveillance mammography receipt. The travel time does seem to influence the type of primary therapy among women with breast cancer, suggesting that women may prefer low frequency services, such as mastectomy, if geographic access to a radiology facility is limited.

  18. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  19. Dose rate of restroon in facilities using radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Gwi [Dept. of uclear Medicine, Inha University hospital, Incheon (Korea, Republic of); An, Seong Min [Dept. of Radiology, Gachon University, Incheon (Korea, Republic of)

    2016-06-15

    This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places−thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts−camera room, sedation room, and restroom−through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public−family care-givers, pregnant women, and children−be as far away from

  20. Physics fundamentals and biological effects of synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Prezado, Y.

    2010-01-01

    The main goal of radiation therapy is to deposit a curative dose in the tumor without exceeding the tolerances in the nearby healthy tissues. For some radioresistant tumors, like gliomas, requiring high doses for complete sterilization, the major obstacle for curative treatment with ionizing radiation remains the limited tolerance of the surrounding healthy tissue. This limitation is particularly severe for brain tumors and, especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restricted. One possible solution is the development of new radiation therapy techniques exploiting radically different irradiation modes and modifying, in this way, the biological equivalent doses. This is the case of synchrotron radiation therapy (SRT). In this work the three new radiation therapy techniques under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France) will be described, namely: synchrotron stereotactic radiation therapy (SSRT), microbeam radiation therapy (MRT) and minibeam radiation therapy. The promising results in the treatment of the high grade brain tumors obtained in preclinical studies have paved the way to the clinical trials. The first patients are expected in the fall of 2010. (Author).

  1. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    International Nuclear Information System (INIS)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-01-01

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  2. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros [Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  3. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  4. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  5. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  6. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  7. The monetary value of the man.rem and optimization in radiation therapy (brachytherapy)

    International Nuclear Information System (INIS)

    Ennow, K.R.; Jessen, K.A.

    1979-01-01

    The personnel exposed by sources used for intracavitary radiation therapy in Denmark receive more than 40% of the collective dose recorded by personal dosemeters in Denmark. As the application of after-loading technique has become generally accepted by the medical profession in Denmark as a replacement to a considerable degree for manual radium therapy, the most promising suggestion for reduction of radiation doses is the introduction of after-loading facilities in all radiation therapy centres. Such facilities are now being planned in Denmark but their realization will entail great expense and therefore the financial aspects of these plans will be very important. At present the advantage of after-loading cannot be simply demonstrated to the politicians holding the purse strings, i.e. in terms of improved therapeutical gain, e.g. increased survival, although the incidence of complications has been shown to be lower, but the reduction in personnel radiation doses by the change to after-loading will be evident and be an important part of the cost-benefit analysis. By detailed investigation of all expenditures and savings, cost-benefit analysis has been carried out in order to isolate the relationship between expense and the collective dose reduction. If after-loading facilities are established in Denmark today with the intention of reducing the risk for employees and without any expectation of improvements in treatment, the monetary value of the man.rem implied is 10,000 kr. or 2000 US dollars. (author)

  8. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    CERN Document Server

    Abler, Daniel; Carli, Christian; Dosanjh, Manjit; Peach, Ken; Orecchia, Roberto

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN’s competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR an...

  9. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    Science.gov (United States)

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  10. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  11. Regulation on measures in therapy by ionizing radiation of 24 September 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The regulation for the therapeutic application of ionizing radiation and radiopharmaceuticals applies to the relevant health service facilities. The tasks and responsibilities of specialists such as radiologists, physicists, engineers and technicians are specified. All forms of therapy by ionizing radiation must be planned and recorded

  12. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  13. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  14. Associations between preoperative physical therapy and post-acute care utilization patterns and cost in total joint replacement.

    Science.gov (United States)

    Snow, Richard; Granata, Jaymes; Ruhil, Anirudh V S; Vogel, Karen; McShane, Michael; Wasielewski, Ray

    2014-10-01

    Health-care costs following acute hospital care have been identified as a major contributor to regional variation in Medicare spending. This study investigated the associations of preoperative physical therapy and post-acute care resource use and its effect on the total cost of care during primary hip or knee arthroplasty. Historical claims data were analyzed using the Centers for Medicare & Medicaid Services Limited Data Set files for Diagnosis Related Group 470. Analysis included descriptive statistics of patient demographic characteristics, comorbidities, procedures, and post-acute care utilization patterns, which included skilled nursing facility, home health agency, or inpatient rehabilitation facility, during the ninety-day period after a surgical hospitalization. To evaluate the associations, we used bivariate and multivariate techniques focused on post-acute care use and total episode-of-care costs. The Limited Data Set provided 4733 index hip or knee replacement cases for analysis within the thirty-nine-county Medicare hospital referral cluster. Post-acute care utilization was a significant variable in the total cost of care for the ninety-day episode. Overall, 77.0% of patients used post-acute care services after surgery. Post-acute care utilization decreased if preoperative physical therapy was used, with only 54.2% of the preoperative physical therapy cohort using post-acute care services. However, 79.7% of the non-preoperative physical therapy cohort used post-acute care services. After adjusting for demographic characteristics and comorbidities, the use of preoperative physical therapy was associated with a significant 29% reduction in post-acute care use, including an $871 reduction of episode payment driven largely by a reduction in payments for skilled nursing facility ($1093), home health agency ($527), and inpatient rehabilitation ($172). The use of preoperative physical therapy was associated with a 29% decrease in the use of any post-acute care

  15. Light-ion therapy in the US: From the Bevalac to ??

    International Nuclear Information System (INIS)

    Alonso, Jose R.; Castro, Joseph R.

    2002-01-01

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room

  16. Impact of animal-assisted therapy for outpatients with fibromyalgia.

    Science.gov (United States)

    Marcus, Dawn A; Bernstein, Cheryl D; Constantin, Janet M; Kunkel, Frank A; Breuer, Paula; Hanlon, Raymond B

    2013-01-01

    Animal-assisted therapy using dogs trained to be calm and provide comfort to strangers has been used as a complementary therapy for a range of medical conditions. This study was designed to evaluate the effects of brief therapy dog visits for fibromyalgia patients attending a tertiary outpatient pain management facility compared with time spent in a waiting room. Open label with waiting room control. Tertiary care, university-based, outpatient pain management clinic. A convenience sample of fibromyalgia patients was obtained through advertisements posted in the clinic. Participants were able to spend clinic waiting time with a certified therapy dog instead of waiting in the outpatient waiting area. When the therapy dog was not available, individuals remained in the waiting area. OUTCOME MEASURES.: Self-reported pain, fatigue, and emotional distress were recorded using 11-point numeric rating scales before and after the therapy dog visit or waiting room time. Data were evaluated from 106 therapy dog visits and 49 waiting room controls, with no significant between-group demographic differences in participants. Average intervention duration was 12 minutes for the therapy dog visit and 17 minutes for the waiting room control. Significant improvements were reported for pain, mood, and other measures of distress among patients after the therapy dog visit, but not the waiting room control. Clinically meaningful pain relief (≥2 points pain severity reduction) occurred in 34% after the therapy dog visit and 4% in the waiting room control. Outcome was not affected by the presence of comorbid anxiety or depression. Brief therapy dog visits may provide a valuable complementary therapy for fibromyalgia outpatients. Wiley Periodicals, Inc.

  17. An evaluation of NCRP report 151--radiation shielding design for radiotherapy facilities, and a feasibility study for 6 MV open-door treatments in an existing high-energy radiation therapy bunker

    Science.gov (United States)

    Kildea, John

    This thesis describes a study of shielding design techniques used for radiation therapy facilities that employ megavoltage linear accelerators. Specifically, an evaluation of the shielding design formalism described in NCRP report 151 was undertaken and a feasibility study for open-door 6 MV radiation therapy treatments in existing 6 MV, 18 MV treatment rooms at the Montreal General Hospital (MGH) was conducted. To evaluate the shielding design formalism of NCRP 151, barrier-attenuated equivalent doses were measured for several of the treatment rooms at the MGH and compared with expectations from NCRP 151 calculations. It was found that, while the insight and recommendations of NCRP 151 are very valuable, its dose predictions are not always correct. As such, the NCRP 151 methodology is best used in conjunction with physical measurements. The feasibility study for 6 MV open-door treatments made use of the NCRP 151 formalism, together with physical measurements for realistic 6 MV workloads. The results suggest that, dosimetrically, 6 MV open door treatments are feasible. A conservative estimate for the increased dose at the door arising from such treatments is 0.1 mSv, with a 1/8 occupancy factor, as recommended in NCRP 151, included.

  18. Achieving a Spiritual Therapy Standard for Drug Dependency in Malaysia, from an Islamic Perspective: Brief Review Article.

    Science.gov (United States)

    Seghatoleslam, Tahereh; Habil, Hussain; Hatim, Ahmad; Rashid, Rusdi; Ardakan, Abolfazl; Esmaeili Motlaq, Farid

    2015-01-01

    Religion is one of the protective factors that facilities positive outcomes by preventing individuals from engaging in addictive substance. A recent study has confirmed that religion inhibits drug addiction. The concept of psychospiritual therapy was to introduce drug addiction. Therefore, of the various methods of psychotherapy, the usage of Taqwa (piety) emerged as an applicable method of Islamic spiritual therapy. This study was conducted in Malaysia as a Muslim country and focuses on Islamic recommendations and its relation to spiritual therapy.

  19. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  20. Facilities Performance Indicators Report 2013-14: Tracking Your Facilities Vital Signs

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2015

    2015-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA: Association of Higher Education Facilities Officers (APPA's) Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance…

  1. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  2. A Monte Carlo-based treatment-planning tool for ion beam therapy

    CERN Document Server

    Böhlen, T T; Dosanjh, M; Ferrari, A; Haberer, T; Parodi, K; Patera, V; Mairan, A

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), theMCTP tool is able to perform TP studies u...

  3. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  4. Proton therapy in ophthalmology: status report and problems encountered

    International Nuclear Information System (INIS)

    Chauvel, P.; Iborra-Brassart, N.; Courdi, A.; Herault, J.; Teissier, E.; Pignol, J.P.; Bondiau, P.Y.

    1996-01-01

    The proton therapy facility of the Centre Antoine-Lacassagne in Nice began of ocular tumors in June 1991. Up to October 1995, a total number of 600 patients were treated. An overview of the cases treated during the first 4 years of activity is given and the main problems encountered in the field, possibly interacting with the accuracy and reliability of the dose distribution, are listed. (author)

  5. From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU.

    Science.gov (United States)

    Pellegrini, Graziella; Lambiase, Alessandro; Macaluso, Claudio; Pocobelli, Augusto; Deng, Sophie; Cavallini, Gian Maria; Esteki, Roza; Rama, Paolo

    2016-06-01

    In 1997, the human corneal epithelium was reconstructed in vitro and transplanted on patients. Later, it became a routine treatment, before regulations considered advanced therapy medicinal products and drugs on the same lines. Manufacturing, before and after good manufacturing practice setting, was established in different facilities and the clinical application in several hospitals. Advanced therapy medicinal products, including stem cells, are unique products with different challenges than other drugs: some uncertainties, in addition to benefit, cannot be avoided. This review will focus on all recent developments in the stem cell-based corneal therapy.

  6. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  7. Systematization of types and methods of radiation therapy methods and techniques of irradiation of patients

    International Nuclear Information System (INIS)

    Vajnberg, M.Sh.

    1991-01-01

    The paper is concerned with the principles of systematization and classification of types and methods of radiation therapy, approaches to the regulation of its terminology. They are based on the distinction of the concepts of radiation therapy and irradiation of patients. The author gives a consice historical review of improvement of the methodology of radiation therapy in the course of developing of its methods and facilities. Problems of terminology are under discussion. There is a table of types and methods of radiation therapy, methods and techniques of irradiation. In the appendices one can find a table of typical legends and examples of graphic signs to denote methods of irradiation. Potentialities of a practical use of the system are described

  8. Feasibility of using laser ion accelerators in proton therapy

    CERN Document Server

    Bulanov, S V

    2002-01-01

    The feasibility of using the laser plasma as a source of the high-energy ions for the proton radiation therapy is discussed. The proposal is based on the recent inventions of the effective ions acceleration in the experiments and through numerical modeling of the powerful laser radiation interaction with the gaseous and solid state targets. The principal peculiarity of the dependence of the protons energy losses in the tissues (the Bragg peak of losses) facilities the solution of one of the most important problems of the radiation therapy, which consists in realizing the tumor irradiation by sufficiently high and homogeneous dose with simultaneous minimization of the irradiation level, relative to the healthy and neighbouring tissues and organs

  9. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  10. Facilities Performance Indicators Report, 2004-05. Facilities Core Data Survey

    Science.gov (United States)

    Glazner, Steve, Ed.

    2006-01-01

    The purpose of "Facilities Performance Indicators" is to provide a representative set of statistics about facilities in educational institutions. The second iteration of the web-based Facilities Core Data Survey was posted and available to facilities professionals at more than 3,000 institutions in the Fall of 2005. The website offered a printed…

  11. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  12. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  13. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  14. The proton therapy system for Massachusetts General Hospital's Northeast Proton Therapy Center

    International Nuclear Information System (INIS)

    Jongen, Y.

    1996-01-01

    In 1989, two companies, Ion Beam Applications in Belgium (IBA) and Sumitomo Heavy Industries in Japan (SHI) started to design proton therapy equipments based on cyclotrons. In 1991, SHI and IBA decided to join their development efforts in this field. In 1993, the Massachusetts General Hospital (MGH), pioneer in the field of proton therapy, launched an international request for proposals for the procurement of an in-hospital proton therapy facility. The 18 may 1994, the contract was signed with a team of industries led by IBA, including also SHI and General Atomics (GA) of California. The proposed system is based on a fixed energy, isochronous cyclotron, followed by an energy degrader and an energy selection system. The variable energy beam can be rapidly switched in any one of three treatment rooms. Two rooms are equipped with large isocentric gantries and robotic patient positioners allowing to direct the proton beam within the patient from any direction. The third room is equipped with fixed horizontal beam. The complete system is computer controlled by a distributed network of computers, programmable logic controllers and workstations. This computer control allows to change the energy in one treatment room is less than two second, a performance matching or exceeding the flexibility offered by synchrotrons. The system is now built and undergoing factory tests. The beam has been accelerated to full energy in the cyclotron, and beam extraction tests are underway. Installation in the hospital building will take place in 1997. (author)

  15. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  16. Animal-assisted therapy at an outpatient pain management clinic.

    Science.gov (United States)

    Marcus, Dawn A; Bernstein, Cheryl D; Constantin, Janet M; Kunkel, Frank A; Breuer, Paula; Hanlon, Raymond B

    2012-01-01

    The objective of this study was to evaluate the effects of brief therapy dog visits to an outpatient pain management facility compared with time spent in a waiting room. The design of this study is open-label. Setting.  This study was conducted in a university tertiary care adult chronic pain outpatient clinic. The subjects of this study include outpatients, adults accompanying outpatients to their appointments, and clinic staff. Intervention.  Participants were able to spend clinic waiting time with a certified therapy dog instead of waiting in the outpatient waiting area. When the therapy dog was not available, individuals remained in the waiting area. Self-reported pain, fatigue, and emotional distress were recorded using 11-point numeric rating scales before and after the therapy dog visit or waiting room time. Two hundred ninety-five therapy dog visits (235 with patients, 34 family/friends, and 26 staff) and 96 waiting room surveys (83 from patients, 6 family/friends, and 7 staff) were completed over a 2-month study period. Significant improvements were reported for pain, mood, and other measures of distress among patients after the therapy dog visit but not the waiting room control, with clinically meaningful pain relief (decrease ≥2 points) in 23% after the therapy dog visit and 4% in the waiting room control. Significant improvements were likewise seen after therapy dog visits for family/friends and staff. Therapy dog visits in an outpatient setting can provide significant reduction in pain and emotional distress for chronic pain patients. Therapy dog visits can also significantly improve emotional distress and feelings of well-being in family and friends accompanying patients to appointments and clinic staff. Wiley Periodicals, Inc.

  17. The design of diagnostic imaging and nuclear medicine facilities in a major new teaching hospital

    International Nuclear Information System (INIS)

    Causer, D.A.

    2010-01-01

    Full text: The design of the layout and radiation shielding for diagnostic imaging and nuclear medicine facilities in a modern teaching hospital requires the collaboration of persons from a number of professions including architects, engineers, radiologists, nuclear medicine physi cians, medical imaging technologists and medical physicists. This paper discusses the design of such facilities, including PET/CT and T-131 ablation therapy suites for a major new tertiary hospital in Perth. The importance of involving physicists on the planning team from the earliest stages of the design process is stressed, design plans presented, and some of the problems which may present themselves and their solutions are illustrated.

  18. Trends in spread of the particle therapy of cancers to areal bases

    International Nuclear Information System (INIS)

    Abe, Mitsuyuki; Aoki, Takashi; Tsujii, Hirohiko

    2009-01-01

    In Japan, the rate of cancer death accounts for 30%, now there are 8 facilities having the cancer particle therapy (PT) which is promising due to its highly effective, short term, non-surgical, not always expensive treatment, and local areas have tended to construct such facility for their people. This special article describes trends in the title concerning the areal intention for setting up the therapeutic bases, global trend of PT, research and development in manufacturers of PT equipments, and response of health insurer to the trend. The article contains following 15 topics presented by 15 authors or groups of the academia, official and company institutes, prefectural officers, manufacturers and an insurer, and by Editorial. Topics are: Significance and future view of PT in cancer treatment; Present state of construction of PT facilities in various areas; Fifteen year-results of PT in near-infrared spectroscopy (NIRS) and its effort to spread the therapy; Gumma University's 21st century program COE (Center of Excellence), Medical and Biological Studies with Accelerator Technology; Project for constructing Fukui Prefectural Proton PT Center; The role of Proton PT Center in southern Tohoku area as the first private facility; PT center by Foundation of Medipolis Medical Research Institute in southern Kyushu area; Global trend of PT; Spread of PT and the role of health insurance in it/Mitsui-Sumitomo's health insurance, Kirameki, the contribution to general public; Mitsubishi Electric Corp.'s effort to spread PT equipments; Toshiba's effort; Hitachi's effort; Sumitomo Heavy Industries' effort; Effort by Chiyoda Technol Corp. and Still River Systems to develop the next generation superconducting PT equipment; and Overview by Editorial/Complicated trend in invitation and construction of PT facilities. (K.T.)

  19. Radiation Therapy Infrastructure and Human Resources in Low- and Middle-Income Countries: Present Status and Projections for 2020

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Niloy R., E-mail: niloyranjan.datta@ksa.ch [Centre for Radiation Oncology, Kantonsspital Aarau - Kantonsspital Baden, Kantonsspital Aarau, Aarau (Switzerland); Samiei, Massoud [Consultancy Practice, Vienna (Austria); Bodis, Stephan [Centre for Radiation Oncology, Kantonsspital Aarau - Kantonsspital Baden, Kantonsspital Aarau, Aarau, Switzerland, and Department of Radiation Oncology, University Hospital Zurich (Switzerland)

    2014-07-01

    Purpose: Radiation therapy, a key component of cancer management, is required in more than half of new cancer patients, particularly in low- and middle-income countries (LMICs). The projected rise in cancer incidence over the next decades in LMICs will result in an increasing demand for radiation therapy services. Considering the present cancer incidence and that projected for 2020 (as listed in GLOBOCAN), we evaluated the current and anticipated needs for radiation therapy infrastructure and staffing by 2020 for each of the LMICs. Methods and Materials: Based on World Bank classification, 139 countries fall in the category of LMICs. Details of teletherapy, radiation oncologists, medical physicists, and radiation therapy technologists were available for 84 LMICs from the International Atomic Energy Agency–Directory of Radiotherapy Centres (IAEA-DIRAC) database. Present requirements and those for 2020 were estimated according to recommendations from the IAEA and European Society for Radiotherapy and Oncology (ESTRO-QUARTS). Results: Only 4 of the 139 LMICs have the requisite number of teletherapy units, and 55 (39.5%) have no radiation therapy facilities at present. Patient access to radiation therapy in the remaining 80 LMICs ranges from 2.3% to 98.8% (median: 36.7%). By 2020, these 84 LMICs would additionally need 9169 teletherapy units, 12,149 radiation oncologists, 9915 medical physicists, and 29,140 radiation therapy technologists. Moreover, de novo radiation therapy facilities would have to be considered for those with no services. Conclusions: Twelve pragmatic steps are proposed for consideration at national and international levels to narrow the gap in radiation therapy access. Multipronged and coordinated action from all national and international stakeholders is required to develop realistic strategies to curb this impending global crisis.

  20. Radiation Therapy Infrastructure and Human Resources in Low- and Middle-Income Countries: Present Status and Projections for 2020

    International Nuclear Information System (INIS)

    Datta, Niloy R.; Samiei, Massoud; Bodis, Stephan

    2014-01-01

    Purpose: Radiation therapy, a key component of cancer management, is required in more than half of new cancer patients, particularly in low- and middle-income countries (LMICs). The projected rise in cancer incidence over the next decades in LMICs will result in an increasing demand for radiation therapy services. Considering the present cancer incidence and that projected for 2020 (as listed in GLOBOCAN), we evaluated the current and anticipated needs for radiation therapy infrastructure and staffing by 2020 for each of the LMICs. Methods and Materials: Based on World Bank classification, 139 countries fall in the category of LMICs. Details of teletherapy, radiation oncologists, medical physicists, and radiation therapy technologists were available for 84 LMICs from the International Atomic Energy Agency–Directory of Radiotherapy Centres (IAEA-DIRAC) database. Present requirements and those for 2020 were estimated according to recommendations from the IAEA and European Society for Radiotherapy and Oncology (ESTRO-QUARTS). Results: Only 4 of the 139 LMICs have the requisite number of teletherapy units, and 55 (39.5%) have no radiation therapy facilities at present. Patient access to radiation therapy in the remaining 80 LMICs ranges from 2.3% to 98.8% (median: 36.7%). By 2020, these 84 LMICs would additionally need 9169 teletherapy units, 12,149 radiation oncologists, 9915 medical physicists, and 29,140 radiation therapy technologists. Moreover, de novo radiation therapy facilities would have to be considered for those with no services. Conclusions: Twelve pragmatic steps are proposed for consideration at national and international levels to narrow the gap in radiation therapy access. Multipronged and coordinated action from all national and international stakeholders is required to develop realistic strategies to curb this impending global crisis

  1. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  2. 26 CFR 1.142(a)(5)-1 - Exempt facility bonds: Sewage facilities.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Exempt facility bonds: Sewage facilities. 1.142... Bonds § 1.142(a)(5)-1 Exempt facility bonds: Sewage facilities. (a) In general. Under section 103(a), a... in section 142(a) is a sewage facility. This section defines the term sewage facility for purposes of...

  3. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  4. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Haberer, Thomas [Heidelberg Ion Therapy Center, Heidelberg (Germany); Jaekel, Oliver [Heidelberg Ion Therapy Center, Heidelberg (Germany); Department of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Muenter, Marc W.; Welzel, Thomas; Debus, Juergen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Combs, Stephanie E., E-mail: Stephanie.Combs@med.uni-hedielberg.de [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany)

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  5. Facilities Performance Indicators Report 2012-13: Tracking Your Facilities Vital Signs

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2014

    2014-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance Indicators Report" is designed for survey…

  6. Training practices of cell processing laboratory staff: analysis of a survey by the Alliance for Harmonization of Cellular Therapy Accreditation.

    Science.gov (United States)

    Keever-Taylor, Carolyn A; Slaper-Cortenbach, Ineke; Celluzzi, Christina; Loper, Kathy; Aljurf, Mahmoud; Schwartz, Joseph; Mcgrath, Eoin; Eldridge, Paul

    2015-12-01

    Methods for processing products used for hematopoietic progenitor cell (HPC) transplantation must ensure their safety and efficacy. Personnel training and ongoing competency assessment is critical to this goal. Here we present results from a global survey of methods used by a diverse array of cell processing facilities for the initial training and ongoing competency assessment of key personnel. The Alliance for Harmonisation of Cellular Therapy Accreditation (AHCTA) created a survey to identify facility type, location, activity, personnel, and methods used for training and competency. A survey link was disseminated through organizations represented in AHCTA to processing facilities worldwide. Responses were tabulated and analyzed as a percentage of total responses and as a percentage of response by region group. Most facilities were based at academic medical centers or hospitals. Facilities with a broad range of activity, product sources and processing procedures were represented. Facilities reported using a combination of training and competency methods. However, some methods predominated. Cellular sources for training differed for training versus competency and also differed based on frequency of procedures performed. Most facilities had responsibilities for procedures in addition to processing for which training and competency methods differed. Although regional variation was observed, training and competency requirements were generally consistent. Survey data showed the use of a variety of training and competency methods but some methods predominated, suggesting their utility. These results could help new and established facilities in making decisions for their own training and competency programs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  8. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandez, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN T = 1,35x10 8 n/cm , a fast neutron dose of 5,86x10 -10 Gy/N T and a gamma ray dose of 8,30x10 -14 Gy/N T . (author)

  9. Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandes, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency Ν Τ = 1,35x10 8 n/cm 2 , a fast neutron dose of 5,86x -1 0 Gy/Ν Τ and a gamma ray dose of 8,30x -14 Gy/Ν Τ . (author)

  10. The Pattern of Use of Hypofractionated Radiation Therapy for Early-Stage Breast Cancer in New South Wales, Australia, 2008 to 2012

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, Geoff P., E-mail: Geoff.delaney@swsahs.nsw.gov.au [Liverpool Cancer Therapy Centre, Liverpool, New South Wales (Australia); Collaboration for Cancer Outcomes Research and Evaluation, University of New South Wales, Sydney (Australia); Ingham Health and Medical Research Institute, Sydney (Australia); New South Wales Cancer Institute (Australia); Gandhidasan, Senthilkumar [Peter MacCallum Cancer Centre, Melbourne (Australia); Walton, Richard; Terlich, Frances; Baker, Deborah; Currow, David [New South Wales Cancer Institute (Australia)

    2016-10-01

    Purpose: Increasing phase 3 evidence has been published about the safety and efficacy of hypofractionated radiation therapy, in comparison with standard fractionation, in early-stage, node-negative breast cancer. However, uptake of hypofractionation has not been universal. The aim of this study was to investigate the hypofractionation regimen variations in practice across public radiation oncology facilities in New South Wales (NSW). Methods and Materials: Patients with early breast cancer registered in the NSW Clinical Cancer Registry who received radiation therapy for early-stage breast cancer in a publicly funded radiation therapy department between 2008 and 2012 were identified. Data extracted and analyzed included dose and fractionation type, patient age at first fraction, address (for geocoding), year of diagnosis, year of treatment, laterality, and department of treatment. A logistic regression model was used to identify factors associated with fractionation type. Results: Of the 5880 patients fulfilling the study criteria, 3209 patients (55%) received standard fractionation and 2671 patients (45%) received hypofractionation. Overall, the use of hypofractionation increased from 37% in 2008 to 48% in 2012 (range, 7%-94% across departments). Treatment facility and the radiation oncologist prescribing the treatment were the strongest independent predictors of hypofractionation. Weaker associations were also found for age, tumor site laterality, year of treatment, and distance to facility. Conclusions: Hypofractionated regimens of whole breast radiation therapy have been variably administered in the adjuvant setting in NSW despite the publication of long-term trial results and consensus guidelines. Some factors that predict the use of hypofractionation are not based on guideline recommendations, including lower rates of left-sided treatment and increasing distance from a treatment facility.

  11. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, Troy P.; Andrus, Jason

    2016-07-01

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excess of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the

  12. Radiation protection problems by the operation of the cyclotron facility

    International Nuclear Information System (INIS)

    Durcik, M.; Nikodemova, D.

    1998-01-01

    The Cyclotron Center in Bratislava will consist of two cyclotrons. First - cyclotron DC-72 with maximal energy of 72 MV for protons for making experiments, for teaching process, for radioisotope production as 123 I and for neutron and proton therapy. Second - compact cyclotron with maximal proton energy of 18 MeV will be used for radioisotopes production for medical diagnosis as 1 *F (fluorodeoxyglucose), 81 Rb/ 81 Kr generator. This paper deals with the radiation protection problems by the operation of tis cyclotron facility as radiation protection of workers, monitoring plan, ventilation, safety lock and limitation and radiation monitoring. For proposed and continuing practices at the accelerator facility, the following general principles have to be fulfilled: (1) practices should produce sufficient benefit to offset the radiation detriment they case (justification); (2) the magnitude of the individual doses should be kept as low as achievable (optimization of protection); (3) individual exposures are subject to dose limits and some control of risk from potential exposures (dose and risk limits)

  13. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  14. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  15. Are State-Sponsored New Radiation Therapy Facilities Economically Viable in Low- and Middle-Income Countries?

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Niloy R., E-mail: nrdatta@yahoo.com [Centre for Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau (Switzerland); Samiei, Massoud [Consultant, International Atomic Energy Agency (IAEA), Vienna (Austria); Bodis, Stephan [Centre for Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland and Department of Radiation Oncology, University Hospital Zurich (Switzerland)

    2015-10-01

    Purpose: The economic viability of establishing a state-funded radiation therapy (RT) infrastructure in low- and middle-income countries (LMICs) in accordance with the World Bank definition has been assessed through computation of a return on investment (ROI). Methods and Materials: Of the 139 LMICs, 100 were evaluated according to their RT facilities, gross national income (GNI) per capita, and employment/population ratio. The assumption was an investment of US$5 million for a basic RT center able to treat 1000 patients annually. The national breakeven points and percentage of ROI (%ROI) were calculated according to the GNI per capita and patient survival rates of 10% to 50% at 2 years. It was assumed that 50% of these patients would be of working age and that, if employed and able to work after treatment, they would contribute to the country's GNI for at least 2 years. The cumulative GNI after attaining the breakeven point until the end of the 15-year lifespan of the teletherapy unit was calculated to estimate the %ROI. The recurring and overhead costs were assumed to vary from 5.5% to 15% of the capital investment. Results: The %ROI was dependent on the GNI per capita, employment/population ratio and 2-year patient survival (all P<.001). Accordingly, none of the low-income countries would attain an ROI. If 50% of the patients survived for 2 years, the %ROI in the lower-middle and upper-middle income countries could range from 0% to 159.9% and 11.2% to 844.7%, respectively. Patient user fees to offset recurring and overhead costs could vary from “nil” to US$750, depending on state subsidies. Conclusions: Countries with a greater GNI per capita, higher employment/population ratio, and better survival could achieve a faster breakeven point, resulting in a higher %ROI. Additional factors such as user fees have also been considered. These can be tailored to the patient's ability to pay to cover the recurring costs. Certain pragmatic steps that could

  16. Are State-Sponsored New Radiation Therapy Facilities Economically Viable in Low- and Middle-Income Countries?

    International Nuclear Information System (INIS)

    Datta, Niloy R.; Samiei, Massoud; Bodis, Stephan

    2015-01-01

    Purpose: The economic viability of establishing a state-funded radiation therapy (RT) infrastructure in low- and middle-income countries (LMICs) in accordance with the World Bank definition has been assessed through computation of a return on investment (ROI). Methods and Materials: Of the 139 LMICs, 100 were evaluated according to their RT facilities, gross national income (GNI) per capita, and employment/population ratio. The assumption was an investment of US$5 million for a basic RT center able to treat 1000 patients annually. The national breakeven points and percentage of ROI (%ROI) were calculated according to the GNI per capita and patient survival rates of 10% to 50% at 2 years. It was assumed that 50% of these patients would be of working age and that, if employed and able to work after treatment, they would contribute to the country's GNI for at least 2 years. The cumulative GNI after attaining the breakeven point until the end of the 15-year lifespan of the teletherapy unit was calculated to estimate the %ROI. The recurring and overhead costs were assumed to vary from 5.5% to 15% of the capital investment. Results: The %ROI was dependent on the GNI per capita, employment/population ratio and 2-year patient survival (all P<.001). Accordingly, none of the low-income countries would attain an ROI. If 50% of the patients survived for 2 years, the %ROI in the lower-middle and upper-middle income countries could range from 0% to 159.9% and 11.2% to 844.7%, respectively. Patient user fees to offset recurring and overhead costs could vary from “nil” to US$750, depending on state subsidies. Conclusions: Countries with a greater GNI per capita, higher employment/population ratio, and better survival could achieve a faster breakeven point, resulting in a higher %ROI. Additional factors such as user fees have also been considered. These can be tailored to the patient's ability to pay to cover the recurring costs. Certain pragmatic steps that could

  17. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  18. Standards and general criteria for the planning and certification of need of megavoltage radiation oncology units in health care facilities

    International Nuclear Information System (INIS)

    1977-01-01

    Minimum standards and guidelines to be applied by State agencies and New Jersey health systems agencies in the examination of certificate-of-need applications and in the development of planning activities for radiation oncology units in health care facilities are presented. Radiation oncology is a medical discipline devoted to education and research in the use of ionizing radiation for the treatment of neoplastic disease. The proper application of radiation can be directed at either curative or palliative intent. It is an important and effective technique for the management of cancer. Radiotherapy equipment in clinical use is divided into four main categories: superficial, orthovoltage, megavoltage, and treatment planning facilities. Particular attention is given to megavoltage equipment which emits or generates rays over 1,000 kilovolts. These high energy rays effect better penetration of human tissue and are skin-sparing in nature, thus allowing for better tumor-to- skin dose ratios. The regionalization of megavoltage therapy services is discussed. Data on hospital megavoltage facilities in New Jersey for 1974, 1975, and 1976 are provided. The standards and guidelines pertain to utilization, personnel, and general criteria. A form for use by megavoltage radiation therapy units is appended

  19. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  20. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    Science.gov (United States)

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  1. Revealed access to haemodialysis facilities in northeastern Iran: Factors that matter in rural and urban areas.

    Science.gov (United States)

    Kiani, Behzad; Bagheri, Nasser; Tara, Ahmad; Hoseini, Benyamin; Tabesh, Hamed; Tara, Mahmood

    2017-11-07

    Poor access to haemodialysis facilities is associated with high mortality and morbidity rates. This study investigated factors affecting revealed access to the haemodialysis facilities considering patients living in rural and urban areas without any haemodialysis facility (Group A) and those living urban areas with haemodialysis facilities (Group B). This study is based on selfreported Actual Access Time (AAT) to referred haemodialysis facilities and other information regarding travel to haemodialysis facilities from patients. All significant variables on univariate analysis were entered into a univariate general linear model in order to identify factors associated with AAT. Both spatial (driving time and distance) and non-spatial factors (sex, income level, caregivers, transportation mode, education level, ethnicity and personal vehicle ownership) influenced the revealed access identified in Group A. The non-spatial factors for Group B patients were the same as for Group A, but no spatial factor was identified in Group B. It was found that accessibility is strongly underestimated when driving time is chosen as accessibility measure to haemodialysis facilities. Analysis of revealed access determinants provides policymakers with an appropriate decision base for making appropriate decisions and finding solutions to decrease the access time for patients under haemodialysis therapy. Driving time alone is not a good proxy for measuring access to haemodialysis facilities as there are many other potential obstacles, such as women's special travel problems, poor other transportation possibilities, ethnicity disparities, low education levels, low caregiver status and low-income.

  2. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    International Nuclear Information System (INIS)

    Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  3. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Long [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China); Zheng, Cheng [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Zhang, Yun [Chinese Academy of Sciences, Xiamen Institute of Rare Earth Materials, Haixi Institute (China); Yang, Huang-Hao [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Liu, Xiaolong, E-mail: xiaoloong.liu@gmail.com; Liu, Jingfeng, E-mail: drjingfeng@126.com [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China)

    2016-07-15

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  4. Getting Ready for Ion-Beam Therapy Research in Austria - Building-up Research in Parallel with a Facility

    International Nuclear Information System (INIS)

    Georg, Dietmar; Knaeusl; Kuess, Peter; Fuchs, Hermann; Poetter, Richard; Schreiner, Thomas

    2015-01-01

    With participation in ion-beam projects funded nationally or by the European Commission (EC), ion-beam research activities were started at the Medical University of Vienna in parallel with the design and construction of the ion-beam center MedAustron in Wiener Neustadt, 50 km from the Austrian capital. The current medical radiation physics research activities that will be presented comprise: (1) Dose calculation and optimization: ion-beam centers focus mostly on proton and carbon-ion therapy. However, there are other ion species with great potential for clinical applications. Helium ions are currently under investigation from a theoretical physics and biology perspective. (2) Image guided and adaptive ion-beam therapy: organ motion and anatomic changes have a severe influence in ion-beam therapy since variations in heterogeneity along the beam path have a significant impact on the particle range. Ongoing research focuses on possibilities to account for temporal variations of the anatomy during radiotherapy. Both during and between fractions also considering temporal variations in tumor biology. Furthermore, research focuses on particle therapy positron emission tomography (PT-PET) verification and the detection of prompt gammas for on-line verification of ion-beam delivery. (3) Basic and applied dosimetry: an end-to-end procedure was designed and successfully tested in both scanned proton and carbon-ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. (Author)

  5. A hospital-based proton linac for neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1988-10-01

    Fermilab's Alvarez proton linac has been used routinely for neutron therapy since 1976. The Neutron Therapy Facility (NTF) operates in a mode parasitic to the laboratory's high energy physics program, which uses the linac as an injector for a synchrotron. Parasitic operation is possible because the linac delivers /approximately/1.2 /times/ 10 13 protons per pulse at a 15 Hz rate, while the high energy physics program requires beam at a rate not greater than 0.5 Hz. Protons not needed for physics experiments strike a beryllium target to produce neutrons for neutron therapy. Encouraging clinical results from NTF have led to a study of the issues involved in providing hospitals with a neutron beam of the type available at Fermilab. This paper describes the issues addressed by that study. 12 refs., 1 fig., 1 tab

  6. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  7. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  8. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  9. Workshop to address gaps in regulation of minimally manipulated autologous cell therapies for homologous use in Canada.

    Science.gov (United States)

    Chisholm, Jolene; von Tigerstrom, Barbara; Bedford, Patrick; Fradette, Julie; Viswanathan, Sowmya

    2017-12-01

    In Canada, minimally manipulated autologous cell therapies for homologous use (MMAC-H) are either regulated under the practice of medicine, or as drugs or devices under the Food and Drugs Act, Food and Drug Regulations (F&DR) or Medical Device Regulations (MDR). Cells, Tissues and Organs (CTO) Regulations in Canada are restricted to minimally manipulated allogeneic products for homologous use. This leaves an important gap in the interpretation of existing regulations. The purposes of this workshop co-organized by the Stem Cell Network and the Centre for Commercialization of Regenerative Medicine (CCRM) were to discuss the current state of regulation of MMAC-H therapies in Canada and compare it with other regulatory jurisdictions, with the intent of providing specific policy recommendations to Health Canada. Participants came to a consensus on the need for well-defined common terminology between regulators and stakeholders, a common source of confusion and misinformation. A need for a harmonized national approach to oversight of facilities providing MMAC-H therapies based on existing standards, such as Canadian Standards Association (CSA), was also voiced. Facilities providing MMAC-H therapies should also participate in collection of long-term data to ensure patient safety and efficacy of therapies. Harmonization across provinces of the procedures and practices involving administration of MMAC-H would be preferred. Participants felt that devices used to process MMAC-H are adequately regulated under existing MDR. Overly prescriptive regulation will stifle innovation, whereas insufficient regulation might allow unsafe or ineffective therapies to be offered. Until a clear, balanced and explicit approach is articulated, regulatory uncertainty remains a barrier. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2012-01-01

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  11. Management of Therapy Patients. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Dauer, L. T. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York (United States)

    2014-12-15

    The basic principles of radiation protection and their implementation as they apply to nuclear medicine are covered in general in Chapter 3. This chapter will look at the specific case of nuclear medicine used for therapy. In addition to the standards discussed in Chapter 3, specific guidance on the release of patients after radionuclide therapy can be found in the IAEA’s Safety Reports Series No. 63 [20.1]. When the patient is kept in hospital following radionuclide therapy, the people at risk of exposure include hospital staff whose duties may or may not directly involve the use of radiation. This can be a significant problem. However, it is generally felt that it can be effectively managed with well trained staff and appropriate facilities. On the other hand, once the patient has been released, the groups at risk include members of the patient’s family, including children, and carers; they may also include neighbours, visitors to the household, co-workers, those encountered in public places, on public transport or at public events, and finally, the general public. It is generally felt that these risks can be effectively mitigated by the radiation protection officer (RPO) with patient-specific radiation safety precaution instructions.

  12. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  13. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  14. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  15. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  16. START: an advanced radiation therapy information system.

    Science.gov (United States)

    Cocco, A; Valentini, V; Balducci, M; Mantello, G

    1996-01-01

    START is an advanced radiation therapy information system (RTIS) which connects direct information technology present in the devices with indirect information technology for clinical, administrative, information management integrated with the hospital information system (HIS). The following objectives are pursued: to support decision making in treatment planning and functional and information integration with the rest of the hospital; to enhance organizational efficiency of a Radiation Therapy Department; to facilitate the statistical evaluation of clinical data and managerial performance assessment; to ensure the safety and confidentiality of used data. For its development a working method based on the involvement of all operators of the Radiation Therapy Department, was applied. Its introduction in the work activity was gradual, trying to reuse and integrate the existing information applications. The START information flow identifies four major phases: admission, visit of admission, planning, therapy. The system main functionalities available to the radiotherapist are: clinical history/medical report linking function; folder function; planning function; tracking function; electronic mail and banner function; statistical function; management function. Functions available to the radiotherapy technician are: the room daily list function; management function: to the nurse the following functions are available: patient directing function; management function. START is a departmental client (pc-windows)-server (unix) developed on an integrated database of all information of interest (clinical, organizational and administrative) coherent with the standard and with a modular architecture which can evolve with additional functionalities in subsequent times. For a more thorough evaluation of its impact on the daily activity of a radiation therapy facility, a prolonged clinical validation is in progress.

  17. A roadmap for cost-of-goods planning to guide economic production of cell therapy products.

    Science.gov (United States)

    Lipsitz, Yonatan Y; Milligan, William D; Fitzpatrick, Ian; Stalmeijer, Evelien; Farid, Suzanne S; Tan, Kah Yong; Smith, David; Perry, Robert; Carmen, Jessica; Chen, Allen; Mooney, Charles; Fink, John

    2017-12-01

    Cell therapy products are frequently developed and produced without incorporating cost considerations into process development, contributing to prohibitively costly products. Herein we contextualize individual process development decisions within a broad framework for cost-efficient therapeutic manufacturing. This roadmap guides the analysis of cost of goods (COG) arising from tissue procurement, material acquisition, facility operation, production, and storage. We present the specific COG considerations related to each of these elements as identified through a 2013 International Society for Cellular Therapy COG survey, highlighting the differences between autologous and allogeneic products. Planning and accounting for COG at each step in the production process could reduce costs, allowing for more affordable market pricing to improve the long-term viability of the cell therapy product and facilitate broader patient access to novel and transformative cell therapies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  19. The SCANDAL facility - How to measure elastic neutron scattering in the 50-130 MeV range

    International Nuclear Information System (INIS)

    Klug, Joakim

    2001-01-01

    The interest in neutrons of energies above 20 MeV is growing rapidly, since new applications are being developed or have been identified. Transmutation of nuclear waste and cancer therapy with neutron beams are two research fields that would benefit from new neutron scattering data at these energies. A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has been developed and installed at the neutron beam facility of the The Svedberg Laboratory in Uppsala. It can be used to study the (n,n), (n,p) and (n,d) reactions. This thesis describes the layout of the setup, the experimental procedure, and data analysis principles. The performance of the spectrometer is illustrated with measurements of the (n,p) and (n,n) reactions on 1 H and 12 C. In addition, the neutron beam facility is described in some detail

  20. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  1. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  2. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  3. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  4. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  5. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  6. Cf-252 neutron brachytherapy: an advance for bulky localized cancer therapy

    International Nuclear Information System (INIS)

    Maruyama, Y.

    1984-01-01

    The physical and radiobiogical basis as well as the rationale for neutron brachytherapy, using Cf-252, in human cancer therapy is reviewed. Cf-252 brachytherapy represents an economical and effective form of neutron radiotherapy that is readily and safely applied clinically. It can be used anywhere in the world without unusual personnel, equipment or facilities, or prohibitive expenses or maintenance costs. Used on bulky head and neck, thoracic, abdominal, pelvic, brain and appendage cancers, it overcomes hypoxic radioresistance and produces remarkable rates of tumor clearance. It is easily combined with photon radiotherapy and in proper schedules and doses, it can control advanced but still localized regional cancers to produce tumor cure. It will clear the local manifestations of recurrent or metastatic tumors or advanced stages of primary tumors and therefore in conjunction with other adjuvant therapies offers much more effective tumor control and palliation than present conventional therapy. (Auth.)

  7. The Edinburgh experience of fast neutron therapy

    International Nuclear Information System (INIS)

    Duncan, W.; Arnott, S.J.; Orr, J.A.; Kerr, G.R.

    1982-01-01

    The Edinburgh experience is based on a d(15 + Be) neutron beam generated by a compact CS 30 Cyclotron. The facility has an iso-center treatment head providing 240 0 of rotation. The most important limitation of the beam is its poor penetrating quality. We have compared neutron therapy alone given in 20 daily fractions over four weeks with photon therapy given in the same fractionation schedule. Since clinical studies began in March, 1977, over 500 patients have been treated by fast neutrons. Almost all patients are now admitted to randomly controlled trials. In the head and neck trial conducted in collaboraton with colleagues in Amsterdam and Essen, 92 patients are available for analysis. Most patients had T3 lesions and about 50% had involved nodes. The cumulative regression rate at six months is similar after neutrons and photons (75%). Later recurrence rates (36%) are also similar. The early radiation morbidity is similar in both groups, but the late reactions are greater after neutrons (15%) than photons (6%). Overall survival is better after photon therapy. A trial of patients with glioblastoma has also shown a better survival after photon therapy. Neutron therapy was associated with demelinization in three of 18 patients. Patients with transitional cell cancer of the bladder have also been the subject of study. Local tumor control was similar (53%) after neutrons and photons. Late radiation morbidity was much greater after neutrons (20%), compared with photons (2%). In a trial of advanced carcinoma of the rectum, the local tumor control was also similar after neutrons and photons (30%), but morbidity was greater after neutrons. Soft tissue sarcomas have shown response rates (37%) that may be expected after photon therapy

  8. An overview of the facilities of the Ionizing Radiation Laboratory, South Africa

    International Nuclear Information System (INIS)

    Mostert, J.C.

    2002-01-01

    The Ionising Radiation Laboratory (IRL) of the CSIR-National Metrology Laboratory (NML) in South Africa was recently accepted as a member of the IAEA SSDL network. This article gives a very brief overview of the services and facilities provided by this laboratory. The NML has the responsibility to realize and maintain the national measuring standards in South Africa. In the field of ionizing radiation, this function is performed by the IRL. The IRL provides traceability through its calibration and measurement services for regulatory authorities, institutions providing radiation therapy services such as hospitals and other oncology centres, radiation protection service providers such as the South African Bureau of Standards (SABS), the radiation protection industry in general and to companies providing industrial quality assurance services. These services also extend to a number of countries in the Southern African Development Community (SADC) which do not currently have metrology facilities of their own

  9. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  10. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  11. Radiobiology of Proton Therapy - Results of an international expert workshop

    DEFF Research Database (Denmark)

    Lühr, Armin; von Neubeck, Cläre; Pawelke, Jörg

    2018-01-01

    The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full...... in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness...... of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data...

  12. [At-home music therapy intervention using video phone (Skype) for elderly people with dementia].

    Science.gov (United States)

    Hori, Miyako; Iizuka, Mieko; Nakamura, Michikazu; Aiba, Ikuko; Saito, Yufuko; Kubota, Masakazu; Urabe, Mie; Kinoshita, Ayae

    2014-12-01

    There are various nonpharmacological therapies available for elderly people with dementia, and these can improve quality of life and the behavioral and psychological symptoms of dementia (BPSD) that appear throughout the progression of the disease. Since a substantial number of effects have been reported for music therapy, we focused on this nonpharmacological intervention. Generally, musical therapy is provided collectively in facilities. However, the music used in this context may not consider the preferences and music abilities of each person. Therefore, in this study we created made-to-order music CDs that accounted for each participant's musical preferences and abilities. Utilizing the CDs, we conducted an intervention study of music therapy using a video phone (Skype) that elderly people with dementia can use at home. An advantage of conducting music therapy for individuals with dementia using a video phone is that those who have difficulty going to the hospital or participating in dementia-related therapy groups can participate in therapy in a familiar place. The results of this intervention showed that participants demonstrated signs of improvement as measured by the smile degree(Smile scan)and Behavior Pathology in Alzheimer's Disease (BEHAVE-AD) scale.

  13. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  14. Development of cancer therapy facility of HANARO and medical research in BNCT; development of the technique for boron concentration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Byun, Soo Hyun; Sun, Gwang Min; Kim, Suk Kwon; Kim, In Jung; Park, Chang Su [Seoul National University, Seoul (Korea)

    2002-03-01

    Objective and Necessity of the Project- Development of a boron concentration analysis facility used for BNCT. - Development of the technique for boron concentration analysis. Contents and Scopes of the Project - Construction of the boron concentration analysis facility based on PGAA. Estimation of the neutron beam characteristics. -Establishment of the technique for the boron concentration analysis. - Estimation of the reliability for the boron analysis. Results of the Project -Installation of the boron concentration analysis facility at Hanaro. - Neutron beam characteristics are the sample position (neutron flux : 7.9 x 10{sup 7} n/cm{sup 2}s, Cd-ratio : 266) Technique for the boron concentration analysis. - Boron detection sensitivity and limit (detection sensitivity : 2, 131 cps/mg-B, detection limit : 67 ng for 10,000 sec). 63 refs., 37 figs., 13 tabs. (Author)

  15. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Castell, W.; Di Paolo, H.; Baldo, M.; Bergueiro, J.

    2011-01-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  16. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  17. Shielding of Medical Facilities. Shielding Design Considerations for PET-CT Facilities

    International Nuclear Information System (INIS)

    Cruzate, J.A.; Discacciatti, A.P.

    2011-01-01

    The radiological evaluation of a Positron Emission Tomography (PET) facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The evaluation embraces the distributions of rooms, the thickness and physical material of walls, floors and ceilings. This work detail the methodology used for making the assessment of a PET facility design taking into account only radioprotection aspects. The assessment results must be compared to the design requirements established by national regulations in order to determine whether or not, the facility complies with those requirements, both for workers and for members of the public. The analysis presented is useful for both, facility designers and regulators. In addition, some guidelines for improving the shielding design and working procedures are presented in order to help facility designer's job. (authors)

  18. The Effects of Forest Therapy on Coping with Chronic Widespread Pain: Physiological and Psychological Differences between Participants in a Forest Therapy Program and a Control Group.

    Science.gov (United States)

    Han, Jin-Woo; Choi, Han; Jeon, Yo-Han; Yoon, Chong-Hyeon; Woo, Jong-Min; Kim, Won

    2016-02-24

    This study aimed to investigate the effects of a two-day forest therapy program on individuals with chronic widespread pain. Sixty one employees of a public organization providing building and facilities management services within the Seoul Metropolitan area participated in the study. Participants were assigned to an experimental group (n = 33) who participated in a forest therapy program or a control group (n = 28) on a non-random basis. Pre- and post-measures of heart rate variability (HRV), Natural Killer cell (NK cell) activity, self-reported pain using the visual analog scale (VAS), depression level using the Beck Depression Inventory (BDI), and health-related quality of life measures using the EuroQol Visual Analog Scale (EQ-VAS) were collected in both groups. The results showed that participants in the forest therapy group, as compared to the control group, showed physiological improvement as indicated by a significant increase in some measures of HRV and an increase in immune competence as indicated by NK cell activity. Participants in the forest therapy group also reported significant decreases in pain and depression, and a significant improvement in health-related quality of life. These results support the hypothesis that forest therapy is an effective intervention to relieve pain and associated psychological and physiological symptoms in individuals with chronic widespread pain.

  19. Robot therapy: a new approach for mental healthcare of the elderly - a mini-review.

    Science.gov (United States)

    Shibata, Takanori; Wada, Kazuyoshi

    2011-01-01

    Mental healthcare of elderly people is a common problem in advanced countries. Recently, high technology has developed robots for use not only in factories but also for our living environment. In particular, human-interactive robots for psychological enrichment, which provide services by interacting with humans while stimulating their minds, are rapidly spreading. Such robots not only simply entertain but also render assistance, guide, provide therapy, educate, enable communication, and so on. Robot therapy, which uses robots as a substitution for animals in animal-assisted therapy and activity, is a new application of robots and is attracting the attention of many researchers and psychologists. The seal robot named Paro was developed especially for robot therapy and was used at hospitals and facilities for elderly people in several countries. Recent research has revealed that robot therapy has the same effects on people as animal therapy. In addition, it is being recognized as a new method of mental healthcare for elderly people. In this mini review, we introduce the merits and demerits of animal therapy. Then we explain the human-interactive robot for psychological enrichment, the required functions for therapeutic robots, and the seal robot. Finally, we provide examples of robot therapy for elderly people, including dementia patients. Copyright © 2010 S. Karger AG, Basel.

  20. Effects of horticulture therapy on nursing home older adults in southern Taiwan.

    Science.gov (United States)

    Yao, Ya-Fang; Chen, Kuei-Min

    2017-04-01

    This study aimed to test the effects of horticulture therapy on activities of daily living, happiness, meaning of life, and interpersonal intimacy of nursing home older adults in southern Taiwan. A quasi-experimental study was applied. Eighty-five older adults aged 65 or older who lived in nursing homes in southern Taiwan were recruited conveniently. All participants completed the study: experimental group (n = 41) and control group (n = 44). The experimental group received horticulture therapy for 1 h once a week for 8 weeks, while the control group continued their routine daily activities. The following questionnaires were administered before and after the intervention period: (1) Barthel Index (BI), (2) Chinese Happiness Inventory short version (CHI), (3) Meaning of Life Scale (MLS), and (4) Interpersonal Intimacy Scale (IIS). The BI, CHI, MLS, and IIS scores significantly improved in the experimental group (p horticulture therapy, the BI, CHI, and IIS scores of experimental group participants were significantly better than the scores of control group participants (p Horticulture therapy improved activities of daily living, happiness, and interpersonal intimacy of older adults in nursing homes. We recommend that nursing homes recruit and train personnel to lead horticultural therapy and to incorporate the therapy as routine daily activities in the facilities.

  1. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Juan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Anderson, Art [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations. This plan is a living document that will be updated and refined throughout the lifetime of the facility.

  2. [Prevalence and predisposing factors of methicillin-resistant Staphylococcus aureus in long-term care facilities. An international view].

    Science.gov (United States)

    Szabó, Rita

    2016-07-03

    Methicillin-resistant Staphylococcus aureus is one of the most important pathogens of healthcare and long-term care-associated infections over the world, resulting high morbidity, mortality and extra costs in these settings. The authors analyze the prevalence and predisposing factors of methicillin-resistant Staphylococcus aureus in long-term care facilities. Systematic review using PubMed, ScienceDirect and Cochrane Library CENTRAL databases between January 1, 2006 and December 31, 2015 was performed. In the past ten years methicillin-resistant Staphylococcus aureus prevalence in European long-term care facilities (12.6%) was lower than in North America (33.9%). The most frequent predisposing factor was previous antimicrobial therapy, hospital admission and infection/colonisation, chronic wounds, and high care need. Based on the results, the prevention and control of methicillin-resistant Staphylococcus aureus is an important public health priority in the European and Hungarian long-term care facilities.

  3. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    International Nuclear Information System (INIS)

    Roberts, Kenneth B.; Soulos, Pamela R.; Herrin, Jeph; Yu, James B.; Long, Jessica B.; Dostaler, Edward

    2013-01-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy

  4. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kenneth B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Soulos, Pamela R. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); Herrin, Jeph [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Health Research and Educational Trust, Chicago, Illinois (United States); Yu, James B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Long, Jessica B. [Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale Comprehensive Cancer Center and Yale University School of Medicine, New Haven, Connecticut (United States); Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); Dostaler, Edward [Section of General Internal Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut (United States); and others

    2013-04-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy.

  5. GPU-based high-performance computing for radiation therapy

    International Nuclear Information System (INIS)

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  6. Facilities Performance Indicators Report 2011-12: Tracking Your Facilities Vital Signs

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2013

    2013-01-01

    This paper provides an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. APPA's Information and Research Committee's goal for this year was to enhance the…

  7. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  8. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  9. Dyslipidemia in HIV Infected Children Receiving Highly Active Antiretroviral Therapy.

    Science.gov (United States)

    Mandal, Anirban; Mukherjee, Aparna; Lakshmy, R; Kabra, Sushil K; Lodha, Rakesh

    2016-03-01

    To assess the prevalence of dyslipidemia and lipodystrophy in Indian children receiving non-nucleoside reverse transcriptase inhibitor (NNRTI) based highly active antiretroviral therapy (HAART) and to determine the associated risk factors for the same. The present cross-sectional study was conducted at a Pediatric Clinic of a tertiary care teaching center in India, from May 2011 through December 2012. HIV infected children aged 5-15 y were enrolled if they did not have any severe disease or hospital admission within last 3 mo or receive any medications known to affect the lipid profile. Eighty-one children were on highly active antiretroviral therapy (HAART) for at least 6 mo and 16 were receiving no antiretroviral therapy (ART). Participants' sociodemographic, nutritional, clinical, and laboratory data were recorded in addition to anthropometry and evidence of lipodystrophy. Fasting lipid profile, apolipoprotein A1 and B levels were done for all the children. Among the children on highly active antiretroviral therapy (HAART), 38.3 % had dyslipidemia and 80.2 % had lipodystrophy, while 25 % antiretroviral therapy (ART) naïve HIV infected children had dyslipidemia. No clinically significant risk factors could be identified that increased the risk of dyslipidemia or lipodystrophy in children on highly active antiretroviral therapy (HAART). There is a high prevalence of dyslipidemia and lipodystrophy in Indian children with HIV infection with an imminent need to establish facilities for testing and treatment of these children for metabolic abnormalities.

  10. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  11. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  12. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  13. Characteristics of problem drinkers in e-therapy versus face-to-face treatment.

    Science.gov (United States)

    Postel, Marloes G; de Haan, Hein A; Ter Huurne, Elke D; Becker, Eni S; de Jong, Cor A J

    2011-11-01

    The availability of online treatment programs offers the potential to reach more problem drinkers. This study compared the client populations of an e-therapy program (asynchronous client-therapist communication via the Internet) and a face-to-face treatment program. To determine whether e-therapy and face-to-face groups differed from each other and changed over time. We compared the baseline characteristics of four naturalistic groups (N = 4593): two e-therapy groups (2005-2006 and 2008-2009) and two consecutive series of ambulant face-to-face clients admitted for treatment as usual. The characteristics we were interested in were gender, age, education level, working situation, and earlier treatment for drinking problems. The results showed that the baseline characteristics of e-therapy and face-to-face clients differed by gender, education level, work situation, prior alcohol treatment, and age. We also found that both e-therapy groups differed over time by gender, work situation, and prior alcohol treatment. The e-therapy program successfully attracted clients who were different from those who were represented in regular face-to-face alcohol treatment services. This indicates that e-therapy decreases the barriers to treatment facilities and enhances the accessibility. However, the e-therapy population changed over time. Although the e-therapy program still reached an important new group of clients in 2008-2009, this group showed more overlap with the traditional face-to-face group of clients probably as a result of improved acceptance of e-therapy in the general population. Although e-therapy seems to be better accepted in the general population, anonymous treatment seems necessary to reach a broader range of problem drinkers.

  14. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  15. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Status of hadron therapy in Europe and the role of ENLIGHT

    Science.gov (United States)

    Dosanjh, Manjit; Hoffmann, Hans Falk; Magrin, Giulio

    2007-02-01

    Cancer is a major social problem, and it is the main cause of death between the ages 45-65 years. In the treatment of cancer, radio therapy (RT) plays an essential role. RT with hadrons (protons and light ions), due to their unique physical and radiobiological properties, offers several advantages over photons. In particular, they penetrate the patient with minimal diffusion, they deposit maximum energy at the end of their range, and they can be shaped as narrow focused and scanned pencil beams of variable penetration depth. Hadron beams allow highly conformal treatment (where the beam conforms to the shape of the tumour) of deep-seated tumours with great accuracy, while delivering minimal doses to surrounding tissues. Hadron therapy, thus, has great prospects for being used in early stages of tumour disease not amenable to surgery. It is likely that, besides its more impressive effect on radio-resistant tumours, post-treatment morbidity will be lower in patients treated with hadrons due to the lower dose and toxicity to normal tissues. Visionary physicist and founder of Fermilab, Robert Wilson first proposed the use of hadrons for cancer treatment in 1946. This idea was first put into practise at the Lawrence Berkeley Laboratory (LBL) where 30 patients were treated with protons between 1954 and 1957. Since then the total number of patients treated with hadrons in the world now exceeds 50,000, of which 5000 new patients were treated last year. Several dedicated hospital-based centres with significant capacity for treating patients are now taking the place of the first R&D facilities hosted by the Physics Research Laboratories (e.g. LBL, GSI). Europe is playing a key role in the advancement of light ion therapy facilities with five financed centres using actively scanned carbon ions (of which two are already under construction in Heidelberg and Pavia) and several proton therapy centres which will become operational soon. In the US, three proton therapy centres are

  17. Status of hadron therapy in Europe and the role of ENLIGHT

    International Nuclear Information System (INIS)

    Dosanjh, Manjit; Hoffmann, Hans Falk; Magrin, Giulio

    2007-01-01

    Cancer is a major social problem, and it is the main cause of death between the ages 45-65 years. In the treatment of cancer, radio therapy (RT) plays an essential role. RT with hadrons (protons and light ions), due to their unique physical and radiobiological properties, offers several advantages over photons. In particular, they penetrate the patient with minimal diffusion, they deposit maximum energy at the end of their range, and they can be shaped as narrow focused and scanned pencil beams of variable penetration depth. Hadron beams allow highly conformal treatment (where the beam conforms to the shape of the tumour) of deep-seated tumours with great accuracy, while delivering minimal doses to surrounding tissues. Hadron therapy, thus, has great prospects for being used in early stages of tumour disease not amenable to surgery. It is likely that, besides its more impressive effect on radio-resistant tumours, post-treatment morbidity will be lower in patients treated with hadrons due to the lower dose and toxicity to normal tissues. Visionary physicist and founder of Fermilab, Robert Wilson first proposed the use of hadrons for cancer treatment in 1946. This idea was first put into practise at the Lawrence Berkeley Laboratory (LBL) where 30 patients were treated with protons between 1954 and 1957. Since then the total number of patients treated with hadrons in the world now exceeds 50,000, of which 5000 new patients were treated last year. Several dedicated hospital-based centres with significant capacity for treating patients are now taking the place of the first R and D facilities hosted by the Physics Research Laboratories (e.g. LBL, GSI). Europe is playing a key role in the advancement of light ion therapy facilities with five financed centres using actively scanned carbon ions (of which two are already under construction in Heidelberg and Pavia) and several proton therapy centres which will become operational soon. In the US, three proton therapy centres

  18. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  19. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    OpenAIRE

    Cheng,Kuo-Wei; Hsu,Shan-hui

    2017-01-01

    Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encaps...

  1. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  2. Accelerator conceptual design and needs of nuclear data for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Yamanaka, Toshiyuki; Yokobori, Hitoshi

    1999-01-01

    An optimization study has been made on an accelerator-based facility for the boron neutron capture therapy. The energy of the incident proton and the arrangement of the moderator assemblies are optimized. The beam current and the accelerating voltage are determined so that the accelerator power becomes minimum. The proposed facility is equipped with a 2.5 MeV proton accelerator of 10-25 mA, a lithium target, and a heavy water moderator contained in an aluminum tank. Each of these equipment is feasible, if proper R and D works have been done. Our new design requires the beam power of less than a hundred kW for the accelerator, although that of our previous design was 1 MW. The reduction of the beam power makes the cooling system for the target much simpler. The essential issues for realization of this concept are long-life lithium targets under high heat flux and high current proton accelerators with average currents of more than 10 mA. It is necessary for the reasonable design of a small-sized and low cost facility to get good accuracy nuclear reaction data. Especially, the latest Li/Be(p, n) neutron yield data in a range of threshold energy - few MeV are required for exact evaluation of neutron energy spectrum used therapy. And damage data by low energy proton beam are also important to evaluate integrity of target material. (author)

  3. A strategy to develop and implement Canadian standards for quality assurance in radiation therapy

    International Nuclear Information System (INIS)

    1999-05-01

    In Canada, the Atomic Energy Control Board (AECB) regulates the limits of radiation exposure to the public and to workers in industry. In 1993, it discussed the fact that the safety of radiation therapy patients who receive medical exposures is not regulated [AE93]. The Group of Medical Advisors (GMA) to the AECB initiated a research contract to review quality assurance in Canadian radiation oncology centres and nuclear medicine departments. The review [MA95] revealed that the level of quality assurance in radiation therapy facilities varied across the country. As a result, the GMA undertook its own review of quality assurance in radiation therapy centres and made recommendations on how to achieve a uniform national system [MA98]. In response to the GMA report, the President of the AECB formed a Joint Working Group (JWG-11) to propose how Canadian Standards for Quality Assurance in Radiation Therapy could be developed and implemented. These national standards for quality assurance will serve as a common basis for establishing and evaluating quality assurance programs at individual radiation therapy centres. These standards should address the structure of quality assurance programs and quality assurance for radiation therapy equipment, personnel, and procedures. (author)

  4. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  5. Cellular Therapies Clinical Research Roadmap: lessons learned on how to move a cellular therapy into a clinical trial.

    Science.gov (United States)

    Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M

    2015-04-01

    A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Analytical dosimetry for spontaneous tumor dogs receiving boron neutron capture therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Atkinson, C.A.; Gavin, P.R.

    1992-01-01

    The dog irradiation project of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program is administered by Washington State University (WSU) with analytical and physical dosimetry provided by the Idaho National Engineering Laboratory (INEL). One subtask of this project includes BNCT safety studies for dogs with spontaneously-occurring brain tumors. The boron compound (Na 2 B 12 H 11 SH or BSH) was administered and single irradiations performed using the epithermal-neutron beam at the Brookhaven Medical Research Reactor (BMRR). The main goal of the study was not to provide therapy, but to determine tumorcidal effect while administering a subtolerance dose to healthy tissue. Irradiation times were based on delivery of 19 Gy peak physical dose to the blood

  7. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  8. Adjuvant Radiation Therapy Treatment Time Impacts Overall Survival in Gastric Cancer

    International Nuclear Information System (INIS)

    McMillan, Matthew T.; Ojerholm, Eric; Roses, Robert E.; Plastaras, John P.; Metz, James M.; Mamtani, Ronac; Karakousis, Giorgos C.; Fraker, Douglas L.; Drebin, Jeffrey A.; Stripp, Diana; Ben-Josef, Edgar; Datta, Jashodeep

    2015-01-01

    Purpose: Prolonged radiation therapy treatment time (RTT) is associated with worse survival in several tumor types. This study investigated whether delays during adjuvant radiation therapy impact overall survival (OS) in gastric cancer. Methods and Materials: The National Cancer Data Base was queried for patients with resected gastric cancer who received adjuvant radiation therapy with National Comprehensive Cancer Network–recommended doses (45 or 50.4 Gy) between 1998 and 2006. RTT was classified as standard (45 Gy: 33-36 days, 50.4 Gy: 38-41 days) or prolonged (45 Gy: >36 days, 50.4 Gy: >41 days). Cox proportional hazards models evaluated the association between the following factors and OS: RTT, interval from surgery to radiation therapy initiation, interval from surgery to radiation therapy completion, radiation therapy dose, demographic/pathologic and operative factors, and other elements of adjuvant multimodality therapy. Results: Of 1591 patients, RTT was delayed in 732 (46%). Factors associated with prolonged RTT were non-private health insurance (OR 1.3, P=.005) and treatment at non-academic facilities (OR 1.2, P=.045). Median OS and 5-year actuarial survival were significantly worse in patients with prolonged RTT compared with standard RTT (36 vs 51 months, P=.001; 39 vs 47%, P=.005); OS worsened with each cumulative week of delay (P<.0004). On multivariable analysis, prolonged RTT was associated with inferior OS (hazard ratio 1.2, P=.002); the intervals from surgery to radiation therapy initiation or completion were not. Prolonged RTT was particularly detrimental in patients with node positivity, inadequate nodal staging (<15 nodes examined), and those undergoing a cycle of chemotherapy before chemoradiation therapy. Conclusions: Delays during adjuvant radiation therapy appear to negatively impact survival in gastric cancer. Efforts to minimize cumulative interruptions to <7 days should be considered

  9. Adjuvant Radiation Therapy Treatment Time Impacts Overall Survival in Gastric Cancer

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Matthew T. [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Ojerholm, Eric [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Roses, Robert E., E-mail: Robert.Roses@uphs.upenn.edu [Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Plastaras, John P.; Metz, James M. [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Mamtani, Ronac [Department of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Karakousis, Giorgos C.; Fraker, Douglas L.; Drebin, Jeffrey A. [Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Stripp, Diana; Ben-Josef, Edgar [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Datta, Jashodeep [Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States)

    2015-10-01

    Purpose: Prolonged radiation therapy treatment time (RTT) is associated with worse survival in several tumor types. This study investigated whether delays during adjuvant radiation therapy impact overall survival (OS) in gastric cancer. Methods and Materials: The National Cancer Data Base was queried for patients with resected gastric cancer who received adjuvant radiation therapy with National Comprehensive Cancer Network–recommended doses (45 or 50.4 Gy) between 1998 and 2006. RTT was classified as standard (45 Gy: 33-36 days, 50.4 Gy: 38-41 days) or prolonged (45 Gy: >36 days, 50.4 Gy: >41 days). Cox proportional hazards models evaluated the association between the following factors and OS: RTT, interval from surgery to radiation therapy initiation, interval from surgery to radiation therapy completion, radiation therapy dose, demographic/pathologic and operative factors, and other elements of adjuvant multimodality therapy. Results: Of 1591 patients, RTT was delayed in 732 (46%). Factors associated with prolonged RTT were non-private health insurance (OR 1.3, P=.005) and treatment at non-academic facilities (OR 1.2, P=.045). Median OS and 5-year actuarial survival were significantly worse in patients with prolonged RTT compared with standard RTT (36 vs 51 months, P=.001; 39 vs 47%, P=.005); OS worsened with each cumulative week of delay (P<.0004). On multivariable analysis, prolonged RTT was associated with inferior OS (hazard ratio 1.2, P=.002); the intervals from surgery to radiation therapy initiation or completion were not. Prolonged RTT was particularly detrimental in patients with node positivity, inadequate nodal staging (<15 nodes examined), and those undergoing a cycle of chemotherapy before chemoradiation therapy. Conclusions: Delays during adjuvant radiation therapy appear to negatively impact survival in gastric cancer. Efforts to minimize cumulative interruptions to <7 days should be considered.

  10. Trauma facilities in Denmark

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  11. Review of differentiated approaches to antiretroviral therapy distribution.

    Science.gov (United States)

    Davis, Nicole; Kanagat, Natasha; Sharer, Melissa; Eagan, Sabrina; Pearson, Jennifer; Amanyeiwe, Ugochukwu Ugo

    2018-02-22

    In response to global trends of maximizing the number of patients receiving antiretroviral therapy (ART), this review summarizes literature describing differentiated models of ART distribution at facility and community levels in order to highlight promising strategies and identify evidence gaps. Databases and gray literature were searched, yielding thirteen final articles on differentiated ART distribution models supporting stable adult patients. Of these, seven articles focused on distribution at facility level and six at community level. Findings suggest that differentiated models of ART distribution contribute to higher retention, lower attrition, and less loss to follow-up (LTFU). These models also reduced patient wait time, travel costs, and time lost from work for drug pick-up. Facility- and community-level ART distribution models have the potential to extend treatment availability, enable improved access and adherence among people living with HIV (PLHIV), and facilitate retention in treatment and care. Gaps remain in understanding the desirability of these models for PLHIV, and the need for more information the negative and positive impacts of stigma, and identifying models to reach traditionally marginalized groups such as key populations and youth. Replicating differentiated care so efforts can reach more PLHIV will be critical to scaling these approaches across varying contexts.

  12. The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy

    CERN Document Server

    Parodi, K; Cerutti, F; Ferrari, A; Mairani, A; Paganetti, H; Sommerer, F

    2010-01-01

    Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect infor...

  13. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  14. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  15. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  16. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  17. Recent performance of the TRIUMF cyclotron and status of the facility

    International Nuclear Information System (INIS)

    Dutto, G.; Blackmore, E.W.; Carey, J.

    1995-09-01

    In December 1994, TRIUMF celebrated 20 years of operation. The peak intensity has been increased over the years to the present level of approximately 200 μA on beam line 1A. Polarized beam currents in excess of 20 μA are available although most users prefer lower intensity, higher quality slit-tailored polarized beams. The cyclotron simultaneously extracts three beams: one at 500 MeV for meson production, a lower intensity beam on beam line 4 for nuclear physics, nuclear chemistry, or astrophysics experiments, and a low energy beam (65-120 MeV, from a few nA up to 100 μA) on beam line 2C for isotope production or proton therapy. The yearly total integrated extracted beam current is now in the order of 600 mAh per year. Beam delivery is in excess of 5000 hours per year with beam availability consistently around 90%, serving as many as 8 experimental stations simultaneously. An additional simultaneous extraction line is planned for the new ISAC facility. With the present polarized beam current capability, the operation of polarized beams for the beam line 4 experiments will be possible simultaneously with the operation of the ISAC facility up to levels of 20 μA, 500 MeV, on target. Recent facility developments will also be reported. (author)

  18. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  19. Facility effluent monitoring plan for the tank farms facilities

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.; Kenoyer, J.L.; Moeller, M.P.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum three years. A variety of liquid wastes are generated in processing treatment, and disposal operations throughout the Hanford Site. The Tank Farms Project serves a major role in Hanford Site waste management activities as the temporary repository for these wastes. Stored wastes include hazardous components regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and as by-product material regulated under the Atomic Energy Act of 1954. A total of 177 single- and double-shell tanks (SST and DST) have been constructed in the 200 East and 200 West Areas of the Hanford Site. These facilities were constructed to various designs from 1943 to 1986. The Tank Farms Project is comprised of these tanks along with various transfer, receiving, and treatment facilities

  20. Insights into the Affordable Medicines Facility-malaria in Ghana: the role of caregivers and licensed chemical sellers in four regions.

    Science.gov (United States)

    Adjei, Andrew A; Winch, Peter; Laar, Amos; Sullivan, David J; Sakyi, Kwame S; Stephens, Judith K; Adjei, George O; Boateng, Isaac A; Aubyn, Vivian N Ama; Kubio, Chrysantus; Tuakli, Julliette; Vanotoo, Linda; Bortei, Bernard B; Amo-Addae, Maame; Sorvor, Felix; Coleman, Nathaniel; Dalglish, Sarah; Owusu, Richmond; Gebreyesus, Tsega; Essuman, Edward; Greene, Rebecca; Ankomah, Ezekiel; Houston, Kiely; Bart-Plange, Constance; Salamat, Samuel; Addison, Ebenezer A; Quakyi, Isabella A

    2016-05-10

    The Affordable Medicine Facility-malaria (AMFm) was an innovative global financing mechanism for the provision of quality-assured artemisinin-based combination therapy (ACT) across both the private and public health sectors in eight countries in sub-Saharan Africa. This study evaluated the effectiveness of AMFm subsidies in increasing access to ACT in Ghana and documented malaria management practices at the household and community levels during the implementation of the AMFm. This study, conducted in four regions in Ghana between January, 2011 to December, 2012, employed cross-sectional mixed-methods design that included qualitative and quantitative elements, specifically household surveys, focus group discussions (FGD) and in-depth interviews. The study indicated high ACT availability, adequate provider knowledge and reasonably low quality-assured ACT use in the study areas, all of which are a reflection of a high market share of ACT in these hard-to-reach areas of the country. Adequate recognition of childhood malaria symptoms by licensed chemical seller (LCS) attendants was observed. A preference by caregivers for LCS over health facilities for seeking treatment solutions to childhood malaria was found. Artemisinin-based combination therapy with the AMFm logo was accessible and affordable for most people seeking treatment from health facilities and LCS shops in rural areas. Caregivers and LCS were seen to play key roles in the health of the community especially with children under 5 years of age.

  1. Animal-assisted therapy for dementia: a review of the literature.

    Science.gov (United States)

    Filan, Susan L; Llewellyn-Jones, Robert H

    2006-12-01

    Animal-assisted therapy (AAT) is gaining popularity as part of therapy programs in residential aged care facilities. Humans and pet dogs respond to quiet interaction with a lowering of blood pressure and an increase in neurochemicals associated with relaxation and bonding. These effects may be of benefit in ameliorating behavioral and psychological symptoms of dementia (BPSD). Medline, PsychInfo and CINAHL databases (1960-2005) were searched for papers on AAT or pets and dementia. Publications of controlled trials that measured the effect of AAT for dementia were reviewed. Several small studies suggest that the presence of a dog reduces aggression and agitation, as well as promoting social behavior in people with dementia. One study has shown that aquaria in dining rooms of dementia care units stimulate residents to eat more of their meals and to gain weight but is limited by the small number of facilities studied. There is preliminary evidence that robotic pets may provide pleasure and interest to people with dementia. Current literature suggests that AAT may ameliorate BPSD, but the duration of the beneficial effect has not been explored. The relative benefits of "resident" versus "visiting" pet dogs are unclear and are confounded by the positive effect of pet interaction on staff or caregivers. Further research on the potential benefits of AAT is recommended.

  2. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  3. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  4. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  5. Speech language pathologists' opinions of constraint-induced language therapy.

    Science.gov (United States)

    Page, Stephen J; Wallace, Sarah E

    2014-01-01

    Constraint-induced language therapy (CILT) has received recent attention as a possible intervention to improve expressive language in people with nonfluent aphasia. Difficulties have been reported with the practical implementation of constraint-induced movement therapy due to its intensive treatment parameters. It remains unknown whether similar challenges may exist with CILT. To determine the opinions of speech-language pathologists (SLPs) about CILT for people with nonfluent aphasia. One hundred sixty-seven SLPs completed an electronic survey assessing their opinions of various aspects of CILT. Over 60% of participants felt that people with aphasia would be very unlikely or somewhat unlikely to adhere to CILT. The majority felt that people with aphasia would hold high or moderate concerns with the number of hours spent in therapy (high, 41.8%; moderate, 31.4%), the number of days spent in therapy (high, 44.4%; moderate, 24.8%), likelihood for managed care reimbursement (high, 74.8%; moderate, 15.2%), and other logistical issues (high, 39.2%; moderate, 30.7%). With respect to providing CILT, participants cited the number of hours of therapy (high, 37.3%; moderate, 21.6%) and the number of consecutive days of therapy (high, 29.4%; moderate, 20.3%) as concerns. There were 70.6% who indicated that their facilities lacked resources to provide CILT, and 90.9% felt that most facilitates do not have the resources to provide CILT. Some SLPs hold significant concerns with the administration of CILT, particularly related to its dosing and reimbursement parameters. Additional work is needed to investigate the issues that were identified in this survey using qualitative methods with SLPs and people with aphasia and to examine modified CILT protocols.

  6. Outline of NUCEF facility

    International Nuclear Information System (INIS)

    Takeshita, Isao

    1996-01-01

    NUCEF is a multipurpose research facility in the field of safety and advanced technology of nuclear fuel cycle back-end. Various experiment facilities and its supporting installations, in which nuclear fuel materials, radio isotopes and TRU elements can be handled, are arranged in more than one hundred rooms of two experiment buildings. Its construction was completed in middle of 1994 and hot experiments have been started since then. NUCEF is located on the site (30,000 m 2 ) of southeastern part in the Tokai Research Establishment of JAERI facing to the Pacific Ocean. The base of Experiment Buildings A and B was directly founded on the rock existing at 10-15 m below ground level taking the aseismatic design into consideration. Each building is almost same sized and composed of one basement and three floors of which area is 17,500 m 2 in total. In the basement, there are exhaust facilities of ventilation system, treatment system of solution fuel and radioactive waste solution and storage tanks of them. Major experiment facilities are located on the first or the second floors in each building. An air-inlet facility of ventilation system for each building is equipped on the third floor. Most of experiment facilities for criticality safety research including two critical facilities: Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) are installed in Experiment Building A. Experiment equipments for research on advanced fuel reprocessing process and on TRU waste management, which are named BECKY (Back End Fuel Cycle Key Elements Research Facility), are installed in laboratories and a-g cells in Experiment Building B. (J.P.N.)

  7. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  8. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  9. The Effects of Forest Therapy on Coping with Chronic Widespread Pain: Physiological and Psychological Differences between Participants in a Forest Therapy Program and a Control Group

    Directory of Open Access Journals (Sweden)

    Jin-Woo Han

    2016-02-01

    Full Text Available This study aimed to investigate the effects of a two-day forest therapy program on individuals with chronic widespread pain. Sixty one employees of a public organization providing building and facilities management services within the Seoul Metropolitan area participated in the study. Participants were assigned to an experimental group (n = 33 who participated in a forest therapy program or a control group (n = 28 on a non-random basis. Pre- and post-measures of heart rate variability (HRV, Natural Killer cell (NK cell activity, self-reported pain using the visual analog scale (VAS, depression level using the Beck Depression Inventory (BDI, and health-related quality of life measures using the EuroQol Visual Analog Scale (EQ-VAS were collected in both groups. The results showed that participants in the forest therapy group, as compared to the control group, showed physiological improvement as indicated by a significant increase in some measures of HRV and an increase in immune competence as indicated by NK cell activity. Participants in the forest therapy group also reported significant decreases in pain and depression, and a significant improvement in health-related quality of life. These results support the hypothesis that forest therapy is an effective intervention to relieve pain and associated psychological and physiological symptoms in individuals with chronic widespread pain.

  10. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    Palomaeki, J.; Ristimaeki, L.

    2013-10-01

    The purpose of the facility description is to be a specific summary report of the scope of Posiva's nuclear facilities (encapsulation plant and disposal facility) in Olkiluoto. This facility description is based on the 2012 designs and completing Posiva working reports. The facility description depicts the nuclear facilities and their operation as the disposal of spent nuclear fuel starts in Olkiluoto in about 2020. According to the decisions-in-principle of the government, the spent nuclear fuel from Loviisa and Olkiluoto nuclear power plants in operation and in future cumulative spent nuclear fuel from Loviisa 1 and 2, Olkiluoto 1, 2, 3 and 4 nuclear power plants, is permitted to be disposed of in Olkiluoto bedrock. The design of the disposal facility is based on the KBS-3V concept (vertical disposal). Long-term safety concept is based on the multi-barrier principle i.e. several release barriers, which ensure one another so that insufficiency in the performance of one barrier doesn't jeopardize long-term safety of the disposal. The release barriers are the following: canister, bentonite buffer and deposition tunnel backfill, and the host rock around the repository. The canisters are installed into the deposition holes, which are bored to the floor of the deposition tunnels. The canisters are enveloped with compacted bentonite blocks, which swell after absorbing water. The surrounding bedrock and the central and access tunnel backfill provide additional retardation, retention, and dilution. The nuclear facilities consist of an encapsulation plant and of underground final disposal facility including other aboveground buildings and surface structures serving the facility. The access tunnel and ventilation shafts to the underground disposal facility and some auxiliary rooms are constructed as a part of ONKALO underground rock characterization facility during years 2004-2014. The construction works needed for the repository start after obtaining the construction

  11. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  12. Utilization of RP-10 reactor for neutron therapy

    International Nuclear Information System (INIS)

    Paucar, R.; Nieto, M.; Parreno, F.; Vela, M.; Pozo, Z.

    1997-01-01

    In the Nuclear Energy Peruvian Institute, IPEN, a research area has established of Neutron Radiotherapy, know as NCT. This research joins the physics of particles (Neutrons and photons) and Medical Physics, and this one is an applied investigation where in considering the construction of a treatment hall in Huarangal (Peru) Reactor's irradiation facility, it can treat patients with brain tumors. In Neutron Therapy (NCT), it tries to use neutrons to destroy tumor cells where other therapeutic techniques are not effective. This process consist on to incise a neutrons beam of adequate characteristics over the tumor area of the patient. The neutrons used are of thermal energy and therefore irradiations are developed in experimental reactors. For this one, it is used horizontal channels prepared suitably. Before the irradiation, it is injected to the patient a substance which is absorbed by tumoral tissue. The substance components will be B-10, nuclide with an absorption cross section high to thermal neutrons (3837 b). The B-10 irradiate with thermal neutrons produce alpha particles of short reach (10 μm. on soft tissue) and with LET values (lineal energy transference) very high. The result is a cell preferential destruction which have absorbed the substance and it's next neighbors, like the cell size is 10 μm. This process as know as Boron Neutron Capture Therapy (BNCT). This work describes Peruvian RP-10 reactor and recently efforts to assess the design and feasibility of the medical neutron irradiation facility for NCT. (author). 22 refs., 6 tabs

  13. The Effect of Music Therapy in Patients with Huntington's Disease: A Randomized Controlled Trial.

    Science.gov (United States)

    van Bruggen-Rufi, Monique C H; Vink, Annemieke C; Wolterbeek, Ron; Achterberg, Wilco P; Roos, Raymund A C

    2017-01-01

    Music therapy may have beneficial effects on improving communication and expressive skills in patients with Huntington's disease (HD). Most studies are, however, small observational studies and methodologically limited. Therefore we conducted a multi-center randomized controlled trial. To determine the efficacy of music therapy in comparison with recreational therapy in improving quality of life of patients with advanced Huntington's disease by means of improving communication. Sixty-three HD-patients with a Total Functional Capacity (TFC) score of ≤7, admitted to four long-term care facilities in The Netherlands, were randomized to receive either group music therapy or group recreational therapy in 16 weekly sessions. They were assessed at baseline, after 8, 16 and 28 weeks using the Behaviour Observation Scale for Huntington (BOSH) and the Problem Behaviour Assessment-short version (PBA-s). A linear mixed model with repeated measures was used to compare the scores between the two groups. Group music therapy offered once weekly for 16 weeks to patients with Huntington's disease had no additional beneficial effect on communication or behavior compared to group recreational therapy. This was the first study to assess the effect of group music therapy on HD patients in the advanced stages of the disease. The beneficial effects of music therapy, recorded in many, mainly qualitative case reports and studies, could not be confirmed with the design (i.e. group therapy vs individual therapy) and outcome measures that have been used in the present study. A comprehensive process-evaluation alongside the present effect evaluation is therefore performed.

  14. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  15. Dose reporting in ion beam therapy. Proceedings of a meeting

    International Nuclear Information System (INIS)

    2007-06-01

    Following the pioneering work in Berkeley, USA, ion beam therapy for cancer treatment is at present offered in Chiba and Hyogo in Japan, and Darmstadt in Germany. Other facilities are coming close to completion or are at various stages of planning in Europe and Japan. In all these facilities, carbon ions have been selected as the ions of choice, at least in the first phase. Taking into account this fast development, the complicated technical and radiobiological research issues involved, and the hope it raises for some types of cancer patients, the IAEA and the International Commission on Radiation Units and measurements (ICRU) jointly sponsored a technical meeting held in Vienna, 23-24 June 2004. That first meeting was orientated mainly towards radiobiology: the relative biological effectiveness (RBE) of carbon ions versus photons, and related issues. One of the main differences between ion beam therapy and other modern radiotherapy techniques (such as proton beam therapy or intensity modulated radiation therapy) is related to radiobiology and in particular the increased RBE of carbon ions compared to both protons and photons (i.e., high linear energy transfer (LET) versus low LET radiation). Another important issue for international agencies and commissions, such as the IAEA and the ICRU, is a worldwide agreement and harmonisation for reporting the treatments. In order to evaluate the merits of ion beam therapy, it is essential that the treatments be reported in a similar/comparable way in all centres so that the clinical reports and protocols can be understood and interpreted without ambiguity by the radiation therapy community in general. For the last few decades, the ICRU has published several reports containing recommendations on how to report external photon beam or electron beam therapy, and brachytherapy. A report on proton beam therapy, jointly prepared by the ICRU and the IAEA, is now completed and is being published in the ICRU series. In line with this

  16. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  17. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  18. Malaria prevalence and treatment of febrile patients at health facilities and medicine retailers in Cameroon.

    Science.gov (United States)

    Mangham, Lindsay J; Cundill, Bonnie; Achonduh, Olivia A; Ambebila, Joel N; Lele, Albertine K; Metoh, Theresia N; Ndive, Sarah N; Ndong, Ignatius C; Nguela, Rachel L; Nji, Akindeh M; Orang-Ojong, Barnabas; Wiseman, Virginia; Pamen-Ngako, Joelle; Mbacham, Wilfred F

    2012-03-01

    To investigate the quality of malaria case management in Cameroon 5 years after the adoption of artemisinin-based combination therapy (ACT). Treatment patterns were examined in different types of facility, and the factors associated with being prescribed or receiving an ACT were investigated. A cross-sectional cluster survey was conducted among individuals of all ages who left public and private health facilities and medicine retailers in Cameroon and who reported seeking treatment for a fever. Prevalence of malaria was determined by rapid diagnostic tests (RDTs) in consenting patients attending the facilities and medicine retailers. Among the patients, 73% were prescribed or received an antimalarial, and 51% were prescribed or received an ACT. Treatment provided to patients significantly differed by type of facility: 65% of patients at public facilities, 55% of patients at private facilities and 45% of patients at medicine retailers were prescribed or received an ACT (P = 0.023). The odds of a febrile patient being prescribed or receiving an ACT were significantly higher for patients who asked for an ACT (OR = 24.1, P < 0.001), were examined by the health worker (OR = 1.88, P = 0.021), had not previously sought an antimalarial for the illness (OR = 2.29, P = 0.001) and sought treatment at a public (OR = 3.55) or private facility (OR = 1.99, P = 0.003). Malaria was confirmed in 29% of patients and 70% of patients with a negative result were prescribed or received an antimalarial. Malaria case management could be improved. Symptomatic diagnosis is inefficient because two-thirds of febrile patients do not have malaria. Government plans to extend malaria testing should promote rational use of ACT; though, the introduction of rapid diagnostic testing needs to be accompanied by updated clinical guidelines that provide clear guidance for the treatment of patients with negative test results. © 2011 Blackwell Publishing Ltd.

  19. Quality of malaria case management in Malawi: results from a nationally representative health facility survey.

    Science.gov (United States)

    Steinhardt, Laura C; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek

    2014-01-01

    Malaria is endemic throughout Malawi, but little is known about quality of malaria case management at publicly-funded health facilities, which are the major source of care for febrile patients. In April-May 2011, we conducted a nationwide, geographically-stratified health facility survey to assess the quality of outpatient malaria diagnosis and treatment. We enrolled patients presenting for care and conducted exit interviews and re-examinations, including reference blood smears. Moreover, we assessed health worker readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and antimalarials) to provide malaria case management. All analyses accounted for clustering and unequal selection probabilities. We also used survey weights to produce estimates of national caseloads. At the 107 facilities surveyed, most of the 136 health workers interviewed (83%) had received training on malaria case management. However, only 24% of facilities had functional microscopy, 15% lacked a thermometer, and 19% did not have the first-line artemisinin-based combination therapy (ACT), artemether-lumefantrine, in stock. Of 2,019 participating patients, 34% had clinical malaria (measured fever or self-reported history of fever plus a positive reference blood smear). Only 67% (95% confidence interval (CI): 59%, 76%) of patients with malaria were correctly prescribed an ACT, primarily due to missed malaria diagnosis. Among patients without clinical malaria, 31% (95% CI: 24%, 39%) were prescribed an ACT. By our estimates, 1.5 million of the 4.4 million malaria patients seen in public facilities annually did not receive correct treatment, and 2.7 million patients without clinical malaria were inappropriately given an ACT. Malawi has a high burden of uncomplicated malaria but nearly one-third of all patients receive incorrect malaria treatment, including under- and over-treatment. To improve malaria case management, facilities must at minimum have

  20. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  1. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  2. The situation of computer utilization in radiation therapy in Japan and other countries and problems

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1981-01-01

    The uses of computers in radiation therapy are various, such as radiation dose calculation, clinical history management, radiotherapeutical instrument automation and biological model. To grasp the situation in this field, a survey by questionnaire was carried out internationally at the time of the 7th International Conference on the Use of Computers in Radiation Therapy held in Kawasaki and Tokyo in September, 1980. The surveyed nations totaled 21 including Japan; the number of facilities answered were 203 in Japan and 111 in other countries, and the period concerned is December, 1979, to September, 1980. The results of the survey are described as follows: areas of use of computers in hospitals, computer utilization in radiation department, computer uses in radiation therapy, and evaluation of radiotherapeutical computer uses and problems. (J.P.N.)

  3. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  4. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  5. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  6. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  7. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  8. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  9. Status of RIB facilities in Asia

    International Nuclear Information System (INIS)

    Tanihata, Isao

    1998-01-01

    Radioactive Ion Beam Facilities in Asia are presented. In China, in-flight separation type facilities are in operation at the Institute of Modern Physics in Lanzhou and the other at Tandem facility in China Institute of Atomic Energy in Beijing. The storage-ring facility is proposed and approved in Lanzhou. In India, the Variable Energy Cyclotron Facility in Calcutta start to construct an ISOL-type facility. In Japan, in-flight separation type facilities are working at Research Center for Nuclear Physics in Osaka, and at RIKEN. Also a separator start its operation in medical facility in Chiba. In RIKEN, the construction of RI Beam Factory has been started. An ISOL-type facility is proposed in the Japan Hadron Facility in KEK. Table I summarize these facilities

  10. Biological dosimetry studies for boron neutron capture therapy at the RA-1 research reactor facility

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Castillo, Jorge

    2004-01-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminescent dosimeters to characterize the BNCT facility developed at the RA-1 research reactor operated by the National Atomic Energy Commission in Buenos Aires. Biological dosimetry was performed employing the hamster cheek pouch oral cancer model previously validated for BNCT studies by our group. Results indicate that the RA-1 neutron source produces useful dose rates for BNCT studies but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications. (author)

  11. Paul Scherrer Institute Scientific and Technical Report 1999. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Meyer, Rosa [eds.

    2000-07-01

    The department GFA (Grossforschungsanlagen, Large Research Facilities) has been established in October 1998. Its main duty is operation, maintenance and development of the PSI accelerators, the spallation neutron source and the beam transport systems for pions and muons. A large effort of this group concerns the planning and co-ordination of new projects like e.g. the assembly of the synchrotron light source (SLS), design studies of a new proton therapy facility, the ultracold neutron source and a new intensive secondary beam line for low energy muons. A large fraction of this report is devoted to research especially in the field of materials Science. The studies include large scale molecular dynamics computer simulations on the elastic and plastic behavior of nanostructured metals, complemented by experimental mechanical testing using micro-indentation and miniaturized tensile testing, as well as microstructural characterisation and strain field mapping of metallic coatings and thin ceramic layers, the latter done with synchrotron radiation.

  12. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-01-01

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand

  13. Paul Scherrer Institute Scientific and Technical Report 1999. Volume VI: Large Research Facilities

    International Nuclear Information System (INIS)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Meyer, Rosa

    2000-01-01

    The department GFA (Grossforschungsanlagen, Large Research Facilities) has been established in October 1998. Its main duty is operation, maintenance and development of the PSI accelerators, the spallation neutron source and the beam transport systems for pions and muons. A large effort of this group concerns the planning and co-ordination of new projects like e.g. the assembly of the synchrotron light source (SLS), design studies of a new proton therapy facility, the ultracold neutron source and a new intensive secondary beam line for low energy muons. A large fraction of this report is devoted to research especially in the field of materials Science. The studies include large scale molecular dynamics computer simulations on the elastic and plastic behavior of nanostructured metals, complemented by experimental mechanical testing using micro-indentation and miniaturized tensile testing, as well as microstructural characterisation and strain field mapping of metallic coatings and thin ceramic layers, the latter done with synchrotron radiation

  14. Evaluating malaria case management at public health facilities in two provinces in Angola.

    Science.gov (United States)

    Plucinski, Mateusz M; Ferreira, Manzambi; Ferreira, Carolina Miguel; Burns, Jordan; Gaparayi, Patrick; João, Lubaki; da Costa, Olinda; Gill, Parambir; Samutondo, Claudete; Quivinja, Joltim; Mbounga, Eliane; de León, Gabriel Ponce; Halsey, Eric S; Dimbu, Pedro Rafael; Fortes, Filomeno

    2017-05-03

    Malaria accounts for the largest portion of healthcare demand in Angola. A pillar of malaria control in Angola is the appropriate management of malaria illness, including testing of suspect cases with rapid diagnostic tests (RDTs) and treatment of confirmed cases with artemisinin-based combination therapy (ACT). Periodic systematic evaluations of malaria case management are recommended to measure health facility readiness and adherence to national case management guidelines. Cross-sectional health facility surveys were performed in low-transmission Huambo and high-transmission Uíge Provinces in early 2016. In each province, 45 health facilities were randomly selected from among all public health facilities stratified by level of care. Survey teams performed inventories of malaria commodities and conducted exit interviews and re-examinations, including RDT testing, of a random selection of all patients completing outpatient consultations. Key health facility readiness and case management indicators were calculated adjusting for the cluster sampling design and utilization. Availability of RDTs or microscopy on the day of the survey was 71% (54-83) in Huambo and 85% (67-94) in Uíge. At least one unit dose pack of one formulation of an ACT (usually artemether-lumefantrine) was available in 83% (66-92) of health facilities in Huambo and 79% (61-90) of health facilities in Uíge. Testing rates of suspect malaria cases in Huambo were 30% (23-38) versus 69% (53-81) in Uíge. Overall, 28% (13-49) of patients with uncomplicated malaria, as determined during the re-examination, were appropriately treated with an ACT with the correct dose in Huambo, compared to 60% (42-75) in Uíge. Incorrect case management of suspect malaria cases was associated with lack of healthcare worker training in Huambo and ACT stock-outs in Uíge. The results reveal important differences between provinces. Despite similar availability of testing and ACT, testing and treatment rates were lower in

  15. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  16. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  17. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  18. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  19. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  20. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  1. Experiences in occupational therapy with Afghan clients in Australia.

    Science.gov (United States)

    Maroney, Pamela; Potter, Marianne; Thacore, Vinod Rai

    2014-02-01

    With a steady increase of refugees arriving in Australia from Afghanistan coupled with reports that prevalence of mental illness amongst Afghan refugees in South-East Melbourne is particularly high, mental health providers will need to acquire cultural competence to provide effective treatment. There is a dearth of literature on the subject of rehabilitation of Afghan psychiatric clients in the Australian context, providing the impetus for this article. To illustrate the impact of Afghan socio-cultural beliefs and attitudes on the implementation of occupational therapy and rehabilitation programmes in a mental health facility and adaptations to accommodate the needs of the clients and their families. Two case vignettes of Afghan clients are presented to illustrate the variance in goals and expectations of the clients and their families to that of the occupational therapy and rehabilitation programmes offered. Family expectations and involvement, culture-specific factors and religion play significant roles in the presentation and treatment of clients from the Muslim culture and require modification in implementation of rehabilitation programmes. A need for developing family or community-based services is proposed coupled with culturally responsive practices. Culture sensitive models of occupational therapy will need to be developed as younger generations of refugee families acculturate and need psychological help to deal with conflicts with parents and elders who hold values different from those adopted by their children born and brought up in the Australian socio-cultural environment. These and other issues mentioned above provide fertile fields for research in this evolving area of occupational therapy. © 2014 Occupational Therapy Australia.

  2. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  3. On the need to develop a centralized system of antidote therapy

    OpenAIRE

    Ivashchenko, O.V.; Ustinova, L.A.; Kurdil, N.V.; Padalka, V.M.; Andrushchenko, V.V.

    2018-01-01

    Current toxicological situation in Ukraine is characterized by a sharp deterioration of chemical hazards. Today, significant areas of the state are in a direct chemical threat, which requires the immediate creation of an efficient reserve of antidote therapy in accordance with the current needs of the Armed Forces of Ukraine and medical institutions of the Ministry of Health of Ukraine. Almost all regions of Ukraine are at risk of disasters, due to the presence of chemical industrial faciliti...

  4. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  5. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  6. The CUTLASS database facilities

    International Nuclear Information System (INIS)

    Jervis, P.; Rutter, P.

    1988-09-01

    The enhancement of the CUTLASS database management system to provide improved facilities for data handling is seen as a prerequisite to its effective use for future power station data processing and control applications. This particularly applies to the larger projects such as AGR data processing system refurbishments, and the data processing systems required for the new Coal Fired Reference Design stations. In anticipation of the need for improved data handling facilities in CUTLASS, the CEGB established a User Sub-Group in the early 1980's to define the database facilities required by users. Following the endorsement of the resulting specification and a detailed design study, the database facilities have been implemented as an integral part of the CUTLASS system. This paper provides an introduction to the range of CUTLASS Database facilities, and emphasises the role of Database as the central facility around which future Kit 1 and (particularly) Kit 6 CUTLASS based data processing and control systems will be designed and implemented. (author)

  7. OPENMED: A facility for biomedical experiments based on the CERN Low Energy Ion Ring (LEIR)

    Science.gov (United States)

    Carli, Christian

    At present protons and carbon ions are in clinical use for hadron therapy at a growing number of treatment centers all over the world. Nevertheless, only limited direct clinical evidence of their superiority over other forms of radiotherapy is available [1]. Furthermore fundamental studies on biological effects of hadron beams have been carried out at different times (some a long time ago) in different laboratories and under different conditions. Despite an increased availability of ion beams for hadron therapy, beam time for preclinical studies is expected to remain insufficient as the priority for therapy centers is to treat the maximum number of patients. Most of the remaining beam time is expected to be required for setting up and measurements to guarantee appropriate good quality beams for treatments. The proposed facility for biomedical research [2] in support of hadron therapy centers would provide ion beams for interested research groups and allow them to carry out basic studies under well defined conditions. Typical studies would include radiobiological phenomena like relative biological effectiveness with different energies, ion species, and intensities. Furthermore possible studies include the development of advanced dosimetry in heterogeneous materials that resemble the human body, imaging techniques and, at a later stage, when the maximum energy with the LEIR magnets can be reached, fragmentation.

  8. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  9. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  10. AOV Facility Tool/Facility Safety Specifications -

    Data.gov (United States)

    Department of Transportation — Develop and maintain authorizing documents that are standards that facilities must follow. These standards are references of FAA regulations and are specific to the...

  11. 202-S Hexone Facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the 202-S Hexone Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. The 202-S Hexone Facility is not used to process radioactive or nonradioactive hazardous material. Radioactive, dangerous waste material is contained in two underground storage tanks, 276-S-141 and 276-S-142. These tanks do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 202-S Hexone Facility

  12. 9 CFR 351.10 - Facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Facilities. 351.10 Section 351.10... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be...

  13. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    International Nuclear Information System (INIS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H.U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J.P.M.

    2001-01-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design, we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components

  14. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  15. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    International Nuclear Information System (INIS)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. (author)

  16. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  17. The National Ignition Facility (NIF) as a User Facility

    Science.gov (United States)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  18. Challenges for proteomics core facilities.

    Science.gov (United States)

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 7 CFR 58.127 - Facilities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Facilities. 58.127 Section 58.127 Agriculture..., Facilities, Equipment and Utensils § 58.127 Facilities. (a) Water supply. There shall be an ample supply of both hot and cold water of safe and sanitary quality, with adequate facilities for its proper...

  20. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  1. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  2. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  3. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  4. A retrospective, descriptive study of shoulder outcomes in outpatient physical therapy.

    Science.gov (United States)

    Millar, A Lynn; Lasheway, Philip A; Eaton, Wendy; Christensen, Frances

    2006-06-01

    A retrospective, descriptive study of clients with shoulder dysfunction referred to physical therapy. To (1) describe the clinical and functional outcomes of clients with shoulder dysfunction following outpatient physical therapy, and (2) to compare the outcomes by type of shoulder dysfunction. Although individuals with shoulder dysfunction are commonly referred to physical therapy few large descriptive studies regarding outcomes following physical therapy are available. Data for 878 clients (468 female, 410 male) were retrieved and analyzed. This database was developed between 1997 and 2000 and included 4 outpatient facilities from 1 healthcare system in the southwest corner of Michigan. Clients were classified by type of shoulder dysfunction, and standardized tests were performed upon admittance and discharge to physical therapy. Descriptive and inferential statistics were calculated for all data. Of all clients, 55.1% had shoulder impingement, while 18.3% had postoperative repair, 8.9% had a frozen shoulder, 7.6% had a rotator cuff tear, 3.0% had shoulder instability, 2.1% were post fracture, and the remaining 4.9% had miscellaneous diagnoses. The average (+/-SD) age of the patients was 53.6 +/- 16.4 years, with an average (+/-SD) number of treatment sessions of 13.7 +/- 11.0. All groups showed significant changes following physical therapy intervention. Clients with diverse types of shoulder dysfunction demonstrated improvement in both clinical and functional measures at the conclusion of physical therapy, although it is not possible to determine whether these changes were due to the interventions or due to time. The type of shoulder dysfunction appears to affect the prognosis, thus expected outcomes should be based upon initial diagnosis and specific measures.

  5. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  6. Dementia wander garden aids post cerebrovascular stroke restorative therapy: a case study.

    Science.gov (United States)

    Detweiler, Mark B; Warf, Carlena

    2005-01-01

    An increasing amount of literature suggests the positive effects of nature in healthcare. The extended life expectancy in the US and the consequent need for long-term care indicates a future need for restorative therapy innovations to reduce the expense associated with long-term care. Moving carefully selected stroke patients' sessions to the peaceful setting of a dementia wander garden, with its designed paths and natural stimuli, may be beneficial. Natural settings have been shown to improve attention and reduce stress--both important therapy objectives in many post-stroke rehabilitation programs. In this case study, using the dementia wander garden for restorative therapy of a non-dementia patient was a novel idea for the restorative therapy group, which does not have a horticultural therapy program. The dementia wander garden stage of the post-stroke rehabilitation helped the patient through a period of treatment resistance. The garden provided both an introduction to the patient's goal of outdoor rehabilitation and a less threatening environment than the long-term care facility hallways. In part because the patient was less self-conscious about manifesting his post-stroke neurological deficits, falling, and being viewed as handicapped when in the dementia wander garden setting, he was able to resume his treatment plan and finish his restorative therapy. In many physical and mental rehabilitation plans, finding a treatment modality that will motivate an individual to participate is a principal goal. Use of a dementia wander garden may help some patients achieve this goal in post-stroke restorative therapy.

  7. [Therapy-resistant and therapy-refractory arterial hypertension].

    Science.gov (United States)

    Wallbach, M; Koziolek, M J

    2018-05-02

    Therapy-resistant and therapy-refractory arterial hypertension differ in prevalence, pathogenesis, prognosis and therapy. In both cases, a structured approach is required, with the exclusion of pseudoresistance and, subsequently, secondary hypertension. Resistant hypertension has been reported to be more responsive to intensified diuretic therapy, whereas refractory hypertension is presumed to require sympathoinhibitory therapy. Once the general measures and the drug-based step-up therapy have been exhausted, interventional procedures are available.

  8. Irradiation facilities in JRR-3M

    International Nuclear Information System (INIS)

    Ohtomo, Akitoshi; Sigemoto, Masamitsu; Takahashi, Hidetake

    1992-01-01

    Irradiation facilities have been installed in the upgraded JRR-3 (JRR-3M) in Japan Atomic Energy Research Institute (JAERI). There are hydraulic rabbit facilities (HR), pneumatic rabbit facilities (PN), neutron activation analysis facility (PN3), uniform irradiation facility (SI), rotating irradiation facility and capsule irradiation facilities to carry out the neutron irradiation in the JRR-3M. These facilities are operated using a process control computer system to centerize the process information. Some of the characteristics for the facilities were satisfactorily measured at the same time of reactor performance test in 1990. During reactor operation, some of the tests are continued to confirm the basic characteristics on facilities, for example, PN3 was confirmed to have enough performance for activation analysis. Measurement of neutron flux at all irradiation positions has been carried out for the equilibrium core. (author)

  9. Measurements of Loma Linda proton therapy gantry dipoles

    International Nuclear Information System (INIS)

    Glass, H.D.; Mazur, P.O.; Sim, J.W.

    1993-01-01

    The authors describe the procedures used by the Fermilab Magnet Test Facility (MTF) to perform tests of dipoles to be installed in the beam lines of the Loma Linda Univ. Medical Center Proton Therapy Facility. The dipoles were manufactured in two styles, one style having a 45 degrees bending angle and the other a 135 degrees bending angle. The tests included magnetic field measurements using a Hall probe and the measurement of coil temperatures, voltages, and water flow rates. The probe was mounted on a movable cart which could be wheeled along the magnet beam pipe; they mounted extensions onto each end of the beam pipe to allow for the probe to measure the magnet end fields. The probe was also mounted at varying transverse positions on the cart to allow for field shape measurements, from which body quadrupole and sextupole coefficients were determined. A longitudinal sampling of the field down the entire length of the magnet allowed the authors to measure the total integrated field of each magnet. Hall probe measurements were controlled by a C program running on a Unix workstation

  10. Measurements of Loma Linda proton therapy gantry dipoles

    International Nuclear Information System (INIS)

    Glass, H.D.; Mazur, P.O.; Sim, J.W.

    1993-07-01

    We describe the procedures used by the Fermilab Magnet Test Facility (MTF) to perform tests of dipoles to be installed in the beam lines of the Loma Linda University Medical Center Proton Therapy Facility. The dipoles were manufactured in two styles, one style having a 45 degree bending angle and the other a 135 degree bending angle. The tests included magnetic field measurements using a Hall probe and the measurement of coil temperatures, voltages, and water flow rates. The probe was mounted on a movable cart which could be wheeled along the magnet beam pipe; we mounted extensions onto each end of the beam pipe to allow for the probe to measure the magnet end fields. The probe was also mounted at varying transverse positions on the cart to allow for field shape measurements, from which body quadrupole and sextupole coefficients were determined. A longitudinal sampling of the field down the entire length of the magnet allowed us to measure the total integrated field of each magnet. Hall probe measurements were controlled by a C program running on a Unix workstation

  11. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  12. State of the art: nursing knowledge and electroconvulsive therapy.

    Science.gov (United States)

    Froimson, L; Creed, P; Mathew, L

    1995-09-01

    Nursing services attempting to develop standards for their own facilities will find limited literature specific to nursing and electroconvulsive therapy (ECT) in American publications. From 1966 to December 1994, there were only 19 publications in American nursing journals that provide a specific focus on nursing and ECT. Only one of these articles reported research findings. Twenty-seven citations in Convulsive Therapy included nurse contributors. While the APA Task Force on the Practice of ECT has addressed educational needs of nursing and technical elements of the procedure, there do not currently exist specific standards for nursing practice in ECT. Concerns salient to nursing that have generated articles by nurses include instruction of patients, support to patients and families, safety of patients, assessment of clinical status, informed consent, and nurses' and patients' attitudes about ECT. Nurses are encouraged to join their physician-colleagues in developing and disseminating the information needed for the field of nursing to contribute its own expertise to the care of patients receiving ECT.

  13. 21 CFR 606.40 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Facilities. 606.40 Section 606.40 Food and Drugs... GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Plant and Facilities § 606.40 Facilities. Facilities shall be maintained in a clean and orderly manner, and shall be of suitable size, construction and...

  14. Perceptions of hyperbaric oxygen therapy among podiatrists practicing in high-risk foot clinics.

    Science.gov (United States)

    Henshaw, Frances R; Brennan, Lauren; MacMillan, Freya

    2018-01-03

    Foot ulceration is a devastating and costly consequence of diabetes. Hyperbaric oxygen therapy is recognised as an adjunctive therapy to treat diabetes-related foot ulceration, yet uptake is low. Semi-structured interviews were conducted with 16 podiatrists who manage patients with foot ulcers related to diabetes to explore their perceptions of, and the barriers/facilitators to, referral for hyperbaric oxygen. Podiatrists cited logistical issues such as location of facilities as well as poor communication pathways, lack of delegation and lack of follow up when patients presented for hyperbaric treatment. In general, podiatrists had an understanding of the premise of hyperbaric oxygen therapy and evidence to support its use but could only provide very limited citations of key papers and guidelines to support their position. Podiatrists stated that they felt a patient was lost from their care when referred for hyperbaric oxygen and that aftercare might not be adequate. Improved referral and delegation pathways for patients presenting for hyperbaric oxygen, as well as the provision of easily accessible evidence to support this therapy, could help to increase podiatrists' confidence in deciding whether or not to recommend their patients for hyperbaric oxygen therapy. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  16. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  17. Monte Carlo Simulations of New 2D Ripple Filters for Particle Therapy Facilities

    DEFF Research Database (Denmark)

    Ringbæk, Toke Printz; Weber, Uli; Petersen, Jørgen B.B.

    2014-01-01

    ). At the Universitätsklinikum Gießen und Marburg, Germany, a new second generation RiFi has been developed with two-dimensional groove structures. In this work we evaluate this new RiFi design. Methods: The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi- induced inhomogeneities in the dose distribution...... for various ion types, initial particle energies and distances from the RiFi to the phantom surface as well as in the depth of the phantom. The beam delivery and monitor system (BAMS) used at Marburg, the Heidelberg Ionentherapiezentrum (HIT), Universit ̈tsklinikum Heidelberg, Germany and the GSI...... Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany is modeled and simulated. To evaluate the PTV dose coverage performance of the new RiFi design, the heavy ion treatment planning system TRiP98 is used for dose optimization. SHIELD-HIT12A is used to prepare the facility-specific physical dose kernels...

  18. Requirements of on-site facilities

    International Nuclear Information System (INIS)

    Burchardt, H.

    1977-01-01

    1) Requirements of on-site facilities: a) brief description of supplying the site with electricity and water; communication facilities, b) necessary facilities for containment and pipeline installation, c) necessary facilities for storage, safety, accommodation of personnel, housing; workshops; 2) Site management: a) Organisation schedules for 'turn-key-jobs' and 'single commission', b) Duties of the supervisory staff. (orig.) [de

  19. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  20. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  1. Effects of an integrated geriatric group balance class within an entry-level Doctorate of Physical Therapy program on students’ perceptions of geriatrics and geriatric education in the United States

    OpenAIRE

    Jennifer C. Reneker; Kyra Weems; Vincent Scaia

    2016-01-01

    This study was aimed at determining the effect of an integrated group balance class for community-dwelling older adults within entry-level physical therapist coursework on student perceptions of geriatric physical therapy and geriatric physical therapy education. Twenty-nine Doctor of Physical Therapy (DPT) students, 21–33 years old, in their second year of coursework in 2012, participated in an integrated clinical experience with exposure to geriatric patients at an outpatient facility at th...

  2. STTARR: a radiation treatment and multi-modal imaging facility for fast tracking novel agent development in small animal models

    International Nuclear Information System (INIS)

    Yeung, Ivan; McKee, Trevor; Jaffray, David; Hill, Richard

    2014-01-01

    Small animal models play a pivotal role in the pipeline development of novel agents and strategies in personalized cancer therapy. The Spatio-Temporal Targeting and Amplification of Radiation Response Program (STTARR) consists of an animal imaging and precision radiation facility designed to provide innovative biologic imaging and targeted radiation treatment strategies in small animals. The design is to mirror the imaging and radiation treatment facility in a modern cancer center. The STTARR features imaging equipment of small animal scale including CT, MRI, PET, SPECT, Optical devices as well as image guided irradiators. The fleet of imaging and irradiation equipment provides a platform for identification of biological targets of the specific molecular pathways that influence both tumor progression and a patient's response to radiation therapy. Examples will be given in the utilization of the imaging facilities for development in novel approaches in cancer therapy including a PET-FAZA study for hypoxia measurement in a pancreatic adenocarcinoma xenograft model. In addition, the cone-beam image guided small animal irradiator developed at our institute will also be described. The animal platform (couch) provides motion in 3 dimensions to position the animal to the isocentre of the beam. A pair of rotational arms supporting the X-ray/detector pair enables acquisition of cone-beam images of the animal which give rise to image guided precision of 0.5 mm. The irradiation energy ranges from 50 to 225 kVp at a dose rate from 10-400 cGy/min. The gantry is able to direct X-ray beam of different directions to give conformal radiation treatment to the animal. A dedicated treatment planning system is able to perform treatment planning and provide commonly used clinical metrics in the animal treatment plan. Examples will be given to highlight the use of the image guided irradiator for research of drug/irradiation regimen in animal models. (author)

  3. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  4. Infectious Diseases in Older Adults of Long-Term Care Facilities: Update on Approach to Diagnosis and Management.

    Science.gov (United States)

    Jump, Robin L P; Crnich, Christopher J; Mody, Lona; Bradley, Suzanne F; Nicolle, Lindsay E; Yoshikawa, Thomas T

    2018-04-01

    The diagnosis, treatment, and prevention of infectious diseases in older adults in long-term care facilities (LTCFs), particularly nursing facilities, remains a challenge for all health providers who care for this population. This review provides updated information on the currently most important challenges of infectious diseases in LTCFs. With the increasing prescribing of antibiotics in older adults, particularly in LTCFs, the topic of antibiotic stewardship is presented in this review. Following this discussion, salient points on clinical relevance, clinical presentation, diagnostic approach, therapy, and prevention are discussed for skin and soft tissue infections, infectious diarrhea (Clostridium difficile and norovirus infections), bacterial pneumonia, and urinary tract infection, as well as some of the newer approaches to preventive interventions in the LTCF setting. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.

  5. Associations between Moderate-to-Vigorous Physical Activity and Neighbourhood Recreational Facilities: The Features of the Facilities Matter

    Directory of Open Access Journals (Sweden)

    Ka Yiu Lee

    2014-12-01

    Full Text Available Objectives: To examine the associations between objectively-assessed moderate-to-vigorous physical activity (MVPA and perceived/objective measures of neighbourhood recreational facilities categorized into indoor or outdoor, public, residential or commercial facilities. The associations between facility perceptions and objectively-assessed numbers of recreational facilities were also examined. Method: A questionnaire was used on 480 adults to measure local facility perceptions, with 154 participants wearing ActiGraph accelerometers for ≥4 days. The objectively-assessed number of neighbourhood recreational facilities were examined using direct observations and Geographical Information System data. Results: Both positive and negative associations were found between MVPA and perceived/objective measures of recreational facilities. Some associations depended on whether the recreational facilities were indoor or outdoor, public or residential facilities. The objectively-assessed number of most public recreational facilities was associated with the corresponding facility perceptions, but the size of effect was generally lower than for residential recreational facilities. Conclusions: The objectively-assessed number of residential outdoor table tennis courts and public indoor swimming pools, the objectively-assessed presence of tennis courts and swimming pools, and the perceived presence of bike lanes and swimming pools were positive determinants of MVPA. It is suggested to categorize the recreational facilities into smaller divisions in order to identify unique associations with MVPA.

  6. WORKSHOPS: Hadron facilities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities

  7. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N.; Ballarini, F.; Bortolussi, S.; De Bari, A.; Stella, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Nuclear Physics National Institute (INFN), Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bakeine, J.G.; Cansolino, L.; Clerici, A.M. [Laboratory of Experimental Surgery, Department of Surgery, University of Pavia, Pavia (Italy)

    2011-07-01

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  8. Investigating walking environments in and around assisted living facilities: a facility visit study.

    Science.gov (United States)

    Lu, Zhipeng

    2010-01-01

    This study explores assisted living residents' walking behaviors, locations where residents prefer to walk, and walking environments in and around assisted living facilities. Regular walking is beneficial to older adults' physical and psychological health. Yet frail older residents in assisted living are usually too sedentary to achieve these benefits. The physical environment plays an important role in promoting physical activity. However, there is little research exploring this relationship in assisted living settings. The researcher visited 34 assisted living facilities in a major Texas city. Methods included walk-through observation with the Assisted Living Facility Walking Environment Checklist, and interviews with administrators by open- and close-ended questions. The data from 26 facilities were analyzed using descriptive statistics (for quantitative data) and content analysis (for qualitative data). The results indicate that (a) residents were walking both indoors and outdoors for exercise or other purposes (e.g., going to destinations); (b) assisted living facility planning and design details-such as neighborhood sidewalk conditions, facility site selection, availability of seating, walking path configuration (e.g., looped/nonlooped path), amount of shading along the path, presence of handrails, existence of signage, etc.-may influence residents' walking behaviors; and (c) current assisted living facilities need improvement in all aspects to make their environments more walkable for residents. Findings of the study provide recommendations for assisted living facilities to improve the walkability of environments and to create environmental interventions to promote regular walking among their residents. This study also implies several directions for future research.

  9. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  10. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  11. Electroconvulsive therapy practice in Ukraine.

    Science.gov (United States)

    Olekseev, Aleksey; Ungvari, Gabor S; Gazdag, Gábor

    2014-09-01

    Patterns of electroconvulsive therapy (ECT) use have recently been extensively surveyed in Central-Eastern Europe. However, data from post-USSR countries are limited. This study aimed to survey ECT practice in Ukraine. All psychiatric services in Ukraine were identified and contacted to obtain information on the use of ECT in 2011 using a 22-item questionnaire. Of the 146 psychiatric inpatient facilities, only 5 confirmed that they performed ECT in 2011. Three other services also performed ECT but refused to provide further information. In the only private psychiatric institute where ECT was offered, 14.28% of inpatients received this treatment in 2011, whereas the corresponding figure in the 6 public psychiatric facilities was a mere 0.4%. Three centers used unmodified ECT, and only 2 centers had equipment that monitored electroencephalogram. In 7 services, in line with international recommendations, affective disorders were the first indications for ECT in Ukraine, whereas uncommon indications such as anorexia or Parkinsonism were also reported. This was the first survey of ECT practice conducted in Ukraine. The provision of ECT in only 8 centers is clearly insufficient for a large country such as Ukraine, which is reflected in the low rate of inpatients treated with ECT. The very limited availability of this effective treatment modality should be addressed by the Ukrainian health authorities.

  12. Investigation on candidates of principal facilities for exposure dose to public for the facilities using nuclear material

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Takada, Shoji; Fujimoto, Nozomu

    2015-01-01

    HTTR holds the nuclear fuel material use facilities in its reactor facilities, for the purpose of study on the fracture behavior of fuel and release behavior of fission products, development of high-performance fuel, and measurement of neutron flux. Due to the revision of the 'Act on the regulation of nuclear source material, nuclear fuel material and reactor', the facilities having the 'Important safety-related facilities' among the facilities applicable to the Enforcement Ordinance Article 41 (Article 41 facilities) has come to need to conform to the 'Regulations concerning standards for the location, structure, and equipment of used facilities and others'. In this case, actions such as modification by all possible means are required. The nuclear fuel substance use facilities of HTTR correspond to Article 41 facilities. So, whether it is a candidate for the 'Important safety-related facilities' has been examined. As a result, it is confirmed that the facilities are not correspond to the 'Important safety-related facilities', and it has been concluded that modification measures for the purpose of conforming to this approval standard rule are not necessary as of the present. (A.O.)

  13. [CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility].

    Science.gov (United States)

    Viertl, David; Buchegger, Franz; Prior, John O; Forni, Michel; Morel, Philippe; Ratib, Osman; Bühler Léo H; Stora, Thierry

    2015-06-17

    CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.

  14. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  15. 33 CFR 154.1216 - Facility classification.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  16. Art Therapy: What Is Art Therapy?

    Science.gov (United States)

    ... individual, couples, family, and group therapy formats. Art therapy is an effective treatment for people experiencing developmental, medical, educational, and social or psychological impairment. Individuals who benefit from art therapy include ...

  17. Impact of travel distance to the treatment facility on overall mortality in US patients with prostate cancer.

    Science.gov (United States)

    Vetterlein, Malte W; Löppenberg, Björn; Karabon, Patrick; Dalela, Deepansh; Jindal, Tarun; Sood, Akshay; Chun, Felix K-H; Trinh, Quoc-Dien; Menon, Mani; Abdollah, Firas

    2017-09-01

    The objective of this study was to investigate the impact of travel distance to the treating facility on the risk of overall mortality (OM) among US patients with prostate cancer (PCa). In total, 775,999 patients who had PCa in all stages and received treatment with different strategies (radical prostatectomy, radiation therapy, observation, androgen-deprivation therapy, multimodal treatment, and chemotherapy) were drawn from the National Cancer Data Base from 2004 through 2012. Independent predictors of travel distance (intermediate [12.5-49.9 miles] and long [49.9-249.9 miles] vs short[traveled short, intermediate, and long distances, respectively. Residency in rural areas and the receipt of treatment at academic/high-volume centers independently predicted long travel distance. Non-Hispanic black men and Medicaid-insured men were less likely to travel long distances (all P traveling a long distance (hazard ratio, 0.87; 95% confidence interval, 0.83-0.92; P traveling a short distance. This held true among non-Hispanic white men; privately insured and Medicare-insured men; those who underwent radical prostatectomy, received radiation therapy, and received multimodal strategies; and those who received treatment at academic/high-volume centers (P travel distance was associated with an increased OM in Medicaid-insured patients (P traveled long distances for PCa treatment, which is likely to be a reflection of centralization of care and more favorable patient-level characteristics in those travelers. Furthermore, the survival benefit mediated by long travel distances appears to be influenced by baseline socioeconomic, treatment, and facility-level factors. Cancer 2017;123:3241-52. © 2017 American Cancer Society. © 2017 American Cancer Society.

  18. Scaling-up antiretroviral therapy in Malawi.

    Science.gov (United States)

    Jahn, Andreas; Harries, Anthony D; Schouten, Erik J; Libamba, Edwin; Ford, Nathan; Maher, Dermot; Chimbwandira, Frank

    2016-10-01

    In Malawi, health-system constraints meant that only a fraction of people infected with human immunodeficiency virus (HIV) and in immediate need of antiretroviral treatment (ART) received treatment. In 2004, the Malawian Ministry of Health launched plans to scale-up ART nationwide, adhering to the principle of equity to ensure fair geographical access to therapy. A public health approach was used with standardized training and treatment and regular supervision and monitoring of the programme. Before the scale-up, an estimated 930 000 people in Malawi were HIV-infected, with 170 000 in immediate need of ART. About 3000 patients were on ART in nine clinics. By December 2015, cumulatively 872 567 patients had been started on ART from 716 clinics, following national treatment protocols and using the standard monitoring system. Strong national leadership allowed the ministry of health to implement a uniform system for scaling-up ART and provided benchmarks for implementation on the ground. New systems of training staff and accrediting health facilities enabled task-sharing and decentralization to peripheral health centres and a standardized approach to starting and monitoring ART. A system of quarterly supervision and monitoring, into which operational research was embedded, ensured stocks of drug supplies at facilities and adherence to national treatment guidelines.

  19. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  20. 18 CFR 1317.410 - Comparable facilities.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comparable facilities... facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such facilities provided...

  1. Service quality in contracted facilities.

    Science.gov (United States)

    Rabbani, Fauziah; Pradhan, Nousheen Akber; Zaidi, Shehla; Azam, Syed Iqbal; Yousuf, Farheen

    2015-01-01

    The purpose of this paper is to explore the readiness of contracted and non-contracted first-level healthcare facilities in Pakistan to deliver quality maternal and neonatal health (MNH) care. A balanced scorecard (BSC) was used as the assessment framework. Using a cross-sectional study design, two rural health centers (RHCs) contracted out to Aga Khan Health Service, Pakistan were compared with four government managed RHCs. A BSC was designed to assess RHC readiness to deliver good quality MNH care. In total 20 indicators were developed, representing five BSC domains: health facility functionality, service provision, staff capacity, staff and patient satisfaction. Validated data collection tools were used to collect information. Pearson χ2, Fisher's Exact and the Mann-Whitney tests were applied as appropriate to detect significant service quality differences among the two facilities. Contracted facilities were generally found to be better than non-contracted facilities in all five BSC domains. Patients' inclination for facility-based delivery at contracted facilities was, however, significantly higher than non-contracted facilities (80 percent contracted vs 43 percent non-contracted, p=0.006). The study shows that contracting out initiatives have the potential to improve MNH care. This is the first study to compare MNH service delivery quality across contracted and non-contracted facilities using BSC as the assessment framework.

  2. 75 FR 50880 - TRICARE: Non-Physician Referrals for Physical Therapy, Occupational Therapy, and Speech Therapy

    Science.gov (United States)

    2010-08-18

    ... 0720-AB36 TRICARE: Non-Physician Referrals for Physical Therapy, Occupational Therapy, and Speech... referrals of beneficiaries to the Military Health System for physical therapy, occupational therapy, and... practitioners will be allowed to issue referrals to patients for physical therapy, occupational therapy, and...

  3. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  4. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  5. Design of small-animal thermal neutron irradiation facility at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Liu, H.B.

    1996-01-01

    The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation Facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 x 10 10 n/cm 2 ·s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 x 10 -11 cGy·cm 2 /n th ) and fast neutron (0.58 x 10 -11 cGy·cm 2 /n th ) contaminations, 64 and 19% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed

  6. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  7. 75 FR 55574 - Joint Public Roundtable on Swap Execution Facilities and Security-Based Swap Execution Facilities

    Science.gov (United States)

    2010-09-13

    ...; File No. 4-612] Joint Public Roundtable on Swap Execution Facilities and Security-Based Swap Execution Facilities AGENCY: Commodity Futures Trading Commission (``CFTC'') and Securities and Exchange Commission... discuss swap execution facilities and security-based swap execution facilities in the context of certain...

  8. 9 CFR 3.27 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.27 Section 3.27... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  9. Global Environment Facility |

    Science.gov (United States)

    environment Countries pledge US$4.1 billion to the Global Environment Facility Ringtail lemur mom with two of paradise Nations rally to protect global environment Countries pledge US$4.1 billion to the Global Environment Facility Stockholm, Sweden birds-eye view Events GEF-7 Replenishment Trung Truong Son Landscapes

  10. Realities of proximity facility siting

    International Nuclear Information System (INIS)

    DeMott, D.L.

    1981-01-01

    Numerous commercial nuclear power plant sites have 2 to 3 reactors located together, and a group of Facilities with capabilities for fuel fabrication, a nuclear reactor, a storage area for spent fuel, and a maintenance area for contaminated equipment and radioactive waste storage are being designed and constructed in the US. The proximity of these facilities to each other provides that the ordinary flow of materials remain within a limited area. Interactions between the various facilities include shared resources such as communication, fire protection, security, medical services, transportation, water, electrical, personnel, emergency planning, transport of hazardous material between facilities, and common safety and radiological requirements between facilities. This paper will explore the advantages and disadvantages of multiple facilities at one site. Problem areas are identified, and recommendations for planning and coordination are discussed

  11. CERN-MEDICIS (Medical Isotopes Collected from ISOLDE: A New Facility

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel dos Santos Augusto

    2014-05-01

    Full Text Available About 50% of the 1.4 GeV CERN (European Organization for Nuclear Research, www.cern.ch protons are sent onto targets to produce radioactive beams by online mass separation at the Isotope Separator Online Device (ISOLDE facility, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to Phase I trials. Five hundred megabecquerel isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. A possible future upgrade with gigabecquerel pharmaceutical-grade i.e., current good manufacturing practices (cGMP batch production capabilities is finally presented.

  12. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  13. A standards-based approach to quality improvement for HIV services at Zambia Defence Force facilities: results and lessons learned.

    Science.gov (United States)

    Kols, Adrienne; Kim, Young-Mi; Bazant, Eva; Necochea, Edgar; Banda, Joseph; Stender, Stacie

    2015-07-01

    The Zambia Defence Force adopted the Standards-Based Management and Recognition approach to improve the quality of the HIV-related services at its health facilities. This quality improvement intervention relies on comprehensive, detailed assessment tools to communicate and verify adherence to national standards of care, and to test and implement changes to improve performance. A quasi-experimental evaluation of the intervention was conducted at eight Zambia Defence Force primary health facilities (four facilities implemented the intervention and four did not). Data from three previous analyses are combined to assess the effect of Standards-Based Management and Recognition on three domains: facility readiness to provide services; observed provider performance during antiretroviral therapy (ART) and antenatal care consultations; and provider perceptions of the work environment. Facility readiness scores for ART improved on four of the eight standards at intervention sites, and one standard at comparison sites. Facility readiness scores for prevention of mother-to-child transmission (PMTCT) of HIV increased by 15 percentage points at intervention sites and 7 percentage points at comparison sites. Provider performance improved significantly at intervention sites for both ART services (from 58 to 84%; P improved at intervention sites and declined at comparison sites; differences in trends between study groups were significant for eight items. A standards-based approach to quality improvement proved effective in supporting healthcare managers and providers to deliver ART and PMTCT services in accordance with evidence-based standards in a health system suffering from staff shortages.

  14. Microbeam radiation therapy. Physical and biological aspects of a new cancer therapy and development of a treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan

    2014-11-05

    Microbeam Radiation Therapy (MRT) is a novel treatment strategy against cancer. Highly brilliant synchrotron radiation is collimated to parallel, a few micrometre wide, planar beams and used to irradiate malignant tissues with high doses. The applied peak doses are considerably higher than in conventional radiotherapy, but valley doses between the beams remain underneath the established tissue tolerance. Previous research has shown that these beam geometries spare normal tissue, while being effective in tumour ablation. In this work physical and biological aspects of the therapy were investigated. A therapy planning system was developed for the first clinical treatments at the European Synchrotron Radiation Facility in Grenoble (France) and a dosimetry method based on radiochromic films was created to validate planned doses with measurements on a micrometre scale. Finally, experiments were carried out on a cellular level in order to correlate the physically planned doses with the biological damage caused in the tissue. The differences between Monte Carlo dose and dosimetry are less than 10% in the valley and 5% in the peak regions. Developed alternative faster dose calculation methods deviate from the computational intensive MC simulations by less than 15% and are able to determine the dose within a few minutes. The experiments in cell biology revealed an significant influence of intercellular signalling on the survival of cells close to radiation boundaries. These observations may not only be important for MRT but also for conventional radiotherapy.

  15. Active use of urban park facilities

    DEFF Research Database (Denmark)

    Lindberg, Michael; Schipperijn, Jasper

    2015-01-01

    groups of the facilities. Facilities that provide the opportunity for games and playing activities are more used for PA than facilities directed at individual training of strength and fitness. The opportunity for socializing and playing while being physically active seems important for many users...... was mentioned as a key factor when designing facilities. Our results provide important knowledge to architects, planners and policy makers when aiming at designing activity-promoting facilities in UGS. Future studies need to further investigate the use of facilities among specific target groups, particularly......Abstract Urban green spaces (UGS), and more specific a higher number of facilities in UGS, have been positively associated with physical activity (PA). However, more detailed studies of which facilities generate high levels of PA, for which type of users, are relevant as existing knowledge...

  16. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  17. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  18. Animal-Assisted Therapy and Application to Older Adults in Long Term Care

    Directory of Open Access Journals (Sweden)

    Kimberly Ann Mercer

    2015-05-01

    Full Text Available In the past thirty years animal-assisted therapy (AAT has moved beyond anecdotal status to a scientific evidence-based intervention. AAT comes in many shapes and sizes. There are a variety of animals which can be used such as dogs, cats, rabbits, horses, guinea pigs, goats, dolphins, and even fish aquariums. Loneliness is a common theme among older adults in long term care (LTC. Many older adults living in LTC facilities feel isolated. Some have little contact with family members or friends. Many describe feelings of loneliness and withdraw from social activities and interaction with others. Some feel as if they have nothing to look forward to and find no useful purpose in life.  The absence of having another to care for or nurture can also be distressing. The purpose of this project was to explore the use of AAT as an intervention to decrease loneliness in residents living in a LTC setting by introducing visits from a Sphynx cat registered by the Delta Society as a therapy animal. The project sample consisted of seven participants all over the age of 60 years who resided in a LTC facility in Texas. Pre-intervention and post-intervention checklists and open-ended questions were employed to collect data from participants. Analysis of the project findings revealed a notable decrease in loneliness.

  19. ORNL Isotopes Facilities Shutdown Program Plan

    International Nuclear Information System (INIS)

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  20. Using a qualitative approach for understanding hospital-affiliated integrated clinical and fitness facilities: characteristics and members' experiences.

    Science.gov (United States)

    Yang, Jingzhen; Kingsbury, Diana; Nichols, Matthew; Grimm, Kristin; Ding, Kele; Hallam, Jeffrey

    2015-06-19

    With health care shifting away from the traditional sick care model, many hospitals are integrating fitness facilities and programs into their clinical services in order to support health promotion and disease prevention at the community level. Through a series of focus groups, the present study assessed characteristics of hospital-affiliated integrated facilities located in Northeast Ohio, United States and members' experiences with respect to these facilities. Adult members were invited to participate in a focus group using a recruitment flyer. A total of 6 focus groups were conducted in 2013, each lasting one hour, ranging from 5 to 12 participants per group. The responses and discussions were recorded and transcribed verbatim, then analyzed independently by research team members. Major themes were identified after consensus was reached. The participants' average age was 57, with 56.8% currently under a doctor's care. Four major themes associated with integrated facilities and members' experiences emerged across the six focus groups: 1) facility/program, 2) social atmosphere, 3) provider, and 4) member. Within each theme, several sub-themes were also identified. A key feature of integrated facilities is the availability of clinical and fitness services "under one roof". Many participants remarked that they initially attended physical therapy, becoming members of the fitness facility afterwards, or vice versa. The participants had favorable views of and experiences with the superior physical environment and atmosphere, personal attention, tailored programs, and knowledgeable, friendly, and attentive staff. In particular, participants favored the emphasis on preventive care and the promotion of holistic health and wellness. These results support the integration of wellness promotion and programming with traditional medical care and call for the further evaluation of such a model with regard to participants' health outcomes.