WorldWideScience

Sample records for therapeutics recapitulating development

  1. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  2. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease

    Institute of Scientific and Technical Information of China (English)

    Rui Li; Le Sun; Ai Fang; Peng Li; Qian Wu; Xiaoqun Wang

    2017-01-01

    The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex.Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases.Several previous efforts have shown to grow neural organoid in culture dishes successfully,however we demonstrate a new paradigm that recapitulates neocortical development process with VZ,OSVZ formation and the lamination organization of cortical layer structure.In addition,using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient,we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids,suggesting a new strategy to study human developmental diseases in central nerve system.

  3. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  4. Developing patient rapport, trust and therapeutic relationships.

    Science.gov (United States)

    Price, Bob

    2017-08-09

    Rapport is established at the first meeting between the patient and nurse, and is developed throughout the therapeutic relationship. However, challenges can arise during this process. Initially, nurses can establish trust with the patient through the questions they ask, however, as care progresses, the nurse will be required to demonstrate a commitment to maintaining the patient's psychological well-being. When the therapeutic relationship ends, the nurse should assist the patient to assess progress and plan the next stage of recovery. This article provides three reflective exercises using case study examples to demonstrate how rapport is developed and sustained. Evidence is provided to identify why challenges arise in the therapeutic relationship and how the nurse can ensure they provide care that the patient regards as genuine.

  5. Phototherapy : photobiological aspects and therapeutical developments

    NARCIS (Netherlands)

    Tjioe, Milan

    2003-01-01

    Several therapeutical modalities are nowadays used in photodermatology. In this thesis several new developments, like narrow band UVB, highdose visible light, are compared with regard to aspects of phototageing and photodamage. When broad band UVB and UVA are compared maximal photoinduced infiltrate

  6. Imaging enabled platforms for development of therapeutics

    Science.gov (United States)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  7. Rhenium radioisotopes for therapeutic radiopharmaceutical development

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Pinkert, J.; Kropp, J.; Lin, W.Y.; Wang, S.Y.

    2001-01-01

    Rhenium-186 and rhenium-188 represent two important radioisotopes which are of interest for a variety of therapeutic applications in oncology, nuclear medicine and interventional cardiology. Rhenium-186 is directly produced in a nuclear reactor and the 90 hour half-life allows distribution to distant sites. The relatively low specific activity of rhenium-186 produced in most reactors, however, permits use of phosphonates, but limits use for labelled peptides and antibodies. Rhenium-188 has a much shorter 16.9 hour half-life which makes distribution from direct reactor production difficult. However, rhenium-188 can be obtained carrier-free from a tungsten-188/rhenium-188 generator, which has a long useful shelf-life of several months which is cost-effective, especially for developing regions. In this paper we discuss the issues associated with the production of rhenium-186- and rhenium-188 and the development and use of various radiopharmaceuticals and devices labelled with these radioisotopes for bone pain palliation, endoradiotherapy of tumours by selective catheterization and tumour therapy using radiolabelled peptides and antibodies, radionuclide synovectomy and the new field of vascular radiation therapy. (author)

  8. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  9. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever.

    Science.gov (United States)

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J; Scott, Dana P; Feldmann, Heinz; Ebihara, Hideki

    2016-12-15

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF.

  10. NEVER forget: negative emotional valence enhances recapitulation.

    Science.gov (United States)

    Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A

    2017-07-10

    A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.

  11. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    Science.gov (United States)

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    , IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation. Copyright © 2018 Acta Materialia Inc. All rights reserved.

  12. The therapeutic relationship: historical development and contemporary significance.

    Science.gov (United States)

    O'Brien, A J

    2001-04-01

    The therapeutic relationship is a concept held by many to be fundamental to the identity of mental health nurses. While the therapeutic relationship was given formal expression in nursing theory in the middle of the last century, its origins can be traced to attendants' interpersonal practices in the asylum era. The dominance of medical understandings of mental distress, and the working-class status of asylum attendants, prevented the development of an account of mental health nursing based on attendants' relationships with asylum inmates. It was left to Peplau and other nursing theorists to describe mental health nursing as a therapeutic relationship in the 1940s and later. Some distinctive features of colonial life in New Zealand suggest that the ideal of the attendant as the embodiment of bourgeoisie values seems particularly unlikely to have been realized in the New Zealand context. However, New Zealand literature from the 20th century shows that the therapeutic relationship, as part of a general development of a therapeutic discourse, came to assume a central place in conceptualizations of mental health nursing. While the therapeutic relationship is not by itself a sufficient basis for professional continuity, it continues to play a fundamental role in mental health nurses' professional identity. The way in which the therapeutic relationship is articulated in the future will determine the meaning of the therapeutic relationship for future generations of mental health nurses.

  13. Recent developments in Alzheimer's disease therapeutics

    Directory of Open Access Journals (Sweden)

    Aisen Paul S

    2009-02-01

    Full Text Available Abstract Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.

  14. Advances in Therapeutic Development for Radiation Cystitis.

    Science.gov (United States)

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis. © 2013 Wiley Publishing Asia Pty Ltd.

  15. Development of Class IIa Bacteriocins as Therapeutic Agents

    OpenAIRE

    Christopher T. Lohans; John C. Vederas

    2012-01-01

    Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as ...

  16. [The development of therapeutic vaccine for hepatitis C virus].

    Science.gov (United States)

    Kimura, Kiminori; Kohara, Michinori

    2012-10-01

    Chronic hepatitis C caused by infection with the hepatitis C virus(HCV)is a global health problem. HCV causes persistent infection that can lead to chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The therapeutic efficacy of antiviral drugs is not optimal in patients with chronic infection; furthermore, an effective vaccine has not yet been developed. To design an effective HCV vaccine, generation of a convenient animal model of HCV infection is necessary. Recently, we used the Cre/loxP switching system to generate an immunocompetent mouse model of HCV expression, thereby enabling the study of host immune responses against HCV proteins. At present vaccine has not yet been shown to be therapeutically effective against chronic HCV infection. We examined the therapeutic effects of a recombinant vaccinia virus(rVV)encoding HCV protein in a mouse model. we generated rVVs for 3 different HCV proteins and found that one of the recombinant viruses encoding a nonstructural protein(rVV-N25)resolved pathological chronic hepatitis C symptoms in the liver. We propose the possibility that rVV-N25 immunization has the potential for development of an effective therapeutic vaccine for HCV induced chronic hepatitis. The utilization of the therapeutic vaccine can protect progress to chronic hepatitis, and as a consequence, leads to eradication of hepatocellular carcinoma. In this paper, we summarized our current study for HCV therapeutic vaccine and review the vaccine development to date.

  17. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    Science.gov (United States)

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Challenges in the development of magnetic particles for therapeutic applications.

    Science.gov (United States)

    Barry, Stephen E

    2008-09-01

    Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.

  19. Mucociliary and cough clearance as a biomarker for therapeutic development

    DEFF Research Database (Denmark)

    Bennett, William D; Daviskas, Evangelia; Hasani, Amir

    2010-01-01

    or therapeutic evaluation presented details of their methodologies. Attendees participating in the workshop discussions included those interested in the physiology of MCC/CC, some of who use in vitro or animal methods for its study, pharmaceutical companies developing muco-active therapies, and many who were......A workshop/symposium on “Mucociliary and Cough Clearance (MCC/CC) as a Biomarker for Therapeutic Development” was held on October 21–22, 2008, in Research Triangle Park, NC, to discuss the methods for measurement of MCC/CC and how they may be optimized for assessing new therapies designed...

  20. Development of Class IIa Bacteriocins as Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Christopher T. Lohans

    2012-01-01

    Full Text Available Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as the optimization of their production and purification. The suitability of bacteriocins as pharmaceuticals is explored through determinations of cytotoxicity, effects on the natural microbiota, and in vivo efficacy in mouse models. Recent results suggest that class IIa bacteriocins show promise as a class of therapeutic agents.

  1. Current issues of RNAi therapeutics delivery and development.

    Science.gov (United States)

    Haussecker, D

    2014-12-10

    12 years following the discovery of the RNAi mechanism in Man, a number of RNAi therapeutics development candidates have emerged with profiles suggesting that they could become drugs of significant medical importance for diseases like TTR amyloidosis, HBV, solid cancers, and hemophilia. Despite this robust progress, the perception of RNAi therapeutics has been on a roller-coaster ride driven not only by science, but also regulatory trends, the stock markets, and Big Pharma business development decisions [1]. This presentation provides an update on the current state of RNAi therapeutics development with a particular focus on what RNAi delivery can achieve today and key challenges to be overcome to expand therapeutic opportunities. The delivery of RNAi triggers to disease-relevant cell types clearly represents the rate-limiting factor in broadly expanding the applicability of RNAi therapeutics. Today, with at least 3 delivery options (lipid nanoparticles/LNPs, GalNAc-siRNA conjugates, Dynamic PolyConjugates/DPCs) for which profound gene knockdowns have been demonstrated in non-human primates and in the clinic, RNAi therapeutics should in principle be able to address most diseases related to gene expression in the liver. Given the central importance of the liver in systemic physiology, this already represents a significant therapeutic and commercial opportunity rivaling that of e.g. monoclonal antibodies. Beyond the liver, there is a reason to believe that current RNAi therapeutics technologies can address a number of solid tumors (e.g. LNPs), diseases of the eye (e.g. self-delivering RNAi triggers) as well as diseases involving the respiratory epithelium (e.g. aerosolized LNPs), certain phagocytic cells (LNPs), hematopoietic stem cells and their progeny (lentiviral DNA-directed RNAi), vascular endothelial cells (cationic lipoplexes), and certain cell types in the kidney (self-delivering RNAi triggers, DPCs; Table 1). Despite this success, there has been a sense that

  2. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue.

    Science.gov (United States)

    Guo, Ting; Lembong, Josephine; Zhang, Lijie Grace; Fisher, John P

    2017-06-01

    In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.

  3. Melanoma genetics and the development of rational therapeutics.

    Science.gov (United States)

    Chudnovsky, Yakov; Khavari, Paul A; Adams, Amy E

    2005-04-01

    Melanoma is a cancer of the neural crest-derived cells that provide pigmentation to skin and other tissues. Over the past 4 decades, the incidence of melanoma has increased more rapidly than that of any other malignancy in the United States. No current treatments substantially enhance patient survival once metastasis has occurred. This review focuses on recent insights into melanoma genetics and new therapeutic approaches being developed based on these advances.

  4. Challenges in the development of therapeutics for narcolepsy.

    Science.gov (United States)

    Black, Sarah Wurts; Yamanaka, Akihiro; Kilduff, Thomas S

    2017-05-01

    Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  6. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    Directory of Open Access Journals (Sweden)

    Kayla F Goliwas

    2016-07-01

    Full Text Available Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.

  7. An industry update: the latest developments in therapeutic delivery.

    Science.gov (United States)

    Simpson, Iain

    2018-01-01

    This industry update covers the period from 1 September through 30 September 2017, and is based on information sourced from company press releases, scientific literature, patents and various news websites. The month saw the US FDA approve three new molecular entities, Aliqopa (copanlisib dihydrochloride) (Bayer Healthcare); Solosec (secnidazole) (Symbiomix Therapeutics) and Verzenio (abemaciclib) (Eli Lilly and Co). Intarcia Therapeutics Inc. has its application for approval of a novel drug device combination of exenatide for the treatment of diabetes rejected by FDA but said that it will work to address the concerns and refile the application. The impact of biosimilars in the market is steadily increasing with seven biosimilars approved in the USA and Sandoz hoping to add to this with its announcement that FDA has accepted its Biologics License Application for a biosimilar version of Roche's Rituxan. Circassia announced positive top line results of a respiratory drug, Duaklir (for the treatment of chronic obstructive pulmonary disease) and Sarepta (for its new treatment for Duchenne muscular dystrophy). Axovant Sciences Ltd announced the failure if its drug Intepirdine in the treatment of Alzheimer's, adding to a growing list of drug failures in this area. There were a number of developments in the area of oncology with Bristol-Myers Squibb and Infinity Pharmaceuticals announcing an expansion of their collaboration looking at combination treatments, as well as Eli Lilly and Co's approval for Verzenio. Rani Therapeutics and Intra-Cellular Therapies announced successful funding rounds to support their drug programs. Allergan announced a novel licensing deal for its dry eye drug, Restasis, which it hopes would allow it to stave off patent challenges from several companies looking to develop generic versions of the drug. New research suggests that loss of sense of smell can be linked to an increased risk of developing Parkinson's disease.

  8. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  9. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  10. Current Status of Dengue Therapeutics Research and Development.

    Science.gov (United States)

    Low, Jenny G H; Ooi, Eng Eong; Vasudevan, Subhash G

    2017-03-01

    Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement, its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently, drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ameliorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief account of the status of therapeutics research and development for dengue. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0472 TITLE: “Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma ” PRINCIPAL INVESTIGATOR...SUBTITLE Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma 5a. CONTRACT NUMBER W81XWH-12-1-0472 5b. GRANT NUMBER 5c. PROGRAM...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibrosis in scleroderma is associated

  12. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    Science.gov (United States)

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Science.gov (United States)

    2012-10-29

    ... Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as Warner Lambert Company... workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, formerly known... follows: All workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division...

  14. Organoid technology for brain and therapeutics research.

    Science.gov (United States)

    Wang, Zhi; Wang, Shu-Na; Xu, Tian-Ying; Miao, Zhu-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2017-10-01

    Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics. © 2017 John Wiley & Sons Ltd.

  15. Preclinical and clinical development of siRNA-based therapeutics.

    Science.gov (United States)

    Ozcan, Gulnihal; Ozpolat, Bulent; Coleman, Robert L; Sood, Anil K; Lopez-Berestein, Gabriel

    2015-06-29

    The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Discovery, clinical development, and therapeutic uses of bisphosphonates.

    Science.gov (United States)

    Licata, Angelo A

    2005-04-01

    To review the literature concerning the history, development, and therapeutic uses of bisphosphonates. English-language articles were identified through a search of MEDLINE (through December 2004) using the key word bisphosphonate. Reference lists of pivotal studies, reviews, and full prescribing information for the approved agents were also examined. Selected studies included those that discussed the discovery and initial applications of bisphosphonates, as well as their historical development, pharmacokinetic and pharmacodynamic properties, and current therapeutic uses. Bisphosphonates structurally resemble pyrophosphates (naturally occurring polyphosphates) and have demonstrated similar physicochemical effects to pyrophosphates. In addition, bisphosphonates reduce bone turnover and resist hydrolysis when administered orally. The information gained from initial work with etidronate generated a considerable scientific effort to design new and more effective bisphosphonates. The PCP moiety in the general bisphosphonate structure is essential for binding to hydroxyapatite and allows for a number of chemical variations by changing the 2 lateral side chains (designated R(1) and R(2)). The R(1) side chain determines binding affinity to hydroxyapatite, and the R(2) side chain determines antiresorptive potency. Accordingly, each bisphosphonate has its own characteristic profile of activity. The bisphosphonates reduce bone turnover, increase bone mass, and decrease fracture risk and therefore have a significant place in the management of skeletal disorders including osteoporosis, Paget's disease, bone metastases, osteogenesis imperfecta, and heterotopic ossification.

  17. Development and therapeutic application of internally emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Bloomer, W.D.

    1980-01-01

    This project is concerned with developing the potential of alpha-emitting radionuclides as agents for radiotherapy. Among the available α-emitters, astatine-211 appears most promising for testing the efficacy of α-emitters for therapeutic applications because: (1) it has some chemical similarities to iodine, an element that can readily be incorporated into numerous proteins and peptides; (2) it has a half life that is long enough to permit chemical manipulation yet short enough to minimize destruction of healthy cells; and (3) α-emission is associated with 100% of its decays. If appropriate biological carriers can be labeled with an alpha emitter such as 211 At, they could be of great utility in several areas of therapeutic medicine where elimination of specific cell populations is desired. While previous attempts to astatinate proteins using standard iodination techniques have been unsuccessful, effective labeling of proteins with astatine by first synthesizing an aryl astatide and then coupling this compound to the protein via an acylation has been achieved. Undergoing current investigation are several different aryl astatide-followed-by-acylation approaches including an astatinated Bolton-Hunter type reagent using concanavalin A (ConA) and melanocyte stimulating hormone (MSH) as model compounds

  18. Development and evaluation of an electronic drug and therapeutics bulletin.

    Science.gov (United States)

    Alderman, Christopher P

    2002-10-01

    To describe the development, implementation, and initial evaluation of a paperless drug and therapeutics bulletin that is distributed by electronic mail from the pharmacy department of an Australian teaching hospital. A standardized format for the bulletin was designed and approved in February 2001. The aim of the bulletin is to facilitate the timely dissemination of concise, factual information about issues of current interest in therapeutics, drug safety, and the cost-effective use of medicines. A simple and attractive graphic design was chosen, and the hospital's clinical pharmacists and drug information staff developed an initial bank of content during the period immediately preceding the launch. The bulletin is presented as a 1-page, read-only file in Word for Windows format and was initially distributed by electronic mail to all users of the hospital's computerized communication network. As the popularity of the bulletin increased, healthcare practitioners from outside of the hospital began to request permission for inclusion on the circulation list, and the content was frequently forwarded by E-mail to workers in other hospitals and community-based settings. The bulletin is now distributed to pharmacists around Australia via 2 separate moderated discussion lists, one of which provides an archive site for previous editions. Healthcare workers in Singapore, the US, Canada, and New Zealand also receive the bulletin, which is now also abstracted by a major Australian pharmacy journal. A readership survey (also electronically distributed) was used to seek feedback after the publication of the first 12 editions. Readers indicated a high level of satisfaction with the content, format, and frequency of distribution of the materials. Although the concept and execution of this project was relatively simple, an extensive literature review did not reveal any previously published reports describing this type of approach to the distribution of a pharmacy bulletin. The

  19. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Science.gov (United States)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  20. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics.

    Science.gov (United States)

    Weber, Kathryn T; Jacobsen, Timothy D; Maidhof, Robert; Virojanapa, Justin; Overby, Chris; Bloom, Ona; Quraishi, Shaheda; Levine, Mitchell; Chahine, Nadeen O

    2015-03-01

    Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.

  1. Recapitulating phylogenies using k-mers: from trees to networks.

    Science.gov (United States)

    Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.

  2. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Science.gov (United States)

    2013-05-15

    ... Research, Pfizer Worldwide Research & Development Division, Formerly Known as Warner Lambert Company... Groton, Connecticut location of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development... Worldwide Research & Development Division, formerly known as Warner Lambert Company, Comparative Medicine...

  3. An industry update: the latest developments in Therapeutic delivery.

    Science.gov (United States)

    Steinbach, Oliver C

    2018-05-01

    The present industry update covers the period of 1 January-31 January 2018, with information sourced from company press releases, regulatory and patent agencies as well as scientific literature. Several public offerings (Gecko, Insmed), licensing (Foresee) and commercialization agreements (Alnylam, Collegium Pharmaceutical) as well as patent filings (Elute) continue to prove the sustained investments in the drug delivery market. In increasing numbers, more effective ways to deliver the active ingredient to the right location and the right dose through devices (Boehringer Ingelheim's Respimat, Medtronics' SynchroMedII) or improved compound properties through formulation (Aquestive Therapeutics' PharmFilm, Noven Pharmaceuticals' transdermal patch) are reaching the market. Furthering biologics and gene delivery (Avacta, Bracco) proves that novel drug delivery technologies are successfully addressing more challenging drug formats.

  4. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  5. Digital Therapeutics: An Integral Component of Digital Innovation in Drug Development.

    Science.gov (United States)

    Sverdlov, Oleksandr; van Dam, Joris; Hannesdottir, Kristin; Thornton-Wells, Tricia

    2018-07-01

    Digital therapeutics represent a new treatment modality in which digital systems such as smartphone apps are used as regulatory-approved, prescribed therapeutic interventions to treat medical conditions. In this article we provide a critical overview of the rationale for investing in such novel modalities, including the unmet medical needs addressed by digital therapeutics and the potential for reducing current costs of medical care. We also discuss emerging pathways to regulatory approval and how innovative business models are enabling further growth in the development of digital therapeutics. We conclude by providing some recent examples of digital therapeutics that have gained regulatory approval and highlight opportunities for the near future. © 2018 American Society for Clinical Pharmacology and Therapeutics.

  6. Affinity-tuning leukocyte integrin for development of safe therapeutics

    Science.gov (United States)

    Park, Spencer

    Much attention has been given to the molecular and cellular pathways linking inflammation with cancer and the local tumor environment to identify new target molecules that could lead to improved diagnosis and treatment. Among the many molecular players involved in the complex response, central to the induction of inflammation is intercellular adhesion molecule (ICAM)-1, which is of particular interest for its highly sensitive and localized expression in response to inflammatory signals. ICAM-1, which has been implicated to play a critical role in tumor progression in various types of cancer, has also been linked to cancer metastases, where ICAM-1 facilitates the spread of metastatic cancer cells to secondary sites. This unique expression profile of ICAM-1 throughout solid tumor microenvironment makes ICAM-1 an intriguing molecular target, which holds great potential as an important diagnostic and therapeutic tool. Herein, we have engineered the ligand binding domain, or the inserted (I) domain of a leukocyte integrin, to exhibit a wide range of monovalent affinities to the natural ligand, ICAM-1. Using the resulting I domain variants, we have created drug and gene delivery nanoparticles, as well as targeted immunotherapeutics that have the ability to bind and migrate to inflammatory sites prevalent in tumors and the associated microenvironment. Through the delivery of diagnostic agents, chemotherapeutics, and immunotherapeutics, the following chapters demonstrate that the affinity enhancements achieved by directed evolution bring the affinity of I domains into the range optimal for numerous applications.

  7. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior

    Directory of Open Access Journals (Sweden)

    Milcah C. Scott

    2016-12-01

    Full Text Available Osteosarcoma (OS is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2 for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of

  8. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior.

    Science.gov (United States)

    Scott, Milcah C; Tomiyasu, Hirotaka; Garbe, John R; Cornax, Ingrid; Amaya, Clarissa; O'Sullivan, M Gerard; Subramanian, Subbaya; Bryan, Brad A; Modiano, Jaime F

    2016-12-01

    Osteosarcoma (OS) is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2) for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of OS. © 2016

  9. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    National Research Council Canada - National Science Library

    Markland, Francis S

    2008-01-01

    ...%. This project outlines the development of a recombinant version of a member of a class of proteins known as disintegrins as an innovative imaging and diagnostic agent for ovarian cancer (OC). Vicrostatin (VN...

  10. Concise review : Developing best-practice models for the therapeutic use of extracellular vesicles

    NARCIS (Netherlands)

    Reiner, Agnes T.; Witwer, Kenneth W.; Van Balkom, Bas W.M.; De Beer, Joel; Brodie, Chaya; Corteling, Randolph L.; Gabrielsson, Susanne; Gimona, Mario; Ibrahim, Ahmed G.; De Kleijn, Dominique; Lai, Charles P.; Tvall, Jan Lo; Del Portillo, Hernando A; Reischl, Ilona G; Riazifar, Milad; Salomon, Carlos; Tahara, Hidetoshi; Toh, Wei Seong; Wauben, Marca H M; Yang, Vicky K.; Yang, Yijun; Yeo, Ronne Wee Yeh; Yin, Hang; Giebel, Bernd; Rohde, Eva; Lim, Sai Kiang

    2017-01-01

    Growing interest in extracellular vesicles (EVs, including exosomes and microvesicles) as therapeutic entities, particularly in stem cell-related approaches, has underlined the need for standardization and coordination of development efforts. Members of the International Society for Extracellular

  11. A new therapeutic community: development of a compassion-focussed and contextual behavioural environment.

    Science.gov (United States)

    Veale, David; Gilbert, Paul; Wheatley, Jon; Naismith, Iona

    2015-01-01

    Social relationships and communities provide the context and impetus for a range of psychological developments, from genetic expression to the development of core self-identities. This suggests a need to think about the therapeutic changes and processes that occur within a community context and how communities can enable therapeutic change. However, the 'therapeutic communities' that have developed since the Second World War have been under-researched. We suggest that the concept of community, as a change process, should be revisited within mainstream scientific research. This paper briefly reviews the historical development of therapeutic communities and critically evaluates their current theory, practice and outcomes in a systematic review. Attention is drawn to recent research on the nature of evolved emotion regulation systems, the way these are entrained by social relationships, the importance of affiliative emotions in the regulation of threat and the role of fear of affiliative emotions in psychopathology. We draw on concepts from compassion-focussed therapy, social learning theory and functional analytical psychotherapy to consider how members of a therapeutic community can be aware of each other's acts of courage and respond using compassion. Living in structured and affiliative-orientated communities that are guided by scientific models of affect and self-regulation offers potential therapeutic advantages over individual outpatient therapy for certain client groups. This conclusion should be investigated further. Key Practitioner Message Current therapeutic community practice is not sufficiently evidence based and may not be maximizing the potential therapeutic value of a community. Compassion-focussed therapy and social learning theory offer new approaches for a therapeutic environment, involving an understanding of the role, nature and complexities of compassionate and affiliative relationships from staff and members, behavioural change guided by

  12. How will diagnostic and therapeutic oncology develop? Pt. 1

    International Nuclear Information System (INIS)

    Senekowitsch-Schmidtke, R.

    1998-01-01

    New developments in the field of tumor biology and gene therapy reveal that by somatic gene transfer every tumor cell can be transferred into a high immonogenic cell. The gene transfer leads to an activation of accessory signals in lymphocytes which can destroy the tumor cell. After transfection of tumor cells with 'suicide genes' untoxic virostatics can be phosphorylated by the viral thymidine kinase. Incorporation of the phosphorylated substance into DNA inhibits further cell replication. The transfection efficiency can be visualized by the retention of the F-18 labeled virostatics in the tumor tissue. For characterization of tumor cells a large number of tracers have been developed including radiolobeled aminoacids, nucleotides and target specific modified antibodies and peptides. Modern concepts of chemotherapy are changing from cytostatic therapy to pathogeneses-oriented strategies with regard to molecular and functional characteristics of the malignant cells. Such kind of therapies can interact with specific receptors and inhibit the signal transduction in tumor cells. (orig.) [de

  13. Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice.

    Science.gov (United States)

    Catela, Catarina; Bilbao-Cortes, Daniel; Slonimsky, Esfir; Kratsios, Paschalis; Rosenthal, Nadia; Te Welscher, Pascal

    2009-01-01

    Wolf-Hirschhorn syndrome (WHS) is caused by deletions in the short arm of chromosome 4 (4p) and occurs in about one per 20,000 births. Patients with WHS display a set of highly variable characteristics including craniofacial dysgenesis, mental retardation, speech problems, congenital heart defects, short stature and a variety of skeletal anomalies. Analysis of patients with 4p deletions has identified two WHS critical regions (WHSCRs); however, deletions targeting mouse WHSCRs do not recapitulate the classical WHS defects, and the genes contributing to WHS have not been conclusively established. Recently, the human FGFRL1 gene, encoding a putative fibroblast growth factor (FGF) decoy receptor, has been implicated in the craniofacial phenotype of a WHS patient. Here, we report that targeted deletion of the mouse Fgfrl1 gene recapitulates a broad array of WHS phenotypes, including abnormal craniofacial development, axial and appendicular skeletal anomalies, and congenital heart defects. Fgfrl1 null mutants also display a transient foetal anaemia and a fully penetrant diaphragm defect, causing prenatal and perinatal lethality. Together, these data support a wider role for Fgfrl1 in development, implicate FGFRL1 insufficiency in WHS, and provide a novel animal model to dissect the complex aetiology of this human disease.

  14. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  15. Development of Acne therapeutic hydrogel patches by radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Younmook; Nho, Youngchang; Gwon, Huijeong; Park, Jongseok; Kim, Jinkyu; Kim, Yongsoo

    2012-04-15

    In this project, hydrogel patches containing herbal extracts mixture were developed by radiation technology for acne treatment. Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, is the cause of inflammatory acne. To find novel mediation for inflammation of P. acnes, we confirmed the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The water extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thumb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were mixed into biocompatible polymers and irradiated by using gamma-ray to prepare hydrogels. The hydrogels containing herbal extracts mixture initiated to decrease the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-{alpha}, IL-8, IL-1{beta} and IL-6, in experiment with human monocytic THP-1 cells treated with heat-killed P. acnes at 1 mg/ml of mixture concentration.

  16. Development of Acne therapeutic hydrogel patches by radiation technology

    International Nuclear Information System (INIS)

    Lim, Younmook; Nho, Youngchang; Gwon, Huijeong; Park, Jongseok; Kim, Jinkyu; Kim, Yongsoo

    2012-04-01

    In this project, hydrogel patches containing herbal extracts mixture were developed by radiation technology for acne treatment. Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, is the cause of inflammatory acne. To find novel mediation for inflammation of P. acnes, we confirmed the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The water extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thumb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were mixed into biocompatible polymers and irradiated by using gamma-ray to prepare hydrogels. The hydrogels containing herbal extracts mixture initiated to decrease the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-α, IL-8, IL-1β and IL-6, in experiment with human monocytic THP-1 cells treated with heat-killed P. acnes at 1 mg/ml of mixture concentration

  17. Development of an evidence vase for therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Turner, J.H.

    2003-01-01

    A prime objective of the World Radiopharmaceutical Therapy Council is the promotion of innovative clinical practice of safe, efficacious radionuclide therapy throughout the world. The evidence for safety and efficacy will emerge from global observational studies performed using standard protocols with uniformly defined end points. Observational studies have several advantages over randomised controlled trials (RCTs) including lower cost, greater timeliness and a broader range of patients. Observational studies and RCTs can produce similar estimates of the effects of treatment and meta- analyses of observational studies produce results that are similar to meta-analyses of randomised trials. RCTs have the disadvantage of excluding of patients who might benefit from treatment, low recruitment rates resulting in delays in obtaining definitive results and the danger of unjustified extrapolation of these results to different populations. Evidence from trials is most applicable in clinical practice, when the design and the outcomes chosen are directly relevant to real patients, the trials are undertaken against a background of standard medical care, patients in trials are broadly representative of patients in the real world and evidence from trials is integrated with individual patient characteristics for meaningful risk-benefit assessment. Despite the need for high-quality clinical trials, few patients participate in them. Less than 5% of eligible patients participate in most cancer trials and almost none are from developing countries. How do we in fact determine the truth in clinical medicine, given that the conclusions of the 'gold-standard' RCT may not be replicable when the outcomes are examined in everyday practice? Ethical standards, patient selection criteria and low participation rates often create RCT study groups that differ from the general population and extrapolation of results may not always be valid. Observational studies have been characterised as all

  18. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity

    Directory of Open Access Journals (Sweden)

    Robert Nunan

    2014-11-01

    Full Text Available The efficient healing of a skin wound is something that most of us take for granted but is essential for surviving day-to-day knocks and cuts, and is absolutely relied on clinically whenever a patient receives surgical intervention. However, the management of a chronic wound – defined as a barrier defect that has not healed in 3 months – has become a major therapeutic challenge throughout the Western world, and it is a problem that will only escalate with the increasing incidence of conditions that impede wound healing, such as diabetes, obesity and vascular disorders. Despite being clinically and molecularly heterogeneous, all chronic wounds are generally assigned to one of three major clinical categories: leg ulcers, diabetic foot ulcers or pressure ulcers. Although we have gleaned much knowledge about the fundamental cellular and molecular mechanisms that underpin healthy, acute wound healing from various animal models, we have learned much less about chronic wound repair pathology from these models. This might largely be because the animal models being used in this field of research have failed to recapitulate the clinical features of chronic wounds. In this Clinical Puzzle article, we discuss the clinical complexity of chronic wounds and describe the best currently available models for investigating chronic wound pathology. We also assess how such models could be optimised to become more useful tools for uncovering pathological mechanisms and potential therapeutic treatments.

  19. Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals

    CERN Multimedia

    We propose the exploration of novel radionuclides with diagnostic or therapeutic properties from ISOLDE. Access to such unique isotopes will enable the fundamental research in radiopharmaceutical science towards superior treatment, e.g. in nuclear oncology. The systematic investigation of the biological response to the different characteristics of the decay radiation will be performed for a better understanding of therapeutic effects. The development of alternative diagnostic tools will be applied for the management and optimization of radionuclide therapy.

  20. Delivery of Therapeutic Proteins Using Electrospun Fibers-Recent Developments and Current Challenges.

    Science.gov (United States)

    Seif, Salem; Planz, Viktoria; Windbergs, Maike

    2017-10-01

    Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions. © 2017 Deutsche Pharmazeutische Gesellschaft.

  1. Inventory of Novel Animal Models Addressing Etiology of Preeclampsia in the Development of New Therapeutic/Intervention Opportunities.

    Science.gov (United States)

    Erlandsson, Lena; Nääv, Åsa; Hennessy, Annemarie; Vaiman, Daniel; Gram, Magnus; Åkerström, Bo; Hansson, Stefan R

    2016-03-01

    Preeclampsia is a pregnancy-related disease afflicting 3-7% of pregnancies worldwide and leads to maternal and infant morbidity and mortality. The disease is of placental origin and is commonly described as a disease of two stages. A variety of preeclampsia animal models have been proposed, but all of them have limitations in fully recapitulating the human disease. Based on the research question at hand, different or multiple models might be suitable. Multiple animal models in combination with in vitro or ex vivo studies on human placenta together offer a synergistic platform to further our understanding of the etiology of preeclampsia and potential therapeutic interventions. The described animal models of preeclampsia divide into four categories (i) spontaneous, (ii) surgically induced, (iii) pharmacologically/substance induced, and (iv) transgenic. This review aims at providing an inventory of novel models addressing etiology of the disease and or therapeutic/intervention opportunities. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 77 FR 69637 - Development of Prioritized Therapeutic Area Data Standards; Request for Comments

    Science.gov (United States)

    2012-11-20

    ... regulatory information. FDA has developed a roadmap that provides its current thinking on therapeutic area... Clinical Data Interchange Standards Consortium (CDISC), the Critical Path Institute, Health Level 7's (HL7... 20993-0002, or the Office of Communication, Outreach and Development (HFM-40), Center for Biologics...

  3. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Haji-Saeid, M.; Zaknun, J.; Ramamoorthy, N.

    2009-01-01

    The IAEA activities on supporting development of therapeutic radiopharmaceuticals are focused on identified radionuclides that can be produced in large quantities and making use of carrier molecules which can be synthesized locally or procured from commercial sources or already available in MS from other related programs. The main emphasis is on 90 Y and 177 Lu based products, which cover the hard beta energy and soft beta energy range respectively, and also since both these radionuclides can be produced in large quantities with very high specific activity and high radionuclidic purity. The services to MS are provided through implementing Coordinated Research Projects (CRP), Technical Cooperation (TC) projects, technical meetings and regional training courses in addition to documenting practically useful technical information related to these products though IAEA publications. The CRP is a group activity in which nearly 15 participants from as many countries come together to work towards an identified objective. Two of the completed CRPs in this area are: (i) Comparative evaluation of therapeutic radiopharmaceuticals (2002-2005) that focussed on the development of 'in vitro' and 'in vivo' techniques for evaluating new generation therapeutic radiopharmaceuticals; and (ii) Development of generator technologies for therapeutic radionuclides (2004-2007) that addressed technologies for 90 Sr/ 90 Y and 188 W/ 188 Re generators and which can be easily adapted by MS. The participants in the CRP on 'Comparative evaluation of therapeutic radiopharmaceuticals' used the somatostatin analogue, DOTATATE as the lead molecule for developing radiopharmaceuticals and testing the efficacy by in vitro biological assays and animal biodistribution studies. A significant outcome of the CRP was that 177 Lu-DOTATATE therapy is now practised in several of the CRP participating countries including Brazil, India, Italy, and Poland. The major outcome of the CRP on 'Development of generator

  4. Recent advances in (therapeutic protein drug development [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    H.A. Daniel Lagassé

    2017-02-01

    Full Text Available Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016.

  5. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  6. Discovery and Development of Therapeutic Drugs against Lethal Human RNA Viruses: a Multidisciplinary Assault.

    Science.gov (United States)

    1991-07-16

    AD-A239 742 AD GRANT NO: DAMD17-89-Z-9021 TITLE: DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A MULTIDISCIPLINARY...62787A871 AB WrJDA317987 11. TITLE (Include Securty Classification) DISCOVERY AND DEVELOPMENT OF THERAPEUTIC DRUGS AGAINST LETHAL HUMAN RNA VIRUSES: A...G. R. Pettit, III, D.-S. Huang, and G. R. Pettit, 23rd Int’l. Horticulture Congress, Italy, 8/27 - 9/1/90. "Bryostatins Define the Role of Protein

  7. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  8. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  9. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    Science.gov (United States)

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Practical considerations in the development of hemoglobin-based oxygen therapeutics.

    Science.gov (United States)

    Kim, Hae Won; Estep, Timothy N

    2012-09-01

    The development of hemoglobin based oxygen therapeutics (HBOCs) requires consideration of a number of factors. While the enabling technology derives from fundamental research on protein biochemistry and biological interactions, translation of these research insights into usable medical therapeutics demands the application of considerable technical expertise and consideration and reconciliation of a myriad of manufacturing, medical, and regulatory requirements. The HBOC development challenge is further exacerbated by the extremely high intravenous doses required for many of the indications contemplated for these products, which in turn implies an extremely high level of purity is required. This communication discusses several of the important product configuration and developmental considerations that impact the translation of fundamental research discoveries on HBOCs into usable medical therapeutics.

  11. Development of nutrition standards and therapeutic diet specifications for public hospitals in New South Wales.

    Science.gov (United States)

    Williams, Peter; Hazlewood, Tanya; Pang, Glen

    2014-09-01

    In New South Wales (NSW), a new suite of nutrition standards for menus and specifications for therapeutic diets to be used in hospitals has been developed. These standards were required to facilitate centralised menu planning and food production, with the move to management of most hospital food services by HealthShare NSW, a state-wide business unit of NSW Health. The standards also aim to improve communication between health professionals, particularly with the increasing use of computerised meal-ordering systems. Nutrition standards have been developed for adult, paediatric and mental health inpatients, and specifications for 147 different adult and paediatric therapeutic diets. There is still significant variation in the nutrition standards for nutrition and therapeutic diets in hospitals across the Australian states, and a move to a more nationally harmonised approach would be welcome. Further research is required to examine the impact of these standards on operating efficiency and patient care outcomes.

  12. Development of new therapeutic methods of lung cancer through team approach study

    International Nuclear Information System (INIS)

    Park, Jong Ho; Zo, Jae Ill; Baek, Hee Jong; Jung, Jin Haeng; Lee, Jae Cheol; Ryoo, Baek Yeol; Kim, Mi Sook; Choi, Du Hwan; Park, Sun Young; Lee, Hae Young

    2000-12-01

    The aims of this study were to make the lung cancer clinics in Korea Cancer Center Hospital, and to establish new therapeutic methods of lung cancer for increasing the cure rate and survival rate of patients. Also another purpose of this study was to establish a common treatment method in our hospital. All patients who were operated in Korea Cancer Center Hospital from 1987 due to lung cancer were followed up and evaluated. And we have been studied the effect of postoperative adjuvant therapy in stage I, II, IIIA non-small cell lung cancer patients from 1989 with the phase three study form. Follow-up examinations were scheduled in these patients and interim analysis was made. Also we have been studied the effect of chemo-therapeutic agents in small cell lung cancer patients from 1997 with the phase two study form. We evaluated the results of this study. Some important results of this study were as follows. 1. The new therapeutic method (surgery + MVP chemotherapy) was superior to the standard therapeutic one in stage I Non-small cell lung cancer patients. So, we have to change the standard method of treatment in stage I NSCLC. 2. Also, this new therapeutic method made a good result in stage II NSCLC patients. And this result was reported in The Annals of Thoracic Surgery. 3. However, this new therapeutic method was not superior to the standard treatment method (surgery only) in stage IIIA NSCLC patients. So, we must develop new chemo-therapeutic agents in the future for advanced NSCLC patients. 4. In the results of the randomized phase II studies about small cell lung cancer, there was no difference in survival between Etoposide + Carboplatin + Ifosfamide + Cisplatin group and Etoposide + Carboplatin + Ifosfamide + Cisplatin + Tamoxifen group in both the limited and extended types of small cell lung cancer patients

  13. The value of non-human primates in the development of therapeutic monoclonal antibodies

    NARCIS (Netherlands)

    Van Meer, P.J.K.|info:eu-repo/dai/nl/34153790X; Kooijman, M.|info:eu-repo/dai/nl/322905788; Van Der Laan, J.W.|info:eu-repo/dai/nl/374879966; Moors, E.H.M.|info:eu-repo/dai/nl/20241664X; Schellekens, H.|info:eu-repo/dai/nl/068406762

    2011-01-01

    The pharmaceutical industry is increasingly focusing on the development of biological therapeutics. These molecules generally cause no off-target toxicity and are highly species specific. Therefore, non-human primates (NHPs) are often the only relevant species in which to conduct regulatory safety

  14. 77 FR 62521 - Prospective Grant of Exclusive License: The Development of Therapeutic Agents for the Treatment...

    Science.gov (United States)

    2012-10-15

    ... interleukin-10 (IL-10) inhibitor as a dual-biologic therapy to treat metastatic breast cancer, or ii) incorporating a p53 isoform antisense oligonucleotide as a single biologic therapy to treat T- cell lymphoma... Exclusive License: The Development of Therapeutic Agents for the Treatment of Metastatic Breast Cancer and T...

  15. Development of the Fibulin-3 protein therapeutics of non small cell lung cancer stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kugchan; Jung, Il Lae; Kim, Seo Yeon; Choi, Su Im; Lee, Jae Ha

    2013-09-15

    This study focuses on developing an efficient bioprocess for large-scale production of fibulin-3 using Chinese Hamster Ovary cell expression system and evaluating its therapeutic potential for the treatment of cancer. The specific aims are as follows: Isolation and establishment of CSCs using FACS based on cell surface markers and high ALDH1 activity. Identification and characterization of lung cancer stem cells that acquire features of CSC upon exposure to ionizing radiation. Evaluation of the fibulin-3 effects on the stem traits and signaling pathways required for the generation and maintenance of CSCs. In vivo validation of fivulin-3 for tumor prognosis and therapeutic efficacy against lung cancer using animal model.

  16. MicroRNA silencing in primates: towards development of novel therapeutics

    DEFF Research Database (Denmark)

    Petri, Andreas; Lindow, Morten; Kauppinen, Sakari

    2009-01-01

    MicroRNAs (miRNA) comprise an abundant class of small noncoding RNAs that act as important posttranscriptional regulators of gene expression. Accumulating evidence showing that aberrantly expressed miRNAs play important roles in human cancers underscores them as potential targets for therapeutic ...... intervention. Recent reports on efficient miRNA silencing in rodents and nonhuman primates using high-affinity targeting by chemically modified antisense oligonucleotides highlight the utility of such compounds in the development of miRNA-based cancer therapeutics....

  17. Translational research in addiction: toward a framework for the development of novel therapeutics.

    Science.gov (United States)

    Paterson, Neil E

    2011-06-15

    The development of novel substance use disorder (SUD) therapeutics is insufficient to meet the medical needs of a growing SUD patient population. The identification of translatable SUD models and tests is a crucial step in establishing a framework for SUD therapeutic development programs. The present review begins by identifying the clinical features of SUDs and highlights the narrow regulatory end-point required for approval of a novel SUD therapeutic. A conceptual overview of dependence is provided, followed by identification of potential intervention targets in the addiction cycle. The main components of the addiction cycle provide the framework for a discussion of preclinical models and their clinical analogs, all of which are focused on isolated behavioral end-points thought to be relevant to the persistence of compulsive drug use. Thus, the greatest obstacle to successful development is the gap between the multiplicity of preclinical and early clinical end-points and the regulatory end-point of sustained abstinence. This review proposes two pathways to bridging this gap: further development and validation of the preclinical extended access self-administration model; inclusion of secondary end-points comprising all of the measures highlighted in the present discussion in Phase 3 trials. Further, completion of the postdictive validation of analogous preclinical and clinical assays is of high priority. Ultimately, demonstration of the relevance and validity of a variety of end-points to the ultimate goal of abstinence will allow researchers to identify truly relevant therapeutic mechanisms and intervention targets, and establish a framework for SUD therapeutic development that allows optimal decision-making and resource allocation. 2011 Elsevier Inc. All rights reserved.

  18. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    Science.gov (United States)

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics.

    Science.gov (United States)

    McArthur, Monica A

    2017-06-13

    Zika is a rapidly emerging public health threat. Although clinical infection is frequently mild, significant neurological manifestations have been demonstrated in infants born to Zika virus (ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and therapeutics, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. This review will summarize what is currently known about ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of development of vaccines and therapeutics against ZIKV.

  20. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases.

    Science.gov (United States)

    Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I

    2017-01-01

    The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Lactate as an early predictor of psychomotor development in neonates with asphyxia receiving therapeutic hypothermia.

    Science.gov (United States)

    Polackova, Renata; Salounova, Dana; Kantor, Lumir

    2017-12-04

    This prospective study aimed to evaluate the relationship between persistently elevated lactate values in the arterial blood of newborns with grade II and III hypoxic ischemic encephalopathy (treated with therapeutic hypothermia) and psychomotor development at 24 months. 51 neonates of gestational age from 36 to 41 weeks receiving therapeutic hypothermia for moderate to severe hypoxic ischaemic encephalopathy had arterial blood lactate levels regularly analysed. At 24 months the infants' psychomotor development was evaluated and they were divided into two groups - those where the outcome was favourable (i.e. normal psychomotor development) and adverse (severe motor or sensory impairment or death). The lactate dynamics over time were retrospectively evaluated from the data collected, with the normal upper limit set at 4 mmol/L. Of the 51 affected neonates, 7 died over the course of the study. 34 of the remaining 44 infants demonstrated normal psychomotor findings at 2 years old, with adverse findings in 10 cases. Although both groups experienced significant reductions in lactate over time, there were statistically significant differences between them regarding currently measured lactate levels. Absolute lactate values and their development over time can be a used as an auxiliary factor in making early estimates of the long-term outcome for newborns with neonatal asphyxia being treated with therapeutic hypothermia.

  2. Aquatic environment as an occupational therapeutic scenario for the development of body scheme in Down syndrome

    Directory of Open Access Journals (Sweden)

    Chrystiane Maria Veras Pôrto

    2010-12-01

    Full Text Available Objective: To assess the effect of aquatic environment while an occupational therapeutic scenario in the development of body scheme of a child with Down Syndrome, considering the therapeutic properties of water. Description of the case: An interventionist research, with a qualitative and descriptive approach, conducted in an adapted pool of the Núcleo de Atenção Médica Integrada (NAMI of Fortaleza University (UNIFOR, Ceara, during the period of March to May, 2005. The subject of the study was a female child, aged 10 years old, diagnosed with Down Syndrome. Data collection had as instruments an interview guide for anamnesis, an evaluation form of psychomotor development, besides a field diary to record clinical observations during the sessions. This information was organized and analyzed based on clinical reasoning of occupational therapists and then described as a case study. We observed an evolution in the development of skills related to body scheme, such as the perception of fine parts of her own body, as well as large parts in someone else’s body, the imitation of positions, finishing with more active participation in activities of daily living. Final Considerations: We verified the effectiveness of occupational therapeutic activities conducted in aquatic environment for the development of the body scheme of the child in the study. This may be useful for conducting further research on the subject – whose literature is scarce – and contributing to the crescent update of occupational therapy practices.

  3. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2008-05-01

    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation. Copyright (c) 2007 Wiley-Periodicals, Inc.

  4. [The prospects for the development of therapeutic and health-promoting tourism in Gorny Altai].

    Science.gov (United States)

    Dzhabarova, N K; Iakovenko, É S; Sidorina, N G; Firsova, I A

    2014-01-01

    The present balneological survey made it possible to identify the promising areas with a high potential for the health resort, recreational and touristic activities including the foothill, low-mountain, mid-mountain valleys and hollows of Northern, Northwestern, Central and Eastern bioclimatic provinces of Mountainous Altai. Recommendations have been proposed for the development of therapeutic and health-improving tourism in the Shebalinsk, Ust'-Kansk and Ulagansk districts of the Altai Republic.

  5. Design, development, and clinical validation of therapeutic toys for autistic children

    OpenAIRE

    Tseng, Kevin C.; Tseng, Sung-Hui; Cheng, Hsin-Yi Kathy

    2016-01-01

    [Purpose] One of the characteristics of autistic children is social interaction difficulties. Although therapeutic toys can promote social interaction, however its related research remains insufficient. The aim of the present study was to build a set of cooperative play toys that are suitable for autistic children. [Subjects and Methods] This study used an innovative product design and development approach as the basis for the creation of cooperative play toys. [Results] The present study has...

  6. Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective

    Science.gov (United States)

    Seip, Ralf

    2009-04-01

    The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

  7. Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective

    International Nuclear Information System (INIS)

    Seip, Ralf

    2009-01-01

    The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

  8. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, M R.A.; Haji-Saeid, M; Zaknun, J; Ramamoorthy, N [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria)

    2009-07-01

    The IAEA activities on supporting development of therapeutic radiopharmaceuticals are focused on identified radionuclides that can be produced in large quantities and making use of carrier molecules which can be synthesized locally or procured from commercial sources or already available in MS from other related programs. The main emphasis is on {sup 90}Y and {sup 177}Lu based products, which cover the hard beta energy and soft beta energy range respectively, and also since both these radionuclides can be produced in large quantities with very high specific activity and high radionuclidic purity. The services to MS are provided through implementing Coordinated Research Projects (CRP), Technical Cooperation (TC) projects, technical meetings and regional training courses in addition to documenting practically useful technical information related to these products though IAEA publications. The CRP is a group activity in which nearly 15 participants from as many countries come together to work towards an identified objective. Two of the completed CRPs in this area are: (i) Comparative evaluation of therapeutic radiopharmaceuticals (2002-2005) that focussed on the development of 'in vitro' and 'in vivo' techniques for evaluating new generation therapeutic radiopharmaceuticals; and (ii) Development of generator technologies for therapeutic radionuclides (2004-2007) that addressed technologies for {sup 90}Sr/{sup 90}Y and {sup 188}W/{sup 188}Re generators and which can be easily adapted by MS. The participants in the CRP on 'Comparative evaluation of therapeutic radiopharmaceuticals' used the somatostatin analogue, DOTATATE as the lead molecule for developing radiopharmaceuticals and testing the efficacy by in vitro biological assays and animal biodistribution studies. A significant outcome of the CRP was that {sup 177}Lu-DOTATATE therapy is now practised in several of the CRP participating countries including Brazil, India, Italy, and Poland. The major outcome of the CRP

  9. Helping Oxytocin Deliver: Considerations in the Development of Oxytocin-Based Therapeutics for Brain Disorders.

    Directory of Open Access Journals (Sweden)

    Kai eMacdonald

    2013-03-01

    Full Text Available Concerns regarding a drought in psychopharmacology have risen from many quarters. From one perspective, the wellspring of bedrock medications for anxiety disorders, depression, and schizophrenia was serendipitously discovered over thirty year ago, the swell of pharmaceutical investment in drug discovery has receded, and the pipeline’s flow of medications with unique mechanisms of action (i.e. glutamatergic agents, CRF antagonists has slowed to a trickle. Might oxytocin (OT-based therapeutics be an oasis? Though a large basic science literature and a slowly increasing number of studies in human diseases support this hope, the bulk of extant OT studies in humans are single-dose studies on normals, and do not directly relate to improvements in human brain-based diseases. Instead, these studies have left us with a field pregnant with therapeutic possibilities, but barren of definitive treatments. In this clinically-oriented review, we discuss the extant OT literature with an eye toward helping OT deliver on its promise as a therapeutic agent. To this end, we identify ten key questions that we believe future OT research should address. From this overview, several conclusions are clear: 1 the OT system represents an extremely promising target for novel CNS drug development; 2 there is a pressing need for rigorous, randomized controlled clinical trials targeting actual patients; and 3 in order to inform the design and execution of these vital trials, we need further translational studies addressing the questions posed in this review. Looking forward, we extend a cautious hope that the next decade of OT research will birth oxytocin-targetted therapeutics that can truly deliver on this system’s therapeutic potential.

  10. EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids

    Directory of Open Access Journals (Sweden)

    Elvira Forte

    2017-07-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET. In the saving economy of the living organisms, the same (Ying-Yang tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This

  11. A Syrian golden hamster model recapitulating ebola hemorrhagic fever.

    Science.gov (United States)

    Ebihara, Hideki; Zivcec, Marko; Gardner, Donald; Falzarano, Darryl; LaCasse, Rachel; Rosenke, Rebecca; Long, Dan; Haddock, Elaine; Fischer, Elizabeth; Kawaoka, Yoshihiro; Feldmann, Heinz

    2013-01-15

    Ebola hemorrhagic fever (EHF) is a severe viral infection for which no effective treatment or vaccine is currently available. While the nonhuman primate (NHP) model is used for final evaluation of experimental vaccines and therapeutic efficacy, rodent models have been widely used in ebolavirus research because of their convenience. However, the validity of rodent models has been questioned given their low predictive value for efficacy testing of vaccines and therapeutics, a result of the inconsistent manifestation of coagulopathy seen in EHF. Here, we describe a lethal Syrian hamster model of EHF using mouse-adapted Ebola virus. Infected hamsters displayed most clinical hallmarks of EHF, including severe coagulopathy and uncontrolled host immune responses. Thus, the hamster seems to be superior to the existing rodent models, offering a better tool for understanding the critical processes in pathogenesis and providing a new model for evaluating prophylactic and postexposure interventions prior to testing in NHPs.

  12. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.

    Science.gov (United States)

    Krishnan, Navasona; Bonham, Christopher A; Rus, Ioana A; Shrestha, Om Kumar; Gauss, Carla M; Haque, Aftabul; Tocilj, Ante; Joshua-Tor, Leemor; Tonks, Nicholas K

    2018-01-18

    The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity.

  13. The developmental programme for genesis of the entire kidney is recapitulated in Wilms tumour

    Science.gov (United States)

    Anaka, Matthew R.; Morison, Ian M.; Reeve, Anthony E.

    2017-01-01

    Wilms tumour (WT) is an embryonal tumour that recapitulates kidney development. The normal kidney is formed from two distinct embryological origins: the metanephric mesenchyme (MM) and the ureteric bud (UB). It is generally accepted that WT arises from precursor cells in the MM; however whether UB-equivalent structures participate in tumorigenesis is uncertain. To address the question of the involvement of UB, we assessed 55 Wilms tumours for the molecular features of MM and UB using gene expression profiling, immunohistochemsitry and immunofluorescence. Expression profiling primarily based on the Genitourinary Molecular Anatomy Project data identified molecular signatures of the UB and collecting duct as well as those of the proximal and distal tubules in the triphasic histology group. We performed immunolabeling for fetal kidneys and WTs. We focused on a central epithelial blastema pattern which is the characteristic of triphasic histology characterized by UB-like epithelial structures surrounded by MM and MM-derived epithelial structures, evoking the induction/aggregation phase of the developing kidney. The UB-like epithelial structures and surrounding MM and epithelial structures resembling early glomerular epithelium, proximal and distal tubules showed similar expression patterns to those of the developing kidney. These observations indicate WTs can arise from a precursor cell capable of generating the entire kidney, such as the cells of the intermediate mesoderm from which both the MM and UB are derived. Moreover, this provides an explanation for the variable histological features of mesenchymal to epithelial differentiation seen in WT. PMID:29040332

  14. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects.

    Science.gov (United States)

    Dumonteil, Eric; Bottazzi, Maria Elena; Zhan, Bin; Heffernan, Michael J; Jones, Kathryn; Valenzuela, Jesus G; Kamhawi, Shaden; Ortega, Jaime; de Leon Rosales, Samuel Ponce; Lee, Bruce Y; Bacon, Kristina M; Fleischer, Bernhard; Slingsby, B T; Cravioto, Miguel Betancourt; Tapia-Conyer, Roberto; Hotez, Peter J

    2012-09-01

    Chagas disease is a leading cause of heart disease affecting approximately 10 million people in Latin America and elsewhere worldwide. The two major drugs available for the treatment of Chagas disease have limited efficacy in Trypanosoma cruzi-infected adults with indeterminate (patients who have seroconverted but do not yet show signs or symptoms) and determinate (patients who have both seroconverted and have clinical disease) status; they require prolonged treatment courses and are poorly tolerated and expensive. As an alternative to chemotherapy, an injectable therapeutic Chagas disease vaccine is under development to prevent or delay Chagasic cardiomyopathy in patients with indeterminate or determinate status. The bivalent vaccine will be comprised of two recombinant T. cruzi antigens, Tc24 and TSA-1, formulated on alum together with the Toll-like receptor 4 agonist, E6020. Proof-of-concept for the efficacy of these antigens was obtained in preclinical testing at the Autonomous University of Yucatan. Here the authors discuss the potential for a therapeutic Chagas vaccine as well as the progress made towards such a vaccine, and the authors articulate a roadmap for the development of the vaccine as planned by the nonprofit Sabin Vaccine Institute Product Development Partnership and Texas Children's Hospital Center for Vaccine Development in collaboration with an international consortium of academic and industrial partners in Mexico, Germany, Japan, and the USA.

  15. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  16. Development of Novel Therapeutic Agents by Inhibition of Oncogenic MicroRNAs

    Directory of Open Access Journals (Sweden)

    Dinh-Duc Nguyen

    2017-12-01

    Full Text Available MicroRNAs (miRs, miRNAs are regulatory small noncoding RNAs, with their roles already confirmed to be important for post-transcriptional regulation of gene expression affecting cell physiology and disease development. Upregulation of a cancer-causing miRNA, known as oncogenic miRNA, has been found in many types of cancers and, therefore, represents a potential new class of targets for therapeutic inhibition. Several strategies have been developed in recent years to inhibit oncogenic miRNAs. Among them is a direct approach that targets mature oncogenic miRNA with an antisense sequence known as antimiR, which could be an oligonucleotide or miRNA sponge. In contrast, an indirect approach is to block the biogenesis of miRNA by genome editing using the CRISPR/Cas9 system or a small molecule inhibitor. The development of these inhibitors is straightforward but involves significant scientific and therapeutic challenges that need to be resolved. In this review, we summarize recent relevant studies on the development of miRNA inhibitors against cancer.

  17. A Therapeutic Approach to Teaching Poetry: Individual Development, Psychology, and Social Reparation. Psychoanalysis, Education and Social Transformation

    Science.gov (United States)

    Williams, Todd O.

    2012-01-01

    A Therapeutic Approach to Teaching Poetry develops a poetry pedagogy that offers significant benefits to students by helping them to achieve a sense of renewal (a deeper awareness of self and potentials) and reparation (a realistic, but positive and proactive worldview). Todd O. Williams offers a thorough examination of the therapeutic potential…

  18. Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties.

    Directory of Open Access Journals (Sweden)

    Daniel M Lombardo

    2016-08-01

    Full Text Available Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF. A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP morphology, action potential duration (APD restitution and conduction velocity (CV restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy.

  19. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases.

    Science.gov (United States)

    Cameron, Robert B; Beeson, Craig C; Schnellmann, Rick G

    2016-12-08

    Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.

  20. Development of Therapeutic Modality of Esophageal Cancer Using Ho-166 Stent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo; Park, Kwang Kyun; Lee, Min Geol [Yonsei University Medical College, Seoul (Korea, Republic of); Park, Kyung Bae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    The prognosis of esophageal cancer is poor due absence of serosa which prevent local invasion to the surrounding organs such as aorta, mediastinum, trachea, and bronchi. We developed a Ho-166 Coated Radioactive Self-Expandable Metallic Stent which is a new herapeutic device in the treatment of esophageal cancer and underwent an animal experiment in mongrel dogs. We observed mucosal destruction by 4-6 mCi of Ho-166 without serious complications such as perforation of esophageal wall. Therefore, Ho-166 coated self-expandable stent appears to be an effective therapeutic device in the palliative treatment of esophageal cancer. 17 refs., 4 figs. (author)

  1. [Research on Depression in the GDR - Historical Lines of Development and Therapeutic Approaches].

    Science.gov (United States)

    Thormann, J; Himmerich, H; Steinberg, H

    2014-02-01

    Historical research has raised the issue of whether GDR psychiatry was isolated from Western influences to such an extent that an autonomous East German psychiatry developed. Taking a chronological approach and being based on a clearly defined range of topics, the objective of this paper is to identify specific contributions made by GDR psychiatry to academic research as well as the degree of its international orientation by focusing on the treatment and research on depression. We have performed a systematic review of the East German psychiatric journal "Psychiatrie, Neurologie und medizinische Psychologie" and a screening of all psychiatric textbooks that appeared in the GDR. Although East German psychiatry was oriented towards Soviet as well as Western developments, some internationally used therapeutic or conceptual innovations reached East German clinics only with some delay. Yet, East German psychiatrists have also contributed their own, independent nosological and therapeutic concepts to research on depression. Pivotal figures included, among others, R. Lemke (Jena), D. Müller-Hegemann (Leipzig) or K. Leonhard (Berlin). With regard to research on depression one cannot truly speak of an autonomous East German psychiatry. Developments in East and West were largely running in parallel. © Georg Thieme Verlag KG Stuttgart · New York.

  2. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  3. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  4. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  5. Report of the 2. research coordination meeting on development of generator technologies for therapeutic radionuclides

    International Nuclear Information System (INIS)

    2006-01-01

    The objectives of this CRP are to evaluate various generator and concentration technologies for 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators, to optimize generator fabrication and use, to standardize quality control techniques for the eluted radionuclides and to provide standardized procedures to participating laboratories. The following issues will be addressed during the CRP. - Development of reproducible methodologies for the preparation of 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators. - Development and evaluation of chromatography adsorbents (Zr/Ti composites) having higher binding capacities and demonstration of their utility in the preparation of column generators for 188 Re and 99 mTc. - Comparison and optimization of technologies for post elution concentration of 188 Re and 99 mTc in order to improve the radioactive concentration. - Development of quality control techniques and specifications for generator eluted therapeutic radionuclides

  6. Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment.

    Science.gov (United States)

    Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P; Curry, William T; Esaki, Shin-ichi; Kasper, Ekkehard M; Chi, Andrew S; Louis, David N; Martuza, Robert L; Rabkin, Samuel D; Wakimoto, Hiroaki

    2015-07-01

    Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 μm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.

  7. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis.

    Science.gov (United States)

    Peela, Nitish; Truong, Danh; Saini, Harpinder; Chu, Hunghao; Mashaghi, Samaneh; Ham, Stephanie L; Singh, Sunil; Tavana, Hossein; Mosadegh, Bobak; Nikkhah, Mehdi

    2017-07-01

    Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2018-01-01

    Full Text Available The relationship between intestinal stem cells (ISCs and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.

  9. Design, development, and clinical validation of therapeutic toys for autistic children.

    Science.gov (United States)

    Tseng, Kevin C; Tseng, Sung-Hui; Cheng, Hsin-Yi Kathy

    2016-07-01

    [Purpose] One of the characteristics of autistic children is social interaction difficulties. Although therapeutic toys can promote social interaction, however its related research remains insufficient. The aim of the present study was to build a set of cooperative play toys that are suitable for autistic children. [Subjects and Methods] This study used an innovative product design and development approach as the basis for the creation of cooperative play toys. [Results] The present study has successfully developed cooperative play toys. Compared to the traditional game therapy for autism, cooperative play toy therapy can significantly improve the interactions between autistic children and their peers. [Conclusion] The most critical design theme of cooperative play toys focuses on captivating the interest of autistic children. Based on the needs of the individual cases, the design of the therapeutic toy set was specifically tailored, i.e., by reinforcing the sound and light effects to improve the attractiveness of the toys. In the future, different play modes can be combined with this toy set to further enhance the degree of interaction of autistic children and improve their quality of life and social skills.

  10. Generous to a Fault: A Deep, Recapitulative Pattern of Thought in Ricoeur’s Works

    Directory of Open Access Journals (Sweden)

    Joél Z. Schmidt

    2012-12-01

    Full Text Available Paul Ricoeur clearly sought to differentiate between and keep separate his philosophical and theological intellectual endeavors. This essay brings into relief a deep, implicit, recapitulative pattern in Ricoeur’s thinking that cuts across this explicit “conceptual asceticism.” Specifically, it highlights this recapitulative pattern in Ricoeur’s treatment of prophecy in the Hebrew Bible; his understanding of utopia and ideology; the functioning of symbols in The Symbolism of Evil and of sublimation in Freud and Philosophy. On these topics Ricoeur extended his typical generosity toward all that might appear to be outdated, primitive, and even regressive in our collective and personal humanity. The frequently recapitulative nature of Ricoeur’s insights indicates the importance not just of the content of his thought but also the way in which he did his thinking, a pattern which above all was generous, even to a fault. 

  11. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  12. Development of gastroenterology and hepatology in Iran: Part II- advances in research and therapeutic modalities.

    Science.gov (United States)

    Saberifiroozi, Mehdi; Mir-Madjlessi, Seid-Hossein

    2009-09-01

    Following the establishment of Gastroenterology and Hepatology Fellowship Programs in 1987, significant developments in research and health care delivery have been achieved. The number of published articles has increased significantly and now more than 10 approved research centers are involved in several longitudinal and population based studies in GI epidemiology, viral hepatitis and GI oncology around the country. Before 1987 less than 50 gastroenterologists were working in the country, but now more than 300 gastroenterologists are involved in public and private health care delivery systems. Advanced diagnostic and therapeutic endoscopic procedures and complex surgical procedures such as liver transplantation are a routine now. These achievements are indicative of hard work and determination of dedicated physicians after the Islamic Revolution, and the support of governmental and non-governmental sectors. The future prospect of development in the discipline of gastroenterology and hepatology in Iran seems to be very encouraging.

  13. Alternative Splicing in Breast Cancer and the Potential Development of Therapeutic Tools.

    Science.gov (United States)

    Martínez-Montiel, Nancy; Anaya-Ruiz, Maricruz; Pérez-Santos, Martín; Martínez-Contreras, Rebeca D

    2017-10-05

    Alternative splicing is a key molecular mechanism now considered as a hallmark of cancer that has been associated with the expression of distinct isoforms during the onset and progression of the disease. The leading cause of cancer-related deaths in women worldwide is breast cancer, and even when the role of alternative splicing in this type of cancer has been established, the function of this mechanism in breast cancer biology is not completely decoded. In order to gain a comprehensive view of the role of alternative splicing in breast cancer biology and development, we summarize here recent findings regarding alternative splicing events that have been well documented for breast cancer evolution, considering its prognostic and therapeutic value. Moreover, we analyze how the response to endocrine and chemical therapies could be affected due to alternative splicing and differential expression of variant isoforms. With all this knowledge, it becomes clear that targeting alternative splicing represents an innovative approach for breast cancer therapeutics and the information derived from current studies could guide clinical decisions with a direct impact in the clinical advances for breast cancer patients nowadays.

  14. Quercetin as an Emerging Anti-Melanoma Agent: A four-focus area therapeutic development strategy

    Directory of Open Access Journals (Sweden)

    Zoey Harris

    2016-10-01

    Full Text Available Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase -- a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes a feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated anti-proliferative and pro-apoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anti-cancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review we explore the potential of Quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a four-focus area strategy to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to i modulate cellular bioreduction potential and associated signaling cascades, ii affect transcription of relevant genes, iii regulate epigenetic processes, and iv develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  15. Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms

    Science.gov (United States)

    Ishibashi, Hidetoshi; Minakawa, Eiko N.; Motohashi, Hideyuki H.; Takayama, Osamu; Popiel, H. Akiko; Puentes, Sandra; Owari, Kensuke; Nakatani, Terumi; Nogami, Naotake; Yamamoto, Kazuhiro; Yonekawa, Takahiro; Tanaka, Yoko; Fujita, Naoko; Suzuki, Hikaru; Aizawa, Shu; Nagano, Seiichi; Yamada, Daisuke; Wada, Keiji; Kohsaka, Shinichi

    2017-01-01

    Abstract Age-associated neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and the polyglutamine (polyQ) diseases, are becoming prevalent as a consequence of elongation of the human lifespan. Although various rodent models have been developed to study and overcome these diseases, they have limitations in their translational research utility owing to differences from humans in brain structure and function and in drug metabolism. Here, we generated a transgenic marmoset model of the polyQ diseases, showing progressive neurological symptoms including motor impairment. Seven transgenic marmosets were produced by lentiviral introduction of the human ataxin 3 gene with 120 CAG repeats encoding an expanded polyQ stretch. Although all offspring showed no neurological symptoms at birth, three marmosets with higher transgene expression developed neurological symptoms of varying degrees at 3–4 months after birth, followed by gradual decreases in body weight gain, spontaneous activity, and grip strength, indicating time-dependent disease progression. Pathological examinations revealed neurodegeneration and intranuclear polyQ protein inclusions accompanied by gliosis, which recapitulate the neuropathological features of polyQ disease patients. Consistent with neuronal loss in the cerebellum, brain MRI analyses in one living symptomatic marmoset detected enlargement of the fourth ventricle, which suggests cerebellar atrophy. Notably, successful germline transgene transmission was confirmed in the second-generation offspring derived from the symptomatic transgenic marmoset gamete. Because the accumulation of abnormal proteins is a shared pathomechanism among various neurodegenerative diseases, we suggest that this new marmoset model will contribute toward elucidating the pathomechanisms of and developing clinically applicable therapies for neurodegenerative diseases. PMID:28374014

  16. Rational design of highly potent HIV-1 fusion inhibitory proteins: Implication for developing antiviral therapeutics

    International Nuclear Information System (INIS)

    Ni Ling; Gao, George F.; Tien Po

    2005-01-01

    Recombinant protein containing one heptad-repeat 1 (HR1) segment and one HR2 segment of the HIV-1 gp41 (HR1-HR2) has been shown to fold into thermally stable six-helix bundle, representing the fusogenic core of gp41. In this study, we have used the fusogenic core as a scaffold to design HIV-1 fusion inhibitory proteins by linking another HR1 to the C terminus of HR1-HR2 (HR121) or additional HR2 to the N terminus of HR1-HR2 (HR212). Both recombinant proteins could be abundantly and solubly expressed and easily purified, exhibiting high stability and potent inhibitory activity on HIV-1 fusion with IC 50 values of 16.2 ± 2.8 and 2.8 ± 0.63 nM, respectively. These suggest that these rationally designed proteins can be further developed as novel anti-HIV-1 therapeutics

  17. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment.

    Science.gov (United States)

    Kintzing, James R; Filsinger Interrante, Maria V; Cochran, Jennifer R

    2016-12-01

    Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Design and Development of a Bilateral Therapeutic Hand Device for Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Akhlaquor Rahman

    2013-12-01

    Full Text Available The major cause of disability is stroke. It is the second highest cause of death after coronary heart disease in Australia. In this paper, a post stroke therapeutic device has been designed and developed for hand motor function rehabilitation that a stroke survivor can use for bilateral movement practice. A prototype of the device was fabricated that can fully flex and extend metacarpophalangeal (MCP, proximal interphalangeal (PIP and distal interphalangeal (DIP joints of the fingers, and interphalangeal (IP, metacarpophalangeal (MCP and trapeziometacarpal (IM joints of the thumb of the left hand (impaired hand, based on movements of the right hand's (healthy hand fingers. Out of 21 degrees of freedom (DOFs of hand fingers, the prototype of the hand exoskeleton allowed fifteen degrees of freedom (DOFs, with three degrees of freedom (DOFs for each finger and three degrees of freedom (DOFs for the thumb. In addition, testing of the device on a healthy subject was conducted to validate the design requirements.

  19. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    International Nuclear Information System (INIS)

    Liang, Li-Ping; Huang, Jie; Fulton, Ruth; Pearson-Smith, Jennifer N.; Day, Brian J.; Patel, Manisha

    2017-01-01

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.

  20. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Li-Ping [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Huang, Jie [Department of Medicine, National Jewish Health, Denver, CO (United States); Fulton, Ruth; Pearson-Smith, Jennifer N. [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Day, Brian J. [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Department of Medicine, National Jewish Health, Denver, CO (United States); Patel, Manisha, E-mail: manisha.patel@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States)

    2017-07-01

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.

  1. Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Sebastián D Calligaris

    Full Text Available BACKGROUND/AIM: Hypercaloric diet ingestion and sedentary lifestyle result in obesity. Metabolic syndrome is a cluster of clinical features secondary to obesity, considered as a pre-diabetic condition and recognized as an independent risk factor for cardiovascular diseases. To better understand the relationship between obesity, metabolic syndrome and cardiovascular disease as well as for the development of novel therapeutic strategies, animal models that reproduce the etiology, course and outcomes of these pathologies are required. The aim of this work was to characterize the long-term effects of high-fat diet-induced obesity on the mice cardiovascular system, in order to make available a new animal model for diabetic cardiomyopathy. METHODS/RESULTS: Male C57BL/6 mice were fed with a standardized high-fat diet (obese or regular diet (normal for 16 months. Metabolic syndrome was evaluated testing plasma glucose, triglycerides, cholesterol, insulin, and glucose tolerance. Arterial pressure was measured using a sphygmomanometer (non invasive method and by hemodynamic parameters (invasive method. Cardiac anatomy was described based on echocardiography and histological studies. Cardiac function was assessed by cardiac catheterization under a stress test. Cardiac remodelling and metabolic biomarkers were assessed by RT-qPCR and immunoblotting. As of month eight, the obese mice were overweight, hyperglycaemic, insulin resistant, hyperinsulinemic and hypercholesterolemic. At month 16, they also presented normal arterial pressure but altered vascular reactivity (vasoconstriction, and cardiac contractility reserve reduction, heart mass increase, cardiomyocyte hypertrophy, cardiac fibrosis, and heart metabolic compensations. By contrast, the normal mice remained healthy throughout the study. CONCLUSIONS: Mice fed with a high-fat diet for prolonged time recapitulates the etiology, course and outcomes of the early phases of human diabetic cardiomyopathy.

  2. Development of the small-molecule antiviral ST-246® as a smallpox therapeutic

    Science.gov (United States)

    Grosenbach, Douglas W; Jordan, Robert; Hruby, Dennis E

    2011-01-01

    Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246® (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the ‘animal rule’). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency. PMID:21837250

  3. Effects of certain therapeutic factors on facial development in isolated cleft palate.

    Science.gov (United States)

    Smahel, Z

    1989-01-01

    Roentgencephalometry was used during the investigation of the effects of some therapeutic factors on the growth and development of the jaws in 64 adult males with an isolated cleft palate repaired by pushback. The anterior growth of the maxilla was not related to the age at the time of surgery or to orthodontic therapy with removable appliances. A small number of individuals operated during adolescence had also a shorter depth of the maxilla similarly as patients operated upon during early childhood. Anterior crossbite developed mostly in patients with reduced proclination of the upper alveolar process, while, on the contrary, a retrusion of the maxilla played no essential part. This observation proves useful for the prediction of the development of this malocclusion. The angle of sagittal jaw relations does not represent necessarily a valid criterion of the development of the jaws. In the presence of an overbite retrusion of the maxilla is associated with a retroposition of the mandible and thus the angle of sagittal jaw relations remains unchanged. Thus overbite represents an effective mechanism acting on the position of the mandible. A differentiated approach for the determination of the age of choice at the time of palate surgery according to the type and extent of the cleft is proposed.

  4. Acute development of collateral circulation and therapeutic prospects in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Eri Iwasawa

    2016-01-01

    Full Text Available In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein.

  5. Acute development of collateral circulation and therapeutic prospects in ischemic stroke.

    Science.gov (United States)

    Iwasawa, Eri; Ichijo, Masahiko; Ishibashi, Satoru; Yokota, Takanori

    2016-03-01

    In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein.

  6. Acute development of collateral circulation and therapeutic prospects in ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Eri Iwasawa; Masahiko Ichijo; Satoru Ishibashi; Takanori Yokota

    2016-01-01

    In acute ischemic stroke, collateral circulation plays an important role in maintaining blood lfow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate with-out hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by lfuid shear stress, which occurs be-tween the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate recep-tor 1, which is a known shear-stress mechanosensing protein.

  7. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation.

    Science.gov (United States)

    Langdon, Amy; Crook, Nathan; Dantas, Gautam

    2016-04-13

    The widespread use of antibiotics in the past 80 years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds.

  8. Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Science.gov (United States)

    Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.

    2014-01-01

    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891

  9. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.

    Science.gov (United States)

    Madl, Christopher M; Heilshorn, Sarah C

    2018-06-04

    Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

  10. A Fork in the Path: Developing Therapeutic Inroads with FoxO Proteins

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2009-01-01

    Full Text Available Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.

  11. Integration of systems biology with organs-on-chips to humanize therapeutic development

    Science.gov (United States)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  12. The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease.

    Directory of Open Access Journals (Sweden)

    Jackalina M Van Kampen

    Full Text Available The development of effective neuroprotective therapies for Parkinson's disease (PD has been severely hindered by the notable lack of an appropriate animal model for preclinical screening. Indeed, most models currently available are either acute in nature or fail to recapitulate all characteristic features of the disease. Here, we present a novel progressive model of PD, with behavioural and cellular features that closely approximate those observed in patients. Chronic exposure to dietary phytosterol glucosides has been found to be neurotoxic. When fed to rats, β-sitosterol β-d-glucoside (BSSG triggers the progressive development of parkinsonism, with clinical signs and histopathology beginning to appear following cessation of exposure to the neurotoxic insult and continuing to develop over several months. Here, we characterize the progressive nature of this model, its non-motor features, the anatomical spread of synucleinopathy, and response to levodopa administration. In Sprague Dawley rats, chronic BSSG feeding for 4 months triggered the progressive development of a parkinsonian phenotype and pathological events that evolved slowly over time, with neuronal loss beginning only after toxin exposure was terminated. At approximately 3 months following initiation of BSSG exposure, animals displayed the early emergence of an olfactory deficit, in the absence of significant dopaminergic nigral cell loss or locomotor deficits. Locomotor deficits developed gradually over time, initially appearing as locomotor asymmetry and developing into akinesia/bradykinesia, which was reversed by levodopa treatment. Late-stage cognitive impairment was observed in the form of spatial working memory deficits, as assessed by the radial arm maze. In addition to the progressive loss of TH+ cells in the substantia nigra, the appearance of proteinase K-resistant intracellular α-synuclein aggregates was also observed to develop progressively, appearing first in the

  13. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation.

    Science.gov (United States)

    Soto Rifo, Ricardo; Ricci, Emiliano P; Décimo, Didier; Moncorgé, Olivier; Ohlmann, Théophile

    2007-01-01

    Translation of most eukaryotic mRNAs involves the synergistic action between the 5' cap structure and the 3' poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.

  14. Two cases of acute leukemia developed after therapeutic radiation for malignant tumors

    International Nuclear Information System (INIS)

    Takahashi, Naoki; Matsuo, Kakaru; Yamaguchi, Hiroshi; Tsuno, Sumio; Toyoda, Shigeki

    1978-01-01

    Report was made as to two cases of acute leukemia developed after therapeutic radiation for malignant tumors. Both cases were exposed to atomic-bomb at the places 4 and 3 km far from the center of explosion, and they did not suffer from injuries and acute symptoms due to radiation. Case 1. -A 78 year old man had a mass in a right hypogastric region in April of 1975. In March of 1976, he received laparotomy and was diagnosed as malignant schwannoma. He received radiation therapy with 4,600 R and MFC therapy. In February of 1977, a clinical diagnosis of erythroleukemia was made according to the findings by bone marrow puncture, and he died in March. Postmortem examination revealed that main lesions were malignant schwannoma, its metastases, and leukemia. Case 2. -A 51 year old woman had a finger-tip sized tumor in the left breast in November of 1965, and had a radical operation on the basis of a diagnosis of comedo sarcoma. After that she received 60 Co irradiation with 18,800 R, and she was admitted in December of 1971, because she was suspected of having leukemia. She died in January of 1972. Postmortem examination revealed acute myelocytic leukemia. It is suspected that the onset of erythroleukemia within one year after irradiation would be influenced by MFC therapy in addition to radiotherapy. It was thought that leukemia in Case 2 was influenced by radiotherapy rather than atomic-bomb radioactivity. (Serizawa, K.)

  15. New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Ebbe Toftgaard Poulsen

    2015-12-01

    Full Text Available The Amyloid Precursor Protein (APP has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ in Alzheimer’s disease (AD. However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc and its Adaptor Protein 2 (AP-2. Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies.

  16. Development of a Biofeedback Therapeutic Exercise Supporting Manipulator for Lower Limbs

    Science.gov (United States)

    Hashimoto, Yosuke; Hisada, Takashi; Komada, Satoshi; Hirai, Junji

    Although equipments that support physical therapy have been developed, there are few types of equipment to improve quality of physical therapy. This paper proposes a new concept of robotic biofeedback exercise equipment that displays human muscle force during training. The concept tries to have therapeutic value through grasping of condition for trainee during exercise and giving an incentive to perform training. The equipment is not only for convalescent patients but also for athletes and healthy persons with a physical trouble. The manipulator is designed to support lower limb rehabilitation of knee and hip joints in sagittal plane, where a 3-degrees-of-freedom manipulator is adopted in order to realize low height equipment. Since the manipulator has redundant degree of freedom, collision avoidance is performed by a controller based on acceleration control by disturbance observer. Moreover, simultaneous isokinetic movement for knee and hip joints that has an adjustment capability of maximum speed and time constant is realized in order to perform safe training by isokinetic muscular contraction. Desired motion is realized experimentally by the proposed manipulator.

  17. Rational design of an EGF-IL18 fusion protein: Implication for developing tumor therapeutics

    International Nuclear Information System (INIS)

    Lu Jianxin; Peng Ying; Meng Zhefeng; Jin Liqin; Lu Yongsui; Guan Minxin

    2005-01-01

    Interleukin-18 (IL-18) is a proinflammatory cytokine. This protein has a role in regulating immune responses and exhibits significant anti-tumor activities. Epidermal growth factor (EGF) is an important growth factor that plays a central role in the regulation of cell cycle and differentiation. It was proposed that a targeted delivery of IL-18 by generation of IL-18-EGF fusion protein might decrease adverse effects and result in enhancing cytotoxic and antitumor activities. In the present study, a fusion protein, consisting of EGFR binding domain fused to human IL-18 mature peptide via a linker peptide of (Gly 4 Ser) 3, was constructed and expressed in the insect cell line Sf9 using Bac-to-Bac baculovirus expression system. We showed that the purified recombinant fusion protein induced similar levels of IFN-γ to that of native IL-18 protein in human PBMC in the presence of ConA. Furthermore, EGF receptor competitive test in human epithelial cancer A431 cell line showed that EGF-IL18 fusion protein can specifically bind with EGFR by competing with native EGF protein. These suggest that this rationally designed protein can be further developed as novel tumor therapeutics

  18. Engineered Bovine Antibodies in the Development of Novel Therapeutics, Immunomodulators and Vaccines

    Directory of Open Access Journals (Sweden)

    Madhuri Koti

    2014-05-01

    Full Text Available Some bovine antibodies across all classes are unique, such as the CDR3 of the variable heavy-domain (VH CDR3, which is exceptionally long (up to 66 amino acids, unlike most conventional antibodies where the VH CDR3 loops range from 10 to 25 amino acids. The exceptionally long VH CDR3 is encoded by unusually long germline IGHD genes together with insertion of novel “a” nucleotide rich conserved short nucleotide sequence (CSNS specifically at the IGH V-D junction. Such an exceptionally long VH CDR3 confers unique “knob and stalk” structural architecture where the knob, formed by intra-VH CDR3 disulfide bridges, is separated by 20 Å solvent exposed stalk composed of anti-parallel beta strands. The substitution of the knob with cytokines, such as, erythropoietin and granulocyte colony stimulating factor 3 (granulocyte colony stimulating factor, results in expression of functional fusion proteins with enhanced pharmacokinetics. The beta stranded stalk can be substituted with other rigid structures, for example, repeat alpha helices to form coiled-coil that mimics the beta-stranded stalk and, thus, opens opportunities for insertion of this structure in the CDRs of antibodies across species. Given the versatility of such a structural platform in bovine antibody VH CDR3, it provides the opportunity for the development of new generation of diagnostics, therapeutics, vaccines and immunomodulating drugs.

  19. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer?s disease

    OpenAIRE

    Yang, Shuang-shuang; Zhang, Rui; Wang, Gang; Zhang, Yong-fang

    2017-01-01

    Alzheimer?s disease (AD) is a chronic neurodegenerative disease, which is associated with learning and memory impairment in the elderly. Recent studies have found that treating AD in the way of chromatin remodeling via histone acetylation is a promising therapeutic regimen. In a number of recent studies, inhibitors of histone deacetylase (HDACs) have been found to be a novel promising therapeutic?agents for neurological disorders, particularly for AD and other neurodegenerative diseases. Alth...

  20. Macromolecular therapeutics.

    Science.gov (United States)

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Expanding the Therapeutic Spectrum of Artemisinin: Activity Against Infectious Diseases Beyond Malaria and Novel Pharmaceutical Developments

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2016-08-01

    Full Text Available The interest of Western medicine in Traditional Chinese Medicine (TCM as a source of drug leads/new drugs to treat diseases without available efficient therapies has been dramatically augmented in the last decades by the extensive work and the outstanding findings achieved within this kind of medicine. The practice of TCM over thousands of years has equipped scientists with substantial experience with hundreds of plants that led to the discovery of artemisinin (qinghaosu, which is extracted from the medicinal plant Artemisia annua L. (qinghao. The unexpected success of artemisinin in combating malaria has drawn strong attention from the scientific community towards TCM. Artemisinin was discovered by Youyou Tu in 1972. Since then, several novel pharmacological activities based on the well-known properties of the sesquiterpene lactone structure with the oxepane ring and an endoperoxide bridge have been unravelled. Beyond malaria, artemisinin and its derivatives (artemisinins exert profound activities towards other protozoans (Leishmania, Trypanosoma, amoebas, Neospora caninum, and Eimeria tenella, trematodes (Schistosoma, liver flukes, and viruses (human cytomegalovirus, hepatitis B and C viruses. Less clear is the effect against bacteria and fungi. Based on the promising results of artemisinin and the first generation derivatives (artesunate, artemether, arteether, novel drug development strategies have been pursued. These included the synthesis of acetal- and non-acetal-type artemisinin dimeric molecules as well as developing nanotechnological approaches, e.g. artemisinin-based liposomes, niosomes, micelles, solid lipid nanocarriers, nanostructured lipid carriers, nanoparticles, fullerenes and nanotubes. The current review presents an overview on different aspects of artemisinins, including sources, chemistry, biological/pharmacological properties, types of infectious pathogens that are susceptible to artemisinins in vitro and in vivo, in

  2. Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers.

    Science.gov (United States)

    de Oliveira, Carolina C; Abud, Ana Paula R; de Oliveira, Simone M; Guimarães, Fernando de S F; de Andrade, Lucas F; Di Bernardi, Raffaello P; Coletto, Ediely L de O; Kuczera, Diogo; Da Lozzo, Eneida J; Gonçalves, Jenifer P; Trindade, Edvaldo da S; Buchi, Dorly de F

    2011-10-26

    In the search for new therapies novel drugs and medications are being discovered, developed and tested in laboratories. Highly diluted substances are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Over the past years our research group has been investigating the action of highly diluted substances and tinctures on cells from the immune system. We have developed and tested several highly diluted tinctures and here we describe the biological activity of M1, M2, and M8 both in vitro in immune cells from mice and human, and in vivo in mice. Cytotoxicity, cytokines released and NF-κB activation were determined after in vitro treatment. Cell viability, oxidative response, lipid peroxidation, bone marrow and lymph node cells immunophenotyping were accessed after mice in vivo treatment. None of the highly diluted tinctures tested were cytotoxic to macrophages or K562. Lipopolysaccharide (LPS)-stimulated macrophages treated with all highly diluted tinctures decreased tumour necrosis factor alpha (TNF-α) release and M1, and M8 decreased IFN-γ production. M1 has decreased NF-κB activity on TNF-α stimulated reporter cell line. In vivo treatment lead to a decrease in reactive oxygen species (ROS), nitric oxide (NO) production was increased by M1, and M8, and lipid peroxidation was induced by M1, and M2. All compounds enhanced the innate immunity, but M1 also augmented acquired immunity and M2 diminished B lymphocytes, responsible to acquired immunity. Based on the results presented here, these highly diluted tinctures were shown to modulate immune responses. Even though further investigation is needed there is an indication that these highly diluted tinctures could be used as therapeutic interventions in disorders where the immune system is compromised.

  3. Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers

    Directory of Open Access Journals (Sweden)

    de Oliveira Carolina C

    2011-10-01

    Full Text Available Abstract Background In the search for new therapies novel drugs and medications are being discovered, developed and tested in laboratories. Highly diluted substances are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Over the past years our research group has been investigating the action of highly diluted substances and tinctures on cells from the immune system. Methods We have developed and tested several highly diluted tinctures and here we describe the biological activity of M1, M2, and M8 both in vitro in immune cells from mice and human, and in vivo in mice. Cytotoxicity, cytokines released and NF-κB activation were determined after in vitro treatment. Cell viability, oxidative response, lipid peroxidation, bone marrow and lymph node cells immunophenotyping were accessed after mice in vivo treatment. Results None of the highly diluted tinctures tested were cytotoxic to macrophages or K562. Lipopolysaccharide (LPS-stimulated macrophages treated with all highly diluted tinctures decreased tumour necrosis factor alpha (TNF-α release and M1, and M8 decreased IFN-γ production. M1 has decreased NF-κB activity on TNF-α stimulated reporter cell line. In vivo treatment lead to a decrease in reactive oxygen species (ROS, nitric oxide (NO production was increased by M1, and M8, and lipid peroxidation was induced by M1, and M2. All compounds enhanced the innate immunity, but M1 also augmented acquired immunity and M2 diminished B lymphocytes, responsible to acquired immunity. Conclusions Based on the results presented here, these highly diluted tinctures were shown to modulate immune responses. Even though further investigation is needed there is an indication that these highly diluted tinctures could be used as therapeutic interventions in disorders where the immune system is compromised.

  4. Introduction to thematic minireview series: Development of human therapeutics based on induced pluripotent stem cell (iPSC) technology.

    Science.gov (United States)

    Rao, Mahendra; Gottesfeld, Joel M

    2014-02-21

    With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.

  5. Primary fibroblasts from CSP? mutation carriers recapitulate hallmarks of the adult onset neuronal ceroid lipofuscinosis

    OpenAIRE

    Benitez, Bruno A.; Sands, Mark S.

    2017-01-01

    Mutations in the co- chaperone protein, CSP?, cause an autosomal dominant, adult-neuronal ceroid lipofuscinosis (AD-ANCL). The current understanding of CSP? function exclusively at the synapse fails to explain the autophagy-lysosome pathway (ALP) dysfunction in cells from AD-ANCL patients. Here, we demonstrate unexpectedly that primary dermal fibroblasts from pre-symptomatic mutation carriers recapitulate in vitro features found in the brains of AD-ANCL patients including auto-fluorescent sto...

  6. Developing a therapeutic relationship with a blind client with a severe intellectual disability and persistent challenging behaviour

    NARCIS (Netherlands)

    Sterkenburg, P.S.; Janssen, C.G.C.; Schuengel, C.

    2008-01-01

    Purpose. A blind, severely intellectually impaired boy aged 17 with Down syndrome and persistent serious challenging behavior received attachment-based behavior modification treatment. The aim was to study the effect of the treatment and the development of the therapeutic attachment relationship.

  7. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    Science.gov (United States)

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  8. Development of a compassion-focused and contextual behavioural environment and validation of the Therapeutic Environment Scales (TESS).

    Science.gov (United States)

    Veale, David; Miles, Sarah; Naismith, Iona; Pieta, Maria; Gilbert, Paul

    2016-02-01

    Aims and method The aims of the study were to develop a scale sensitive enough to measure the interpersonal processes within a therapeutic environment, and to explore whether the new scale was sensitive enough to detect differences between settings, including a community based on compassionate mind and contextual behaviourism. The Therapeutic Environment Scales (TESS) were validated with 81 participants in three different settings: a specialist service for anxiety disorders, a specialist in-patient ward and a psychodynamic therapeutic community. Results TESS was found to be reliable and valid. Significant differences were seen between the services on the dimensions of compassion, belongingness, feeling safe, positive reinforcement of members' acts of courage, extinction and accommodation of unhelpful behaviours, inconsistency and high expressed emotion. These processes were over time associated with improved outcomes on a specialist service for anxiety disorders. Clinical implications The TESS offers a first step in exploring important interpersonal relationships in therapeutic environments and communities. An environment based on a compassionate mind and contextual behaviourism offers promise for the running of a therapeutic community.

  9. Radionuclides for therapeutic applications: Biological and medical aspects (present status, development and expectations)

    International Nuclear Information System (INIS)

    Wambersie, A.; Gahbauer, R.A.

    2002-01-01

    Different multidisciplinary therapeutic strategies and technical approaches are used today in cancer therapy. Among the techniques involving ionizing radiation, therapeutic applications of radioactive nuclides deserve a particular interest ; some clinical indications are well established, while several others are now being investigated, and some of them are promising. The efficacy of radionuclides in therapy often depends on technical factors such as specific activity, purity, chemical presentation, availability, etc. These factors are closely related, at least partly, to the production methods. This justifies the organization of the present Consultant's meeting by the IAEA. Brief information on cancer, its socio-economic aspects, and some data concerning cure rate are presented first

  10. Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome

    Science.gov (United States)

    Aoidi, Rifdat; Houde, Nicolas; Landry-Truchon, Kim; Holter, Michael; Jacquet, Kevin; Charron, Louis; Yu, Benjamin D.; Rauen, Katherine A.; Bisson, Nicolas; Newbern, Jason

    2018-01-01

    ABSTRACT The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper. PMID:29590634

  11. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems.

    Science.gov (United States)

    Lee-Montiel, Felipe T; George, Subin M; Gough, Albert H; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-10-01

    developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices.

  12. Development of radiolanthanide labeled porphyrin complexes as possible therapeutic agents in beast carcinoma xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Vahidfar, Nasim; Aghanejad, Ayuob; Beiki, Davood; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Faculty of Pharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Bahrami-Samani, Ali; Alirezapour, Behrooz; Erfani, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiopharmacy Research Group

    2014-10-01

    Radiolabeled porphyrins are potential tumor avid radiopharmaceuticals because of their behaviour in the human body, ability to complex various radionuclides, water solubility, low toxicity etc., in this work radio ytterbium/samarium porphyrin complexes have been developed. {sup 175}Yb and {sup 153}Sm labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrins ([{sup 175}Yb]-TDMPP/[{sup 153}Sm]-TDMPP) were prepared using 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin (H{sub 2}TDMPP) and [{sup 175}Yb]YbCl{sub 3} or [{sup 153}Sm]SmCl{sub 3} in 12-24 h at 60 C. Stability of the complexes were checked in final formulation and human serum for 24 h, followed by partition coefficient determination and biodistribution studies in wild type and breast carcinoma-bearing mice. The radiocomplexes were obtained with acceptable radiochemical purity (> 95% (paper chromatography) and > 96% (HPLC) for [{sup 175}Yb]-TDMPP and > 97% (paper chromatography) and > 98% (HPLC) for [{sup 153}Sm]-TDMPP) with specific activities of 12-15 GBq/mmol and 278 GBq/mmol at the end of bombardment for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP respectively. The partition coefficients were determined for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP (log P = 0.63 and log P = 0.96 respectively). The [{sup 175}Yb]-TDMPP complex is mostly washed out from the circulation through kidneys. Liver and spleen also demonstrated significant activity uptake in 72 h post injection. Also [{sup 153}Sm]-TDMPP, is mostly washed out from the circulation through kidneys, however lungs are the major accumulation sites. The [{sup 153}Sm]-TDMPP complex demonstrated significant targeted uptake in breast carcinoma xenografts with tumor: blood ratios of 10.67, 10.47 and 19.01 in 24, 48 and 72 h respectively. Also interesting tumor: kidney/liver ratios were obtained. {sup 153}Sm-TDMPP properties suggest an efficient tumor targeting agent with high tumor-avidity. Further investigation on the therapeutic properties must be

  13. Prophylactic and Therapeutic Vaccination against Hepatitis C Virus (HCV: Developments and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Marian E. Major

    2009-08-01

    Full Text Available Studies in patients and chimpanzees that spontaneously clear Hepatitis C Virus (HCV have demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism regarding prophylactic HCV vaccines and a number of studies in the chimpanzee model have been performed, all of which resulted in modified infections after challenge but did not always prevent persistence of the virus. Therapeutic vaccine strategies have also been pursued in an effort to reduce the costs and side effects associated with anti-viral drug treatment. This review summarizes the studies performed thus far in both patients and chimpanzees for prophylactic and therapeutic vaccination, assesses the progress made and future perspectives.

  14. The Development of Therapeutic and Diagnostic Countermeasures to WMD by the Advanced Medical Countermeasures Consortium

    Science.gov (United States)

    2008-09-01

    measure of lipid peroxidation Vitamin E or flavonoids , while not influencing hepatic GSH depletion, did reduce MDA levels, suggesting a therapeutic...2,5,7,8-tetramethylchroman-2-carboxylic acid), which is a water-soluble derivative of alpha-tocopherol, and quercetin, which a flavonoid .32... flavonoids . Toxicol. 1991;69:35–42. 20. Husain K, Dube SN, Sugendran K, Singh R, Das Gupta S, Somani SM. Effect of topically applied sulphur mustard on

  15. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review.

    Science.gov (United States)

    Fadel, Hossam E

    2012-03-01

    Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed. © 2010 Blackwell Publishing Ltd.

  16. Discovery and Development of Synthetic and Natural Biomaterials for Protein Therapeutics and Medical Device Applications

    Science.gov (United States)

    Keefe, Andrew J.

    Controlling nonspecific protein interactions is important for applications from medical devices to protein therapeutics. The presented work is a compilation of efforts aimed at using zwitterionic (ionic yet charge neutral) polymers to modify and stabilize the surface of sensitive biomedical and biological materials. Traditionally, when modifying the surface of a material, the stability of the underlying substrate. The materials modified in this dissertation are unique due to their unconventional amorphous characteristics which provide additional challenges. These are poly(dimethyl siloxane) (PDMS) rubber, and proteins. These materials may seem dissimilar, but both have amorphous surfaces, that do not respond well to chemical modification. PDMS is a biomaterial extensively used in medical device manufacturing, but experiences unacceptably high levels of non-specific protein fouling when used with biological samples. To reduce protein fouling, surface modification is often needed. Unfortunately conventional surface modification methods, such as Poly(ethylene glycol) (PEG) coatings, do not work for PDMS due to its amorphous state. Herein, we demonstrate how a superhydrophilic zwitterionic material, poly(carboxybetaine methacrylate) (pCBMA), can provide a highly stable nonfouling coating with long term stability due to the sharp the contrast in hydrophobicity between pCBMA and PDMS. Biological materials, such as proteins, also require stabilization to improve shelf life, circulation time, and bioactivity. Conjugation of proteins with PEG is often used to increase protein stability, but has a detrimental effect on bioactivity. Here we have shown that pCBMA conjugation improves stability in a similar fashion to PEG, but also retains, or even improves, binding affinity due to enhanced protein-substrate hydrophobic interactions. Recognizing that pCBMA chemically resembles the combination of lysine (K) and glutamic acid (E) amino acids, we have shown how zwitterionic

  17. Discovery of dormancy associated antigens of Mycobacterium tuberculosis : novel targets for the development of post-exposure or therapeutic tuberculosis vaccines

    NARCIS (Netherlands)

    Lin, May Young

    2009-01-01

    The growing number of tuberculosis (TB) casualties urges development of not only more effective drugs and preventive vaccines but also development of post-exposure/therapeutic TB vaccines. Post-exposure/therapeutic TB vaccines are needed since 2 billion people worldwide harbor a latent Mycobacterium

  18. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation

    Directory of Open Access Journals (Sweden)

    Atilgan Yilmaz

    2015-11-01

    Full Text Available In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA, bone morphogenetic protein 4 (BMP4 and fibroblast growth factor 1 (FGF1. Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells.

  19. Re-engaging with the past: recapitulation of encoding operations during episodic retrieval

    Science.gov (United States)

    Morcom, Alexa M.

    2014-01-01

    Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection. PMID:24904386

  20. Re-engaging with the past: recapitulation of encoding operations during retrieval

    Directory of Open Access Journals (Sweden)

    Alexa eMorcom

    2014-05-01

    Full Text Available Recollection of events is accompanied by selective reactivation of cortical regions which responded to specific sensory and cognitive dimensions of the original events. This reactivation is thought to reflect the reinstatement of stored memory representations and therefore to reflect memory content, but it may also reveal processes which support both encoding and retrieval. The present study used event-related functional magnetic resonance imaging (fMRI to investigate whether regions selectively engaged in encoding face and scene context with studied words are also re-engaged when the context is later retrieved. As predicted, encoding face and scene context with visually presented words elicited activity in distinct, context-selective regions. Retrieval of face and scene context also re-engaged some of the regions which had shown successful encoding effects. However, this recapitulation of encoding activity did not show the same context selectivity observed at encoding. Successful retrieval of both face and scene context re-engaged regions which had been associated with encoding of the other type of context, as well as those associated with encoding the same type of context. This recapitulation may reflect retrieval attempts which are not context-selective, but use shared retrieval cues to re-engage encoding operations in service of recollection.

  1. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro.

    Science.gov (United States)

    Ishii, Kana; Sakurai, Hidetoshi; Suzuki, Nobuharu; Mabuchi, Yo; Sekiya, Ichiro; Sekiguchi, Kiyotoshi; Akazawa, Chihiro

    2018-02-13

    Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs) form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2-5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Recent Perspectives on Genome, Transmission, Clinical Manifestation, Diagnosis, Therapeutic Strategies, Vaccine Developments, and Challenges of Zika Virus Research

    Directory of Open Access Journals (Sweden)

    Apoorva Shankar

    2017-09-01

    Full Text Available One of the potential threats to public health microbiology in 21st century is the increased mortality rate caused by Zika virus (ZIKV, a mosquito-borne flavivirus. The severity of ZIKV infection urged World Health Organization (WHO to declare this virus as a global concern. The limited knowledge on the structure, virulent factors, and replication mechanism of the virus posed as hindrance for vaccine development. Several vector and non-vector-borne mode of transmission are observed for spreading the disease. The similarities of the virus with other flaviviruses such as dengue and West Nile virus are worrisome; hence, there is high scope to undertake ZIKV research that probably provide insight for novel therapeutic intervention. Thus, this review focuses on the recent aspect of ZIKV research which includes the outbreak, genome structure, multiplication and propagation of the virus, current animal models, clinical manifestations, available treatment options (probable vaccines and therapeutics, and the recent advancements in computational drug discovery pipelines, challenges and limitation to undertake ZIKV research. The review suggests that the infection due to ZIKV became one of the universal concerns and an interdisciplinary environment of in vitro cellular assays, genomics, proteomics, and computational biology approaches probably contribute insights for screening of novel molecular targets for drug design. The review tried to provide cutting edge knowledge in ZIKV research with future insights required for the development of novel therapeutic remedies to curtail ZIKV infection.

  3. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition.

    Directory of Open Access Journals (Sweden)

    Stuart J Smith

    Full Text Available INTRODUCTION: Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS. METHODS: CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS: Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS: Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.

  4. From Blue to Green: The Development and Implementation of a Therapeutic Horticulture Program for Residents of a Battered Women's Shelter.

    Science.gov (United States)

    Renzetti, Claire M; Follingstad, Diane R

    2015-01-01

    The delivery of therapeutic services to clients is influenced by service providers' understanding of the "fit" of a specific program with their service mandate as well as their perceptions of the potential benefits of the program. This article discusses the development and implementation of a therapeutic horticulture (TH) program at a battered women's shelter that serves 17 counties in Central Kentucky. Through semistructured interviews, we gauge the shelter staff's perceptions of the relationship of the TH program to the shelter's overall mission; their sense of the program's benefits for residents, for the shelter as a community organization, and for themselves; and their concerns about the TH program. We consider how these findings may impact future programming at the shelter, and we discuss plans for further evaluation of the TH program in terms of its impact on shelter residents' long-term outcomes.

  5. Caspase dependent programmed cell death in developing embryos: a potential target for therapeutic intervention against pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Alok Das Mohapatra

    2011-09-01

    Full Text Available BACKGROUND: Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites. METHODOLOGY/PRINCIPAL FINDINGS: For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths. CONCLUSIONS/SIGNIFICANCE: Our observations have revealed for the first time, that induction of apoptosis in

  6. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  7. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease.

    Science.gov (United States)

    Toledo-Sherman, Leticia M; Prime, Michael E; Mrzljak, Ladislav; Beconi, Maria G; Beresford, Alan; Brookfield, Frederick A; Brown, Christopher J; Cardaun, Isabell; Courtney, Stephen M; Dijkman, Ulrike; Hamelin-Flegg, Estelle; Johnson, Peter D; Kempf, Valerie; Lyons, Kathy; Matthews, Kimberly; Mitchell, William L; O'Connell, Catherine; Pena, Paula; Powell, Kendall; Rassoulpour, Arash; Reed, Laura; Reindl, Wolfgang; Selvaratnam, Suganathan; Friley, Weslyn Ward; Weddell, Derek A; Went, Naomi E; Wheelan, Patricia; Winkler, Christin; Winkler, Dirk; Wityak, John; Yarnold, Christopher J; Yates, Dawn; Munoz-Sanjuan, Ignacio; Dominguez, Celia

    2015-02-12

    We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.

  8. Implications of microRNAs in Colorectal Cancer Development, Diagnosis, Prognosis and Therapeutics

    Directory of Open Access Journals (Sweden)

    Haiyan eZhai

    2011-11-01

    Full Text Available MicroRNAs (miRNAs are a class of non-coding small RNAs with critical regulatory functions as post-transcriptional regulators. Due to the fundamental importance and broad impact of miRNAs on multiple genes and pathways, dysregulated miRNAs have been associated with human diseases, including cancer. Colorectal cancer (CRC is among the most deadly diseases, and miRNAs offer a new frontier for target discovery and novel biomarkers for both diagnosis and prognosis. In this review, we summarize the recent advancement of miRNA research in CRC, in particular, the roles of miRNAs in colorectal cancer stem cells, EMT, chemoresistance, therapeutics, diagnosis and prognosis.

  9. Development of new therapeutic methods of lung cancer through team approach study (II)

    International Nuclear Information System (INIS)

    Zo, Jae Ill; Park, Jong Ho; Baek, Hee Jong

    1999-12-01

    The aims of this study were to make the lung cancer clinics in Korea Cancer Center Hospital, and to establish new therapeutic methods of lung cancer for increasing the cure rate and survival rate of patients. Also another purpose of this study was to establish a common treatment method in our hospital. All patients who were operated in Korea Cancer Center Hospital from 1987 due to lung cancer were followed up and evaluated. And we have been studied the effect of postoperative adjuvant therapy in stage 1, 2, 3A non-small cell lung cancer patients from 1989 with the phase three study form. Follow-up examinations were scheduled in these patients and interim analysis was made. Also we have been studied the effect of chemotherapeutic agents in small cell lung cancer patients from 1997 with the phase two study form. We evaluated the results of this study

  10. Discovering and Developing Successful Cardiovascular Therapeutics: A Conversation With James N. Topper, MD, PhD.

    Science.gov (United States)

    Topper, James N; Rutherford, John D

    2016-11-15

    Dr James (also known as Jamie) N. Topper, MD, PhD, serves as Managing General Partner at Frazier Healthcare Partners, where he leads the Life Science Venture practice. In 2011, and 2016, he was named to the Midas List of leading venture capitalists, and, in 2013, he was recognized by Forbes as one of the top 10 healthcare investors. He has >25 years of experience working with entrepreneurs to found and build successful therapeutics-focused companies. Dr Topper holds a BS from the University of Michigan. He received an MD and PhD (in biophysics) from Stanford University School of Medicine. He completed postgraduate training in internal medicine and cardiovascular disease at the Brigham and Women's Hospital in Boston and is board certified in both disciplines. © 2016 American Heart Association, Inc.

  11. [Therapeutic education in pediatric dentistry: analysis of obstacles and levers to the development of programmes in France in 2016].

    Science.gov (United States)

    Marquillier, Thomas; Trentesaux, Thomas; Gagnayre, Rémi

    2017-01-01

    Over recent years, therapeutic patient education has become part of dental medicine. Management of early childhood caries, known to be a very common chronic disease, has evolved to include an educational dimension. The objective of this study was to identify the levers and barriers to the development of formalized therapeutic education programmes and alternatives. A comprehensive exploratory qualitative study was conducted between November 2015 and June 2016 on a targeted sample of 15 people aware of the problem of TPE in dentistry. The study showed that TPE training in dentistry is underdeveloped, despite its numerous benefits: change of the healthcare professional's approach, implementation of structured educational programmes, development of research, etc. There are many obstacles to the development of TPE programmes: insufficient resources, rigid legislation or lack of knowledge of TPE practices. The dental profession is an obstacle itself because of its lack of understanding and variable degrees of integration the medical community. There are multiple levers, but the main ones are changing attitudes of the profession and the provision of resources to develop TPE. Although alternatives to TPE programmes exist (accompanying measures, short educational strategies, connected health), they cannot replace TPE. More educational strategies must be developed in the field of dentistry. However, the framework of TPE must be adapted to the profession to ensure good uptake.

  12. Theory-guided Therapeutic Function of Music to facilitate emotion regulation development in preschool-aged children

    Directory of Open Access Journals (Sweden)

    Kimberly eSena Moore

    2015-10-01

    Full Text Available Emotion regulation is an umbrella term to describe interactive, goal-dependent explicit and implicit processes that are intended to help an individual manage and shift an emotional experience. The primary window for appropriate emotion regulation development occurs during the infant, toddler, and preschool years. Atypical emotion regulation development is considered a risk factor for mental health problems and has been implicated as a primary mechanism underlying childhood pathologies. Current treatments are predominantly verbal- and behavioral-based and lack the opportunity to practice in-the-moment management of emotionally charged situations. There is also an absence of caregiver-child interaction in these treatment strategies. Based on behavioral and neural support for music as a therapeutic mechanism, the incorporation of intentional music experiences, facilitated by a music therapist, may be one way to address these limitations. Musical Contour Regulation Facilitation is an interactive therapist-child music-based intervention for emotion regulation development practice in preschoolers. The Musical Contour Regulation Facilitation intervention uses the deliberate contour and temporal structure of a music therapy session to mirror the changing flow of the caregiver-child interaction through the alternation of high arousal and low arousal music experiences. The purpose of this paper is to describe the Therapeutic Function of Music, a theory-based description of the structural characteristics for a music-based stimulus to musically facilitate developmentally appropriate high arousal and low arousal in-the-moment emotion regulation experiences. The Therapeutic Function of Music analysis is based on a review of the music theory, music neuroscience, and music development literature and provides a preliminary model of the structural characteristics of the music as a core component of the Musical Contour Regulation Facilitation intervention.

  13. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Van Lint Carine

    2009-12-01

    Full Text Available Abstract The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.

  14. Development and economic trends in cancer therapeutic drugs: a 5-year update 2010-2014.

    Science.gov (United States)

    Savage, P; Mahmoud, S

    2015-03-17

    Over the past 20 years, the mechanisms of action, duration of benefits and economic costs of newly licenced cancer drugs have changed significantly; however, summary data on these characteristics are limited. In this study, using historical copies of the British National Formulary and relevant contemporary publications, we have documented for each new cancer drug the year of introduction, therapeutic classification, initial indication, median duration of treatment and the cost of treatment at introduction relative to the then current UK GDP per capita. Before 2000, there were 69 cancer treatment drugs available, of which 50 (72.5%) were classical cytotoxic drugs. In the subsequent 15 years, there have been 63 more new cancer treatment drugs added, including 20 kinase inhibitors and 11 monoclonal antibodies. The average median duration of treatment with a new drug has risen from 181 days in 1995-1999 to 263 days in 2010-2014. The average cost of treatment has also risen from £3036.91 (20.6% of UK per capita GDP) in 1995-1999 to £20 233 (89.0%) in 2005-2009 and now to £35 383 (141.7%) in 2010-2014. The last 5 years has seen 33 new cancer drugs. These drugs deliver significant benefits in patient outcomes and are taken for increasing lengths of time. Alongside these clinical benefits, the direct costs of new treatments have increased significantly over the past decade.

  15. Development and Evaluation of Mouth Dissolving Films of Amlodipine Besylate for Enhanced Therapeutic Efficacy

    Directory of Open Access Journals (Sweden)

    K. M. Maheswari

    2014-01-01

    Full Text Available The present investigation was undertaken with an objective of formulating mouth dissolving films (MDFs of Amlodipine Besylate (AMLO to enhance convenience and compliance of the elderly and pediatric patients for better therapeutic efficacy. Film formers like hydroxy propyl methyl cellulose (HPMC and methyl cellulose (MC along with film modifiers like poly vinyl pyrrolidone K30 (PVP K30, and sodium lauryl sulphate (SLS as solubilizing agents were evaluated. The prepared MDFs were evaluated for in vitro dissolution characteristics, in vitro disintegration time, and their physicomechanical properties. All the prepared MDFs showed good mechanical properties like tensile strength, folding endurance, and % elongation. MDFs were evaluated by means of FTIR, SEM, and X-RD studies. MDFs with 7.5% (w/w of HPMC E3 gave better dissolution properties when compared to HPMC E5, HPMC E15, and MC. MDFs with PVP K30 and SLS gave superior dissolution properties when compared to MDFs without PVP K30 and SLS. The dissolution properties of MDFs with PVP K30 were superior when compared to MDFs with SLS. In the case of F3 containing 7.5% of HPMC E3 and 0.04% of PVP K30, complete and faster release was observed within 60 sec when compared to other formulations. Release kinetics data reveals diffusion is the release mechanism.

  16. Characterizing viscoelasticity of unhydrolyzed chicken sternal cartilage extract suspensions: Towards development of injectable therapeutics formulations.

    Science.gov (United States)

    Hama, Brian; Mahajan, Gautam; Kothapalli, Chandrasekhar

    2017-08-01

    Exogenous delivery of cartilage extract is being explored as a promising candidate for knee arthritis treatment as it biomimics native cartilage tissue characteristics. In this study, we report on the rheological characterization of aqueous suspensions constituted from a powdered form of unhydrolyzed chicken sternum extract. The effect of particle size (as-received vs. milled), suspension fluid (water vs. PBS), and temperature (37°C vs. 4°C), on the viscoelastic properties of the sternum extract based particulate suspensions were evaluated. Results showed that these suspensions exhibit shear-thinning characteristics as shear rate (γ̇) increases, while viscosity (η), storage (G'), and loss (G″) moduli of the suspensions increased with increasing particulate loading (ϕ: 2.5-10wt%). Reducing the as-received particle size by milling decreased G', G, and η of the suspensions and increased the influence of ϕ on these properties, possibly due to improved particle packing. Replacing water with PBS had no significant effect on the rheological properties, but temperature reduction from 37°C to 4°C increased G', G", and η of the suspensions and lowered the impact of powder loading on viscoelastic properties. The suspension's time-dependent response was typical of viscoelastic materials, characterized by an asymptotical approach to a final stress (stress relaxation) or strain (creep). Results were fit to a power-law model for creep, a general relaxation model for exponential decay in stress, Carreau-Yasuda models for flow curves, and a two-parameter Liu model to identify the maximum powder loading (ϕ m ). Among the various forces involved in particle-particle interactions within these suspensions, electrostatic forces appeared to dominate the most. Such characterization of the viscoelastic nature of these suspensions would help in formulating stable injectable cartilage extract based therapeutics for in vivo applications. Copyright © 2017 Elsevier Ltd. All

  17. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics.

    Science.gov (United States)

    Sarkar, Fazlul H; Li, Yiwei

    2009-11-01

    Cancer cells exhibit deregulation in multiple cellular signaling pathways. Therefore, treatments using specific agents that target only one pathway usually fail in cancer therapy. The combination treatments using chemotherapeutic agents with distinct molecular mechanisms are considered more promising for higher efficacy; however, using multiple agents contributes to added toxicity. Emerging evidence has shown that some "natural products" such as isoflavones, indole-3-carbinol (I3C) and its in vivo dimeric product 3,3'-diindolylmethane (DIM), and curcumin among many others, have growth inhibitory and apoptosis inducing effects on human and animal cancer cells mediated by targeting multiple cellular signaling pathways in vitro without causing unwanted toxicity in normal cells. Therefore, these non-toxic "natural products" from natural resources could be useful in combination with conventional chemotherapeutic agents for the treatment of human malignancies with lower toxicity and higher efficacy. In fact, recently increasing evidence from pre-clinical in vivo studies and clinical trials have shown some success in support of the use of rational design of multi-targeted therapies for the treatment of cancers using conventional chemotherapeutic agents in combination with "natural products". These studies have provided promising results and further opened-up newer avenues for cancer therapy. In this review article, we have succinctly summarized the known effects of "natural products" especially by focusing on isoflavones, indole-3-carbinol (I3C) and its in vivo dimeric product 3,3'-diindolylmethane (DIM), and curcumin, and provided a comprehensive view on the molecular mechanisms underlying the principle of cancer therapy using combination of "natural products" with conventional therapeutics.

  18. Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties

    Directory of Open Access Journals (Sweden)

    Talwar GP

    2017-05-01

    Full Text Available Gursaran P Talwar,1 Jagdish C Gupta,1 Abu S Mustafa,2 Hemanta K Kar,3 Kiran Katoch,4 Shreemanta K Parida,5 Prabhakara P Reddi,6 Niyaz Ahmed,7 Vikram Saini,8 Somesh Gupta9 1Talwar Research Foundation, New Delhi, India; 2Department of Microbiology, Kuwait University, Kuwait; 3Department of Dermatology, Paras Hospital, Gurgaon, 4National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, India; 5German Centre of Infection, Justus Liebig University, Giessen, Germany; 6Department of Comparative Biosciences, University of Illinois Urbana Champaign, IL, USA; 7Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India; 8Department of Microbiology, University of Alabama, Birmingham, AL, USA; 9Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India Abstract: This article reviews briefly the making of an immunoprophylactic-cum-immunotherapeutic vaccine against leprosy. The vaccine is based on cultivable, heat-killed atypical mycobacteria, whose gene sequence is now known. It has been named Mycobacterium indicus pranii. It has received the approval of the Drug Controller General of India and the US Food and Drug Administration. Besides leprosy, M. indicus pranii has found utility in the treatment of category II (“difficult to treat” tuberculosis. It also heals ugly anogenital warts. It has preventive and therapeutic action against SP2/O myelomas. It is proving to be a potent adjuvant for enhancing antibody titers of a recombinant vaccine against human chorionic gonadotropin, with the potential of preventing pregnancy without derangement of ovulation and menstrual regularity in sexually active women. Keywords: leprosy, tuberculosis, anogenital warts, myeloma, adjuvant

  19. Emergence of Yalom's therapeutic factors in a peer-led, asynchronous, online support group for family caregivers.

    Science.gov (United States)

    Diefenbeck, Cynthia A; Klemm, Paula R; Hayes, Evelyn R

    2014-01-01

    Support groups fill a critical void in the health care system, harnessing the power of shared experiences to provide support to group members. Likewise, family caregivers fill a void in the health care system, providing billions in unpaid care to the chronically ill. Caregiver support groups offer an opportunity for alleviating the psychological burden of caregiving. The power of any group, including a support group, to foster psychological well-being lies in its ability to cultivate Yalom's therapeutic factors. Gaps in the literature remain regarding the ability of non-prototypical groups to promote therapeutic mechanisms of change. The purpose of this study was to determine if and when Yalom's therapeutic group factors emerged in a peer-led support group delivered in an asynchronous, online format. Qualitative content analysis utilizing deductive category application was employed. Participants' responses were coded and frequency counts were conducted. Results revealed that 9 of 11 therapeutic factors emerged over the course of the group, with Group Cohesiveness, Catharsis, Imparting of Information, and Universality occurring most often. Several factors, including Interpersonal Learning, Corrective Recapitulation of the Primary Family Group, Imitative Behavior, and Development of Socializing Techniques were absent or virtually absent, likely due to the peer-led format of the group. Progression of therapeutic factors over the course of the group is presented. Findings demonstrate the presence of a variety of Yalom's therapeutic factors in an asynchronous, peer-led online support group.

  20. Development, modelling, optimisation and scale-up of chromatographic purification of a therapeutic protein

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Hansen, Thomas Budde; Kidal, Steffen

    2007-01-01

    Development of a chromatographic purification step proceeds through a number of stages. High-throughput screening techniques are used to identify suitable resins. This technique is also suitable for the design of a capture step and some intermediate chromatographic steps, but development and true...... by industry. The theory of residence time based scale-up is developed and applied. (c) 2007 Elsevier B.V. All rights reserved....

  1. Homeobox gene expression in adult dorsal root ganglia: Is regeneration a recapitulation of development?

    NARCIS (Netherlands)

    Vogelaar, C.F.

    2003-01-01

    Neurons of the peripheral nervous system are able to regenerate their peripheral axons after injury, leading to complete recovery of sensory and motor function. The sciatic nerve crush model is frequently used to study peripheral nerve regeneration. Sensory neurons in the dorsal root ganglia (DRGs)

  2. Genomics and systems biology - How relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

    NARCIS (Netherlands)

    Witkamp, R.F.

    2005-01-01

    This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and

  3. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  4. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  5. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    Science.gov (United States)

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    resulting cisplatin-like byproduct represents an intriguing new strategy for potential dual-threat metalloenediyne therapeutics.

  6. Development of an analytical method to assess the occupational health risk of therapeutic monoclonal antibodies using LC-HRMS.

    Science.gov (United States)

    Reinders, Lars M H; Klassen, Martin D; Jaeger, Martin; Teutenberg, Thorsten; Tuerk, Jochen

    2018-04-01

    Monoclonal antibodies are a group of commonly used therapeutics, whose occupational health risk is still discussed controversially. The long-term low-dose exposure side effects are insufficiently evaluated; hence, discussions are often based on a theoretical level or extrapolating side effects from therapeutic dosages. While some research groups recommend applying the precautionary principle for monoclonal antibodies, others consider the exposure risk too low for measures taken towards occupational health and safety. However, both groups agree that airborne monoclonal antibodies have the biggest risk potential. Therefore, we developed a peptide-based analytical method for occupational exposure monitoring of airborne monoclonal antibodies. The method will allow collecting data about the occupational exposure to monoclonal antibodies. Thus, the mean daily intake for personnel in pharmacies and the pharmaceutical industry can be determined for the first time and will help to substantiate the risk assessment by relevant data. The introduced monitoring method includes air sampling, sample preparation and detection by liquid chromatography coupled with high-resolution mass spectrometry of individual monoclonal antibodies as well as sum parameter. For method development and validation, a chimeric (rituximab), humanised (trastuzumab) and a fully humanised (daratumumab) monoclonal antibody are used. A limit of detection between 1 μg per sample for daratumumab and 25 μg per sample for the collective peptide is achieved. Graphical abstract Demonstration of the analytical workflow, from the release of monoclonal antibodies to the detection as single substances as well as sum parameter.

  7. Theory-guided Therapeutic Function of Music to facilitate emotion regulation development in preschool-aged children.

    Science.gov (United States)

    Sena Moore, Kimberly; Hanson-Abromeit, Deanna

    2015-01-01

    Emotion regulation (ER) is an umbrella term to describe interactive, goal-dependent explicit, and implicit processes that are intended to help an individual manage and shift an emotional experience. The primary window for appropriate ER development occurs during the infant, toddler, and preschool years. Atypical ER development is considered a risk factor for mental health problems and has been implicated as a primary mechanism underlying childhood pathologies. Current treatments are predominantly verbal- and behavioral-based and lack the opportunity to practice in-the-moment management of emotionally charged situations. There is also an absence of caregiver-child interaction in these treatment strategies. Based on behavioral and neural support for music as a therapeutic mechanism, the incorporation of intentional music experiences, facilitated by a music therapist, may be one way to address these limitations. Musical Contour Regulation Facilitation (MCRF) is an interactive therapist-child music-based intervention for ER development practice in preschoolers. The MCRF intervention uses the deliberate contour and temporal structure of a music therapy session to mirror the changing flow of the caregiver-child interaction through the alternation of high arousal and low arousal music experiences. The purpose of this paper is to describe the Therapeutic Function of Music (TFM), a theory-based description of the structural characteristics for a music-based stimulus to musically facilitate developmentally appropriate high arousal and low arousal in-the-moment ER experiences. The TFM analysis is based on a review of the music theory, music neuroscience, and music development literature and provides a preliminary model of the structural characteristics of the music as a core component of the MCRF intervention.

  8. Theory-guided Therapeutic Function of Music to facilitate emotion regulation development in preschool-aged children

    Science.gov (United States)

    Sena Moore, Kimberly; Hanson-Abromeit, Deanna

    2015-01-01

    Emotion regulation (ER) is an umbrella term to describe interactive, goal-dependent explicit, and implicit processes that are intended to help an individual manage and shift an emotional experience. The primary window for appropriate ER development occurs during the infant, toddler, and preschool years. Atypical ER development is considered a risk factor for mental health problems and has been implicated as a primary mechanism underlying childhood pathologies. Current treatments are predominantly verbal- and behavioral-based and lack the opportunity to practice in-the-moment management of emotionally charged situations. There is also an absence of caregiver–child interaction in these treatment strategies. Based on behavioral and neural support for music as a therapeutic mechanism, the incorporation of intentional music experiences, facilitated by a music therapist, may be one way to address these limitations. Musical Contour Regulation Facilitation (MCRF) is an interactive therapist-child music-based intervention for ER development practice in preschoolers. The MCRF intervention uses the deliberate contour and temporal structure of a music therapy session to mirror the changing flow of the caregiver–child interaction through the alternation of high arousal and low arousal music experiences. The purpose of this paper is to describe the Therapeutic Function of Music (TFM), a theory-based description of the structural characteristics for a music-based stimulus to musically facilitate developmentally appropriate high arousal and low arousal in-the-moment ER experiences. The TFM analysis is based on a review of the music theory, music neuroscience, and music development literature and provides a preliminary model of the structural characteristics of the music as a core component of the MCRF intervention. PMID:26528171

  9. Old and new therapeutics for Rheumatoid Arthritis: in vivo models and drug development

    DEFF Research Database (Denmark)

    Sardar, Samra; Andersson, Åsa

    2016-01-01

    Development of novel drugs for treatment of chronic inflammatory diseases is to a large extent dependent on the availability of good experimental in vivo models in order to perform preclinical tests of new drugs and for the identification of novel drug targets. Here, we review a number of existing...... of in vivo models during development of anti-rheumatic drugs; from Methotrexate to various antibody treatments, to novel drugs that are, or have recently been, in clinical trials. For novel drugs, we have explored websites for clinical trials. Although one Rheumatoid Arthritis in vivo model cannot mirror...

  10. Report of an autopsyzed case of Kaposi sarcoma developed in therapeutically irradiated region

    International Nuclear Information System (INIS)

    Tanahashi, Yoshio; Sato, Akihiko

    1975-01-01

    A case of Kaposi sarcoma developed in the right gluteal region of 57 year-old woman was reported in the present paper. The patient received surgical excision of uterine cervical cancer and also gastric cancer in the different time in her past history. Post-operative radiotherapy following uterine excision consisted of 3,350 to 3,650 R of respective 180 kV of X-ray and 60 Co. The mass developed in the region irradiated during the past deep therapy, and showed resistance to Linac irradiation and bleomycin. The masses which seemed to be the same with that in the skin developed in the both lung, and bleomycin administered was not effective. In addition, a mass developed in the right inguinal lymphnode which was considered to be the metastasis from cervical cancer, and was wholly excised. The patient died from pneumonia one year after the manifestation of Kaposi sarcoma. This case was very extraordinary because of the triplicated tumors, i.e., gastric cancer, uterine cervical cancer, and Kaposi sarcoma. The nature of Kaposi sarcoma was discussed from our experience and literature. Kaposi sarcoma in our case, was suggested to be a radiation-induced tumor, and the mechanism of occurrence was considered to be that of multi-centric tumor. (Tsukamoto, Y.)

  11. Report of an autopsyed case of Kaposi sarcoma developed in therapeutically irradiated region

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, Y; Sato, A [Tohoku Univ., Sendai (Japan). School of Medicine

    1975-04-01

    A case of Kaposi sarcoma developed in the right gluteal region of 57 year-old woman was reported in the present paper. The patient received surgical excision of uterine cervical cancer and also gastric cancer in the different time in her past history. Post-operative radiotherapy following uterine excision consisted of 3,350 to 3,650 R of respective 180 kV of X-ray and /sup 60/Co. The mass developed in the region irradiated during the past deep therapy, and showed resistance to Linac irradiation and bleomycin. The masses which seemed to be the same with that in the skin developed in the both lung, and bleomycin administered was not effective. In addition, a mass developed in the right inguinal lymphnode which was considered to be the metastasis from cervical cancer, and was wholly excised. The patient died from pneumonia one year after the manifestation of Kaposi sarcoma. This case was very extraordinary because of the triplicated tumors, i.e., gastric cancer, uterine cervical cancer, and Kaposi sarcoma. The nature of Kaposi sarcoma was discussed from our experience and literature. Kaposi sarcoma in our case, was suggested to be a radiation-induced tumor, and the mechanism of occurrence was considered to be that of multi-centric tumor.

  12. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins.

    Science.gov (United States)

    Xu, Weichen; Jimenez, Rod Brian; Mowery, Rachel; Luo, Haibin; Cao, Mingyan; Agarwal, Nitin; Ramos, Irina; Wang, Xiangyang; Wang, Jihong

    2017-10-01

    During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.

  13. Development and biological evaluation of {sup 90}Y-BPAMD as a novel bone seeking therapeutic agent

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Ali; Shamsaei, Mojtaba [Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.; Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Enayati, Razieh [Islamic Azad Univ. (IAU), Tehran (Iran, Islamic Republic of). Faculty of Engineering

    2016-07-01

    Nowadays, the bone-seeking radiopharmaceuticals play an important role in the treatment of the bone-related pathologies. Whereas various phosphonate ligands have already been identified, a DOTA-based bisphosphonate, 4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl (BPAMD) with better characteristics has recently been synthesized. In this study, {sup 90}Y-BPAMD was developed with radiochemical purity >98% and the specific activity of 3.52 TBq/mmol in the optimized conditions as a new bone-seeking therapeutic agent. The complex demonstrated significant stability at room temperature and in human serum even after 48 h. At even low amount of hydroxyapatite (5 mg), more than 90% binding to hydroxyapatite was observed. Biodistribution studies after injection of the complex into the Syrian rats showed major accumulation of the labelled compound in the bone tissue and an insignificant uptake in the other organs all the times after injection. Generally, {sup 90}Y-BPAMD demonstrated interesting characteristics compared to the other {sup 90}Y bone-seeking agents and even {sup 166}Ho-BPAMD, and can be considered as a new bone-seeking candidate for therapeutic applications.

  14. Sensory education program development, application and its therapeutic effect in children

    Science.gov (United States)

    Chung, Hae-Kyung

    2014-01-01

    There has recently been Increased interest in the emotional intelligence (EQ) of elementary school students, which is recognized as a more important value than IQ (intelligence quotient) for predict of their success in school or later life. However, there are few sensory education programs, available to improve the EQ of elementary school student's in Korea. This study was conducted to develop an educational program that reflects the characteristics and contents of traditional rice culture and verify the effects of those programs on the EQ of children. The program was developed based on the ADDIE (Analysis, Design, Development, Implementation and Evaluation) model and participants were elementary school students in 3rd and 4th grade (n = 120) in Cheonan, Korea. Descriptive statistics and paired t-tests were used. EQ scores pertaining to the basic sense group, culture group, and food group were significantly improved after the sensory educational program(P sensory education contributed to improving elementary school children's Emotional Intelligence (EI) and their actual understanding about Korean traditional rice culture. PMID:24611113

  15. Recent advancement to prevent the development of allergy and allergic diseases and therapeutic strategy in the perspective of barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Osamu Natsume

    2018-01-01

    Full Text Available Therapeutic strategy in late 20th century to prevent allergic diseases was derived from a conceptual framework of allergens elimination which was as same as that of coping with them after their onset. Manifold trials were implemented; however, most of them failed to verify the effectiveness of their preventive measures. Recent advancement of epidemiological studies and cutaneous biology revealed epidermal barrier dysfunction plays a major role of allergen sensitization and development of atopic dermatitis which ignites the inception of allergy march. For this decade, therapeutic strategy to prevent the development of food allergy has been confronted with a paradigm shift from avoidance and delayed introduction of allergenic foods based on the theoretical concept to early introduction of them based on the clinical and epidemiological evidences. Especially, prevention of peanut allergy and egg allergy has been established with the highest evidence verified by randomized controlled trials, although application in clinical practice should be done with attention. This paradigm shift concerning food allergy was also due to the discovery of cutaneous sensitization risk of food allergens for an infant with eczema revealed by prospective studies. Here we have recognized the increased importance of prevention of eczema/atopic dermatitis in infancy. Two randomized controlled trials using emollients showed successful results in prevention of atopic dermatitis in infancy; however, longer term safety and prognosis including allergy march should be pursued. To establish more fundamental strategy for prevention of the development of allergy, further studies clarifying the mechanisms of interaction between barrier dysfunction and microbial milieu are needed with macroscope to understand the relationship between allergic diseases and a diversity of environmental influences.

  16. Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin

    Directory of Open Access Journals (Sweden)

    Sameer N. Goyal

    2017-09-01

    Full Text Available Thymoquinone, a monoterpene molecule is chemically known as 2-methyl-5-isopropyl-1, 4-benzoquinone. It is abundantly present in seeds of Nigella sativa L. that is popularly known as black cumin or black seed and belongs to the family Ranunculaceae. A large number of studies have revealed that thymoquinone is the major active constituent in N. sativa oil this constituent is responsible for the majority of the pharmacological properties. The beneficial organoprotective activities of thymoquinone in experimental animal models of different human diseases are attributed to the potent anti-oxidant and anti-inflammatory properties. Thymoquinone has also been shown to alter numerous molecular and signaling pathways in many inflammatory and degenerative diseases including cancer. Thymoquinone has been reported to possess potent lipophilicity and limited bioavailability and exhibits light and heat sensitivity. Altogether, these physiochemical properties encumber the successful formulation for the delivery of drug in oral dosages form and restrict the pharmaceutical development. In recent past, many efforts were undertaken to improve the bioavailability for clinical usage by manipulating the physiochemical parameters. The present review aimed to provide insights regarding the physicochemical characteristics, pharmacokinetics and the methods to promote pharmaceutical development and endorse the clinical usage of TQ in future by overcoming the associated physiochemical obstacles. It also enumerates briefly the pharmacological and molecular targets of thymoquinone as well as the pharmacological properties in various diseases and the underlying molecular mechanism. Though, a convincing number of experimental studies are available but human studies are not available with thymoquinone despite of the long history of use of black cumin in different diseases. Thus, the clinical studies including pharmacokinetic studies and regulatory toxicity studies are required

  17. Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin.

    Science.gov (United States)

    Goyal, Sameer N; Prajapati, Chaitali P; Gore, Prashant R; Patil, Chandragouda R; Mahajan, Umesh B; Sharma, Charu; Talla, Sandhya P; Ojha, Shreesh K

    2017-01-01

    Thymoquinone, a monoterpene molecule is chemically known as 2-methyl-5-isopropyl-1, 4-benzoquinone. It is abundantly present in seeds of Nigella sativa L. that is popularly known as black cumin or black seed and belongs to the family Ranunculaceae . A large number of studies have revealed that thymoquinone is the major active constituent in N. sativa oil this constituent is responsible for the majority of the pharmacological properties. The beneficial organoprotective activities of thymoquinone in experimental animal models of different human diseases are attributed to the potent anti-oxidant and anti-inflammatory properties. Thymoquinone has also been shown to alter numerous molecular and signaling pathways in many inflammatory and degenerative diseases including cancer. Thymoquinone has been reported to possess potent lipophilicity and limited bioavailability and exhibits light and heat sensitivity. Altogether, these physiochemical properties encumber the successful formulation for the delivery of drug in oral dosages form and restrict the pharmaceutical development. In recent past, many efforts were undertaken to improve the bioavailability for clinical usage by manipulating the physiochemical parameters. The present review aimed to provide insights regarding the physicochemical characteristics, pharmacokinetics and the methods to promote pharmaceutical development and endorse the clinical usage of TQ in future by overcoming the associated physiochemical obstacles. It also enumerates briefly the pharmacological and molecular targets of thymoquinone as well as the pharmacological properties in various diseases and the underlying molecular mechanism. Though, a convincing number of experimental studies are available but human studies are not available with thymoquinone despite of the long history of use of black cumin in different diseases. Thus, the clinical studies including pharmacokinetic studies and regulatory toxicity studies are required to encourage the

  18. Animal Models of Diabetic Macrovascular Complications: Key Players in the Development of New Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Suvi E. Heinonen

    2015-01-01

    Full Text Available Diabetes mellitus is a lifelong, incapacitating metabolic disease associated with chronic macrovascular complications (coronary heart disease, stroke, and peripheral vascular disease and microvascular disorders leading to damage of the kidneys (nephropathy and eyes (retinopathy. Based on the current trends, the rising prevalence of diabetes worldwide will lead to increased cardiovascular morbidity and mortality. Therefore, novel means to prevent and treat these complications are needed. Under the auspices of the IMI (Innovative Medicines Initiative, the SUMMIT (SUrrogate markers for Micro- and Macrovascular hard end points for Innovative diabetes Tools consortium is working on the development of novel animal models that better replicate vascular complications of diabetes and on the characterization of the available models. In the past years, with the high level of genomic information available and more advanced molecular tools, a very large number of models has been created. Selecting the right model for a specific study is not a trivial task and will have an impact on the study results and their interpretation. This review gathers information on the available experimental animal models of diabetic macrovascular complications and evaluates their pros and cons for research purposes as well as for drug development.

  19. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis.

    Science.gov (United States)

    Reiche, Michael A; Warner, Digby F; Mizrahi, Valerie

    2017-01-01

    Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis , and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis . Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug

  20. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Michael A. Reiche

    2017-11-01

    Full Text Available Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB, an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR as well as extensively drug-resistant (XDR strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the

  1. Probing suitable therapeutic nanoparticles for controlled drug delivery and diagnostic reproductive health biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); National Institute of Animal Welfare, Ministry of Environment, Forest and Climate Change, Faridabad, Haryana 121 004 (India); Jha, Pradeep K., E-mail: jha.rk.pk@gmail.com [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Gupta, Santosh; Bhuvaneshwaran, S.P. [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Hossain, Maidul [Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102 (India); Guha, Sujoy K. [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India)

    2016-04-01

    Nanomaterial mediated drug delivery represents a highly promising technique while its selectivity for reproductive healthcare application still remains a challenge. Since the delicate structure and functional role of reproductive tissue and gametes require the use of biocompatible nanomedicine/devices that do not affect fertility or the development of resulting offspring, this paper reports an intercomparative study of human spermatozoa interaction with three different nanoparticles (NPs) namely; iron oxide (Fe{sub 3}O{sub 4)}, multiwalled carbon nanotubes (MWCNT) and graphene platelet nanopowder (GPN) to probe their suitability for drug delivery carrier and biomarker development purposes. ATR–FTIR results revealed that the sperm cell interaction with GPN had maximum amide I absorption for cell proteins and C=O stretching of the peptide backbone at the band around 1657 cm{sup −1} followed by iron oxide NPs whereas MWCNT had no absorption. These results showed that GPN followed by iron oxide NPs got maximally entrapped by cell membrane protein with maximum disruption but MWCNT exhibited less entrapment but significantly higher internalization which was further validated by morphological analysis of these cell NP interaction by SEM, HRTEM and fluorescence microscopy. The uptake kinetics and penetration mechanism of NPs were examined with isothermal titration calorimetry (ITC). Interestingly, ITC results confirmed ATR–FTIR and morphological observations that the binding of GPN and Fe{sub 3}O{sub 4} NPs with cell was exothermic and their bindings were favored by both negative enthalpy and positive entropy whereas in the case of MWCNT it was endothermic supported by unfavorable positive enthalpy and a favorable entropy change. Hence, it was evident that MWCNT had better internalization efficiency without disrupting the sperm lipid membrane compared to Fe{sub 3}O{sub 4} and GPN NPs. Therefore, this work proposes CNT as promising means. - Highlights: • Biophysical

  2. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD.

    Science.gov (United States)

    Ben-Reuven, Lihi; Reiner, Orly

    2016-06-01

    The opportunity to model autism spectrum disorders (ASD) through generation of patient-derived induced pluripotent stem cells (iPSCs) is currently an emerging topic. Wide-scale research of altered brain circuits in syndromic ASD, including Rett Syndrome, Fragile X Syndrome, Angelman's Syndrome and sporadic Schizophrenia, was made possible through animal models. However, possibly due to species differences, and to the possible contribution of epigenetics in the pathophysiology of these diseases, animal models fail to recapitulate many aspects of ASD. With the advent of iPSCs technology, 3D cultures of patient-derived cells are being used to study complex neuronal phenotypes, including both syndromic and nonsyndromic ASD. Here, we review recent advances in using iPSCs to study various aspects of the ASD neuropathology, with emphasis on the efforts to create in vitro model systems for syndromic and nonsyndromic ASD. We summarize the main cellular activity phenotypes and aberrant genetic interaction networks that were found in iPSC-derived neurons of syndromic and nonsyndromic autistic patients. © 2016 Japanese Society of Developmental Biologists.

  3. Recapitulating the Structural Evolution of Redox Regulation in Adenosine 5'-Phosphosulfate Kinase from Cyanobacteria to Plants.

    Science.gov (United States)

    Herrmann, Jonathan; Nathin, David; Lee, Soon Goo; Sun, Tony; Jez, Joseph M

    2015-10-09

    In plants, adenosine 5'-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes

    Directory of Open Access Journals (Sweden)

    Robert Krencik

    2017-12-01

    Full Text Available Summary: Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC-derived astrocytes (hAstros combined with neurons generated from hPSC-derived neural stem cells (hNeurons or directly induced via Neurogenin 2 overexpression (iNeurons. Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations. : In this article, Krencik and colleagues show that high-density cocultures of pre-differentiated human astrocytes with induced neurons, from pluripotent stem cells, elicit mature characteristics by 3–5 weeks. This provides a faster and more defined alternative method to organoid cultures for investigating human neural circuit function. Keywords: human pluripotent stem cells, neurons, astrocytes, synapses, coculture, three-dimensional spheres, organoids, disease modeling

  5. Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hidetoshi Kassai

    2014-06-01

    Full Text Available Mammalian target of rapamycin (mTOR has been implicated in human neurological diseases such as tuberous sclerosis complex (TSC, neurodegeneration, and autism. However, little is known about when and how mTOR is involved in the pathogenesis of these diseases, due to a lack of animal models that directly increase mTOR activity. Here, we generated transgenic mice expressing a gain-of-function mutant of mTOR in the forebrain in a temporally controlled manner. Selective activation of mTORC1 in embryonic stages induced cortical atrophy caused by prominent apoptosis of neuronal progenitors, associated with upregulation of HIF-1α. In striking contrast, activation of the mTORC1 pathway in adulthood resulted in cortical hypertrophy with fatal epileptic seizures, recapitulating human TSC. Activated mTORC1 in the adult cortex also promoted rapid accumulation of cytoplasmic inclusions and activation of microglial cells, indicative of progressive neurodegeneration. Our findings demonstrate that mTORC1 plays different roles in developmental and adult stages and contributes to human neurological diseases.

  6. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.

    Science.gov (United States)

    Parvez, Saba; Fu, Yuan; Li, Jiayang; Long, Marcus J C; Lin, Hong-Yu; Lee, Dustin K; Hu, Gene S; Aye, Yimon

    2015-01-14

    Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.

  7. Primary fibroblasts from CSPα mutation carriers recapitulate hallmarks of the adult onset neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Benitez, Bruno A; Sands, Mark S

    2017-07-24

    Mutations in the co- chaperone protein, CSPα, cause an autosomal dominant, adult-neuronal ceroid lipofuscinosis (AD-ANCL). The current understanding of CSPα function exclusively at the synapse fails to explain the autophagy-lysosome pathway (ALP) dysfunction in cells from AD-ANCL patients. Here, we demonstrate unexpectedly that primary dermal fibroblasts from pre-symptomatic mutation carriers recapitulate in vitro features found in the brains of AD-ANCL patients including auto-fluorescent storage material (AFSM) accumulation, CSPα aggregates, increased levels of lysosomal proteins and lysosome enzyme activities. AFSM accumulation correlates with CSPα aggregation and both are susceptible to pharmacological modulation of ALP function. In addition, we demonstrate that endogenous CSPα is present in the lysosome-enriched fractions and co-localizes with lysosome markers in soma, neurites and synaptic boutons. Overexpression of CSPα wild-type (WT) decreases lysotracker signal, secreted lysosomal enzymes and SNAP23-mediated lysosome exocytosis. CSPα WT, mutant and aggregated CSPα are degraded mainly by the ALP but this disease-causing mutation exhibits a faster rate of degradation. Co-expression of both WT and mutant CSPα cause a block in the fusion of autophagosomes/lysosomes. Our data suggest that aggregation-dependent perturbation of ALP function is a relevant pathogenic mechanism for AD-ANCL and supports the use of AFSM or CSPα aggregation as biomarkers for drug screening purposes.

  8. Gastroesophageal Reflux Disease and Alkaline Reflux: the Mechanisms of the Development and Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    T.D. Zviahintseva

    2016-11-01

    Full Text Available The article deals with gastroesophageal reflux disease (GERD — a pathology, which occupies a leading place among all acid-related diseases. The main mechanism of GERD is a violation of the motor-evacuation function of the stomach — slowing gastric emptying and duodenogastric reflux. Slow gastric emptying contributes to more frequent reflux, and the presence of duodenal contents in refluxate — alkaline reflux — is aggressive for the esophageal mucosa (EM. This is due to the presence of bile acids, lysolecithin and pancreatic enzymes in the esophageal refluxate. A long existing contact of aggressive factors in the stomach and the esophagus leads to the development of inflammatory and destructive lesions of the mucous membrane of these organs. According to many researchers, bile acids play a key role in the pathogenesis of the damaging effects on the EM. Drug correction of GERD with alkaline reflux includes, along with the administration of proton pump inhibitors, prokinetics (itopride hydrochloride and ursodeoxycholic acid preparations.

  9. Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics

    Science.gov (United States)

    Linehan, W. Marston

    2012-01-01

    Kidney cancer is not a single disease; it is made up of a number of different types of cancer, including clear cell, type 1 papillary, type 2 papillary, chromophobe, TFE3, TFEB, and oncocytoma. Sporadic, nonfamilial kidney cancer includes clear cell kidney cancer (75%), type 1 papillary kidney cancer (10%), papillary type 2 kidney cancer (including collecting duct and medullary RCC) (5%), the microphalmia-associated transcription (MiT) family translocation kidney cancers (TFE3, TFEB, and MITF), chromophobe kidney cancer (5%), and oncocytoma (5%). Each has a distinct histology, a different clinical course, responds differently to therapy, and is caused by mutation in a different gene. Genomic studies identifying the genes for kidney cancer, including the VHL, MET, FLCN, fumarate hydratase, succinate dehydrogenase, TSC1, TSC2, and TFE3 genes, have significantly altered the ways in which patients with kidney cancer are managed. While seven FDA-approved agents that target the VHL pathway have been approved for the treatment of patients with advanced kidney cancer, further genomic studies, such as whole genome sequencing, gene expression patterns, and gene copy number, will be required to gain a complete understanding of the genetic basis of kidney cancer and of the kidney cancer gene pathways and, most importantly, to provide the foundation for the development of effective forms of therapy for patients with this disease. PMID:23038766

  10. Progress in bipolar disorder drug design toward the development of novel therapeutic targets: a clinician's perspective.

    Science.gov (United States)

    Fornaro, Michele; Kardash, Lubna; Novello, Stefano; Fusco, Andrea; Anastasia, Annalisa; De Berardis, Domenico; Perna, Giampaolo; Carta, Mauro Giovanni

    2018-03-01

    Bipolar disorder (BD) is a considerable burden to the affected individual. The need for novel drug targets and improved drug design (DD) in BD is therefore clear. Areas covered: The following article provides a brief, narrative, clinician-oriented overview of the most promising novel pharmacological targets for BD along with a concise overview regarding the general DD process and the unmet needs relevant to BD. Expert opinion: A number of novel potential drug targets have been investigated. With the notable exception of the kynurenine pathway, available evidence is too scarce to highlight a definitive roadmap for forthcoming DD in BD. BD itself may present with different facets, as it is a polymorphic clinical spectrum. Therefore, promoting clinical-case stratification should be based on precision medicine, rather than on novel biological targets. Furthermore, the full release of raw study data to the scientific community and the development of uniform clinical trial standards (including more realistic outcomes) should be promoted to facilitate the DD process in BD.

  11. Utilizing Biomarker Signature Pairs To Develop Gene Therapeutic Viral Delivery Platforms For Treating Prostate Cancer

    Science.gov (United States)

    Dr. Tamaro Hudson is currently an Assistant Professor at Howard University in the Department of Pharmacology and holds an appointment as a Health Research Specialist at the Washington VA Medical Center. Dr. Hudson received his Bachelor of Science from Iowa State University in Biology in 1994 and went on to receive a Master of Science in Preventive Medicine from Ohio State University in 2007. Afterwards, he received a Ph.D. from Ohio State University in 2002 where he focused on evaluating the functional differences among isothiocyanates in the rat esophageal tumor model. Following his Ph.D., Dr. Hudson was selected to complete a prestigious Cancer Prevention Fellowship Program at the National Institute of Health, National Cancer Institute, where he focused on utilizing in vitro and in vivo cancer models to assess the biological activity of bioactive compounds on prostate cancer molecular pathways. Concurrently, he completed a Master of Public Health degree from George Washington University in 2003 where he focused on assessing the degree of agreement between a food frequency questionnaire and a 4-day food record as it related to dietary fiber intake. Upon completion of his MPH and Fellowship, he was recruited by Howard University Cancer Center in 2007 as an Assistant Professor. Since joining the Howard faculty, Dr. Hudson has integrated his research focus by identifying novel signature biomarkers – that could have a significant impact on both the diagnosis and targeted treatment of prostate cancer – with the evaluation of new chemopreventive strategies, which have been evaluated in Phase I and Phase II clinical trials. Dr. Hudson received the first five-year VA-HBCU Research, Scientist, and Training grant that focuses on developing a biomarker-based risk prediction model for prostate cancer. Dr. Hudson serves on several Howard University committees and has many peer-reviewed publications. Dr. Hudson's research interests continue to expand as he tries to build

  12. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics

    Science.gov (United States)

    2014-01-01

    Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353

  13. Cell Death Mechanisms in Sulfur Mustard Injury: Basis for Therapeutics Development

    International Nuclear Information System (INIS)

    Ray, R.; Keyser, B.; Benton, B.; Rosenthal, D. S.

    2007-01-01

    Sulfur mustard (SM, bis-(2-chloroethyl) sulfide), commonly called mustard gas, is a vesicant chemical warfare agent and a potential terrorism agent. SM is relatively easy to make and to deploy, which makes this chemical most likely to be used. SM exposure causes debilitating skin blisters (vesication) and injury to the eyes and the respiratory tract. Therefore, developing an effective medical countermeasure to protect against the dermal, ocular and airway injuries due to this dreaded chemical agent is an urgent priority of the US Army. SM pathophysiology is consistent with epithelial cell damage, particularly basal cell apoptosis. SM-induced apoptosis may occur via multiple pathways dependent on one or more of the following: (a) abnormal Ca2plus homeostasis, (b) disturbed cellular bioenergetics, and (c) Fas (death receptor) response. Apoptosis pathways are characterized by the involvement of the pathway-specific caspases (cysteine aspartase). We determined caspase activity by assay of fluorogenic caspase type-specific peptide substrate hydrolysis. We studied caspase processing, i.e., proteolytic conversion of procaspase to active caspase by immunoblot analyses utilizing caspase type-specific antibodies. Our results in cell culture models of both human epidermal keratinocytes and human airway epithelial cells indicated that SM activates (a) caspase-9, an indicator of the Ca2plus/CaM-mediated mitochondrial pathway, (b) caspase-8, a marker for the Fas-mediated pathway, and (c) caspase-3, the executioner caspase involved in both pathways. A peptide caspase inhibitor, specific for caspase-3 (AC-DEVD-CHO), added to cells prior to SM decreased apoptosis. These observations suggest apoptosis as a mechanism of SM toxicity and caspase inhibitors as prospective medical countermeasures.(author)

  14. The development of polymeric pellicles with gentamicine sulfate for therapeutic correction of cervical erosion (pseudoerosion

    Directory of Open Access Journals (Sweden)

    T. M. Litvinenko

    2014-08-01

    Full Text Available Introduction.Cervical erosionsoccur in 12-15%gynaecological diseases. Erosion is a damage of epithelialmucous membrane or skin. Therapy of patients with cervical erosionsis based on selection of pathogeneticsubstantiative method of treatment. Bathes and irrigations with 20% protargol, alum, carbolic acid, potassium permanganate are used. But some authors admit the destructive influence of these procedures. Using of tampons with 10% sintomycine emulsion, cod liver oil, sea-buckthorn oil,kalanchoe sap, propolis, vagotil, cigerol, galantamine also doesn’t give desirable result. Recently polymeric pellicleswith antibacterial substances are widely used. The most perspective in this route are aminoglycoside antibiotics. That is why we chose gentamicine sulfate (broad-spectrum aminoglycoside antibiotic. The aim of study is the development of the optimal composition of vaginal pellicleswith gentamicine sulfate for gynaecological practice, scientifically substantiation of excipients: polymeric base and plasticizer. Results and discussion.Polymeric bases and plasticizers influence on gentamicine sulfate releasing from polimericpellicleshas been studied. Research on choice of optimal composition has been carried out by two-factor experiment plan. The next bases and plasticizers have been used: methylcellulose, sodium carboxymethylcellulose, soluble biopolymer, gelatin; glycerine, propylenglycol, polyethylene glycol, twin 80. Gentamicine sulfate content was 80 mg in one pellicle. Gentamicine sulfate releasing from polimericpellicleshas been investigated by the Kruvchinsky method, concentration of active substance has been detected after 45 min. As a result it has been established that base makes essential influence on the gentamicine sulfate releasing (Fexp.52,88>Ftabl. 3,9. The best plasticizer is glycerin and the most optimal base is gelatin. So the optimal composition for vaginal films has been chosen: Gentamicine sulfate0,08 g Glycerin0,7 g Gelatin0

  15. Report on the 1. research coordination meeting on 'Development of therapeutic radiopharmaceuticals based on {sup 177}Lu for radionuclide therapy'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    supply the products to places far away from the production site. Patients suffering from breast, lung and prostate cancer develop metastasis in bone in the advanced stage of their diseases and therapeutic radiopharmaceuticals such as {sup 153}Sm-EDTMP and {sup 89}SrCl2 are used effectively for pain palliation due to skeletal metastases. Despite the fact that the above bone pain palliating agents give good clinical results; their wider use has met with practical difficulties. Though {sup 153}Sm can be prepared in adequate quantities in medium flux reactors, its short half life (47 h) is the major disadvantage. It is essential to handle large quantities of activity to compensate for decay losses, during production and delivery of the radiopharmaceutical. In the case of {sup 89}Sr, there is very limited capacity for production due to the very low cross section making this product expensive and unaffordable for many patients. It is expected that a {sup 177}Lu based bone palliating agent will offer the same clinical efficacy without the disadvantages mentioned above. Currently there is good published data available on the production of {sup 177}Lu and the preparation of phosphonates based radiopharmaceuticals which show high bone uptake. {sup 177}Lu produced in the low to medium flux research reactors available in the MS can be used for bone pain palliation. High specific activity {sup 177}Lu that is prepared in high flux research reactors is needed for radiolabelling antibodies and peptides. These antibodies introduced to patients alone or in conjunction with {sup 90}Y products are showing promising results in clinical trials. Large quantities of high specific activity {sup 177}Lu can be prepared by irradiating enriched targets in high flux research reactors and hence, in the long term the cost of high specific activity {sup 177}Lu should come down to reasonable levels. The wider availability of {sup 177}Lu will make it feasible for the production of therapeutic

  16. Report on the 1. research coordination meeting on 'Development of therapeutic radiopharmaceuticals based on 177Lu for radionuclide therapy'

    International Nuclear Information System (INIS)

    2006-01-01

    far away from the production site. Patients suffering from breast, lung and prostate cancer develop metastasis in bone in the advanced stage of their diseases and therapeutic radiopharmaceuticals such as 153 Sm-EDTMP and 89 SrCl2 are used effectively for pain palliation due to skeletal metastases. Despite the fact that the above bone pain palliating agents give good clinical results; their wider use has met with practical difficulties. Though 153 Sm can be prepared in adequate quantities in medium flux reactors, its short half life (47 h) is the major disadvantage. It is essential to handle large quantities of activity to compensate for decay losses, during production and delivery of the radiopharmaceutical. In the case of 89 Sr, there is very limited capacity for production due to the very low cross section making this product expensive and unaffordable for many patients. It is expected that a 177 Lu based bone palliating agent will offer the same clinical efficacy without the disadvantages mentioned above. Currently there is good published data available on the production of 177 Lu and the preparation of phosphonates based radiopharmaceuticals which show high bone uptake. 177 Lu produced in the low to medium flux research reactors available in the MS can be used for bone pain palliation. High specific activity 177 Lu that is prepared in high flux research reactors is needed for radiolabelling antibodies and peptides. These antibodies introduced to patients alone or in conjunction with 90 Y products are showing promising results in clinical trials. Large quantities of high specific activity 177 Lu can be prepared by irradiating enriched targets in high flux research reactors and hence, in the long term the cost of high specific activity 177 Lu should come down to reasonable levels. The wider availability of 177 Lu will make it feasible for the production of therapeutic radiopharmaceuticals with lower cost ensuring higher availability in MS. The CRP 'Development of

  17. Celiac Disease Histopathology Recapitulates Hedgehog Downregulation, Consistent with Wound Healing Processes Activation.

    Directory of Open Access Journals (Sweden)

    Stefania Senger

    Full Text Available In celiac disease (CD, intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology.Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC and 24 patients with diagnosed acute celiac disease (A-CD intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5, an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2.Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease.

  18. A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guozhu, E-mail: gzhang6@ncsu.edu [Bioinformatics Research Center, North Carolina State University, Raleigh, NC (United States); Roell, Kyle R., E-mail: krroell@ncsu.edu [Bioinformatics Research Center, North Carolina State University, Raleigh, NC (United States); Truong, Lisa, E-mail: lisa.truong@oregonstate.edu [Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR (United States); Tanguay, Robert L., E-mail: robert.tanguay@oregonstate.edu [Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR (United States); Reif, David M., E-mail: dmreif@ncsu.edu [Bioinformatics Research Center, North Carolina State University, Raleigh, NC (United States); Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC (United States)

    2017-01-01

    Zebrafish have become a key alternative model for studying health effects of environmental stressors, partly due to their genetic similarity to humans, fast generation time, and the efficiency of generating high-dimensional systematic data. Studies aiming to characterize adverse health effects in zebrafish typically include several phenotypic measurements (endpoints). While there is a solid biomedical basis for capturing a comprehensive set of endpoints, making summary judgments regarding health effects requires thoughtful integration across endpoints. Here, we introduce a Bayesian method to quantify the informativeness of 17 distinct zebrafish endpoints as a data-driven weighting scheme for a multi-endpoint summary measure, called weighted Aggregate Entropy (wAggE). We implement wAggE using high-throughput screening (HTS) data from zebrafish exposed to five concentrations of all 1060 ToxCast chemicals. Our results show that our empirical weighting scheme provides better performance in terms of the Receiver Operating Characteristic (ROC) curve for identifying significant morphological effects and improves robustness over traditional curve-fitting approaches. From a biological perspective, our results suggest that developmental cascade effects triggered by chemical exposure can be recapitulated by analyzing the relationships among endpoints. Thus, wAggE offers a powerful approach for analysis of multivariate phenotypes that can reveal underlying etiological processes. - Highlights: • Introduced a data-driven weighting scheme for multiple phenotypic endpoints. • Weighted Aggregate Entropy (wAggE) implies differential importance of endpoints. • Endpoint relationships reveal developmental cascade effects triggered by exposure. • wAggE is generalizable to multi-endpoint data of different shapes and scales.

  19. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    International Nuclear Information System (INIS)

    Motoo, Yoshiharu; Shimasaki, Takeo; Ishigaki, Yasuhito; Nakajima, Hideo; Kawakami, Kazuyuki; Minamoto, Toshinari

    2011-01-01

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation

  20. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Motoo, Yoshiharu, E-mail: motoo@kanazawa-med.ac.jp [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Shimasaki, Takeo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan); Ishigaki, Yasuhito [Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Nakajima, Hideo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Kawakami, Kazuyuki; Minamoto, Toshinari [Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan)

    2011-01-24

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  1. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Toshinari Minamoto

    2011-01-01

    Full Text Available Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer. We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  2. Modulation of GABAergic Transmission in Development and Neurodevelopmental Disorders: Investigating Physiology and Pathology to Gain Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Gabriele eDeidda

    2014-05-01

    Full Text Available During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis.The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.

  3. Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification

    Directory of Open Access Journals (Sweden)

    Amy Chan

    2015-01-01

    Full Text Available The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1 by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology.

  4. Self-packed filter plates: a good alternative for pre-packed filter plates for developing purification processes of therapeutic proteins

    NARCIS (Netherlands)

    Li, X.; Roo, de G.; Burgers, K.; Ottens, M.; Eppink, M.H.M.

    2012-01-01

    The use of high throughput screening (HTS) has successfully been applied in the past years in downstream process development of therapeutic proteins. Different HTS applications were introduced to speed up the purification process development of these proteins. In the light of these findings, studies

  5. [Cognitive, emotional and behavioral development of VLBW and ELBW preterm infants: diagnostic and therapeutic follow-up at preschool age].

    Science.gov (United States)

    Pomella, R; Baldino, R; Cravero, B

    2013-12-01

    Aims of the present study ware: to identify in preterm children of 4-6 years of age outcomes concerning cognitive, linguistic, emotional and behavioral development; to develop a therapeutic-rehabilitative project for those children in collaboration with the family and school. The study enrolled 20 children born prematurely at ≤32 weeks of gestational age and/or with a weight ≤1500 g, 12 VLBW (7 male e 5 female), 8 ELBW (4 male e 4 female), hospitalized at Novara Hospital "Maggiore della Carità" during the years 2003 and 2004, without severe outcomes. Psychodiagnostic evaluation was performed with standardized tests. On the final report results were discussed with parents, with specific indications for families and schools. Follow-up was at 6 months. Statistical elaboration of data was performed using Spss (Statistical Package for Social Sciences) version 16. Normal cognitive level resulted from the Griffiths Scale, without significant differences between VLBW and ELBW. The overall lowest score, in the "performance" subscale, especially for ELBW, was correlated with Vineland Scales (low scores in the subscales "everyday skills" and "motor ability"). The highest scores were detected in the "linguistic" subscale of the Griffiths Scales and in the "Communication" subscale of the Vineland Scales. The results at Bus Story Test (narrative language) were lower than average for that age. CBCL and TRF do not demonstrate clinical results in the emotional-behavioural area, but the teachers give a more critical assessment. Difficulties in emotional self-regulation interfere in the test, in the separation from the parents and in socializing. Monitoring development before starting primary school helps to discover potential problems and to activate supportive interventions. Early interventions allow to control and contain academic failure at school, which could have a negative impact on the child's image of himself and on the perception that the parents and school could have.

  6. The PRRT2 knockout mouse recapitulates the neurological diseases associated with PRRT2 mutations.

    Science.gov (United States)

    Michetti, Caterina; Castroflorio, Enrico; Marchionni, Ivan; Forte, Nicola; Sterlini, Bruno; Binda, Francesca; Fruscione, Floriana; Baldelli, Pietro; Valtorta, Flavia; Zara, Federico; Corradi, Anna; Benfenati, Fabio

    2017-03-01

    Heterozygous and rare homozygous mutations in PRoline-Rich Transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders including epilepsy, kinesigenic dyskinesia episodic ataxia and migraine. Most of the mutations lead to impaired PRRT2 expression and/or function. Recently, an important role for PRTT2 in the neurotransmitter release machinery, brain development and synapse formation has been uncovered. In this work, we have characterized the phenotype of a mouse in which the PRRT2 gene has been constitutively inactivated (PRRT2 KO). β-galactosidase staining allowed to map the regional expression of PRRT2 that was more intense in the cerebellum, hindbrain and spinal cord, while it was localized to restricted areas in the forebrain. PRRT2 KO mice are normal at birth, but display paroxysmal movements at the onset of locomotion that persist in the adulthood. In addition, adult PRRT2 KO mice present abnormal motor behaviors characterized by wild running and jumping in response to audiogenic stimuli that are ineffective in wild type mice and an increased sensitivity to the convulsive effects of pentylentetrazol. Patch-clamp electrophysiology in hippocampal and cerebellar slices revealed specific effects in the cerebellum, where PRRT2 is highly expressed, consisting in a higher excitatory strength at parallel fiber-Purkinje cell synapses during high frequency stimulation. The results show that the PRRT2 KO mouse reproduces the motor paroxysms present in the human PRRT2-linked pathology and can be proposed as an experimental model for the study of the pathogenesis of the disease as well as for testing personalized therapeutic approaches. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Interest of a drug and therapeutics committee for the operation of a hospital in a developing country: Dapaong, Togo.

    Science.gov (United States)

    Ben Yahya, M

    2016-05-01

    The department of pharmacy of the Regional Hospital of Dapaong is responsible for delivery of health products. We sought to assess the department's avoidable costs to optimize the hospital's drug policies and thereby improve patient care. This cost-forecasting study is intended to convince the hospital staff of the utility of setting up a drug and therapeutics committee and more particularly of developing a drug handbook for use within the public health institutions of the Savanna region. This prospective study seeks to improve the efficiency, quality, and availability of medicines by listing the references currently available at the Regional Hospital to demonstrate the percentage of duplicates and to show the references currently unavailable via "lost" sales. A retrospective study then estimated the loss of income from sales due to expired drugs. Our studies indicate that optimized management of the pharmacy would result in a potential gain of 14,914,397 FCFA, that is, 22,770 €. This significant savings could be used to improve the quality of care and promote quality assurance at the CHRD. The elimination of duplicates would allow the purchase of currently unavailable pharmaceutical classes (12,369,701 FCFA, that is, 18,885 € for reinvestment), and multidisciplinary collaboration with prescribers could reduce the losses associated with expired drugs (2,544,696 FCFA, or 3,885 €). These changes would improve the matching of the drugs prescribed at the CHRD and those delivered by the pharmacy.

  8. New procedures to measure synthase and phosphatase activities of bis-phosphoglycerate mutase. Interest for development of therapeutic drugs

    International Nuclear Information System (INIS)

    Ravel, P.; Garel, M.C.; Toullec, D.

    1997-01-01

    In red blood cells, a modulation of the level of the allosteric effector of hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) would have implications in the treatment of ischemia and sickle cell anemia. Its concentrations is determined by the relative activities of the synthase and phosphatase reactions of the multifunctional bis-phosphoglycerate mutase (BPGM). In this report we develop first a more direct synthase assay which uses glyceraldehyde phosphate to suppress the aldolase and triose phosphate isomerase reactions. Secondly we propose a radioactive phosphatase assay coupled to chromatographic separation and identification of the reaction products by paper electrophoresis. Such identification of these products allows us to show that the multifunctional BPGM expresses its mutase instead of its phosphatase activity in conditions of competition between the 3-phosphoglycerate and the 2-phospho-glycolate activator in the phosphatase reaction. These two more precise procedures could be used to study the effects of substrate and cofactor analogues regarding potential therapeutic approaches and could be used for clinical analyses to detect deficiency of BPGM. (author)

  9. Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development.

    Science.gov (United States)

    Panicker, Leelamma M; Miller, Diana; Awad, Ola; Bose, Vivek; Lun, Yu; Park, Tea Soon; Zambidis, Elias T; Sgambato, Judi A; Feldman, Ricardo A

    2014-09-01

    Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase (GCase; GBA) gene. The hallmark of GD is the presence of lipid-laden Gaucher macrophages, which infiltrate bone marrow and other organs. These pathological macrophages are believed to be the sources of elevated levels of inflammatory mediators present in the serum of GD patients. The alteration in the immune environment caused by GD is believed to play a role in the increased risk of developing multiple myeloma and other malignancies in GD patients. To determine directly whether Gaucher macrophages are abnormally activated and whether their functional defects can be reversed by pharmacological intervention, we generated GD macrophages by directed differentiation of human induced pluripotent stem cells (hiPSC) derived from patients with types 1, 2, and 3 GD. GD hiPSC-derived macrophages expressed higher levels of tumor necrosis factor α, IL-6, and IL-1β than control cells, and this phenotype was exacerbated by treatment with lipopolysaccharide. In addition, GD hiPSC macrophages exhibited a striking delay in clearance of phagocytosed red blood cells, recapitulating the presence of red blood cell remnants in Gaucher macrophages from bone marrow aspirates. Incubation of GD hiPSC macrophages with recombinant GCase, or with the chaperones isofagomine and ambroxol, corrected the abnormal phenotypes of GD macrophages to an extent that reflected their known clinical efficacies. We conclude that Gaucher macrophages are the likely source of the elevated levels of inflammatory mediators in the serum of GD patients and that GD hiPSC are valuable new tools for studying disease mechanisms and drug discovery. © 2014 AlphaMed Press.

  10. Development and Mechanism of Small Activating RNA Targeting CEBPA, a Novel Therapeutic in Clinical Trials for Liver Cancer.

    Science.gov (United States)

    Voutila, Jon; Reebye, Vikash; Roberts, Thomas C; Protopapa, Pantelitsa; Andrikakou, Pinelopi; Blakey, David C; Habib, Robert; Huber, Hans; Saetrom, Pal; Rossi, John J; Habib, Nagy A

    2017-12-06

    Small activating RNAs (saRNAs) are short double-stranded oligonucleotides that selectively increase gene transcription. Here, we describe the development of an saRNA that upregulates the transcription factor CCATT/enhancer binding protein alpha (CEBPA), investigate its mode of action, and describe its development into a clinical candidate. A bioinformatically directed nucleotide walk around the CEBPA gene identified an saRNA sequence that upregulates CEBPA mRNA 2.5-fold in human hepatocellular carcinoma cells. A nuclear run-on assay confirmed that this upregulation is a transcriptionally driven process. Mechanistic experiments demonstrate that Argonaute-2 (Ago2) is required for saRNA activity, with the guide strand of the saRNA shown to be associated with Ago2 and localized at the CEBPA genomic locus using RNA chromatin immunoprecipitation (ChIP) assays. The data support a sequence-specific on-target saRNA activity that leads to enhanced CEBPA mRNA transcription. Chemical modifications were introduced in the saRNA duplex to prevent activation of the innate immunity. This modified saRNA retains activation of CEBPA mRNA and downstream targets and inhibits growth of liver cancer cell lines in vitro. This novel drug has been encapsulated in a liposomal formulation for liver delivery, is currently in a phase I clinical trial for patients with liver cancer, and represents the first human study of an saRNA therapeutic. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Therapeutic Nanodevices

    Science.gov (United States)

    Lee, Stephen; Ruegsegger, Mark; Barnes, Philip; Smith, Bryan; Ferrari, Mauro

    Therapeutic nanotechnology offers minimally invasive therapies with high densities of function concentrated in small volumes, features that may reduce patient morbidity and mortality. Unlike other areas of nanotechnology, novel physical properties associated with nanoscale dimensionality are not the raison d'être of therapeutic nanotechnology, whereas the aggregation of multiple biochemical (or comparably precise) functions into controlled nanoarchitectures is. Multifunctionality is a hallmark of emerging nanotherapeutic devices, and multifunctionality can allow nanotherapeutic devices to perform multistep work processes, with each functional component contributing to one or more nanodevice subroutine such that, in aggregate, subroutines sum to a cogent work process. Cannonical nanotherapeutic subroutines include tethering (targeting) to sites of disease, dispensing measured doses of drug (or bioactive compound), detection of residual disease after therapy and communication with an external clinician/operator. Emerging nanotherapeutics thus blur the boundaries between medical devices and traditional pharmaceuticals. Assembly of therapeutic nanodevices generally exploits either (bio)material self-assembly properties or chemoselective bioconjugation techniques, or both. Given the complexity, composition, and the necessity for their tight chemical and structural definition inherent in the nature of nanotherapeutics, their cost of goods (COGs) might exceed that of (already expensive) biologics. Early therapeutic nanodevices will likely be applied to disease states which exhibit significant unmet patient need (cancer and cardiovascular disease), while application to other disease states well-served by conventional therapy may await perfection of nanotherapeutic design and assembly protocols.

  12. Characteristics and development of therapeutic patient education in rheumatoid arthritis: analysis of the 2003-2008 literature.

    Science.gov (United States)

    Albano, Maria Grazia; Giraudet-Le Quintrec, Janine-Sophie; Crozet, Cyril; d'Ivernois, Jean-François

    2010-10-01

    The aim of this study is to point out the recent characteristics and developments of therapeutic patient education (TPE) in rheumatoid arthritis through an analysis of the international articles published from 2003 to 2008. Studies were selected from major databases, using the following keywords: rheumatoid arthritis, patient education, self-management, programs. Three authors independently reviewed each study and selected the data using the patient education research categories (PERC). Articles consistently related to patient education in rheumatoid arthritis (37 among 109) were included. The selected articles have been published in 23 scientific journals. The majority of them concern TPE for adult patients with rheumatoid arthritis. TPE is delivered in several structures and group education represents the most widespread educational strategy mainly provided by a multiprofessional team. There are two types of programs: educational, aiming to make the patient competent in the daily management of his disease and psycho-educational ones, aiming to improve coping and to decrease stress, anxiety and depression. Twenty-eight studies show the effectiveness of TPE on the basis of bio-clinical, educational, psychosocial, economical criteria, but the majority of these positive results are observed in short-term. Barriers to TPE are linked to cultural and socio-economic factors. A large number of studies still assess the positive effects of TPE. Nowadays, the problems of short-term efficacy of TPE and the cultural and social barriers to this practice have become a major issue for research. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  13. Development and Evaluation of Naproxen Sodium Gel Using Piper cubeba for Enhanced Transdermal Drug Delivery and Therapeutic Facilitation.

    Science.gov (United States)

    Patwardhan, Sunetra; Patil, Manohar; Sockalingam, Anbazhagan

    2017-01-01

    The absorption of drug through skin avoids many side effects of oral route like gastric irritation, nausea, systemic toxicity etc and thus improves patient compliance. Naproxen sodium (NPRS) is one of the potent NSAID agents. The present study was aimed to develop and evaluate the gel formulation containing NPRS for transdermal drug delivery reducing the side effects and improving patient compliance. The patents on topical delivery of NSAIDS (US 9012402 B1, US 9072659 B2, US 20150258196 A1) and patents indicating use of herbal penetration enhancers (US 20100273746A1, WO 2005009510 A2, US 6004969 A) helped in selecting the drug, excipients. Current protocol employs various extracts of Piper cubeba fruit to evaluate its role in absorption of NPRS. Various batches containing 1% NPRS and varying concentrations of synthetic permeation enhancers or the extracts were formulated in carbopol gel. Gel was evaluated for parameters like organoleptic parameters, pH, viscosity and spreadability. An ex-vivo percutaneous absorption of NPRS from gel was investigated and compared with best performing synthetic enhancer, transcutol P (TP). The batch containing 2% n-hexane extract (NHE) of Piper cubeba showed higher permeation than TP and Chloroform (CE), Methanolic (ME) and aqueous (AE) extracts as well. It showed improved % cumulative release (85.09%) and flux (278.61μg/cm2.h), as compared to TP and other extracts. Histopathology indicated the formulation safer as compared to that with synthetic enhancer. It suggests P. cubeba as effective and safer tool for transdermal delivery and acts as therapeutic facilitator for naproxen. GC-MS analysis indicates lignans & terpenes in NHE to which this permeation enhancement activity may be attributed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development.

    Science.gov (United States)

    Heslop, Emma; Csimma, Cristina; Straub, Volker; McCall, John; Nagaraju, Kanneboyina; Wagner, Kathryn R; Caizergues, Didier; Korinthenberg, Rudolf; Flanigan, Kevin M; Kaufmann, Petra; McNeil, Elizabeth; Mendell, Jerry; Hesterlee, Sharon; Wells, Dominic J; Bushby, Kate

    2015-04-23

    Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a limited numbers of patients who can be enrolled into clinical trials. TREAT-NMD Advisory Committee for Therapeutics (TACT) was established to provide independent and objective guidance on the preclinical and development pathway of potential therapies (whether novel or repurposed) for NMD.We present our experience in the establishment and operation of the TACT. TACT provides a unique resource of recognized experts from multiple disciplines. The goal of each TACT review is to help the sponsor to position the candidate compound along a realistic and well-informed plan to clinical trials, and eventual registration. The reviews and subsequent recommendations are focused on generating meaningful and rigorous data that can enable clear go/no-go decisions and facilitate longer term funding or partnering opportunities. The review process thereby acts to comment on viability, de-risking the process of proceeding on a development programme.To date TACT has held 10 review meeting and reviewed 29 program applications in several rare neuromuscular diseases: Of the 29 programs reviewed, 19 were from industry and 10 were from academia; 15 were for novel compounds and 14 were for repurposed drugs; 16 were small molecules and 13 were biologics; 14 were preclinical stage applications and 15 were clinical stage applications. 3 had received Orphan drug designation from European Medicines Agency and 3 from Food and Drug Administration. A number of recurrent themes emerged over the course of the reviews and we found that applicants frequently require advice and education on issues concerned with preclinical standard operating procedures, interactions with regulatory agencies, formulation

  15. Milrinone therapeutic drug monitoring in a pediatric population: Development and validation of a quantitative liquid chromatography-tandem mass spectrometry method.

    Science.gov (United States)

    Raizman, Joshua E; Taylor, Katherine; Parshuram, Christopher; Colantonio, David A

    2017-05-01

    Milrinone is a potent selective phosphodiesterase type III inhibitor which stimulates myocardial function and improves myocardial relaxation. Although therapeutic monitoring is crucial to maintain therapeutic outcome, little data is available. A proof-of-principle study has been initiated in our institution to evaluate the clinical impact of optimizing milrinone dosing through therapeutic drug monitoring (TDM) in children following cardiac surgery. We developed a robust LC-MS/MS method to quantify milrinone in serum from pediatric patients in real-time. A liquid-liquid extraction procedure was used to prepare samples for analysis prior to measurement by LC-MS/MS. Performance characteristics, such as linearity, limit of quantitation (LOQ) and precision, were assessed. Patient samples were acquired post-surgery and analyzed to determine the concentration-time profile of the drug as well as to track turn-around-times. Within day precision was milrinone levels were either sub-therapeutic or in the toxic range, highlighting the importance for milrinone TDM. This simplified and quick method proved to be analytically robust and able to provide therapeutic monitoring of milrinone in real-time in patients post-cardiac surgery. Copyright © 2017. Published by Elsevier B.V.

  16. [Guideline development for rehabilitation of breast cancer patients - phase 2: findings from the classification of therapeutic procedures, KTL-data-analysis].

    Science.gov (United States)

    Domann, U; Brüggemann, S; Klosterhuis, H; Weis, J

    2007-08-01

    Aim of this project is the development of an evidence based guideline for the rehabilitation of breast cancer patients, funded by the German Pension Insurance scheme. The project consists of four phases. This paper is focused on the 2nd phase, i.e., analysis of procedures in rehabilitation based on evidence based therapeutic modules. As a result of a systematic literature review 14 therapeutic modules were defined. From a total of 840 possible KTL Codes (Klassifikation Therapeutischer Leistungen, Classification of therapeutic procedures), 229 could be assigned to these modules. These analyses are based on 24685 patients in 57 rehabilitation clinics, who had been treated in 2003. For these modules the number of patients having received those interventions as well as the duration of the modules were calculated. The data were analysed with respect to the influence of age and comorbidity. Moreover, differences between rehabilitation clinics were investigated according to the category of interventions. Our findings show great variability in the use of the therapeutic modules. Therapeutic modules like Physiotherapy (91.6%), Training Therapy (85.2%) and Information (97.8%) are provided to most of the patients. Younger patients receive more treatments than older patients, and patients with higher comorbidity receive more Physiotherapie, Lymphoedema Therapy and Psychological Interventions than patients without comorbidities. Data analysis shows wide interindividual variability with regard to the therapeutic modules. This variability is related to age and comorbidity of the patients. Furthermore, great differences were found between the rehabilitation clinics concerning the use of the various interventions. This variability supports the necessity of developing and implementing an evidence based guideline for the rehabilitation of breast cancer patients. The next step will be discussing these findings with experts from science and clinical practice.

  17. Development of a methodology to determine optimized therapeutic doses of {sup 131}I for the treatment of hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Francisco de; Santas, Bernardo Maranhao; Dantas, Ana Leticia Almeida; Lucena, Eder Augusto [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: faraujo@ird.gov.br; Melo, Rossana Corbo de; Rebelo, Ana Maria de Oliveira [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina

    2007-07-01

    Several methods can be used to determine the activity of {sup 131}I to be administered for the treatment of hyperthyroidism. However, some of them do not take into consideration the dose absorbed by the thyroid, while others do not consider all the parameters necessary for dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: mass of the organ, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology to evaluate therapeutic doses through the determination of biokinetic parameters and the activity of {sup 131}I deposited in the thyroid of patients submitted to the treatment of hyperthyroidism with {sup 131}I. A neck-thyroid phantom developed at the In Vivo Monitoring Laboratory of IRD, containing a known amount of {sup 131}I, was used to calibrate a scintillation camera and a uptake probe available at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro. The optimization of the counting geometry was carried out by the determination of the characteristic curves of the view angle of the collimator-detector assembly. The calculation of the calibration factor of the scintillation camera allows the determination of activities in the thyroid of patients in pre-established time periods through a 48-hours uptake curve. The view angle of the collimator-detector assembly presented values compatible with the size of the organ for distances of 25 cm (uptake probe) and 45.8 cm (scintillation camera). The calibration factors (in cpm/kBq) and the associated uncertainty related to these distances were 39.3 {+-} 0.8 and 4.3 {+-} 0.2 respectively. The time period between 14 and 30 hours of the retention curve allows the calculation of the activity between those two points. It is concluded that the use

  18. Development of New Therapeutics Targeting Biofilm Formation by the Opportunistic Pulmonary Pathogens Pseudomonas aeruginosa and Aspergillus Fumigatus

    Science.gov (United States)

    2017-10-01

    antifungals to pulmonary lesions – intracellular antifungals and antibiofilm therapeutics. Nov 14 2016. Posters 1. Snarr BD, Baker P, Bamford NC...that is or relates to a product, scientific advance, or research tool that makes a meaningful contribution toward the understanding

  19. Understanding the importance of therapeutic relationships in the development of self-management behaviours during cancer rehabilitation: a qualitative research protocol.

    Science.gov (United States)

    Wilkinson, Wendy M; Rance, Jaynie; Fitzsimmons, Deborah

    2017-01-17

    Cancer is a growing health, social and economic problem. 1 in 3 people in the UK will develop cancer in their lifetime. With survival rates rising to over 50%, the long-term needs of cancer survivors are of growing importance. Cancer rehabilitation is tailored to address the physical or psychosocial decline in ability to engage in daily activities. Its use is supported by high-quality international, multicentre research. Incorporating strategies for self-management behaviour development into rehabilitation can prepare individuals for cancer survivorship. However, healthcare professionals will need to adjust their therapeutic interactions accordingly. Research is yet to clarify the impact of the therapeutic relationship on rehabilitation outcomes in cancer. This study aims to explore the impact of therapeutic relationships on self-management behaviours after cancer. This qualitative study aims to understand cancer rehabilitation participants' beliefs regarding the importance of therapeutic relationships in developing self-management behaviours. A sample representative of a local cancer rehabilitation cohort will be asked to complete a semistructured interview to identify their perspectives on the importance of therapeutic relationships in cancer rehabilitation. Data obtained from the interviews will be analysed, coded and entered into a Delphi questionnaire for circulation to a local cancer rehabilitation population to determine if the views expressed by the interviewees are supported by group consensus. This study was approved by Wales Research Ethics Committee 6 (15/WA/0331) in April 2016. Findings will be disseminated through the first author's doctoral thesis; peer-reviewed journals; local, national and international conference presentations; and public events involving research participants and the general public. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. The pig as a model for therapeutic human anti-cancer vaccine development, elucidating the T-cell reactivity against IDO and RhoC

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    is important. Previous development of therapeutic cancer vaccines has largely been based on studies in mice and the majority of these candidate vaccines failed to establish therapeutic responses in subsequent human clinical trials. Since the porcine immunome is more closely related to the human counterpart, we...... here introduce pigs as a superior large animal model for human cancer vaccine development via the use of our unique technology for swine leukocyte antigen (SLA) production. IDO and RhoC, both known to be important in human cancer development and progression, were used as vaccine targets. Pigs were......, and peptide-SLA complex stability measurements revealed 89 stable (t½ ≥ 0.5 hour) complexes. Vaccine-induced peptide-specific CTL responses were monitored using IFN-γ release as a read out. We found responses to IDO- and RhoC-derived peptides across all groups; surprisingly non-stably binding peptides also...

  1. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2017-06-01

    Full Text Available Although significant levels of side effects are often associated with their use, microtubule-directed agents that primarily target fast-growing mitotic cells have been considered to be some of the most effective anti-cancer therapeutics. With the hope of developing new-generation anti-mitotic agents with reduced side effects and enhanced tumor specificity, researchers have targeted various proteins whose functions are critically required for mitotic progression. As one of the highly attractive mitotic targets, polo-like kinase 1 (Plk1 has been the subject of an extensive effort for anti-cancer drug discovery. To date, a variety of anti-Plk1 agents have been developed, and several of them are presently in clinical trials. Here, we will discuss the current status of generating anti-Plk1 agents as well as future strategies for designing and developing more efficacious anti-Plk1 therapeutics.

  2. HSC extrinsic sex-related and intrinsic autoimmune disease-related human B-cell variation is recapitulated in humanized mice.

    Science.gov (United States)

    Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan

    2017-10-24

    B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

  3. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  4. Recapitulation of Clinical Individual Susceptibility to Drug-Induced QT Prolongation in Healthy Subjects Using iPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Tadahiro Shinozawa

    2017-02-01

    Full Text Available To predict drug-induced serious adverse events (SAE in clinical trials, a model using a panel of cells derived from human induced pluripotent stem cells (hiPSCs of individuals with different susceptibilities could facilitate major advancements in translational research in terms of safety and pharmaco-economics. However, it is unclear whether hiPSC-derived cells can recapitulate interindividual differences in drug-induced SAE susceptibility in populations not having genetic disorders such as healthy subjects. Here, we evaluated individual differences in SAE susceptibility based on an in vitro model using hiPSC-derived cardiomyocytes (hiPSC-CMs as a pilot study. hiPSCs were generated from blood samples of ten healthy volunteers with different susceptibilities to moxifloxacin (Mox-induced QT prolongation. Different Mox-induced field potential duration (FPD prolongation values were observed in the hiPSC-CMs from each individual. Interestingly, the QT interval was significantly positively correlated with FPD at clinically relevant concentrations (r > 0.66 in multiple analyses including concentration-QT analysis. Genomic analysis showed no interindividual significant differences in known target-binding sites for Mox and other drugs such as the hERG channel subunit, and baseline QT ranges were normal. The results suggest that hiPSC-CMs from healthy subjects recapitulate susceptibility to Mox-induced QT prolongation and provide proof of concept for in vitro preclinical trials.

  5. Development of New Therapeutics Targeting Biofilm Formation by the Opportunistic Pulmonary Pathogens Pseudomonas aeruginosa and Aspergillus Fumigatus

    Science.gov (United States)

    2017-10-01

    antibiotics directed at PA or at AF. We have also demonstrated that, when injected intratracheally in mice, the hydrolases did not induce adverse immune...CONTENTS 1. Introduction..........4 2. Keywords..........4 3. Accomplishments..........4 4. Impact..........27 5. Changes/Problems..........27 6. Products ...Exopolysaccharide-deficient mutants of PA and AF are less virulent in animal models, suggesting that these glycans are promising therapeutic targets. We have

  6. Mobile Software as a Medical Device (SaMD) for the Treatment of Epilepsy: Development of Digital Therapeutics Comprising Behavioral and Music-Based Interventions for Neurological Disorders.

    Science.gov (United States)

    Afra, Pegah; Bruggers, Carol S; Sweney, Matthew; Fagatele, Lilly; Alavi, Fareeha; Greenwald, Michael; Huntsman, Merodean; Nguyen, Khanhly; Jones, Jeremiah K; Shantz, David; Bulaj, Grzegorz

    2018-01-01

    Digital health technologies for people with epilepsy (PWE) include internet-based resources and mobile apps for seizure management. Since non-pharmacological interventions, such as listening to specific Mozart's compositions, cognitive therapy, psychosocial and educational interventions were shown to reduce epileptic seizures, these modalities can be integrated into mobile software and delivered by mobile medical apps as digital therapeutics. Herein, we describe: (1) a survey study among PWE about preferences to use mobile software for seizure control, (2) a rationale for developing digital therapies for epilepsy, (3) creation of proof-of-concept mobile software intended for use as an adjunct digital therapeutic to reduce seizures, and (4) broader applications of digital therapeutics for the treatment of epilepsy and other chronic disorders. A questionnaire was used to survey PWE with respect to preferred features in a mobile app for seizure control. Results from the survey suggested that over 90% of responders would be interested in using a mobile app to manage their seizures, while 75% were interested in listening to specific music that can reduce seizures. To define digital therapeutic for the treatment of epilepsy, we designed and created a proof-of-concept mobile software providing digital content intended to reduce seizures. The rationale for all components of such digital therapeutic is described. The resulting web-based app delivered a combination of epilepsy self-care, behavioral interventions, medication reminders and the antiseizure music, such as the Mozart's sonata K.448. To improve long-term patient engagement, integration of mobile medical app with music and multimedia streaming via smartphones, tablets and computers is also discussed. This work aims toward development and regulatory clearance of software as medical device (SaMD) for seizure control, yielding the adjunct digital therapeutic for epilepsy, and subsequently a drug-device combination

  7. The Aorta-Gonad-Mesonephros Organ Culture Recapitulates 5hmC Reorganization and Replication-Dependent and Independent Loss of DNA Methylation in the Germline.

    Science.gov (United States)

    Calvopina, Joseph Hargan; Cook, Helene; Vincent, John J; Nee, Kevin; Clark, Amander T

    2015-07-01

    Removal of cytosine methylation from the genome is critical for reprogramming and transdifferentiation and plays a central role in our understanding of the fundamental principles of embryo lineage development. One of the major models for studying cytosine demethylation is the mammalian germ line during the primordial germ cell (PGC) stage of embryo development. It is now understood that oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is required to remove cytosine methylation in a locus-specific manner in PGCs; however, the mechanisms downstream of 5hmC are controversial and hypothesized to involve either active demethylation or replication-coupled loss. In the current study, we used the aorta-gonad-mesonephros (AGM) organ culture model to show that this model recapitulates germ line reprogramming, including 5hmC reorganization and loss of cytosine methylation from Snrpn and H19 imprinting control centers (ICCs). To directly address the hypothesis that cell proliferation is required for cytosine demethylation, we blocked PI3-kinase-dependent PGC proliferation and show that this leads to a G1 and G2/M cell cycle arrest in PGCs, together with retained levels of cytosine methylation at the Snrpn ICC, but not at the H19 ICC. Taken together, the AGM organ culture model is an important tool to evaluate mechanisms of locus-specific demethylation and the role of PI3-kinase-dependent PGC proliferation in the locus-specific removal of cytosine methylation from the genome.

  8. Developments in the invasive diagnostic-therapeutic cascade of women and men with acute coronary syndromes from 2005 to 2011

    DEFF Research Database (Denmark)

    Hansen, Kim Wadt; Sørensen, Rikke; Madsen, M

    2015-01-01

    OBJECTIVES: To investigate for trends in sex-related differences in the invasive diagnostic-therapeutic cascade in a population of patients with acute coronary syndromes (ACS). DESIGN: A nationwide cohort study. SETTING: Administrative and clinical registries covering all hospitalisations, invasive...... coronary angiography, percutaneous coronary intervention or coronary artery bypass within 60 days of index admission. RESULTS: Women constituted 36%, were older, had more comorbidity and were less likely to be admitted to a hospital with cardiac catheterisation facilities than men. Mortality rates were...

  9. Report on the 2nd Research Coordination Meeting on The Development of Therapeutic Radiopharmaceuticals Based on 188Re and 90Y for Radionuclide. Working Document

    International Nuclear Information System (INIS)

    2010-01-01

    Radionuclide therapy is practiced for the treatment of malignant disorders of various organs and tissues as well as for treating certain other diseases such as rheumatoid arthritis. Advances in understanding tumor biology as well as developments in peptide chemistry and monoclonal antibody technology are opening new opportunities for the development of therapeutic radiopharmaceuticals, thereby widening the scope of radionuclide therapy. In addition, particulate based radiopharmaceuticals are useful for treating hepatocarcinoma as well as in radiation synovectomy. With the establishment of new products the demand and application of therapeutic nuclear medicine is expected to grow rapidly. While there are a large number of radioisotopes proposed for targeted therapy, practical considerations had been limiting the number of usable isotopes. Generator-produced radionuclides are an attractive option for the large scale on-site availability of therapeutic isotopes. The IAEA’s CRP on the ‘Development of generator technologies for therapeutic radionuclides’ (2004-2007) was successful in developing technologies for the preparation of 188 W/ 188 Re and 90 Sr/ 90 Y generators for eluting 188 Re and 90 Y of high radionuclidic and chemical purity usable for research applications in the development of therapeutic radiopharmaceuticals. The IAEA’s CRP on ‘The development of therapeutic radiopharmaceuticals based on 188 Re and 90 Y for radionuclide therapy’ was formulated to focus on enhancing the capacity of the 90 Sr/ 90 Y generator; to develop and validate quality control methods for the generator eluate; and to develop therapeutic radiopharmaceuticals based on 188 Re and 90 Y. The first RCM of the CRP was held in Polatom, Warsaw, Poland from 30 June to 4 July 2008. The meeting reviewed the work going on in the different participating laboratories, and the facilities, expertise and capabilities of the different participating groups, and formulated the work plan of

  10. Report on the 2{sup nd} Research Coordination Meeting on The Development of Therapeutic Radiopharmaceuticals Based on {sup 188}Re and {sup 90}Y for Radionuclide. Working Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Radionuclide therapy is practiced for the treatment of malignant disorders of various organs and tissues as well as for treating certain other diseases such as rheumatoid arthritis. Advances in understanding tumor biology as well as developments in peptide chemistry and monoclonal antibody technology are opening new opportunities for the development of therapeutic radiopharmaceuticals, thereby widening the scope of radionuclide therapy. In addition, particulate based radiopharmaceuticals are useful for treating hepatocarcinoma as well as in radiation synovectomy. With the establishment of new products the demand and application of therapeutic nuclear medicine is expected to grow rapidly. While there are a large number of radioisotopes proposed for targeted therapy, practical considerations had been limiting the number of usable isotopes. Generator-produced radionuclides are an attractive option for the large scale on-site availability of therapeutic isotopes. The IAEA’s CRP on the ‘Development of generator technologies for therapeutic radionuclides’ (2004-2007) was successful in developing technologies for the preparation of {sup 188}W/{sup 188}Re and {sup 90}Sr/{sup 90}Y generators for eluting {sup 188}Re and {sup 90}Y of high radionuclidic and chemical purity usable for research applications in the development of therapeutic radiopharmaceuticals. The IAEA’s CRP on ‘The development of therapeutic radiopharmaceuticals based on {sup 188}Re and {sup 90}Y for radionuclide therapy’ was formulated to focus on enhancing the capacity of the {sup 90}Sr/{sup 90}Y generator; to develop and validate quality control methods for the generator eluate; and to develop therapeutic radiopharmaceuticals based on {sup 188}Re and {sup 90}Y. The first RCM of the CRP was held in Polatom, Warsaw, Poland from 30 June to 4 July 2008. The meeting reviewed the work going on in the different participating laboratories, and the facilities, expertise and capabilities of the different

  11. Measuring the Developing Therapeutic Relationship Between Pregnant Women and Community Health Workers Over the Course of the Pregnancy in a Study Intervention.

    Science.gov (United States)

    Lichtveld, Maureen Y; Shankar, Arti; Mundorf, Chris; Hassan, Anna; Drury, Stacy

    2016-12-01

    The Scale to Assess the Therapeutic Relationship in Community Mental Health Care (STAR) is a frequently-administered tool for measuring therapeutic relationships between clinicians and patients. This manuscript tested the STAR's psychometric properties within a community health worker (CHW)-led intervention study involving pregnant and postpartum women. Women (n = 141) enrolled in the study completed the 12-item participant STAR survey (STAR-P) at two time points over the course of pregnancy and at two time points after delivery. The factor structure of the STAR-P proved to be unstable with this population. However, a revised 9-item STAR-P revealed a two-factor model of positive and negative interactions, and demonstrated strong internal consistency at postpartum time points. The revised STAR-P shows strong psychometric properties, and is suitable for use to evaluate the relationship developed between CHWs and pregnant and postpartum women in an intervention program.

  12. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice1

    Science.gov (United States)

    Kauffman, Alexander S.; Thackray, Varykina G.; Ryan, Genevieve E.; Tolson, Kristen P.; Glidewell-Kenney, Christine A.; Semaan, Sheila J.; Poling, Matthew C.; Iwata, Nahoko; Breen, Kellie M.; Duleba, Antoni J.; Stener-Victorin, Elisabet; Shimasaki, Shunichi; Webster, Nicholas J.; Mellon, Pamela L.

    2015-01-01

    Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition. PMID:26203175

  13. Development of FGI-106 as a broad-spectrum therapeutic with activity against members of the family Bunyaviridae

    Directory of Open Access Journals (Sweden)

    Darci R Smith

    2010-02-01

    Full Text Available Darci R Smith1, Monica Ogg1, Aura Garrison1, Abdul Yunus2, Anna Honko1, Josh Johnson1, Gene Olinger1, Lisa E Hensley1, Michael S Kinch1United States Army Medical Research Institute of Infectious Diseases (USAMRII D, Fort Detrick, MD, USA; 2Functional Genetics, Inc., Gaithersburg, MD, USAAbstract: The family Bunyaviridae is a diverse group of negative-strand RNA viruses that infect a wide range of arthropod vectors and animal hosts. Based on the continuing need for new therapeutics to treat bunyavirus infections, we evaluated the potential efficacy of FGI-106, a small-molecular compound that previously demonstrated activity against different RNA viruses. FGI-106 displayed substantial antiviral activity in cell-based assays of different bunyavirus family members, including Asian and South American hantaviruses (Hantaan virus and Andes virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, and Rift Valley fever virus. The pharmacokinetic profile of FGI-106 revealed sufficient exposure of the drug to critical target organs (lung, liver, kidney, and spleen, which are frequently the sites of bunyavirus replication. Consistent with these findings, FGI-106 treatment delivered via intraperitoneal injection prior to virus exposure was sufficient to delay the onset of Rift Valley fever virus infection in mouse-based models and to enhance survival in the face of an otherwise lethal infection. Altogether, these results suggest a potential opportunity for the use of FGI-106 to treat infections by members of the family Bunyaviridae.Keywords: Rift Valley fever virus, bunyavirus, hantavirus, antiviral, therapeutic

  14. Developing better mouse models to study cisplatin-induced kidney injury.

    Science.gov (United States)

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  15. Internet-based treatment for PTSD reduces distress and facilitates the development of a strong therapeutic alliance: a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Maercker Andreas

    2007-04-01

    Full Text Available Abstract Background The present study was designed to evaluate the efficacy of an internet-based therapy (Interapy for Posttraumatic Stress Disorder (PTSD in a German speaking population. Also, the quality of the online therapeutic relationship, its development and its relevance as potential moderator of the treatment effects was investigated. Method Ninety-six patients with posttraumatic stress reactions were allocated at random to ten sessions of Internet-based cognitive behavioural therapy (CBT conducted over a 5-week period or a waiting list control group. Severity of PTSD was the primary outcome. Secondary outcome variables were depression, anxiety, dissociation and physical health. Follow-up assessments were conducted at the end of treatment and 3 months after treatment. Results From baseline to post-treatment assessment, PTSD severity and other psychopathological symptoms were significantly improved for the treatment group (intent-to-treat group × time interaction effect size d = 1.40. Additionally, patients of the treatment condition showed significantly greater reduction of co-morbid depression and anxiety as compared to the waiting list condition. These effects were sustained during the 3-months follow-up period. High ratings of the therapeutic alliance and low drop-out rates indicated that a positive and stable therapeutic relationship could be established online. Significant improvement of the online working alliance in the course of treatment and a substantial correlation between the quality of the online relationship at the end of treatment and treatment outcome emerged. Conclusion Interapy proved to be a viable treatment alternative for PTSD with large effect sizes and sustained treatment effects. A stable and positive online therapeutic relationship can be established through the Internet which improved during the treatment process. Trial registration Australian Clinical Trials Registry ACTRN012606000401550

  16. Developing the Therapeutic Use of Self in the Health Care Professional through Autoethnography: Working with the Borderline Personality Disorder Population

    Directory of Open Access Journals (Sweden)

    Kimberly Ann Jones RN, BScN, MN

    2012-12-01

    Full Text Available Frequently stigmatized, misdiagnosed, improperly treated, and discounted is the suffering of the patient with Borderline Personality Disorder (BPD, and it can be a serious, agonizing, tenacious, and draining mental illness. Present-day research illustrates that patients with BPD are in fact the largest consumers of mental health services, utilizing every treatment genre more frequently and in greater quantities than any other mental health taxonomy. They experience more complex and destructive symptoms, more perpetual misery and encumbrance, an unpredictable usage of outpatient services, and extensive treatment modalities and psychiatric admissions. A review of current literature reveals this consistent notion: the attitudes of health care professionals toward patients diagnosed with this elaborate disorder tend to be disparaging. The aim of this article is to critically analyze the prospect that autoethnography (or narrative research is a strategic, useful tool for mental health professionals to improve empathy and identification with patients suffering with BPD. As a qualitative research method, autoethnography is advantageous for creating connections between care provider and patient. It can deepen their mutual and divergent experiences while generating empirical knowledge from the professional's narrative reflection and through the therapeutic use of self with the patient.

  17. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections.

    Science.gov (United States)

    Zapotoczna, Marta; McCarthy, Hannah; Rudkin, Justine K; O'Gara, James P; O'Neill, Eoghan

    2015-12-15

    High-level resistance to antimicrobial drugs is a major factor in the pathogenesis of chronic Staphylococcus aureus biofilm-associated, medical device-related infections. Antimicrobial susceptibility analysis revealed that biofilms grown for ≤ 24 hours on biomaterials conditioned with human plasma under venous shear in iron-free cell culture medium were significantly more susceptible to antistaphylococcal antibiotics. Biofilms formed under these physiologically relevant conditions were regulated by SaeRS and dependent on coagulase-catalyzed conversion of fibrinogen into fibrin. In contrast, SarA-regulated biofilms formed on uncoated polystyrene in nutrient-rich bacteriological medium were mediated by the previously characterized biofilm factors poly-N-acetyl glucosamine, fibronectin-binding proteins, or autolytic activity and were antibiotic resistant. Coagulase-mediated biofilms exhibited increased antimicrobial resistance over time (>48 hours) but were always susceptible to dispersal by the fibrinolytic enzymes plasmin or nattokinase. Biofilms recovered from infected central venous catheters in a rat model of device-related infection were dispersed by nattokinase, supporting the important role of the biofilm phenotype and identifying a potentially new therapeutic approach with antimicrobials and fibrinolytic drugs, particularly during the early stages of device-related infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. [Nuclear transfer and therapeutic cloning].

    Science.gov (United States)

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  19. Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating

    NARCIS (Netherlands)

    Kosterev, Vladimir V.; Kramer-Ageev, Evgeny A.; Mazokhin, Vladimir N.; van Rhoon, Gerard C.; Crezee, Johannes

    2015-01-01

    This paper describes the development of a new type of electromagnetic hyperthermia applicator delivering dose control within large application fields and increased effectiveness by providing simultaneous action of radiation and heating (SRH) in malignant tumours, and development of a dosimetric

  20. Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, Fingolimod will change therapeutic paradigm approach

    Directory of Open Access Journals (Sweden)

    Gasperini C

    2012-07-01

    Full Text Available Claudio Gasperini,1 Serena Ruggieri21Department of Neurosciences, S Camillo Forlanini Hospital, 2Department of Neurology and Psychiatry, University of Rome “Sapienza,” Rome, ItalyAbstract: Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system, traditionally considered to be an autoimmune, demyelinating disease. Based on this understanding, the initial therapeutic strategies were directed at immune modulation and inflammation control. At present, there are five licensed first-line disease-modifying drugs and two second-line treatments in MS. Currently available MS therapies have shown significant efficacy throughout many trials, but they produce different side-effect profiles in patients. Since they are well known and safe, they require regular and frequent parenteral administration and are associated with limited long-term treatment adherence. Thus, there is an important need for the development of new therapeutic strategies. Several oral compounds are in late-stage development for treating MS. Fingolimod (FTY720; Novartis, Basel, Switzerland is an oral sphingosine-1-phosphase receptor modulator which has demonstrated superior efficacy compared with placebo and interferon β-1a in Phase III studies and has been approved in the treatment of MS. We summarily review the oral compounds in study, focusing on the recent development, approval and the clinical experience with FTY720.Keywords: multiple sclerosis, oral compounds, fingolimod, fty720, sphingosine 1, phosphate, patient satisfaction

  1. Aerosol exposure to Rift Valley fever virus causes earlier and more severe neuropathology in the murine model, which has important implications for therapeutic development.

    Directory of Open Access Journals (Sweden)

    Christopher Reed

    Full Text Available Rift Valley fever virus (RVFV is an important mosquito-borne veterinary and human pathogen that can cause severe disease including acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. Currently, no licensed vaccine or therapeutics exist to treat this potentially deadly disease. Detailed studies describing the pathogenesis of RVFV following aerosol exposure have not been completed and candidate therapeutics have not been evaluated following an aerosol exposure. These studies are important because while mosquito transmission is the primary means for human infection, it can also be transmitted by aerosol or through mucosal contact. Therefore, we directly compared the pathogenesis of RVFV following aerosol exposure to a subcutaneous (SC exposure in the murine model by analyzing survival, clinical observations, blood chemistry, hematology, immunohistochemistry, and virus titration of tissues. Additionally, we evaluated the effectiveness of the nucleoside analog ribavirin administered prophylactically to treat mice exposed by aerosol and SC. The route of exposure did not significantly affect the survival, chemistry or hematology results of the mice. Acute hepatitis occurred despite the route of exposure. However, the development of neuropathology occurred much earlier and was more severe in mice exposed by aerosol compared to SC exposed mice. Mice treated with ribavirin and exposed SC were partially protected, whereas treated mice exposed by aerosol were not protected. Early and aggressive viral invasion of brain tissues following aerosol exposure likely played an important role in ribavirin's failure to prevent mortality among these animals. Our results highlight the need for more candidate antivirals to treat RVFV infection, especially in the case of a potential aerosol exposure. Additionally, our study provides an account of the key pathogenetic differences in RVF disease following two potential

  2. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  3. Development and evaluation of a training program for therapeutic radiographers as a basis for online adaptive radiation therapy for bladder carcinoma

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Wong, Jacky; Kron, Tomas; Roxby, Paul; Haworth, Annette; Bailey, Alistair; Rolfo, Aldo; Paneghel, Andrea; Styles, Colin; Laferlita, Marcus; Tai, Keen Hun; Williams, Scott; Duchesne, Gillian

    2010-01-01

    Aims: Online adaptive radiotherapy requires a new level of soft tissue anatomy recognition and decision making by therapeutic radiographers at the linear accelerator. We have developed a therapeutic radiographer training workshop encompassing soft tissue matching for an online adaptive protocol for muscle invasive bladder cancer. Our aim is to present the training program, and its evaluation which compares pre and post training staff soft tissue matching and bladder contouring using Cone Beam Computer Tomography (CBCT). Materials and Methods: Prior to commencement of an online adaptive bladder protocol, a staff training program for 33 therapeutic radiographers, with a separate ethics approved evaluation component was developed. A multidisciplinary training program over two days was carried out with a total of 11 h of training, covering imaging technology, pelvic anatomy and protocol specific decision making in both practical and theoretical sessions. The evaluation included both pre training and post training testing of staff. Results: Pre training and post training, the standard deviations in the contoured bladder between participants in left-right direction were 0.64 vs 0.59 cm, superior-inferior 0.89 vs 0.77 cm and anterior-posterior direction was 0.88 vs 0.52 cm respectively. Similarly the standard deviation in the volume contoured decreased from 40.7 cc pre training to 24.5 cc post training. Time taken in contouring was reduced by the training program (19.8 vs 17.2 min) as was the discrepancy in choice of adaptive radiotherapy plans. The greatest reduction in variations in contouring was seen in staff whose pre training had the largest deviations from the reference radiation oncologist contours. Conclusion: A formalized staff training program is feasible, well received by staff and reduces variation in organ matching and contouring. The improvement was particularly noticed in staff who pre training had larger deviations from the reference standard.

  4. A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons.

    Directory of Open Access Journals (Sweden)

    Kensuke Tashiro

    Full Text Available Short interspersed repetitive elements (SINEs are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered "junk DNA". However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2(+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2(+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1(-/NPY(+ portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum

  5. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes.

    Science.gov (United States)

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D

    2017-07-17

    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion

  6. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome.

    Science.gov (United States)

    Saida, Satoshi; Watanabe, Ken-ichiro; Sato-Otsubo, Aiko; Terui, Kiminori; Yoshida, Kenichi; Okuno, Yusuke; Toki, Tsutomu; Wang, RuNan; Shiraishi, Yuichi; Miyano, Satoru; Kato, Itaru; Morishima, Tatsuya; Fujino, Hisanori; Umeda, Katsutsugu; Hiramatsu, Hidefumi; Adachi, Souichi; Ito, Etsuro; Ogawa, Seishi; Ito, Mamoru; Nakahata, Tatsutoshi; Heike, Toshio

    2013-05-23

    Transient abnormal myelopoiesis (TAM) is a clonal preleukemic disorder that progresses to myeloid leukemia of Down syndrome (ML-DS) through the accumulation of genetic alterations. To investigate the mechanism of leukemogenesis in this disorder, a xenograft model of TAM was established using NOD/Shi-scid, interleukin (IL)-2Rγ(null) mice. Serial engraftment after transplantation of cells from a TAM patient who developed ML-DS a year later demonstrated their self-renewal capacity. A GATA1 mutation and no copy number alterations (CNAs) were detected in the primary patient sample by conventional genomic sequencing and CNA profiling. However, in serial transplantations, engrafted TAM-derived cells showed the emergence of divergent subclones with another GATA1 mutation and various CNAs, including a 16q deletion and 1q gain, which are clinically associated with ML-DS. Detailed genomic analysis identified minor subclones with a 16q deletion or this distinct GATA1 mutation in the primary patient sample. These results suggest that genetically heterogeneous subclones with varying leukemia-initiating potential already exist in the neonatal TAM phase, and ML-DS may develop from a pool of such minor clones through clonal selection. Our xenograft model of TAM may provide unique insight into the evolutionary process of leukemia.

  7. klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes.

    Directory of Open Access Journals (Sweden)

    Peter Novodvorsky

    Full Text Available The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2 transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development.Using Transcription Activator-Like Effector Nucleases (TALEN we generated a klf2a mutant (klf2ash317 with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2ash317 mutants. Homozygous klf2ash317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC development or impaired formation of the 5th accessory aortic arch. Homozygous klf2ash317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl, a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2ash317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17 in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2ash317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2ash317 mutants.The klf2ash317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development.

  8. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    Science.gov (United States)

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Yi-Chin Toh

    2018-04-01

    Full Text Available We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1 in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis. It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.

  10. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH.

    Science.gov (United States)

    Kang, Yu; Zheng, Bo; Shen, Bin; Chen, Yongchang; Wang, Lei; Wang, Jianying; Niu, Yuyu; Cui, Yiqiang; Zhou, Jiankui; Wang, Hong; Guo, Xuejiang; Hu, Bian; Zhou, Qi; Sha, Jiahao; Ji, Weizhi; Huang, Xingxu

    2015-12-20

    Mutations in the DAX1 locus cause X-linked adrenal hypoplasia congenita (AHC) and hypogonadotropic hypogonadism (HH), which manifest with primary adrenal insufficiency and incomplete or absent sexual maturation, respectively. The associated defects in spermatogenesis can range from spermatogenic arrest to Sertoli cell only syndrome. Conclusions from Dax1 knockout mouse models provide only limited insight into AHC/HH disease mechanisms, because mouse models exhibit more extensive abnormalities in testicular development, including disorganized and incompletely formed testis cords with decreased number of peritubular myoid cells and male-to-female sex reversal. We previously reported successful clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome targeting in cynomolgus monkeys. Here, we describe a male fetal monkey in which targeted genome editing using CRISPR/Cas9 produced Dax1-null mutations in most somatic tissues and in the gonads. This DAX1-deficient monkey displayed defects in adrenal gland development and abnormal testis architecture with small cords, expanded blood vessels and extensive fibrosis. Sertoli cell formation was not affected. This phenotype strongly resembles findings in human patients with AHC-HH caused by mutations in DAX1. We further detected upregulation of Wnt/β-catenin-VEGF signaling in the fetal Dax1-deficient testis, suggesting abnormal activation of signaling pathways in the absence of DAX1 as one mechanism of AHC-HH. Our study reveals novel insight into the role of DAX1 in HH and provides proof-of-principle for the generation of monkey models of human disease via CRISPR/Cas9-mediated gene targeting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. CDKL5 Disorder: a Novel Therapeutic Strategy to Improve Brain Development in a Newly Generated CDKL5 ko Mouse Model

    OpenAIRE

    De Franceschi, Marianna

    2016-01-01

    The cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene, located on the X-chromosome. The consequent unsuccessful CDKL5 protein expression in the nervous system leads to a severe encephalopathy, characterized by mental retardation, reduced motor abilities and early-onset intractable epilepsy. CDKL5 is highly expressed in the brain during the early postnatal stages of development and a recently developed Cdkl5 KO m...

  12. Development of lutetium-labeled bombesin derivates: relationship between structure and diagnostic-therapeutic activity for prostate tumor

    International Nuclear Information System (INIS)

    Pujatti, Priscilla Brunelli

    2009-01-01

    Bombesin (BBN) receptors - in particular, the gastrin-releasing peptide (GRP) receptor peptide - have been shown to be massively over expressed in several human tumors types, including prostate cancer, and could be an alternative as target for its treatment by radionuclide therapy (RNT). A large number of BBN analogs had already been synthesized for this purpose and have shown to reduce tumor growth in mice. Nevertheless, most of the studied analogs exhibit high abdominal accumulation, especially in pancreas. This abdominal accumulation may represent a problem in clinical use of radiolabeled bombesin analogs probably due to serious side effects to patients. The goal of the present work was to radiolabel a novel series of bombesin derivatives with lutetium-177 and to evaluate the relationship between their structure and diagnostic-therapeutic activity for prostate tumor. The generic structure of studied peptides is DOTA-Phe-(Gly) n -BBN(6-14), where DOTA is the chelator, n is the number of glycine amino acids of Phe-(Gly) n spacer and BBN(6-14) is the bombesin sequence from the amino acid 6 to the amino acid 14. Preliminary studies were done to establish the ideal labeling conditions for obtaining the highest yield of labeled bombesin derivatives, determined by instant thin layer chromatography (ITLC-SG) and high performance liquid chromatography (HPLC). The stability of the preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C and the partition coefficient was determined in n:octanol:water. In vivo studies were performed in both healthy Balb-c and Nude mice bearing PC-3 xenografts, in order to characterize the biological properties of labeled peptides. In vitro studies involved the evaluation of cold bombesin derivatives effect in PC-3 cells proliferation. Bombesin derivatives were successfully labeled with high yield at optimized conditions and exhibited high stability at 4 degree C. The analysis of the

  13. Understanding access and use of technology among youth with first-episode psychosis to inform the development of technology-enabled therapeutic interventions.

    Science.gov (United States)

    Abdel-Baki, Amal; Lal, Shalini; D-Charron, Olivier; Stip, Emmanuel; Kara, Nadjia

    2017-02-01

    Computers, video games and technological devices are part of young people's everyday lives. However, their use in first-episode psychosis (FEP) treatment is rare. The purpose of this study was to better understand the access and use of technology among individuals with FEP, including gaming activities, to inform future development of technology-enabled therapeutic applications. Self-administered survey on use of technological tools in 71 FEP individuals. PCs/laptops were used by all participants; cellphones/smartphones by 92%, consoles by 83% (mainly male and younger participants). Women texted and used social networks more frequently; men played games (mainly action) more often. The younger individuals reported playing games frequently (32% daily) with less use of the Web and social networks (favourite: Facebook). These data will be useful for developing Web-based psychoeducation tools and cognitive remediation video games for youth with FEP. © 2015 Wiley Publishing Asia Pty Ltd.

  14. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics.

    Science.gov (United States)

    Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Baek, Kyung In; Hsu, Jeffrey J; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P; Bui, Alexander; Sevag Packard, René R; Fei, Peng; Hsiai, Tzung K

    2017-11-16

    Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  15. K-RasV14I recapitulates Noonan syndrome in mice

    Science.gov (United States)

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano

    2014-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  16. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  17. Recapitulating the Structural Evolution of Redox Regulation in Adenosine 5′-Phosphosulfate Kinase from Cyanobacteria to Plants*

    Science.gov (United States)

    Herrmann, Jonathan; Nathin, David; Lee, Soon Goo; Sun, Tony; Jez, Joseph M.

    2015-01-01

    In plants, adenosine 5′-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants. PMID:26294763

  18. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties

    International Nuclear Information System (INIS)

    Miroshnikova, Y A; Sarang-Sieminski, A L; Jorgens, D M; Auer, M; Spirio, L; Weaver, V M

    2011-01-01

    The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, self-assembling peptide (SAP) gels that are able to recapitulate normal epithelial acini morphogenesis and gene expression in a 3D context. By exploiting the range of viscoelasticity attainable with these SAP gels, and their ability to recreate native-like ECM fibril topology with minimal variability in ligand density and pore size, we were able to reconstitute normal and tumor-like phenotypes and gene expression patterns in nonmalignant mammary epithelial cells. Accordingly, this SAP hydrogel system presents the first tunable system capable of independently assessing the interplay between ECM stiffness and multi-cellular epithelial phenotype in a 3D context

  19. Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression.

    Science.gov (United States)

    Estrada, Marta F; Rebelo, Sofia P; Davies, Emma J; Pinto, Marta T; Pereira, Hugo; Santo, Vítor E; Smalley, Matthew J; Barry, Simon T; Gualda, Emilio J; Alves, Paula M; Anderson, Elizabeth; Brito, Catarina

    2016-02-01

    3D cell tumour models are generated mainly in non-scalable culture systems, using bioactive scaffolds. Many of these models fail to reflect the complex tumour microenvironment and do not allow long-term monitoring of tumour progression. To overcome these limitations, we have combined alginate microencapsulation with agitation-based culture systems, to recapitulate and monitor key aspects of the tumour microenvironment and disease progression. Aggregates of MCF-7 breast cancer cells were microencapsulated in alginate, either alone or in combination with human fibroblasts, then cultured for 15 days. In co-cultures, the fibroblasts arranged themselves around the tumour aggregates creating distinct epithelial and stromal compartments. The presence of fibroblasts resulted in secretion of pro-inflammatory cytokines and deposition of collagen in the stromal compartment. Tumour cells established cell-cell contacts and polarised around small lumina in the interior of the aggregates. Over the culture period, there was a reduction in oestrogen receptor and membranous E-cadherin alongside loss of cell polarity, increased collective cell migration and enhanced angiogenic potential in co-cultures. These phenotypic alterations, typical of advanced stages of cancer, were not observed in the mono-cultures of MCF-7 cells. The proposed model system constitutes a new tool to study tumour-stroma crosstalk, disease progression and drug resistance mechanisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. In vitro recapitulation of the urea cycle using murine embryonic stem cell-derived in vitro liver model.

    Science.gov (United States)

    Tamai, Miho; Aoki, Mami; Nishimura, Akihito; Morishita, Koji; Tagawa, Yoh-ichi

    2013-12-01

    Ammonia, a toxic metabolite, is converted to urea in hepatocytes via the urea cycle, a process necessary for cell/organismal survival. In liver, hepatocytes, polygonal and multipolar structures, have a few sides which face hepatic sinusoids and adjacent hepatocytes to form intercellular bile canaliculi connecting to the ductules. The critical nature of this three-dimensional environment should be related to the maintenance of hepatocyte function such as urea synthesis. Recently, we established an in vitro liver model derived from murine embryonic stem cells, IVL(mES), which included the hepatocyte layer and a surrounding sinusoid vascular-like network. The IVL(mES) culture, where the hepatocyte is polarized in a similar fashion to its in vivo counterpart, could successfully recapitulate in vivo results. L-Ornithine is an intermediate of the urea cycle, but supplemental L-ornithine does not activate the urea cycle in the apolar primary hepatocyte of monolayer culture. In the IVL(mES), supplemental L-ornithine could activate the urea cycle, and also protect against ammonium/alcohol-induced hepatocyte death. While the IVL(mES) displays architectural and functional properties similar to the liver, primary hepatocyte of monolayer culture fail to model critical functional aspects of liver physiology. We propose that the IVL(mES) will represent a useful, humane alternative to animal studies for drug toxicity and mechanistic studies of liver injury.

  1. Therapeutic emails

    Directory of Open Access Journals (Sweden)

    Sinkule Jennifer

    2007-02-01

    Full Text Available Abstract Background In this paper, we show how counselors and psychologists can use emails for online management of substance abusers, including the anatomy and content of emails that clinicians should send substance abusers. Some investigators have attempted to determine if providing mental health services online is an efficacious delivery of treatment. The question of efficacy is an empirical issue that cannot be settled unless we are explicitly clear about the content and nature of online treatment. We believe that it is not the communications via internet that matters, but the content of these communications. The purpose of this paper is to provide the content of our online counseling services so others can duplicate the work and investigate its efficacy. Results We have managed nearly 300 clients online for recovery from substance abuse. Treatment included individual counseling (motivational interviewing, cognitive-behavior therapy, relapse prevention assignments, participation in an electronic support group and the development of a recovery team. Our findings of success with these interventions are reported elsewhere. Our experience has led to development of a protocol of care that is described more fully in this paper. This protocol is based on stages of change and relapse prevention theories and follows a Motivational Interviewing method of counseling. Conclusion The use of electronic media in providing mental health treatment remains controversial due to concerns about confidentiality, security and legal considerations. More research is needed to validate and generalize the use of online treatment for mental health problems. If researchers have to build on each others work, it is paramount that we share our protocols of care, as we have done in this paper.

  2. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    Science.gov (United States)

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  3. Pregnane X Receptor-Humanized Mice Recapitulate Gender Differences in Ethanol Metabolism but Not Hepatotoxicity.

    Science.gov (United States)

    Spruiell, Krisstonia; Gyamfi, Afua A; Yeyeodu, Susan T; Richardson, Ricardo M; Gonzalez, Frank J; Gyamfi, Maxwell A

    2015-09-01

    Both human and rodent females are more susceptible to developing alcoholic liver disease following chronic ethanol (EtOH) ingestion. However, little is known about the relative effects of acute EtOH exposure on hepatotoxicity in female versus male mice. The nuclear receptor pregnane X receptor (PXR; NR1I2) is a broad-specificity sensor with species-specific responses to toxic agents. To examine the effects of the human PXR on acute EtOH toxicity, the responses of male and female PXR-humanized (hPXR) transgenic mice administered oral binge EtOH (4.5 g/kg) were analyzed. Basal differences were observed between hPXR males and females in which females expressed higher levels of two principal enzymes responsible for EtOH metabolism, alcohol dehydrogenase 1 and aldehyde dehydrogenase 2, and two key mediators of hepatocyte replication and repair, cyclin D1 and proliferating cell nuclear antigen. EtOH ingestion upregulated hepatic estrogen receptor α, cyclin D1, and CYP2E1 in both genders, but differentially altered lipid and EtOH metabolism. Consistent with higher basal levels of EtOH-metabolizing enzymes, blood EtOH was more rapidly cleared in hPXR females. These factors combined to provide greater protection against EtOH-induced liver injury in female hPXR mice, as revealed by markers for liver damage, lipid peroxidation, and endoplasmic reticulum stress. These results indicate that female hPXR mice are less susceptible to acute binge EtOH-induced hepatotoxicity than their male counterparts, due at least in part to the relative suppression of cellular stress and enhanced expression of enzymes involved in both EtOH metabolism and hepatocyte proliferation and repair in hPXR females. U.S. Government work not protected by U.S. copyright.

  4. The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development

    NARCIS (Netherlands)

    Heslop, Emma; Csimma, Cristina; Straub, Volker; McCall, John; Nagaraju, Kanneboyina; Wagner, Kathryn R.; Caizergues, Didier; Korinthenberg, Rudolf; Flanigan, Kevin M.; Kaufmann, Petra; McNeil, Elizabeth; Mendell, Jerry; Hesterlee, Sharon; Wells, Dominic J.; Bushby, Kate; McNeil, Dawn Elizabeth; Allen, Hugh; Bourke, John; Burghes, Arthur; Buyse, Gunnar; Catlin, Nick; Clemens, Paula; Cnaan, Avital; Comi, Giacomo; Connor, Edward; de Luca, Annamaria; de Montleau, Béatrice; de Visser, Marianne; Day, Simon; Dittrich, Sven; Dubrosky, Alberto; Eagle, Michelle; Finkel, Richard; Fishbeck, Kenneth; Furlong, Patricia; Grounds, Miranda; Hauschke, Dieter; Hoffman, Eric; Irwin, Joseph; Jarecki, Jill; Kelly, Michael; Laforêt, Pascal; Lovering, Richard; Larkindale, Jane; Mayer, Henry; McDonald, Robert; McNally, Elizabeth; Miller, Debra; North, Kathryn; Ouillade, Marie-Christine

    2015-01-01

    Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a

  5. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches.

    Science.gov (United States)

    Uzcanga, Graciela; Lara, Eliana; Gutiérrez, Fernanda; Beaty, Doyle; Beske, Timo; Teran, Rommy; Navarro, Juan-Carlos; Pasero, Philippe; Benítez, Washington; Poveda, Ana

    2017-03-01

    Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.

  6. Generation and Characterization of a Double Recombinant Monkeypox Virus for use in Animal Model Development and Therapeutic Evaluation

    Science.gov (United States)

    2012-09-27

    protect the virions from normal host immune responses (4, 41). Orthopoxviruses are genetically and antigenically similar. The central regions of...model for smallpox disease (35). Challenges associated with working with MPXV include the use of Bio Safety Level 3+ (BSL-3+) facilities in...release of weaponized variola or monkeypox, and ongoing monkeypox outbreaks in Africa have prompted investigations into the development of new vaccine

  7. A Genetic Approach to the Development of New Therapeutic Phages to Fight Pseudomonas Aeruginosa in Wound Infections

    Directory of Open Access Journals (Sweden)

    Elena Pleteneva

    2012-12-01

    Full Text Available Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent (“lytic” and temperate (“lysogenic” bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT, and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine.

  8. Stroke and Therapeutic Hypothermia

    Directory of Open Access Journals (Sweden)

    Ozlem Ozkan Kuscu

    2016-09-01

    Full Text Available Stroke is significant cause of morbidity and mortality caused by disruption of blood flow. Neural injury occurs with two stage; while primary neural injury occurs with disruption of blood flow, after days and hours with metabolic processes secondary injury develops in tissues which is non injured in the first stage. Therefore it is important to prevent and treat the secondary injury as much as preventing and treating the primary neural injury. In this article developing pathophysiological changes after stroke, mechanisms of therapeutic hypothermia, application methods, the factors that determine the effectiveness, side effects and complications were reviewed. [Archives Medical Review Journal 2016; 25(3.000: 351-368

  9. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system

    Science.gov (United States)

    Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung

    2016-10-01

    Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.

  10. A novel humanized mouse model of Huntington disease for preclinical development of therapeutics targeting mutant huntingtin alleles

    DEFF Research Database (Denmark)

    Southwell, Amber L; Skotte, Niels H; Villanueva, Erika B

    2017-01-01

    transgenes in Hu128/21 mice match the human HTT exon 1 reference sequence. Conversely, the BACHD transgene carries a floxed, synthetic exon 1 sequence. Hu128/21 mice will be useful for investigations of human HTT that cannot be addressed in Hu97/18 mice, for developing therapies targeted to exon 1......Huntington disease (HD) is a neurodegenerative disease caused by a mutation in the huntingtin (HTT) gene. HTT is a large protein, interacts with many partners and is involved in many cellular pathways, which are perturbed in HD. Therapies targeting HTT directly are likely to provide the most global......-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of East Asian descent and in a minority of patients from other ethnic groups. Hu128/21 mice display a wide variety of HD-like phenotypes that are similar to YAC128 mice. Additionally, both...

  11. Secondary prevention of cervical cancer through the development and implementation of a system to optimize diagnostic and therapeutic and rehabilitation measures in the background and precancerous cervical diseases

    Directory of Open Access Journals (Sweden)

    F. F. Badretdinova

    2012-01-01

    Full Text Available The results of a comprehensive evaluation and treatment of background and pre-cancerous cervical cancer of women were studied (n = 1022. There is the complex assessment of social and obstetric gynecological risk factors for cervical intraepithelial neoplasia and cervical cancer. A system for optimizing diagnostic, therapeutic, preventive and rehabilitative measures, taking into account the differentiated approach to the choice of treatment, follow-up in the near and long-term postoperative period. An individual approach to the selection of organ presentation or radical treatment using new technologies of surgical treatment are identified. Application of the developed system enabled a statistically significantly improve the results of treatment of background and precancerous cervical disease.

  12. Development of a methodology to determine optimized therapeutic doses of {sup 131}I for the treatment of hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, F.; Moura, M.B.; Pereira, A.C., E-mail: faraujo@ird.gov.br [Instituto de Medicna Nuclear (IMEN), Goiania, GO (Brazil); Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Melo, R.C.; Rebelo, A.M.O. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Faculdade de Medicina

    2008-07-01

    Several methods can be used to determine the activity of {sup 131}I to be administered for the treatment of hyperthyroidism. However, some of them do not take into consideration the dose absorbed by the thyroid, while others do not consider all the parameters necessary for dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: mass of the organ, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology for individualized treatment with {sup 131}I in patients with hyperthyroidism of the Grave's Disease. A neck-thyroid phantom developed at the In Vivo Monitoring Laboratory of IRD, containing a known amount of {sup 131}I, was used to calibrate a scintillation camera and a uptake probe available at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro and Instituto de Medicina Nuclear - IMEN, of Goiania. The optimization of the counting geometry was carried out by the determination of the characteristic curves of the view angle of the collimator-detector assembly. The view angle of the collimator-detector assembly presented values compatible with the size of the organ for distances of 25 cm (uptake probe) and 45.8 cm (scintillation camera). The calibration factors (in cpm/kBq) and the associated uncertainty related to these distances were (39.3 ± 0.78), (58.1 ± 2.38) to uptake probe SCT-13004 e 13002, respectively and 4.3 ± 0.17 to scintillation camera. The time period between 14 and 30 hours of the retention curve allows the calculation of the activity between those two points. It is concluded that the use of diagnose equipment available at the hospital (scintillation camera and uptake probe) has shown to be a suitable procedure in terms of effectiveness, simplicity and cost

  13. Development of a methodology to determine optimized therapeutic doses of 131I for the treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Araujo, F.; Moura, M.B.; Pereira, A.C.; Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A.; Melo, R.C.; Rebelo, A.M.O.

    2008-01-01

    Several methods can be used to determine the activity of 131 I to be administered for the treatment of hyperthyroidism. However, some of them do not take into consideration the dose absorbed by the thyroid, while others do not consider all the parameters necessary for dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: mass of the organ, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology for individualized treatment with 131 I in patients with hyperthyroidism of the Grave's Disease. A neck-thyroid phantom developed at the In Vivo Monitoring Laboratory of IRD, containing a known amount of 131 I, was used to calibrate a scintillation camera and a uptake probe available at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro and Instituto de Medicina Nuclear - IMEN, of Goiania. The optimization of the counting geometry was carried out by the determination of the characteristic curves of the view angle of the collimator-detector assembly. The view angle of the collimator-detector assembly presented values compatible with the size of the organ for distances of 25 cm (uptake probe) and 45.8 cm (scintillation camera). The calibration factors (in cpm/kBq) and the associated uncertainty related to these distances were (39.3 ± 0.78), (58.1 ± 2.38) to uptake probe SCT-13004 e 13002, respectively and 4.3 ± 0.17 to scintillation camera. The time period between 14 and 30 hours of the retention curve allows the calculation of the activity between those two points. It is concluded that the use of diagnose equipment available at the hospital (scintillation camera and uptake probe) has shown to be a suitable procedure in terms of effectiveness, simplicity and cost. (author)

  14. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species.

    Science.gov (United States)

    Tabish, Tanveer A; Zhang, Shaowei; Winyard, Paul G

    2018-05-01

    Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS) production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Tanveer A. Tabish

    2018-05-01

    Full Text Available Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms.

  16. Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species

    Science.gov (United States)

    Allison, Andrew B.; Kohler, Dennis J.; Ortega, Alicia; Hoover, Elizabeth A.; Grove, Daniel M.; Holmes, Edward C.; Parrish, Colin R.

    2014-01-01

    Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. PMID:25375184

  17. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species.

    Directory of Open Access Journals (Sweden)

    Andrew B Allison

    2014-11-01

    Full Text Available Canine parvovirus (CPV emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV, a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR, the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.

  18. Human Factor in Therapeutic Relationship

    Directory of Open Access Journals (Sweden)

    Ramazan Akdogan

    2011-03-01

    Full Text Available herapeutic relationship is a professional relationship that has been structured based on theoretical props. This relationship is a complicated, wide and unique relationship which develops between two people, where both sides' personality and attitudes inevitably interfere. Therapist-client relationship experienced through transference and counter transference, especially in psychodynamic approaches, is accepted as the main aspect of therapeutic process. However, the approaches without dynamic/deterministic tendency also take therapist-client relationship into account seriously and stress uniqueness of interaction between two people. Being a person and a human naturally sometimes may negatively influence the relationship between the therapist and client and result in a relationship going out of the theoretical frame at times. As effective components of a therapeutic process, the factors that stem from being human include the unique personalities of the therapist and the client, their values and their attitude either made consciously or subconsciously. Literature has shown that the human-related factors are too effective to be denied in therapeutic relationship process. Ethical and theoretical knowledge can be inefficient to prevent the negative effects of these factors in therapeutic process at which point a deep insight and supervision would have a critical role in continuing an acceptable therapeutic relationship. This review is focused on the reflection of some therapeutic factors resulting from being human and development of counter transference onto the therapeutic process.

  19. The development of immunomodulatory monoclonal antibodies as a new therapeutic modality for cancer: the Bristol-Myers Squibb experience.

    Science.gov (United States)

    Berman, David; Korman, Alan; Peck, Ronald; Feltquate, David; Lonberg, Nils; Canetta, Renzo

    2015-04-01

    The discovery and increased understanding of the complex interactions regulating the immune system have contributed to the pharmacologic activation of antitumor immunity. The activity of effector cells, such as T and NK cells, is regulated by an array of activating and attenuating receptors and ligands. Agents that target these molecules can modulate immune responses by exerting antagonistic or agonistic effects. Several T- or NK-cell modulators have entered clinical trials, and two have been approved for use. Ipilimumab (Yervoy®, Bristol-Myers Squibb) and nivolumab (OPDIVO, Ono Pharmaceutical Co., Ltd./Bristol-Myers Squibb) were approved for the treatment of metastatic melanoma, in March 2011 in the United States, and in July 2014 in Japan, respectively. The clinical activity of these two antibodies has not been limited to tumor types considered sensitive to immunotherapy, and promising activity has been reported in other solid and hematologic tumors. Clinical development of ipilimumab and nivolumab has presented unique challenges in terms of safety and efficacy, requiring the establishment of new evaluation criteria for adverse events and antitumor effects. Guidelines intended to help oncologists properly manage treatment in view of these non-traditional features have been implemented. The introduction of this new modality of cancer treatment, which is meant to integrate with or replace the current standards of care, requires additional efforts in terms of optimization of treatment administration, identification of biomarkers and application of new clinical trial designs. The availability of immune modulators with different mechanisms of action offers the opportunity to establish immunological combinations as new standards of care. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [Identification, during development, of a methodology targeted at determining the positioning of new drugs for therapeutic strategies: examples of rheumatoid arthritis and cardiac insufficiency].

    Science.gov (United States)

    Le Jeunne, C; Plétan, Y; Boissel, J P

    2002-01-01

    The Marketing Authorization (MA) granted to a new molecular entity does not allow for proper anticipation of its future positioning within the therapeutic strategy. A specific methodology should be devised as early as during the pre-MA development phase that could result in an initial positioning that should be subjected to further reappraisal with regard to scientific advances, the arrival of new treatments and further developments with this molecule. A methodology is thus proposed, based on early optimisation of the development plan, the granting of subsequent MAs, and reappraisal of the positioning within the strategy, based on analysis of all available data. It should be possible to take into account the economic context, within an agreed system with pre-defined medico-economic criteria. This may in turn raise the issue of the role of the various parties involved in this assessment, as well as how to understand the respective opinions of stakeholders: authorities, sponsors, prescribers and patients, each of whom has a specific view of the definition of the strategic objective that should apply to the disease concerned.

  1. A reflection on choosing practice development as a framework to explore music as a therapeutic method to reduce anxiety in patients living with dementia in a ward setting

    Directory of Open Access Journals (Sweden)

    Alasdair Pithie

    2016-05-01

    Full Text Available Background: As a student nurse I chose to write my fourth year dissertation on the use of music as a therapeutic method to reduce anxiety in patients living with dementia. Music has been shown to have a positive effect on patients’ anxiety levels and improve their quality of life. A music therapy intervention could be beneficial but I realised I would need a framework that would enable me to implement the intervention in a ward setting, while offering practitioners and other participants a reasonable level of control and ownership. Discussion: Practice development was chosen because it is a person-centred framework, encouraging the learning of all those involved as well as those facilitating. It is inclusive and allows staff to adapt to the way new practices are introduced in a project. Change management theory was also considered as a framework but lacked many of the person-centred qualities required. Conclusions and implications for practice: Practice development provides the required characteristics for a project to introduce music into a care setting. Given that the methods of the project rely heavily on the involvement of staff and patients’ families, it is important to offer them a sense of ownership and control as an encouragement to take an interest and pride in its success. Furthermore, student nurses can benefit from being introduced to practice development because it will offer them a change theory that is person centred and inclusive.

  2. Design Considerations in Therapeutic Exergaming

    OpenAIRE

    Doyle, Julie; Kelly, Daniel; Caulfield, B.

    2011-01-01

    In this paper we discuss the importance of feedback in therapeutic exergaming. It is widely believed that exergaming benefits the patient in terms of encouraging adherence and boosting the patient’s confidence of correct execution and feedback is essential in achieving these. However, feedback and in particular visual feedback, may also have potential negative effects on the quality of the exercise. We describe in this paper a prototype single-sensor therapeutic exergame that we have develope...

  3. New therapeutic developments in lipidology

    African Journals Online (AJOL)

    2009-03-20

    Mar 20, 2009 ... combination with statins its effects are additive, with no significant increase in adverse ... Incorporated into foods such as margarine (the only product available in .... modification include infusions of artificial. 'HDL mimetics' or ...

  4. Scientific and Regulatory Policy Committee Points-to-consider Paper*: Drug-induced Vascular Injury Associated with Nonsmall Molecule Therapeutics in Preclinical Development: Part 2. Antisense Oligonucleotides.

    Science.gov (United States)

    Engelhardt, Jeffery A; Fant, Pierluigi; Guionaud, Silvia; Henry, Scott P; Leach, Michael W; Louden, Calvert; Scicchitano, Marshall S; Weaver, James L; Zabka, Tanja S; Frazier, Kendall S

    2015-10-01

    Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. In recent years, DIVI has been occasionally observed in nonhuman primates given RNA-targeting therapeutics such as antisense oligonucleotide therapies (ASOs) during chronic toxicity studies. While DIVI in laboratory animal species has been well characterized for vasoactive small molecules, and immune-mediated responses against large molecule biotherapeutics have been well described, there is little published information regarding DIVI induced by ASOs to date. Preclinical DIVI findings in monkeys have caused considerable delays in development of promising new ASO therapies, because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans, and the lack of robust biomarkers of DIVI. This review of DIVI discusses clinical and microscopic features of vasculitis in monkeys, their pathogenic mechanisms, and points to consider for the toxicologist and pathologist when confronted with ASO-related DIVI. Relevant examples of regulatory feedback are included to provide insight into risk assessment of ASO therapies. © 2015 by The Author(s).

  5. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    diverse pathologies reduce quality of life by impacting such spectrally directed auditory attention, its neurobiological bases are unclear. We demonstrate that human primary and nonprimary auditory cortical activation is modulated by spectrally directed attention in a manner that recapitulates its tonotopic sensory organization. Further, the graded activation profiles evoked by single-frequency bands are correlated with attentionally driven activation when these bands are presented in complex soundscapes. Finally, we observe a strong concordance in the degree of cortical myelination and the strength of tonotopic activation across several auditory cortical regions. Copyright © 2017 Dick et al.

  6. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  7. Recapitulative list of the C.E.A. reports published by the French Atomic Energy Commission (n.757-1062, december 1957-december 1958) supplement to C.E.A. reports n. 593 and 756

    International Nuclear Information System (INIS)

    Schmiterlow, C.G.; Cohen, Y.

    1958-01-01

    Recapitulative list of the C.E.A. reports published by the French Atomic Energy Commission. (number 757-1062, december 1957 - december 1958). Supplement to C.E.A. reports number 593 and 756. (author) [fr

  8. Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics.

    Science.gov (United States)

    Meenach, Samantha A; Tsoras, Alexandra N; McGarry, Ronald C; Mansour, Heidi M; Hilt, J Zach; Anderson, Kimberly W

    2016-04-01

    Three-dimensional (3D) lung multicellular spheroids (MCS) in liquid-covered culture (LCC) and air-interface culture (AIC) conditions have both been developed for the evaluation of aerosol anticancer therapeutics in solution and aerosols, respectively. The MCS were formed by seeding lung cancer cells on top of collagen where they formed spheroids due to the prevalence of cell-to-cell interactions. LCC MCS were exposed to paclitaxel (PTX) in media whereas AIC MCS were exposed to dry powder PEGylated phospholipid aerosol microparticles containing paclitaxel. The difference in viability for 2D versus 3D culture for both LCC and AIC was evaluated along with the effects of the particles on lung epithelium via transepithelial electrical resistance (TEER) measurements. For LCC and AIC conditions, the 3D spheroids were more resistant to treatment with higher IC50 values for A549 and H358 cell lines. TEER results initially indicated a decrease in resistance upon drug or particle exposure, however, these values increased over the course of several days indicating the ability of the cells to recover. Overall, these studies offer a comprehensive in vitro evaluation of aerosol particles used in the treatment of lung cancer while introducing a new method for culturing lung cancer MCS in both LCC and AIC conditions.

  9. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect.

    Directory of Open Access Journals (Sweden)

    Minsuh Seo

    Full Text Available Cancer cells adopt glycolysis as the major source of metabolic energy production for fast cell growth. The HIF-1-induced PFKFB3 plays a key role in this adaptation by elevating the concentration of Fru-2,6-BP, the most potent glycolysis stimulator. As this metabolic conversion has been suggested to be a hallmark of cancer, PFKFB3 has emerged as a novel target for cancer chemotherapy. Here, we report that a small molecular inhibitor, N4A, was identified as an initial lead compound for PFKFB3 inhibitor with therapeutic potential. In an attempt to improve its potency, we determined the crystal structure of the PFKFB3•N4A complex to 2.4 Å resolution and, exploiting the resulting molecular information, attained the more potent YN1. When tested on cultured cancer cells, both N4A and YN1 inhibited PFKFB3, suppressing the Fru-2,6-BP level, which in turn suppressed glycolysis and, ultimately, led to cell death. This study validates PFKFB3 as a target for new cancer therapies and provides a framework for future development efforts.

  10. Current status of therapeutic drug monitoring in Australia and New Zealand: a need for improved assay evaluation, best practice guidelines, and professional development.

    Science.gov (United States)

    Norris, Ross L; Martin, Jennifer H; Thompson, Erin; Ray, John E; Fullinfaw, Robert O; Joyce, David; Barras, Michael; Jones, Graham R; Morris, Raymond G

    2010-10-01

    The measurement of drug concentrations, for clinical purposes, occurs in many diagnostic laboratories throughout Australia and New Zealand. However, the provision of a comprehensive therapeutic drug monitoring (TDM) service requires the additional elements of pre- and postanalytical advice to ensure that concentrations reported are meaningful, interpretable, and clinically applicable to the individual patient. The aim of this project was to assess the status of TDM services in Australia and New Zealand. A range of professions involved in key aspects of TDM was surveyed by questionnaire in late 2007. Information gathered included: the list of drugs assayed; analytical methods used; interpretation services offered; interpretative methods used; and further monitoring advice provided. Fifty-seven responses were received, of which 42% were from hospitals (public and/or private); 11% a hospital (public and/or private) and pathology provider; and 47% a pathology provider only (public and/or private). Results showed that TDM is applied to a large number of different drugs. Poorly performing assay methods were used in some cases, even when published guidelines recommended alternative practices. Although there was a wide array of assays available, the evidence suggested a need for better selection of assay methods. In addition, only limited advice and/or interpretation of results was offered. Of concern, less than 50% of those providing advice on aminoglycoside dosing in adults used pharmacokinetic tools with six of 37 (16.2%) respondents using Bayesian pharmacokinetic tools, the method recommended in the Australian Therapeutic Guidelines: Antibiotic. In conclusion, the survey highlighted deficiencies in the provision of TDM services, in particular assay method selection and both quality and quantity of postanalytical advice. A range of recommendations, some of which may have international implications, are discussed. There is a need to include measures of impact on clinical

  11. The significance of measuring serum IGF1, IGFBP3 and OST for the judgement of abnormal skeletal development and therapeutic monitoring in precocious children

    International Nuclear Information System (INIS)

    Ji Zhiying; Zhao Ruifang; Lv Xiaomei; Gu Fanlei; Cai Depei

    2004-01-01

    Objective: To study the value of measuring serum insulin-like growth factor I (IGF 1 ), insulin-like growth factor binding protein III (IGFBP 3 ) and osteocalcin (OST) for evaluating acceleration of skeletal growth and skeletal maturity, and its value for therapeutic monitoring in precocious children. Methods: Serum IGF 1 and IGFBP 3 were measured with immunoradiometric assay, serum OST was measured with radioimmunoassay in 117 girls with idiopathic precocious puberty. The girls were grouped according to age, and various parameters collected from them were compared with normal values of matched girls. Furthermore, the girls were grouped according to Tanner's staging (the extent of precocious puberty), the analysis of correlativity between various parameters to the extent of precocious puberty was performed, and the analysis of correlativity between the level of serum IGF 1 and advancing of bone age was performed. Various parameters were measured once more in 38 of the study girls after six months of the treatment, and the parameters were compared with that before treatment. Results: 1) The levels of serum IGF 1 and OST in the girls with precocious puberty were elevated obviously than that in matched normal girls, but the level of serum IGFBP 3 was reduced obviously than that in matched normal girls. It was demonstrated that typical elevation of serum IGF 1 and OST occurred in normal adolescence appeared ahead of time in the girls with precocious puberty. 2) The extent of precocious puberty correlated closely with the level of serum IGF 1 (r=0.489, P 1 (r=0.411, P 1 was. 3) After the treatment, the concentration of serum IGF 1 reduced from (455.52 ± 119.45) μg/L to (284.55 ± 99.52) μg/L (P 1 and OST reduced obviously. Conclusions: Serum IGF 1 and OST could act as quantitative parameters for evaluating acceleration of skeletal growth and advancing of skeletal maturity in girls with idiopathic true precocious puberty. It could act as a parameter for therapeutic

  12. Therapeutic Potential of Selectively Targeting the α2C-Adrenoceptor in Cognition, Depression, and Schizophrenia—New Developments and Future Perspective

    Directory of Open Access Journals (Sweden)

    Madeleine Monique Uys

    2017-08-01

    Full Text Available α2A- and α2C-adrenoceptors (ARs are the primary α2-AR subtypes involved in central nervous system (CNS function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine and atypical antipsychotic (e.g., clozapine drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine. While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer’s disease. This review will emphasize the importance and

  13. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  14. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  15. Recapitulative list of the C.E.A. reports published by the French Atomic Energy Commission (n.757-1062, december 1957-december 1958) supplement to C.E.A. reports n. 593 and 756; Liste recapitulative des rapports C.E.A. publies par le Commissariat a l'Energie Atomique (du n.757 a 1062, decembre 1957-decembre 1958) complement aux rapports C.E.A. n. 593 et 756

    Energy Technology Data Exchange (ETDEWEB)

    Schmiterlow, C G; Cohen, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Recapitulative list of the C.E.A. reports published by the French Atomic Energy Commission. (number 757-1062, december 1957 - december 1958). Supplement to C.E.A. reports number 593 and 756. (author) [French] Liste recapitulative des rapports C.E.A. publies par le Commissariat a l'Energie Atomique (du numero 757 au numero 1062, decembre 1957 - decembre 1958). Complement aux rapports C.E.A. numero 593 et 756. (auteur)

  16. Antibody Engineering and Therapeutics

    Science.gov (United States)

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  17. Therapeutic and diagnostic nanomaterials

    CERN Document Server

    Devasena T

    2017-01-01

    This brief highlights nanoparticles used in the diagnosis and treatment of prominent diseases and toxic conditions. Ecofriendly methods which are ideal for the synthesis of medicinally valued nanoparticles are explained and the characteristic features of these particles projected. The role of these particles in the therapeutic field, and the induced biological changes in some diseases are discussed. The main focus is on inflammation, oxidative stress and cellular membrane integrity alterations. The effect of nanoparticles on these changes produced by various agents are highlighted using in vitro and in vivo models. The mechanism of nanoparticles in ameliorating the biological changes is supported by relevant images and data. Finally, the brief demonstrates recent developments on the use of nanoparticles in diagnosis or sensing of some biological materials and biologically hazardous environmental materials.

  18. Development of a cross-over randomized trial method to determine the acceptability and safety of novel ready-to-use therapeutic foods.

    Science.gov (United States)

    Dibari, Filippo; Bahwere, Paluku; Huerga, Helena; Irena, Abel Hailu; Owino, Victor; Collins, Steve; Seal, Andrew

    2013-01-01

    To develop a method for determining the acceptability and safety of ready-to-use therapeutic foods (RUTF) before clinical trialing. Acceptability was defined using a combination of three consumption, nine safety, and six preference criteria. These were used to compare a soy/maize/sorghum RUTF (SMS-RUTFh), designed for the rehabilitation of human immunodeficiency virus/tuberculosis (HIV/TB) wasted adults, with a peanut-butter/milk-powder paste (P-RUTF; brand: Plumpy'nut) designed for pediatric treatment. A cross-over, randomized, controlled trial was conducted in Kenya. Ten days of repeated measures of product intake by 41 HIV/TB patients, >18 y old, body mass index (BMI) 18-24 kg · m(-2), 250 g were offered daily under direct observation as a replacement lunch meal. Consumption, comorbidity, and preferences were recorded. The study arms had similar age, sex, marital status, initial BMI, and middle upper-arm circumference. No carryover effect or serious adverse events were found. SMS-RUTFh energy intake was not statistically different from the control, when adjusted for BMI on day 1, and the presence of throat sores. General preference, taste, and sweetness scores were higher for SMS-RUTFh compared to the control (P preference criteria for SMS-RUTFh were satisfied except for the average number of days of nausea (0.16 versus 0.09 d) and vomiting (0.04 versus 0.02 d), which occurred with a higher frequency (P < 0.05). SMS-RUTFh appears to be acceptable and can be safely clinically trialed, if close monitoring of vomiting and nausea is included. The method reported here is a useful and feasible approach for testing the acceptability of ready-to-use foods in low income countries. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Saw, M.M.

    2007-01-01

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  20. Medullary Thymic Epithelial Cells and Central Tolerance in Autoimmune Hepatitis Development: Novel Perspective from a New Mouse Model

    Directory of Open Access Journals (Sweden)

    Konstantina Alexandropoulos

    2015-01-01

    Full Text Available Autoimmune hepatitis (AIH is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.

  1. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming.

    Science.gov (United States)

    Xu, M; Li, L; Pittenger, C

    2016-06-02

    Tic disorders, including Tourette syndrome (TS), are thought to involve pathology of cortico-basal ganglia loops, but their pathology is not well understood. Post-mortem studies have shown a reduced number of several populations of striatal interneurons, including the parvalbumin-expressing fast-spiking interneurons (FSIs), in individuals with severe, refractory TS. We tested the causal role of this interneuronal deficit by recapitulating it in an otherwise normal adult mouse using a combination transgenic-viral cell ablation approach. FSIs were reduced bilaterally by ∼40%, paralleling the deficit found post-mortem. This did not produce spontaneous stereotypies or tic-like movements, but there was increased stereotypic grooming after acute stress in two validated paradigms. Stereotypy after amphetamine, in contrast, was not elevated. FSI ablation also led to increased anxiety-like behavior in the elevated plus maze, but not to alterations in motor learning on the rotorod or to alterations in prepulse inhibition, a measure of sensorimotor gating. These findings indicate that a striatal FSI deficit can produce stress-triggered repetitive movements and anxiety. These repetitive movements may recapitulate aspects of the pathophysiology of tic disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. A novel osteogenic oxysterol compound for therapeutic development to promote bone growth: activation of hedgehog signaling and osteogenesis through smoothened binding.

    Science.gov (United States)

    Montgomery, Scott R; Nargizyan, Taya; Meliton, Vicente; Nachtergaele, Sigrid; Rohatgi, Rajat; Stappenbeck, Frank; Jung, Michael E; Johnson, Jared S; Aghdasi, Bayan; Tian, Haijun; Weintraub, Gil; Inoue, Hirokazu; Atti, Elisa; Tetradis, Sotirios; Pereira, Renata C; Hokugo, Akishige; Alobaidaan, Raed; Tan, Yanlin; Hahn, Theodor J; Wang, Jeffrey C; Parhami, Farhad

    2014-08-01

    molecule osteogenic oxysterols may serve as the next generation of bone anabolic agents for therapeutic development. © 2014 American Society for Bone and Mineral Research.

  3. Potential therapeutic applications of biosurfactants.

    Science.gov (United States)

    Gudiña, Eduardo J; Rangarajan, Vivek; Sen, Ramkrishna; Rodrigues, Lígia R

    2013-12-01

    Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  5. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2002-01-01

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  6. Developing Optimized Treatment Plans for Patients with Dyslipidemia in the Era of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor Therapeutics.

    Science.gov (United States)

    Underberg, James A; Blaha, Michael J; Jackson, Elizabeth J; Jones, Peter H

    2017-10-01

    This educational content was derived from a live satellite symposium at the American College of Physicians Internal Medicine Meeting 2017 in San Diego, California (online at http://courses.elseviercme.com/acp/702e). This activity will focus on optimized treatment plans for patients with dyslipidemia in the era of proprotein convertase subtilisin/kexin type 9 inhibitor therapeutics. Low-density lipoprotein cholesterol has been identified as an important therapeutic target to prevent the progression of atherosclerotic disease; however, only 1 of every 3 adults with high low-density lipoprotein cholesterol has the condition under control. Expert faculty on this panel will discuss the science of proprotein convertase subtilisin/kexin type 9 inhibitors and aid physicians in the best practices to achieve low-density lipoprotein cholesterol target in their patients. Copyright © 2017. Published by Elsevier Inc.

  7. [A therapeutic education tool in paediatric dentistry].

    Science.gov (United States)

    Marquillier, Thomas; Trentesaux, Thomas; Catteau, Céline; Delfosse, Caroline

    Therapeutic education for children is developing in the treatment of dental caries. The Elmy pathway, a pedagogical game aiming to improve children's oral health skills, has been designed. The qualitative assessment of this tool seems to confirm its benefit for use in therapeutic education sessions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia.

    Science.gov (United States)

    Holler, Christopher J; Taylor, Georgia; McEachin, Zachary T; Deng, Qiudong; Watkins, William J; Hudson, Kathryn; Easley, Charles A; Hu, William T; Hales, Chadwick M; Rossoll, Wilfried; Bassell, Gary J; Kukar, Thomas

    2016-06-24

    Progranulin (PGRN) is a secreted growth factor important for neuronal survival and may do so, in part, by regulating lysosome homeostasis. Mutations in the PGRN gene (GRN) are a common cause of frontotemporal lobar degeneration (FTLD) and lead to disease through PGRN haploinsufficiency. Additionally, complete loss of PGRN in humans leads to neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Importantly, Grn-/- mouse models recapitulate pathogenic lysosomal features of NCL. Further, GRN variants that decrease PGRN expression increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Together these findings demonstrate that insufficient PGRN predisposes neurons to degeneration. Therefore, compounds that increase PGRN levels are potential therapeutics for multiple neurodegenerative diseases. Here, we performed a cell-based screen of a library of known autophagy-lysosome modulators and identified multiple novel activators of a human GRN promoter reporter including several common mTOR inhibitors and an mTOR-independent activator of autophagy, trehalose. Secondary cellular screens identified trehalose, a natural disaccharide, as the most promising lead compound because it increased endogenous PGRN in all cell lines tested and has multiple reported neuroprotective properties. Trehalose dose-dependently increased GRN mRNA as well as intracellular and secreted PGRN in both mouse and human cell lines and this effect was independent of the transcription factor EB (TFEB). Moreover, trehalose rescued PGRN deficiency in human fibroblasts and neurons derived from induced pluripotent stem cells (iPSCs) generated from GRN mutation carriers. Finally, oral administration of trehalose to Grn haploinsufficient mice significantly increased PGRN expression in the brain. This work reports several novel autophagy-lysosome modulators that enhance PGRN expression and identifies trehalose as a promising therapeutic for raising PGRN levels to treat

  9. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    Science.gov (United States)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-01

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ɛ-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  10. Live-Cell Imaging of Protease Activity: Assays to Screen Therapeutic Approaches.

    Science.gov (United States)

    Chalasani, Anita; Ji, Kyungmin; Sameni, Mansoureh; Mazumder, Samia H; Xu, Yong; Moin, Kamiar; Sloane, Bonnie F

    2017-01-01

    Methodologies to image and quantify the activity of proteolytic enzymes have been developed in an effort to identify protease-related druggable pathways that are involved in malignant progression of cancer. Our laboratory has pioneered techniques for functional live-cell imaging of protease activity in pathomimetic avatars for breast cancer. We analyze proteolysis in the context of proliferation and formation of structures by tumor cells in 3-D cultures over time (4D). In order to recapitulate the cellular composition and architecture of tumors in the pathomimetic avatars, we include other tumor-associated cells (e.g., fibroblasts, myoepithelial cells, microvascular endothelial cells). We also model noncellular aspects of the tumor microenvironment such as acidic pericellular pH. Use of pathomimetic avatars in concert with various types of imaging probes has allowed us to image, quantify, and follow the dynamics of proteolysis in the tumor microenvironment and to test interventions that impact directly or indirectly on proteolytic pathways. To facilitate use of the pathomimetic avatars for screening of therapeutic modalities, we have designed and fabricated custom 3D culture chambers with multiple wells that are either individual or connected by a channel to allow cells to migrate between wells. Optical glass microscope slides underneath an acrylic plate allow the cultures to be imaged with an inverted microscope. Fluid ports in the acrylic plate are at a level above the 3D cultures to allow introduction of culture media and test agents such as drugs into the wells and the harvesting of media conditioned by the cultures for immunochemical and biochemical analyses. We are using the pathomimetic avatars to identify druggable pathways, screen drug and natural product libraries and accelerate entry of validated drugs or natural products into clinical trials.

  11. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    Directory of Open Access Journals (Sweden)

    Heike Wolf

    2016-09-01

    Full Text Available Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1 was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6-GlcNAc(β1-N-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS. On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis.

  12. Bioactive poly(ethylene glycol) hydrogels to recapitulate the HSC niche and facilitate HSC expansion in culture.

    Science.gov (United States)

    Cuchiara, Maude L; Coşkun, Süleyman; Banda, Omar A; Horter, Kelsey L; Hirschi, Karen K; West, Jennifer L

    2016-04-01

    Hematopoietic stem cells (HSCs) have been used therapeutically for decades, yet their widespread clinical use is hampered by the inability to expand HSCs successfully in vitro. In culture, HSCs rapidly differentiate and lose their ability to self-renew. We hypothesize that by mimicking aspects of the bone marrow microenvironment in vitro we can better control the expansion and differentiation of these cells. In this work, derivatives of poly(ethylene glycol) diacrylate hydrogels were used as a culture substrate for hematopoietic stem and progenitor cell (HSPC) populations. Key HSC cytokines, stem cell factor (SCF) and interferon-γ (IFNγ), as well as the cell adhesion ligands RGDS and connecting segment 1 were covalently immobilized onto the surface of the hydrogels. With the use of SCF and IFNγ, we observed significant expansion of HSPCs, ∼97 and ∼104 fold respectively, while maintaining c-kit(+) lin(-) and c-kit(+) Sca1(+) lin(-) (KSL) populations and the ability to form multilineage colonies after 14 days. HSPCs were also encapsulated within degradable poly(ethylene glycol) hydrogels for three-dimensional culture. After expansion in hydrogels, ∼60% of cells were c-kit(+), demonstrating no loss in the proportion of these cells over the 14 day culture period, and ∼50% of colonies formed were multilineage, indicating that the cells retained their differentiation potential. The ability to tailor and use this system to support HSC growth could have implications on the future use of HSCs and other blood cell types in a clinical setting. © 2015 Wiley Periodicals, Inc.

  13. The Secret Life of Exosomes: What Bees Can Teach Us About Next-Generation Therapeutics.

    Science.gov (United States)

    Marbán, Eduardo

    2018-01-16

    Mechanistic exploration has pinpointed nanosized extracellular vesicles, known as exosomes, as key mediators of the benefits of cell therapy. Exosomes appear to recapitulate the benefits of cells and more. As durable azoic entities, exosomes have numerous practical and conceptual advantages over cells. Will cells end up just being used to manufacture exosomes, or will they find lasting value as primary therapeutic agents? Here, a venerable natural process-the generation of honey-serves as an instructive parable. Flowers make nectar, which bees collect and process into honey. Cells make conditioned medium, which laboratory workers collect and process into exosomes. Unlike flowers, honey is durable, compact, and nutritious, but these facts do not negate the value of flowers themselves. The parallels suggest new ways of thinking about next-generation therapeutics. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Assessing Therapeutic Alliance in the Context of mHealth Interventions for Mental Health Problems: Development of the Mobile Agnew Relationship Measure (mARM) Questionnaire.

    Science.gov (United States)

    Berry, Katherine; Salter, Amy; Morris, Rohan; James, Susannah; Bucci, Sandra

    2018-04-19

    Digital health interventions in the form of smartphone apps aim to improve mental health and enable people access to support as and when needed without having to face the stigma they may experience in accessing services. If we are to evaluate mobile health (mHealth) apps and advance scientific understanding, we also need tools to help us understand in what ways mHealth interventions are effective or not. The concept of therapeutic alliance, a measure of the quality of the relationship between a health care provider and a service user, is a key factor in explaining the effects of mental health interventions. The Agnew Relationship Measure (ARM) is a well-validated measure of therapeutic alliance in face-to-face therapy. This study presented the first attempt to (1) explore service users' views of the concept of relationship within mHealth mental health interventions and (2) adapt a well-validated face-to-face measure of therapeutic alliance, the Agnew Relationship Measure (ARM), for use with mHealth interventions. In stage 1, we interviewed 9 mental health service users about the concept of therapeutic alliance in the context of a digital health intervention and derived key themes from interview transcripts using thematic analysis. In stage 2, we used rating scales and open-ended questions to elicit views from 14 service users and 10 mental health staff about the content and face validity of the scale, which replaced the word "therapist" with the word "app." In stage 3, we used the findings from stages 1 and 2 to adapt the measure with the support of a decision-making algorithm about which items to drop, retain, or adapt. Findings suggested that service users do identify relationship concepts when thinking about mHealth interventions, including forming a bond with an app and the ability to be open with an app. However, there were key differences between relationships with health professionals and relationships with apps. For example, apps were not as tailored and

  15. Oncolytic Viruses: Therapeutics With an Identity Crisis

    Directory of Open Access Journals (Sweden)

    Caroline J. Breitbach

    2016-07-01

    Full Text Available Oncolytic viruses (OV are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a “one-size fits all” approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  16. Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection.

    Science.gov (United States)

    Pinto, Amelia K; Brien, James D; Lam, Chia-Ying Kao; Johnson, Syd; Chiang, Cindy; Hiscott, John; Sarathy, Vanessa V; Barrett, Alan D; Shresta, Sujan; Diamond, Michael S

    2015-09-15

    With over 3.5 billion people at risk and approximately 390 million human infections per year, dengue virus (DENV) disease strains health care resources worldwide. Previously, we and others established models for DENV pathogenesis in mice that completely lack subunits of the receptors (Ifnar and Ifngr) for type I and type II interferon (IFN) signaling; however, the utility of these models is limited by the pleotropic effect of these cytokines on innate and adaptive immune system development and function. Here, we demonstrate that the specific deletion of Ifnar expression on subsets of murine myeloid cells (LysM Cre(+) Ifnar(flox/flox) [denoted as Ifnar(f/f) herein]) resulted in enhanced DENV replication in vivo. The administration of subneutralizing amounts of cross-reactive anti-DENV monoclonal antibodies to LysM Cre(+) Ifnar(f/f) mice prior to infection with DENV serotype 2 or 3 resulted in antibody-dependent enhancement (ADE) of infection with many of the characteristics associated with severe DENV disease in humans, including plasma leakage, hypercytokinemia, liver injury, hemoconcentration, and thrombocytopenia. Notably, the pathogenesis of severe DENV-2 or DENV-3 infection in LysM Cre(+) Ifnar(f/f) mice was blocked by pre- or postexposure administration of a bispecific dual-affinity retargeting molecule (DART) or an optimized RIG-I receptor agonist that stimulates innate immune responses. Our findings establish a more immunocompetent animal model of ADE of infection with multiple DENV serotypes in which disease is inhibited by treatment with broad-spectrum antibody derivatives or innate immune stimulatory agents. Although dengue virus (DENV) infects hundreds of millions of people annually and results in morbidity and mortality on a global scale, there are no approved antiviral treatments or vaccines. Part of the difficulty in evaluating therapeutic candidates is the lack of small animal models that are permissive to DENV and recapitulate the clinical features

  17. Unexplored therapeutic opportunities in the human genome

    DEFF Research Database (Denmark)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren

    2018-01-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially d...... as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development....

  18. [Health security--GMOs in therapeutics].

    Science.gov (United States)

    Trouvin, J-H

    2003-03-01

    The recent progress in human therapeutics has been made possible thanks to molecular biology and its use in producing proteins having the same sequence and structure as that of human proteins. The use of GMOs allows production of proteins with high added value in therapeutics, which are of satisfactory quality. GMOs may also be directly administered to patients as gene therapy vectors. However, the use of GMOs in therapeutics must take into consideration some risks, particularly those of microbiological contamination, of neo-antigenicity as well as environmental risks with regard to the way of use of the GMO. Nevertheless, those risks are taken in due consideration in the development of these new medicinal products; solutions have been found to allow their use in therapeutics with a very positive benefit/risk ratio. Medicinal products from biotechnology have enabled considerable therapeutic progress without compromising health security.

  19. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  20. Conversational evidence in therapeutic dialogue.

    Science.gov (United States)

    Strong, Tom; Busch, Robbie; Couture, Shari

    2008-07-01

    Family therapists' participation in therapeutic dialogue with clients is typically informed by evidence of how such dialogue is developing. In this article, we propose that conversational evidence, the kind that can be empirically analyzed using discourse analyses, be considered a contribution to widening psychotherapy's evidence base. After some preliminaries about what we mean by conversational evidence, we provide a genealogy of evaluative practice in psychotherapy, and examine qualitative evaluation methods for their theoretical compatibilities with social constructionist approaches to family therapy. We then move on to examine the notion of accomplishment in therapeutic dialogue given how such accomplishments can be evaluated using conversation analysis. We conclude by considering a number of research and pedagogical implications we associate with conversational evidence.

  1. Therapeutic approaches for celiac disease

    Science.gov (United States)

    Plugis, Nicholas M.; Khosla, Chaitan

    2015-01-01

    Celiac disease is a common, lifelong autoimmune disorder for which dietary control is the only accepted form of therapy. A strict gluten-free diet is burdensome to patients and can be limited in efficacy, indicating there is an unmet need for novel therapeutic approaches to supplement or supplant dietary therapy. Many molecular events required for disease pathogenesis have been recently characterized and inspire most current and emerging drug-discovery efforts. Genome-wide association studies (GWAS) confirm the importance of human leukocyte antigen genes in our pathogenic model and identify a number of new risk loci in this complex disease. Here, we review the status of both emerging and potential therapeutic strategies in the context of disease pathophysiology. We conclude with a discussion of how genes identified during GWAS and follow-up studies that enhance susceptibility may offer insight into developing novel therapies. PMID:26060114

  2. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  3. Biochemical and Pharmacological Characterizations of ESI-09 Based EPAC Inhibitors: Defining the ESI-09 “Therapeutic Window”

    OpenAIRE

    Yingmin Zhu; Haijun Chen; Stephen Boulton; Fang Mei; Na Ye; Giuseppe Melacini; Jia Zhou; Xiaodong Cheng

    2015-01-01

    The cAMP signaling cascade is one of the most frequently targeted pathways for the development of pharmaceutics. A plethora of recent genetic and pharmacological studies suggest that exchange proteins directly activated by cAMP (EPACs) are implicated in multiple pathologies. Selective EPAC inhibitors have been recently developed. One specific inhibitor, ESI-09, has been shown to block EPAC activity and functions, as well as to recapitulate genetic phenotypes of EPAC knockout mice when applied...

  4. Marketing therapeutic recreation services.

    Science.gov (United States)

    Thorn, B E

    1984-01-01

    The use of marketing strategies can enhance the delivery of therapeutic recreation services. This article discusses how agencies can adapt marketing techniques and use them to identify potential markets, improve image, evaluate external pressures, and maximize internal strengths. Four variables that can be controlled and manipulated in a proposed marketing plan are product, price, place and promotion.

  5. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  6. Therapeutic applications of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Baker, W.J.; Datz, F.L.; Beightol, R.W.

    1987-01-01

    Whether a radiopharmaceutical has diagnostic or therapeutic application depends on both the isotope and pharmaceutical used. For diagnostic applications, the isotope should undergo only γ-decay, since usually only γ-radiation is detected by nuclear medicine cameras. The half-life should be just long enough to allow the procedure to be performed. In contrast, the isotope needed for therapeutic purposes should have particulate radiation, such as a β-particle (electron), since these are locally absorbed an increase the local radiation dose. γ-Radiation, which penetrates the tissues, produces less radiation dose than do Β-particles. Several references dealing with radioactive decay, particulate interactions, and diagnostic and therapeutic applications of radiopharmaceuticals are available. Radiopharmaceuticals can legally be used only by physicians who are qualified by specific training in the safe handling of radionuclides. The experience and training of these physicians must be approved by the Nuclear Regulatory Commission or Agreement State Agency authorized to license the use of radiopharmaceuticals. A list of all byproduct material and procedures is available in the Code of Federal Regulations. Of the many radiopharmaceuticals available for diagnostic and therapeutic use, only those commonly used are discussed in this chapter

  7. Conotoxins that confer therapeutic possibilities

    KAUST Repository

    Essack, Magbubah

    2012-06-04

    Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ?-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred. 2012 by the authors; licensee MDPI.

  8. Diagnostic and therapeutic peroral cholangioscopy

    Directory of Open Access Journals (Sweden)

    Jong Ho Moon

    2012-01-01

    Full Text Available Peroral cholangioscopy (POC provides direct visualization of the bile duct and facilitates diagnostic or therapeutic intervention. The currently available single-operator POC systems are "Mother-baby" scope system, SpyGlass direct visualization system, and direct POC using a regular ultra-slim upper endoscope. Direct POC using an ultra-slim upper endoscope having a larger 2-mm working channel can provide a valuable and economic solution for evaluating bile-duct lesions. Main diagnostic procedures under direct POC are visual characterization and optically guided target biopsy for the indeterminate bile duct lesion. Image-enhanced endoscopy such as narrow-band imaging has shown promise for more detailed evaluation of mucosal abnormality and can be performed under direct POC. Intracorporeal lithotripsy such as electrohydraulic lithotripsy or laser lithotripsy is a main therapeutic intervention of direct POC for patients with bile duct stones that are resistant to conventional endoscopic stone-removal procedures. Besides, tumor ablation therapy, such as photodynamic therapy and argon plasma coagulation may be also performed using direct POC. Further developments of the endoscope and specialized accessories or devices are expected to facilitate diagnostic and therapeutic role of this cholangioscopic procedure.

  9. Conotoxins that confer therapeutic possibilities

    KAUST Repository

    Essack, Magbubah; Bajic, Vladimir B.; Archer, John A.C.

    2012-01-01

    Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ?-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred. 2012 by the authors; licensee MDPI.

  10. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans.

    Directory of Open Access Journals (Sweden)

    Ilhem Messaoudi

    2009-11-01

    Full Text Available Simian varicella virus (SVV, the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV. Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.

  11. The therapeutic collaboration in life design counselling: The case of ...

    African Journals Online (AJOL)

    The collaboration coding system enables the assessment of each therapeutic exchange within and outside of the client's therapeutic zone of proximal development, defined as the space between the client's actual therapeutic developmental level and his/her potential developmental level fomented by a collaborative ...

  12. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria.

    Science.gov (United States)

    Higginson, Ellen E; Galen, James E; Levine, Myron M; Tennant, Sharon M

    2016-11-01

    Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. [Therapeutic values of dance movement and its influence on psychomotor development of deaf persons as a form of socialization and integration with the environment].

    Science.gov (United States)

    Pelc, Zofia

    2002-01-01

    The aim of the work was to show to what extent esthetic education, mainly dance, influences the level of socialization of deaf persons, and how important the integration of the examined with the outside world is. The effectiveness of the Dance Theatre "Pinokio" of the J. Korczak Special Training and Educational Center in Przemyśl was verified by diagnostic soundings. Source material was also used in the study (chronicles, press articles, interviews with instructors of the ensemble). Young deaf people participated in dance practices with pleasure. The motivation of the young deaf people to enter the dance group was of mature character. They take part in dance activities because of their love to dance (70%), instructor's engagement (20%), and the health aspect (10%). The therapy effectiveness depended on how long they participated in the dance group. Deaf people who dance for a longer time (3 years 70%, 1 year 20%, 2 years 10%) had a more mature outlook on life, better school grades (80%), and started conversation with other people more easily (instructor's opinion). The self-consciousness of participants after practice manifested itself by relaxation (50%), joy (30%), and resolution in taking decisions (15%). Only 5% of the examined felt tired and fed-up. Polish choreo-therapeutists trust mainly their own intuition and also use information found in articles and publications, which, however, are not easily accessed. The scarcity of qualified therapeutic dancing instructors limits application of choreo-therapy on a wider scale.

  14. Exubera. Inhale therapeutic systems.

    Science.gov (United States)

    Bindra, Sanjit; Cefalu, William T

    2002-05-01

    Inhale, in colaboration with Pfizer and Aventis Pharma (formerly Hoechst Marion Roussel; HMR), is developing an insulin formulation utilizing its pulmonary delivery technology for macromolecules for the potential treatment of type I and II diabetes. By July 2001, the phase III program had been completed and the companies had begun to assemble data for MAA and NDA filings; however, it was already clear at this time that additional data might be required for filing. By December 2001, it had been decided that the NDA should include an increased level of controlled, long-term pulmonary safety data in diabetic patients and a major study was planned to be completed in 2002, with the NDA filed thereafter (during 2002). US-05997848 was issued to Inhale Therapeutic Systems in December 1999, and corresponds to WO-09524183, filed in February 1995. Equivalent applications have appeared to date in Australia, Brazil, Canada, China, Czech Republic, Europe, Finland, Hungary, Japan, Norway, New Zealand, Poland and South Africa. This family of applications is specific to pulmonary delivery of insulin. In February 1999, Lehman Brothers gave this inhaled insulin a 60% probability of reaching market, with a possible launch date of 2001. The analysts estimated peak sales at $3 billion in 2011. In May 2000, Aventis predicted that estimated peak sales would be in excess of $1 billion. In February 2000, Merrill Lynch expected product launch in 2002 and predicted that it would be a multibillion-dollar product. Analysts Merril Lynch predicted, in September and November 2000, that the product would be launched by 2002, with sales in that year of e75 million, rising to euro 500 million in 2004. In April 2001, Merrill Lynch predicted that filing for this drug would occur in 2001. Following the report of the potential delay in regulatory filing, issued in July 2001, Deutsche Banc Alex Brown predicted a filing would take place in the fourth quarter of 2002 and launch would take place in the first

  15. A systematic review on in vitro 3D bone metastases models: A new horizon to recapitulate the native clinical scenario?

    Science.gov (United States)

    Salamanna, Francesca; Contartese, Deyanira; Maglio, Melania; Fini, Milena

    2016-07-12

    While the skeleton is not the only organ where metastasis can occur, it is one of the preferred sites, with a significant impact in patients' quality of life. With the aim of delineating the cellular and molecular mechanisms of bone metastasis, numerous studies have been employed to identify any contributing factors that trigger cancer progression. One of the major limitations of studying cancer-bone metastasis is the multifaceted nature of the native bone environment and the lack of reliable, simple, and not expensive models that strictly mimic the biological processes occurring in vivo allowing a correct translation of results. Currently, with the growing acceptance of in vitro models as effective tools for studying cancer biology, three-dimensional (3D) models have emerged as a compromise between two-dimensional cultures of isolated cancer cells and the complexity of human cancer xenografts in immunocompromised animal hosts. This descriptive systematic literature review summarizes the current status of advanced and alternative 3D in vitro bone metastases models. We have also reviewed the strategies employed by researchers to set-up these models with special reference to recent promising developments trying to better replicate the complexity and heterogeneity of a human metastasis in situ, with an outlook at their use in medicine. All these aspects will greatly contribute to the existing knowledge on bone metastases, providing a specific link to clinical scenarios and thus making 3D in vitro bone metastasis models an attractive tool for multidisciplinary experts.

  16. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model.

    Science.gov (United States)

    Garcia, Celina; Dubois, Luiz Gustavo; Xavier, Anna Lenice; Geraldo, Luiz Henrique; da Fonseca, Anna Carolina Carvalho; Correia, Ana Helena; Meirelles, Fernanda; Ventura, Grasiella; Romão, Luciana; Canedo, Nathalie Henriques Silva; de Souza, Jorge Marcondes; de Menezes, João Ricardo Lacerda; Moura-Neto, Vivaldo; Tovar-Moll, Fernanda; Lima, Flavia Regina Souza

    2014-12-08

    Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood-brain barrier disruption. This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.

  17. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  18. Low dose rectal inoculation of rhesus macaques by SIV smE660 or SIVmac251 recapitulates

    Energy Technology Data Exchange (ETDEWEB)

    Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena E [Los Alamos National Laboratory; Keele, Brandon [UNIV OF ALABAMA; Li, Hui [UNIV OF ALABAMA; Learn, Gerald [UNIV OF ALABAMA

    2008-01-01

    We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1--5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1--5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV-macaque mucosal infection model for HIV-1 vaccine and microbicide research.

  19. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  20. Integrating 4-d light-sheet imaging with interactive virtual reality to recapitulate developmental cardiac mechanics and physiology

    Science.gov (United States)

    Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.

    2018-02-01

    There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  1. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines.

    Directory of Open Access Journals (Sweden)

    Lanying Du

    Full Text Available An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS, is caused by a novel coronavirus (MERS-CoV. It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588 in the truncated receptor-binding domain (RBD: residues 367-606 of MERS-CoV spike (S protein fused with human IgG Fc fragment (S377-588-Fc is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4, the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.

  2. Nanoparticles for therapeutic and diagnostic applications

    OpenAIRE

    Chiu, Yin To

    2014-01-01

    Nanomedicine focuses on the development and engineering of novel and unique therapeutic and diagnostic agents that can overcome the challenges associated with using traditional modalities. Nanoparticles (NPs) in the size range between 1 and 1000 nm have many advantages for use in these applications, such as, low polydispersity, established characterization methodologies, and the ability to be loaded with therapeutics for diseases, conjugated to targeting ligands to enhance specificity, and co...

  3. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Bo Wang; Xiaoqing Zhang; Xue-Jun Li

    2013-01-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease.Here,we developed a closely representative cell model of SMA by knocking down the disease-determining gene,survival motor neuron (SMN),in human embryonic stem cells (hESCs).Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons.Notably,the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated.Furthermore,these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-A7 (lacking exon 7)knockdown,and were specific to spinal motor neurons.Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes,including specific axonal defects and motor neuron loss.Finally,knockdown of SMNFL led to excessive mitochondrial oxidative stress in human motor neuron progenitors.The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine,a potent antioxidant,which prevented disease-related apoptosis and subsequent motor neuron death.Thus,we report here the successful establishment of an hESC-based SMA model,which exhibits disease gene isoform specificity,cell type specificity,and phenotype reversibility.Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  4. Development and characterization of a pre-treatment procedure to eliminate human monoclonal antibody therapeutic drug and matrix interference in cell-based functional neutralizing antibody assays.

    Science.gov (United States)

    Xu, Weifeng; Jiang, Hao; Titsch, Craig; Haulenbeek, Jonathan R; Pillutla, Renuka C; Aubry, Anne-Françoise; DeSilva, Binodh S; Arnold, Mark E; Zeng, Jianing; Dodge, Robert W

    2015-01-01

    Biological therapeutics can induce an undesirable immune response resulting in the formation of anti-drug antibodies (ADA), including neutralizing antibodies (NAbs). Functional (usually cell-based) NAb assays are preferred to determine NAb presence in patient serum, but are often subject to interferences from numerous serum factors, such as growth factors and disease-related cytokines. Many functional cell-based NAb assays are essentially drug concentration assays that imply the presence of NAbs by the detection of small changes in functional drug concentration. Any drug contained in the test sample will increase the total amount of drug in the assay, thus reducing the sensitivity of NAb detection. Biotin-drug Extraction with Acid Dissociation (BEAD) has been successfully applied to extract ADA, thereby removing drug and other interfering factors from human serum samples. However, to date there has been no report to estimate the residual drug level after BEAD treatment when the drug itself is a human monoclonal antibody; mainly due to the limitation of traditional ligand-binding assays. Here we describe a universal BEAD optimization procedure for human monoclonal antibody (mAb) drugs by using a LC-MS/MS method to simultaneously measure drug (a mutant human IgG4), NAb positive control (a mouse IgG), and endogenous human IgGs as an indicator of nonspecific carry-over in the BEAD eluate. This is the first report demonstrating that residual human mAb drug level in clinical sample can be measured after BEAD pre-treatment, which is critical for further BEAD procedure optimization and downstream immunogenicity testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. PYTHIOSIS: A THERAPEUTIC APPROACH

    Directory of Open Access Journals (Sweden)

    C. M. C. Falcão

    2015-10-01

    Full Text Available Pythiosis, a disease caused by the oomycete Pythium insidiosum, often presents inefficient response to chemotherapy. It is a consensus that, in spite the several therapeutic protocols, a combination of surgery, chemotherapy and immunotherapy should be used. Surgical excision requires the removal of the entire affected area, with a wide margin of safety. The use of antifungal drugs has resulted in variable results, both in vitro and in vivo, and presents low therapeutic efficiency due to differences in the agent characteristics, which differ from true fungi. Immunotherapy is a non-invasive alternative for the treatment of pythiosis, which aims at modifying the immune response of the host, thereby producing an effective response to the agent. Photodynamic therapy has emerged as a promising technique, with good activity against P. insidiosum in vitro and in vivo. However, more studies are necessary to increase the efficiency of the current treatment protocols and consequently improve the cure rates. This paper aims to conduct a review covering the conventional and recent therapeutic methods against P. insidiosum infections

  6. Acute Organophosphate Poisonings: Therapeutic Dilemmas and New Potential Therapeutic Agents

    International Nuclear Information System (INIS)

    Vucinic, S.; Jovanovic, D.; Vucinic, Z.; Todorovic, V.; Segrt, Z.

    2007-01-01

    years. New potential therapeutic agents for OPI poisoning include: glycopyrrolate as anticholinergic; organophosphorous hydrolases, butyrilcholinesterases and sodium bicarbonate which degrade OPI and accelerate AChE reactivation; reversible anticholinesterases for reduction of AChE reinchibition; NMDA antagonist as neuroprotectors. Authors from Maryland have proposed the usage of IL-1 Rp antagonists in acute OPI intoxication, a new, original approach to therapy which deserves to be elucidated. For now pharmaceutical industries do not show satisfying initiative in developing new therapeutic agents and antidotes for OPI poisoning. However, randomized, controlled clinical studies, for the beginning with the agents which are in clinical practice, would elucidate their clinical efficacy, reduce the number of lethal pesticide poisonings in developing countries and provide information of special importance for the army and medical service. (author)

  7. Novel approach to cancer therapeutics using comparative cancer biology

    OpenAIRE

    Revi, Bhindu

    2018-01-01

    Developing personalized cancer therapies based on cancer genomics methodologies forms the basis for future cancer therapeutics. A genomics platform was developed based on canine cancer to produce a proof-of-concept for personalized genomics led therapeutic choices but also developing personalized therapeutics for canine cancer patients themselves. The platform identified the genetic state of a canine cancer patient within two drugable pathways; p53 and HSP90/IRF1. The former ge...

  8. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    Science.gov (United States)

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  9. Ultrastructural investigation and in vitro recapitulation of spermatid differentiation in a potential bio-indicator species - The marine invertebrate Galeolaria gemineoa (Polychaeta: Serpulidae.

    Directory of Open Access Journals (Sweden)

    Yonggang Lu

    Full Text Available Galeolaria gemineoa is a sessile broadcast-spawning marine invertebrate, whose spermatozoa have been regarded as a sensitive indicator for water quality monitoring. In this study, 10 steps of spermiogenesis have been identified at the ultrastructural level and this differentiation process has been recapitulated in vitro up to the point of spermiogenesis (step 7-9 spermatids. On completion of the second meiosis, newly formed spermatids were detached from the seminiferous epithelium and released to the lumen of each germinal chamber. These spermatids were present in pairs and interconnected by a cytoplasmic bridge throughout the entire spermiogenic process. On the basis of morphological events such as formation of the acrosome, elongation of the flagellum, and condensation of the nucleus, spermiogenesis has been temporally divided into Golgi phase, acrosomal phase and maturation phase. During the Golgi phase, proacrosomal vesicles appeared at the posterior pole of the spermatids and gradually fused into a proacrosomal vacuole. Simultaneously, the distal centriole docked onto the plasma membrane and gave rise to a formative flagellum. The acrosomal phase was characterised by differentiation of the acrosome, condensation of the chromatin and formation of a mitochondrial sheath surrounding the initial portion of the flagellum. During the maturation phase, the fully differentiated acrosome migrated to the anterior pole and excess cytoplasm was extruded from the spermatids in the form of residual bodies. In addition, we successfully induced step 1-3 spermatids to differentiate into the step 7-9 spermatids in both male germinal fluid and 10% foetal bovine serum in RPMI 1640 medium, but failed to replicate this process in female or boiled male germinal fluids. This finding supports our concept that spermatid differentiation in this species is dependent on intrinsic developmental programming and does not require input from accompanying nurse cells.

  10. Toward Personalized Medicine: Using Cardiomyocytes Differentiated From Urine-Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics of Type 2 Long QT Syndrome.

    Science.gov (United States)

    Jouni, Mariam; Si-Tayeb, Karim; Es-Salah-Lamoureux, Zeineb; Latypova, Xenia; Champon, Benoite; Caillaud, Amandine; Rungoat, Anais; Charpentier, Flavien; Loussouarn, Gildas; Baró, Isabelle; Zibara, Kazem; Lemarchand, Patricia; Gaborit, Nathalie

    2015-09-01

    Human genetically inherited cardiac diseases have been studied mainly in heterologous systems or animal models, independent of patients' genetic backgrounds. Because sources of human cardiomyocytes (CMs) are extremely limited, the use of urine samples to generate induced pluripotent stem cell-derived CMs would be a noninvasive method to identify cardiac dysfunctions that lead to pathologies within patients' specific genetic backgrounds. The objective was to validate the use of CMs differentiated from urine-derived human induced pluripotent stem (UhiPS) cells as a new cellular model for studying patients' specific arrhythmia mechanisms. Cells obtained from urine samples of a patient with long QT syndrome who harbored the HERG A561P gene mutation and his asymptomatic noncarrier mother were reprogrammed using the episomal-based method. UhiPS cells were then differentiated into CMs using the matrix sandwich method.UhiPS-CMs showed proper expression of atrial and ventricular myofilament proteins and ion channels. They were electrically functional, with nodal-, atrial- and ventricular-like action potentials recorded using high-throughput optical and patch-clamp techniques. Comparison of HERG expression from the patient's UhiPS-CMs to the mother's UhiPS-CMs showed that the mutation led to a trafficking defect that resulted in reduced delayed rectifier K(+) current (IKr). This phenotype gave rise to action potential prolongation and arrhythmias. UhiPS cells from patients carrying ion channel mutations can be used as novel tools to differentiate functional CMs that recapitulate cardiac arrhythmia phenotypes. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. automated (centrifugal) therapeutic plasma exchange option for ...

    African Journals Online (AJOL)

    Therapeutic plasma exchange (TPE) is performed frequently and effectively in developed countries, whereas the reverse is the case in developing countries. Guillain‑Barre syndrome (GBS), synonymous with acute inflammatory demyelinating polyneuropathy, is an important indication for TPE, but this is rarely administered ...

  12. Therapeutic iron : Evaluation of methods to assess intravenous iron safety profiles and the development of a novel formulation for oral iron delivery

    NARCIS (Netherlands)

    Span, K.|info:eu-repo/dai/nl/357800842

    2018-01-01

    Iron treatment is necessary to replenish iron deficit due to several clinical conditions such as chronic diseases. However, as an excess of iron can result in redox imbalance resulting in oxidative stress and thus severe damage to tissue and organs, it is of utmost importance to develop iron

  13. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors.

    Science.gov (United States)

    El Meskini, Rajaa; Iacovelli, Anthony J; Kulaga, Alan; Gumprecht, Michelle; Martin, Philip L; Baran, Maureen; Householder, Deborah B; Van Dyke, Terry; Weaver Ohler, Zoë

    2015-01-01

    Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment. © 2015. Published by The Company of Biologists Ltd.

  14. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors

    Directory of Open Access Journals (Sweden)

    Rajaa El Meskini

    2015-01-01

    Full Text Available Current therapies for glioblastoma multiforme (GBM, the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.

  15. Novel therapeutic approaches in chondrosarcoma.

    Science.gov (United States)

    Polychronidou, Genovefa; Karavasilis, Vasilios; Pollack, Seth M; Huang, Paul H; Lee, Alex; Jones, Robin L

    2017-03-01

    Chondrosarcoma is a malignant tumor of bones, characterized by the production of cartilage matrix. Due to lack of effective treatment for advanced disease, the clinical management of chondrosarcomas is exceptionally challenging. Current research focuses on elucidating the molecular events underlying the pathogenesis of this rare bone malignancy, with the goal of developing new molecularly targeted therapies. Signaling pathways suggested to have a role in chondrosarcoma include Hedgehog, Src, PI3k-Akt-mTOR and angiogenesis. Mutations in IDH1/2, present in more than 50% of primary conventional chondrosarcomas, make the development of IDH inhibitors a promising treatment option. The present review discusses the preclinical and early clinical data on novel targeted therapeutic approaches in chondrosarcoma.

  16. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  17. Pharmacogenetics approach to therapeutics.

    Science.gov (United States)

    Koo, Seok Hwee; Lee, Edmund Jon Deoon

    2006-01-01

    1. Pharmacogenetics refers to the study of genetically controlled variations in drug response. Functional variants caused by single nucleotide polymorphisms (SNPs) in genes encoding drug-metabolising enzymes, transporters, ion channels and drug receptors have been known to be associated with interindividual and interethnic variation in drug response. Genetic variations in these genes play a role in influencing the efficacy and toxicity of medications. 2. Rapid, precise and cost-effective high-throughput technological platforms are essential for performing large-scale mutational analysis of genetic markers involved in the aetiology of variable responses to drug therapy. 3. The application of a pharmacogenetics approach to therapeutics in general clinical practice is still far from being achieved today owing to various constraints, such as limited accessibility of technology, inadequate knowledge, ambiguity of the role of variants and ethical concerns. 4. Drug actions are determined by the interplay of several genes encoding different proteins involved in various biochemical pathways. With rapidly emerging SNP discovery technological platforms and widespread knowledge on the role of SNPs in disease susceptibility and variability in drug response, the pharmacogenetics approach to therapeutics is anticipated to take off in the not-too-distant future. This will present profound clinical, economic and social implications for health care.

  18. Mechanisms of Plasma Therapeutics

    Science.gov (United States)

    Graves, David

    2015-09-01

    In this talk, I address research directed towards biomedical applications of atmospheric pressure plasma such as sterilization, surgery, wound healing and anti-cancer therapy. The field has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that plasmas readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue in part by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated RONS. RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ``bystander effect,'' similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.

  19. Development of 90Sr/90Y Generator Systems Based on SLM Techniques for Radiolabelling of Therapeutic Biomolecules with 90Y. Chapter 14

    International Nuclear Information System (INIS)

    Thu, N.T.; Van Dong, D.; Van Cuong, B.; Van Khoa, C.; Cam Hoa, V.T.

    2015-01-01

    Yttrium-90 is one of the most useful radionuclides for radioimmunotherapeutic applications, especially for labelling peptides and antibodies. Studies were carried out to develop a 90 Sr/ 90 Y generator system based on the SLM technique. Two stages of 90 Sr/ 90 Y generator systems were developed at different activity levels of 5, 20, 50 and 100 mCi and operated with semiautomation in sequential mode. In the first stage of the system, PC88A based SLM was used, which transported 90 Y from a nitric acid medium containing 0.01–4M HNO 3 . In the second stage, the 90 Y from the first stage was transferred to the first compartment of the second stage using carbamoylmethyl phosphine oxide (CMPO) based SLM where 1M acetic acid was used as the receiving phase for 90 Y. Quality control was carried out for the products of 90 Y using EPC with paper chromatography and Tec control chromatography. Peptides and antibodies were labelled using the 90 Y product obtained from the generator developed in house. (author)

  20. The Involvement of Arginase and Nitric Oxide Synthase in Breast Cancer Development: Arginase and NO Synthase as Therapeutic Targets in Cancer

    Directory of Open Access Journals (Sweden)

    Nikolay Avtandilyan

    2018-01-01

    Full Text Available It is well established that, during development of malignancies, metabolic changes occur, including alterations of enzyme activities and isoenzyme expression. Arginase and nitric oxide (NO synthase (NOS are two of those enzymes considered to be involved in tumorigenesis. The goal of this article was to study the involvement of arginase and NOS in the development of different stages of breast cancer. Our results have shown that human serum arginase activity and NO (resp., and NOS activity and polyamines quantities increased in parallel with cancer stage progression and decreased after neoadjuvant chemotherapy. For breast cancer, the only isoenzyme of arginase expressed in serum before and after chemotherapy was in a cationic form. The data of Lineweaver-Burk plot with a Km value of 2 mM was calculated, which is characteristic for human liver type isoform of arginase. During electrophoresis at pH 8.9, the enzyme exhibited high electrophoretic mobility and was detected near the anode. The presented results demonstrated that arginase in human serum with breast cancer and after chemotherapy is not polymorphic. We suggest that arginase and NOS inhibition has antitumor effects on cancer development, as it can inhibit polyamines and NO levels, a precursor of cancer cell proliferation, metastasis, and tumor angiogenesis.

  1. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells.

    Science.gov (United States)

    Kumar, S; Peng, X; Daley, J; Yang, L; Shen, J; Nguyen, N; Bae, G; Niu, H; Peng, Y; Hsieh, H-J; Wang, L; Rao, C; Stephan, C C; Sung, P; Ira, G; Peng, G

    2017-04-17

    Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90-95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting

  2. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli.

    Science.gov (United States)

    Tan, Joo Shun; Abbasiliasi, Sahar; Kadkhodaei, Saeid; Tam, Yew Joon; Tang, Teck-Kim; Lee, Yee-Ying; Ariff, Arbakariya B

    2018-01-04

    Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.

  3. Development of sodium acetate trihydrate-ethylene glycol composite phase change materials with enhanced thermophysical properties for thermal comfort and therapeutic applications.

    Science.gov (United States)

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2017-07-12

    The heat packs using phase change materials (PCMs) are designed for possible applications such as body comfort and medical applications under adverse situations. The development and performance of such heat packs rely on thermophysical properties of PCMs such as latent heat, suitable heat releasing temperature, degree of supercooling, effective heat releasing time, crystallite size, stability against spontaneous nucleation in metastable supercooled liquid state and thermal stability during heating and cooling cycles. Such PCMs are rare and the available PCMs do not exhibit such properties simultaneously to meet the desired requirements. The present work reports a facile approach for the design and development of ethylene glycol (EG) and aqueous sodium acetate trihydrate (SAT) based composite phase change materials, showing these properties simultaneously. The addition of 2-3 wt% EG in aqueous SAT enhances the softness of SAT crystallites, its degree of supercooling and most importantly the effective heat releasing time by ~10% with respect to aqueous SAT material. In addition, the maximum heat releasing temperature of aqueous SAT has been tailored from 56.5 °C to 55 °C, 54.9 °C, 53.5 °C, 51.8 °C and 43.2 °C using 2%, 3%, 5%, 7% and 10 wt% EG respectively, making the aqueous SAT-EG composite PCMs suitable for desired thermal applications.

  4. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    Science.gov (United States)

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  5. Antibodies Against Infliximab Are Associated with De Novo Development of Antibodies to Adalimumab and Therapeutic Failure in Infliximab-to-Adalimumab Switchers with IBD

    DEFF Research Database (Denmark)

    Frederiksen, Madeline Therese; Ainsworth, Mark Andrew; Brynskov, Jørn

    2014-01-01

    BACKGROUND: A notable proportion of patients with inflammatory bowel disease (IBD) are switched from infliximab (IFX) to adalimumab (ADL). We investigated if immunogenicity of IFX influenced immunogenicity and clinical outcomes of later ADL therapy. METHODS: Single-center cohort study including all...... patients with IBD assessed for antibodies (Abs) against IFX or ADL. RESULTS: Anti-IFX Abs were evaluated in 187 patients treated with IFX as first line anti-TNF agent. Approximately, half (49%) were positive. Detected anti-IFX Abs had functional capacity as judged by a median IFX concentration below limit...... of detection (interquartile range, 0.0-0.0 μg/mL) versus 3.8 μg/mL (IQR, 1.3-7.9) in anti-IFX Ab-negative patients, P tested positive. Patients with previous anti-IFX Ab development were...

  6. Development of a multi-layer ion chamber for measurement of depth dose distributions of heavy-ion therapeutic beam for individual patients

    International Nuclear Information System (INIS)

    Shimbo, Munefumi; Futami, Yasuyuki; Yusa, Ken; Matsufuji, Naruhiro; Kanai, Tatsuaki; Urakabe, Eriko; Yamashita, Haruo; Akagi, Takashi; Higashi, Akio

    2000-01-01

    In heavy-ion radiotherapy, an accelerated beam is modified to realize a desired dose distribution in patients. The set-up of the beam-modifying devices in the irradiation system is changed according to the patient, and it is important to check the depth dose distributions in the patient. In order to measure dose distributions realized by an irradiation system for heavy-ion radiotherapy, a multi-layer ionization chamber (MLIC) was developed. The MLIC consists of 64 ionization chambers, which are stacked mutually. The interval between each ionization chamber is about 4.1 mm water. There are signal and high voltage plates in the MLIC, which are used as electrodes of the ionization chambers and phantom. Depth dose distribution from 5.09 mm to 261.92 mm water can be measured in about 30 seconds using this MLIC. Thus, it is possible to check beam quality in a short amount of time. (author)

  7. An excess of topical calcium and magnesium reverses the therapeutic effect of citrate on the development of corneal ulcers after alkali injury.

    Science.gov (United States)

    Haddox, J L; Pfister, R R; Slaughter, S E

    1996-03-01

    Our purpose was to determine whether chelation of Ca2+ and Mg2+ is the mechanism by which sodium citrate inhibits corneal ulceration in the alkali-injured rabbit eye. The right eyes of 60 albino rabbits (2-2.5 kg) were alkali-injured by filling a 12-mm-diameter plastic well placed on the corneal surface with 0.4 ml of 1 N NaOH. After 35 s the alkali was aspirated, and the well was rinsed with physiological saline. Animals were randomly distributed to three treatment groups of equal size. Two drops of the following topical medications were administered on the hour (14 times per day) for 35 days: physiological saline, 10% citrate in saline, and 346 mM Ca2+, 346 mM Mg2+, and 10% citrate in saline. During the experiment, significantly fewer ulcerations occurred in the citrate-treated eyes (five of 20, 25%) than in the saline-treated eyes (13 of 20, 65%) or in the calcium-magnesium-citrate-treated eyes (15 of 20, 75%). When ulcerations did develop in the citrate group, they occurred significantly later and were less severe than those in the saline and calcium-magnesium-citrate groups. There was a significant increase in the number of eyes with signs of band keratopathy and translucent areas in the calcium-magnesium-citrate group when compared with the other two groups. As in previous studies, sodium citrate significantly inhibited the development of corneal ulcers after alkali injury. The annullment of the favorable effect of citrate on ulceration in the alkali-injured eye by the addition of calcium and magnesium shows that the mechanism of action of citrate is the chelation of these divalent cations.

  8. Development of an enzyme immunoassay for the antibiotic cefquinome and its application for residue determination in cow's milk after therapeutical mastitis treatment.

    Science.gov (United States)

    Thal, Johannes; Steffen, Monika; Meier, Bianca; Schneider, Elisabeth; Adriany, Ansgar; Usleber, Ewald

    2011-01-01

    The aim of this study was to develop and evaluate an enzyme immunoassay (EIA) for the cephalosporin antibiotic in milk, in combination with a new microbiological test system (brilliant black reduction test, BRT-P). Polyclonal antibodies against cefquinome were produced in rabbits, using cefquinome-keyhole limpet hemocyanine as the immunogen. These antibodies and a cefquinome-glucose oxidase conjugate were used in a competitive indirect EIA. The detection limit for cefquinome in milk was 1.5 ng ml(-1), recoveries were 80-128% at 4-40 ng ml(-1). Cross-reactivities with other cephalosporins/penicillins were all <1%. The EIA was used to determine cefquinome in incurred raw milk, the BRT-P (detection limit ≈ 20 ng ml(-1)) and a receptor assay (ßeta-s.t.a.r., detection limit ≈ 15 ng ml(-1)) were used in parallel. Five lactating cows, suffering from clinical mastitis, were treated with cefquinome by simultaneous intramammary and intramuscular injection. Cefquinome residues (maximum 10-27 μg ml(-1)) were most exclusively found in the udder quarter which was treated intramammary, residue levels in the other three quarters were low (<20 ng ml(-1)). Even in milk from intramammary-dosed quarters, residue levels fell below European Union maximum residue level (MRL, 20 μg kg(-1)) 2 days before the end of the withdrawal period. EIA, BRT-P, and ßeta-s.t.a.r. results showed acceptable agreement for milk samples, but the newly developed EIA is superior in aspects of sensitivity. In conclusion, this is the first one description of immunoassay and microbiological tests capable to determine cefquinome in milk at the MRL in incurred sample material.

  9. 'Mind the gap' between the development of therapeutic innovations and the clinical practice in oncology: A proposal of the European Organisation for Research and Treatment of Cancer (EORTC) to optimise cancer clinical research.

    Science.gov (United States)

    Kempf, Emmanuelle; Bogaerts, Jan; Lacombe, Denis; Liu, Lifang

    2017-11-01

    In Europe, most of the cancer clinical research dedicated to therapeutic innovations aims primarily at regulatory approval. Once an anticancer drug enters the common market, each member state determines its real-world use based on its own criteria: pricing, reimbursement and clinical indications. Such an innovation-centred clinical research landscape might neglect patient-relevant issues in real-world setting, such as comparative effectiveness of distinct treatment options or long-term safety monitoring. The European Organisation for Research and Treatment of Cancer (EORTC) advocates reforming the current 'innovation-centred' system to a truly 'patient-centred' paradigm with systematically coordinated applied clinical research in conjunction with drug development, featuring the following strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Therapeutic education didactic techniques].

    Science.gov (United States)

    Valverde, Maite; Vidal, Mercè; Jansa, Margarida

    2012-10-01

    This article includes an introduction to the role of Therapeutic Education for Diabetes treatment according to the recommendations of the American Diabetes Association (ADA), the Diabetes Education Study Group (DESG) of the "European Association for Study of Diabetes (EASD) and the clinical Practice Guidelines (CPG) of the Spanish Ministry of Health. We analyze theoretical models and the differences between teaching vs. learning as well as current trends (including Internet), that can facilitate meaningful learning of people with diabetes and their families and relatives. We analyze the differences, similarities, advantages and disadvantages of individual and group education. Finally, we describe different educational techniques (metaplan, case method, brainstorming, role playing, games, seminars, autobiography, forums, chats,..) applicable to individual, group or virtual education and its application depending on the learning objective.

  11. Italian Advisory Board: sFlt-1/PlGF ratio and preeclampsia, state of the art and developments in diagnostic, therapeutic and clinical management.

    Science.gov (United States)

    Di Martino, Daniela; Cetin, Irene; Frusca, Tiziana; Ferrazzi, Enrico; Fuse', Federica; Gervasi, Maria Teresa; Plebani, Mario; Todros, Tullia

    2016-11-01

    Extensive research has been published, showing the usefulness of angiogenic markers in both diagnosis and subsequent prediction and management of preeclampsia and placenta-related disorders. Recent evidence provides a helpful cut off for the Elecsys ratio sFlt-1 to PlGF, that predicts preeclampsia development in women with sign and symptoms, before its clinical onset in the short term. In Europe, no accordance exists for the use of such kind of test in clinical practice; only German guidelines have recently taken it into account, as a diagnostic aid for preeclampsia, in conjunction with other clinical findings. This panel of Italian experts recently met, in order to review the literature and to promote the evaluation of the clinical utility of sFlt-1/PlGF ratio at the Italian country level, as regards: prediction of preeclampsia during the first trimester, prediction or exclusion of new onset or recurrence in patients with risk factors for preeclampsia, triage of patients suffering from gestational hypertension, evaluation of disease severity, prediction of adverse maternal and fetal outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Tan, Mei-E; He, Cheng-Hui; Jiang, Wen; Zeng, Cheng; Yu, Ning; Huang, Wei; Gao, Zhong-Gao; Xing, Jian-Guo

    2017-01-01

    Total flavonoid extract from Dracocephalum moldavica L. (TFDM) contains effective components of D. moldavica L. that have myocardial protective function. However, the cardioprotection function of TFDM is undesirable due to its poor solubility. In order to improve the solubility and efficacy of TFDM, we developed TFDM-loaded solid lipid nanoparticles (TFDM-SLNs) and optimized the formulation of TFDM-SLNs using central composite design and response surface methodology. The physicochemical properties of TFDM-SLNs were characterized, and the pharmacodynamics was investigated using the myocardial ischemia-reperfusion injury model in rats. The nanoparticles of optimal formulation for TFDM-SLNs were spherical in shape with the average particle size of 104.83 nm and had a uniform size distribution with the polydispersity index value of 0.201. TFDM-SLNs also had a negative zeta potential of -28.7 mV to ensure the stability of the TFDM-SLNs emulsion system. The results of pharmacodynamics demonstrated that both TFDM and TFDM-SLN groups afforded myocardial protection, and the protective effect of TFDM-SLNs was significantly superior to that of TFDM alone, based on the infarct area, histopathological examination, cardiac enzyme levels and inflammatory factors in serum. Due to the optimal quality and the better myocardial protective effect, TFDM-SLNs are expected to become a safe and effective nanocarrier for the oral delivery of TFDM.

  13. Recreational 3,4-methylenedioxy-N-methylamphetamine (MDMA) or 'ecstasy' and self-focused compassion: Preliminary steps in the development of a therapeutic psychopharmacology of contemplative practices.

    Science.gov (United States)

    Kamboj, Sunjeev K; Kilford, Emma J; Minchin, Stephanie; Moss, Abigail; Lawn, Will; Das, Ravi K; Falconer, Caroline J; Gilbert, Paul; Curran, H Valerie; Freeman, Tom P

    2015-09-01

    3,4-methylenedioxy-N-methylamphetamine (MDMA) produces diverse pro-social effects. Cognitive training methods rooted in Eastern contemplative practices also produce these effects through the development of a compassionate mindset. Given this similarity, we propose that one potential mechanism of action of MDMA in psychotherapy is through enhancing effects on intrapersonal attitudes (i.e. pro-social attitudes towards the self). We provide a preliminary test of this idea. Recreational MDMA (ecstasy) users were tested on two occasions, having consumed or not consumed ecstasy. Self-critical and self-compassionate responses to self-threatening scenarios were assessed before (T1) and after (T2) ecstasy use (or non-use), and then after compassionate imagery (T3). Moderating roles of dispositional self-criticism and avoidant attachment were examined. Separately, compassionate imagery and ecstasy produced similar sociotropic effects, as well as increases in self-compassion and reductions in self-criticism. Higher attachment-related avoidance was associated with additive effects of compassionate imagery and ecstasy on self-compassion. Findings were in line with MDMA's neuropharmacological profile, its phenomenological effects and its proposed adjunctive use in psychotherapy. However, although conditions were balanced, the experiment was non-blind and MDMA dose/purity was not determined. Controlled studies with pharmaceutically pure MDMA are still needed to test these effects rigorously. © The Author(s) 2015.

  14. Development, validation, and application of a fast and simple GC-MS method for determination of some therapeutic drugs relevant in emergency toxicology.

    Science.gov (United States)

    Meyer, Markus R; Welter, Jessica; Weber, Armin A; Maurer, Hans H

    2011-10-01

    To date, immunoassays are commercially available for quantification of valproic acid, salicylic acid, paracetamol, phenobarbital, phenytoin, and primidone. As they are no longer available, a fast, simple, and cost-effective quantitative gas chromatography-mass spectrometry (GC-MS) method was developed and fully validated for these drugs. After simple and fast liquid-liquid extraction, the samples were analyzed by GC-MS using the selected ion monitoring mode. The method was validated including the parameters selectivity, calibration model, precision, accuracy, and extraction efficiency. The above-mentioned analytes were separated within 8.5 minutes and sensitively detected. No interfering peaks were observed in blank samples from 8 different sources. The linearity ranges were 20-200 mg/L for valproic acid, 100-1200 mg/L for salicylic acid, 10-200 mg/L for paracetamol, 10-200 mg/L for phenobarbital, 4-20 mg/L for primidone, and 2.5-30 mg/L for phenytoin. Generally accepted criteria for accuracy and precision were fulfilled for all analytes using 6-point calibration. Even 1-point calibration was applicable for all analytes. The assay was successfully applied to analysis of real plasma samples and proficiency testing material. The assay described allowed fast and reliable determination of analytes relevant in the diagnosis of poisonings. Furthermore, time- and cost-saving 1-point calibration was shown to be suitable for daily routine work, especially in emergency cases.

  15. Exploration of experiences in therapeutic groups for patients with severe mental illness: development of the Ferrara group experiences scale (FE- GES).

    Science.gov (United States)

    Caruso, Rosangela; Grassi, Luigi; Biancosino, Bruno; Marmai, Luciana; Bonatti, Luciano; Moscara, Maria; Rigatelli, Marco; Carr, Catherine; Priebe, Stefan

    2013-10-01

    Group therapies are routinely provided for patients with severe mental illness. The factors important to the group experience of patients are still poorly understood and are rarely measured. To support further research and practice, we aimed to develop a questionnaire that captures how patients experience groups within a community mental health context. An initial pool of 39 items was conceptually generated to assess different aspects of group experiences. Items were completed by 166 patients with severe mental illness attending group therapies in community mental health services in Italy. Patients with different psychiatric diagnoses who attended at least 5 group sessions were included. An exploratory factor analysis was used to identify different dimensions of group experiences and to reduce the number of items for each dimension. The resulting questionnaire has five subscales: 1) sharing of emotions and experiences, 2) cognitive improvement, 3) group learning, 4) difficulties in open expression and 5) relationships. Each subscale has 4 items. The scale and sub-scales have good internal consistency. The Ferrara Group Experiences Scale is conceptually derived and assesses dimensions of group experience that are theoretically and practically relevant. It is brief, easy to use and has good psychometric properties. After further validation, the scale may be used for research into patient experiences across different group therapy modalities and for evaluation in routine care.

  16. Subthreshold Desensitization of Human Basophils Re-capitulates the Loss of syk and FcεRI expression Characterized by Other Methods of Desensitization

    Science.gov (United States)

    MacGlashan, Donald

    2012-01-01

    Background Clinical desensitization of patients to drugs involves progressive exposure to escalating doses of drug over a period of 24 hours. In prior studies, this method was recapitulated in vitro to also demonstrate loss of mast cell or basophil responsiveness. However, most signaling studies of human basophils have identified changes in signaling by using other methods of inducing cellular desensitization. Objective This study examined two well-described endpoints of basophil desensitization, loss of syk or FcεRI expression, under conditions of subthreshold desensitization. Methods The loss of FceRI and syk was examined in human basophils. Results It was shown that both loss of syk and FcεRI/IgE occurred during an escalating series of stimulation (anti-IgE Ab) and that expression loss occurred despite the presence of little histamine release. If basophils were first cultured for 3 days in 10 ng/ml IL-3, the concentration-dependence of histamine release shifted to 100 fold lower concentrations of stimulus. However, loss of syk did not show any change in its EC50 while loss of FcεRI also shifted 100 fold. From the perspective of early signal element activation, the marked shift in the EC50 for histamine release was not accompanied by similar shifts in the EC50s for several signaling elements. The EC50s for phospho-Src, phospho-SHIP1, phospho-Syk, or phospho-Cbl did not change while the EC50s for phospho-Erk and the cytosolic calcium response did shift 100 fold. Conclusions These studies show that under normal conditions, subthreshold desensitization leads to loss of two critical signaling molecules (FcεRI and syk) but under at least one condition, treatment with IL-3, it is possible to markedly blunt the loss of syk, but not FcεRI, while executing a proper subthreshold titration. These data also suggest that IL-3 modifies only the sensitivity of signaling elements that are downstream of syk activation. PMID:22702505

  17. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  18. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  19. Therapeutic target for protozoal diseases

    Science.gov (United States)

    Rathore, Dharmendar [Blacksburg, VA; Jani, Dewal [Blacksburg, VA; Nagarkatti, Rana [Blacksburg, VA

    2008-10-21

    A novel Fasciclin Related Adhesive Protein (FRAP) from Plasmodium and related parasites is provided as a target for therapeutic intervention in diseases caused by the parasites. FRAP has been shown to play a critical role in adhesion to, or invasion into, host cells by the parasite. Furthermore, FRAP catalyzes the neutralization of heme by the parasite, by promoting its polymerization into hemozoin. This invention provides methods and compositions for therapies based on the administration of protein, DNA or cell-based vaccines and/or antibodies based on FRAP, or antigenic epitopes of FRAP, either alone or in combination with other parasite antigens. Methods for the development of compounds that inhibit the catalytic activity of FRAP, and diagnostic and laboratory methods utilizing FRAP are also provided.

  20. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Tan ME

    2017-04-01

    Full Text Available Mei-e Tan,1–3,* Cheng-hui He,3,* Wen Jiang,4 Cheng Zeng,2–4 Ning Yu,3 Wei Huang,2 Zhong-gao Gao,2 Jian-guo Xing3 1Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 2State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 3Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, 4Xinjiang Medical University, Urumqi, People’s Republic of China *These authors contributed equally to this work Abstract: Total flavonoid extract from Dracocephalum moldavica L. (TFDM contains effective components of D. moldavica L. that have myocardial protective function. However, the cardioprotection function of TFDM is undesirable due to its poor solubility. In order to improve the solubility and efficacy of TFDM, we developed TFDM-loaded solid lipid nanoparticles (TFDM-SLNs and optimized the formulation of TFDM-SLNs using central composite design and response surface methodology. The physicochemical properties of TFDM-SLNs were characterized, and the pharmacodynamics was investigated using the myocardial ischemia–reperfusion injury model in rats. The nanoparticles of optimal formulation for TFDM-SLNs were spherical in shape with the average particle size of 104.83 nm and had a uniform size distribution with the polydispersity index value of 0.201. TFDM-SLNs also had a negative zeta potential of -28.7 mV to ensure the stability of the TFDM-SLNs emulsion system. The results of pharmacodynamics demonstrated that both TFDM and TFDM-SLN groups afforded myocardial protection, and the protective effect of TFDM-SLNs was significantly superior to that of TFDM alone, based on the infarct area, histopathological examination, cardiac enzyme levels and inflammatory factors in serum. Due to the optimal

  1. Therapeutic enhancement: nursing intervention category for patients diagnosed with Readiness for Therapeutic Regimen Management.

    Science.gov (United States)

    Kelly, Cynthia W

    2008-04-01

    To present a new nursing intervention category called therapeutic enhancement. Fewer than half of North Americans follow their physician's recommendations for diet and exercise, even when such are crucial to their health or recovery. It is imperative that nurses consider new ways to promote healthy behaviours. Therapeutic enhancement is intended to provide such a fresh approach. Traditional intervention techniques focusing on education, contracts, social support and more frequent interaction with physicians appear not to be effective when used alone. Successful strategies have been multidisciplinary; and have included interventions by professional nurses who assist patients to understand their disease and the disease process and that helps them to develop disease-management and self-management skills. Therapeutic enhancement incorporates The Stages of Change Theory, Commitment to Health Theory, Motivational Interviewing techniques and instrumentation specifically designed for process evaluation of health-promoting interventions. This is a critical review of approaches that, heretofore, have not been synthesised in a single published article. Based on the commonly used Stages of Change model, therapeutic enhancement is useful for patients who are at the action stage of change. Using therapeutic enhancement as well as therapeutic strategies identified in Stages of Change Theory, such as contingency management, helping relationships, counterconditioning, stimulus control and Motivational Interviewing techniques, nursing professionals can significantly increase the chances of patients moving from action to the maintenance stage of change for a specific health behaviour. Using the nursing intervention category, therapeutic enhancement can increase caregivers' success in helping patients maintain healthy behaviours.

  2. Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model.

    Science.gov (United States)

    Morrison, Juliet; Rathore, Abhay P S; Mantri, Chinmay K; Aman, Siti A B; Nishida, Andrew; St John, Ashley L

    2017-09-15

    There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8 + T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease. IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs

  3. Therapeutic communities, old and new.

    Science.gov (United States)

    Jones, M

    1979-01-01

    The author attempts to clarify two largely different uses of term, Therapeutic Community (TC). By "old" TC he describes a movement which originated in psychiatry in the United Kingdom at the end of World War II. This was an attempt to establish a democratic system in hospitals where the domination of the doctors was replaced by open communication of content and feeling, information sharing, shared decision making, and problem solving shared as far as possible with all patients and staff. Daily meetings of all patients and staff formed the nucleus of this process. In recent years developments in the areas of systems theory, learning theory, and organization development have contributed to a better understanding of social organization and change. The "new" TCs derive from the more recent developments in the treatment of substance abuse. Central to this movement is Synanon and its many modification which use the clients' peer group to solve their own problems, largely eliminating mental health professionals. Linked with these "new" TCs is the development of Asklepieion units in prisons, which use Synanon "games" along with transactional analysis. An attempt is made to distinguish the methodologies used in TCs, "old" and "new".

  4. Reading Philemon as therapeutic narrative | Jordaan | HTS ...

    African Journals Online (AJOL)

    This article analysed the different narratives implied in Philemon by utilising the narrative therapeutic approach, as developed by Epston and White (1990). A dominant narrative (the harsh treatment of slaves in the early Christian environment) and a challenging narrative (a more humane conduct of slaves) were clearly ...

  5. [Video games, a therapeutic mediator for teens].

    Science.gov (United States)

    Nickler, Christophe

    2015-10-01

    Teenagers love video games and other multimedia tools. Sometimes they love them too much, leading to addictive use. A child psychiatry team in Nancy has developed a therapeutic multimedia workshop to contribute to treating teens. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Mindfulness and the Therapeutic Function of Education

    Science.gov (United States)

    Hyland, Terry

    2009-01-01

    Although it has been given qualified approval by a number of philosophers of education, the so-called "therapeutic turn" in education has been the subject of criticism by several commentators on post-compulsory and adult learning over the last few years. A key feature of this alleged development in recent educational policy is said to be the…

  7. Physiologically Based Pharmacokinetic Modeling of Therapeutic Proteins.

    Science.gov (United States)

    Wong, Harvey; Chow, Timothy W

    2017-09-01

    Biologics or therapeutic proteins are becoming increasingly important as treatments for disease. The most common class of biologics are monoclonal antibodies (mAbs). Recently, there has been an increase in the use of physiologically based pharmacokinetic (PBPK) modeling in the pharmaceutical industry in drug development. We review PBPK models for therapeutic proteins with an emphasis on mAbs. Due to their size and similarity to endogenous antibodies, there are distinct differences between PBPK models for small molecules and mAbs. The high-level organization of a typical mAb PBPK model consists of a whole-body PBPK model with organ compartments interconnected by both blood and lymph flows. The whole-body PBPK model is coupled with tissue-level submodels used to describe key mechanisms governing mAb disposition including tissue efflux via the lymphatic system, elimination by catabolism, protection from catabolism binding to the neonatal Fc (FcRn) receptor, and nonlinear binding to specific pharmacological targets of interest. The use of PBPK modeling in the development of therapeutic proteins is still in its infancy. Further application of PBPK modeling for therapeutic proteins will help to define its developing role in drug discovery and development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Annual in Therapeutic Recreation. Volume 2.

    Science.gov (United States)

    Crawford, Michael E., Ed.; Card, Jaclyn A., Ed.

    This volume focuses on therapeutic recreation, as a subject of inquiry and as a treatment tool. The 11 articles include original field based research, program development initiatives, issue and theory of practice papers, and original tutorials in assessment and research. The article titles are: "The Role of Leisure Education with Family…

  9. Therapeutic Dimensions of the Black Aesthetic

    Science.gov (United States)

    Toldson, Ivory L.; Pasteur, Alfred B.

    1976-01-01

    The authors of this article see the black aesthetic largely in terms of the affective component. Emotional oneness which is foreign to the white world view is the means by which the black man can achieve optimal mental health and development. The therapeutic implications of the black aesthetic are outlined. (NG)

  10. Therapeutic trials for a rabbit model of EBV-associated Hemophagocytic Syndrome (HPS): effects of vidarabine or CHOP, and development of Herpesvirus papio (HVP)-negative lymphomas surrounded by HVP-infected lymphoproliferative disease.

    Science.gov (United States)

    Hayashi, K; Joko, H; Koirala, T R; Onoda, S; Jin, Z-S; Munemasa, M; Ohara, N; Oda, W; Tanaka, T; Oka, T; Kondo, E; Yoshino, T; Takahashi, K; Yamada, M; Akagi, T

    2003-10-01

    Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS), which is often associated with fatal infectious mononucleosis or T-cell lymphoproliferative diseases (LPD), is a distinct disease characterized by high mortality. Treatment of patients with EBV-AHS has proved challenging. To develop some therapeutic interventions for EBV-AHS, we examined the effectiveness of an antiviral agent (vidarabine) or chemotherapy (CHOP), using a rabbit model for EBV-AHS. Fourteen untreated rabbits were inoculated intravenously with cell-free virions of the EBV-like virus Herpesvirus papio (HVP). All of the rabbits died of HVP-associated (LPD) and hemophagocytic syndrome (HPS) between 21 and 31 days after inoculation. Furthermore, three HVP-infected rabbits treated with vidarabine died between days 23 and 28 after inoculation, and their clinicopathological features were no different from those of untreated rabbits, indicating that this drug is not effective at all to treat HVP-induced rabbit LPD and HPS. Three of the infected rabbits that were treated with one course, with an incomplete set of three courses, or with three full courses of CHOP treatment died of HVP-induced LPD and HPS with a bleeding tendency and/or with opportunistic infections. They died on the 26th, 62nd and 105th day after virus inoculation, respectively. CHOP treatment transiently suppressed the HVP-induced LPD and contributed to the prolonged survival time of two infected rabbits. However, it did not remove all of the HVP-infected cells from the infected rabbits, and residual HVP-infected lymphocytes caused recurrences of rabbit LPD and HPS. The most interesting finding of this experiment was observed in the infected rabbit with the longest survival time of 105 days: HVP-negative lymphomas surrounded by HVP-induced LPD developed in the larynx and ileum of this rabbit, causing an obstruction of the lumen. We concluded that these were not secondary lymphomas caused by CHOP treatment, because no suspicious

  11. Multifunctional, chitosan-based nano therapeutics: design and application for two- and three-dimensional cell culture systems

    Science.gov (United States)

    Suarato, Giulia

    There is a constant demand for sensitive and effective anti-cancer drug delivery systems, capable of detecting early-stage pathological conditions and increasing patient survival. Recently, chitosan-based drug delivery nanocomplexes have shown to smartly respond to the distinctive features of the tumor microenvironment, a complex network of extracellular molecules, stromal and endothelial cells, which supports the tumor formation and its metastatic invasion. Due to biocompatibility, easy chemical tailorability, and pH-responsiveness, chitosan has emerged as a promising candidate for the formulation of supramolecular multifunctional materials. The present study focuses on the design, fabrication and characterization of fluorescently labelled, hydrophobically modified glycol chitosan nano-micelles (HGC NPs), suitably tailored for the delivery of anti-neoplastic compounds to various tumor models. Doxorubicin-loaded HGC NPs have been delivered to a bone cancer model, both in monolayer and in 3D spheroid configuration, to assess for differences in the delivery profiles and in the therapeutic efficacy. Compared to the free drug, nanocomplexes showed rapid uptake and a more homogeneous distribution in 3D spheroids, a powerful cellular tool which recapitulates some of the in vivo tumor microenvironment features. In a second part of this thesis work, with the purpose of designing an active targeting tumor-homing nano-therapeutic system, HGC NPs have been linked, via avidin-biotin interaction, with a IVS4 peptide, a small molecule with inhibitory activity on MMP-14-mediated functions. An extensive study conducted on triple negative breast cancer cells in monolayer revealed the MMP-14-IVS4-HGC association at the cancer cell membrane, the preferential uptake, and the consequent impairment of protease-associated migratory ability. As an additional application of our engineered construct, HGC micelles have been decorated with a liver kinase B1 (LKB1), a critical kinase involved

  12. Rethinking Therapeutic Misconception in Biobanking

    DEFF Research Database (Denmark)

    Tupasela, Aaro; Snell, Karoliina; Cañada, Jose

    2017-01-01

    Some authors have noted that in biobank research participants may be guided by what is called therapeutic misconception, whereby participants attribute therapeutic intent to research procedures.This article argues that the notion of therapeutic misconception is increasingly less justified when...... underpinnings for the need to separate research and treatment, and thus the notion of therapeutic misconception in the fi rst place. We call this tension between research and treatment ambivalent research advancement to highlight the difficulties that various actors have in managing such shifts within...

  13. Therapeutic cloning: The ethical limits

    International Nuclear Information System (INIS)

    Whittaker, Peter A.

    2005-01-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated

  14. Therapeutic cloning in the mouse

    Science.gov (United States)

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  15. Targeting therapeutics to the glomerulus with nanoparticles.

    Science.gov (United States)

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  17. Observational therapeutics: Scope, challenges, and organization.

    Science.gov (United States)

    Vaidya, Rama

    2011-10-01

    The importance of Observational Therapeutics in the progress of medicine has been neglected in the current era of the hierarchal position imparted to Randomized Controlled Trials (RCTs) for new drug discovery and practice of evidence-based medicine. There is a need to reflect on the reason for many new drugs being withdrawn during post marketing surveillance. There are several examples in literature where drug-discovery has originated initially from keen clinical and / or laboratory observations. The roots of these discoveries have often been from observations made by practitioners of traditional medicine including Ayurveda. The present article draws attention to the scope and challenges for observational therapeutics. There is an urgent need for the meticulous planning for a systematic organization of developing observational therapeutics, with a full understanding of its strengths and limitations.

  18. Observational therapeutics: Scope, challenges, and organization

    Directory of Open Access Journals (Sweden)

    Rama Vaidya

    2011-01-01

    Full Text Available The importance of Observational Therapeutics in the progress of medicine has been neglected in the current era of the hierarchal position imparted to Randomized Controlled Trials (RCTs for new drug discovery and practice of evidence-based medicine. There is a need to reflect on the reason for many new drugs being withdrawn during post marketing surveillance. There are several examples in literature where drug-discovery has originated initially from keen clinical and / or laboratory observations. The roots of these discoveries have often been from observations made by practitioners of traditional medicine including Ayurveda. The present article draws attention to the scope and challenges for observational therapeutics. There is an urgent need for the meticulous planning for a systematic organization of developing observational therapeutics, with a full understanding of its strengths and limitations.

  19. Perspectives for Preventive and Therapeutic HPV Vaccines

    Science.gov (United States)

    Lin, Ken; Doolan, Kimberley; Hung, Chien-Fu; Wu, T-C

    2010-01-01

    Cervical cancer is the second most common cause of female cancer death worldwide. Persistent infection with `high risk' HPV genotypes is the major etiological factor in cervical cancer and thus effective vaccination against HPV provides an opportunity to reduce the morbidity and mortality associated with HPV. The FDA has approved two preventive vaccines to limit the spread of HPV. However, these are unlikely to impact upon HPV prevalence and cervical cancer rates for many years. Furthermore, preventive vaccines do not exert therapeutic effects on pre-existing HPV infections and HPV-associated lesions. In order to further impact upon the burden of HPV infections worldwide, therapeutic vaccines are being developed. These vaccines aim to generate a cell-mediated immune response to infected cells. This review discusses current preventive and therapeutic HPV vaccines and their future directions. PMID:20123582

  20. Recent developments in therapeutic applications of Cyanobacteria.

    Science.gov (United States)

    Raja, Rathinam; Hemaiswarya, Shanmugam; Ganesan, Venkatesan; Carvalho, Isabel S

    2016-05-01

    The cyanobacteria (blue-green algae) are photosynthetic prokaryotes having applications in human health with numerous biological activities and as a dietary supplement. It is used as a food supplement because of its richness in nutrients and digestibility. Many cyanobacteria (Microcystis sp, Anabaena sp, Nostoc sp, Oscillatoria sp., etc.) produce a great variety of secondary metabolites with potent biological activities. Cyanobacteria produce biologically active and chemically diverse compounds belonging to cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides. More than 50% of the marine cyanobacteria are potentially exploitable for extracting bioactive substances which are effective in killing cancer cells by inducing apoptotic death. Their role as anti-viral, anti-tumor, antimicrobial, anti-HIV and a food additive have also been well established. However, such products are at different stages of clinical trials and only a few compounds have reached to the market.

  1. Development of Targeted Therapeutic Agents for Botulism

    National Research Council Canada - National Science Library

    Dolly, Oliver

    1998-01-01

    .... Therefore, an ELISA was optimised and standardised for measuring their proteolysis of immobilised, bacterially-expressed SNAP-25, using purified IgGs reactive solely with full-length or BoNT/A-truncated SNAP-25...

  2. Therapeutic Developments for Tics and Myoclonus.

    Science.gov (United States)

    Jankovic, Joseph

    2015-09-15

    Tics and myoclonus are phenomenologically similar given that both are jerk-like movements, but, in contrast to myoclonus, tics are often preceded by premonitory sensations and are typically associated with a variety of behavioral comorbidities, including attention deficit and obsessive-compulsive disorder. There are many other clinical features that help differentiate these two hyperkinetic disorders. Whereas behavioral and antidopaminergic therapies are most effective in the management of tics, clonazepam, other anticonvulsants, and serotonergic drugs are often used to control myoclonic movements. Botulinum toxin may also be helpful in focal tics and in segmental forms of myoclonus. DBS plays an increasingly important role in the treatment of these disorders, particularly when they are generalized and are disabling despite optimal medical therapy. © 2015 International Parkinson and Movement Disorder Society.

  3. Dental therapeutic systems.

    Science.gov (United States)

    Iqbal, Zeenat; Jain, Nilu; Jain, Gaurav K; Talegaonkar, Sushama; Ahuja, Alka; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    The recognition of periodontal diseases as amenable to local antibiotherapy has resulted in a paradigmatic shift in treatment modalities of dental afflictions. Moreover the presence of antimicrobial resistance, surfacing of untoward reactions owing to systemic consumption of antibiotics has further advocated the use of local delivery of physiologically active substances into the periodontal pocket. While antimicrobials polymerized into acrylic strips, incorporated into biodegradable collagen and hollow permeable cellulose acetate fibers, multiparticulate systems, bio-absorbable dental materials, biodegradable gels/ointments, injectables, mucoadhesive microcapsules and nanospheres will be more amenable for direct placement into the periodontal pockets the lozenges, buccoadhesive tablets, discs or gels could be effectively used to mitigate the overall gingival inflammation. Whilst effecting controlled local delivery of a few milligram of an antibacterial agent within the gingival crevicular fluid for a longer period of time, maintaining therapeutic concentrations such delivery devices will circumvent all adverse effects to non- oral sites. Since the pioneering efforts of Goodson and Lindhe in 1989, delivery at gingival and subgingival sites has witnessed a considerable progress. The interest in locally active systems is evident from the patents being filed and granted. The present article shall dwell in reviewing the recent approaches being proffered in the field. Patents as by Shefer, et al. US patent, 6589562 dealing with multicomponent biodegradable bioadhesive controlled release system for oral care products, Lee, et al. 2001, US patent 6193994, encompassing a locally administrable, biodegradable and sustained-release pharmaceutical composition for periodontitis and process for preparation thereof and method of treating periodontal disease as suggested by Basara in 2004via US patent 6830757, shall be the types of intellectual property reviewed and presented in

  4. Therapeutical aspect of trichomoniasis

    Directory of Open Access Journals (Sweden)

    Vukićević Jelica

    2003-01-01

    Full Text Available Trichomoniasis is frequent, parasitic and sexually transmitted infection of genitourinary tract. It is treated by metronidazole (5-nitroimidazole according to protocol recommended by Center for Disease Control (CDC formerly called: Communicable Disease Center [19]. The resistance of Trichomonas vaginalis (TV strains to metronidazole (MND was described in USA in 1960, and later on in many European countries [8, 9, 10, 11, 12, 13]. In these cases, due to persistent trichomonas infection, it is necessary to repeat MND treatment with moderate modification of dose and/or length of its application. Nevertheless, oncogenic and toxic effects of MND have to be taken into consideration. OBJECT The aim of this study was to investigate and analyze the incidence of TV in STD and lower susceptibility of certain TV strains to MND were analyzed. MATERIAL AND METHODS In three-year period (1999-2001 612 patients (244 females and 368 males suspected of STD were examined clinically and microbiologically at the Institute of Dermatovenereology in Belgrade. The patients detected for TV were treated according to CDC protocol. The affected were considered cured if there was no manifest clinical infection, and no TV verified by microbiological test. Results TV was isolated in 216 patients (35.29 % of all subjects. Trichomonas infection was found in 90 (36.88 % out of 244 tested females and in 126 (32.34 % of 368 males. Clinically manifested infection, with extensive urethral and vaginal secretion, was recorded in 161 patients, while the asymptomatic form was found in 55 subjects. This result indicates the predominance of manifested trichomonas infections (75.54 % of cases. The difference of distribution of clinical forms of trichomoniasis, in relation to sex, was not statistically significant (c2=0.854; p>0.05. The patients with verified trichomonas infection were treated by metronidazole according to CDC protocol. The recommended therapeutical scheme consisted of three

  5. Toward the popular therapeutic equipment for cancers by heavy particle beam (2). Development of a compact highly efficient injector. 1. Success of its beam test set in front of the RFQ linear accelerator

    International Nuclear Information System (INIS)

    Iwata, Yoshiyuki

    2005-01-01

    For popularization of heavy particle beams for cancer treatment, efforts have been done to reduce the size of injector, and the recently developed one is far more compact in size and more electricity-saving than the current Heavy Ion Medical Accelerator in Chiba (HIMAC) injector. This paper describes its outline. The injector has made it possible to decrease the manufacturing cost of the injector itself, the size of therapeutic equipment, and costs of facility construction and operation. Its beam has been tested and found to be satisfactory in the RFQ (radio frequency quadrupole) linac. The IH-DTL (interdigital H-mode drift tube linac) to be set backward is now under manufacturing and is to be completed within this year. Thus total beam test in combination of the RFQ linac and IH-DTL can be examined to design a more popular equipment for cancer therapy. The accelerator developed hereby is conceivably useful not only in the medical field but also for application as a physical and industrial heavy ion injector. (S.I.)

  6. Therapeutic Inertia and Treatment Intensification.

    Science.gov (United States)

    Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D

    2018-01-29

    This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.

  7. Therapeutic targets in liver fibrosis.

    Science.gov (United States)

    Fallowfield, Jonathan A

    2011-05-01

    Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points.

  8. Insulin resistance in therapeutic clinic

    Directory of Open Access Journals (Sweden)

    Anna V. Pashentseva

    2017-09-01

    Full Text Available Today an obesity became the global epidemic striking both children, and adults and represents one of the most important problems of health care worldwide. Excess accumulation of fatty tissue is resulted by insulin resistance and a compensatory hyperinsulinaemia which are the main predictors of development of a diabetes mellitus type 2. Insulin resistance is also one of key links of a pathogenesis of such diseases as cardiovascular pathology, not-alcoholic fatty liver disease, a polycystic ovary syndrome, gestational diabetes and many others. Depression of sensitivity of tissues to insulin can be physiological reaction of an organism to stress factors and pathological process. The endogenic reasons also take part in development of insulin resistance besides factors of the external environment. The role of genetic predisposition, a subclinical inflammation of fatty tissue, thyroid hormones, adipokines and vitamin D in formation of this pathological process is studied. As insulin resistance takes part in a pathogenesis of various diseases, methods of its diagnostics and correction are of great importance in therapeutic practice. At purpose of treatment it is worth giving preference to the drugs which are positively influencing sensitivity of tissues to insulin.

  9. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics.

    Science.gov (United States)

    Shah, Dhaval K

    2015-10-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.

  10. Therapeutic Process and Outcome: The Interplay of Research

    Science.gov (United States)

    Campbel, Holly

    2008-01-01

    From Freud through to modern times researchers have aimed to develop a clearer understanding of therapeutic processes and outcomes. Despite this continued interest in the field, the representation of psychotherapy processes and the applicability of research findings and recommendations to the therapeutic field continue to prove difficult.…

  11. [End therapeutic nihilism towards COPD].

    Science.gov (United States)

    Juergens, Uwe R

    2007-03-15

    Prevention of COPD requires appropriate patient education, especially of adolescents, as well as the establishment of an effective national health policy. The new GOLD guidelines represent the current standard of knowledge on the management of chronic, progressive, obstructive pulmonary diseases. It points out that COPD is avoidable and treatable,and hence, there is no reason for therapeutic nihilism. Chronic bronchitis preceding a progressive respiratory obstruction cannot be improved with the presently available respiratory therapeutics. For this reason, therapeutic measures concentrate on the avoidance of exacerbations, which are primarily responsible for the severity of the course of COPD.

  12. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  13. Therapeutic hypothermia for acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Weber, Uno Jakob; Kammersgaard, Lars Peter

    2003-01-01

    Experimental evidence and clinical experience show that hypothermia protects the brain from damage during ischaemia. There is a growing hope that the prevention of fever in stroke will improve outcome and that hypothermia may be a therapeutic option for the treatment of stroke. Body temperature...... obvious therapeutic potential, hypothermia as a form of neuroprotection for stroke has been investigated in only a few very small studies. Therapeutic hypothermia is feasible in acute stroke but owing to serious side-effects--such as hypotension, cardiac arrhythmia, and pneumonia--it is still thought...

  14. Therapeutic drug monitoring of antimicrobials

    Science.gov (United States)

    Roberts, Jason A; Norris, Ross; Paterson, David L; Martin, Jennifer H

    2012-01-01

    Optimizing the prescription of antimicrobials is required to improve clinical outcome from infections and to reduce the development of antimicrobial resistance. One such method to improve antimicrobial dosing in individual patients is through application of therapeutic drug monitoring (TDM). The aim of this manuscript is to review the place of TDM in the dosing of antimicrobial agents, specifically the importance of pharmacokinetics (PK) and pharmacodynamics (PD) to define the antimicrobial exposures necessary for maximizing killing or inhibition of bacterial growth. In this context, there are robust data for some antimicrobials, including the ratio of a PK parameter (e.g. peak concentration) to the minimal inhibitory concentration of the bacteria associated with maximal antimicrobial effect. Blood sampling of an individual patient can then further define the relevant PK parameter value in that patient and, if necessary, antimicrobial dosing can be adjusted to enable achievement of the target PK/PD ratio. To date, the clinical outcome benefits of a systematic TDM programme for antimicrobials have only been demonstrated for aminoglycosides, although the decreasing susceptibility of bacteria to available antimicrobials and the increasing costs of pharmaceuticals, as well as emerging data on pharmacokinetic variability, suggest that benefits are likely. PMID:21831196

  15. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  16. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    Yang, Danbo; Yu, Lei; Van, Sang

    2010-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  17. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Danbo [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Yu, Lei, E-mail: yu-lei@gg.nitto.co.jp [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States); Van, Sang [Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2010-12-23

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  18. Immunogenicity of therapeutic proteins: the use of animal models.

    Science.gov (United States)

    Brinks, Vera; Jiskoot, Wim; Schellekens, Huub

    2011-10-01

    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far.

  19. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia

    Directory of Open Access Journals (Sweden)

    Claudio Nardiello

    2017-02-01

    Full Text Available Progress in developing new therapies for bronchopulmonary dysplasia (BPD is sometimes complicated by the lack of a standardised animal model. Our objective was to develop a robust hyperoxia-based mouse model of BPD that recapitulated the pathological perturbations to lung structure noted in infants with BPD. Newborn mouse pups were exposed to a varying fraction of oxygen in the inspired air (FiO2 and a varying window of hyperoxia exposure, after which lung structure was assessed by design-based stereology with systemic uniform random sampling. The efficacy of a candidate therapeutic intervention using parenteral nutrition was evaluated to demonstrate the utility of the standardised BPD model for drug discovery. An FiO2 of 0.85 for the first 14 days of life decreased total alveoli number and concomitantly increased alveolar septal wall thickness, which are two key histopathological characteristics of BPD. A reduction in FiO2 to 0.60 or 0.40 also caused a decrease in the total alveoli number, but the septal wall thickness was not impacted. Neither a decreasing oxygen gradient (from FiO2 0.85 to 0.21 over the first 14 days of life nor an oscillation in FiO2 (between 0.85 and 0.40 on a 24 h:24 h cycle had an appreciable impact on lung development. The risk of missing beneficial effects of therapeutic interventions at FiO2 0.85, using parenteral nutrition as an intervention in the model, was also noted, highlighting the utility of lower FiO2 in selected studies, and underscoring the need to tailor the model employed to the experimental intervention. Thus, a state-of-the-art BPD animal model that recapitulates the two histopathological hallmark perturbations to lung architecture associated with BPD is described. The model presented here, where injurious stimuli have been systematically evaluated, provides a most promising approach for the development of new strategies to drive postnatal lung maturation in affected infants.

  20. Evaluation of therapeutic patient education

    OpenAIRE

    D'Ivernois , Jean-François; Gagnayre , Rémi; Assal , Jean-Philippe; Golay , Alain; Libion , France; Deccache , Alain

    2006-01-01

    9 pages; These guidelines mainly focus on the principles of evaluating Therapeutic Patient Education; Over the past thirty years, therapeutic patient education (TPE) has become an essential part of the treatment of long-term diseases. Evaluations of this new practice are expected, and are sometimes imposed according to protocols and criteria that do not always reflect the complexity of changes taking place within patients and healthcare providers. Sometimes, expected results are not achieved ...

  1. Profiling Prostate Cancer Therapeutic Resistance

    OpenAIRE

    Cameron A. Wade; Natasha Kyprianou

    2018-01-01

    The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival ...

  2. Immunology. Therapeutic manipulation of gut flora.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    In developed countries as many as two individuals in every thousand suffer from inflammatory bowel disease (ulcerative colitis and Crohn\\'s disease). In his Perspective, Shanahan discusses a new therapeutic approach to treating these conditions in which bacteria normally found in the gut are engineered to produce the anti-inflammatory cytokine interleukin-10 and then are fed as probiotics to mice with these disorders (Steidler et al.).

  3. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  4. Development of New Treatments for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, R. S.; Abate-Shen, C.; Hait, W. N.

    2005-02-01

    The Dean and Betty Gallo Prostate Cancer Center (GPCC) was established with the goal of eradicating prostate cancer and improving the lives of men at risk for the disease through research, treatment, education and prevention. GPCC was founded in the memory of Dean Gallo, a beloved New Jersey Congressman who died tragically of prostate cancer diagnosed at an advanced stage. GPCC unites a team of outstanding researchers and clinicians who are committed to high-quality basic research, translation of innovative research to the clinic, exceptional patient care, and improving public education and awareness of prostate cancer. GPCC is a center of excellence of The Cancer Institute of New Jersey, which is the only NCI-designated comprehensive cancer center in the state. GPCC efforts are now integrated well as part of our Prostate Program at CINJ, in which Dr. Robert DiPaola and Dr. Cory Abate-Shen are co-leaders. The Prostate Program unites 19 investigators from 10 academic departments who have broad and complementary expertise in prostate cancer research. The overall goal and unifying theme is to elucidate basic mechanisms of prostate growth and oncogenesis, with the ultimate goal of promoting new and effective strategies for the eradication of prostate cancer. Members' wide range of research interests collectively optimize the chances of providing new insights into normal prostate biology and unraveling the molecular pathophysiology of prostate cancer. Cell culture and powerful animal models developed by program members recapitulate the various stages of prostate cancer progression, including prostatic intraepithelial neoplasia, adenocarcinoma, androgen-independence, invasion and metastases. These models promise to further strengthen an already robust program of investigator-initiated therapeutic clinical trials, including studies adopted by national cooperative groups. Efforts to translate laboratory results into clinical studies of early detection and

  5. MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids

    Science.gov (United States)

    Liu, Xin; Flinders, Colin; Mumenthaler, Shannon M.; Hummon, Amanda B.

    2018-03-01

    Patient-derived colorectal tumor organoids (CTOs) closely recapitulate the complex morphological, phenotypic, and genetic features observed in in vivo tumors. Therefore, evaluation of drug distribution and metabolism in this model system can provide valuable information to predict the clinical outcome of a therapeutic response in individual patients. In this report, we applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to examine the spatial distribution of the drug irinotecan and its metabolites in CTOs from two patients. Irinotecan is a prodrug and is often prescribed as part of therapeutic regimes for patients with advanced colorectal cancer. Irinotecan shows a time-dependent and concentration-dependent permeability and metabolism in the CTOs. More interestingly, the active metabolite SN-38 does not co-localize well with the parent drug irinotecan and the inactive metabolite SN-38G. The phenotypic effect of irinotecan metabolism was also confirmed by a viability study showing significantly reduced proliferation in the drug treated CTOs. MALDI-MSI can be used to investigate various pharmaceutical compounds in CTOs derived from different patients. By analyzing multiple CTOs from a patient, this method could be used to predict patient-specific drug responses and help to improve personalized dosing regimens. [Figure not available: see fulltext.

  6. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    International Nuclear Information System (INIS)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-01-01

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response

  7. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  8. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications

    NARCIS (Netherlands)

    Rizzo, L.Y.; Theek, B.; Storm, Gerrit; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    In recent years, the use of nanomedicine formulations for therapeutic and diagnostic applications has increased exponentially. Many different systems and strategies have been developed for drug targeting to pathological sites, as well as for visualizing and quantifying important (patho-)

  9. Achieving the Promise of Therapeutic Extracellular Vesicles: The Devil is in Details of Therapeutic Loading.

    Science.gov (United States)

    Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D

    2017-05-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.

  10. Implications for Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    A. L. Hof

    2001-01-01

    Full Text Available Patients with an upper motor neurone syndrome (CP suffer from many disabling primary symptoms: spasms, weakness, and loss of dexterity. These primary ‘neurogenic’ symptoms often lead to secondary disabilities, muscle contractures, and tertiary effects, bone deformations. A common symptom of CP is hypertonia, with. the consequence that the involved muscles remain in an excessively shortened length for most of the time. As a normal reaction of the muscle tissue, the number of sarcomeres is reduced and the muscle fibers shorten permanently: a contracture develops. A possible second type of contracture is that normal muscle lengthening along with bone growth is affected. Current treatments for the secondary effects include (1 reduction of muscle force, (2lengthening of the muscle fibers by serial plaster casts, and (3surgical lengthening of tendons or aponeurosis. The choice of treatment depends on the cause of the functional deficit. Bone tissue also adapts itself to abnormal forces, especially in the growth period. The hypertonias or contractures of CP so may give rise to bone malformations that interfere with function (e.g. femur endorotation or may reduce the action of muscles by changing the lever arm (e.g. ankle varus. Although prevention should always be preferred, a timely surgical intervention cannot always be avoided. The differences in treatment for the various groups require and justify an extensive laboratory investigation, including EMG recordings in gait, measurement of passive elastic properties, and long-term observation of the hypertonia.

  11. Toxicological perspectives of inhaled therapeutics and nanoparticles.

    Science.gov (United States)

    Hayes, Amanda J; Bakand, Shahnaz

    2014-07-01

    The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges. This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface. Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.

  12. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis

    Directory of Open Access Journals (Sweden)

    Christoph Niemietz

    2015-09-01

    Full Text Available The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR, expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP. Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO and small interfering RNA (siRNA designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.

  13. Genome Engineering for Personalized Arthritis Therapeutics.

    Science.gov (United States)

    Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P; Wu, Chia-Lung; Gersbach, Charles A; Guilak, Farshid

    2017-10-01

    Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Predictive and therapeutic markers in ovarian cancer

    Science.gov (United States)

    Gray, Joe W.; Guan, Yinghui; Kuo, Wen-Lin; Fridlyand, Jane; Mills, Gordon B.

    2013-03-26

    Cancer markers may be developed to detect diseases characterized by increased expression of apoptosis-suppressing genes, such as aggressive cancers. Genes in the human chromosomal regions, 8q24, 11q13, 20q11-q13, were found to be amplified indicating in vivo drug resistance in diseases such as ovarian cancer. Diagnosis and assessment of amplification levels certain genes shown to be amplified, including PVT1, can be useful in prediction of poor outcome of patient's response and drug resistance in ovarian cancer patients with low survival rates. Certain genes were found to be high priority therapeutic targets by the identification of recurrent aberrations involving genome sequence, copy number and/or gene expression are associated with reduced survival duration in certain diseases and cancers, specifically ovarian cancer. Therapeutics to inhibit amplification and inhibitors of one of these genes, PVT1, target drug resistance in ovarian cancer patients with low survival rates is described.

  15. RNAi Therapeutics in Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Seunghee Cha

    2013-03-01

    Full Text Available Since the discovery of RNA interference (RNAi, excitement has grown over its potential therapeutic uses. Targeting RNAi pathways provides a powerful tool to change biological processes post-transcriptionally in various health conditions such as cancer or autoimmune diseases. Optimum design of shRNA, siRNA, and miRNA enhances stability and specificity of RNAi-based approaches whereas it has to reduce or prevent undesirable immune responses or off-target effects. Recent advances in understanding pathogenesis of autoimmune diseases have allowed application of these tools in vitro as well as in vivo with some degree of success. Further research on the design and delivery of effectors of RNAi pathway and underlying molecular basis of RNAi would warrant practical use of RNAi-based therapeutics in human applications. This review will focus on the approaches used for current therapeutics and their applications in autoimmune diseases, including rheumatoid arthritis and Sjögren’s syndrome.

  16. Conflicts in the therapeutic field

    Directory of Open Access Journals (Sweden)

    Antonino Aprea

    2012-06-01

    Full Text Available How the analytical knowledge that compare human consciousness with that, even more disturbing, moving behind his fifth can be said to be “for peace”? It can be - and this will be the contribution of the proposal - the same tortuous and enigmatic of therapeutic practice, with its hesitations and his impulses, to outline a path crossing and overcoming the conflict? May, finally, peace, in the sense of feasibility of intra-and interpersonal dialectic instead of tearing and hostileconfrontation with oneself and with the other, to be a reference in some crucial pivot of ethical therapeutic work? To these questions the intervention seeks to answer retracing some of the highlights of almost three years of therapeutic work with a young woman and her family.

  17. [Therapeutic touch and anorexia nervosa].

    Science.gov (United States)

    Satori, Nadine

    2016-01-01

    An innovative practice, therapeutic touch has been used for around ten years in the treatment of eating disorders. Delivered by nurse clinicians having received specific training, this approach is based on nursing diagnoses which identify the major symptoms of this pathology. The support is built around the body and its perceptions. Through the helping relationship, it mobilises the patient's resources to favour a relationship of trust, a letting-go, physical, psychological and emotional relaxation, and improves the therapeutic alliance. Copyright © 2016. Published by Elsevier Masson SAS.

  18. Examinando o desenho infantil como recurso terapêutico para o desenvolvimento de linguagem de crianças surdas Examining children's drawing as a therapeutic resource for deaf children's language development

    Directory of Open Access Journals (Sweden)

    Claudia Campos Machado Araújo

    2008-06-01

    stemming from a Historic-Cultural perspective. The subjects of this case report were two bilingual male deaf children with ages between nine and ten years, both with profound bilateral hearing loss and complaints of delay in their language development. Data were gathered for a year, producing 30 hours of video recordings and reports regarding the 60-minutes weekly therapy sessions that were carried out during this period. Taking children's, language's and drawing's development as a constantly-changing process, the focus of the analyses was the emergence of actions-in-change and the dynamics of the interactions between the studied subjects. Results showed that the priority given to the use of sign language associated with the therapeutic focus on signic activities, which took into account linguistic particularities and semiotic mediations, were vital for language acquisition and development to favor deaf children's social practices.

  19. Therapeutic validity and effectiveness of preoperative exercise on functional recovery after joint replacement: a systematic review and meta-analysis.

    NARCIS (Netherlands)

    Hoogeboom, T.J.; Oosting, E.; Vriezekolk, J.E.; Veenhof, C.; Siemonsma, P.C.; Bie, R.A. de; Ende, C.H.M. van den; Meeteren, N.L.U. van

    2012-01-01

    Background: Our aim was to develop a rating scale to assess the therapeutic validity of therapeutic exercise programmes. By use of this rating scale we investigated the therapeutic validity of therapeutic exercise in patients awaiting primary total joint replacement (TJR). Finally, we studied the

  20. Therapy Talk: Analyzing Therapeutic Discourse

    Science.gov (United States)

    Leahy, Margaret M.

    2004-01-01

    Therapeutic discourse is the talk-in-interaction that represents the social practice between clinician and client. This article invites speech-language pathologists to apply their knowledge of language to analyzing therapy talk and to learn how talking practices shape clinical roles and identities. A range of qualitative research approaches,…

  1. Therapeutic approaches to genetic disorders

    African Journals Online (AJOL)

    salah

    Although prevention is the ideal goal for genetic disorders, various types of therapeutic ... The patient being ... pirical or aimed at controlling or mediating signs and symptoms without care. ... plications and gene therapy approaches .... genes family, have opened a wide and .... cancer where nanoparticles are used to.

  2. Medical therapeutic effect of hyperthyroidism

    International Nuclear Information System (INIS)

    Lee, K.B.

    1980-01-01

    In order to compare the therapeutic effect as well as side effects between antithyroid therapy and radioiodine therapy in hyperthyroidism, the author evaluated 111 cases of hyperthyroidism which were composed of 57 patients with antithyroid treatment, 23 patients with combined treatment comprising of antithyroid and radioactive iodine ( 131 I) and 31 patients with treatment of 131 I alone. (author)

  3. Pain and endometriosis: Etiology, impact, and therapeutics

    Directory of Open Access Journals (Sweden)

    Robert N. Taylor

    2012-12-01

    Full Text Available The association of pain and endometriosis was recognized with the first definitive published reports of this disorder. Unfortunately, the precise etiologies and pathways leading to nociception and pain symptoms in endometriosis remain poorly understood, and as a result, effective therapeutic interventions are lacking with consequent profound effects on affected women’s quality of life. In this opinion paper we summarize selected proceedings presented at the 28th Annual Meeting of the European Society of Human Reproduction and Embryology (ESHRE in Istanbul, Turkey, and review the clinical and translational evidence of chronic pain, neurogenesis, and the pernicious impact of dyspareunia on women with symptomatic endometriosis. The effectiveness of medical treatments is critically assessed and the findings indicate that good therapeutic options are available with extant medications effective in some sub-groups of women with endometriosis, many of which are affordable globally. Nevertheless, new management strategies and drugs need to be developed to increase the options of all afflicted women to minimize and ideally eradicate painful symptoms of endometriosis. However, only by elucidating distinctions among sub-groups with specific symptoms, suggesting different mechanisms, are we likely to derive truly successful therapeutic strategies.

  4. The therapeutic alliance: a psychoanalytic perspective.

    Science.gov (United States)

    Freebury, D R

    1989-11-01

    Psychoanalysis has long distinguished between the transference neurosis and that part of the communication between therapist and patient which depends upon a relatively intact part of the patient's ego. It has been proposed that it is this capacity of the patient that sustains the difficult work of dealing with communications which are the consequence of transference, and which often threaten the viability of the treatment. This quality has been referred to variously as the unobjectionable positive transference, rational transference, mature transference, therapeutic alliance and working alliance. The ever broadening scope of Psychoanalysis, along with our greater knowledge of early childhood development, has enhanced our understanding of the many influences affecting the treatment alliances. Newer views of the transference, which stress the significance of the therapists' contributions to the therapeutic dyad, make it clear that the therapeutic alliance can no longer be explained as some simple, reality based, conflict free, motivating force. It involves, rather, a complex interaction of several factors, to each of which one must add the therapists' reciprocal reactions. Psychotherapy outcome research will need to take all of these factors into consideration.

  5. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    Science.gov (United States)

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  6. Therapeutic experiences of community gardens: putting flow in its place.

    Science.gov (United States)

    Pitt, Hannah

    2014-05-01

    This paper develops the concept of therapeutic place experiences by considering the role of activity. Research of community gardening finds that particular tasks are therapeutic and exhibit the characteristics of flow, but those who lack influence over their community gardening are less likely to benefit from flow as their sense of control is reduced. The notion of emplaced flow is proposed to locate individual experiences amongst socio-spatial factors which limit self-determinacy and therefore affect wellbeing. Emplacing flow prompts critical reflection on who is excluded from therapeutic place experiences, and whether sites offering momentary escape have an enduring impact on wellbeing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A modular platform for targeted RNAi therapeutics.

    Science.gov (United States)

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-03-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs 1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting 4-8 , their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  8. Unexplored therapeutic opportunities in the human genome.

    Science.gov (United States)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren; Campbell, Allen; Gan, Gregory N; Gaulton, Anna; Gomez, Shawn M; Guha, Rajarshi; Hersey, Anne; Holmes, Jayme; Jadhav, Ajit; Jensen, Lars Juhl; Johnson, Gary L; Karlson, Anneli; Leach, Andrew R; Ma'ayan, Avi; Malovannaya, Anna; Mani, Subramani; Mathias, Stephen L; McManus, Michael T; Meehan, Terrence F; von Mering, Christian; Muthas, Daniel; Nguyen, Dac-Trung; Overington, John P; Papadatos, George; Qin, Jun; Reich, Christian; Roth, Bryan L; Schürer, Stephan C; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Tomita, Susumu; Tudose, Ilinca; Ursu, Oleg; Vidovic, Dušica; Waller, Anna; Westergaard, David; Yang, Jeremy J; Zahoránszky-Köhalmi, Gergely

    2018-05-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

  9. A modular platform for targeted RNAi therapeutics

    Science.gov (United States)

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-01-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  10. The therapeutic journey of benzimidazoles: a review.

    Science.gov (United States)

    Bansal, Yogita; Silakari, Om

    2012-11-01

    Presence of benzimidazole nucleus in numerous categories of therapeutic agents such as antimicrobials, antivirals, antiparasites, anticancer, anti-inflammatory, antioxidants, proton pump inhibitors, antihypertensives, anticoagulants, immunomodulators, hormone modulators, CNS stimulants as well as depressants, lipid level modulators, antidiabetics, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substitutents around the benzimidazole nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, Angiotensin I (AT(1)) receptor antagonism and proton-pump inhibition is reviewed separately in literature. Even some very short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing benzimidazole nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of benzimidazole nucleus in medicinal chemistry research. In the present review, various derivatives of benzimidazole with different pharmacological activities are described on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole derived compounds for each activity. This discussion will further help in the development of novel benzimidazole compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Poly(2-oxazoline)s as Polymer Therapeutics

    OpenAIRE

    Luxenhofer, Robert; Han, Yingchao; Schulz, Anita; Tong, Jing; He, Zhijian; Kabanov, Alexander V.; Jordan, Rainer

    2012-01-01

    Poly(2-oxazoline)s (POx) are currently discussed as an upcoming platform for biomaterials design and especially for polymer therapeutics. POx meets several requirements needed for the development of next-generation polymer therapeutics such as biocompatibility, high modulation of solubility, variation of size, architecture as well as chemical functionality. Although in the early 1990s first and promising POx-based systems were presented but the field lay dormant for almost two decades. Only v...

  12. Bioactive Antimicrobial Peptides as Therapeutics for Corneal Wounds and Infections

    OpenAIRE

    Griffith, Gina L.; Kasus-Jacobi, Anne; Pereira, H. Anne

    2017-01-01

    Significance: More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which th...

  13. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New and exploratory therapeutic agents for asthma

    National Research Council Canada - National Science Library

    Yeadon, Michael; Diamant, Zuzana

    2000-01-01

    ... been accomplished. It is well recognized that new drugs are essentially the result of basic and applied research. Early in this century, the advent of a chemical approach to medicine led to many extraordinary developments. The past few decades have been characterized by a search to understand the mechanisms of disease- a quest spurred by the recognition that if pathogenic processes were known, new therapeutic opportunities would ensue. The validity of this concept is beautifully illustrated in the case of asthma. Here is a d...

  15. Therapeutic and reproductive cloning: a critique.

    Science.gov (United States)

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  16. Therapeutic ultrasound - Exciting applications and future challenges

    Science.gov (United States)

    Saffari, Nader

    2018-04-01

    This paper presents an overview of the applications of ultrasound for the treatment of an ever-growing range of medical conditions. After presenting a brief history of the development of therapeutic ultrasound, the different mechanisms by which beneficial bio-effects are triggered will be discussed. This will be followed by a discussion of some of the more promising applications, some of which have already been licensed and introduced into the clinic. The case of liver tumour ablation will be discussed to demonstrate some of the engineering challenges that still need to be overcome before this technology finds wider uptake in the medical world.

  17. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  18. Tapping the RNA world for therapeutics.

    Science.gov (United States)

    Lieberman, Judy

    2018-04-16

    A recent revolution in RNA biology has led to the identification of new RNA classes with unanticipated functions, new types of RNA modifications, an unexpected multiplicity of alternative transcripts and widespread transcription of extragenic regions. This development in basic RNA biology has spawned a corresponding revolution in RNA-based strategies to generate new types of therapeutics. Here, I review RNA-based drug design and discuss barriers to broader applications and possible ways to overcome them. Because they target nucleic acids rather than proteins, RNA-based drugs promise to greatly extend the domain of 'druggable' targets beyond what can be achieved with small molecules and biologics.

  19. [Therapeutic use of cannabis derivatives].

    Science.gov (United States)

    Benyamina, Amine; Reynaud, Michel

    2014-02-01

    The therapeutic use of cannabis has generated a lot of interest in the past years, leading to a better understanding of its mechanisms of action. Countries like the United States and Canada have modified their laws in order to make cannabinoid use legal in the medical context. It's also the case in France now, where a recent decree was issued, authorizing the prescription of medication containing "therapeutic cannabis" (decree no. 2013-473, June 5, 2013). Cannabinoids such as dronabinol, Sativex and nabilone have been tested for the treatment of acute and chronic pain. These agents are most promising to relieve chronic pain associated with cancer, with human immunodeficiency virus infection and with multiple sclerosis. However, longer-term studies are required to determine potential long-term adverse effects and risks of misuse and addiction.

  20. Therapeutic Dancing for Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Lorenna Pryscia Carvalho Aguiar

    2016-06-01

    Full Text Available Therapeutic dancing has been advocated as an effective adjunct to conventional physical therapies for people living with Parkinson's disease (PD. This systematic review evaluates studies on the outcomes of different dance genres on mobility and quality of life in PD. We searched databases including CINHAL (1982–2015, Medline (1922–2015, Scopus (1996–2015, Web of Science (2002–2015, Embase (2007–2015, PEDro (1999–2015 and the Cochrane Library (1996–2015. The key words were: Parkinson's disease, Parkinson*, Parkinsonism, dance, dance therapy, dance genres, safety, feasibility, and quality of life. Two independent investigators reviewed the texts. Only randomized controlled trials, quasirandomized controlled trials, and case series studies were included. There was emerging evidence that therapeutic dance can be safe and feasible for people with mild to moderately severe PD, with beneficial effects on walking, freezing of gait, and health related quality of life.

  1. Sinigrin and Its Therapeutic Benefits

    Directory of Open Access Journals (Sweden)

    Anisha Mazumder

    2016-03-01

    Full Text Available Sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate is a natural aliphatic glucosinolate present in plants of the Brassicaceae family, such as broccoli and brussels sprouts, and the seeds of Brassica nigra (mustard seeds which contain high amounts of sinigrin. Since ancient times, mustard has been used by mankind for its culinary, as well as medicinal, properties. It has been systematically described and evaluated in the classical Ayurvedic texts. Studies conducted on the pharmacological activities of sinigrin have revealed anti-cancer, antibacterial, antifungal, antioxidant, anti-inflammatory, wound healing properties and biofumigation. This current review will bring concise information about the known therapeutic activities of sinigrin. However, the information on known biological activities is very limited and, hence, further studies still need to be conducted and its molecular mechanisms also need to be explored. This review on the therapeutic benefits of sinigrin can summarize current knowledge about this unique phytocompounds.

  2. Report on the Technical Meeting on Therapeutic Radiopharmaceuticals

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the TM was to provide an experts' platform to facilitate exploring the current status and future directions on therapeutic radiopharmaceuticals. The invited talks and presentations in the TM were in the following topics: - Radionuclide Production; - Production and availability of alpha emitters and their radiopharmaceuticals; - Therapeutic radiopharmaceutical chemistry; - Targets and biological evaluation; - Medical physics and dosimetry; - Clinical applications including radioimmunotherapy and clinical needs; - Peptide receptor mediated therapy Panel discussions: - Radionuclide therapy using alpha emitters; - Regulatory challenges with therapeutic radiopharmaceuticals; - International activities in radionuclide therapy. he technical meeting generated a large interest among scientists and physicians working in the field of targeted therapy using radiopharmaceuticals. Participants from both developed and developing MS reported on recent developments on the research work and clinical studies going on in the field and provided their views on the future developments in this field. The unexpected high number of participants and the high number of presentations with exceptional quality underlines the great interest of scientists and professionals in therapeutic applications using radiolabelled drugs / biomolecules. The intensive discussions including panels specified the challenges in the future on developing novel agents and to finally use them for the benefit of patients. The IAEA can play as vital role in streamlining developments and to provide tools to overcome scientific, professional and regulatory challenges in the field of therapeutic radiopharmaceuticals

  3. Report on the Technical Meeting on Therapeutic Radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The purpose of the TM was to provide an experts' platform to facilitate exploring the current status and future directions on therapeutic radiopharmaceuticals. The invited talks and presentations in the TM were in the following topics: - Radionuclide Production; - Production and availability of alpha emitters and their radiopharmaceuticals; - Therapeutic radiopharmaceutical chemistry; - Targets and biological evaluation; - Medical physics and dosimetry; - Clinical applications including radioimmunotherapy and clinical needs; - Peptide receptor mediated therapy Panel discussions: - Radionuclide therapy using alpha emitters; - Regulatory challenges with therapeutic radiopharmaceuticals; - International activities in radionuclide therapy. he technical meeting generated a large interest among scientists and physicians working in the field of targeted therapy using radiopharmaceuticals. Participants from both developed and developing MS reported on recent developments on the research work and clinical studies going on in the field and provided their views on the future developments in this field. The unexpected high number of participants and the high number of presentations with exceptional quality underlines the great interest of scientists and professionals in therapeutic applications using radiolabelled drugs / biomolecules. The intensive discussions including panels specified the challenges in the future on developing novel agents and to finally use them for the benefit of patients. The IAEA can play as vital role in streamlining developments and to provide tools to overcome scientific, professional and regulatory challenges in the field of therapeutic radiopharmaceuticals

  4. Potential Therapeutic Effects of Psilocybin.

    Science.gov (United States)

    Johnson, Matthew W; Griffiths, Roland R

    2017-07-01

    Psilocybin and other 5-hydroxytryptamine 2A agonist classic psychedelics have been used for centuries as sacraments within indigenous cultures. In the mid-twentieth century they were a focus within psychiatry as both probes of brain function and experimental therapeutics. By the late 1960s and early 1970s these scientific inquires fell out of favor because classic psychedelics were being used outside of medical research and in association with the emerging counter culture. However, in the twenty-first century, scientific interest in classic psychedelics has returned and grown as a result of several promising studies, validating earlier research. Here, we review therapeutic research on psilocybin, the classic psychedelic that has been the focus of most recent research. For mood and anxiety disorders, three controlled trials have suggested that psilocybin may decrease symptoms of depression and anxiety in the context of cancer-related psychiatric distress for at least 6 months following a single acute administration. A small, open-label study in patients with treatment-resistant depression showed reductions in depression and anxiety symptoms 3 months after two acute doses. For addiction, small, open-label pilot studies have shown promising success rates for both tobacco and alcohol addiction. Safety data from these various trials, which involve careful screening, preparation, monitoring, and follow-up, indicate the absence of severe drug-related adverse reactions. Modest drug-related adverse effects at the time of medication administration are readily managed. US federal funding has yet to support therapeutic psilocybin research, although such support will be important to thoroughly investigate efficacy, safety, and therapeutic mechanisms.