WorldWideScience

Sample records for therapeutically relevant circadian

  1. Therapeutic applications of circadian rhythms for the cardiovascular system

    Science.gov (United States)

    Tsimakouridze, Elena V.; Alibhai, Faisal J.; Martino, Tami A.

    2015-01-01

    The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically. PMID:25941487

  2. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy

    Science.gov (United States)

    Ozturk, Narin; Ozturk, Dilek; Halil Kavakli, Ibrahim; Okyar, Alper

    2017-01-01

    The circadian timing system (CTS) controls various biological functions in mammals including xenobiotic metabolism and detoxification, immune functions, cell cycle events, apoptosis and angiogenesis. Although the importance of the CTS is well known in the pharmacology of drugs, it is less appreciated at the clinical level. Genome-wide studies highlighted that the majority of drug target genes are controlled by CTS. This suggests that chronotherapeutic approaches should be taken for many drugs to enhance their effectiveness. Currently chronotherapeutic approaches are successfully applied in the treatment of different types of cancers. The chronotherapy approach has improved the tolerability and antitumor efficacy of anticancer drugs both in experimental animals and in cancer patients. Thus, chronobiological studies have been of importance in determining the most appropriate time of administration of anticancer agents to minimize their side effects or toxicity and enhance treatment efficacy, so as to optimize the therapeutic ratio. This review focuses on the underlying mechanisms of the circadian pharmacology i.e., chronopharmacokinetics and chronopharmacodynamics of anticancer agents with the molecular aspects, and provides an overview of chronotherapy in cancer and some of the recent advances in the development of chronopharmaceutics. PMID:29039812

  3. PER2 rs2304672 polymorphism moderates circadian-relevant reward circuitry activity in adolescents.

    Science.gov (United States)

    Forbes, Erika E; Dahl, Ronald E; Almeida, Jorge R C; Ferrell, Robert E; Nimgaonkar, Vishwajit L; Mansour, Hader; Sciarrillo, Samantha R; Holm, Stephanie M; Rodriguez, Eric E; Phillips, Mary L

    2012-03-01

    Reward behavior in animals is influenced by circadian genes, including clock-pathway genes such as Period2 (PER2). Several forms of psychiatric illness are associated with both altered reward function and disturbances in circadian function. The PER2 single nucleotide polymorphism (SNP) rs2304672 has been associated with psychiatric illnesses involving reward dysfunction. Associations among circadian genes, function in neural reward circuits, and circadian-influenced behavior have not yet been studied in humans, however. 90 healthy adolescents underwent functional magnetic resonance imaging during a guessing task with monetary reward, genotyping for two PER2 SNPs (rs2304672, rs2304674), and actigraphy to measure sleep in their home environments. Weekend sleep midpoint, a behavioral index of circadian function, was derived from actigraphy. Puberty was measured by physical exam. The rs2304672 SNP predicted blood oxygenation level-dependent response to monetary reward as constrained by sleep midpoint. Later sleep midpoint was associated with reduced activity in a key component of reward circuitry, medial prefrontal cortex (mPFC; Brodmann area 9/10/32), to reward outcome (p(corrected) circadian genes have a significant impact upon circadian-relevant reward circuitry in humans. These findings have the potential to elucidate gene-brain-behavior relationships underlying reward processing and psychopathology.

  4. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  5. Issues of therapeutic communication relevant for improving quality of care

    Science.gov (United States)

    Popa-Velea, O; Purcărea, VL

    2014-01-01

    Communication issues are extensively considered a topic of high interest for improving the efficacy of the therapeutic act. This article aimed to overview several issues of therapeutic communication relevant for improving quality of care. A number of 15 bibliographic resources on these topics published in peer-reviewed journals between 1975 and 2010, and indexed in PubMed, ProQuest and EBSCO databases were examined, to seek for evidence regarding these data. Results highlight a number of communication problems commonly reported in the literature, such as the lack of physician communicational skills or their deterioration, the persistence of an asymmetric therapeutic communicational model, communication obstacles brought by the disease itself or by several variables pertaining to the patient, including specific demographic and psychological contexts. Equally, literature reports ways of improving therapeutic communication, such as optimizing the clinical interview, better time management techniques or assertiveness. Integration of communication training in the bio-psycho-social model of care and monitoring parameters like adherence and quality of life as tools reflecting also a good therapeutic communication can be valuable future approaches of obtaining better results in this area. PMID:27057247

  6. [Relevance between writing characteristic and therapeutic effect in schizophrenia].

    Science.gov (United States)

    Li, Chun-Yan; Cai, Wei-Xiong

    2014-04-01

    To explore the relevance between writing characteristic and therapeutic effect in schizophrenia and to discuss the influence of aggressive behavior on writing characteristic. Recoding the casual and fixed writing in admission, one week, two weeks, four weeks, eight weeks after treatment and rating Positive and Negative Syndrome Scale (PANSS) and Modified Overt Aggression Scale (MOAS). Choosing two characteristics, "relationship between font and grid lines" and "having big strokes or not", and comparing before and after treatment. Eight weeks after treatment, the score of PANSS decreased. The condition of patients and the writing characteristic improved as well. The differences of writing characteristics were statistically significant in patients with aggressive behavior before and after treatment (P aggressive patients.

  7. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease.

    Science.gov (United States)

    van Wamelen, Daniel J; Roos, Raymund Ac; Aziz, Nasir A

    2015-12-01

    Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.

  8. Is the amyloid hypothesis of Alzheimer's disease therapeutically relevant?

    Science.gov (United States)

    Teich, Andrew F; Arancio, Ottavio

    2012-09-01

    The conventional view of AD (Alzheimer's disease) is that much of the pathology is driven by an increased load of β-amyloid in the brain of AD patients (the 'Amyloid Hypothesis'). Yet, many therapeutic strategies based on lowering β-amyloid have so far failed in clinical trials. This failure of β-amyloid-lowering agents has caused many to question the Amyloid Hypothesis itself. However, AD is likely to be a complex disease driven by multiple factors. In addition, it is increasingly clear that β-amyloid processing involves many enzymes and signalling pathways that play a role in a diverse array of cellular processes. Thus the clinical failure of β-amyloid-lowering agents does not mean that the hypothesis itself is incorrect; it may simply mean that manipulating β-amyloid directly is an unrealistic strategy for therapeutic intervention, given the complex role of β-amyloid in neuronal physiology. Another possible problem may be that toxic β-amyloid levels have already caused irreversible damage to downstream cellular pathways by the time dementia sets in. We argue in the present review that a more direct (and possibly simpler) approach to AD therapeutics is to rescue synaptic dysfunction directly, by focusing on the mechanisms by which elevated levels of β-amyloid disrupt synaptic physiology.

  9. Lactate dehydrogenase inhibition: biochemical relevance and therapeutical potential.

    Science.gov (United States)

    Laganà, Giuseppina; Barreca, Davide; Calderaro, Antonella; Bellocco, Ersilia

    2017-02-08

    Lactate dehydrogenase (LHD) is a key enzyme of anaerobic metabolism in almost all living organisms and it is also a functional checkpoint for glucose restoration during gluconeogenesis and single-stranded DNA metabolism. This enzyme has a well preserved structure during evolution and among the species, with little, but sometimes very useful, changes in the amino acid sequence, which makes it an attractive target for the design and construction of functional molecules able to modulate its catalytic potential and expression. Research has focused mainly on the selection of modulator especially as far as LDH isozymes (especially LDH-5) and lactate dehydrogenases of Plasmodium falciparum (pfLDH) are concerned. This review summarizes the recent advances in the design and development of inhibitors, pointing out their specificity and therapeutic potentials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Recent advances in psychoneuroimmunology relevant to schizophrenia therapeutics.

    Science.gov (United States)

    Debnath, Monojit; Venkatasubramanian, Ganesan

    2013-09-01

    Immunological understanding of neurological and cognitive alterations of schizophrenia has made a significant breakthrough in unfolding the pathophysiological mechanisms of schizophrenia, at least in a group of patients. Such psychoneuroimmunological aberrations essentially argue for an alternative treatment approach based on immunomodulation in schizophrenia. Recent findings in schizophrenia have shown exaggerated immuno-inflammatory responses due to persistent systemic inflammation and neuroinflammation involving microglia activation. The existing antipsychotic drugs have shown substantial benefits in the control of positive symptoms, but they have not demonstrated adequate immuno-dampening effects specifically and effectively. However, a group of emerging nonsteroidal as well as other anti-inflammatory drugs currently being used as an adjunct therapy seem to exhibit increased target specificity and effectiveness in reducing symptom severity to some extent. The anti-inflammatory drugs that have been shown to reduce the levels of pro-inflammatory mediators and inhibit microglia activation have paved the way for better outcomes of schizophrenia treatment. However, many of the currently tested anti-inflammatory drugs often lack methodological robustness. The identification of novel target(s) that will integrate the processes evoked by various risk determinants into a common signalling pathway is urgently required, and this may take immunomodulation into a new therapeutic domain in schizophrenia.

  11. Interleukin-6 in Schizophrenia—Is There a Therapeutic Relevance?

    Directory of Open Access Journals (Sweden)

    Milica Milovan Borovcanin

    2017-11-01

    Full Text Available Renewing interest in immune aspects of schizophrenia and new findings about the brain-fat axis encourage us to discuss the possible role of interleukin-6 (IL-6 in schizophrenia. Previously, it was suggested that a primary alteration of the innate immune system may be relevant in schizophrenia. Functional dichotomy of IL-6 suggests that this chemical messenger may be responsible for regulating the balance between pro- and anti-inflammatory responses, with tissue-specific properties at the periphery and in the central nervous system. Specific phase of this chronic and deteriorating disorder must be considered, which can involve IL-6 in acute or possible chronic inflammation and/or autoimmunity. We give an overview of IL-6 role in the onset and progression of this disorder, also considering cognitive impairment and metabolic changes in patients with schizophrenia. Data suggest that decreased serum level of IL-6 following antipsychotic therapy could be predisposing factor for the development of obesity and obesity-related metabolic disorders in schizophrenia. As we reviewed, the IL-6 plays significant role in disease genesis and progression, so the use of specific inhibitors may not only be beneficial for exacerbation and alleviation of positive symptoms, but may attenuate cognitive impairment in patients with schizophrenia.

  12. Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders.

    Science.gov (United States)

    Forni, Diego; Pozzoli, Uberto; Cagliani, Rachele; Tresoldi, Claudia; Menozzi, Giorgia; Riva, Stefania; Guerini, Franca R; Comi, Giacomo P; Bolognesi, Elisabetta; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2014-01-01

    The temporal coordination of biological processes into daily cycles is a common feature of most living organisms. In humans, disruption of circadian rhythms is commonly observed in psychiatric diseases,including schizophrenia, bipolar disorder, depression and autism. Light therapy is the most effective treatment for seasonal affective disorder and circadian-related treatments sustain antidepressant response in bipolar disorder patients. Day/night cycles represent a major circadian synchronizing signal and vary widely with latitude. We apply a geographically explicit model to show that out-of-Africa migration, which led humans to occupy a wide latitudinal area, affected the evolutionary history of circadian regulatory genes. The SNPs we identify using this model display consistent signals of natural selection using tests based on population genetic differentiation and haplotype homozygosity. Signals of natural selection driven by annual photoperiod variation are detected for schizophrenia, bipolar disorder, and restless leg syndrome risk variants, in line with the circadian component of these conditions. Our results suggest that human populations adapted to life at different latitudes by tuning their circadian clock systems. This process also involves risk variants for neuropsychiatric conditions, suggesting possible genetic modulators for chronotherapies and candidates for interaction analysis with photoperiod-related environmental variables, such as season of birth, country of residence, shift-work or lifestyle habits.

  13. Circadian rhythm in hypotensive effect of sodium nitroprusside in rats and its relevance to sympathetic nervous activity.

    Science.gov (United States)

    Sato, K; Chatani, F; Ando, T

    1999-03-01

    Circadian rhythmicity in the hypotensive effects of sodium nitroprusside (SNP) was determined to characterize the rhythmicity in hypotension mediated by nitric oxide (NO) donor in rats. When SNP was infused for 90 seconds every hour for 48 hours and the mean blood pressure was determined automatically by telemetry under light-dark conditions (LD), the degree of SNP-induced hypotension was shown to be minimal at the onset of the dark phase and to have marked circadian rhythmicity. The possible relationship between the circadian rhythm of the sympathetic nervous system (SNS) activity and SNP-induced hypotension was examined under LD conditions. The SNS activity assessed by blood pressure beat-to-beat variability analysis using the maximum entropy method (MEM) was higher at the preinfusion time at the onset of the dark phase than during the middle of the light phase. In addition, pretreatment with an alpha-blocker, phentolamine, followed by SNP infusion at the onset of the dark phase restored the SNP-induced hypotension and consequently dampened the daily variation in the degree of SNP-induced hypotension. The circadian rhythmicity determined by MEM was weakened, but persisted, in constant dark conditions (DD), suggesting partial involvement of endogenously driven circadian rhythms. In conclusion, the hypotensive effect of hourly infused SNP in rats was decreased in the dark phase in LD, especially at the onset of the dark phase, and clearly showed circadian rhythmicity in both LD and DD. The SNP-induced hypotension may be affected by rapid activation of the SNS at the onset of the dark phase in LD, and regulation of the circadian rhythm in SNP-induced hypotension in rats may be affected by both exogenous light stimuli and the endogenous biological clock.

  14. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Circadian Rhythms - Circadian Timing Systems: How are they Organized? Koustubh M Vaze Vijay Kumar Sharma. Series Article Volume 18 Issue 11 November 2013 pp 1032-1050 ...

  15. Circadian light

    Directory of Open Access Journals (Sweden)

    Bierman Andrew

    2010-02-01

    Full Text Available Abstract The present paper reflects a work in progress toward a definition of circadian light, one that should be informed by the thoughtful, century-old evolution of our present definition of light as a stimulus for the human visual system. This work in progress is based upon the functional relationship between optical radiation and its effects on nocturnal melatonin suppression, in large part because the basic data are available in the literature. Discussed here are the fundamental differences between responses by the visual and circadian systems to optical radiation. Brief reviews of photometry, colorimetry, and brightness perception are presented as a foundation for the discussion of circadian light. Finally, circadian light (CLA and circadian stimulus (CS calculation procedures based on a published mathematical model of human circadian phototransduction are presented with an example.

  16. Circadian rhythms.

    Science.gov (United States)

    Turek, F W

    1998-01-01

    1997 marks the 25th anniversary of the discovery of the master circadian pacemaker in mammals in the hypothalamic suprachiasmatic nucleus. Remarkable progress has been made over the last 25 years in elucidating the physiological mechanisms involved in the entrainment, generation and expression of circadian rhythms at the cellular and systems levels. The recent discovery and cloning of the first mammalian clock gene is expected to lead to rapid advances in the understanding of the genetic and molecular mechanisms underlying circadian rhythmicity in mammals. Indeed, the impressive and extensive database on circadian rhythms in mammals obtained over the past 25 years provides a foundation for making rapid progress in utilizing future genetic and molecular findings for discovering the fundamental mechanisms controlling 24-hour temporal organization.

  17. Circadian rhythm and its role in malignancy

    Directory of Open Access Journals (Sweden)

    Mahmood Saqib

    2010-03-01

    Full Text Available Abstract Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.

  18. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics.

    Science.gov (United States)

    Kalafatakis, Konstantinos; Russell, Georgina M; Zarros, Apostolos; Lightman, Stafford L

    2016-02-01

    Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK

    DEFF Research Database (Denmark)

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik

    2016-01-01

    -binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory......: 100X, inset 400X. Read the Editorial Highlight for this article on page 650. Cover image for this issue: doi: 10.1111/jnc.13332....

  20. Mechanisms linking circadian clocks, sleep, and neurodegeneration.

    Science.gov (United States)

    Musiek, Erik S; Holtzman, David M

    2016-11-25

    Disruptions of normal circadian rhythms and sleep cycles are consequences of aging and can profoundly affect health. Accumulating evidence indicates that circadian and sleep disturbances, which have long been considered symptoms of many neurodegenerative conditions, may actually drive pathogenesis early in the course of these diseases. In this Review, we explore potential cellular and molecular mechanisms linking circadian dysfunction and sleep loss to neurodegenerative diseases, with a focus on Alzheimer's disease. We examine the interplay between central and peripheral circadian rhythms, circadian clock gene function, and sleep in maintaining brain homeostasis, and discuss therapeutic implications. The circadian clock and sleep can influence a number of key processes involved in neurodegeneration, suggesting that these systems might be manipulated to promote healthy brain aging. Copyright © 2016, American Association for the Advancement of Science.

  1. Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain.

    Science.gov (United States)

    Braidy, Nady; Izadi, Morteza; Sureda, Antoni; Jonaidi-Jafari, Nematollah; Banki, Abdolali; Nabavi, Seyed F; Nabavi, Seyed M

    2017-06-08

    Ozone, one of the most important air pollutants, is a triatomic molecule containing three atoms of oxygen that results in an unstable form due to its mesomeric structure. It has been well-known that ozone has potent ability to oxidize organic compounds and can induce respiratory irritation. Although ozone has deleterious effects, many therapeutic effects have also been suggested. Since last few decades, the therapeutic potential of ozone has gained much attention through its strong capacity to induce controlled and moderated oxidative stress when administered in precise therapeutic doses. A plethora of scientific evidence showed that the activation of hypoxia inducible factor-1α (HIF-1a), nuclear factor of activated T-cells (NFAT), nuclear factor-erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE), and activated protein-1 (AP-1) pathways are the main molecular mechanisms underlying the therapeutic effects of ozone therapy. Activation of these molecular pathways leads to up-regulation of endogenous antioxidant systems, activation of immune functions as well as suppression of inflammatory processes, which is important for correcting oxidative stress in diabetes and spinal pain. The present study intended to review critically the available scientific evidence concerning the beneficial properties of ozone therapy for treatment of diabetic complications and spinal pain. It finds benefit for integrating the therapy with ozone into pharmacological procedures, instead of a substitutive or additional option to therapy. © 2017 Wiley Periodicals, Inc.

  2. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    range of animals. The study of circadian rhythms in animals revealed that individu- als display multiple rhythms. For example, mammals exhibit rhythms in locomotor activity, drinking, body temperature, blood sugar, liver glycogen, eosinophil count, adrenal activity, pineal melatonin and corticosteroid levels and sensitivity to ...

  3. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 9. Circadian Rhythms - The ... Box 6436 Bangalore 560064, India. Chronobiology Laboratory Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436 Bangalore 560064, India.

  4. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    Science.gov (United States)

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  5. Genomics and systems biology - How relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

    NARCIS (Netherlands)

    Witkamp, R.F.

    2005-01-01

    This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and

  6. Ovarian cancer stem cells: Molecular concepts and relevance as therapeutic targets.

    Science.gov (United States)

    Ahmed, Nuzhat; Abubaker, Khalid; Findlay, Jock K

    2014-10-01

    In spite of recent progress in cancer therapeutics and increased knowledge about the cellular and molecular biology of cancer, ovarian cancer still remains a clinical challenge. Chemoresistance followed by tumor recurrence are major causes of poor survival rates of ovarian cancer patients. In recent years, ovarian cancer has been described as a stem cell disease. In this scenario, a small percentage of ovarian tumor cells with cancer stem cell-like properties should survive therapeutic treatments by activating the self-renewal and differentiating pathways resulting in tumor progression and clinical recurrence. The mere concept that a small subset of cells in the tumor population drives tumor formation and recurrence after therapies has major implications for therapeutic development. This review focuses on the current understanding of normal and malignant ovarian stem cells in an attempt to contribute to our understanding the mechanisms responsible for tumor development as well as recurrence after chemotherapy. We also discuss recent findings on the cancer stem cell niche and how tumor and associated cells in the niche may respond to chemotherapeutic stress by activating autocrine and paracrine programs which may opt as survival mechanisms for residual cells in response to frontline chemotherapy. Using mouse ovarian cancer models we highlight the role of cancer stem cells in response to chemotherapy, and relate how cancer stem cells may impact on recurrence. Understanding the distinct mechanisms that facilitate cancer stem cell survival and propagation are likely to reveal opportunities for improving the treatment outcomes for ovarian cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Relevance and therapeutic possibility of PTEN-long in renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available PTEN-Long is a translational variant of PTEN (Phosphatase and Tensin Homolog. Like PTEN, PTEN-Long is able to antagonize the PI3K-Akt pathway and inhibits tumor growth. In this study, we investigated the role PTEN-Long plays in the development and progression of clear cell renal cell carcinoma (ccRCC and explored the therapeutic possibility using proteinaceous PTEN-Long to treat ccRCC. We found that the protein levels of PTEN-Long were drastically reduced in ccRCC, which was correlated with increased levels of phosphorylated Akt (pAkt. Gain of function experiments showed overexpression of PTEN-Long in the ccRCC cell line 786-0 suppressed PI3K-Akt signaling, inhibited cell proliferation, migration and invasion, and eventually induced cell death. When purified PTEN-Long was added into cultured 786-0 cells, it entered cells, blocked Akt activation, and induced apoptosis involving Caspase 3 cleavage. Furthermore, PTEN-Long inhibited proliferation of 786-0 cells in xenograft mouse model. Our results implicated that understanding the roles of PTEN-Long in renal cell carcinogenesis has therapeutic significance.

  8. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise

    Science.gov (United States)

    Suo, C; Singh, M F; Gates, N; Wen, W; Sachdev, P; Brodaty, H; Saigal, N; Wilson, G C; Meiklejohn, J; Singh, N; Baune, B T; Baker, M; Foroughi, N; Wang, Y; Mavros, Y; Lampit, A; Leung, I; Valenzuela, M J

    2016-01-01

    Physical and cognitive exercise may prevent or delay dementia in later life but the neural mechanisms underlying these therapeutic benefits are largely unknown. We examined structural and functional magnetic resonance imaging (MRI) brain changes after 6 months of progressive resistance training (PRT), computerized cognitive training (CCT) or combined intervention. A total of 100 older individuals (68 females, average age=70.1, s.d.±6.7, 55–87 years) with dementia prodrome mild cognitive impairment were recruited in the SMART (Study of Mental Activity and Resistance Training) Trial. Participants were randomly assigned into four intervention groups: PRT+CCT, PRT+SHAM CCT, CCT+SHAM PRT and double SHAM. Multimodal MRI was conducted at baseline and at 6 months of follow-up (immediately after training) to measure structural and spontaneous functional changes in the brain, with a focus on the hippocampus and posterior cingulate regions. Participants' cognitive changes were also assessed before and after training. We found that PRT but not CCT significantly improved global cognition (F(90)=4.1, Pbrain areas. In contrast, CCT but not PRT attenuated decline in overall memory performance (F(90)=5.7, Pphysical and cognitive training depend on discrete neuronal mechanisms for their therapeutic efficacy, information that may help develop targeted lifestyle-based preventative strategies. PMID:27001615

  9. Preclinical Models Provide Scientific Justification and Translational Relevance for Moving Novel Therapeutics into Clinical Trials for Pediatric Cancer.

    Science.gov (United States)

    Langenau, David M; Sweet-Cordero, Alejandro; Wechsler-Reya, Robert; Dyer, Michael A

    2015-12-15

    Despite improvements in survival rates for children with cancer since the 1960s, progress for many pediatric malignancies has slowed over the past two decades. With the recent advances in our understanding of the genomic landscape of pediatric cancer, there is now enthusiasm for individualized cancer therapy based on genomic profiling of patients' tumors. However, several obstacles to effective personalized cancer therapy remain. For example, relatively little data from prospective clinical trials demonstrate the selective efficacy of molecular-targeted therapeutics based on somatic mutations in the patient's tumor. In this commentary, we discuss recent advances in preclinical testing for pediatric cancer and provide recommendations for providing scientific justification and translational relevance for novel therapeutic combinations for childhood cancer. Establishing rigorous criteria for defining and validating druggable mutations will be essential for the success of ongoing and future clinical genomic trials for pediatric malignancies. ©2015 American Association for Cancer Research.

  10. The bipolarity of light and dark: A review on Bipolar Disorder and circadian cycles.

    Science.gov (United States)

    Abreu, T; Bragança, M

    2015-10-01

    Bipolar Disorder is characterized by episodes running the full mood spectrum, from mania to depression. Between mood episodes, residual symptoms remain, as sleep alterations, circadian cycle disturbances, emotional deregulation, cognitive impairment and increased risk for comorbidities. The present review intends to reflect about the most recent and relevant information concerning the biunivocal relation between bipolar disorder and circadian cycles. It was conducted a literature search on PubMed database using the search terms "bipolar", "circadian", "melatonin", "cortisol", "body temperature", "Clock gene", "Bmal1 gene", "Per gene", "Cry gene", "GSK3β", "chronotype", "light therapy", "dark therapy", "sleep deprivation", "lithum" and "agomelatine". Search results were manually reviewed, and pertinent studies were selected for inclusion as appropriate. Several studies support the relationship between bipolar disorder and circadian cycles, discussing alterations in melatonin, body temperature and cortisol rhythms; disruption of sleep/wake cycle; variations of clock genes; and chronotype. Some therapeutics for bipolar disorder directed to the circadian cycles disturbances are also discussed, including lithium carbonate, agomelatine, light therapy, dark therapy, sleep deprivation and interpersonal and social rhythm therapy. This review provides a summary of an extensive research for the relevant literature on this theme, not a patient-wise meta-analysis. In the future, it is essential to achieve a better understanding of the relation between bipolar disorder and the circadian system. It is required to establish new treatment protocols, combining psychotherapy, therapies targeting the circadian rhythms and the latest drugs, in order to reduce the risk of relapse and improve affective behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Directory of Open Access Journals (Sweden)

    Kalpna Gupta

    2013-02-01

    Full Text Available Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3 grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve

  12. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  13. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  14. Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies.

    Science.gov (United States)

    Sundaram, Gayathri; Brew, Bruce J; Jones, Simon P; Adams, Seray; Lim, Chai K; Guillemin, Gilles J

    2014-12-13

    The excitotoxin quinolinic acid, a by-product of the kynurenine pathway, is known to be involved in several neurological diseases including multiple sclerosis (MS). Quinolinic acid levels are elevated in experimental autoimmune encephalomyelitis rodents, the widely used animal model of MS. Our group has also found pathophysiological concentrations of quinolinic acid in MS patients. This led us to investigate the effect of quinolinic acid on oligodendrocytes; the main cell type targeted by the autoimmune response in MS. We have examined the kynurenine pathway (KP) profile of two oligodendrocyte cell lines and show that these cells have a limited threshold to catabolize exogenous quinolinic acid. We further propose and demonstrate two strategies to limit quinolinic acid gliotoxicity: 1) by neutralizing quinolinic acid's effects with anti-quinolinic acid monoclonal antibodies and 2) directly inhibiting quinolinic acid production from activated monocytic cells using specific KP enzyme inhibitors. The outcome of this study provides a new insight into therapeutic strategies for limiting quinolinic acid-induced neurodegeneration, especially in neurological disorders that target oligodendrocytes, such as MS.

  15. An update on the physiological and therapeutic relevance of GPCR oligomers.

    Science.gov (United States)

    Farran, Batoul

    2017-03-01

    The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Free radicals and other reactive oxygen metabolites: clinical relevance and the therapeutic efficacy of antioxidant therapy.

    Science.gov (United States)

    Bulkley, G B

    1993-05-01

    As in any new field, justifiable enthusiasm for the potential for antioxidant therapy has led to hyperbole, hastily designed, poorly conceived clinical trials, and premature reporting of uncontrolled, anecdotal indicators of efficacy that have not held up when subjected to close scrutiny or more careful, controlled trial design. This tendency has been augmented by strong pressure for early positive results from a few, but not most, members of the pharmaceutical industry and by a few clinicians in highly competitive fields who were anxious not to be left behind. The sobering reality of negative or, even worse, indeterminate clinical trials has culled the field and educated those that remain. As a result, we are beginning to see the publication of quite promising results from large, well-controlled, carefully designed clinical studies, many, but not all, of which are quite promising. This has been associated with a much better understanding of the basic mechanism of free radical-mediated human disease, without which further substantial progress would be quite limited. Because the manipulation of oxidant-mediated tissue injury represents treating disease at its most basic level, the therapeutic potential of this approach remains not only promising but exciting.

  17. Diagnostic and therapeutic relevance of NY-ESO-1 expression in oral squamous cell carcinoma.

    Science.gov (United States)

    Ries, Jutta; Mollaoglu, Nur; Vairaktaris, Eleftherios; Neukam, Friedrich W; Nkenke, Emeka

    2009-12-01

    Cancer/testis antigen 1B (NY-ESO-1) is exclusively expressed in various types of tumor but not in healthy normal tissue, except testis, and induces strong cellular and humoral immune responses. Therefore, it represents an ideal target for diagnostic and immunotherapeutic applications. The aim of the study was to investigate the expression of NY-ESO-1 in oral squamous cell carcinoma (OSCC) to determine its impact as a diagnostic parameter or a therapeutic target for oral cancer. A total of 65 OSCC and 20 normal oral mucosal samples of otherwise healthy volunteers were included in this study. Expression of NY-ESO-1 was determined using reverse transcriptase polymerase chain reaction (RT-PCR). The results were correlated to diagnosis and clinicopathological parameters. NY-ESO-1 was expressed in 27.7% of the investigated tumor samples, but not in normal oral mucosal. The correlation between NY-ESO-1 expression and malignancy was significant (p=0.008). The prevalence of NY-ESO-1 expression was significantly associated with tumor size (p=0.033), but not with histological grading, positive lymph node status or clinical stage of disease. NY-ESO-1 expression is restricted to OSCC, clearly indicating malignancy. However, the expression rate of this antigen is too low for clinical application but it might be a useful additional biomarker within a multiple marker system for the diagnosis of OSCC. In addition, NY-ESO-1 might be a candidate for immunotherapy and polyvaccination in patients suffering from OSCC.

  18. Circadian integration of metabolism and energetics.

    Science.gov (United States)

    Bass, Joseph; Takahashi, Joseph S

    2010-12-03

    Circadian clocks align behavioral and biochemical processes with the day/night cycle. Nearly all vertebrate cells possess self-sustained clocks that couple endogenous rhythms with changes in cellular environment. Genetic disruption of clock genes in mice perturbs metabolic functions of specific tissues at distinct phases of the sleep/wake cycle. Circadian desynchrony, a characteristic of shift work and sleep disruption in humans, also leads to metabolic pathologies. Here, we review advances in understanding the interrelationship among circadian disruption, sleep deprivation, obesity, and diabetes and implications for rational therapeutics for these conditions.

  19. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mitesh J Borad

    2014-02-01

    Full Text Available Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM. In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.

  20. Relevance of the chronobiological and non-chronobiological actions of melatonin for enhancing therapeutic efficacy in neurodegenerative disorders.

    Science.gov (United States)

    Cecon, Erika; Markus, Regina P

    2011-05-01

    Melatonin is an indolamine with a large spectrum of functions that can be divided into chronobiotic and nonchronobiotic. Chronobiotic effects are mediated by the daily rhythm of melatonin in the plasma due to nocturnal pineal synthesis, whereas the melatonin produced by other cells, such as gastrointestinal and immune competent cells, is independent of the light/dark cycle and exert non-chronobiotic effects. The concentrations achieved by the two sources are significantly different, varying in the pM-nM range in the plasma, and may achieve concentrations in the mM range when released locally by activated immune-competent cells. Consequently, the effects of the melatonin produced in these two situations are distinct. Much has been reported about the beneficial response to exogenous melatonin administration in several pathological conditions. However, the relationship between the establishment of a disease and the state of the physiological activity of the pineal gland is still poorly understood. Here, we review the state of art in the modulation of pineal melatonin synthesis, relevant patents, and discuss its relationship with neurodegenerative disorders that involve a central inflammatory response, such as Alzheimer's disease, to suggest the putative relevance of new therapeutic protocols that replace this pineal hormone.

  1. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions.

    Science.gov (United States)

    Brainard, Jason; Gobel, Merit; Bartels, Karsten; Scott, Benjamin; Koeppen, Michael; Eckle, Tobias

    2015-03-01

    The rotation of the earth and associated alternating cycles of light and dark--the basis of our circadian rhythms--are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts. © The Author(s) 2014.

  2. Relevance of various animal models of human infections to establish therapeutic equivalence of a generic product of piperacillin/tazobactam.

    Science.gov (United States)

    Agudelo, Maria; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar

    2015-02-01

    After demonstrating with diverse intravenous antibacterials that pharmaceutical equivalence (PE) does not predict therapeutic equivalence, we tested a single generic product of piperacillin/tazobactam (TZP) in terms of PE, pharmacokinetics and in vitro/vivo pharmacodynamics against several pathogens in neutropenic mouse thigh, lung and brain infection models. A generic product was compared head-to-head against the innovator. PE was evaluated by microbiological assay. Single-dose serum pharmacokinetics were determined in infected mice, and the MIC/MBC were determined by broth microdilution. In vivo experiments were done in a blind fashion. Reproducibility was tested on different days using different infecting organisms and animal models. Neutropenic MPF mice were infected in the thighs with Staphylococcus aureus GRP-0057 or Pseudomonas aeruginosa PA01 and in the lungs or brain with Klebsiella pneumoniae ATCC 10031. Treatment started 2h (thigh and brain) or 14 h (lung) after infection and was administered every 3h over 24h (thigh and lung) or 48 h (brain). Both products exhibited the same MIC/MBC against each strain, yielded overlaid curves in the microbiological assay (P>0.21) and were bioequivalent (IC90 83-117% for AUC test/reference ratio). In vivo, the generic product and innovator were again undistinguishable in all models and against the different bacterial pathogens involved. The relevance of these neutropenic murine models of infection was established by demonstrating their accuracy to predict the biological response following simultaneous treatment with a generic product or the innovator of TZP. Therapeutic equivalence of the generic product was proved in every model and against different pathogens. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts.

    Science.gov (United States)

    Blank, S; Seismann, H; Michel, Y; McIntyre, M; Cifuentes, L; Braren, I; Grunwald, T; Darsow, U; Ring, J; Bredehorst, R; Ollert, M; Spillner, E

    2011-10-01

    Generalized systemic reactions to stinging hymenoptera venom constitute a potentially fatal condition in venom-allergic individuals. Hence, the identification and characterization of all allergens is imperative for improvement of diagnosis and design of effective immunotherapeutic approaches. Our aim was the immunochemical characterization of the carbohydrate-rich protein Api m 10, an Apis mellifera venom component and putative allergen, with focus on the relevance of glycosylation. Furthermore, the presence of Api m 10 in honeybee venom (HBV) and licensed venom immunotherapy preparations was addressed. Api m 10 was produced as soluble, aglycosylated protein in Escherichia coli and as differentially glycosylated protein providing a varying degree of fucosylation in insect cells. IgE reactivity and basophil activation of allergic patients were analyzed. For detection of Api m 10 in different venom preparations, a monoclonal human IgE antibody was generated. Both, the aglycosylated and the glycosylated variant of Api m 10 devoid of cross-reactive carbohydrate determinants (CCD), exhibited IgE reactivity with approximately 50% of HBV-sensitized patients. A corresponding reactivity could be documented for the activation of basophils. Although the detection of the native protein in crude HBV suggested content comparable to other relevant allergens, three therapeutical HBV extracts lacked detectable amounts of this component. Api m 10 is a genuine allergen of A. mellifera venom with IgE sensitizing potential in a significant fraction of allergic patients independent of CCD reactivity. Thus, Api m 10 could become a key element for component-resolved diagnostic tests and improved immunotherapeutic approaches in hymenoptera venom allergy. © 2011 John Wiley & Sons A/S.

  4. [Circadian markers and genes in bipolar disorder].

    Science.gov (United States)

    Yeim, S; Boudebesse, C; Etain, B; Belliviera, F

    2015-09-01

    mechanisms of pharmacological treatments used in bipolar disorder, in particular lithium carbonate. Several clinical, physiological and genetic data suggest that circadian rhythms dysregulations are involved in the pathophysiology of bipolar disorder. The circadian model has led to the development of new therapeutic strategies such as chronotherapeutics or Inter Personal Social and Rhythms Therapies. Further studies are needed in this promising research field to keep exploring the relationship between these circadian markers, genes and the clinical aspects of the disease. Copyright © 2015 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  5. Circadian clock disruption in neurodegenerative diseases: Cause and effect?

    Directory of Open Access Journals (Sweden)

    Erik Steven Musiek

    2015-02-01

    Full Text Available Disturbance of the circadian system, manifested as disrupted daily rhythms of physiologic parameters such as sleep, activity, and hormone secretion, has long been observed as a symptom of several neurodegenerative diseases, including Alzheimer Disease. Circadian abnormalities have generally been considered consequences of the neurodegeneration. Recent evidence suggests, however, that circadian disruption might actually contribute to the neurodegenerative process, and thus might be a modifiable cause of neural injury. Herein we will review the evidence implicating circadian rhythms disturbances and clock gene dysfunction in neurodegeneration, with an emphasis on future research directions and potential therapeutic implications for neurodegenerative diseases.

  6. The relevance of professionals' attachment style, expectations and job attitudes for therapeutic relationships with young people who experience psychosis.

    Science.gov (United States)

    Berry, C; Greenwood, K

    2016-04-01

    Therapeutic relationships are a central component of community treatment for psychosis and thought to influence clinical and social outcomes, yet there is limited research regarding the potential influence of professional characteristics on positive therapeutic relationships in community care. It was hypothesised that professionals' relating style and attitudes toward their work might be important, and thus this exploratory study modelled associations between these characteristics and therapeutic relationships developed in community psychosis treatment. Dyads of professionals and young patients with psychosis rated their therapeutic relationships with each other. Professionals also completed measures of attachment style, therapeutic optimism, outcome expectancy, and job attitudes regarding working with psychosis. Professionals' anxious attachment predicted less positive professional therapeutic relationship ratings. In exploratory directed path analysis, data also supported indirect effects, whereby anxious professional attachment predicts less positive therapeutic relationships through reduced professional therapeutic optimism and less positive job attitudes. Professional anxious attachment style is directly associated with the therapeutic relationship in psychosis, and indirectly associated through therapeutic optimism and job attitudes. Thus, intervening in professional characteristics could offer an opportunity to limit the impact of insecure attachment on therapeutic relationships in psychosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Physiological links of circadian clock and biological clock of aging

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2017-01-01

    Full Text Available ABSTRACT Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  8. Circadian aspects of post-operative morbidity and mortality

    DEFF Research Database (Denmark)

    Kvaslerud, T.; Hansen, M.V.; Rosenberg, J.

    2010-01-01

    concerning post-operative circadian disturbances. We also present the literature concerning circadian variation in post-operative morbidity and mortality. PubMed and the Cochrane database were searched for papers using a combination of 'circadian,' 'surgery,' 'post-operative,' 'mortality' and 'morbidity.......' Eleven relevant studies were found, and seven of these were excluded due to the use of time of surgery and not time of morbidity or mortality as the main variable. The results from the four articles showed a circadian distribution of morbidity and mortality that mimics the one seen without surgery....... There is a peak incidence of myocardial ischemia, fatal thromboembolism and sudden unexpected death in the morning hours. A circadian variation exists in post-operative morbidity and mortality. The observed circadian variation in post-operative morbidity and mortality may warrant a chronopharmacological approach...

  9. Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor.

    Science.gov (United States)

    Iurisci, Ida; Filipski, Elisabeth; Reinhardt, Jens; Bach, Stéphane; Gianella-Borradori, Athos; Iacobelli, Stefano; Meijer, Laurent; Lévi, Francis

    2006-11-15

    The circadian timing system and the cell division cycle are frequently deregulated in cancer. The therapeutic relevance of the reciprocal interactions between both biological rhythms was investigated using Seliciclib, a cyclin-dependent kinase (CDK) inhibitor (CDKI). Mice bearing Glasgow osteosarcoma received Seliciclib (300 mg/kg/d orally) or vehicle for 5 days at Zeitgeber time (ZT) 3, 11, or 19. On day 6, tumor mRNA 24-hour expression patterns were determined for clock genes (Per2, Rev-erbalpha, and Bmal1) and clock-controlled cell cycle genes (c-Myc, Wee1, cyclin B1, and CDK1) with quantitative reverse transcription-PCR. Affinity chromatography on immobilized Seliciclib identified CDK1/CDK2 and extracellular signal-regulated kinase (ERK) 1/ERK2, CDK7/CDK9, and casein kinase CK1epsilon as Seliciclib targets, which respectively regulate cell cycle, transcription, and circadian clock in Glasgow osteosarcoma. Seliciclib reduced tumor growth by 55% following dosing at ZT3 or ZT11 and by 35% at ZT19 compared with controls (P clock gene expression patterns with physiologic phase relations only after ZT3 dosing. c-Myc and Wee1 mRNAs displayed synchronous circadian rhythms in the tumors of control mice receiving vehicle only but not in those of mice given the drug. Seliciclib further enhanced Wee1 expression irrespective of dosing time, an effect that reinforced G(2)-M gating. Seliciclib also inhibited CK1epsilon, which determines circadian period length. The coordination of clock gene expression patterns in tumor cells was associated with best antitumor activity of Seliciclib. The circadian clock and its upstream regulators represent relevant targets for CDKIs.

  10. Circadian rhythmicity by autocatalysis

    National Research Council Canada - National Science Library

    Mehra, Arun; Hong, Christian I; Shi, Mi; Loros, Jennifer J; Dunlap, Jay C; Ruoff, Peter

    2006-01-01

    .... This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles...

  11. Immunity’s fourth dimension: approaching the circadian-immune connection

    Science.gov (United States)

    Arjona, Alvaro; Silver, Adam C.; Walker, Wendy E.; Fikrig, Erol

    2013-01-01

    The circadian system ensures the generation and maintenance of self-sustained ~24 h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions. PMID:23000010

  12. "Time sweet time": circadian characterization of galectin-1 null mice

    Directory of Open Access Journals (Sweden)

    Rabinovich Gabriel A

    2010-04-01

    Full Text Available Abstract Background Recent evidence suggests a two-way interaction between the immune and circadian systems. Circadian control of immune factors, as well as the effect of immunological variables on circadian rhythms, might be key elements in both physiological and pathological responses to the environment. Among these relevant factors, galectin-1 is a member of a family of evolutionarily-conserved glycan-binding proteins with both extracellular and intracellular effects, playing important roles in immune cell processes and inflammatory responses. Many of these actions have been studied through the use of mice with a null mutation in the galectin-1 (Lgals1 gene. To further analyze the role of endogenous galectin-1 in vivo, we aimed to characterize the circadian behavior of galectin-1 null (Lgals1-/- mice. Methods We analyzed wheel-running activity in light-dark conditions, constant darkness, phase responses to light pulses (LP at circadian time 15, and reentrainment to 6 hour shifts in light-dark schedule in wild-type (WT and Lgals1-/- mice. Results We found significant differences in free-running period, which was longer in mutant than in WT mice (24.02 vs 23.57 h, p alpha (14.88 vs. 12.35 circadian h, p Conclusions Given the effect of a null mutation on circadian period and entrainment, we indicate that galectin-1 could be involved in the regulation of murine circadian rhythmicity. This is the first study implicating galectin-1 in the mammalian circadian system.

  13. Immunity's fourth dimension: approaching the circadian-immune connection.

    Science.gov (United States)

    Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol

    2012-12-01

    The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The role of cholesterol metabolism and cholesterol transport in carcinogenesis; A review of scientific findings, relevant to future cancer therapeutics.

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Cruz

    2013-09-01

    Full Text Available While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins, area the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy.

  15. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics.

    Science.gov (United States)

    Cruz, Pedro M R; Mo, Huanbiao; McConathy, Walter J; Sabnis, Nirupama; Lacko, Andras G

    2013-09-25

    While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins are the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s) of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy.

  16. Design and Evaluation of Virtual Reality-Based Therapy Games with Dual Focus on Therapeutic Relevance and User Experience for Children with Cerebral Palsy.

    Science.gov (United States)

    Ni, Lian Ting; Fehlings, Darcy; Biddiss, Elaine

    2014-06-01

    Virtual reality (VR)-based therapy for motor rehabilitation of children with cerebral palsy (CP) is growing in prevalence. Although mainstream active videogames typically offer children an appealing user experience, they are not designed for therapeutic relevance. Conversely, rehabilitation-specific games often struggle to provide an immersive experience that sustains interest. This study aims to design and evaluate two VR-based therapy games for upper and lower limb rehabilitation and to evaluate their efficacy with dual focus on therapeutic relevance and user experience. Three occupational therapists, three physiotherapists, and eight children (8-12 years old), with CP Level I-III on the Gross Motor Function Classification System, evaluated two games for the Microsoft(®) (Redmond, WA) Kinect™ for Windows and completed the System Usability Scale (SUS), Physical Activity Enjoyment Scale (PACES), and custom feedback questionnaires. Children and therapists unanimously agreed on the enjoyment and therapeutic value of the games. Median scores on the PACES were high (6.24±0.95 on the 7-point scale). Therapists considered the system to be of average usability (50th percentile on the SUS). The most prevalent usability issue was detection errors distinguishing the child's movements from the supporting therapist's. The ability to adjust difficulty settings and to focus on targeted goals (e.g., elbow/shoulder extension, weight shifting) was highly valued by therapists. Engaging both therapists and children in a user-centered design approach enabled the development of two VR-based therapy games for upper and lower limb rehabilitation that are dually (a) engaging to the child and (b) therapeutically relevant.

  17. The circadian variation of premature atrial contractions

    DEFF Research Database (Denmark)

    Larsen, Bjørn Strøier; Kumarathurai, Preman; Nielsen, Olav W

    2016-01-01

    AIMS: The aim of the study was to assess a possible circadian variation of premature atrial contractions (PACs) in a community-based population and to determine if the daily variation could be used to assess a more vulnerable period of PACs in predicting later incidence of atrial fibrillation (AF...... variation in heart rate. After adjusting for relevant risk factors, the risk of AF was equal in all time intervals throughout the day. CONCLUSION: Premature atrial contractions showed a circadian variation in subjects with frequent PACs. No specific time interval of the day was more predictive of AF than...

  18. Physiological effects of light on the human circadian pacemaker

    Science.gov (United States)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  19. Melatonin and circadian biology in human cardiovascular disease.

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Abreu-Gonzalez, Pedro; Sanchez-Sanchez, Juan J; Kaski, Juan C; Reiter, Russel J

    2010-08-01

    Diurnal rhythms influence cardiovascular physiology, i.e. heart rate and blood pressure, and they appear to also modulate the incidence of serious adverse cardiac events. Diurnal variations occur also at the molecular level including changes in gene expression in the heart and blood vessels. Moreover, the risk/benefit ratio of some therapeutic strategies and the concentration of circulating cardiovascular system biomarkers may also vary across the 24-hr light/dark cycle. Synchrony between external and internal diurnal rhythms and harmony among molecular rhythms within the cell are essential for normal organ biology. Diurnal variations in the responsiveness of the cardiovascular system to environmental stimuli are mediated by a complex interplay between extracellular (i.e. neurohumoral factors) and intracellular (i.e. specific genes that are differentially light/dark regulated) mechanisms. Neurohormones, which are particularly relevant to the cardiovascular system, such as melatonin, exhibit a diurnal variation and may play a role in the synchronization of molecular circadian clocks in the peripheral tissue and the suprachiasmatic nucleus. Moreover, mounting evidence reveals that the blood melatonin rhythm has a crucial role in several cardiovascular functions, including daily variations in blood pressure. Melatonin has antioxidant, anti-inflammatory, chronobiotic and, possibly, epigenetic regulatory functions. This article reviews current knowledge related to the biological role of melatonin and its circadian rhythm in cardiovascular disease.

  20. Circadian rhythm in Alzheimer disease after trazodone use.

    Science.gov (United States)

    Grippe, Talyta C; Gonçalves, Bruno S B; Louzada, Luciana L; Quintas, Juliana L; Naves, Janeth O S; Camargos, Einstein F; Nóbrega, Otávio T

    2015-01-01

    A circadian rhythm is a cycle of approximately 24 h, responsible for many physiological adjustments, and ageing of the circadian clock contributes to cognitive decline. Rhythmicity is severely impaired in Alzheimer disease (AD) and few therapeutic attempts succeeded in improving sleep disorders in such context. This study evaluated sleep parameters by actigraphy in 30 AD patients before and after trazodone use for 2 weeks, and we show a significant improvement in relative rhythm amplitude (RRA), compatible with a more stable daytime behavioral pattern. So, trazodone appears to produce a stabilization of the circadian rhythms in individuals with AD.

  1. Fat circadian biology.

    Science.gov (United States)

    Gimble, Jeffrey M; Floyd, Z Elizabeth

    2009-11-01

    While adipose tissue has long been recognized for its major role in metabolism, it is now appreciated as an endocrine organ. A growing body of literature has emerged that identifies circadian mechanisms as a critical regulator of adipose tissue differentiation, metabolism, and adipokine secretory function in both health and disease. This concise review focuses on recent data from murine and human models that highlights the interplay between the core circadian regulatory proteins and adipose tissue in the context of energy, fat, and glucose metabolism. It will be important to integrate circadian mechanisms and networks into future descriptions of adipose tissue physiology.

  2. Circadian rhythm sleep disorders

    OpenAIRE

    Morgenthaler TI; Auger RR; Kolla BP

    2012-01-01

    Bhanu P Kolla,1,2 R Robert Auger,1,2 Timothy I Morgenthaler11Mayo Center for Sleep Medicine, 2Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USAAbstract: Misalignment between endogenous circadian rhythms and the light/dark cycle can result in pathological disturbances in the form of erratic sleep timing (irregular sleep–wake rhythm), complete dissociation from the light/dark cycle (circadian rhythm sleep disorder, free-running type), delayed...

  3. A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments

    Science.gov (United States)

    Zhao, Min; Kong, Lei; Qu, Hong

    2014-01-01

    Although the intelligence quotient (IQ) is the most popular intelligence test in the world, little is known about the underlying biological mechanisms that lead to the differences in human. To improve our understanding of cognitive processes and identify potential biomarkers, we conducted a comprehensive investigation of 158 IQ-related genes selected from the literature. A genomic distribution analysis demonstrated that IQ-related genes were enriched in seven regions of chromosome 7 and the X chromosome. In addition, these genes were enriched in target lists of seven transcription factors and sixteen microRNAs. Using a network-based approach, we further reconstructed an IQ-related pathway from known human pathway interaction data. Based on this reconstructed pathway, we incorporated enriched drugs and described the importance of dopamine and norepinephrine systems in IQ-related biological process. These findings not only reveal several testable genes and processes related to IQ scores, but also have potential therapeutic implications for IQ-related mental disorders. PMID:24566931

  4. A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments.

    Science.gov (United States)

    Zhao, Min; Kong, Lei; Qu, Hong

    2014-02-25

    Although the intelligence quotient (IQ) is the most popular intelligence test in the world, little is known about the underlying biological mechanisms that lead to the differences in human. To improve our understanding of cognitive processes and identify potential biomarkers, we conducted a comprehensive investigation of 158 IQ-related genes selected from the literature. A genomic distribution analysis demonstrated that IQ-related genes were enriched in seven regions of chromosome 7 and the X chromosome. In addition, these genes were enriched in target lists of seven transcription factors and sixteen microRNAs. Using a network-based approach, we further reconstructed an IQ-related pathway from known human pathway interaction data. Based on this reconstructed pathway, we incorporated enriched drugs and described the importance of dopamine and norepinephrine systems in IQ-related biological process. These findings not only reveal several testable genes and processes related to IQ scores, but also have potential therapeutic implications for IQ-related mental disorders.

  5. Interactions of AChE with Aβ Aggregates in Alzheimer’s Brain: Therapeutic Relevance of IDN 5706

    Science.gov (United States)

    Carvajal, Francisco J.; Inestrosa, Nibaldo C.

    2011-01-01

    Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APPSWE–PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE–Aβ interaction and this effect might be of therapeutic interest in the treatment of AD. PMID:21949501

  6. Interactions of AChE with Aβ Aggregates in Alzheimer’s Brain: Therapeutic Relevance of IDN 5706

    Directory of Open Access Journals (Sweden)

    Francisco Javier Carvajal

    2011-09-01

    Full Text Available Acetylcholinesterase (AChE; EC 3.1.1.7 plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN5706 for 10 weeks increases brain AChE activity in seven month-old double transgenic mice (APPswe - PS1 and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE-Aβ interaction and this effect might be of therapeutic interest in the treatment of AD.

  7. Human adipose tissue stem cells: relevance in the pathophysiology of obesity and metabolic diseases and therapeutic applications.

    Science.gov (United States)

    Cignarelli, Angelo; Perrini, Sebastio; Ficarella, Romina; Peschechera, Alessandro; Nigro, Pasquale; Giorgino, Francesco

    2012-12-10

    Stem cells are unique cells exhibiting self-renewing properties and the potential to differentiate into multiple specialised cell types. Totipotent or pluripotent stem cells are generally abundant in embryonic or fetal tissues, but the use of discarded embryos as sources of these cells raises challenging ethical problems. Adult stem cells can also differentiate into a wide variety of cell types. In particular, adult adipose tissue contains a pool of abundant and accessible multipotent stem cells, designated as adipose-derived stem cells (ASCs), that are able to replicate as undifferentiated cells, to develop as mature adipocytes and to differentiate into multiple other cell types along the mesenchymal lineage, including chondrocytes, myocytes and osteocytes, and also into cells of endodermal and neuroectodermal origin, including beta-cells and neurons, respectively. An impairment in the differentiation potential and biological functions of ASCs may contribute to the development of obesity and related comorbidities. In this review, we summarise different aspects of the ASCs with special reference to the isolation and characterisation of these cell populations, their relation to the biochemical features of the adipose tissue depot of origin and to the metabolic characteristics of the donor subject and discuss some prospective therapeutic applications.

  8. Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches.

    Science.gov (United States)

    de Bartolomeis, Andrea; Latte, Gianmarco; Tomasetti, Carmine; Iasevoli, Felice

    2014-02-01

    Emerging researches point to a relevant role of postsynaptic density (PSD) proteins, such as PSD-95, Homer, Shank, and DISC-1, in the pathophysiology of schizophrenia and autism spectrum disorders. The PSD is a thickness, detectable at electronic microscopy, localized at the postsynaptic membrane of glutamatergic synapses, and made by scaffolding proteins, receptors, and effector proteins; it is considered a structural and functional crossroad where multiple neurotransmitter systems converge, including the dopaminergic, serotonergic, and glutamatergic ones, which are all implicated in the pathophysiology of psychosis. Decreased PSD-95 protein levels have been reported in postmortem brains of schizophrenia patients. Variants of Homer1, a key PSD protein for glutamate signaling, have been associated with schizophrenia symptoms severity and therapeutic response. Mutations in Shank gene have been recognized in autism spectrum disorder patients, as well as reported to be associated to behaviors reminiscent of schizophrenia symptoms when expressed in genetically engineered mice. Here, we provide a critical appraisal of PSD proteins role in the pathophysiology of schizophrenia and autism spectrum disorders. Then, we discuss how antipsychotics may affect PSD proteins in brain regions relevant to psychosis pathophysiology, possibly by controlling synaptic plasticity and dendritic spine rearrangements through the modulation of glutamate-related targets. We finally provide a framework that may explain how PSD proteins might be useful candidates to develop new therapeutic approaches for schizophrenia and related disorders in which there is a need for new biological treatments, especially against some symptom domains, such as negative symptoms, that are poorly affected by current antipsychotics.

  9. The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia.

    Science.gov (United States)

    Janhunen, Sanna K; Svärd, Heta; Talpos, John; Kumar, Gaurav; Steckler, Thomas; Plath, Niels; Lerdrup, Linda; Ruby, Trine; Haman, Marie; Wyler, Roger; Ballard, Theresa M

    2015-11-01

    Current treatments for schizophrenia have modest, if any, efficacy on cognitive dysfunction, creating a need for novel therapies. Their development requires predictive animal models. The N-methyl-D-aspartate (NMDA) hypothesis of schizophrenia indicates the use of NMDA antagonists, like subchronic phencyclidine (scPCP) to model cognitive dysfunction in adult animals. The objective of this study was to assess the scPCP model by (1) reviewing published findings of scPCP-induced neurochemical changes and effects on cognitive tasks in adult rats and (2) comparing findings from a multi-site study to determine scPCP effects on standard and touchscreen cognitive tasks. Across four research sites, the effects of scPCP (typically 5 mg/kg twice daily for 7 days, followed by at least 7-day washout) in adult male Lister Hooded rats were studied on novel object recognition (NOR) with 1-h delay, acquisition and reversal learning in Morris water maze and touchscreen-based visual discrimination. Literature findings showed that scPCP impaired attentional set-shifting (ASST) and NOR in several labs and induced a variety of neurochemical changes across different labs. In the multi-site study, scPCP impaired NOR, but not acquisition or reversal learning in touchscreen or water maze. Yet, this treatment regimen induced locomotor hypersensitivity to acute PCP until 13-week post-cessation. The multi-site study confirmed that scPCP impaired NOR and ASST only and demonstrated the reproducibility and usefulness of the touchscreen approach. Our recommendation, prior to testing novel therapeutics in the scPCP model, is to be aware that further work is required to understand the neurochemical changes and specificity of the cognitive deficits.

  10. Effects of short-term quetiapine treatment on emotional processing, sleep and circadian rhythms.

    Science.gov (United States)

    Rock, Philippa L; Goodwin, Guy M; Wulff, Katharina; McTavish, Sarah F B; Harmer, Catherine J

    2016-03-01

    Quetiapine is an atypical antipsychotic that can stabilise mood from any index episode of bipolar disorder. This study investigated the effects of seven-day quetiapine administration on sleep, circadian rhythms and emotional processing in healthy volunteers. Twenty healthy volunteers received 150 mg quetiapine XL for seven nights and 20 matched controls received placebo. Sleep-wake actigraphy was completed for one week both pre-dose and during drug treatment. On Day 8, participants completed emotional processing tasks. Actigraphy revealed that quetiapine treatment increased sleep duration and efficiency, delayed final wake time and had a tendency to reduce within-day variability. There were no effects of quetiapine on subjective ratings of mood or energy. Quetiapine-treated participants showed diminished bias towards positive words and away from negative words during recognition memory. Quetiapine did not significantly affect facial expression recognition, emotional word categorisation, emotion-potentiated startle or emotional word/faces dot-probe vigilance reaction times. These changes in sleep timing and circadian rhythmicity in healthy volunteers may be relevant to quetiapine's therapeutic actions. Effects on emotional processing did not emulate the effects of antidepressants. The effects of quetiapine on sleep and circadian rhythms in patients with bipolar disorder merit further investigation to elucidate its mechanisms of action. © The Author(s) 2016.

  11. Circadian clock desynchronisation and metabolic syndrome.

    Science.gov (United States)

    Sheikh-Ali, Mae; Maharaj, Jaisri

    2014-08-01

    There is emerging evidence in the literature to suggest that disruption of the normal circadian rhythm (sleep-wake cycle signalling) is a potential risk factor to explain the increased incidence of metabolic syndrome. Over the last century, obesity, diabetes and other components of metabolic syndrome have been on the rise. On the other hand, the amount of sleep has decreased from an average of 6-8 h per night. Furthermore, the quality of sleep has declined with more individuals voluntarily decreasing their amount of sleep to work or enjoy leisure activities. Over the last decade, researchers have examined the relationship between disruption in human circadian system and the emergence of symptoms related to metabolic syndrome. Indeed, epidemiological studies suggest a relation between sleep duration and diabetes and obesity. Moreover, experimental animal and human studies suggest such a relation. These studies propose optimum sleep duration of 7-8 h per night to avoid circadian rhythm disruption and suggest that sleep disturbance, whether iatrogenic or disease-related, should be considered as a risk factor for metabolic syndrome, and be addressed. This field is in its infancy and further understanding of specific pathophysiological pathways of circadian desynchronisation will help in developing novel preventive and therapeutic strategies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Musiek, Erik S; Xiong, David D; Holtzman, David M

    2015-03-13

    Disturbances in the sleep-wake cycle and circadian rhythms are common symptoms of Alzheimer Disease (AD), and they have generally been considered as late consequences of the neurodegenerative processes. Recent evidence demonstrates that sleep-wake and circadian disruption often occur early in the course of the disease and may even precede the development of cognitive symptoms. Furthermore, the sleep-wake cycle appears to regulate levels of the pathogenic amyloid-beta peptide in the brain, and manipulating sleep can influence AD-related pathology in mouse models via multiple mechanisms. Finally, the circadian clock system, which controls the sleep-wake cycle and other diurnal oscillations in mice and humans, may also have a role in the neurodegenerative process. In this review, we examine the current literature related to the mechanisms by which sleep and circadian rhythms might impact AD pathogenesis, and we discuss potential therapeutic strategies targeting these systems for the prevention of AD.

  13. Delirium - A Dysfunctional Circadian Rhythm

    OpenAIRE

    Eckle T

    2016-01-01

    Critical care units are a major cause of a disrupted circadian rhythm in patients [1, 2]. Light, noise, treatments, sedatives and mechanical ventilation throughout a 24 h time period are the major offenders of circadian rhythm disruption in the intensive care unit [ICU] [2]. Interestingly, circadian disruption is frequently associated with the occurrence of delirium having a high impact on outcome and mortality in the critically ill [3-5]. Endogenous melatonin, a mirror of our circadian rhyth...

  14. Circadian Rhythms in Cyanobacteria

    Science.gov (United States)

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  15. Circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Morgenthaler TI

    2012-05-01

    Full Text Available Bhanu P Kolla,1,2 R Robert Auger,1,2 Timothy I Morgenthaler11Mayo Center for Sleep Medicine, 2Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USAAbstract: Misalignment between endogenous circadian rhythms and the light/dark cycle can result in pathological disturbances in the form of erratic sleep timing (irregular sleep–wake rhythm, complete dissociation from the light/dark cycle (circadian rhythm sleep disorder, free-running type, delayed sleep timing (delayed sleep phase disorder, or advanced sleep timing (advanced sleep phase disorder. Whereas these four conditions are thought to involve predominantly intrinsic mechanisms, circadian dysrhythmias can also be induced by exogenous challenges, such as those imposed by extreme work schedules or rapid transmeridian travel, which overwhelm the ability of the master clock to entrain with commensurate rapidity, and in turn impair approximation to a desired sleep schedule, as evidenced by the shift work and jet lag sleep disorders. This review will focus on etiological underpinnings, clinical assessments, and evidence-based treatment options for circadian rhythm sleep disorders. Topics are subcategorized when applicable, and if sufficient data exist. The length of text associated with each disorder reflects the abundance of associated literature, complexity of management, overlap of methods for assessment and treatment, and the expected prevalence of each condition within general medical practice.Keywords: circadian rhythm sleep disorders, assessment, treatment

  16. Circadian pacemaker neurons change synaptic contacts across the day

    Science.gov (United States)

    Gorostiza, E. Axel; Depetris-Chauvin, Ana; Frenkel, Lia; Pírez, Nicolás; Ceriani, María Fernanda

    2014-01-01

    Summary Daily cycles of rest and activity are a common example of circadian control of physiology. In Drosophila rhythmic locomotor cycles rely on the activity of 150-200 neurons grouped in seven clusters [1, 2]. Work from many laboratories points to the small Lateral Neurons ventral (sLNvs) as essential for circadian control of locomotor rhythmicity [3-7]. sLNv neurons undergo circadian remodeling of their axonal projections opening the possibility for a circadian control of connectivity of these relevant circadian pacemakers [8]. Here we show that circadian plasticity of the sLNv axonal projections has further implications than mere structural changes. First, we found that the degree of daily structural plasticity exceeds that originally described [8] underscoring that changes in the degree of fasciculation as well as extension or pruning of axonal terminals could be involved. Interestingly, the quantity of active zones changes along the day, lending support to the attractive hypothesis that new synapses are formed while others are dismantled between late night and the following morning. More remarkably, taking full advantage of the GFP Reconstitution Across Synaptic Partners (GRASP) technique [9] we showed that, in addition to new synapses being added or removed, sLNv neurons contact different synaptic partners at different times along the day. These results lead us to propose that the circadian network, and in particular the sLNv neurons, orchestrates some of the physiological and behavioral differences between day and night by changing the path through which information travels. PMID:25155512

  17. Circadian rhythmicity by autocatalysis.

    Directory of Open Access Journals (Sweden)

    Arun Mehra

    2006-07-01

    Full Text Available The temperature compensated in vitro oscillation of cyanobacterial KaiC phosphorylation, the first example of a thermodynamically closed system showing circadian rhythmicity, only involves the three Kai proteins (KaiA, KaiB, and KaiC and ATP. In this paper, we describe a model in which the KaiA- and KaiB-assisted autocatalytic phosphorylation and dephosphorylation of KaiC are the source for circadian rhythmicity. This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles and has period lengths and rate constant values that are consistent with experimental observations.

  18. Therapeutic potentials of mesenchymal stem cells on the renal cortex of experimentally induced hypertensive albino rats: Relevant role of Nrf2.

    Science.gov (United States)

    Mohamed, Eman M; Samak, Mai A

    2017-04-01

    Bone marrow derived-mesenchymal stem cells (BM-MSCs) have brought great attention in regenerative medicine field, various experimental & clinical trials were held to investigate their therapeutic effects in different disorders. We designed a histological & immunohistochemical study to evaluate effectiveness of MSCs therapy in withhold of end-stage renal disease (ESRD) secondary to hypertension which has become a growing & striking public health problem. 30 adult male albino rats were utilized, 20 of them were exposed to experimental induction of hypertension, then divided equally to MSCs treated group (injected with 1×10 6 fluorescent labeled cell i.v./rat), while the second one was left without treatment. Renal specimens were subjected to histopathological, ultrastructural and immunohistochemical examination for Nrf2 in addition to biochemical estimation of serum urea & creatinine. Our results documented that BM-derived MSCs exerts considerable reversing effect of histopathologic and ultrastructural hypertensive nephropathy. Moreover, immunohistochemical results clearly pointed to relevant role of Nrf2 pathway in MSCs related renal therapeutic effects. Copyright © 2017. Published by Elsevier Ltd.

  19. Circadian Metabolism in the Light of Evolution

    DEFF Research Database (Denmark)

    Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2015-01-01

    A review. Circadian rhythm, or daily oscillation, of behaviors and biol. processes is a fundamental feature of mammalian physiol. that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the b......A review. Circadian rhythm, or daily oscillation, of behaviors and biol. processes is a fundamental feature of mammalian physiol. that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine...... energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. [on SciFinder(R)]...

  20. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  1. Circadian Patterns in Twitter

    NARCIS (Netherlands)

    ten Thij, M.C.; Kampstra, P.; Bhulai, S.; Laux, F.; Pardalos, P.M.; Crolotte, A.

    2014-01-01

    In this paper, we study activity on the microblogging platform Twitter. We analyse two separate aspects of activity on Twitter. First, we analyse the daily and weekly number of posts, through which we find clear circadian (daily) patterns emerging in the use of Twitter for multiple languages. We see

  2. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    Science.gov (United States)

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  3. Sleep, circadian rhythms, and athletic performance.

    Science.gov (United States)

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Circadian abnormalities as markers of susceptibility in bipolar disorders.

    Science.gov (United States)

    Milhiet, Vanessa; Boudebesse, Carole; Bellivier, Frank; Drouot, Xavier; Henry, Chantal; Leboyer, Marion; Etain, Bruno

    2014-01-01

    Chronobiological models have contributed to a better understanding of the pathophysiology of bipolar disorders. Circadian functions dysregulations are associated with bipolar disorders, including biochemical (melatonin and cortisol profiles), actigraphic (sleep/wake patterns), and dimensional (chronotypes) circadian markers. These associations are observed not only during acute episodes but also during euthymic periods. Most markers that are associated with bipolar disorders are also found in the healthy relatives of patients, suggesting a strong degree of heritability. As such, they may serve as trait markers of the disorder. Several circadian genes have been found to be associated with bipolar disorders: at least three studies have reported positive associations for each of CLOCK, NPAS2, ARNTL1, NR1D1, PER3, RORB and CSNK1epsilon. Thus the clock machinery may contribute to the genetic susceptibility to bipolar disorders. The circadian model theory has also led to the development of novel therapeutic strategies such as InterPersonal and Social Rhythms Therapy and chronotherapeutics. Additionally, the circadian model theory may help explain how mood stabilizers (in particular lithium carbonate) bring about their therapeutic effects.

  5. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance.

    Science.gov (United States)

    Huang, Hsuan-Ying; Wu, Wen-Ren; Wang, Yu-Hui; Wang, Jun-Wen; Fang, Fu-Min; Tsai, Jen-Wei; Li, Shau-Hsuan; Hung, Hsiao-Chin; Yu, Shih-Chen; Lan, Jui; Shiue, Yow-Ling; Hsing, Chung-His; Chen, Li-Tzong; Li, Chien-Feng

    2013-06-01

    The principal goals were to identify and validate targetable metabolic drivers relevant to myxofibrosarcoma pathogenesis using a published transcriptome. As the most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase (ASS1) was selected for further analysis by methylation-specific PCR, pyrosequencing, and immunohistochemistry of myxofibrosarcoma samples. The roles of ASS1 in tumorigenesis and the therapeutic relevance of the arginine-depriving agent pegylated arginine deiminase (ADI-PEG20) were elucidated in ASS1-deficient myxofibrosarcoma cell lines and xenografts with and without stable ASS1 reexpression. ASS1 promoter hypermethylation was detected in myxofibrosarcoma samples and cell lines and was strongly linked to ASS1 protein deficiency. The latter correlated with increased tumor grade and stage and independently predicted a worse survival. ASS1-deficient cell lines were auxotrophic for arginine and susceptible to ADI-PEG20 treatment, with dose-dependent reductions in cell viability and tumor growth attributable to cell-cycle arrest in the S-phase. ASS1 expression was restored in 2 of 3 ASS1-deficient myxofibrosarcoma cell lines by 5-aza-2'-deoxycytidine, abrogating the inhibitory effect of ADI-PEG20. Conditioned media following ASS1 reexpression attenuated HUVEC tube-forming capability, which was associated with suppression of MMP-9 and an antiangiogenic effect in corresponding myxofibrosarcoma xenografts. In addition to delayed wound closure and fewer invading cells in a Matrigel assay, ASS1 reexpression reduced tumor cell proliferation, induced G1-phase arrest, and downregulated cyclin E with corresponding growth inhibition in soft agar and xenograft assays. Our findings highlight ASS1 as a novel tumor suppressor in myxofibrosarcomas, with loss of expression linked to promoter methylation, clinical aggressiveness, and sensitivity to ADI-PEG20. ©2013 AACR

  6. Neurodegeneration and the Circadian Clock

    Directory of Open Access Journals (Sweden)

    Suzanne Hood

    2017-05-01

    Full Text Available Despite varied etiologies and symptoms, several neurodegenerative diseases—specifically, Alzheimer’s (AD, Parkinson’s (PD, and Huntington’s diseases (HDs—share the common feature of abnormal circadian rhythms, such as those in behavior (e.g., disrupted sleep/wake cycles, physiological processes (e.g., diminished hormone release and biochemical activities (e.g., antioxidant production. Circadian disturbances are among the earliest symptoms of these diseases, and the molecular mechanisms of the circadian system are suspected to play a pivotal, and possibly causal, role in their natural histories. Here, we review the common circadian abnormalities observed in ADs, PDs and HDs, and summarize the evidence that the molecular circadian clockwork directly influences the course of these disease states. On the basis of this research, we explore several circadian-oriented interventions proposed as treatments for these neurological disorders.

  7. Sleep and Circadian Contributions to Adolescent Alcohol Use Disorder

    Science.gov (United States)

    Hasler, Brant P.; Soehner, Adriane M.; Clark, Duncan B.

    2014-01-01

    Adolescence is a time of marked changes across sleep, circadian rhythms, brain function, and alcohol use. Starting at puberty, adolescents’ endogenous circadian rhythms and preferred sleep times shift later, often leading to a mismatch with the schedules imposed by secondary education. This mismatch induces circadian misalignment and sleep loss, which have been associated with affect dysregulation, increased drug and alcohol use, and other risk-taking behaviors in adolescents and adults. In parallel to developmental changes in sleep, adolescent brains are undergoing structural and functional changes in the circuits subserving the pursuit and processing of rewards. These developmental changes in reward processing likely contribute to the initiation of alcohol use during adolescence. Abundant evidence indicates that sleep and circadian rhythms modulate reward function, suggesting that adolescent sleep and circadian disturbance may contribute to altered reward function, and in turn, alcohol involvement. In this review, we summarize the relevant evidence and propose that these parallel developmental changes in sleep, circadian rhythms, and neural processing of reward interact to increase risk for alcohol use disorder (AUD). PMID:25442171

  8. Postoperative circadian disturbances.

    Science.gov (United States)

    Gögenur, Ismail

    2010-12-01

    An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attention has also been directed towards the circadian variation in endogenous rhythms in relation to surgery. The attention has been directed to the question whether the circadian variation in endogenous rhythms can affect postoperative recovery, morbidity and mortality. Based on the lack of studies where these endogenous rhythms have been investigated in relation to surgery we performed a series of studies exploring different endogenous rhythms and factors affecting these rhythms. We also wanted to examine whether the disturbances in the postoperative circadian rhythms could be correlated to postoperative recovery parameters, and if pharmacological administration of chronobiotics could improve postoperative recovery. Circadian rhythm disturbances were found in all the examined endogenous rhythms. A delay was found in the endogenous rhythm of plasma melatonin and excretion of the metabolite of melatonin (AMT6s) in urine the first night after both minor and major surgery. This delay after major surgery was correlated to the duration of surgery. The amplitude in the melatonin rhythm was unchanged the first night but increased in the second night after major surgery. The amplitude in AMT6s was reduced the first night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively. There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The

  9. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    in patients with lower than median pain levels for a three days period after laparoscopic cholecystectomy. In the series of studies included in this thesis we have systematically shown that circadian disturbances are found in the secretion of hormones, the sleep-wake cycle, core body temperature rhythm......An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attention...... night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively...

  10. Circadian dysregulation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Aleksandar Videnovic

    2017-01-01

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder that affects over one million individuals in the US alone. PD is characterized by a plethora of motor and non-motor manifestations, resulting from a progressive degeneration of dopaminergic neurons and disbalance of several other neurotransmitters. A growing body of evidence points to significant alterations of the circadian system in PD. This is not surprising given the pivotal role that dopamine plays in circadian regulation as well as the role of circadian influences in dopamine metabolism. In this review we present basic and clinical investigations that examined the function of the circadian system in PD.

  11. Molecular Architecture of the Mammalian Circadian Clock

    Science.gov (United States)

    Partch, Carrie L.; Green, Carla B.; Takahashi, Joseph S.

    2013-01-01

    Circadian clocks coordinate physiology and behavior with the 24-hour solar day to provide temporal homeostasis with the external environment. The molecular clocks that drive these intrinsic rhythmic changes are based on interlocked transcription/translation feedback loops that integrate with diverse environmental and metabolic stimuli to generate internal 24-hour timing. In this review we highlight recent advances in our understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology. Understanding the way in which biological rhythms are generated throughout the body may provide avenues for temporally-directed therapeutics to improve health and prevent disease. PMID:23916625

  12. Circadian rhythms and circadian rhythm disorders in children and adolescents.

    Science.gov (United States)

    Garcia, J; Rosen, G; Mahowald, M

    2001-12-01

    A clinically applicable review of circadian rhythm physiology is presented, including a detailed examination of the interaction of circadian and homeostatic systems and the maturation of the circadian system from preconception through adolescence. Emphasis is placed on the clinical evaluation gathering information through the history, sleep log, and if necessary, actigraphy and polysomnography. Circadian disorders, including advanced sleep phase syndrome, circadian disorders seen in blind children, delayed sleep phase syndrome, and non-24-hour sleep phase are described. Case descriptions of each are provided. Treatment and interventions for these disorders are described, including the importance of education, light therapy, sleep-wake schedule adjustments, and the occasional use of medications, such as sedative hypnotics and melatonin.

  13. Links between circadian rhythms and psychiatric disease

    Directory of Open Access Journals (Sweden)

    Ilia N Karatsoreos

    2014-05-01

    Full Text Available Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders.

  14. Effects of the circadian rhythm gene period 1 (Per1) on psychosocial stress-Induced alcohol drinking

    OpenAIRE

    Soyka, Michael; Henriksson, Richard; Albrecht, Urs; Spanagel, Rainer; Smolka, Michael N; Rietschel, Marcella; Bilbao, Ainhoa; Treutlein, Jens; Schumann, Gunter; Ridinger, Monika; Wodarz, Norbert; Blomeyer, Dorothea; Witt, Stephanie,; Lathrop, Mark; Dong, Li

    2011-01-01

    Objective: Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1 (Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized that Per1 is involved in integrating stress response and circadian rhythmicity and explored its relevance to alcohol drinking.Method: In...

  15. The neurobiology of circadian rhythms

    NARCIS (Netherlands)

    Van der Zee, Eddy A.; Boersma, Gretha J.; Hut, Roelof A.

    2009-01-01

    Purpose of review There is growing awareness of the importance of circadian rhythmicity in various research fields. Exciting developments are ongoing in the field of circadian neurobiology linked to sleep, food intake, and memory. With the current knowledge of critical clock genes' (genes found to

  16. Circadian rhythmicity of cognitive performance

    Directory of Open Access Journals (Sweden)

    Schnupp Thomas

    2017-09-01

    Full Text Available It was investigated whether cognitive performance shows a circadian rhythm during a 50 h-long forced desynchrony sleep-wake-schedule. We asked whether it would be possible to estimate the circadian period of cognitive performance under such circumstances and how strong it correlates to subjective sleepiness rating as well as body temperature.

  17. Circadian systems biology in Metazoa.

    Science.gov (United States)

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Circadian Disorganization Alters Intestinal Microbiota

    Science.gov (United States)

    Voigt, Robin M.; Forsyth, Christopher B.; Green, Stefan J.; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H.; Turek, Fred W.; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases. PMID:24848969

  19. Circadian clock genes as modulators of sensitivity to genotoxic stress.

    Science.gov (United States)

    Antoch, Marina P; Kondratov, Roman V; Takahashi, Joseph S

    2005-07-01

    A broad variety of organisms display circadian rhythms (i.e., oscillations with 24-hr periodicities) in many aspects of their behavior, physiology and metabolism. These rhythms are under genetic control and are generated endogenously at the cellular level. In mammals, the core molecular mechanism of the oscillator consists of two transcriptional activators, CLOCK and BMAL1, and their transcriptional targets, CRYPTOCHROMES (CRYS) and PERIODS (PERS). The CRY and PER proteins function as negative regulators of CLOCK/BMAL1 activity, thus forming the major circadian autoregulatory feedback loop. It is believed that the circadian clock system regulates daily variations in output physiology and metabolism through periodic activation/repression of the set of clock-controlled genes that are involved in various metabolic pathways. Importantly, circadian-controlled pathways include those that determine in vivo responses to genotoxic stress. By using circadian mutant mice deficient in different components of the molecular clock system, we have established genetic models that correlate with the two opposite extremes of circadian cycle as reflected by the activity of the CLOCK/BMAL1 transactivation complex. Comparison of the in vivo responses of these mutants to the chemotherapeutic drug, cyclophosphamide (CY), has established a direct correlation between drug toxicity and the functional status of the CLOCK/BMAL1 transcriptional complex. We have also demonstrated that CLOCK/BMAL1 modulates sensitivity to drug-induced toxicity by controlling B cell responses to active CY metabolites. These results suggest that the sensitivity of cells to genotoxic stress induced by anticancer therapy may be modulated by CLOCK/BMAL1 transcriptional activity. Further elucidation of the molecular mechanisms of circadian control as well as identification of specific pharmacological modulators of CLOCK/BMAL1 activity are likely to lead to the development of new anti-cancer treatment schedules with

  20. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Depression

    Directory of Open Access Journals (Sweden)

    Roberto Salgado-Delgado

    2011-01-01

    Full Text Available Circadian factors might play a crucial role in the etiology of depression. It has been demonstrated that the disruption of circadian rhythms by lighting conditions and lifestyle predisposes individuals to a wide range of mood disorders, including impulsivity, mania and depression. Also, associated with depression, there is the impairment of circadian rhythmicity of behavioral, endocrine, and metabolic functions. Inspite of this close relationship between both processes, the complex relationship between the biological clock and the incidence of depressive symptoms is far from being understood. The efficiency and the timing of treatments based on chronotherapy (e.g., light treatment, sleep deprivation, and scheduled medication indicate that the circadian system is an essential target in the therapy of depression. The aim of the present review is to analyze the biological and clinical data that link depression with the disruption of circadian rhythms, emphasizing the contribution of circadian desynchrony. Therefore, we examine the conditions that may lead to circadian disruption of physiology and behavior as described in depressive states, and, according to this approach, we discuss therapeutic strategies aimed at treating the circadian system and depression.

  1. Circadian signatures in rat liver: from gene expression to pathways

    Directory of Open Access Journals (Sweden)

    DuBois Debra C

    2010-11-01

    Full Text Available Abstract Background Circadian rhythms are 24 hour oscillations in many behavioural, physiological, cellular and molecular processes that are controlled by an endogenous clock which is entrained to environmental factors including light, food and stress. Transcriptional analyses of circadian patterns demonstrate that genes showing circadian rhythms are part of a wide variety of biological pathways. Pathway activity method can identify the significant pattern of the gene expression levels within a pathway. In this method, the overall gene expression levels are translated to a reduced form, pathway activity levels, via singular value decomposition (SVD. A given pathway represented by pathway activity levels can then be as analyzed using the same approaches used for analyzing gene expression levels. We propose to use pathway activity method across time to identify underlying circadian pattern of pathways. Results We used synthetic data to demonstrate that pathway activity analysis can evaluate the underlying circadian pattern within a pathway even when circadian patterns cannot be captured by the individual gene expression levels. In addition, we illustrated that pathway activity formulation should be coupled with a significance analysis to distinguish biologically significant information from random deviations. Next, we performed pathway activity level analysis on a rich time series of transcriptional profiling in rat liver. The over-represented five specific patterns of pathway activity levels, which cannot be explained by random event, exhibited circadian rhythms. The identification of the circadian signatures at the pathway level identified 78 pathways related to energy metabolism, amino acid metabolism, lipid metabolism and DNA replication and protein synthesis, which are biologically relevant in rat liver. Further, we observed tight coordination between cholesterol biosynthesis and bile acid biosynthesis as well as between folate biosynthesis

  2. Circadian variations in blood pressure in health and disease: implications for patient management

    Directory of Open Access Journals (Sweden)

    Slaughter MS

    2011-08-01

    Full Text Available Atul R Chugh1, John H Loughran1, Mark S Slaughter21Division of Cardiovascular Medicine, 2Division of Thoracic and Cardiovascular Surgery, University of Louisville, Louisville, KY, USAAbstract: Traditionally, blood pressure measurements have been performed in office settings and have provided the basis for all diagnostic and therapeutic decisions. However, the development of a clinically relevant 24-hour blood pressure monitoring system has added greatly to the ability of blood pressure values to confer additional clinical information, including prognostic value. Mechanistically, the circadian rhythm of blood pressure is mediated by a complex process as a part of the neurohormonal cascade. Pattern recognition of blood pressure peaks and troughs over a 24-hour period has led to categorization into specific subsets namely, ie, dippers, nondippers, extreme dippers, and reverse dippers. Cardiovascular risk is associated with certain pattern types, as has been demonstrated in large observational and prospective studies. The development of therapies for the purpose of restoring more pathological patterns to normal ones continues to grow. These include both pharmaceutical and device therapy. This article describes the development of 24-hour blood pressure monitoring systems, the identification of circadian blood pressure patterns, and the treatment strategies studied thus far which affect these newer blood pressure parameters.Keywords: ambulatory blood pressure measurement, nocturnal blood pressure, dippers, nondippers, extreme dippers, device therapy

  3. Proteomics and circadian rhythms: it's all about signaling!

    Science.gov (United States)

    Mauvoisin, Daniel; Dayon, Loïc; Gachon, Frédéric; Kussmann, Martin

    2015-01-01

    Proteomic technologies using MS offer new perspectives in circadian biology, in particular the possibility to study PTMs. To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic health as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  5. [Sleep/wake cycle, circadian disruption and the development of obesity].

    Science.gov (United States)

    Masaki, Takayuki

    2012-07-01

    It is increasingly recognized that obesity is an important health problem. The mechanisms that underlie obesity have not been fully elucidated, and effective therapeutic approaches are currently of general interest. Recent studies have provided evidence that circadian clock is a crucial factor in the development of obesity and related metabolic disease. Genetic disruption of clock genes in mice displayed metabolic dysfunctions of specific tissues at distinct phases of the sleep/wake cycle. In addition, circadian desynchrony, a characteristic of shift work and short sleep, are associated with obesity in human. Here, I describe the advances in understanding the interrelationship among circadian disruption, sleep deprivation and obesity.

  6. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    Science.gov (United States)

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  7. Nocturia: The circadian voiding disorder

    Directory of Open Access Journals (Sweden)

    Jin Wook Kim

    2016-05-01

    Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.

  8. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively....... There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The circadian activity rhythm was also disturbed after both minor and major surgery. The daytime AMT6s excretion in urine after major...... surgery was increased on the fourth day after surgery and the total excretion of AMT6s in urine was correlated to sleep efficiency and wake time after sleep onset, but was not correlated to the occurrence of postoperative cognitive dysfunction. We could only prove an effect of melatonin substitution...

  9. Circadian Rhythm Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  10. [Circadian rhythms and systems biology].

    Science.gov (United States)

    Goldbeter, Albert; Gérard, Claude; Leloup, Jean-Christophe

    2010-01-01

    Cellular rhythms represent a field of choice for studies in system biology. The examples of circadian rhythms and of the cell cycle show how the experimental and modeling approaches contribute to clarify the conditions in which periodic behavior spontaneously arises in regulatory networks at the cellular level. Circadian rhythms originate from intertwined positive and negative feedback loops controlling the expression of several clock genes. Models can be used to address the dynamical bases of physiological disorders related to dysfunctions of the mammalian circadian clock. The cell cycle is driven by a network of cyclin-dependent kinases (Cdks). Modeled in the form of four modules coupled through multiple regulatory interactions, the Cdk network operates in an oscillatory manner in the presence of sufficient amounts of growth factor. For circadian rhythms and the cell cycle, as for other recently observed cellular rhythms, periodic behavior represents an emergent property of biological systems related to their regulatory structure.

  11. Circadian Control of Global Transcription

    Science.gov (United States)

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  12. Circadian Control of Global Transcription

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2015-01-01

    Full Text Available Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs. CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.

  13. Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease

    Science.gov (United States)

    He, Qiankun; Wu, Binbin; Price, Jeffrey L.; Zhao, Zhangwu

    2017-01-01

    Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in Drosophila and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in Drosophila and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease. These signaling molecules convey important network connectivity and signaling information for normal circadian function, but PDF and insulin-like peptides can also convey signals that lead to apoptosis, enhanced neurodegeneration and cognitive decline in flies carrying circadian mutations or in a senescent state. PMID:28430154

  14. The circadian clock regulates inflammatory arthritis.

    Science.gov (United States)

    Hand, Laura E; Hopwood, Thomas W; Dickson, Suzanna H; Walker, Amy L; Loudon, Andrew S I; Ray, David W; Bechtold, David A; Gibbs, Julie E

    2016-11-01

    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.-Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis. © The Author(s).

  15. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes.

    Directory of Open Access Journals (Sweden)

    Greg Boyle

    Full Text Available From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network.

  16. Clock, Circadian Rhythms, and Breast Cancer

    National Research Council Canada - National Science Library

    Hill, Steven M

    2004-01-01

    .... Work involving circadian clock genes and cell cycle components suggests not only an association between the two time-keeping systems, but also regulation of the cell cycle by the circadian clock...

  17. Sleep and circadian rhythms in space.

    Science.gov (United States)

    Stampi, C

    1994-05-01

    This paper presents a detailed critical review of the knowledge accumulated in the last three decades concerning research on sleep, work-rest schedules, and circadian rhythms in space. The focus of the paper is preceded by a brief review of the basic principles of the human circadian system and the physiology of the sleep-wake cycle, relevant to understanding the problem of astronaut work-rest scheduling. Much of what is known is based on anecdotal reports, mission log books, and debriefing of astronauts after flights. The broad literature reviewed, which includes studies from American and Soviet space missions, as well as some studies conducted under simulated weightlessness, offers just a handful of objective studies on the physiology of sleep and circadian rhythms in space. Nevertheless, the data are remarkably consistent, and indicate that sleep can be of reasonably good quality in space. The risk of sleep loss and associated performance degradation appears to be a manageable one. However, one clear conclusion arises from this review: whatever the type of mission of flight plan, its success will depend on whether the principles of circadian and sleep-wake regulation have been taken into account during the planning phase of work-rest schedules. That is, satisfactory sleep and alertness is more likely to occur if crews maintain a reasonable (i.e., constant) relation with their normal terrestrial rhythm. This is not as easy a task as it may appear; indeed, unexpected, high-intensity operational demands have been the major cause of acute problems of sleep loss and performance degradation in space. Moreover, the growing complexity of space missions indicate that emergencies will never disappear. Therefore, one of the most important research challenges for future space missions is the development of strategies that could permit astronauts to function closest to maximal efficiency during intensive and prolonged work. Countermeasures for optimizing astronaut

  18. Nutrition and the Circadian System

    Science.gov (United States)

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-01-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partition incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24 hour day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation and thereby contributes to adverse metabolic consequences and chronic disease development. ‘High-fat diets’ (HFDs) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFDs in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  19. Circadian rhythm and cardiovascular disorders

    Directory of Open Access Journals (Sweden)

    Zhang L

    2014-07-01

    Full Text Available Lilei Zhang,1–3 Mohamed Khaled Sabeh,2,3 Mukesh K Jain2,31Department of Genetics and Genome Sciences, 2Case Cardiovascular Research Institute, Case Western Reserve University, 3Harrington Heart and Vascular Institute, Department of Medicine, University Hospitals at Case Medical Center, Cleveland, OH, USAAbstract: Circadian rhythmicity affects all living organisms on earth. Central and peripheral cellular clocks have the ability to oscillate and be entrained to environmental cues, thus allowing organisms to anticipate and synchronize their physiologic processes and behavior to recurring daily environmental alterations. Disruption of the circadian rhythm in modern life, such as by shift work and jet travel, leads to dyssynchrony of the central and peripheral clocks, and is an independent risk factor for cardiovascular disease and the metabolic syndrome. Aging has also been associated with attenuated cellular rhythmicity. Here we summarize the clinical observations linking cardiovascular health to circadian rhythm. In addition, we discuss recent advances in experimental models for understanding the clock machinery in terms of a variety of physiologic processes within the cardiovascular system. Together, these studies build the foundation for applying our knowledge of circadian biology to the development of novel therapy for cardiovascular disorders.Keywords: circadian rhythm, diurnal variation, cardiovascular

  20. Implications of disturbances in circadian rhythms for cardiovascular health: A new frontier in free radical biology.

    Science.gov (United States)

    Khaper, Neelam; Bailey, Craig D C; Ghugre, Nilesh R; Reitz, Cristine; Awosanmi, Zikra; Waines, Ryan; Martino, Tami A

    2017-11-13

    Cell autonomous circadian "clock" mechanisms are present in virtually every organ, and generate daily rhythms that are important for normal physiology. This is especially relevant to the cardiovascular system, for example the circadian mechanism orchestrates rhythms in heart rate, blood pressure, cardiac contractility, metabolism, gene and protein abundance over the 24-h day and night cycles. Conversely, disturbing circadian rhythms (e.g. via shift work, sleep disorders) increases cardiovascular disease risk, and exacerbates cardiac remodelling and worsens outcome. Notably, reactive oxygen species (ROS) are important contributors to heart disease, especially the pathophysiologic damage that occurs after myocardial infarction (MI, heart attack). However, little is known about how the circadian mechanism, or rhythm desynchrony, is involved in these key pathologic stress responses. This review summarizes the current knowledge on circadian rhythms in the cardiovascular system, and the implications of rhythm disturbances for cardiovascular health. Furthermore, we highlight how free radical biology coincides with the pathogenesis of myocardial repair and remodelling after MI, and indicate a role for the circadian system in the oxidative stress pathways in the heart and brain after MI. This fusion of circadian biology with cardiac oxidative stress pathways is novel, and offers enormous potential for improving our understanding and treatment of heart disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    Science.gov (United States)

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  2. Circadian rhythms, sleep, and metabolism.

    Science.gov (United States)

    Huang, Wenyu; Ramsey, Kathryn Moynihan; Marcheva, Biliana; Bass, Joseph

    2011-06-01

    The discovery of the genetic basis for circadian rhythms has expanded our knowledge of the temporal organization of behavior and physiology. The observations that the circadian gene network is present in most living organisms from eubacteria to humans, that most cells and tissues express autonomous clocks, and that disruption of clock genes results in metabolic dysregulation have revealed interactions between metabolism and circadian rhythms at neural, molecular, and cellular levels. A major challenge remains in understanding the interplay between brain and peripheral clocks and in determining how these interactions promote energy homeostasis across the sleep-wake cycle. In this Review, we evaluate how investigation of molecular timing may create new opportunities to understand and develop therapies for obesity and diabetes.

  3. Circadian rhythms in a nutshell.

    Science.gov (United States)

    Edery, I

    2000-08-09

    Living organisms on this planet have adapted to the daily rotation of the earth on its axis. By means of endogenous circadian clocks that can be synchronized to the daily and seasonal changes in external time cues, most notably light and temperature, life forms anticipate environmental transitions, perform activities at biologically advantageous times during the day, and undergo characteristic seasonal responses. The effects of transmeridian flight and shift work are stark reminders that although modern technologies can create "cities that never sleep" we cannot escape the recalcitrance of endogenous clocks that regulate much of our physiology and behavior. Moreover, malfunctions in the human circadian timing system are implicated in several disorders, including chronic sleep disorders in the elderly, manic-depression, and seasonal affective disorders (SAD or winter depression). Recent progress in understanding the molecular mechanisms underlying circadian rhythms has been remarkable. In its most basic form, circadian clocks are comprised of a set of proteins that, by virtue of the design principles involved, generate a self-sustaining transcriptional-translational feedback loop with a free-running period of about 24 h. One or more of the clock components is acutely sensitive to light, resulting in an oscillator that can be synchronized to local time. This review provides an overview of the roles circadian clocks play in nature, how they might have arisen, human health concerns related to clock dysfunction, and mainly focuses on the clockworks found in Drosophila and mice, the two best studied animal model systems for understanding the biochemical and cellular bases of circadian rhythms.

  4. Clinical relevance of computed tomography under emergency conditions. Diagnostic accuracy, therapeutical consequences; Klinische Relevanz der Computertomographie unter Notdienstbedingungen. Diagnostische Treffsicherheit, therapeutische Konsequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.; Jensen, F.; Wedegaertner, U.; Adam, G. [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Radiologisches Zentrum, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2004-01-01

    Purpose: To evaluate the diagnostic accuracy and therapeutic consequences of computed tomography performed on an emergency basis in a primary care hospital. Material and Methods: In 418 patients, 463 computed tomographies (thorax, abdomen, pelvis, spine, aorta, neck and extremities) were performed within 12 months, providing 999 diagnoses. The computed tomography diagnoses were retrospectively evaluated and correlated to surgery and discharge diagnoses. Therapeutical consequence were analyzed and allocated to a time period < 36 h (urgent) and {>=} 36-72 h (elective). Average age was 49 (1-94) years (41% female and 59% male). Discharge diagnosis was defined as gold standard, provided that it was supported by clinical, blood chemical, diagnostic and possible surgical data. Results: In 176 of 999 diagnoses (18%), the diagnoses were classified as ''noncorrelatable''. Of the 823 correlated diagnoses, 431 were true positive, 14 false positive, 66 false negative and 312 true negative. Sensitivity, specificity and diagnostic accuracy of computed tomography was 87,96 and 90%. Computed tomography had therapeutic consequences (surgery, drainage, puncture, reposition, thrombolytic therapy, chemotherapy, bronchoscopy, endoscopy, percutaneous transluminal angioplasty, coiling etc.) in 57% and no direct therapeutic interventions in 43%. Computed tomography excluded the suspected diagnosis in 36% and resulted in a conservative therapeutic regiment in 7%. Surgery was performed on 134 of the 418 patients (32%) who underwent computed tomography, with the surgery urgent in 71 (17%) and elective in 63 (15%) of the 418 patient. (orig.) [German] Ziel: Bewertung der diagnostischen Treffsicherheit und therapeutischen Konsequenzen der Computertomographie unter Notdienstbedingungen in einem Krankenhaus der Maximalversorgung. Material und Methoden: Innerhalb des definierten Studienzeitraums (12 Monate) wurden bei 418 Patienten 463 Computertomographien (Thorax, Abdomen

  5. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    Science.gov (United States)

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  6. Circadian phase, circadian period and chronotype are reproducible over months.

    Science.gov (United States)

    Kantermann, Thomas; Eastman, Charmane I

    2017-11-17

    The timing of the circadian clock, circadian period and chronotype varies among individuals. To date, not much is known about how these parameters vary over time in an individual. We performed an analysis of the following five common circadian clock and chronotype measures: 1) the dim light melatonin onset (DLMO, a measure of circadian phase), 2) phase angle of entrainment (the phase the circadian clock assumes within the 24-h day, measured here as the interval between DLMO and bedtime/dark onset), 3) free-running circadian period (tau) from an ultradian forced desynchrony protocol (tau influences circadian phase and phase angle of entrainment), 4) mid-sleep on work-free days (MSF from the Munich ChronoType Questionnaire; MCTQ) and 5) the score from the Morningness-Eveningness Questionnaire (MEQ). The first three are objective physiological measures, and the last two are measures of chronotype obtained from questionnaires. These data were collected from 18 individuals (10 men, eight women, ages 21-44 years) who participated in two studies with identical protocols for the first 10 days. We show how much these circadian rhythm and chronotype measures changed from the first to the second study. The time between the two studies ranged from 9 months to almost 3 years, depending on the individual. Since the full experiment required living in the laboratory for 14 days, participants were unemployed, had part-time jobs or were freelance workers with flexible hours. Thus, they did not have many constraints on their sleep schedules before the studies. The DLMO was measured on the first night in the lab, after free-sleeping at home and also after sleeping in the lab on fixed 8-h sleep schedules (loosely tailored to their sleep times before entering the laboratory) for four nights. Graphs with lines of unity (when the value from the first study is identical to the value from the second study) showed how much each variable changed from the first to the second study. The

  7. Mini Review: Circadian Clocks, Stress and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca eDumbell

    2016-05-01

    Full Text Available In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic-pituitary-adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both, the HPA axis and the immune system, and discusses their interactions.

  8. ADHD, circadian rhythms and seasonality

    NARCIS (Netherlands)

    Wynchank, Dora S.; Bijlenga, Denise; Lamers, Femke; Bron, Tannetje I.; Winthorst, Wim H.; Vogel, Suzan W.; Penninx, Brenda W.; Beekman, Aartjan T.; Kooij, J. Sandra

    2016-01-01

    Objective: We evaluated whether the association between Adult Attention-Deficit/Hyperactivity Disorder (ADHD) and Seasonal Affective Disorder (SAD) was mediated by the circadian rhythm. Method: Data of 2239 persons from the Netherlands Study of Depression and Anxiety (NESDA) were used. Two groups

  9. Circadian rhythms in mitochondrial respiration

    NARCIS (Netherlands)

    de Goede, Paul; Wefers, Jakob; Brombacher, Eline Constance; Schrauwen, P.; Kalsbeek, Andries

    2018-01-01

    Many physiological processes are regulated with a 24h periodicity to anticipate the environmental changes of day to nighttime and vice versa. These 24h regulations, commonly termed circadian rhythms, amongst others control the sleep-wake cycle, locomotor activity and preparation for food

  10. The Influence of Circadian Timing on Olfactory Sensitivity.

    Science.gov (United States)

    Herz, Rachel S; Van Reen, Eliza; Barker, David H; Hilditch, Cassie J; Bartz, Ashten L; Carskadon, Mary A

    2017-12-25

    Olfactory sensitivity has traditionally been viewed as a trait that varies according to individual differences but is not expected to change with one's momentary state. Recent research has begun to challenge this position and time of day has been shown to alter detection levels. Links between obesity and the timing of food intake further raise the issue of whether odor detection may vary as a function of circadian processes. To investigate this question, 37 (21 male) adolescents (M age = 13.7 years) took part in a 28-h forced desynchrony (FD) protocol with 17.5 h awake and 10.5 h of sleep, for 7 FD cycles. Odor threshold was measured using Sniffin' Sticks 6 times for each FD cycle (total threshold tests = 42). Circadian phase was determined by intrinsic period derived from dim light melatonin onsets. Odor threshold showed a significant effect of circadian phase, with lowest threshold occurring on average slightly after the onset of melatonin production, or about 1.5○ (approximately 21:08 h). Considerable individual variability was observed, however, peak olfactory acuity never occurred between 80.5○ and 197.5○ (~02:22-10:10 h). These data are the first to show that odor threshold is differentially and consistently influenced by circadian timing, and is not a stable trait. Potential biological relevance for connections between circadian phase and olfactory sensitivity are discussed. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Thoracic surface temperature rhythms as circadian biomarkers for cancer chronotherapy

    Science.gov (United States)

    Roche, Véronique Pasquale; Mohamad-Djafari, Ali; Innominato, Pasquale Fabio; Karaboué, Abdoulaye; Gorbach, Alexander; Lévi, Francis Albert

    2014-01-01

    The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4 days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24 h (p|0.7|; p<0.05). Individual circadian acrophases at baseline were scattered from 15:18 to 6:05 for skin surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25–75% quartiles, 22:35–3:07) and 14:12 (13:14–14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption of these biomarkers was found for the five other patients, as indicated by the lack of any statistically significant dominant period in the circadian range. No consistent correlation (r<|0.7|, p ≥ 0.05) was found between paired rest-activity and temperature time series during fixed chronotherapy delivery. In conclusion, large inter-patient differences in circadian amplitudes and acrophases of

  12. The Circadian System Contributes to Apnea Lengthening across the Night in Obstructive Sleep Apnea.

    Science.gov (United States)

    Butler, Matthew P; Smales, Carolina; Wu, Huijuan; Hussain, Mohammad V; Mohamed, Yusef A; Morimoto, Miki; Shea, Steven A

    2015-11-01

    To test the hypothesis that respiratory event duration exhibits an endogenous circadian rhythm. Within-subject and between-subjects. Inpatient intensive physiologic monitoring unit at the Brigham and Women's Hospital. Seven subjects with moderate/severe sleep apnea and four controls, age 48 (SD = 12) years, 7 males. Subjects completed a 5-day inpatient protocol in dim light. Polysomnography was recorded during an initial control 8-h night scheduled at the usual sleep time, then through 10 recurrent cycles of 2 h 40 min sleep and 2 h 40 min wake evenly distributed across all circadian phases, and finally during another 8-h control sleep period. Event durations, desaturations, and apnea-hypopnea index for each sleep opportunity were assessed according to circadian phase (derived from salivary melatonin), time into sleep, and sleep stage. Average respiratory event durations in NREM sleep significantly lengthened across both control nights (21.9 to 28.2 sec and 23.7 to 30.2 sec, respectively). During the circadian protocol, event duration in NREM increased across the circadian phases that corresponded to the usual sleep period, accounting for > 50% of the increase across normal 8-h control nights. AHI and desaturations were also rhythmic: AHI was highest in the biological day while desaturations were greatest in the biological night. The endogenous circadian system plays an important role in the prolongation of respiratory events across the night, and might provide a novel therapeutic target for modulating sleep apnea. © 2015 Associated Professional Sleep Societies, LLC.

  13. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research

    Directory of Open Access Journals (Sweden)

    Maximilian eMichel

    2014-08-01

    Full Text Available Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.

  14. Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.

    Science.gov (United States)

    Zhang, Lin; Weng, Wenya; Guo, Jinhu

    2011-05-20

    The circadian clock is essential in almost all living organisms to synchronise biochemical, metabolic, physiological and behavioural cycles to daily changing environmental factors. In a highly conserved fashion, the circadian clock is primarily controlled by multiple positive and negative molecular circuitries that control gene expression. More recently, research in Neurospora and other eukaryotes has uncovered the involvement of additional regulatory components that operate at the posttranslational level to fine tune the circadian system. Though it remains poorly understood, a growing body of evidence has shown that posttranscriptional regulation controls the expression of both circadian oscillator and output gene transcripts at a number of different steps. This regulation is crucial for driving and maintaining robust circadian rhythms. Here we review recent advances in circadian rhythm research at the RNA level. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. [Biology and genetics of circadian rhythm].

    Science.gov (United States)

    Bellivier, F

    2009-01-01

    In recent decades our knowledge of the molecular mechanisms of biological clocks has grown expontentially. This has helped to guide the choice of genes studied to explain inter-individual variations seen in circadian rhythms. In recent years analysis of circadian rhythms has advanced considerably into the study of pathological circadian rhythms in human beings. These findings, combined with those obtained from studying mice whose circadian genes have been rendered incapable, have revealed the role of genetic factors in circadian rhythms. This literature review presents an overview of these findings. Beyond our understanding of the functioning of these biological clocks, this knowledge will be extremely useful to analyse genetic factors involved in morbid conditions involving circadian rhythm abnormalities.

  16. Circadian typology and sensation seeking in adolescents.

    Science.gov (United States)

    Muro, Anna; Gomà-i-Freixanet, Montserrat; Adan, Ana

    2012-12-01

    The relationship of circadian typology with personality has been largely studied in adults, but there are few studies exploring such relationship in adolescents. Adolescence has been associated with a greater tendency to eveningness preference, sleeping problems, poorer academic achievement, earlier substance use, or risky behaviors, and it is suggested that this association might be mediated by personality factors. Given the relevance of identifying the behavioral outcomes of young evening types to detect and prevent health problems, the present study aimed to explore, for the first time, the relationship between sensation seeking and circadian typology in an adolescent sample of 688 students (51.45% boys) from 12 to 16 yrs old. They answered the Spanish versions of the Morningness-Eveningness Scale for Children (MESC) and the Junior Sensation Seeking Scale (J-SSS), which includes four subscales measuring Thrill and Adventure Seeking, Experience Seeking, Disinhibition, and Boredom Susceptibility. Analyses showed that boys obtained significantly higher scores than girls on J-SSS total score and all subscales except Boredom Susceptibility, whereas evening-type adolescents of both sexes scored significantly higher than neither types and than morning types on J-SSS total score. These results indicate that evening-type adolescents show a greater desire for varied, new, complex, and intense sensations, and they are ready for experiencing more risks than morning types. The implications of this study suggest the need of being aware of individual differences in the SS trait in evening-type adolescents, as well as taking into account the wide variety of behaviors associated with it, either prosocial or antisocial, to design better preventive health and academic programs.

  17. Effects of thyroidectomy, parathyroidectomy and lithium on circadian wheelrunning in rats.

    Science.gov (United States)

    Schull, J; McEachron, D L; Adler, N T; Fiedler, L; Horvitz, J; Noyes, A; Olson, M; Shack, J

    1988-01-01

    Circadian rhythms and levels of wheelrunning were studied in thyroidectomized, parathyroidectomized, thyro-parathyroidectomized, and sham-operated male rats. Animals were entrained to a 12:12 light:dark schedule, then exposed to constant dim red illumination, and then given a diet containing lithium. Under constant conditions, free-running circadian activity rhythms were shorter, and levels of activity were greater, in thyroidectomized and thyroparathyroidectomized animals. Lithium reversed these effects, lengthening free-running circadian periods in all groups, with a greater reduction of activity observed in animals with thyroids removed. Parathyroidectomy had no clear effects. Since lithium slowed circadian rhythms and reduced activity even in the absence of intact thyroid or parathyroid glands, these effects may have been due to the action of lithium at some other site. The same may be true of other thyroid suppressors reported to affect circadian rhythms. These findings may be relevant to the biological substrates of major affective disorders in humans, which have been associated with abnormalities of thyroid function, abnormally short circadian rhythms, abnormal activity levels, and responsiveness to lithium therapy.

  18. Polymorphisms in circadian genes, night work and breast cancer: results from the GENICA study.

    Science.gov (United States)

    Rabstein, Sylvia; Harth, Volker; Justenhoven, Christina; Pesch, Beate; Plöttner, Sabine; Heinze, Evelyn; Lotz, Anne; Baisch, Christian; Schiffermann, Markus; Brauch, Hiltrud; Hamann, Ute; Ko, Yon; Brüning, Thomas

    2014-12-01

    The role of genetic variants and environmental factors in breast cancer etiology has been intensively studied in the last decades. Gene-environment interactions are now increasingly being investigated to gain more insights into the development of breast cancer, specific subtypes, and therapeutics. Recently, night shift work that involves circadian disruption has gained rising interest as a potential non-genetic breast cancer risk factor. Here, we analyzed genetic polymorphisms in genes of cellular clocks, melatonin biosynthesis and signaling and their association with breast cancer as well as gene-gene and gene-night work interactions in a German case-control study on breast cancer. GENICA is a population-based case-control study on breast cancer conducted in the Greater Region of Bonn. Associations between seven polymorphisms in circadian genes (CLOCK, NPAS2, ARTNL, PER2 and CRY2), genes of melatonin biosynthesis and signaling (AANAT and MTNR1B) and breast cancer were analyzed with conditional logistic regression models, adjusted for potential confounders for 1022 cases and 1014 controls. Detailed shift-work information was documented for 857 breast cancer cases and 892 controls. Gene-gene and gene-shiftwork interactions were analyzed using model-based multifactor dimensionality reduction (mbMDR). For combined heterozygotes and rare homozygotes a slightly elevated breast cancer risk was found for rs8150 in gene AANAT (OR 1.17; 95% CI 1.01-1.36), and a reduced risk for rs3816358 in gene ARNTL (OR 0.82; 95% CI 0.69-0.97) in the complete study population. In the subgroup of shift workers, rare homozygotes for rs10462028 in the CLOCK gene had an elevated risk of breast cancer (OR for AA vs. GG: 3.53; 95% CI 1.09-11.42). Shift work and CLOCK gene interactions were observed in the two-way interaction analysis. In addition, gene-shiftwork interactions were detected for MTNR1B with NPAS2 and ARNTL. In conclusion, the results of our population-based case-control study

  19. Circadian clocks are designed optimally

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian rhythms are acquired through evolution to increase the chances for survival by synchronizing to the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. Since both properties have been tuned through natural selection, their adaptation can be formalized in the framework of mathematical optimization. By using a succinct model, we found that simultaneous optimization of regularity and entrainability entails inherent features of the circadian mechanism irrespective of model details. At the behavioral level we discovered the existence of a dead zone, a time during which light pulses neither advance nor delay the clock. At the molecular level we demonstrate the role-sharing of two light inputs, phase advance and delay, as is well observed in mammals. We also reproduce the results of phase-controlling experiments and predict molecular elements responsible for the clockwork...

  20. Transcriptional architecture of the mammalian circadian clock.

    Science.gov (United States)

    Takahashi, Joseph S

    2017-03-01

    Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.

  1. Consequences of circadian dysregulation on metabolism

    Directory of Open Access Journals (Sweden)

    Cissé YM

    2016-09-01

    Full Text Available Yasmine M Cissé, Randy J Nelson Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH, USA Abstract: Most organisms display endogenously produced rhythms in physiology and behavior of ~24 hours in duration. These rhythms, termed circadian rhythms, are entrained to precisely 24 hours by the daily extrinsic light–dark cycle. Circadian rhythms are driven by a transcriptional–translational feedback loop that is hierarchically expressed throughout the brain and body; the suprachiasmatic nucleus of the hypothalamus is the master circadian oscillator at the top of the hierarchy. Precise timing of the circadian clocks is critical for many homeostatic processes, including energy regulation and metabolism. Many genes involved in metabolism display rhythmic oscillations. Because circadian rhythms are most potently synchronized with the external environment by light, exposure to light at night potentially disrupts circadian regulation. Other potential disruptors of circadian organization include night shift work, social jet lag, restricted sleep, and misaligned feeding. Each of these environmental conditions has been associated with metabolic changes and obesity. The goal of this review is to highlight how disruption of circadian organization, primarily due to night shift work and exposure to light at night, has downstream effects on metabolic function. Keywords: circadian disruption, light at night, obesity, shift work

  2. Circadian rhythm dysfunction in glaucoma: A hypothesis

    Directory of Open Access Journals (Sweden)

    Jean-Louis Girardin

    2008-01-01

    Full Text Available Abstract The absence of circadian zeitgebers in the social environment causes circadian misalignment, which is often associated with sleep disturbances. Circadian misalignment, defined as a mismatch between the sleep-wake cycle and the timing of the circadian system, can occur either because of inadequate exposure to the light-dark cycle, the most important synchronizer of the circadian system, or reduction in light transmission resulting from ophthalmic diseases (e.g., senile miosis, cataract, diabetic retinopathy, macular degeneration, retinitis pigmentosa, and glaucoma. We propose that glaucoma may be the primary ocular disease that directly compromises photic input to the circadian time-keeping system because of inherent ganglion cell death. Glaucomatous damage to the ganglion cell layer might be particularly harmful to melanopsin. According to histologic and circadian data, a subset of intrinsically photoresponsive retinal ganglion cells, expressing melanopsin and cryptochromes, entrain the endogenous circadian system via transduction of photic input to the thalamus, projecting either to the suprachiasmatic nucleus or the lateral geniculate nucleus. Glaucoma provides a unique opportunity to explore whether in fact light transmission to the circadian system is compromised as a result of ganglion cell loss.

  3. Modeling the mammalian circadian clock

    Science.gov (United States)

    Jolley, Craig; Ueda, Hiroki

    2012-02-01

    In biology, important processes often depend on a temporal schedule. The 24-hour periodicity of solar illumination caused by the earth's rotation has consequences for environmental factors such as temperature and humidity as well as ecological factors such as the presence of food, predators, or potential mates. As a result, many organisms have evolved to develop a circadian clock that allows them to anticipate these environmental changes in the absence of direct temporal cues. In recent years, extensive efforts have been made to deconstruct the biological clockwork from various organisms, develop mathematical models of circadian function, and construct synthetic analogues to test our understanding. My present work has two major foci. First, we have used regulatory principles revealed by recent experimental work to construct a model of the core genetic oscillator of the mammalian circadian system that captures key system-level behaviors. Second, we are exploring the possibility of a post-translational phosphorylation-based oscillator that is coupled to the core oscillator, conferring enhanced robustness and stability on the complete system. A simple model of this post-translational oscillator reveals key design constraints that must be satisfied by any such oscillator.

  4. Circadian rhythm disorders among adolescents: assessment and treatment options.

    Science.gov (United States)

    Bartlett, Delwyn J; Biggs, Sarah N; Armstrong, Stuart M

    2013-10-21

    Delayed sleep phase disorder (DSPD) - a circadian rhythm sleep disorder - is most commonly seen in adolescents. The differential diagnosis between DSPD and conventional psychophysiological insomnia is important for correct therapeutic intervention. Adolescent DSPD sleep duration is commonly 9 hours or more. Depression may be comorbid with DSPD. DSPD has a negative impact on adolescent academic performance. DSPD treatments include bright light therapy, chronotherapeutic regimens, and administration of melatonin as a chronobiotic (as distinct from a soporific). Attention to non-photic and extrinsic factors including healthy sleep parameters is also important to enable better sleep and mood outcomes in adolescents.

  5. Sleep and circadian rhythms in humans.

    Science.gov (United States)

    Czeisler, C A; Gooley, J J

    2007-01-01

    During the past 50 years, converging evidence reveals that the fundamental properties of the human circadian system are shared in common with those of other organisms. Concurrent data from multiple physiological rhythms in humans revealed that under some conditions, rhythms oscillated at different periods within the same individuals and led to the conclusion 30 years ago that the human circadian system was composed of multiple oscillators organized hierarchically; this inference has recently been confirmed using molecular techniques in species ranging from unicellular marine organisms to mammals. Although humans were once thought to be insensitive to the resetting effects of light, light is now recognized as the principal circadian synchronizer in humans, capable of eliciting weak (Type 1) or strong (Type 0) resetting, depending on stimulus strength and timing. Realization that circadian photoreception could be maintained in the absence of sight was first recognized in blind humans, as was the property of adaptation of the sensitivity of circadian photoreception to prior light history. In sighted humans, the intrinsic circadian period is very tightly distributed around approximately 24.2 hours and exhibits aftereffects of prior entrainment. Phase angle of entrainment is dependent on circadian period, at least in young adults. Circadian pacemakers in humans drive daily variations in many physiologic and behavioral variables, including circadian rhythms in alertness and sleep propensity. Under entrained conditions, these rhythms interact with homeostatic regulation of the sleep/wake cycle to determine the ability to sustain vigilance during the day and to sleep at night. Quantitative understanding of the fundamental properties of the multioscillator circadian system in humans and their interaction with sleep/wake homeostasis has many applications to health and disease, including the development of treatments for circadian rhythm and sleep disorders.

  6. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  7. Shift work, circadian gene variants and risk of breast cancer.

    Science.gov (United States)

    Grundy, Anne; Schuetz, Johanna M; Lai, Agnes S; Janoo-Gilani, Rozmin; Leach, Stephen; Burstyn, Igor; Richardson, Harriet; Brooks-Wilson, Angela; Spinelli, John J; Aronson, Kristan J

    2013-10-01

    Circadian (clock) genes have been linked with several functions relevant to cancer, and epidemiologic research has suggested relationships with breast cancer risk for variants in NPAS2, CLOCK, CRY2 and TIMELESS. Increased breast cancer risk has also been observed among shift workers, suggesting potential interactions in relationships of circadian genes with breast cancer. Relationships with breast cancer of 100 SNPs in 14 clock-related genes, as well as potential interactions with shift work history, were investigated in a case-control study (1042 cases, 1051 controls). Odds ratios in an additive genetic model for European-ancestry participants (645 cases, 806 controls) were calculated, using a two-step correction for multiple testing: within each gene through permutation testing (10,000 permutations), and correcting for the false discovery rate across genes. Interactions of genotypes with ethnicity and shift work (breast cancer and one SNP (rs3027188 in PER1) was marginally significant; however, none were significant following adjustment for the false discovery rate. No significant interaction with shift work history was detected. If shift work causes circadian disruption, this was not reflected in associations between clock gene variants and breast cancer risk in this study. Larger studies are needed to assess interactions with longer durations (>30 years) of shift work that have been associated with breast cancer. Copyright © 2013. Published by Elsevier Ltd.

  8. The role of circadian regulation in cancer.

    Science.gov (United States)

    Gery, S; Koeffler, H P

    2007-01-01

    Proper circadian regulation is essential for the well being of the organism, and disruption of circadian rhythms is associated with pathological conditions including cancer. In mammals, the core clock genes, Per1 and Per2, are key regulators of circadian rhythms both in the central clock in the hypothalamous and in peripheral tissues. Recent findings revealed molecular links between Per genes and cellular components that control fundamental cellular processes such as cell division and DNA damage. New data also shed light on mechanisms by which circadian oscillators operate in peripheral organs to influence tissue-dependent metabolic and hormonal pathways. Circadian cycles are linked to basic cellular functions, as well as to tissue-specific processes through the control of gene expression and protein interactions. By controlling global networks such as chromatin remolding and protein families, which themselves regulate a broad range of cellular functions, circadian regulation impinges upon almost all major physiological pathways. These molecular insights illustrate how disregulation of circadian rhythms might influence the susceptibility to cancer development and provide further support for the emerging role of circadian genes in tumor suppression.

  9. Hierarchical organization of the circadian timing system

    NARCIS (Netherlands)

    Steensel, Mariska van

    2006-01-01

    In order to cope with and to predict 24-hour rhythms in the environment, most, if not all, organisms have a circadian timing system. The most important mammalian circadian pacemaker is located in the suprachiasmatic nucleus at the base of the hypothalamus in the brain. Over the years, it has become

  10. Molecular orchestration of the hepatic circadian symphony

    OpenAIRE

    Albrecht, Urs

    2006-01-01

    The circadian clock determines the rhythmic expression of many different genes throughout a 24-hour period. A recent study investigating the circadian regulation of liver proteins reveals multiple levels of regulation, including transcriptional, post-transcriptional and post-translational mechanisms.

  11. Circadian dysfunction induces leptin resistance in mice

    Science.gov (United States)

    Circadian disruption is associated with obesity, implicating the central clock in body weight control. Our comprehensive screen of wild-type and three circadian mutant mouse models, with or without chronic jet lag, shows that distinct genetic and physiologic interventions differentially disrupt over...

  12. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2008-12-07

    Dec 7, 2008 ... communication between the two brain hemispheres (Kaneko and Hall 2000; Helfrich-Förster et al. 2007). ... that PDF is essential for communication among and between the LNv and other circadian neurons ..... treat circadian rhythm disorders in more complex circuits. Acknowledgements. I thank Todd ...

  13. Circadian regulation of insect olfactory learning.

    Science.gov (United States)

    Decker, Susan; McConnaughey, Shannon; Page, Terry L

    2007-10-02

    Olfactory learning in insects has been used extensively for studies on the neurobiology, genetics, and molecular biology of learning and memory. We show here that the ability of the cockroach Leucophaea maderae to acquire olfactory memories is regulated by the circadian system. We investigated the effect of training and testing at different circadian phases on performance in an odor-discrimination test administered 30 min after training (short-term memory) or 48 h after training (long-term memory). When odor preference was tested by allowing animals to choose between two odors (peppermint and vanilla), untrained cockroaches showed a clear preference for vanilla at all circadian phases, indicating that there was no circadian modulation of initial odor preference or ability to discriminate between odors. After differential conditioning, in which peppermint odor was associated with a positive unconditioned stimulus of sucrose solution and vanilla odor was associated with a negative unconditioned stimulus of saline solution, cockroaches conditioned in the early subjective night showed a strong preference for peppermint and retained the memory for at least 2 days. Animals trained and tested at other circadian phases showed significant deficits in performance for both short- and long-term memory. Performance depended on the circadian time (CT) of training, not the CT of testing, and results indicate that memory acquisition rather than retention or recall is modulated by the circadian system. The data suggest that the circadian system can have profound effects on olfactory learning in insects.

  14. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not

  15. Crosstalk between xenobiotics metabolism and circadian clock

    NARCIS (Netherlands)

    Claudel, Thierry; Cretenet, Gaspard; Saumet, Anne; Gachon, Frederic

    2007-01-01

    Many aspects of physiology and behavior in organisms from bacteria to man are subjected to circadian regulation. Indeed, the major function of the circadian clock consists in the adaptation of physiology to daily environmental change and the accompanying stresses such as exposition to UV-light and

  16. The Neurospora circadian clock : simple or complex?

    NARCIS (Netherlands)

    Bell-Pedersen, Deborah; Crosthwaite, Susan K.; Lakin-Thomas, Patricia L.; Merrow, Martha; Økland, Merete

    2001-01-01

    The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a

  17. Circadian rhythms: from genes to behaviour

    Indian Academy of Sciences (India)

    while some researchers have used newly devised tools in molecular genetics to discover more elements of the core clock mechanism and to understand the circadian clockwork at molecular and physiological levels, others continued to probe the key characteristics of circadian rhythms at the whole organism level—a true.

  18. [Circadian rhythm sleep disorders in psychiatric diseases].

    Science.gov (United States)

    Bromundt, Vivien

    2014-11-01

    Circadian rhythm sleep disorders are prevalent among psychiatric patients. This is most probable due to a close relationship between functional disturbances of the internal clock, sleep regulation and mental health. Mechanisms on molecular level of the circadian clock and neurotransmitter signalling are involved in the development of both disorders. Moreover, circadian disorders and psychiatric diseases favour each other by accessory symptoms such as stress or social isolation. Actimetry to objectively quantify the rest-activity cycle and salivary melatonin profiles as marker for the circadian phase help to diagnose circadian rhythm sleep disorders in psychiatric patients. Chronotherapeutics such as bright light therapy, dark therapy, melatonin administration, and wake therapy are used to synchronise and consolidate circadian rhythms and help in the treatment of depression and other psychiatric disorders, but are still neglected in medicine. More molecular to behavioural research is needed for the understanding of the development of circadian disorders and their relationship to psychiatric illnesses. This will help to boost the awareness and treatment of circadian rhythm sleep disorders in psychiatry.

  19. The Circadian Clock and Human Health.

    Science.gov (United States)

    Roenneberg, Till; Merrow, Martha

    2016-05-23

    Epidemiological studies provided the first evidence suggesting a connection between the circadian clock and human health. Mutant mice convincingly demonstrate the principle that dysregulation of the circadian system leads to a multitude of pathologies. Chrono-medicine is one of the most important upcoming themes in the field of circadian biology. Although treatments counteracting circadian dysregulation are already being applied (e.g., prescribing strong and regular zeitgebers), we need to comprehend entrainment throughout the body's entire circadian network before understanding the mechanisms that tie circadian dysregulation to pathology. Here, we attempt to provide a systematic approach to understanding the connection between the circadian clock and health. This taxonomy of (mis)alignments on one hand exposes how little we know about entrainment within any organism and which 'eigen-zeitgeber' signals are used for entrainment by the different cells and tissues. On the other hand, it provides focus for experimental approaches and tools that will logically map out how circadian systems contribute to disease as well as how we can treat and prevent them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Circadian System Contributes to Apnea Lengthening across the Night in Obstructive Sleep Apnea

    Science.gov (United States)

    Butler, Matthew P.; Smales, Carolina; Wu, Huijuan; Hussain, Mohammad V.; Mohamed, Yusef A.; Morimoto, Miki; Shea, Steven A.

    2015-01-01

    Study Objective: To test the hypothesis that respiratory event duration exhibits an endogenous circadian rhythm. Design: Within-subject and between-subjects. Settings: Inpatient intensive physiologic monitoring unit at the Brigham and Women's Hospital. Participants: Seven subjects with moderate/severe sleep apnea and four controls, age 48 (SD = 12) years, 7 males. Interventions: Subjects completed a 5-day inpatient protocol in dim light. Polysomnography was recorded during an initial control 8-h night scheduled at the usual sleep time, then through 10 recurrent cycles of 2 h 40 min sleep and 2 h 40 min wake evenly distributed across all circadian phases, and finally during another 8-h control sleep period. Measurements and Results: Event durations, desaturations, and apnea-hypopnea index for each sleep opportunity were assessed according to circadian phase (derived from salivary melatonin), time into sleep, and sleep stage. Average respiratory event durations in NREM sleep significantly lengthened across both control nights (21.9 to 28.2 sec and 23.7 to 30.2 sec, respectively). During the circadian protocol, event duration in NREM increased across the circadian phases that corresponded to the usual sleep period, accounting for > 50% of the increase across normal 8-h control nights. AHI and desaturations were also rhythmic: AHI was highest in the biological day while desaturations were greatest in the biological night. Conclusions: The endogenous circadian system plays an important role in the prolongation of respiratory events across the night, and might provide a novel therapeutic target for modulating sleep apnea. Citation: Butler MP, Smales C, Wu H, Hussain MV, Mohamed YA, Morimoto M, Shea SA. The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. SLEEP 2015;38(11):1793–1801. PMID:26039970

  1. Neurobiology of the circadian system: meeting metabolism

    Directory of Open Access Journals (Sweden)

    Mendoza, Jorge

    2009-06-01

    Full Text Available The basic principles of physiology postulated the necessity of the constancy of the internal environment to maintain a physiological equilibrium and do not front serious consequences in health. Now we know that physiology is rhythmic and that a break of this rhythmicity can generate serious consequences in health which even could be lethal. Circadian clocks, headed by the suprachiasmatic nucleus in the central nervous system, are the responsible for the generation of circadian rhythms. These clocks are affected by external signals as light (day-night cycles and feeding. This review examines the basic principles of the circadian system and the current knowledge in the neurobiology of biological clocks, making emphasis in the relationship between the circadian system, feeding behaviour, nutrition and metabolism, and the consequences that occur when these systems are not coordinated each other, as the development of metabolic and circadian pathologies.

  2. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...

  3. Metabolic consequences of sleep and circadian disorders

    Science.gov (United States)

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  4. Non-peptide oxytocin receptor ligands and hamster circadian wheel running rhythms.

    Science.gov (United States)

    Gannon, Robert L

    2014-10-17

    The synchronization of circadian rhythms in sleep, endocrine and metabolic functions with the environmental light cycle is essential for health, and dysfunction of this synchrony is thought to play a part in the development of many neurological disorders. There is a demonstrable need to develop new therapeutics for the treatment of neurological disorders such as depression and schizophrenia, and oxytocin is currently being investigated for this purpose. There are no published reports describing activity of oxytocin receptor ligands on mammalian circadian rhythms and that, then, is the purpose of this study. Non-peptide oxytocin receptor ligands that cross the blood brain barrier were systemically injected in hamsters to determine their ability to modulate light-induced phase advances and delays of circadian wheel running rhythms. The oxytocin receptor agonist WAY267464 (10 mg/kg) inhibited light induced phase advances of wheel running rhythms by 55%, but had no effect on light-induced phase delays. In contrast, the oxytocin receptor antagonist WAY162720 (10 mg/kg) inhibited light-induced phase delays by nearly 75%, but had no effect on light-induced phase advances. Additionally, WAY162720 was able to antagonize the inhibitory effects of WAY267464 on light-induced phase advances. These results are consistent for a role of oxytocin in the phase-delaying effects of light on circadian activity rhythms early in the night. Therefore, oxytocin may prove to be useful in developing therapeutics for the treatment of mood disorders with a concomitant dysfunction in circadian rhythms. Investigators should also be cognizant that oxytocin ligands may negatively affect circadian rhythms during clinical trials for other conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MicroRNAs: a potential interface between the circadian clock and human health.

    Science.gov (United States)

    Hansen, Katelin F; Sakamoto, Kensuke; Obrietan, Karl

    2011-02-17

    The biochemical activity of a stunning diversity of cell types and organ systems is shaped by a 24-hour (circadian) clock. This rhythmic drive to a good deal of the transcriptome (up to 15% of all coding genes) imparts circadian modulation over a wide range of physiological and behavioral processes (from cell division to cognition). Further, dysregulation of the clock has been implicated in the pathogenesis of a large and diverse array of disorders, such as hypertension, cancer and depression. Indeed, the possibility of utilizing therapeutic approaches that target clock physiology (that is, chronotherapy) has gained broad interest. However, a deeper understanding of the underlying molecular mechanisms that modulate the clock, and give rise to organ-specific clock transcriptomes, will be required to fully realize the power of chronotherapies. Recently, microRNAs have emerged as significant players in circadian clock timing, thus raising the possibility that clock-controlled microRNAs could contribute to disorders of the human circadian timing system. Here, we highlight recent work revealing a key role for microRNAs in clock physiology, and discuss potential approaches to unlocking their utility as effectors of circadian physiology and pathophysiology.

  6. Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork

    Science.gov (United States)

    Li, Jian; Lu, Wei-Qun; Beesley, Stephen; Loudon, Andrew S. I.; Meng, Qing-Jun

    2012-01-01

    Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions. PMID:22428012

  7. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease.

    Science.gov (United States)

    Wu, Ying-Hui; Swaab, Dick F

    2007-09-01

    Circadian rhythm disturbances, such as sleep disorders, are frequently seen in aging and are even more pronounced in Alzheimer's disease (AD). Alterations in the biological clock, the suprachiasmatic nucleus (SCN), and the pineal gland during aging and AD are considered to be the biological basis for these circadian rhythm disturbances. Recently, our group found that pineal melatonin secretion and pineal clock gene oscillation were disrupted in AD patients, and surprisingly even in non-demented controls with the earliest signs of AD neuropathology (neuropathological Braak stages I-II), in contrast to non-demented controls without AD neuropathology. Furthermore, a functional disruption of the SCN was observed from the earliest AD stages onwards, as shown by decreased vasopressin mRNA, a clock-controlled major output of the SCN. The observed functional disconnection between the SCN and the pineal from the earliest AD stage onwards seems to account for the pineal clock gene and melatonin changes and underlies circadian rhythm disturbances in AD. This paper further discusses potential therapeutic strategies for reactivation of the circadian timing system, including melatonin and bright light therapy. As the presence of melatonin MT1 receptor in the SCN is extremely decreased in late AD patients, supplementary melatonin in the late AD stages may not lead to clear effects on circadian rhythm disorders.

  8. Central and peripheral circadian clocks and their role in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ruchi Chauhan

    2017-10-01

    Full Text Available Molecular and cellular oscillations constitute an internal clock that tracks the time of day and permits organisms to optimize their behaviour and metabolism to suit the daily demands they face. The workings of this internal clock become impaired with age. In this review, we discuss whether such age-related impairments in the circadian clock interact with age-related neurodegenerative disorders, such as Alzheimer's disease. Findings from mouse and fly models of Alzheimer's disease have accelerated our understanding of the interaction between neurodegeneration and circadian biology. These models show that neurodegeneration likely impairs circadian rhythms either by damaging the central clock or by blocking its communication with other brain areas and with peripheral tissues. The consequent sleep and metabolic deficits could enhance the susceptibility of the brain to further degenerative processes. Thus, circadian dysfunction might be both a cause and an effect of neurodegeneration. We also discuss the primary role of light in the entrainment of the central clock and describe important, alternative time signals, such as food, that play a role in entraining central and peripheral circadian clocks. Finally, we propose how these recent insights could inform efforts to develop novel therapeutic approaches to re-entrain arrhythmic individuals with neurodegenerative disease.

  9. Identification of a Circadian Clock in the Inferior Colliculus and Its Dysregulation by Noise Exposure.

    Science.gov (United States)

    Park, Jung-Sub; Cederroth, Christopher R; Basinou, Vasiliki; Meltser, Inna; Lundkvist, Gabriella; Canlon, Barbara

    2016-05-18

    coupled to the core clock protein PERIOD2 (PER2::LUC), we could observe spontaneous circadian oscillations in culture. Furthermore, we reveal that the mRNA profile of clock-related genes in the IC is altered differentially by day or night noise exposure. The identification of a clock in the IC is relevant for understanding the mechanisms underlying dysfunctions of the IC such as tinnitus, hyperacusis, or audiogenic seizures. Copyright © 2016 the authors 0270-6474/16/365509-11$15.00/0.

  10. Lipids around the Clock: Focus on Circadian Rhythms and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Davide Gnocchi

    2015-02-01

    Full Text Available Disorders of lipid and lipoprotein metabolism and transport are responsible for the development of a large spectrum of pathologies, ranging from cardiovascular diseases, to metabolic syndrome, even to tumour development. Recently, a deeper knowledge of the molecular mechanisms that control our biological clock and circadian rhythms has been achieved. From these studies it has clearly emerged how the molecular clock tightly regulates every aspect of our lives, including our metabolism. This review analyses the organisation and functioning of the circadian clock and its relevance in the regulation of physiological processes. We also describe metabolism and transport of lipids and lipoproteins as an essential aspect for our health, and we will focus on how the circadian clock and lipid metabolism are greatly interconnected. Finally, we discuss how a deeper knowledge of this relationship might be useful to improve the recent spread of metabolic diseases.

  11. The circadian biology of the marbled crayfish.

    Science.gov (United States)

    Farca Luna, Abud Jose; Heinrich, Ralf; Reischig, Thomas

    2010-06-01

    The parthenogenetic marbled crayfish (Procambarus spec.) has recently been introduced as a new preparation for neuroethological studies. Since isogeneity apparently limits inter-individual variation, this otherwise typical decapod species may be especially valuable for circadian studies. Locomotor activity of isolated marbled crayfish and agonistic activity of small social groups maintain circadian rhythmicity in constant darkness. As potential signals of circadian time information, levels of 5HT, N-acetylserotonin and melatonin were determined in brains of marbled crayfish at different daytimes. However, location and structural organization of crustacean circadian pacemakers are still elusive. Immunocytochemical and backfill studies in the marbled crayfish revealed neural structures that may correspond to portions of circadian pacemaker systems in the insect optic lobe. Position and additional chemical contents in two pigment-dispersing hormone-expressing neuron groups resembled insect pigment-dispersing factor-expressing cells in the lamina and the accessory medulla, a neuropil discussed as center for integration of timing information. Here, we discuss new findings about the possible organization of the circadian system of the marbled crayfish in the light of current knowledge about circadian clocks in crustacea.

  12. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  13. Lithium and bipolar disorder: Impacts from molecular to behavioural circadian rhythms.

    Science.gov (United States)

    Moreira, Jeverson; Geoffroy, Pierre Alexis

    2016-01-01

    Bipolar disorder (BD) is a severe and common psychiatric disorder. BD pathogenesis, clinical manifestations and relapses are associated with numerous circadian rhythm abnormalities. Lithium (Li) is the first-line treatment in BD, and its therapeutic action has been related to its ability to alter circadian rhythms. We systematically searched the PubMed database until January 2016, aiming to critically examine published studies investigating direct and indirect effects of Li on circadian rhythms. The results, from the 95 retained studies, indicated that Li: acts directly on the molecular clocks; delays the phase of sleep-wakefulness rhythms and the peak elevation of diurnal cycle body temperature; reduces the amplitude and shortens the duration of activity rhythms and lengthens free-running rhythms. Chronic Li treatment stabilizes free-running activity rhythms, by improving day-to-day rhythmicity of the activity, with effects that appear to be dose related. Pharmacogenetics demonstrate several associations of Li's response with circadian genes (NR1D1, GSK3β, CRY1, ARNTL, TIM, PER2). Finally, Li acts on the retinal-hypothalamic pineal pathway, influencing light sensitivity and melatonin secretion. Li is a highly investigated chronobiologic agent, and although its chronobiological effects are not completely understood, it seems highly likely that they constitute an inherent component of its therapeutic action in the treatment of mood disorders.

  14. Peripheral circadian misalignment: contributor to systemic insulin resistance and potential intervention to improve bariatric surgical outcomes

    Science.gov (United States)

    Kunze, Kyle N.; Hanlon, Erin C.; Prachand, Vivek N.

    2016-01-01

    Thirteen percent of the world's population suffers from obesity and 39% from being overweight, which correlates with an increase in numerous secondary metabolic complications, such as Type 2 diabetes mellitus. Bariatric surgery is the most effective treatment for severe obesity and results in significant weight loss and the amelioration of obesity-related comorbidities through changes in enteroendocrine activity, caloric intake, and alterations in gut microbiota composition. The circadian system has recently been found to be a critical regulatory component in the control of metabolism and, thus, may potentially play an important role in inappropriate weight gain. Indeed, some behaviors and lifestyle factors associated with an increased risk of obesity are also risk factors for misalignment in the circadian clock system and for the metabolic syndrome. It is thus possible that alterations in peripheral circadian clocks in metabolically relevant tissues are a contributor to the current obesity epidemic. As such, it is plausible that postsurgical alterations in central circadian alignment, as well as peripheral gene expression in metabolic tissues may represent another mechanism for the beneficial effects of bariatric surgery. Bariatric surgery may represent an opportunity to identify changes in the circadian expression of clock genes that have been altered by environmental factors, allowing for a better understanding of the mechanism of action of surgery. These studies could also reveal an overlooked target for behavioral intervention to improve metabolic outcomes following bariatric surgery. PMID:27465735

  15. Circadian rhythms of women with fibromyalgia

    Science.gov (United States)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  16. Characterisation of circadian rhythms of various duckweeds.

    Science.gov (United States)

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs.

    Science.gov (United States)

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; la Fleur, Susanne E; Bokkers, Eddie A M

    2017-07-01

    The interaction between hormonal circadian rhythms and feeding behaviour is not well understood. This study aimed to deepen our understanding of mechanisms underlying circadian feeding behaviour in animals, using pigs, Sus scrofa, as a case study. Pigs show an alternans feeding pattern, that is, a small peak of feed intake at the beginning of the day and a larger peak at the end of the day. We simulated the feeding behaviour of pigs over a 24h period. The simulation model contained mechanisms that regulate feeding behaviour of animals, including: processing of feed in the gastrointestinal tract, fluctuation in energy balance, circadian rhythms of melatonin and cortisol and motivational decision-making. From the interactions between these various processes, feeding patterns (e.g. feed intake, meal frequency, feeding rate) emerge. These feeding patterns, as well as patterns for the underlying mechanisms (e.g. energy expenditure), fitted empirical data well, indicating that our model contains relevant mechanisms. The circadian rhythms of cortisol and melatonin explained the alternans pattern of feeding in pigs. Additionally, the timing and amplitude of cortisol peaks affected the diurnal and nocturnal peaks in feed intake. Furthermore, our results suggest that circadian rhythms of other hormones, such as leptin and ghrelin, are less important in circadian regulation of feeding behaviour than previously thought. These results are relevant to animal species with a metabolic and endocrine system similar to that of pigs, such as humans. Moreover, the modelling approach to understand feeding behaviour can be applied to other animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sleep and circadian rhythm disruption and recognition memory in schizophrenia.

    Science.gov (United States)

    Tam, Shu K E; Pritchett, David; Brown, Laurence A; Foster, Russell G; Bannerman, David M; Peirson, Stuart N

    2015-01-01

    Schizophrenia patients often show irregularities in sleep and circadian rhythms and deficits in recognition memory. Similar phenotypes are seen in schizophrenia-relevant genetic mouse models, such as synaptosomal associated protein of 25 kDa (Snap-25) point mutant mice, vasoactive intestinal peptide receptor 2 (Vipr2) knockout mice, and neuregulin 1 (Nrg1)-deficient mice. Sleep and circadian abnormalities and impaired recognition memory may be causally related in both schizophrenia patients and schizophrenia-relevant mouse models, since sleep deprivation, abnormal photic input, and the manipulation of core clock genes (cryptochrome 1/2) can all disrupt object recognition memory in rodent models. The recognition deficits observed in patients and mouse models (both schizophrenia-related and -unrelated) are discussed here in terms of the dual-process theory of recognition, which postulates that there are two recognition mechanisms-recollection versus familiarity-that can be selectively impaired by brain lesions, neuropsychiatric conditions, and putatively, sleep and circadian rhythm disruption. However, based on this view, the findings from patient studies and studies using genetic mouse models (Nrg1 deficiency) seem to be inconsistent with each other. Schizophrenia patients are impaired at recollection (and to a lesser extent, familiarity judgments), but Nrg1-deficient mice are impaired at familiarity-based object recognition, raising concerns regarding the validity of using these genetically modified mice to model recognition phenotypes observed in patients. This issue can be resolved in future animal studies by examining performance in different variants of the spontaneous recognition task-the standard, perirhinal cortex-dependent, object recognition task versus the hippocampus-dependent object-place recognition task-in order to see which of the two recognition mechanisms is more disrupted. © 2015 Elsevier Inc. All rights reserved.

  19. Circadian clock genes, ovarian development and diapause

    Directory of Open Access Journals (Sweden)

    Bradshaw William E

    2010-09-01

    Full Text Available Abstract Insects, like most organisms, have an internal circadian clock that oscillates with a daily rhythmicity, and a timing mechanism that mediates seasonal events, including diapause. In research published in BMC Biology, Ikeno et al. show that downregulation of the circadian clock genes period and cycle affects expression of ovarian diapause in the insect Riptortus pedestris. They interpret these important results as support for Erwin Bünning's (1936 hypothesis that the circadian clock constitutes the basis of photoperiodism. However, their observations could also be the result of pleiotropic effects of the individual clock genes. See research article http://www.biomedcentral.com/1741-7007/8/116

  20. Circadian clocks: Not your grandfather's clock.

    Science.gov (United States)

    Turek, Fred W

    2016-11-25

    The last 20 years have seen the rapid evolution of our understanding of the molecular genes and networks that enable almost all forms of life to generate 24-hour-or circadian-rhythms. One finding has been particularly exciting: that the molecular circadian clock resides in almost all of the cells of the body and that the clock regulates the timing of many cellular and signaling pathways associated with multiple disease states. Such advances represent a new frontier for medicine: circadian medicine. Copyright © 2016, American Association for the Advancement of Science.

  1. Thoracic surface temperature rhythms as circadian biomarkers for cancer chronotherapy.

    Science.gov (United States)

    Roche, Véronique Pasquale; Mohamad-Djafari, Ali; Innominato, Pasquale Fabio; Karaboué, Abdoulaye; Gorbach, Alexander; Lévi, Francis Albert

    2014-04-01

    The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4 days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24 h (p surface temperature (median, 0.72 °C), and from 16.6 to 146.1 acc/min for rest-activity (median, 88.9 acc/min). Thirty-nine pairs of baseline temperature and rest-activity time series (75%) were correlated (r > |0.7|; p surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25-75% quartiles, 22:35-3:07) and 14:12 (13:14-14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption of these biomarkers was found for the five other patients, as indicated by the lack of any statistically significant dominant period in the circadian range. No consistent correlation (r surface temperature were demonstrated for the first time in cancer patients, despite rather

  2. p53 mutation, but not in vitro predictor genes of therapeutic efficacy of cisplatin, is clinically relevant in comparing partial and complete responder cases of maxillary squamous cell carcinoma.

    Science.gov (United States)

    Kudo, Itsuhiro; Esumi, Mariko; Kida, Akihiro; Ikeda, Minoru

    2010-10-01

    To predict the efficacy of cisplatin and radiation therapy for maxillary squamous cell carcinoma, we examined the mRNA expression of 14 cisplatin-resistant genes and p53 mutation in specimens biopsied from patients prior to initiation of therapy. Five of 10 patients had mutations in the p53 gene, of whom four had residual tumors pathologically following chemoradiotherapy (p=0.0476). Of 14 genes examined, the mRNA expression of ATP7B was significantly lower in cases that were resistant to chemoradiotherapy. Six genes including multidrug resistance protein 1 (MDR-1), multidrug resistance associated protein 1 (MRP-1), Cu++ transporting, beta polypeptide (ATP7B), xeroderma pigmentosum, complementation group A (XPA), excision repair cross-complementing rodent repair deficiency, complementation group 1 (ERCC-1) and B-cell CLL/lymphoma 2 (BCL2) were down-regulated in cases of recurrent cancers. These results show that the evaluation of p53 mutation provides the most useful predictor of therapeutic effects. In responder cases, the drug-resistant genes that were determined in cell lines by culture do not necessarily translate into clinical relevance.

  3. Therapeutic applications of melatonin

    Science.gov (United States)

    2013-01-01

    Melatonin is a methoxyindole synthesized within the pineal gland. The hormone is secreted during the night and appears to play multiple roles within the human organism. The hormone contributes to the regulation of biological rhythms, may induce sleep, has strong antioxidant action and appears to contribute to the protection of the organism from carcinogenesis and neurodegenerative disorders. At a therapeutic level as well as in prevention, melatonin is used for the management of sleep disorders and jet lag, for the resynchronization of circadian rhythms in situations such as blindness and shift work, for its preventive action in the development of cancer, as additive therapy in cancer and as therapy for preventing the progression of Alzheimer’s disease and other neurodegenerative disorders. PMID:23515203

  4. Molecular control of circadian metabolic rhythms

    National Research Council Canada - National Science Library

    Siming Li; Jiandie D. Lin

    2009-01-01

    Circadian metabolic rhythms are fundamental to the control of nutrient and energy homeostasis, as well as the pathogenesis of metabolic disease, such as obesity, lipid disorders, and type 2 diabetes...

  5. Circadian clocks, feeding time and metabolic homeostasis

    Directory of Open Access Journals (Sweden)

    Georgios ePaschos

    2015-05-01

    Full Text Available Metabolic processes exhibit diurnal variation from cyanobacteria to humans. The circadian clock is thought to have evolved as a time keeping system for the cell to optimize the timing of metabolic events according to physiological needs and environmental conditions. Circadian rhythms temporally separate incompatible cellular processes and optimize cellular and organismal fitness. A modern 24 hour lifestyle can run at odds with the circadian rhythm dictated by our molecular clocks and create desynchrony between internal and external timing. It has been suggested that this desynchrony compromises metabolic homeostasis and may promote the development of obesity (Morris et al., 2012. Here we review the evidence supporting the association between circadian misalignment and metabolic homeostasis and discuss the role of feeding time.

  6. Circadian rhythms of ethylene emission in Arabidopsis

    NARCIS (Netherlands)

    Thain, S.C.; Vandenbussche, F.; Laarhoven, L.J.J.; Dowson-Day, M.J.; Wang, Z.Y.; Tobin, E.M.; Harren, F.J.M.; Millar, A.J.; Straeten, D. van der

    2004-01-01

    Ethylene controls multiple physiological processes in plants, including cell elongation. Consequently, ethylene synthesis is regulated by internal and external signals. We show that a light-entrained circadian clock regulates ethylene release from unstressed, wild-type Arabidopsis (Arabidopsis

  7. Cell-permeable Circadian Clock Proteins

    National Research Council Canada - National Science Library

    Johnson, Carl

    2002-01-01

    .... These 'biological clocks' are important to human physiology. For example, psychiatric and medical studies have shown that circadian rhythmicity is involved in some forms of depressive illness, 'jet lag', drug tolerance/efficacy, memory, and insomnia...

  8. Entrainment of the Neurospora circadian clock

    NARCIS (Netherlands)

    Merrow, M; Boesl, C; Ricken, J; Messerschmitt, M; Goedel, M; Roenneberg, T

    2006-01-01

    Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment

  9. Circadian Rhythms, Sleep, and Disorders of Aging.

    Science.gov (United States)

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Circadian Rhythms, Sleep, and Disorders of Aging

    OpenAIRE

    Mattis, Joanna; Sehgal, Amita

    2016-01-01

    Sleep:wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease. Mechanisms underlyin...

  11. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  12. Circadian Integration of Metabolism and Energetics

    OpenAIRE

    Bass, Joseph; Takahashi, Joseph S.

    2010-01-01

    Circadian clocks align behavioral and biochemical processes with the day/night cycle. Nearly all vertebrate cells possess self-sustained clocks that couple endogenous rhythms with changes in cellular environment. Genetic disruption of clock genes in mice perturbs metabolic functions of specific tissues at distinct phases of the sleep/wake cycle. Circadian desynchrony, a characteristic of shift work and sleep disruption in humans, also leads to metabolic pathologies. Here we review advances in...

  13. Circadian clock genes in Drosophila: recent developments.

    Science.gov (United States)

    Subramanian, P; Balamurugan, E; Suthakar, G

    2003-08-01

    Circadian rhythms provide a temporal framework to living organisms and are established in a majority of eukaryotes and in a few prokaryotes. The molecular mechanisms of circadian clock is constantly being investigated in Drosophila melanogaster. The core of the clock mechanism was described by a transcription-translation feedback loop model involving period (per), timeless (tim), dclock and cycle genes. However, recent research has identified multiple feedback loops controlling rhythm generation and expression. Novel mutations of timeless throw more light on the functions of per and tim products. Analysis of pdf neuropeptide gene (expressed in circadian pacemaker cells in Drosophila), indicate that PDF acts as the principal circadian transmitter and is involved in output pathways. The product of cryptochrome is known to function as a circadian photoreceptor as well as component of the circadian clock. This review focuses on the recent progress in the field of molecular rhythm research in the fruit fly. The gene(s) and the gene product(s) that are involved in the transmission of environmental information to the clock, as well as the timing signals from the clock outward to cellular functions are remain to be determined.

  14. Circadian clocks are resounding in peripheral tissues.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2006-03-01

    Full Text Available Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.

  15. Circadian Metabolomics in Time and Space.

    Science.gov (United States)

    Dyar, Kenneth A; Eckel-Mahan, Kristin L

    2017-01-01

    Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various "omics"-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine "omics" approach for studying metabolism, and "circadian metabolomics" (i.e., studying the 24-h metabolome) has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.

  16. Circadian Metabolomics in Time and Space

    Directory of Open Access Journals (Sweden)

    Kenneth A. Dyar

    2017-07-01

    Full Text Available Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various “omics”-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine “omics” approach for studying metabolism, and “circadian metabolomics” (i.e., studying the 24-h metabolome has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.

  17. Social memory in the rat: circadian variation and effect of circadian rhythm disruption

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Leus, I.E.; Burbach, J.P.H.; Spruijt, B.M.; Ree, van J.M.

    2001-01-01

    Disruption of circadian rhythm can impair long-term passive avoidance memory of rats and mice. The present study investigated whether disruption of circadian rhythm can also impair social memory of male rats. Social memory was assessed using the social discrimination test, in which a short-term

  18. Adrenergic nerves govern circadian leukocyte recruitment to tissues.

    Science.gov (United States)

    Scheiermann, Christoph; Kunisaki, Yuya; Lucas, Daniel; Chow, Andrew; Jang, Jung-Eun; Zhang, Dachuan; Hashimoto, Daigo; Merad, Miriam; Frenette, Paul S

    2012-08-24

    The multistep sequence leading to leukocyte migration is thought to be locally regulated at the inflammatory site. Here, we show that broad systemic programs involving long-range signals from the sympathetic nervous system (SNS) delivered by adrenergic nerves regulate rhythmic recruitment of leukocytes in tissues. Constitutive leukocyte adhesion and migration in murine bone marrow (BM) and skeletal-muscle microvasculature fluctuated with circadian peak values at night. Migratory oscillations, altered by experimental jet lag, were implemented by perivascular SNS fibers acting on β-adrenoreceptors expressed on nonhematopoietic cells and leading to tissue-specific, differential circadian oscillations in the expression of endothelial cell adhesion molecules and chemokines. We showed that these rhythms have physiological consequences through alteration of hematopoietic cell recruitment and overall survival in models of septic shock, sickle cell vaso-occlusion, and BM transplantation. These data provide unique insights in the leukocyte adhesion cascade and the potential for time-based therapeutics for transplantation and inflammatory diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase.

    Science.gov (United States)

    Buxton, Orfeu M; Lee, Calvin W; L'Hermite-Baleriaux, Mireille; Turek, Fred W; Van Cauter, Eve

    2003-03-01

    To examine the immediate phase-shifting effects of high-intensity exercise of a practical duration (1 h) on human circadian phase, five groups of healthy men 20-30 yr of age participated in studies involving no exercise or exposure to morning, afternoon, evening, or nocturnal exercise. Except during scheduled sleep/dark and exercise periods, subjects remained under modified constant routine conditions allowing a sleep period and including constant posture, knowledge of clock time, and exposure to dim light intensities averaging (+/-SD) 42 +/- 19 lx. The nocturnal onset of plasma melatonin secretion was used as a marker of circadian phase. A phase response curve was used to summarize the phase-shifting effects of exercise as a function of the timing of exercise. A significant effect of time of day on circadian phase shifts was observed (P exercise to the first onset after exercise, circadian phase was significantly advanced in the evening exercise group by 30 +/- 15 min (SE) compared with the phase delays observed in the no-exercise group (-25 +/- 14 min, P evening exercise exposure were attenuated on the second day after exercise exposure and no longer significantly different from phase shifts observed in the absence of exercise. Unanticipated transient elevations of melatonin levels were observed in response to nocturnal exercise and in some evening exercise subjects. Taken together with the results from previous studies in humans and diurnal rodents, the current results suggest that 1) a longer duration of exercise exposure and/or repeated daily exposure to exercise may be necessary for reliable phase-shifting of the human circadian system and that 2) early evening exercise of high intensity may induce phase advances relevant for nonphotic entrainment of the human circadian system.

  20. The sleep and circadian modulation of neural reward pathways: a protocol for a pair of systematic reviews.

    Science.gov (United States)

    Byrne, Jamie E M; Murray, Greg

    2017-12-02

    Animal research suggests that neural reward activation may be systematically modulated by sleep and circadian function. Whether humans also exhibit sleep and circadian modulation of neural reward pathways is unclear. This area is in need of further research, as it has implications for the involvement of sleep and circadian function in reward-related disorders. The aim of this paper is to describe the protocol for a pair of systematic literature reviews to synthesise existing literature related to (1) sleep and (2) circadian modulation of neural reward pathways in healthy human populations. A systematic review of relevant online databases (Scopus, PubMed, Web of Science, ProQuest, PsycINFO and EBSCOhost) will be conducted. Reference lists, relevant reviews and supplementary data will be searched for additional articles. Articles will be included if (a) they contain a sleep- or circadian-related predictor variable with a neural reward outcome variable, (b) use a functional magnetic resonance imaging protocol and (c) use human samples. Articles will be excluded if study participants had disorders known to affect the reward system. The articles will be screened by two independent authors. Two authors will complete the data extraction form, with two authors independently completing the quality assessment tool for the selected articles, with a consensus reached with a third author if needed. Narrative synthesis methods will be used to analyse the data. The findings from this pair of systematic literature reviews will assist in the identification of the pathways involved in the sleep and circadian function modulation of neural reward in healthy individuals, with implications for disorders characterised by dysregulation in sleep, circadian rhythms and reward function. PROSPERO CRD42017064994.

  1. Breast cancer risk, nightwork, and circadian clock gene polymorphisms

    National Research Council Canada - National Science Library

    Truong, Thérèse; Liquet, Benoît; Menegaux, Florence; Plancoulaine, Sabine; Laurent-Puig, Pierre; Mulot, Claire; Cordina-Duverger, Emilie; Sanchez, Marie; Arveux, Patrick; Kerbrat, Pierre; Richardson, Sylvia; Guénel, Pascal

    2014-01-01

    ...) in 23 circadian clock genes. We also used a gene- and pathway-based approach to investigate the overall effect on breast cancer of circadian clock gene variants that might not be detected in analyses based on individual SNPs...

  2. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4

  3. Analysis of Gene Regulatory Networks in the Mammalian Circadian Rhythm

    OpenAIRE

    Jun Yan; Haifang Wang; Yuting Liu; Chunxuan Shao

    2008-01-01

    Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available ci...

  4. Circadian mood variations in Twitter content.

    Science.gov (United States)

    Dzogang, Fabon; Lightman, Stafford; Cristianini, Nello

    2017-01-01

    Circadian regulation of sleep, cognition, and metabolic state is driven by a central clock, which is in turn entrained by environmental signals. Understanding the circadian regulation of mood, which is vital for coping with day-to-day needs, requires large datasets and has classically utilised subjective reporting. In this study, we use a massive dataset of over 800 million Twitter messages collected over 4 years in the United Kingdom. We extract robust signals of the changes that happened during the course of the day in the collective expression of emotions and fatigue. We use methods of statistical analysis and Fourier analysis to identify periodic structures, extrema, change-points, and compare the stability of these events across seasons and weekends. We reveal strong, but different, circadian patterns for positive and negative moods. The cycles of fatigue and anger appear remarkably stable across seasons and weekend/weekday boundaries. Positive mood and sadness interact more in response to these changing conditions. Anger and, to a lower extent, fatigue show a pattern that inversely mirrors the known circadian variation of plasma cortisol concentrations. Most quantities show a strong inflexion in the morning. Since circadian rhythm and sleep disorders have been reported across the whole spectrum of mood disorders, we suggest that analysis of social media could provide a valuable resource to the understanding of mental disorder.

  5. Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery.

    Science.gov (United States)

    Cash, E; Sephton, S E; Chagpar, A B; Spiegel, D; Rebholz, W N; Zimmaro, L A; Tillie, J M; Dhabhar, F S

    2015-08-01

    Psychological distress, which can begin with cancer diagnosis and continue with treatment, is linked with circadian and endocrine disruption. In turn, circadian/endocrine factors are potent modulators of cancer progression. We hypothesized that circadian rest-activity rhythm disruption, distress, and diurnal cortisol rhythms would be associated with biomarkers of tumor progression in the peripheral blood of women awaiting breast cancer surgery. Breast cancer patients (n=43) provided actigraphic data on rest-activity rhythm, cancer-specific distress (IES, POMS), saliva samples for assessment of diurnal cortisol rhythm, cortisol awakening response (CAR), and diurnal mean. Ten potential markers of tumor progression were quantified in serum samples and grouped by exploratory factor analysis. Analyses yielded three factors, which appear to include biomarkers reflecting different aspects of tumor progression. Elevated factor scores indicate both high levels and strong clustering among serum signals. Factor 1 included VEGF, MMP-9, and TGF-β; suggesting tumor invasion/immunosuppression. Factor 2 included IL-1β, TNF-α, IL-6R, MCP-1; suggesting inflammation/chemotaxis. Factor 3 included IL-6, IL-12, IFN-γ; suggesting inflammation/TH1-type immunity. Hierarchical regressions adjusting age, stage and socioeconomic status examined associations of circadian, distress, and endocrine variables with these three factor scores. Patients with poor circadian coordination as measured by rest-activity rhythms had higher Factor 1 scores (R(2)=.160, p=.038). Patients with elevated CAR also had higher Factor 1 scores (R(2)=.293, p=.020). These relationships appeared to be driven largely by VEGF concentrations. Distress was not related to tumor-relevant biomarkers, and no other significant relationships emerged. Women with strong circadian activity rhythms showed less evidence of tumor promotion and/or progression as indicated by peripheral blood biomarkers. The study was not equipped to

  6. Circadian timekeeping : from basic clock function to implications for health

    NARCIS (Netherlands)

    Lucassen, Eliane Alinda

    2016-01-01

    In modern society, circadian rhythms and sleep are often disturbed, which may negatively affect health. This thesis examines these associations and focuses on the basic functioning of sleep and the circadian system in mice and in humans. Circadian rhythms are orchestrated by ~20,000 neurons in the

  7. Phase resetting of the mammalian circadian clock by DNA damage

    NARCIS (Netherlands)

    Oklejewicz, Malgorzata; Destici, Eugin; Tamanini, Filippo; Hut, Roelof A.; Janssens, Roel; van der Horst, Gijsbertus T. J.

    2008-01-01

    To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian

  8. Circadian and Wakefulness-Sleep Modulation of Cognition in Humans

    Directory of Open Access Journals (Sweden)

    Kenneth P Wright

    2012-04-01

    Full Text Available Cognitive and affective processes vary over the course of the 24 hour day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24-hour period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei, to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.

  9. Controlling Osteogenesis and Adipogenesis of Mesenchymal Stromal Cells by Regulating A Circadian Clock Protein with Laser Irradiation

    Science.gov (United States)

    Kushibiki, Toshihiro; Awazu, Kunio

    2008-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells present in adult bone marrow that replicate as undifferentiated cells and can differentiate to lineages of mesenchymal tissues. Homeostatic control of bone remodelling maintains bone mass by insuring that bone resorption and bone formation occur sequentially and in a balanced manner. As most homeostatic functions occur in a circadian manner, a circadian clock could control bone mass. Here, we show that laser irradiation can direct the osteogenesis and adipogenesis of mouse MSCs by altering the intracellular localization of the circadian rhythm protein Cryptochrome 1 (mCRY1). After laser irradiation (wavelength: 405 nm) to MSCs, circadian rhythm protein, mCRY1 and mPER2, were immunostained and histochemical stainings for osteogenic or adipogenic differentiation were observed. Laser irradiation promoted osteogenesis and reduced adipogenesis of MSCs, induced the translocation of mCRY1 and mPER2 protein from the cytoplasm to the nucleus, and decreased mCRY1 mRNA levels quantified by real-time PCR. Since the timing of nuclear accumulation of clock proteins constitutes an important step in the transcription-translation feedback loop driving the circadian core oscillator, laser irradiation could provide a simple and effective technology for clock protein localization and turnover. Our results also indicate that mCRY1 is a master regulator of circadian rhythm that regulates the differentiation of MSCs. Laser irradiation could provide a simple and effective means of controlling the fate of MSCs as a therapeutic strategy and act 'molecular switch' of regulatory proteins by suppressing CRY transcription. Furthermore, this model system may be useful for exploring the crosstalk between circadian rhythm and cell differentiation. PMID:18974860

  10. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution.

    Science.gov (United States)

    Millar, Andrew J

    2016-04-29

    A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms.

  11. Optimal Implementations for Reliable Circadian Clocks

    Science.gov (United States)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.

  12. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    The circadian master clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the clock of the SCN is driven by a transcriptional/posttranslational autoregulatory network with clock gene products as core elements. Recent investigations...... in the rat neocortex. Among these, Per1, Per2, Per3, Cry1, Bmal1, Nr1d1 and Dbp were found to exhibit daily rhythms. The amplitude of circadian oscillation in neocortical clock gene expression was damped and the peak delayed as compared with the SCN. Lesions of the SCN revealed that rhythmic clock gene...... expression in the neocortex is dependent on the SCN. In situ hybridization and immunohistochemistry showed that products of the canonical clock gene Per2 are located in perikarya throughout all areas of the neocortex. These findings show that local circadian oscillators driven by the SCN reside within...

  13. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...... stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light......-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night....

  14. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons.

    Science.gov (United States)

    Depetris-Chauvin, Ana; Fernández-Gamba, Agata; Gorostiza, E Axel; Herrero, Anastasia; Castaño, Eduardo M; Ceriani, M Fernanda

    2014-10-01

    In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior.

  15. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression.

    Science.gov (United States)

    Partonen, Timo; Treutlein, Jens; Alpman, Asude; Frank, Josef; Johansson, Carolina; Depner, Martin; Aron, Liviu; Rietschel, Marcella; Wellek, Stefan; Soronen, Pia; Paunio, Tiina; Koch, Andreas; Chen, Ping; Lathrop, Mark; Adolfsson, Rolf; Persson, Maj-Liz; Kasper, Siegfried; Schalling, Martin; Peltonen, Leena; Schumann, Gunter

    2007-01-01

    Multiple lines of evidence suggest that the circadian clock contributes to the pathogenesis of winter depression or seasonal affective disorder (SAD). We hypothesized that sequence variations in three genes, including Per2, Arntl, and Npas2, which form a functional unit at the core of the circadian clock, predispose to winter depression. In silico analysis of the biological effects of allelic differences suggested the target single-nucleotide polymorphisms (SNPs) to be analyzed in a sample of 189 patients and 189 matched controls. The most relevant SNP in each gene was identified for the interaction analysis and included in the multivariate assessment of the combined effects of all three SNPs on the disease risk. SAD was associated with variations in each of the three genes in gene-wise logistic regression analysis. In combination analysis of variations of Per2, Arntl, and Npas2, we found additive effects and identified a genetic risk profile for the disorder. Carriers of the risk genotype combination had the odds ratio of 4.43 of developing SAD as compared with the remaining genotypes, and of 10.67 as compared with the most protective genotype combination. Variations in the three circadian clock genes Per2, Arntl, and Npas2 are associated with the disease, supporting the hypothesis that the circadian clock mechanisms contribute to winter depression.

  16. Functional analysis of Casein Kinase 1 in a minimal circadian system.

    Directory of Open Access Journals (Sweden)

    Gerben van Ooijen

    Full Text Available The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1 is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.

  17. Coordination of the maize transcriptome by a conserved circadian clock.

    Science.gov (United States)

    Khan, Sadaf; Rowe, Scott C; Harmon, Frank G

    2010-06-24

    The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  18. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  19. Analysis of gene regulatory networks in the mammalian circadian rhythm.

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2008-10-01

    Full Text Available Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4-5 hours in rat compared to mouse and 8-12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.

  20. Circadian aspects of post-operative morbidity and mortality

    DEFF Research Database (Denmark)

    Kvaslerud, T.; Hansen, M.V.; Rosenberg, J.

    2010-01-01

    concerning post-operative circadian disturbances. We also present the literature concerning circadian variation in post-operative morbidity and mortality. PubMed and the Cochrane database were searched for papers using a combination of 'circadian,' 'surgery,' 'post-operative,' 'mortality' and 'morbidity....... There is a peak incidence of myocardial ischemia, fatal thromboembolism and sudden unexpected death in the morning hours. A circadian variation exists in post-operative morbidity and mortality. The observed circadian variation in post-operative morbidity and mortality may warrant a chronopharmacological approach...

  1. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  2. The Neuroendocrine Control of the Circadian System: Adolescent Chronotype

    Science.gov (United States)

    Hagenauer, Megan Hastings; Lee, Theresa M.

    2012-01-01

    Scientists, public health and school officials are paying growing attention to the mechanism underlying the delayed sleep patterns common in human adolescents. Data suggest that a propensity towards evening chronotype develops during puberty, and may be caused by developmental alterations in internal daily timekeeping. New support for this theory has emerged from recent studies which show that pubertal changes in chronotype occur in many laboratory species similar to human adolescents. Using these species as models, we find that pubertal changes in chronotype differ by sex, are internally generated, and driven by reproductive hormones. These chronotype changes are accompanied by alterations in the fundamental properties of the circadian timekeeping system, including endogenous rhythm period and sensitivity to environmental time cues. After comparing the developmental progression of chronotype in different species, we propose a theory regarding the ecological relevance of adolescent chronotype, and provide suggestions for improving the sleep of human adolescents. PMID:22634481

  3. Basic science review on circadian rhythm biology and circadian sleep disorders.

    Science.gov (United States)

    Toh, Kong Leong

    2008-08-01

    The sleep-wake cycle displays a characteristic 24-hour periodicity, providing an opportunity to dissect the endogenous circadian clock through the study of aberrant behaviour. This article surveys the properties of circadian clocks, with emphasis on mammals. Information was obtained from searches of peer-reviewed literature in the PUBMED database. Features that are highlighted include the known molecular components of clocks, their entrainment by external time cues and the output pathways used by clocks to regulate metabolism and behaviour. A review of human circadian rhythm sleep disorders follows, including recent discoveries of their genetic basis. The article concludes with a discussion of future approaches to the study of human circadian biology and sleep-wake behaviour.

  4. The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework.

    Science.gov (United States)

    Patel, Vishal R; Ceglia, Nicholas; Zeller, Michael; Eckel-Mahan, Kristin; Sassone-Corsi, Paolo; Baldi, Pierre

    2015-10-01

    Circadian oscillations have been observed in animals, plants, fungi and cyanobacteria and play a fundamental role in coordinating the homeostasis and behavior of biological systems. Genetically encoded molecular clocks found in nearly every cell, based on negative transcription/translation feedback loops and involving only a dozen genes, play a central role in maintaining these oscillations. However, high-throughput gene expression experiments reveal that in a typical tissue, a much larger fraction ([Formula: see text]) of all transcripts oscillate with the day-night cycle and the oscillating species vary with tissue type suggesting that perhaps a much larger fraction of all transcripts, and perhaps also other molecular species, may bear the potential for circadian oscillations. To better quantify the pervasiveness and plasticity of circadian oscillations, we conduct the first large-scale analysis aggregating the results of 18 circadian transcriptomic studies and 10 circadian metabolomic studies conducted in mice using different tissues and under different conditions. We find that over half of protein coding genes in the cell can produce transcripts that are circadian in at least one set of conditions and similarly for measured metabolites. Genetic or environmental perturbations can disrupt existing oscillations by changing their amplitudes and phases, suppressing them or giving rise to novel circadian oscillations. The oscillating species and their oscillations provide a characteristic signature of the physiological state of the corresponding cell/tissue. Molecular networks comprise many oscillator loops that have been sculpted by evolution over two trillion day-night cycles to have intrinsic circadian frequency. These oscillating loops are coupled by shared nodes in a large network of coupled circadian oscillators where the clock genes form a major hub. Cells can program and re-program their circadian repertoire through epigenetic and other mechanisms. High

  5. Circadian rhythm in succinate dehydrogenase activity in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Álvarez Barón

    2004-07-01

    Full Text Available Neurospora crassa is a widely studied model of circadian rhythmicity. In this fungus, metabolism is controlled by multiple factors which include development, medium characteristics and the circadian clock. The study of the circadian control of metabolism in this fungus could be masked by the use of restrictive media that inhibit growth and development. In this report, the presence of a circadian rhythm in the activity of the enzyme Succinate Dehydrogenase in Neurospora crassa is demonstrated. Rhythmic and arrhythmic Neurospora strains were grown in complete medium without conidiation restriction. A circadian change in the enzymatic activity was found with high values in hours corresponding to the night and a low level during the day. This finding highlights the importance of deeper studies in the circadian control of metabolism in this fungus, given the existence of multiple pathways of regulation of metabolic enzymes and a circadian clock control at the transcriptional and post-transcriptional levels.

  6. Melatonin is required for the circadian regulation of sleep.

    Science.gov (United States)

    Gandhi, Avni V; Mosser, Eric A; Oikonomou, Grigorios; Prober, David A

    2015-03-18

    Sleep is an evolutionarily conserved behavioral state whose regulation is poorly understood. A classical model posits that sleep is regulated by homeostatic and circadian mechanisms. Several factors have been implicated in mediating the homeostatic regulation of sleep, but molecules underlying the circadian mechanism are unknown. Here we use animals lacking melatonin due to mutation of arylalkylamine N-acetyltransferase 2 (aanat2) to show that melatonin is required for circadian regulation of sleep in zebrafish. Sleep is dramatically reduced at night in aanat2 mutants maintained in light/dark conditions, and the circadian regulation of sleep is abolished in free-running conditions. We find that melatonin promotes sleep downstream of the circadian clock as it is not required to initiate or maintain circadian rhythms. Additionally, we provide evidence that melatonin may induce sleep in part by promoting adenosine signaling, thus potentially linking circadian and homeostatic control of sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Toward a classification of medications for sleep and circadian rhythm disorders

    Directory of Open Access Journals (Sweden)

    Thorpy MJ

    2013-12-01

    Full Text Available Michael J Thorpy,1 Thomas Roth2,31Sleep-Wake Disorders Center, Montefiore Medical Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, NY, USA; 2University of Michigan School of Medicine, Ann Arbor, 3Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, Michigan, USAAbstract: While some systems classify medications according to therapeutic class, others are based on the mechanism of action of the drugs. The two main classifications of medications used to treat patients in the United States are those of the United States Pharmacopeia and US Food and Drug Administration, and they vary in their organization of the medication categories. Here we propose a taxonomy for medications used to treat sleep and circadian rhythm disorders based on symptoms and disorders.Keywords: circadian, sleep, taxonomy, classification, diagnosis

  8. Time-Dependent Trapping of Pollinators Driven by the Alignment of Floral Phenology with Insect Circadian Rhythms

    Science.gov (United States)

    Lau, Jenny Y. Y.; Guo, Xing; Pang, Chun-Chiu; Tang, Chin Cheung; Thomas, Daniel C.; Saunders, Richard M. K.

    2017-01-01

    Several evolutionary lineages in the early divergent angiosperm family Annonaceae possess flowers with a distinctive pollinator trapping mechanism, in which floral phenological events are very precisely timed in relation with pollinator activity patterns. This contrasts with previously described angiosperm pollinator traps, which predominantly function as pitfall traps. We assess the circadian rhythms of pollinators independently of their interactions with flowers, and correlate these data with detailed assessments of floral phenology. We reveal a close temporal alignment between patterns of pollinator activity and the floral phenology driving the trapping mechanism (termed ‘circadian trapping’ here). Non-trapping species with anthesis of standard duration (c. 48 h) cannot be pollinated effectively by pollinators with a morning-unimodal activity pattern; non-trapping species with abbreviated anthesis (23–27 h) face limitations in utilizing pollinators with a bimodal circadian activity; whereas species that trap pollinators (all with short anthesis) can utilize a broader range of potential pollinators, including those with both unimodal and bimodal circadian rhythms. In addition to broadening the range of potential pollinators based on their activity patterns, circadian trapping endows other selective advantages, including the possibility of an extended staminate phase to promote pollen deposition, and enhanced interfloral movement of pollinators. The relevance of the alignment of floral phenological changes with peaks in pollinator activity is furthermore evaluated for pitfall trap pollination systems. PMID:28713403

  9. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the

  10. EFFECTS OF CIRCADIAN RHYTHM ON BALANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Karagul Osman

    2017-09-01

    Full Text Available Introduction. The aim of the study was to examine the effect of circadian rhythm on dynamic balance performance and to determine the role of physical activity level, body temperature, chronotype, and gender in this possible effect. Material and

  11. Circadian systems biology: When time matters

    Directory of Open Access Journals (Sweden)

    Luise Fuhr

    2015-01-01

    In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

  12. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    More recently, detailed investigation leading to the anatomical, neurochemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster ...

  13. Impact of nutrients on circadian rhythmicity

    NARCIS (Netherlands)

    Oosterman, Johanneke E; Kalsbeek, A.; la Fleur, Susanne E; Belsham, Denise D

    2015-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to

  14. Harmonics of circadian gene transcription in mammals.

    Directory of Open Access Journals (Sweden)

    Michael E Hughes

    2009-04-01

    Full Text Available The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.

  15. Circadian rhythms in liver metabolism and disease

    Directory of Open Access Journals (Sweden)

    Jessica M. Ferrell

    2015-03-01

    Full Text Available Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease.

  16. Effect of programmed circadian temperature fluctuations on ...

    African Journals Online (AJOL)

    Effect of programmed circadian temperature fluctuations on population dynamics of. Biomphalaria pfeifferi (Krauss). K.N. de Kock and J.A. van Eeden. Snail Research Unit, Medical Research Council, Potchefstroom University for Christian Higher Education,. Potchefstroom. Until now all life-table studies on freshwater snails.

  17. Circadian Variation in Coronary Stent Thrombosis

    NARCIS (Netherlands)

    Mahmoud, Karim D.; Lennon, Ryan J.; Ting, Henry H.; Rihal, Charanjit S.; Holmes, David R.

    Objectives We sought to determine the circadian, weekly, and seasonal variation of coronary stent thrombosis. Background Other adverse cardiovascular events such as acute myocardial infarction are known to have higher incidences during the early morning hours, Mondays, and winter months. Methods The

  18. Circadian rhythms in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Lange, Klaus W.; Lange, Katharina M.; Hauser, Joachim; Tucha, Lara; Tucha, Oliver

    2012-01-01

    The etiopathology and neurobiology of obsessive-compulsive disorder (OCD) are not fully understood. As for altered circadian rhythms associated with OCD, hormonal dysregulation and a delayed sleep phase have come into the focus of research. The novel antidepressant agomelatine is able to

  19. Circadian rhythms in handwriting kinematics and legibility

    NARCIS (Netherlands)

    Jasper, Isabelle; Gordijn, Marijke; Haeussler, Andreas; Hermsdoerfer, Joachim

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10

  20. Circadian rhythm disruption in cancer biology.

    Science.gov (United States)

    Savvidis, Christos; Koutsilieris, Michael

    2012-12-06

    Circadian rhythms show universally a 24-h oscillation pattern in metabolic, physiological and behavioral functions of almost all species. This pattern is due to a fundamental adaptation to the rotation of Earth around its own axis. Molecular mechanisms of generation of circadian rhythms organize a biochemical network in suprachiasmatic nucleus and peripheral tissues, building cell autonomous clock pacemakers. Rhythmicity is observed in transcriptional expression of a wide range of clock-controlled genes that regulate a variety of normal cell functions, such as cell division and proliferation. Desynchrony of this rhythmicity seems to be implicated in several pathologic conditions, including tumorigenesis and progression of cancer. In 2007, the International Agency for Research on Cancer (IARC) categorized "shiftwork that involves circadian disruption [as] probably carcinogenic to humans" (Group 2A in the IARC classification system of carcinogenic potency of an agentagent) (Painting, Firefighting, and Shiftwork; IARC; 2007). This review discusses the potential relation between disruptions of normal circadian rhythms with genetic driving machinery of cancer. Elucidation of the role of clockwork disruption, such as exposure to light at night and sleep disruption, in cancer biology could be important in developing new targeted anticancer therapies, optimizing individualized chronotherapy and modifying lighting environment in workplaces or homes.

  1. Entrainment of the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, T.; Merrow, M.

    2007-01-01

    Humans are an excellent model system for studying entrainment of the circadian clock in the real world. Unlike the situation in laboratory experiments, entrainment under natural conditions is achieved by different external signals as well as by internal signals generated by multiple feedbacks within

  2. Regulation of gustatory physiology and appetitive behavior by the Drosophila circadian clock.

    Science.gov (United States)

    Chatterjee, Abhishek; Tanoue, Shintaro; Houl, Jerry H; Hardin, Paul E

    2010-02-23

    Circadian regulation of chemosensory processes is common in animals, but little is known about how circadian clocks control chemosensory systems or the consequences of rhythms in chemosensory system function. Taste is a major chemosensory gate used to decide whether or not an animal will eat, and the main taste organ in Drosophila, the proboscis, harbors autonomous circadian oscillators. Here we examine gustatory physiology, tastant-evoked appetitive behavior, and food ingestion to understand clock-dependent regulation of the Drosophila gustatory system. Here we report that single-unit responses from labellar gustatory receptor neurons (GRNs) to attractive and aversive tastants show diurnal and circadian rhythms in spike amplitude, frequency, and duration across different classes of gustatory sensilla. Rhythms in electrophysiological responses parallel behavioral rhythms in proboscis extension reflex. Molecular oscillators in GRNs are necessary and sufficient for rhythms in gustatory responses and drive rhythms in G protein-coupled receptor kinase 2 (GPRK2) expression that mediate rhythms in taste sensitivity. Eliminating clock function in certain GRNs increases feeding and locomotor activity, mimicking a starvation response. Circadian clocks in GRNs control neuronal output and drive behavioral rhythms in taste responses that peak at a time of day when feeding is maximal in flies. Our results argue that oscillations in GPRK2 levels drive rhythms in gustatory physiology and behavior and that GRN clocks repress feeding. The similarity in gustatory system organization and feeding behavior in flies and mammals, as well as diurnal changes in taste sensitivity in humans, suggest that our results are relevant to the situation in humans. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Circadian polymorphisms associated with affective disorders

    Directory of Open Access Journals (Sweden)

    Shekhtman Tatyana

    2009-01-01

    Full Text Available Abstract Background Clinical symptoms of affective disorders, their response to light treatment, and sensitivity to other circadian interventions indicate that the circadian system has a role in mood disorders. Possibly the mechanisms involve circadian seasonal and photoperiodic mechanisms. Since genetic susceptibilities contribute a strong component to affective disorders, we explored whether circadian gene polymorphisms were associated with affective disorders in four complementary studies. Methods Four groups of subjects were recruited from several sources: 1 bipolar proband-parent trios or sib-pair-parent nuclear families, 2 unrelated bipolar participants who had completed the BALM morningness-eveningness questionnaire, 3 sib pairs from the GenRed Project having at least one sib with early-onset recurrent unipolar depression, and 4 a sleep clinic patient group who frequently suffered from depression. Working mainly with the SNPlex assay system, from 2 to 198 polymorphisms in genes related to circadian function were genotyped in the participant groups. Associations with affective disorders were examined with TDT statistics for within-family comparisons. Quantitative trait associations were examined within the unrelated samples. Results In NR1D1, rs2314339 was associated with bipolar disorder (P = 0.0005. Among the unrelated bipolar participants, 3 SNPs in PER3 and CSNK1E were associated with the BALM score. A PPARGC1B coding SNP, rs7732671, was associated with affective disorder with nominal significance in bipolar family groups and independently in unipolar sib pairs. In TEF, rs738499 was associated with unipolar depression; in a replication study, rs738499 was also associated with the QIDS-SR depression scale in the sleep clinic patient sample. Conclusion Along with anti-manic effects of lithium and the antidepressant effects of bright light, these findings suggest that perturbations of the circadian gene network at several levels may

  4. Sleep-wake profiles and circadian rhythms of core temperature and melatonin in young people with affective disorders.

    Science.gov (United States)

    Carpenter, Joanne S; Robillard, Rébecca; Hermens, Daniel F; Naismith, Sharon L; Gordon, Christopher; Scott, Elizabeth M; Hickie, Ian B

    2017-11-01

    While disturbances of the sleep-wake cycle are common in people with affective disorders, the characteristics of these disturbances differ greatly between individuals. This heterogeneity is likely to reflect multiple underlying pathophysiologies, with different perturbations in circadian systems contributing to the variation in sleep-wake cycle disturbances. Such disturbances may be particularly relevant in adolescents and young adults with affective disorders as circadian rhythms undergo considerable change during this key developmental period. This study aimed to identify profiles of sleep-wake disturbance in young people with affective disorders and investigate associations with biological circadian rhythms. Fifty young people with affective disorders and 19 control participants (aged 16-31 years) underwent actigraphy monitoring for approximately two weeks to derive sleep-wake cycle parameters, and completed an in-laboratory assessment including evening dim-light saliva collection for melatonin assay and overnight continuous core body temperature measurement. Cluster analysis based on sleep-wake cycle parameters identified three distinct patient groups, characterised by 'delayed sleep-wake', 'disrupted sleep', and 'long sleep' respectively. The 'delayed sleep-wake' group had both delayed melatonin onset and core temperature nadir; whereas the other two cluster groups did not differ from controls on these circadian markers. The three groups did not differ on clinical characteristics. These results provide evidence that only some types of sleep-wake disturbance in young people with affective disorders are associated with fundamental circadian perturbations. Consequently, interventions targeting endogenous circadian rhythms to promote a phase shift may be particularly relevant in youth with affective disorders presenting with delayed sleep-wake cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Light and the human circadian clock.

    Science.gov (United States)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.

  6. Circadian adaptations to meal timing: Neuroendocrine mechanisms

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    2013-10-01

    Full Text Available Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus is directly entrained by daily light-dark cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this

  7. Carcinogenic effects of circadian disruption: an epigenetic viewpoint.

    Science.gov (United States)

    Salavaty, Abbas

    2015-08-08

    Circadian rhythms refer to the endogenous rhythms that are generated to synchronize physiology and behavior with 24-h environmental cues. These rhythms are regulated by both external cues and molecular clock mechanisms in almost all cells. Disruption of circadian rhythms, which is called circadian disruption, affects many biological processes within the body and results in different long-term diseases, including cancer. Circadian regulatory pathways result in rhythmic epigenetic modifications and the formation of circadian epigenomes. Aberrant epigenetic modifications, such as hypermethylation, due to circadian disruption may be involved in the transformation of normal cells into cancer cells. Several studies have indicated an epigenetic basis for the carcinogenic effects of circadian disruption. In this review, I first discuss some of the circadian genes and regulatory proteins. Then, I summarize the current evidence related to the epigenetic modifications that result in circadian disruption. In addition, I explain the carcinogenic effects of circadian disruption and highlight its potential role in different human cancers using an epigenetic viewpoint. Finally, the importance of chronotherapy in cancer treatment is highlighted.

  8. Clinical Relevance of Adipokines

    Directory of Open Access Journals (Sweden)

    Matthias Blüher

    2012-10-01

    Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

  9. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells.

    Science.gov (United States)

    Loros, J J; Dunlap, J C; Larrondo, L F; Shi, M; Belden, W J; Gooch, V D; Chen, C-H; Baker, C L; Mehra, A; Colot, H V; Schwerdtfeger, C; Lambreghts, R; Collopy, P D; Gamsby, J J; Hong, C I

    2007-01-01

    Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.

  10. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night.

    Science.gov (United States)

    Scheer, Frank A J L; Shea, Thomas J; Hilton, Michael F; Shea, Steven A

    2008-08-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be

  11. Proteomics of the photoneuroendocrine circadian system of the brain

    DEFF Research Database (Denmark)

    Møller, Morten; Lund-Andersen, Casper; Rovsing, Louise

    2010-01-01

    The photoneuroendocrine circadian system of the brain consists of (a) specialized photoreceptors in the retina, (b) a circadian generator located in the forebrain that contains "clock genes," (c) specialized nuclei in the forebrain involved in neuroendocrine secretion, and (d) the pineal gland....... The circadian generator is a nucleus, called the suprachiasmatic nucleus (SCN). The neurons of this nucleus contain "clock genes," the transcription of which exhibits a circadian rhythm. Most circadian rhythms are generated by the neurons of this nucleus and, via neuronal and humoral connections, the SCN...... controls circadian activity of the brain and peripheral tissues. The endogenous oscillator of the SCN is each day entrained to the length of the daily photoperiod by light that reach the retina, and specialized photoreceptors transmit impulses to the SCN via the optic nerves. Mass screening for day...

  12. Interplay between cellular redox oscillations and circadian clocks.

    Science.gov (United States)

    Rey, G; Reddy, A B

    2015-09-01

    The circadian clock is a cellular timekeeping mechanism that helps organisms from bacteria to humans to organize their behaviour and physiology around the solar cycle. Current models for circadian timekeeping incorporate transcriptional/translational feedback loop mechanisms in the predominant model systems. However, recent evidence suggests that non-transcriptional oscillations such as metabolic and redox cycles may play a fundamental role in circadian timekeeping. Peroxiredoxins, an antioxidant protein family, undergo rhythmic oxidation on the circadian time scale in a variety of species, including bacteria, insects and mammals, but also in red blood cells, a naturally occurring, non-transcriptional system. The profound interconnectivity between circadian and redox pathways strongly suggests that a conserved timekeeping mechanism based on redox cycles could be integral to generating circadian rhythms. © 2015 John Wiley & Sons Ltd.

  13. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    Science.gov (United States)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  14. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Verwey

    2016-08-01

    Full Text Available Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN, the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease. For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson’s disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms.

  15. Circadian misalignment increases cardiovascular disease risk factors in humans

    OpenAIRE

    Christopher J. Morris; Purvis, Taylor E.; Hu, Kun; Scheer, Frank A.J.L.

    2016-01-01

    Shift work is a risk factor for hypertension, inflammation, and cardiovascular disease, even after controlling for traditional risk factors. Shift workers frequently undergo circadian misalignment (i.e., misalignment between the endogenous circadian system and 24-h environmental/behavioral cycles). This misalignment has been proposed to explain, in part, why shift work is a risk factor for hypertension, inflammation, and cardiovascular disease. However, the impact of circadian misalignment pe...

  16. Arabidopsis circadian clock and photoperiodism: time to think about location

    OpenAIRE

    Imaizumi, Takato

    2009-01-01

    Plants possess a circadian clock that enables them to coordinate internal biological events with external daily changes. Recent studies in Arabidopsis revealed that tissue specific clock components exist and that the clock network architecture also varies within different organs. These findings indicate that the makeup of circadian clock(s) within a plant is quite variable. Plants utilize the circadian clock to measure day-length changes for regulating seasonal responses, such as flowering. T...

  17. Optimal Schedules of Light Exposure for Rapidly Correcting Circadian Misalignment

    OpenAIRE

    Kirill Serkh; Forger, Daniel B.

    2014-01-01

    Jet lag arises from a misalignment of circadian biological timing with the timing of human activity, and is caused by rapid transmeridian travel. Jet lag's symptoms, such as depressed cognitive alertness, also arise from work and social schedules misaligned with the timing of the circadian clock. Using experimentally validated mathematical models, we develop a new methodology to find mathematically optimal schedules of light exposure and avoidance for rapidly re-entraining the human circadian...

  18. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery.

    Directory of Open Access Journals (Sweden)

    Annabelle Ballesta

    2011-09-01

    Full Text Available Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11, a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT 0, circadian rhythms with a period of 26 h 50 (SD 63 min were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1, the activation enzyme carboxylesterase 2 (CES2, the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1, and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in

  19. Determination of whole body circadian phase in lung cancer patients: melatonin vs. cortisol.

    Science.gov (United States)

    Mazzoccoli, Gianluigi; Giuliani, Francesco; Sothern, Robert B

    2012-02-01

    A quantifiable and reliable technique for the determination of body circadian phase applicable to non-laboratory studies would allow the evaluation of circadian dysregulation. In this study we evaluated feasible methodologies to individualize whole body circadian phase in lung cancer patients. Cortisol and melatonin serum levels were measured in blood samples collected every 4 h for 24 h from eleven male controls and nine men suffering from non-small cell lung cancer. Circadian rhythmicity was evaluated and the 4-hourly fractional variations (FV) were calculated to evaluate the dynamics of the rise and fall in serum levels. Overall cortisol serum levels were higher in cancer patients (pmelatonin, but not significantly (p=0.261). Original serum levels of cortisol and melatonin each showed a prominent 24 h oscillation in both study groups, with highest values at night for melatonin and near awakening for cortisol. Using all data after normalization to percent of individual mean, ANOVA detected a significant time-effect (pcortisol in cancer patients and higher for melatonin, but these differences were not significant. FV levels of cortisol and melatonin each showed a prominent 24 h oscillation in both study groups, with highest values prior to darkness onset for melatonin and near mid-dark for cortisol. ANOVA also detected a significant time-effect (pmelatonin and ∼5 h for cortisol. A chronobiological evaluation of serum levels and fractional variations for cortisol and especially melatonin is a valuable methodology to define body circadian phase in lung cancer patients. It is possible to describe the complex process of hormone secretion with a methodology that allows the definition of both temporal characteristics and dynamic components. This kind of analysis might be useful in the study of hormone secretion(s) in cancer patients and other diseases and to guide therapeutic interventions. While lung cancer patients may have a negative prognostic value based upon

  20. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  1. Circadian Control of Global Gene Expression Patterns

    Science.gov (United States)

    Doherty, Colleen J.; Kay, Steve A.

    2014-01-01

    An internal time-keeping mechanism has been observed in almost every organism studied from archaea to humans. This circadian clock provides a competitive advantage in fitness and survival (18, 30, 95, 129, 137). Researchers have uncovered the molecular composition of this internal clock by combining enzymology, molecular biology, genetics, and modeling approaches. However, understanding the mechanistic link between the clock and output responses has been elusive. In three model organisms, Arabidopsis thaliana, Drosophila melanogaster, and Mus musculus, whole-genome expression arrays have enabled researchers to investigate how maintaining a time-keeping mechanism connects to an adaptive advantage. Here, we review the impacts transcriptomics have had on our understanding of the clock and how this molecular clock connects with system-level circadian responses. We explore the discoveries made possible by high-throughput RNA assays, the network approaches used to investigate these large transcript datasets, and potential future directions. PMID:20809800

  2. Avian Circadian Organization: A Chorus of Clocks

    Science.gov (United States)

    Cassone, Vincent M

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  3. Neurochemical and neuropharmacological aspects of circadian disruptions: an introduction to asynchronization.

    Science.gov (United States)

    Kohyama, Jun

    2011-06-01

    Circadian disruptions are common in modern society, and there is an urgent need for effective treatment strategies. According to standard diagnostic criteria, most adolescents showing both insomnia and daytime sleepiness are diagnosed as having behavioral-induced sleep efficiency syndrome resulting from insomnia due to inadequate sleep hygiene. However, a simple intervention of adequate sleep hygiene often fails to treat them. As a solution to this clinical problem, the present review first overviews the basic neurochemical and neuropharmachological aspects of sleep and circadian rhythm regulation, then explains several circadian disruptions from similar viewpoints, and finally introduces the clinical notion of asynchronization. Asynchronization is designated to explain the pathophysiology/pathogenesis of exhibition of both insomnia and hypersomnia in adolescents, which comprises disturbances in various aspects of biological rhythms. The major triggers for asynchronization are considered to be a combination of light exposure during the night, which disturbs the biological clock and decreases melatonin secretion, as well as a lack of light exposure in the morning, which prohibits normal synchronization of the biological clock to the 24-hour cycle of the earth and decreases the activity of serotonin. In the chronic phase of asynchronization, involvement of both wake- and sleep-promoting systems is suggested. Both conventional and alternative therapeutic approaches for potential treatment of asynchronization are suggested.

  4. Circadian Phase Preference in Pediatric Bipolar Disorder.

    Science.gov (United States)

    Kim, Kerri L; Weissman, Alexandra B; Puzia, Megan E; Cushman, Grace K; Seymour, Karen E; Wegbreit, Ezra; Carskadon, Mary A; Dickstein, Daniel P

    2014-03-11

    Pediatric bipolar disorder (BD) rates have notably increased over the past three decades. Given the significant morbidity and mortality associated with BD, efforts are needed to identify factors useful in earlier detection to help address this serious public health concern. Sleep is particularly important to consider given the sequelae of disrupted sleep on normative functioning and that sleep is included in diagnostic criteria for both Major Depressive and Manic Episodes. Here, we examine one component of sleep-i.e., circadian phase preference with the behavioral construct of morningness/eveningness (M/E). In comparing 30 BD and 45 typically developing control (TDC) participants, ages 7-17 years, on the Morningness-Eveningness Scale for Children (MESC), no between-group differences emerged. Similar results were found when comparing three groups (BD-ADHD; BD+ADHD; TDC). Consistent with data available on circadian phase preference in adults with BD, however, we found that BD adolescents, ages 13 years and older, endorsed significantly greater eveningness compared to their TDC peers. While the current findings are limited by reliance on subjective report and the high-rate of comorbid ADHD among the BD group, this finding that BD teens demonstrate an exaggerated shift towards eveningness than would be developmentally expected is important. Future studies should compare the circadian rhythms across the lifespan for individuals diagnosed with BD, as well as identify the point at which BD youth part ways with their healthy peers in terms of phase preference. In addition, given our BD sample was overall euthymic, it may be that M/E is more state vs. trait specific in latency age youth. Further work would benefit from assessing circadian functioning using a combination of rating forms and laboratory-based measures. Improved understanding of sleep in BD may identify behavioral targets for inclusion in prevention and intervention protocols.

  5. Circadian Phase Preference in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Kerri L. Kim

    2014-03-01

    Full Text Available Pediatric bipolar disorder (BD rates have notably increased over the past three decades. Given the significant morbidity and mortality associated with BD, efforts are needed to identify factors useful in earlier detection to help address this serious public health concern. Sleep is particularly important to consider given the sequelae of disrupted sleep on normative functioning and that sleep is included in diagnostic criteria for both Major Depressive and Manic Episodes. Here, we examine one component of sleep—i.e., circadian phase preference with the behavioral construct of morningness/eveningness (M/E. In comparing 30 BD and 45 typically developing control (TDC participants, ages 7–17 years, on the Morningness-Eveningness Scale for Children (MESC, no between-group differences emerged. Similar results were found when comparing three groups (BD−ADHD; BD+ADHD; TDC. Consistent with data available on circadian phase preference in adults with BD, however, we found that BD adolescents, ages 13 years and older, endorsed significantly greater eveningness compared to their TDC peers. While the current findings are limited by reliance on subjective report and the high-rate of comorbid ADHD among the BD group, this finding that BD teens demonstrate an exaggerated shift towards eveningness than would be developmentally expected is important. Future studies should compare the circadian rhythms across the lifespan for individuals diagnosed with BD, as well as identify the point at which BD youth part ways with their healthy peers in terms of phase preference. In addition, given our BD sample was overall euthymic, it may be that M/E is more state vs. trait specific in latency age youth. Further work would benefit from assessing circadian functioning using a combination of rating forms and laboratory-based measures. Improved understanding of sleep in BD may identify behavioral targets for inclusion in prevention and intervention protocols.

  6. Circadian rhythms, athletic performance, and jet lag

    OpenAIRE

    Manfredini, R; Manfredini, F.; Fersini, C.; Conconi, F.

    1998-01-01

    Rapid air travel across several time zones exposes the traveller to a shift in his/her internal biological clock. The result is a transient desynchronisation of the circadian rhythm, called jet lag, lasting until the rhythm is rephased to the new environmental conditions. The most commonly experienced symptoms are sleep disorders, difficulties with concentrating, irritability, depression, fatigue, disorientation, loss of appetite, and gastrointestinal disturbance. Apart from the decreme...

  7. The Circadian Clock Mutation Promotes Intestinal Dysbiosis.

    Science.gov (United States)

    Voigt, Robin M; Summa, Keith C; Forsyth, Christopher B; Green, Stefan J; Engen, Phillip; Naqib, Ankur; Vitaterna, Martha H; Turek, Fred W; Keshavarzian, Ali

    2016-02-01

    Circadian rhythm disruption is a prevalent feature of modern day society that is associated with an increase in pro-inflammatory diseases, and there is a clear need for a better understanding of the mechanism(s) underlying this phenomenon. We have previously demonstrated that both environmental and genetic circadian rhythm disruption causes intestinal hyperpermeability and exacerbates alcohol-induced intestinal hyperpermeability and liver pathology. The intestinal microbiota can influence intestinal barrier integrity and impact immune system function; thus, in this study, we sought to determine whether genetic alteration of the core circadian clock gene, Clock, altered the intestinal microbiota community. Male Clock(Δ19) -mutant mice (mice homozygous for a dominant-negative-mutant allele) or littermate wild-type mice were fed 1 of 3 experimental diets: (i) a standard chow diet, (ii) an alcohol-containing diet, or (iii) an alcohol-control diet in which the alcohol calories were replaced with dextrose. Stool microbiota was assessed with 16S ribosomal RNA gene amplicon sequencing. The fecal microbial community of Clock-mutant mice had lower taxonomic diversity, relative to wild-type mice, and the Clock(Δ19) mutation was associated with intestinal dysbiosis when mice were fed either the alcohol-containing or the control diet. We found that alcohol consumption significantly altered the intestinal microbiota in both wild-type and Clock-mutant mice. Our data support a model by which circadian rhythm disruption by the Clock(Δ19) mutation perturbs normal intestinal microbial communities, and this trend was exacerbated in the context of a secondary dietary intestinal stressor. Copyright © 2016 by the Research Society on Alcoholism.

  8. Molecular and circadian controls of ameloblasts

    OpenAIRE

    ATHANASSIOU-PAPAEFTHYMIOU, MARIA; Kim, Doohak; Harbon, Lindsay; Papagerakis, Silvana; Schnell, Santiago; Harada, Hidemitsu; Papagerakis, Petros

    2011-01-01

    Stage-specific expression of ameloblast-specific genes is controlled by differential expression of transcription factors. In addition, ameloblasts follow daily rhythms in their main activities i.e. enamel protein secretion and enamel mineralization. This time related control is orchestrated by oscillations of clock proteins involved in circadian rhythms regulation. Our aim was to identify the potential links between daily rhythms and developmental controls of ameloblast differentiation. The e...

  9. Glaucoma alters the circadian timing system.

    Directory of Open Access Journals (Sweden)

    Elise Drouyer

    Full Text Available Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photic input to mammalian endogenous clock in the suprachiasmatic nucleus (SCN. In order to explore the molecular, anatomical and functional consequences of glaucoma we used a rodent model of chronic ocular hypertension, a primary causal factor of the pathology. Quantitative analysis of retinal projections using sensitive anterograde tracing demonstrates a significant reduction (approximately 50-70% of RGC axon terminals in all visual and non-visual structures and notably in the SCN. The capacity of glaucomatous rats to entrain to light was challenged by exposure to successive shifts of the light dark (LD cycle associated with step-wise decreases in light intensity. Although glaucomatous rats are able to entrain their locomotor activity to the LD cycle at all light levels, they require more time to re-adjust to a shifted LD cycle and show significantly greater variability in activity onsets in comparison with normal rats. Quantitative PCR reveals the novel finding that melanopsin as well as rod and cone opsin mRNAs are significantly reduced in glaucomatous retinas. Our findings demonstrate that glaucoma impacts on all these aspects of the circadian timing system. In light of these results, the classical view of glaucoma as pathology unique to the visual system should be extended to include anatomical and functional alterations of the circadian timing system.

  10. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  11. The circadian clock, reward, and memory.

    Science.gov (United States)

    Albrecht, Urs

    2011-01-01

    During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  12. Significance of Circadian Rhythms in Aerospace Operations,

    Science.gov (United States)

    1980-12-01

    Drosophila Melanogaster . Proc. Nat.Acad.Sci. 69:1537 (1972). 24L8 PIZZARELLO, D.J., ". ISAAK, K.E. CHUA, and A.L. RHYNE: Circadian rhythmicity in the...addition, composition of food was found to have Zeitgeber characteristic (77, 78, 102, 208, 242). On these results "a diet plan for shift workers and...subjective results, trials with humans are supposed to be highly successful (76). Objective measurements taken from humans following the diet plan have

  13. Shift work and circadian dysregulation of reproduction

    Directory of Open Access Journals (Sweden)

    Karen L. Gamble

    2013-08-01

    Full Text Available Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans, the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift-work induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.

  14. Pathophysiology and pathogenesis of circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Hida Akiko

    2012-03-01

    Full Text Available Abstract Metabolic, physiological and behavioral processes exhibit 24-hour rhythms in most organisms, including humans. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues. The transcription and translation feedback loops of multiple clock genes are involved in the molecular mechanism of the circadian system. Disturbed circadian rhythms are known to be closely related to many diseases, including sleep disorders. Advanced sleep phase type, delayed sleep phase type and nonentrained type of circadian rhythm sleep disorders (CRSDs are thought to result from disorganization of the circadian system. Evaluation of circadian phenotypes is indispensable to understanding the pathophysiology of CRSD. It is laborious and costly to assess an individual's circadian properties precisely, however, because the subject is usually required to stay in a laboratory environment free from external cues and masking effects for a minimum of several weeks. More convenient measurements of circadian rhythms are therefore needed to reduce patients' burden. In this review, we discuss the pathophysiology and pathogenesis of CRSD as well as surrogate measurements for assessing an individual's circadian phenotype.

  15. Clinical Trial of Exercise on Circadian Clock Resetting

    National Research Council Canada - National Science Library

    Czeisler, Charles

    2001-01-01

    ...: test the hypothesis that multiple nightly bouts of exercise will induce significant delays in the endogenous circadian rhythms of core body temperature, plasma melatonin, reaction time, alertness...

  16. Circadian clock genes: effects on dopamine, reward and addiction.

    Science.gov (United States)

    Parekh, Puja K; Ozburn, Angela R; McClung, Colleen A

    2015-06-01

    Addiction is a widespread public health issue with social and economic ramifications. Substance abuse disorders are often accompanied by disruptions in circadian rhythms including sleep/wake cycles, which can exacerbate symptoms of addiction and dependence. Additionally, genetic disturbance of circadian molecular mechanisms can predispose some individuals to substance abuse disorders. In this review, we will discuss how circadian genes can regulate midbrain dopaminergic activity and subsequently, drug intake and reward. We will also suggest future directions for research on circadian genes and drugs of abuse. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock.

    Science.gov (United States)

    Haydon, Michael J; Mielczarek, Olga; Robertson, Fiona C; Hubbard, Katharine E; Webb, Alex A R

    2013-10-31

    Circadian clocks provide a competitive advantage in an environment that is heavily influenced by the rotation of the Earth, by driving daily rhythms in behaviour, physiology and metabolism in bacteria, fungi, plants and animals. Circadian clocks comprise transcription-translation feedback loops, which are entrained by environmental signals such as light and temperature to adjust the phase of rhythms to match the local environment. The production of sugars by photosynthesis is a key metabolic output of the circadian clock in plants. Here we show that these rhythmic, endogenous sugar signals can entrain circadian rhythms in Arabidopsis thaliana by regulating the gene expression of circadian clock components early in the photoperiod, thus defining a 'metabolic dawn'. By inhibiting photosynthesis, we demonstrate that endogenous oscillations in sugar levels provide metabolic feedback to the circadian oscillator through the morning-expressed gene PSEUDO-RESPONSE REGULATOR 7 (PRR7), and we identify that prr7 mutants are insensitive to the effects of sucrose on the circadian period. Thus, photosynthesis has a marked effect on the entrainment and maintenance of robust circadian rhythms in A. thaliana, demonstrating that metabolism has a crucial role in regulation of the circadian clock.

  18. SCA1+ Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions

    Directory of Open Access Journals (Sweden)

    Bastiaan C. Du Pré

    2017-09-01

    Full Text Available Stem cell antigen 1-positive (SCA1+ cells (SPCs have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr rhythms are biorhythms regulated by molecular clocks that play an important role in (pathophysiology. Here, we describe (1 the presence of a molecular circadian clock in SPCs and (2 circadian rhythmicity in SPC function. We isolated SPCs from human fetal heart and found that these cells possess a molecular clock based on typical oscillations in core clock components BMAL1 and CRY1. Functional analyses revealed that circadian rhythmicity also governs SPC proliferation, stress tolerance, and growth factor release, with large differences between peaks and troughs. We conclude that SPCs contain a circadian molecular clock that controls crucial cellular functions. Taking circadian rhythms into account may improve reproducibility and outcome of research and therapies using SPCs.

  19. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria.

    Science.gov (United States)

    Chang, Yong-Gang; Cohen, Susan E; Phong, Connie; Myers, William K; Kim, Yong-Ick; Tseng, Roger; Lin, Jenny; Zhang, Li; Boyd, Joseph S; Lee, Yvonne; Kang, Shannon; Lee, David; Li, Sheng; Britt, R David; Rust, Michael J; Golden, Susan S; LiWang, Andy

    2015-07-17

    Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator. Copyright © 2015, American Association for the Advancement of Science.

  20. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  1. Network features of the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Julie E Baggs

    2009-03-01

    Full Text Available The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA in which small interfering RNA (siRNA-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation.

  2. Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Huei-Bin Wang

    2017-01-01

    Full Text Available Patients with Huntington's disease (HD exhibit movement disorders, psychiatric disturbance and cognitive impairments as the disease progresses. Abnormal sleep/wake cycles are common among HD patients with reports of delayed sleep onset, fatigue during the day, and a delayed pattern of melatonin secretion all of which suggest circadian dysfunction. Mouse models of HD confirm disrupted circadian rhythms with pathophysiology found in the central circadian clock (suprachiasmatic nucleus. Importantly, circadian dysfunction manifests early in disease, even before the classic motor symptoms, in both patients and mouse models. Therefore, we hypothesize that the circadian dysfunction may interact with the disease pathology and exacerbate the HD symptoms. If correct, early intervention may benefit patients and delay disease progression. One test of this hypothesis is to determine whether light therapy designed to strengthen this intrinsic timing system can delay the disease progression in mouse models. Therefore, we determined the impact of blue wavelength-enriched light on two HD models: the BACHD and Q175 mice. Both models received 6 h of blue-light at the beginning of their daily light cycle for 3 months. After treatment, both genotypes showed improvements in their locomotor activity rhythm without significant change to their sleep behavior. Critically, treated mice of both lines exhibited improved motor performance compared to untreated controls. Focusing on the Q175 genotype, we sought to determine whether the treatment altered signaling pathways in brain regions known to be impacted by HD using NanoString gene expression assays. We found that the expression of several HD relevant markers was altered in the striatum and cortex of the treated mice. Our study demonstrates that strengthening the circadian system can delay the progression of HD in pre-clinical models. This work suggests that lighting conditions should be considered when managing

  3. Circadian Control of the Estrogenic Circuits Regulating GnRH Secretion and the Preovulatory Luteinizing Hormone Surge

    Directory of Open Access Journals (Sweden)

    Lance J Kriegsfeld

    2012-05-01

    Full Text Available Female reproduction requires the precise temporal organization of interacting, estradiol-sensitive neural circuits that converge to optimally drive hypothalamo-pituitary-gonadal (HPG axis functioning. In mammals, the master circadian pacemaker in the suprachaismatic nucleus (SCN of the anterior hypothalamus coordinates reproductively-relevant neuroendocrine events necessary to maximize reproductive success. Likewise, in species where periods of fertility are brief, circadian oversight of reproductive function ensures that estradiol-dependent increases in sexual motivation coincide with ovulation. Across species, including humans, disruptions to circadian timing (e.g., through rotating shift work, night shift work, poor sleep hygiene lead to pronounced deficits in ovulation and fecundity. Despite the well-established roles for the circadian system in female reproductive functioning, the specific neural circuits and neurochemical mediators underlying these interactions are not fully understood. Most work to date has focused on the direct and indirect communication from the SCN to the GnRH system in control of the preovulatory LH surge. However, the same clock genes underlying circadian rhythms at the cellular level in SCN cells are also common to target cell populations of the SCN, including the GnRH neuronal network. Exploring the means by which the master clock synergizes with subordinate clocks in GnRH cells and its upstream modulatory systems represents an exciting opportunity to further understand the role of endogenous timing systems in female reproduction. Herein we provide an overview of the state of knowledge regarding interactions between the circadian timing system and estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge.

  4. Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin.

    Science.gov (United States)

    España, Rodrigo A; Plahn, Stacey; Berridge, Craig W

    2002-07-12

    The hypocretins/orexins modulate behavioral state as well as a variety of state-dependent behaviors. Levels of hypocretin-1 and prepro-hypocretin mRNA vary in a circadian fashion, suggesting that hypocretin neurotransmission may vary across the circadian cycle. To better assess the circadian dependency of the behavioral actions of hypocretin-1, the behavioral effects of intracerebroventricular hypocretin-1 administration (3.0 nmol/2 microl) were examined at differing portions of the circadian cycle, when animals display either low levels of waking (light-period) or high levels of waking (dark-period). In addition, mediation analyses were conducted to better assess the contribution of the wake-promoting actions to other behavioral actions of hypocretin-1. During the light-period, hypocretin-1 administration increased time spent awake, grooming, feeding, locomotor activity and chewing of inedible material, a stress-related behavior. Comparable effects of hypocretin-1 on time spent awake, locomotor activity and the chewing of inedible material were observed during the dark-period. In contrast, hypocretin-1-induced feeding and drinking appeared largely circadian-dependent: hypocretin-1 had minimal effects on these behaviors during the dark-period. Hypocretin-1-induced increases in grooming appeared moderately circadian-dependent. These observations suggest that the previously described ability of hypocretin to increase feeding and drinking during the light-period may reflect, at least in part, a general behavioral activation associated with waking. Results from the mediation analyses support these conclusions, indicating that hypocretin-1-induced increases in waking largely account for hypocretin-1-induced increases in feeding and drinking. Additionally, given that chewing and grooming are stress-related behaviors, these observations provide further support for a possible function of HCRT in stress.

  5. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism.

    Science.gov (United States)

    Wells, Audrey M; Ridener, Elysia; Bourbonais, Clinton A; Kim, Woori; Pantazopoulos, Harry; Carroll, F Ivy; Kim, Kwang-Soo; Cohen, Bruce M; Carlezon, William A

    2017-08-09

    humans. Whereas some of these alterations recover quickly upon cessation of stress, others persist. Administration of a kappa-opioid receptor (KOR) antagonist reduced stress effects or hastened recovery, consistent with the previously reported antistress effects of this class of agents. Use of endpoints, such as sleep and circadian rhythm, that are homologous across species will facilitate the implementation of translational studies that better predict clinical outcomes in humans, improve the success of clinical trials, and facilitate the development of more effective therapeutics. Copyright © 2017 the authors 0270-6474/17/377656-13$15.00/0.

  6. Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ron Weiss

    2014-04-01

    Full Text Available Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK and CYCLE (CYC initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60% or strongly (90% without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain.

  7. The circadian clock modulates enamel development.

    Science.gov (United States)

    Lacruz, Rodrigo S; Hacia, Joseph G; Bromage, Timothy G; Boyde, Alan; Lei, Yaping; Xu, Yucheng; Miller, Joseph D; Paine, Michael L; Snead, Malcolm L

    2012-06-01

    Fully mature enamel is about 98% mineral by weight. While mineral crystals appear very early during its formative phase, the newly secreted enamel is a soft gel-like matrix containing several enamel matrix proteins of which the most abundant is amelogenin (Amelx). Histological analysis of mineralized dental enamel reveals markings called cross-striations associated with daily increments of enamel formation, as evidenced by injections of labeling dyes at known time intervals. The daily incremental growth of enamel has led to the hypothesis that the circadian clock might be involved in the regulation of enamel development. To identify daily rhythms of clock genes and Amelx, we subjected murine ameloblast cells to serum synchronization to analyze the expression of the circadian transcription factors Per2 and Bmal1 by real-time PCR. Results indicate that these key genetic regulators of the circadian clock are expressed in synchronized murine ameloblast cell cultures and that their expression profile follows a circadian pattern with acrophase and bathyphase for both gene transcripts in antiphase. Immunohistological analysis confirms the protein expression of Bmal and Cry in enamel cells. Amelx expression in 2-day postnatal mouse molars dissected every 4 hours for a duration of 48 hours oscillated with an approximately 24-hour period, with a significant approximately 2-fold decrease in expression during the dark period compared to the light period. The expression of genes involved in bicarbonate production (Car2) and transport (Slc4a4), as well as in enamel matrix endocytosis (Lamp1), was greater during the dark period, indicating that ameloblasts express these proteins when Amelx expression is at the nadir. The human and mouse Amelx genes each contain a single nonconserved E-box element within 10 kb upstream of their respective transcription start sites. We also found that within 2 kb of the transcription start site of the human NFYA gene, which encodes a positive

  8. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review.

    Science.gov (United States)

    Sack, Robert L; Auckley, Dennis; Auger, R Robert; Carskadon, Mary A; Wright, Kenneth P; Vitiello, Michael V; Zhdanova, Irina V

    2007-11-01

    This the first of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. In this first part of this paper, the general principles of circadian biology that underlie clinical evaluation and treatment are reviewed. We then report on the accumulated evidence regarding the evaluation and treatment of shift work disorder (SWD) and jet lag disorder (JLD). A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of SWD and JLD. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting ("resetting the clock"), and 3) symptomatic treatment using hypnotic and stimulant medications. Circadian rhythm science has also pointed the way to rational interventions for the SWD and JLD, and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria.

  9. Circadian arrhythmia dysregulates emotional behaviors in aged Siberian hamsters

    Science.gov (United States)

    Prendergast, Brian J.; Onishi, Kenneth G.; Patel, Priyesh N.; Stevenson, Tyler J.

    2014-01-01

    Emotional behaviors are influenced by the circadian timing system. Circadian disruptions are associated with depressive-like symptoms in clinical and preclinical populations. Circadian rhythm robustness declines markedly with aging and may contribute to susceptibility to emotional dysregulation in aged individuals. The present experiments used a model of chronic circadian arrhythmia generated noninvasively, via a series of circadian-disruptive light treatments, to investigate interactions between circadian desynchrony and aging on depressive- and anxiety-like behaviors, and on limbic neuroinflammatory gene expression that has been linked with emotionality. We also examined whether a social manipulation (group housing) would attenuate effects of arrhythmia on emotionality. In aged (14-18 months of age) male Siberian hamsters, circadian arrhythmia increased behavioral despair and decreased social motivation, but decreased exploratory anxiety. These effects were not evident in younger (5-9 months of age) hamsters. Social housing (3-5 hamsters/cage) abolished the effects of circadian arrhythmia on emotionality. Circadian arrhythmia alone was without effect on hippocampal or cortical interleukin-1β (IL-1β) and indoleamine 2,3-dioxygenase (Ido) mRNA expression in aged hamsters, but social housing decreased hippocampal IL-1β and Ido mRNAs. The data demonstrate that circadian disruption can negatively impact affective state, and that this effect is pronounced in older individuals. Although clear associations between circadian arrhythmia and constitutive limbic proinflammatory activity were not evident, the present data suggest that social housing markedly inhibits constitutive hippocampal IL-1β and Ido activity, which may contribute to the ameliorating effects of social housing on a number of emotional behaviors. PMID:24333374

  10. The development and course of bipolar spectrum disorders: an integrated reward and circadian rhythm dysregulation model.

    Science.gov (United States)

    Alloy, Lauren B; Nusslock, Robin; Boland, Elaine M

    2015-01-01

    In this article, we present and review the evidence for two major biopsychosocial theories of the onset and course of bipolar spectrum disorders (BSDs) that integrate behavioral, environmental, and neurobiological mechanisms: the reward hypersensitivity and the social/circadian rhythm disruption models. We describe the clinical features, spectrum, age of onset, and course of BSDs. We then discuss research designs relevant to demonstrating whether a hypothesized mechanism represents a correlate, vulnerability, or predictor of the course of BSDs, as well as important methodological issues. We next present the reward hypersensitivity model of BSD, followed by the social/circadian rhythm disruption model of BSD. For each model, we review evidence regarding whether the proposed underlying mechanism is associated with BSDs, provides vulnerability to the onset of BSDs, and predicts the course of BSDs. We then present a new integrated reward/circadian rhythm (RCR) dysregulation model of BSD and discuss how the RCR model explains the symptoms, onset, and course of BSDs. We end with recommendations for future research directions.

  11. Circadian rhythms in liver physiology and liver diseases.

    Science.gov (United States)

    Tong, Xin; Yin, Lei

    2013-04-01

    In mammals, circadian rhythms function to coordinate a diverse panel of physiological processes with environmental conditions such as food and light. As the driving force for circadian rhythmicity, the molecular clock is a self-sustained transcription-translational feedback loop system consisting of transcription factors, epigenetic modulators, kinases/phosphatases, and ubiquitin E3 ligases. The molecular clock exists not only in the suprachiasmatic nuclei of the hypothalamus but also in the peripheral tissues to regulate cellular and physiological function in a tissue-specific manner. The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Clock gene mutant animals display impaired glucose and lipid metabolism and are susceptible to diet-induced obesity and metabolic dysfunction, providing strong evidence for the connection between the circadian clock and metabolic homeostasis. Circadian-controlled hepatic metabolism is partially achieved by controlling the expression and/or activity of key metabolic enzymes, transcription factors, signaling molecules, and transporters. Reciprocally, intracellular metabolites modulate the molecular clock activity in response to the energy status. Although still at the early stage, circadian clock dysfunction has been implicated in common chronic liver diseases. Circadian dysregulation of lipid metabolism, detoxification, reactive oxygen species (ROS) production, and cell-cycle control might contribute to the onset and progression of liver steatosis, fibrosis, and even carcinogenesis. In summary, these findings call for a comprehensive study of the function and mechanisms of hepatic circadian clock to gain better understanding of liver physiology and diseases.

  12. Circadian Modulation of Short-Term Memory in "Drosophila"

    Science.gov (United States)

    Lyons, Lisa C.; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term…

  13. Why and how do we model circadian rhythms?

    NARCIS (Netherlands)

    Beersma, DGM

    In our attempts to understand the circadian system, we unavoidably rely on abstractions. Instead of describing the behavior of the circadian system in all its complexity, we try to derive basic features from which we form a global concept on how the system works. Such a basic concept is a model of

  14. Integration of human sleep-wake regulation and circadian rhythmicity

    Science.gov (United States)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.

  15. Biomarkers for circadian rhythm disruption independent of time of day

    NARCIS (Netherlands)

    K.C.G. van Dycke (Kirsten); J.L.A. Pennings (Jeroen L.A.); C.T.M. van Oostrom (Conny); L.W.M. Van Kerkhof (Linda W.M.); H. van Steeg (Harry); G.T.J. van der Horst (Gijsbertus); W. Rodenburg (Wendy)

    2015-01-01

    textabstractFrequent shift work causes disruption of the circadian rhythm and might on the long-term result in increased health risk. Current biomarkers evaluating the presence of circadian rhythm disturbance (CRD), including melatonin, cortisol and body temperature, require 24-hr ("around the

  16. The importance of hormonal circadian rhythms in daily feeding patterns

    NARCIS (Netherlands)

    Boumans, Iris J.M.M.; Boer, de Imke J.M.; Hofstede, Gert Jan; Fleur, la Susanne E.; Bokkers, Eddy

    2017-01-01

    The interaction between hormonal circadian rhythms and feeding behaviour is not well understood. This study aimed to deepen our understanding of mechanisms underlying circadian feeding behaviour in animals, using pigs, Sus scrofa, as a case study. Pigs show an alternans feeding pattern, that is,

  17. Circadian timekeeping is disturbed in rheumatoid arthritis at molecular level.

    Directory of Open Access Journals (Sweden)

    Vesa-Petteri Kouri

    Full Text Available INTRODUCTION: Patients with rheumatoid arthritis (RA have disturbances in the hypothalamic-pituitary-adrenal (HPA axis. These are reflected in altered circadian rhythm of circulating serum cortisol, melatonin and IL-6 levels and in chronic fatigue. We hypothesized that the molecular machinery responsible for the circadian timekeeping is perturbed in RA. The aim of this study was to investigate the expression of circadian clock in RA. METHODS: Gene expression of thirteen clock genes was analyzed in the synovial membrane of RA and control osteoarthritis (OA patients. BMAL1 protein was detected using immunohistochemistry. Cell autonomous clock oscillation was started in RA and OA synovial fibroblasts using serum shock. The effect of pro-inflammatory stimulus on clock gene expression in synovial fibroblasts was studied using IL-6 and TNF-α. RESULTS: Gene expression analysis disclosed disconcerted circadian timekeeping and immunohistochemistry revealed strong cytoplasmic localization of BMAL1 in RA patients. Perturbed circadian timekeeping is at least in part inflammation independent and cell autonomous, because RA synovial fibroblasts display altered circadian expression of several clock components, and perturbed circadian production of IL-6 and IL-1β after clock resetting. However, inflammatory stimulus disturbs the rhythm in cultured fibroblasts. Throughout the experiments ARNTL2 and NPAS2 appeared to be the most affected clock genes in human immune-inflammatory conditions. CONCLUSION: We conclude that the molecular machinery controlling the circadian rhythm is disturbed in RA patients.

  18. Circadian clocks are seeing the systems biology light

    OpenAIRE

    Hayes, Kevin R.; Baggs, Julie E.; Hogenesch, John B

    2005-01-01

    Circadian rhythms are those biological rhythms that have a periodicity of around 24 hours. Recently, the generation of a circadian transcriptional network - compiled from RNA-expression and promoter-element analysis and phase information - has led to a better understanding of the gene-expression patterns that regulate the precise 24-hour clock.

  19. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen

    2003-01-01

    UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...

  20. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  1. Circadian rhythms of hedonic drinking behavior in mice.

    Science.gov (United States)

    Bainier, Claire; Mateo, Maria; Felder-Schmittbuhl, Marie-Paule; Mendoza, Jorge

    2017-05-04

    In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the main circadian clock, synchronized by the light-dark cycle, which generates behavioral rhythms like feeding, drinking and activity. Notwithstanding, the main role of the SCN clock on the control of all circadian rhythms has been questioned due to the presence of clock activity in many brain areas, including those implicated in the regulation of feeding and reward. Moreover, whether circadian rhythms of particular motivated behaviors exist is unknown. Here, we evaluated the spontaneous daily and circadian behavior of consumption of a sweet caloric solution (5-10% sucrose), and the effects of sucrose intake on the expression of clock genes in the mouse brain. Mice showed a daily (in a light-dark cycle) and a circadian (in constant darkness conditions) rhythm in the intake and sucrose preference with a rise for both parameters at night (or subjective night). In addition, we observed changes in the circadian day-night expression of the clock gene Per2 in the SCN, cortex and striatum of animals ingesting sucrose compared to control mice on pure water. Finally, daily rhythms of sucrose intake and preference were abolished in Per2 Brdm1 - and double Per1 -/- Per2 Brdm1 -mutant animals. These data indicate that the expression of circadian rhythms of hedonic feeding behaviors may be controlled by brain circadian clocks and Per gene expression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Altered Circadian Rhythmicity in Patients in the ICU

    NARCIS (Netherlands)

    Gazendam, Joost A. C.; Van Dongen, Hans P. A.; Grant, Devon A.; Freedman, Neil S.; Zwaveling, Jan H.; Schwab, Richard J.

    Background: Patients in the ICU are thought to have abnormal circadian rhythms, but quantitative data are lacking. Methods: To investigate circadian rhythms in the ICU, we studied core body temperatures over a 48-h period in 21 patients (59 11 years of age; eight men and 13 women). Results: The

  3. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  4. Combining Theoretical and Experimental Approaches to Understand the Circadian Clock

    NARCIS (Netherlands)

    Merrow, Martha; Dragovic, Zdravko; Tan, Ying; Meyer, Gundela; Sveric, Kruno; Mason, Moyra; Ricken, Jan; Roenneberg, Till

    2003-01-01

    This review is intended as a summary of our work carried out as part of the German Research Association (DFG) Center Program on Circadian Rhythms. Over the last six years, our approach to understanding circadian systems combined theoretical and experimental tools, and Gonyaulax and Neurospora have

  5. Assignment of circadian function for the Neurospora clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha; Brunner, Michael; Roenneberg, Till

    1999-01-01

    Circadian clocks consist of three elements: entrainment pathways (inputs), the mechanism generating the rhythmicity (oscillator), and the output pathways that control the circadian rhythms. It is difficult to assign molecular clock components to any one of these elements. Experiments show that

  6. Discrepancy between circadian rhythms of inulin and creatinine clearance

    NARCIS (Netherlands)

    van Acker, B. A.; Koomen, G. C.; Koopman, M. G.; Krediet, R. T.; Arisz, L.

    1992-01-01

    To elucidate the disparity between circadian rhythmicity of inulin and creatinine clearance, we simultaneously measured inulin and creatinine clearances every 3 hours during 1 day in 14 normal subjects and in 8 patients with nephrotic syndrome. All patients and normal subjects had a circadian rhythm

  7. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  8. Associations between circadian and stress response cortisol in children

    NARCIS (Netherlands)

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm

  9. Temporal phase relation of circadian neural oscillations as the basis ...

    Indian Academy of Sciences (India)

    ... to its known regulation of seasonal gonadal cycles, the relative position of two circadian neural oscillations may also affect the rate of gonadal development during the attainment of puberty in mice. Moreover, the present study provides an experimental paradigm to test the coincidence model of circadian oscillations.

  10. The emerging roles of lipids in circadian control.

    Science.gov (United States)

    Adamovich, Yaarit; Aviram, Rona; Asher, Gad

    2015-08-01

    Lipids play vital roles in a wide variety of cellular functions. They act as structural components in cell membranes, serve as a major form of energy storage, and function as key signaling molecules. Mounting evidence points towards a tight interplay between lipids and circadian clocks. In mammals, circadian clocks regulate the daily physiology and metabolism, and disruption of circadian rhythmicity is associated with altered lipid homeostasis and pathologies such as fatty liver and obesity. Concomitantly, emerging evidence suggest that lipids are embedded within the core clock circuitry and participate in circadian control. Recent advances in lipidomics methodologies and their application in chronobiology studies have shed new light on the cross talk between circadian clocks and lipid homeostasis. We review herein the latest literature related to the involvement of lipids in circadian clock's function and highlight the contribution of circadian lipidomics studies to our understanding of circadian rhythmicity and lipid homeostasis. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  12. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.

    Science.gov (United States)

    Diamond, Spencer; Jun, Darae; Rubin, Benjamin E; Golden, Susan S

    2015-04-14

    Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.

  13. Circadian plasticity in photoreceptor cells controls visual coding efficiency in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Martin Barth

    Full Text Available In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.

  14. Circadian variation in concentration of anti-Mullerian hormone in regularly menstruating females: relation to age, gonadotrophin and sex steroid levels

    DEFF Research Database (Denmark)

    Bungum, Leif; Jacobsson, Anna-Karin; Rosén, Fredrik

    2011-01-01

    Anti-Müllerian hormone (AMH) is a promising marker of ovarian reserve. The aim of the study is to assess the circadian variation in AMH, and to evaluate its clinical relevance and biological aspects as an effect of age and other endocrine mechanisms involved in the regulation of AMH secretion....

  15. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism

    Science.gov (United States)

    Shostak, Anton

    2017-01-01

    As a response to environmental changes driven by the Earth’s axial rotation, most organisms evolved an internal biological timer—the so called circadian clock—which regulates physiology and behavior in a rhythmic fashion. Emerging evidence suggests an intimate interplay between the circadian clock and another fundamental rhythmic process, the cell cycle. However, the precise mechanisms of this connection are not fully understood. Disruption of circadian rhythms has a profound impact on cell division and cancer development and, vice versa, malignant transformation causes disturbances of the circadian clock. Conventional knowledge attributes tumor suppressor properties to the circadian clock. However, this implication might be context-dependent, since, under certain conditions, the clock can also promote tumorigenesis. Therefore, a better understanding of the molecular links regulating the physiological balance between the two cycles will have potential significance for the treatment of cancer and associated disorders. PMID:28425940

  16. Sex Differences in Circadian Timing Systems: Implications for Disease

    Science.gov (United States)

    Bailey, Matthew; Silver, Rae

    2014-01-01

    Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamicadrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions. PMID:24287074

  17. The circadian clock system in the mammalian retina.

    Science.gov (United States)

    Tosini, Gianluca; Pozdeyev, Nikita; Sakamoto, Katsuhiko; Iuvone, P Michael

    2008-07-01

    Daily rhythms are a ubiquitous feature of living systems. Generally, these rhythms are not just passive consequences of cyclic fluctuations in the environment, but instead originate within the organism. In mammals, including humans, the master pacemaker controlling 24-hour rhythms is localized in the suprachiasmatic nuclei of the hypothalamus. This circadian clock is responsible for the temporal organization of a wide variety of functions, ranging from sleep and food intake, to physiological measures such as body temperature, heart rate and hormone release. The retinal circadian clock was the first extra-SCN circadian oscillator to be discovered in mammals and several studies have now demonstrated that many of the physiological, cellular and molecular rhythms that are present within the retina are under the control of a retinal circadian clock, or more likely a network of hierarchically organized circadian clocks that are present within this tissue. BioEssays 30:624-633, 2008. (c) 2008 Wiley Periodicals, Inc.

  18. The circadian clock and pathology of the ageing brain.

    Science.gov (United States)

    Kondratova, Anna A; Kondratov, Roman V

    2012-03-07

    Ageing leads to a functional deterioration of many brain systems, including the circadian clock--an internal time-keeping system that generates ∼24-hour rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between abnormal circadian clock functions and the severity of neurodegenerative and sleep disorders. Latest data from experiments in model organisms, gene expression studies and clinical trials imply that dysfunctions of the circadian clock contribute to ageing and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of physiological processes such as brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation.

  19. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  20. Circadian Effects on Simple Components of Complex Task Performance

    Science.gov (United States)

    Clegg, Benjamin A.; Wickens, Christopher D.; Vieane, Alex Z.; Gutzwiller, Robert S.; Sebok, Angelia L.

    2015-01-01

    The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on aspects of complex task performance during unexpected automation failures, and subsequent fault management. Participants trained on two tasks: a process control simulation, featuring automated support; and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) session, and the other during a late afternoon (circadian day) session. Small effects of time of day were seen on simple components of task performance, but impacts on more demanding components, such as those that occur following an automation failure, were muted relative to previous studies where circadian rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in compensatory strategies, rather than passively monitoring the automation. The findings and implications are discussed in the context of a model that includes the effects of sleep and fatigue factors.

  1. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

    Science.gov (United States)

    Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2016-04-01

    Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night

    OpenAIRE

    Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.

    2008-01-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; ...

  3. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  4. Circadian rhythms in floral scent emission

    Directory of Open Access Journals (Sweden)

    Myles eFenske

    2016-04-01

    Full Text Available To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the benzenoid/phenylpropanoid (FVBP pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT1 (ODO1, EMISSION OF BENZENOIDS I (EOBI, and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  5. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report.

    Science.gov (United States)

    Morgenthaler, Timothy I; Lee-Chiong, Teofilo; Alessi, Cathy; Friedman, Leah; Aurora, R Nisha; Boehlecke, Brian; Brown, Terry; Chesson, Andrew L; Kapur, Vishesh; Maganti, Rama; Owens, Judith; Pancer, Jeffrey; Swick, Todd J; Zak, Rochelle

    2007-11-01

    FRD in sighted and unsighted patients but there is insufficient evidence to recommend their routine use in the diagnosis of SWD, JLD, ASPD, DSPD, or ISWR (Option). Additionally, actigraphy is useful as an outcome measure in evaluating the response to treatment for CRSDs (Guideline). A range of therapeutic interventions were considered including planned sleep schedules, timed light exposure, timed melatonin doses, hypnotics, stimulants, and alerting agents. Planned or prescribed sleep schedules are indicated in SWD (Standard) and in JLD, DSPD, ASPD, ISWR (excluding elderly-demented/nursing home residents), and FRD (Option). Specifically dosed and timed light exposure is indicated for each of the circadian disorders with variable success (Option). Timed melatonin administration is indicated for JLD (Standard); SWD, DSPD, and FRD in unsighted persons (Guideline); and for ASPD, FRD in sighted individuals, and for ISWR in children with moderate to severe psychomotor retardation (Option). Hypnotic medications may be indicated to promote or improve daytime sleep among night shift workers (Guideline) and to treat jet lag-induced insomnia (Option). Stimulants may be indicated to improve alertness in JLD and SWD (Option) but may have risks that must be weighed prior to use. Modafinil may be indicated to improve alertness during the night shift for patients with SWD (Guideline).

  6. Circadian variation in unexpected postoperative death

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H; Ramsing, T

    1992-01-01

    . This study examined the circadian variation of sudden unexpected death following abdominal surgery between 1985 and 1989 inclusive. Deaths were divided into those occurring during the day (08.00-16.00 hours), evening (16.00-24.00 hours) and night (24.00-08.00 hours). Twenty-three deaths were considered...... deaths occurred at night-time. These results suggest a need for further studies of sleep- and respiration-related effects on postoperative nocturnal cardiac function. The efficacy of monitoring during this apparent high-risk period should be evaluated....

  7. Circadian variation in the pharmacokinetics of verapamil

    DEFF Research Database (Denmark)

    Jespersen, C M; Frederiksen, M; Hansen, J F

    1989-01-01

    Circadian variation in the metabolism of verapamil was investigated in 10 patients with stable angina pectoris during treatment with sustained-release verapamil 360 mg at 08.00 h or 22.0 h. No major difference in exercise parameters was found. During the evening dosage schedule a significantly...... greater bioavailability (AUC) and a prolonged time to peak concentration was found. During the night (24.00 h-06.00 h) the half-life of verapamil was significantly longer than during the day (16.00 h-22.00 h). These differences in pharmacokinetics may be due to reduced hepatic blood flow at night...

  8. Proceso de Cambio Psicoterapéutico: Análisis de Episodios Relevantes en una Terapia Grupal con Pacientes Adictos Therapeutic Change Process: Analysis of Relevant Episodes in a Group Therapy With Addict Patients

    Directory of Open Access Journals (Sweden)

    Nelson Valdés

    2005-11-01

    Full Text Available En el presente artículo se presentan los resultados de una investigación que tuvo como objetivo determinar y describir el tipo de acciones comunicacionales realizadas por terapeutas y pacientes durante las sesiones de una terapia grupal. Para esto se utilizó una metodología orientada al descubrimiento empleando un análisis cualitativo de contenido. En los resultados se incluye tanto la descripción de las acciones identificadas de acuerdo al nivel de análisis, así como los patrones ideales de secuencia de dichos componentes asociados al cambio y propios de esta modalidad terapéutica. Finalmente, los resultados son discutidos considerando los principales antecedentes teóricos y empíricos en materia de investigación en psicoterapia.This article presents the results of a study aimed to determine and describe the type of communicative actions made by therapists and patients during the sessions of a group therapy. A discovery-oriented methodology was applied, conducting qualitative content analysis. Results include the description of the identified actions by levels of analysis, and their ideal sequential patterns, associated to in-session change and particularly to this therapeutic modality. Finally, the results are discussed considering the main theoretical and empirical frameworks in psychotherapy research.

  9. Circadian Biology: Uncoupling Human Body Clocks by Food Timing.

    Science.gov (United States)

    Vetter, Celine; Scheer, Frank A J L

    2017-07-10

    Synchrony of circadian rhythms between tissues/organs appears critical for health. A new study reports that meal timing, a modifiable temporal cue for the circadian system, can selectively uncouple circadian rhythms in metabolic physiology from the central circadian clock in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Therapeutic Nanodevices

    Science.gov (United States)

    Lee, Stephen; Ruegsegger, Mark; Barnes, Philip; Smith, Bryan; Ferrari, Mauro

    Therapeutic nanotechnology offers minimally invasive therapies with high densities of function concentrated in small volumes, features that may reduce patient morbidity and mortality. Unlike other areas of nanotechnology, novel physical properties associated with nanoscale dimensionality are not the raison d'être of therapeutic nanotechnology, whereas the aggregation of multiple biochemical (or comparably precise) functions into controlled nanoarchitectures is. Multifunctionality is a hallmark of emerging nanotherapeutic devices, and multifunctionality can allow nanotherapeutic devices to perform multistep work processes, with each functional component contributing to one or more nanodevice subroutine such that, in aggregate, subroutines sum to a cogent work process. Cannonical nanotherapeutic subroutines include tethering (targeting) to sites of disease, dispensing measured doses of drug (or bioactive compound), detection of residual disease after therapy and communication with an external clinician/operator. Emerging nanotherapeutics thus blur the boundaries between medical devices and traditional pharmaceuticals. Assembly of therapeutic nanodevices generally exploits either (bio)material self-assembly properties or chemoselective bioconjugation techniques, or both. Given the complexity, composition, and the necessity for their tight chemical and structural definition inherent in the nature of nanotherapeutics, their cost of goods (COGs) might exceed that of (already expensive) biologics. Early therapeutic nanodevices will likely be applied to disease states which exhibit significant unmet patient need (cancer and cardiovascular disease), while application to other disease states well-served by conventional therapy may await perfection of nanotherapeutic design and assembly protocols.

  11. Peroxiredoxins are conserved markers of circadian rhythms

    Science.gov (United States)

    Edgar, Rachel S.; Green, Edward W.; Zhao, Yuwei; van Ooijen, Gerben; Olmedo, Maria; Qin, Ximing; Xu, Yao; Pan, Min; Valekunja, Utham K.; Feeney, Kevin A.; Maywood, Elizabeth S.; Hastings, Michael H.; Baliga, Nitin S.; Merrow, Martha; Millar, Andrew J.; Johnson, Carl H.; Kyriacou, Charalambos P.; O’Neill, John S.; Reddy, Akhilesh B.

    2012-01-01

    Summary Cellular life emerged ~3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles due to the Earth’s rotation. The advantage conferred upon organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation-reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterising their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription-translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular time-keeping with redox homeostatic mechanisms following the Great Oxidation Event ~2.5 billion years ago. PMID:22622569

  12. The skeletal muscle circadian clock: current insights

    Directory of Open Access Journals (Sweden)

    Nakao R

    2017-11-01

    Full Text Available Reiko Nakao,1 Takeshi Nikawa,2 Katsutaka Oishi1,3,4 1Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST, Tsukuba, 2Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 3Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, 4Department of Computational and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan Abstract: Skeletal muscle functions in locomotion, postural support, and energy metabolism. The loss of skeletal muscle mass and function leads to diseases such as sarcopenia and metabolic disorders. Inactivity (lack of exercise and an imbalanced diet (increased fat or decreased protein intake are thought to be involved in the prevalence of such pathologies. On the other hand, recent epidemiological studies of humans have suggested that circadian disruption caused by shift work, jet lag, and sleep disorders is associated with obesity and metabolic syndrome. Experimental studies of mice deficient in clock genes have also identified skeletal muscle defects, suggesting a molecular link between circadian clock machinery and skeletal muscle physiology. Furthermore, accumulating evidence about chronotherapy, including chronopharmacology, chrononutrition, and chronoexercise, has indicated that timing is important to optimize medical intervention for various diseases. The present review addresses current understanding of the functional roles of the molecular clock with respect to skeletal muscle and the potential of chronotherapy for diseases associated with skeletal muscle. Keywords: biological rhythm, metabolic syndrome, physical activity, neural signal, chronotherapy

  13. The Genetics of Mammalian Circadian Order and Disorder: Implications for Physiology and Disease

    OpenAIRE

    Takahashi, Joseph S.; Hong, Hee-Kyung; Ko, Caroline H; McDearmon, Erin L.

    2008-01-01

    Circadian cycles affect a variety of physiological processes, and disruptions of normal circadian biology therefore have the potential to influence a range of disease-related pathways. The genetic basis of circadian rhythms is well studied in model organisms and, more recently, studies of the genetic basis of circadian disorders has confirmed the conservation of key players in circadian biology from invertebrates to humans. In addition, important advances have been made in understanding how t...

  14. An overview of sleep and circadian dysfunction in Parkinson's disease.

    Science.gov (United States)

    Mantovani, Susanna; Smith, Simon S; Gordon, Richard; O'Sullivan, John D

    2018-03-01

    Sleep and circadian alterations are amongst the very first symptoms experienced in Parkinson's disease, and sleep alterations are present in the majority of patients with overt clinical manifestation of Parkinson's disease. However, the magnitude of sleep and circadian dysfunction in Parkinson's disease, and its influence on the pathophysiology of Parkinson's disease remains often unclear and a matter of debate. In particular, the confounding influences of dopaminergic therapy on sleep and circadian dysfunction are a major challenge, and need to be more carefully addressed in clinical studies. The scope of this narrative review is to summarise the current knowledge around both sleep and circadian alterations in Parkinson's disease. We provide an overview on the frequency of excessive daytime sleepiness, insomnia, restless legs, obstructive apnea and nocturia in Parkinson's disease, as well as addressing sleep structure, rapid eye movement sleep behaviour disorder and circadian features in Parkinson's disease. Sleep and circadian disorders have been linked to pathological conditions that are often co-morbid in Parkinson's disease, including cognitive decline, memory impairment and neurodegeneration. Therefore, targeting sleep and circadian alterations could be one of the earliest and most promising opportunities to slow disease progression. We hope that this review will contribute to advance the discussion and inform new research efforts to progress our knowledge in this field. © 2018 European Sleep Research Society.

  15. Circadian rhythms accelerate wound healing in female Siberian hamsters.

    Science.gov (United States)

    Cable, Erin J; Onishi, Kenneth G; Prendergast, Brian J

    2017-03-15

    Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are impaired in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3h after light onset (ZT03) or 2h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Evolutionary links between circadian clocks and photoperiodic diapause in insects.

    Science.gov (United States)

    Meuti, Megan E; Denlinger, David L

    2013-07-01

    In this article, we explore links between circadian clocks and the clock involved in photoperiodic regulation of diapause in insects. Classical resonance (Nanda-Hamner) and night interruption (Bünsow) experiments suggest a circadian basis for the diapause response in nearly all insects that have been studied. Neuroanatomical studies reveal physical connections between circadian clock cells and centers controlling the photoperiodic diapause response, and both mutations and knockdown of clock genes with RNA interference (RNAi) point to a connection between the clock genes and photoperiodic induction of diapause. We discuss the challenges of determining whether the clock, as a functioning module, or individual clock genes acting pleiotropically are responsible for the photoperiodic regulation of diapause, and how a stable, central circadian clock could be linked to plastic photoperiodic responses without compromising the clock's essential functions. Although we still lack an understanding of the exact mechanisms whereby insects measure day/night length, continued classical and neuroanatomical approaches, as well as forward and reverse genetic experiments, are highly complementary and should enable us to decipher the diverse ways in which circadian clocks have been involved in the evolution of photoperiodic induction of diapause in insects. The components of circadian clocks vary among insect species, and diapause appears to have evolved independently numerous times, thus, we anticipate that not all photoperiodic clocks of insects will interact with circadian clocks in the same fashion.

  17. Neural Mechanisms of Circadian Regulation of Natural and Drug Reward

    Directory of Open Access Journals (Sweden)

    Lauren M. DePoy

    2017-01-01

    Full Text Available Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.

  18. Sleep, circadian rhythm and body weight: parallel developments.

    Science.gov (United States)

    Westerterp-Plantenga, Margriet S

    2016-11-01

    Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose-insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic-pituitary-adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.

  19. Adverse metabolic and cardiovascular consequences of circadian misalignment.

    Science.gov (United States)

    Scheer, Frank A J L; Hilton, Michael F; Mantzoros, Christos S; Shea, Steven A

    2009-03-17

    There is considerable epidemiological evidence that shift work is associated with increased risk for obesity, diabetes, and cardiovascular disease, perhaps the result of physiologic maladaptation to chronically sleeping and eating at abnormal circadian times. To begin to understand underlying mechanisms, we determined the effects of such misalignment between behavioral cycles (fasting/feeding and sleep/wake cycles) and endogenous circadian cycles on metabolic, autonomic, and endocrine predictors of obesity, diabetes, and cardiovascular risk. Ten adults (5 female) underwent a 10-day laboratory protocol, wherein subjects ate and slept at all phases of the circadian cycle-achieved by scheduling a recurring 28-h "day." Subjects ate 4 isocaloric meals each 28-h "day." For 8 days, plasma leptin, insulin, glucose, and cortisol were measured hourly, urinary catecholamines 2 hourly (totaling approximately 1,000 assays/subject), and blood pressure, heart rate, cardiac vagal modulation, oxygen consumption, respiratory exchange ratio, and polysomnographic sleep daily. Core body temperature was recorded continuously for 10 days to assess circadian phase. Circadian misalignment, when subjects ate and slept approximately 12 h out of phase from their habitual times, systematically decreased leptin (-17%, P sleep efficiency (-20%, P < 0.002). Notably, circadian misalignment caused 3 of 8 subjects (with sufficient available data) to exhibit postprandial glucose responses in the range typical of a prediabetic state. These findings demonstrate the adverse cardiometabolic implications of circadian misalignment, as occurs acutely with jet lag and chronically with shift work.

  20. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  1. Establishment of human cell lines showing circadian rhythms of bioluminescence.

    Science.gov (United States)

    Yoshikawa, Aki; Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Ikeda, Masaaki; Kawashima, Minae; Kato, Nobumasa; Tokunaga, Katsushi; Ebisawa, Takashi

    2008-11-28

    We have established human retinal pigment epithelial cell lines stably expressing the luciferase gene, driven by the human Bmal1 promoter, to obtain human-derived cells that show circadian rhythms of bioluminescence after dexamethasone treatment. The average circadian period of bioluminescence for the obtained clones was 24.07+/-0.48 h. Lithium (10 mM) in the medium significantly lengthened the circadian period of bioluminescence, which is consistent with previous reports, while 2 mM or 5 mM lithium had no effect. This is the first report on the establishment of human-derived cell lines that proliferate infinitely and show circadian rhythms of bioluminescence, and also the first to investigate the effects of low-dose lithium on the circadian rhythms of human-derived cells in vitro. The established cells will be useful for various in vitro studies of human circadian rhythms and for the development of new therapies for human disorders related to circadian rhythm disturbances.

  2. Circadian clock-mediated regulation of blood pressure.

    Science.gov (United States)

    Douma, Lauren G; Gumz, Michelle L

    2017-12-02

    Most bodily functions vary over the course of a 24h day. Circadian rhythms in body temperature, sleep-wake cycles, metabolism, and blood pressure (BP) are just a few examples. These circadian rhythms are controlled by the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks located throughout the body. Light and food cues entrain these clocks to the time of day and this synchronicity contributes to the regulation of a variety of physiological processes with effects on overall health. The kidney, brain, nervous system, vasculature, and heart have been identified through the use of mouse models and clinical trials as peripheral clock regulators of BP. The dysregulation of this circadian pattern of BP, with or without hypertension, is associated with increased risk for cardiovascular disease. The mechanism of this dysregulation is unknown and is a growing area of research. In this review, we highlight research of human and mouse circadian models that has provided insight into the roles of these molecular clocks and their effects on physiological functions. Additional tissue-specific studies of the molecular clock mechanism are needed, as well as clinical studies including more diverse populations (different races, female patients, etc.), which will be critical to fully understand the mechanism of circadian regulation of BP. Understanding how these molecular clocks regulate the circadian rhythm of BP is critical in the treatment of circadian BP dysregulation and hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    Science.gov (United States)

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further in longitudinal studies. Approaches aimed to strengthen

  4. Circadian Role in Daily Pattern of Cardiovascular Risk

    Science.gov (United States)

    Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.

    2004-03-01

    Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.

  5. Association between circadian genes, bipolar disorders and chronotypes.

    Science.gov (United States)

    Etain, B; Jamain, S; Milhiet, V; Lajnef, M; Boudebesse, C; Dumaine, A; Mathieu, F; Gombert, A; Ledudal, K; Gard, S; Kahn, J P; Henry, C; Boland, A; Zelenika, D; Lechner, D; Lathrop, M; Leboyer, M; Bellivier, F

    2014-08-01

    Abnormalities in circadian rhythms play an important role in the pathogenesis of bipolar disorders (BD). Previous genetic studies have reported discrepant results regarding associations between circadian genes and susceptibility to BD. Furthermore, plausible behavioral consequences of at-risk variants remain unclear since there is a paucity of correlates with phenotypic biomarkers such as chronotypes. Here, we combined association studies with a genotype/phenotype correlation in order to determine which circadian genes variants may be associated with the circadian phenotypes observed in patients with BD. First, we compared the allele frequencies of 353 single nucleotide polymorphisms spanning 21 circadian genes in two independent samples of patients with BD and controls. The meta-analysis combining both samples showed a significant association between rs774045 in TIMELESS (OR = 1.49 95%CI[1.18-1.88]; p = 0.0008) and rs782931 in RORA (OR = 1.31 95%CI[1.12-1.54]; p = 0.0006) and BD. Then we used a "reverse phenotyping approach" to look for association between these two polymorphisms and circadian phenotypes in a subsample of patients and controls. We found that rs774045 was associated with eveningness (p = 0.04) and languid circadian type (p = 0.01), whereas rs782931 was associated with rigid circadian type (p = 0.01). Altogether, these findings suggest that these variants in the TIMELESS and RORA genes may confer susceptibility to BD and impact on circadian phenotypes in carriers who thus had lower ability to properly adapt to external cues.

  6. Pharmacology of Myopia and Potential Role for Intrinsic Retinal Circadian Rhythms

    Science.gov (United States)

    Stone, Richard A.; Pardue, Machelle T.; Iuvone, P. Michael; Khurana, Tejvir S.

    2013-01-01

    Despite the high prevalence and public health impact of refractive errors, the mechanisms responsible for ametropias are poorly understood. Much evidence now supports the concept that the retina is central to the mechanism(s) regulating emmetropization and underlying refractive errors. Using a variety of pharmacologic methods and well-defined experimental eye growth models in laboratory animals, many retinal neurotransmitters and neuromodulators have been implicated in this process. Nonetheless, an accepted framework for understanding the molecular and/or cellular pathways that govern postnatal eye development is lacking. Here, we review two extensively studied signaling pathways whose general roles in refractive development are supported by both experimental and clinical data: acetylcholine signaling through muscarinic and/or nicotinic acetylcholine receptors and retinal dopamine pharmacology. The muscarinic acetylcholine receptor antagonist atropine was first studied as an anti-myopia drug some two centuries ago, and much subsequent work has continued to connect muscarinic receptors to eye growth regulation. Recent research implicates a potential role of nicotinic acetycholine receptors; and the refractive effects in population surveys of passive exposure to cigarette smoke, of which nicotine is a constituent, support clinical relevance. Reviewed here, many puzzling results inhibit formulating a mechanistic framework that explains acetylcholine’s role in refractive development. How cholinergic receptor mechanisms might be used to develop acceptable approaches to normalize refractive development remains a challenge. Retinal dopamine signaling not only has a putative role in refractive development, its upregulation by light comprises an important component of the retinal clock network and contributes to the regulation of retinal circadian physiology. During postnatal development, the ocular dimensions undergo circadian and/or diurnal fluctuations in magnitude

  7. [Therapeutic management of neurodermatitis atopica].

    Science.gov (United States)

    Kägi, M K

    1998-08-01

    The therapy of atopic dermatitis remains a challenge. The success of any therapeutic concept is based on a broad and early diagnostic approach which allows to rule out relevant provocation factors and allergens. During remission periods the regular use of a topical basic therapy consisting of drug-free emolients is recommended. Topical corticosteroids as well as systemic or local antimicrobial therapy and antihistamines are essential during periods of acute exacerbations. Although during the last years a great number of new therapeutic approaches have been published, data of most of these therapeutic modalities are not sufficient to allow an unrestricted use in all patients with atopic dermatitis.

  8. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  9. Organization of Circadian Behavior Relies on Glycinergic Transmission

    Directory of Open Access Journals (Sweden)

    Lia Frenkel

    2017-04-01

    Full Text Available The small ventral lateral neurons (sLNvs constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF, coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network.

  10. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.

    Science.gov (United States)

    Peek, Clara Bien; Affinati, Alison H; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C; Bacsik, David J; Gius, David; Newgard, Christopher B; Goetzman, Eric; Chandel, Navdeep S; Denu, John M; Mrksich, Milan; Bass, Joseph

    2013-11-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.

  11. Circadian malfunctions in depression - neurobiological and psychosocial approaches

    National Research Council Canada - National Science Library

    Nechita, Florina; Pîrlog, Mihail Cristian; ChiriŢă, Anca Livia

    2015-01-01

    Depression leads to disturbances in physiological rhythms, which result in disturbances in circadian sleep-wake cycles, hormonal secretion patterns and fluctuations in mood, all of which can be objectively measured...

  12. Modulation of circadian clocks by nutrients and food factors.

    Science.gov (United States)

    Oike, Hideaki

    2017-05-01

    Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.

  13. Metabolic Compensation and Circadian Resilience in Prokaryotic Cyanobacteria

    Science.gov (United States)

    Johnson, Carl Hirschie; Egli, Martin

    2014-01-01

    For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value. PMID:24905782

  14. Sensory Conflict Disrupts Activity of the Drosophila Circadian Network

    Directory of Open Access Journals (Sweden)

    Ross E.F. Harper

    2016-11-01

    Full Text Available Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits.

  15. Nuclear receptors linking circadian rhythms and cardiometabolic control.

    Science.gov (United States)

    Duez, Hélène; Staels, Bart

    2010-08-01

    Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep (fasting)/wake (feeding) cycles, and metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shift work, for instance, increases the risk to develop metabolic abnormalities resembling the metabolic syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie, Rev-erbalpha, RORalpha, and peroxisome proliferation-activated receptors) are subjected to circadian variations and are integral components of molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window.

  16. Physiology of the circadian system in animals and humans.

    Science.gov (United States)

    Murphy, P J; Campbell, S S

    1996-01-01

    Virtually all organisms have developed an internal timing system capable of reacting to and anticipating environmental stimuli with a program of appropriately timed metabolic, physiologic, and behavioral events. The predominant biological rhythms coincide with the geophysical cycle of day and night-the circadian rhythms. The suprachiasmatic nuclei comprise the primary pace-maker in mammals, exhibiting the properties fundamental to a rhythm-generating structure. This article summarizes recent research that has elucidated mechanisms of signal transduction within the circadian system. The roles of various neurochemicals and hormones in transmitting the circadian timing signal are described. Properties of the circadian system, including photic and nonphotic entrainment, phase response curves, masking, and the intrinsic variability in the system are discussed.

  17. Probing the Drosophila Circadian System with Enhancer Detectors

    National Research Council Canada - National Science Library

    Cassone, Vincent

    1998-01-01

    The overall goals of this project are to: (1) identify candidate clock genes by analyzing the spatial expression patterns and circadian activity rhythm phenotypes of enhancer detector P-element insertion lines and (2...

  18. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  19. Commentary: Circadian rhythm in the pink–orange bread mould ...

    Indian Academy of Sciences (India)

    2007-07-27

    Jul 27, 2007 ... Home; Journals; Journal of Biosciences; Volume 32; Issue 6. Commentary: Circadian rhythm in the pink–orange bread mould Neurospora crassa: for what? Ramesh Maheshwari. Volume 32 Issue 6 September 2007 pp 1053-1058 ...

  20. Thermoregulation is impaired in an environment without circadian time cues

    Science.gov (United States)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  1. Spectral sensitivity of the circadian system

    Science.gov (United States)

    Figueiro, Mariana G.; Bullough, John D.; Rea, Mark S.

    2004-01-01

    Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer"s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.

  2. Circadian variation in defibrillation energy requirements.

    Science.gov (United States)

    Venditti, F J; John, R M; Hull, M; Tofler, G H; Shahian, D M; Martin, D T

    1996-10-01

    Reports have demonstrated a circadian variation in the incidence of acute myocardial infarction, ventricular arrhythmias, and sudden cardiac death. We tested the hypothesis that a similar circadian variation exists for defibrillation energy requirements in humans. We reviewed the time of defibrillation threshold (DFT) measurements in 134 patients with implantable cardioverter-defibrillators (ICDs) who underwent 345 DFT measurements. The DFT was determined in 130 patients at implantation, in 121 at a 2 months, and in 94 at 6 months. All patients had nonthoracotomy systems. The morning DFT (8 AM to 12 noon) was 15.1 +/- 1.2 J compared with 13.1 +/- 0.9 J in the midafternoon (12 noon to 4 PM) and 13.0 +/- 0.7 J in the late afternoon (4 to 8 PM), P < .02. In a separate group of 930 patients implanted with an ICD system with date and time stamps for each therapy, we reviewed 1238 episodes of ventricular tachyarrhythmias treated with shock therapy. To corroborate the hypothesis that energy requirements for arrhythmia termination vary during the course of the day, we plotted the failed first shock frequency for all episodes per hour. There was a significant peak in failed first shocks in the morning compared with other time intervals (P = .02). There is a morning peak in DFT and a corresponding morning peak in failed first shock frequency. This morning peak resembles the peaks seen in other cardiac events, specifically sudden cardiac death. These findings have important implications for appropriate ICD function, particularly in patients with marginal DFTs.

  3. Development of a circadian light source

    Science.gov (United States)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  4. Genetics and Neurobiology of Circadian Clocks in Mammals

    Science.gov (United States)

    Park, Junghea; Lee, Choogon; Takahashi, Joseph S.

    2013-01-01

    In animals circadian behavior can be analyzed as an integrated system - beginning with genes leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a “core” set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2 and CK1ε). Another dozen candidate genes have been identified and play additional roles in the circadian gene network such as the feedback loop involving Rev-erbα. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here we describe a new short period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 gene. We also describe a long period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3 a component of the SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss-of-function in FBXL3 which interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and

  5. Circadian Disruption, Mammographic Density and Risk of Breast Cancer

    OpenAIRE

    Wegrzyn, Lani

    2016-01-01

    Humans are synchronized to the 24-hour day by the light-dark cycle of the environment. Through alteration of the suprachiasmatic nucleus (SCN), the brain’s circadian pacemaker, exposure to light at night (LAN) influences the functions in the body that operate with circadian regularity, including the endocrine, immune and digestive systems. The SCN also signals to the pineal gland to modulate production of melatonin, a hormone that has established antimitotic and antiproliferative properties, ...

  6. Circadian regulation of slow waves in human sleep: Topographical aspects

    Science.gov (United States)

    Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan

    2015-01-01

    Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  7. Circadian clock characteristics are altered in human thyroid malignant nodules.

    Science.gov (United States)

    Mannic, Tiphaine; Meyer, Patrick; Triponez, Frederic; Pusztaszeri, Marc; Le Martelot, Gwendal; Mariani, Olivia; Schmitter, Daniel; Sage, Daniel; Philippe, Jacques; Dibner, Charna

    2013-11-01

    The circadian clock represents the body's molecular time-keeping system. Recent findings revealed strong changes of clock gene expression in various types of human cancers. Due to emerging evidence on the connection between the circadian oscillator, cell cycle, and oncogenic transformation, we aimed to characterize the circadian clockwork in human benign and malignant thyroid nodules. Clock transcript levels were assessed by quantitative RT-PCR in thyroid tissues. To provide molecular characteristics of human thyroid clockwork, primary thyrocytes established from normal or nodular thyroid tissue biopsies were subjected to in vitro synchronization with subsequent clock gene expression analysis by circadian bioluminescence reporter assay and by quantitative RT-PCR. The expression levels of the Bmal1 were up-regulated in tissue samples of follicular thyroid carcinoma (FTC), and in papillary thyroid carcinoma (PTC), as compared with normal thyroid and benign nodules, whereas Cry2 was down-regulated in FTC and PTC. Human thyrocytes derived from normal thyroid tissue exhibited high-amplitude circadian oscillations of Bmal1-luciferase reporter expression and endogenous clock transcripts. Thyrocytes established from FTC and PTC exhibited clock transcript oscillations similar to those of normal thyroid tissue and benign nodules (except for Per2 altered in PTC), whereas cells derived from poorly differentiated thyroid carcinoma exhibited altered circadian oscillations. This is the first study demonstrating a molecular makeup of the human thyroid circadian clock. Characterization of the thyroid clock machinery alterations upon thyroid nodule malignant transformation contributes to understanding the connections between circadian clocks and oncogenic transformation. Moreover, it might help in improving the thyroid nodule preoperative diagnostics.

  8. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    OpenAIRE

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.; Breton, Ghislain

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its...

  9. Circadian rhythms and gene expression during mouse molar tooth development.

    Science.gov (United States)

    Nirvani, Minou; Khuu, Cuong; Utheim, Tor Paaske; Hollingen, Henriette Stavik; Amundsen, Simon Furre; Sand, Lars Peter; Sehic, Amer

    2017-03-01

    Incremental markings in dental enamel suggest that the circadian clock may influence the molecular underpinnings orchestrating enamel formation. The aim of this study was to investigate whether the genes and microRNAs (miRNAs) oscillate in a circadian pattern during tooth and enamel development. Comparative gene and miRNA expression profiling of the first mandibular molar tooth germ isolated at different time-points during the light and night period was performed using microarrays and validated using real-time RT-PCR. Bioinformatic analysis was carried out using Ingenuity Pathway Analysis (IPA), and TargetScan software was used in order to identify computationally predicted miRNA-mRNA target relationships. In total, 439 genes and 32 miRNAs exhibited significantly different (p tooth germs. Genes involved in enamel formation, i.e. Amelx, Ambn, Amtn, and Odam, oscillated in a circadian pattern. Furthermore, the circadian clock genes, in particular Clock and Bmal1, oscillated in mouse molar tooth germ during 24-h intervals. The expression of Clock and Bmal1 was inversely correlated with the expression of miR-182 and miR-141, respectively. MiRNAs, including miR-182 and miR-141, are involved in the control of peripheral circadian rhythms in the developing tooth by regulating the expression of genes coding for circadian transcription factors such as CLOCK and BMAL1. Regulation of circadian rhythms may be important for enamel phenotype, and the morphology of dental enamel may vary between individuals due to differences in circadian profiles.

  10. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  11. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis.

    Science.gov (United States)

    Cheng, Bo; Anea, Ciprian B; Yao, Lin; Chen, Feng; Patel, Vijay; Merloiu, Ana; Pati, Paramita; Caldwell, R William; Fulton, David J; Rudic, R Daniel

    2011-10-11

    The suprachiasmatic nucleus of the brain is the circadian center, relaying rhythmic environmental and behavioral information to peripheral tissues to control circadian physiology. As such, central clock dysfunction can alter systemic homeostasis to consequently impair peripheral physiology in a manner that is secondary to circadian malfunction. To determine the impact of circadian clock function in organ transplantation and dissect the influence of intrinsic tissue clocks versus extrinsic clocks, we implemented a blood vessel grafting approach to surgically assemble a chimeric mouse that was part wild-type (WT) and part circadian clock mutant. Arterial isografts from donor WT mice that had been anastamosed to common carotid arteries of recipient WT mice (WT:WT) exhibited no pathology in this syngeneic transplant strategy. Similarly, when WT grafts were anastamosed to mice with disrupted circadian clocks, the structural features of the WT grafts immersed in the milieu of circadian malfunction were normal and absent of lesions, comparable to WT:WT grafts. In contrast, aortic grafts from Bmal1 knockout (KO) or Period-2,3 double-KO mice transplanted into littermate control WT mice developed robust arteriosclerotic disease. These lesions observed in donor grafts of Bmal1-KO were associated with up-regulation in T-cell receptors, macrophages, and infiltrating cells in the vascular grafts, but were independent of hemodynamics and B and T cell-mediated immunity. These data demonstrate the significance of intrinsic tissue clocks as an autonomous influence in experimental models of arteriosclerotic disease, which may have implications with regard to the influence of circadian clock function in organ transplantation.

  12. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  13. Circadian rhythms and clocks in adipose tissues: current insights

    Directory of Open Access Journals (Sweden)

    Kiehn JT

    2017-04-01

    Full Text Available Jana-Thabea Kiehn,* Christiane E Koch,* Marina Walter, Alexandra Brod, Henrik Oster Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany *These authors contributed equally to this work Abstract: Endogenous circadian timekeepers are found in most cells and organs of the body, including the different types of adipose tissues. This clock network orchestrates 24-hour rhythms of physiology and behavior to adapt the organism to daily recurring changes in the environment. Energy intake and expenditure as well as adipose physiology are under circadian control and, therefore, energy homeostasis and circadian clock function are closely linked. In this review, we summarize the current knowledge about the regulation and targets of adipocyte circadian clocks and how circadian rhythm disruption affects energy homeostasis and adipose tissue function. We provide a more detailed overview of metabolic phenotypes of different mouse models of circadian clock dysfunction and discuss the implications of (adipose clock disruption on adipocyte–brain cross talk and metabolic homeostasis. Keywords: food intake, metaflammation, clock genes, adipocyte–brain cross talk, adipokines

  14. Circadian gating of neuronal functionality: a basis for iterative metaplasticity

    Directory of Open Access Journals (Sweden)

    Rajashekar eIyer

    2014-09-01

    Full Text Available Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN, the central circadian (~24-h clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN’s endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-hour iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP. The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory.

  15. Circadian rhythms have broad implications for understanding brain and behavior.

    Science.gov (United States)

    Silver, Rae; Kriegsfeld, Lance J

    2014-06-01

    Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific 'circadian transcriptomes'. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain's master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Metabolism and circadian rhythms--implications for obesity.

    Science.gov (United States)

    Froy, Oren

    2010-02-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Human homeostatic systems have adapted to daily changes in light and dark in a way that the body anticipates the sleep and activity periods. Mammals have developed an endogenous circadian clock located in the suprachiasmatic nuclei of the anterior hypothalamus that responds to the environmental light-dark cycle. Similar clocks have been found in peripheral tissues, such as the liver, intestine, and adipose tissue, regulating cellular and physiological functions. The circadian clock has been reported to regulate metabolism and energy homeostasis in the liver and other peripheral tissues. This is achieved by mediating the expression and/or activity of certain metabolic enzymes and transport systems. In return, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. In addition, the core clock mechanism has been shown to be linked with lipogenic and adipogenic pathways. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence for the relationship between the circadian clock and metabolic homeostasis. In addition, clinical studies in shift workers and obese patients accentuate the link between the circadian clock and metabolism. This review will focus on the interconnection between the circadian clock and metabolism, with implications for obesity and how the circadian clock is influenced by hormones, nutrients, and timed meals.

  17. Genetic analysis of Drosophila circadian behavior in seminatural conditions.

    Science.gov (United States)

    Green, Edward W; O'Callaghan, Emma K; Pegoraro, Mirko; Armstrong, J Douglas; Costa, Rodolfo; Kyriacou, Charalambos P

    2015-01-01

    The study of circadian behavior in model organisms is almost exclusively confined to the laboratory, where rhythmic phenotypes are studied under highly simplified conditions such as constant darkness or rectangular light-dark cycles. Environmental cycles in nature are far more complex, and recent work in rodents and flies has revealed that when placed in natural/seminatural situations, circadian behavior shows unexpected features that are not consistent with laboratory observations. In addition, the recent observations of clockless mutants, both in terms of their circadian behavior and their Darwinian fitness, challenge some of the traditional beliefs derived from laboratory studies about what constitutes an adaptive circadian phenotype. Here, we briefly summarize the results of these newer studies and then describe how Drosophila behavior can be studied in the wild, pointing out solutions to some of the technical problems associated with extending locomotor monitoring to this unpredictable environment. We also briefly describe how to generate sophisticated simulations of natural light and temperature cycles that can be used to successfully mimic the fly's natural circadian behavior. We further clarify some misconceptions that have been raised in recent studies of natural fly behavior and show how these can be overcome with appropriate methodology. Finally, we describe some recent technical developments that will enhance the naturalistic study of fly circadian behavior. © 2015 Elsevier Inc. All rights reserved.

  18. Glucocorticoids play a key role in circadian cell cycle rhythms.

    Directory of Open Access Journals (Sweden)

    Thomas Dickmeis

    2007-04-01

    Full Text Available Clock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system. Previously, we have demonstrated that in zebrafish, the circadian clock has the capacity to generate daily rhythms of S phase by a cell-autonomous mechanism in vitro. Here, by studying a panel of zebrafish mutants, we reveal that the pituitary-adrenal axis also plays an essential role in establishing these rhythms in the whole animal. Mutants with a reduction or a complete absence of corticotrope pituitary cells show attenuated cell-proliferation rhythms, whereas expression of circadian clock genes is not affected. We show that the corticotrope deficiency is associated with reduced cortisol levels, implicating glucocorticoids as a component of a systemic signaling pathway required for circadian cell cycle rhythmicity. Strikingly, high-amplitude rhythms can be rescued by exposing mutant larvae to a tonic concentration of a glucocorticoid agonist. Our work suggests that cell-autonomous clock mechanisms are not sufficient to establish circadian cell cycle rhythms at the whole-animal level. Instead, they act in concert with a systemic signaling environment of which glucocorticoids are an essential part.

  19. Circadian neurons in the lateral habenula: Clocking motivated behaviors.

    Science.gov (United States)

    Mendoza, Jorge

    2017-11-01

    The main circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), however, central timing mechanisms are also present in other brain structures beyond the SCN. The lateral habenula (LHb), known for its important role in the regulation of the monoaminergic system, contains such a circadian clock whose molecular and cellular mechanisms as well as functional role are not well known. However, since monoaminergic systems show circadian activity, it is possible that the LHb-clock's role is to modulate the rhythmic activity of the dopamine, serotonin and norephinephrine systems, and associated behaviors. Moreover, the LHb is involved in different pathological states such as depression, addiction and schizophrenia, states in which sleep and circadian alterations have been reported. Thus, perturbations of circadian activity in the LHb might, in part, be a cause of these rhythmic alterations in psychiatric ailments. In this review the current state of the LHb clock and its possible implications in the control of monoaminergic systems rhythms, motivated behaviors (e.g., feeding, drug intake) and depression (with circadian disruptions and altered motivation) will be discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Circadian rhythms in cognitive performance: implications for neuropsychological assessment

    Directory of Open Access Journals (Sweden)

    Valdez P

    2012-12-01

    Full Text Available Pablo Valdez, Candelaria Ramírez, Aída GarcíaLaboratory of Psychophysiology, School of Psychology, University of Nuevo León, Monterrey, Nuevo León, MéxicoAbstract: Circadian variations have been found in human performance, including the efficiency to execute many tasks, such as sensory, motor, reaction time, time estimation, memory, verbal, arithmetic calculations, and simulated driving tasks. Performance increases during the day and decreases during the night. Circadian rhythms have been found in three basic neuropsychological processes (attention, working memory, and executive functions, which may explain oscillations in the performance of many tasks. The time course of circadian rhythms in cognitive performance may be modified significantly in patients with brain disorders, due to chronotype, age, alterations of the circadian rhythm, sleep deprivation, type of disorder, and medication. This review analyzes the recent results on circadian rhythms in cognitive performance, as well as the implications of these rhythms for the neuropsychological assessment of patients with brain disorders such as traumatic head injury, stroke, dementia, developmental disorders, and psychiatric disorders.Keywords: human circadian rhythms, cognitive performance, neuropsychological assessment, attention, working memory, executive functions

  1. Enhancing circadian clock function in cancer cells inhibits tumor growth.

    Science.gov (United States)

    Kiessling, Silke; Beaulieu-Laroche, Lou; Blum, Ian D; Landgraf, Dominic; Welsh, David K; Storch, Kai-Florian; Labrecque, Nathalie; Cermakian, Nicolas

    2017-02-14

    Circadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock. We found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events. Here we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.

  2. Optimal schedules of light exposure for rapidly correcting circadian misalignment.

    Directory of Open Access Journals (Sweden)

    Kirill Serkh

    2014-04-01

    Full Text Available Jet lag arises from a misalignment of circadian biological timing with the timing of human activity, and is caused by rapid transmeridian travel. Jet lag's symptoms, such as depressed cognitive alertness, also arise from work and social schedules misaligned with the timing of the circadian clock. Using experimentally validated mathematical models, we develop a new methodology to find mathematically optimal schedules of light exposure and avoidance for rapidly re-entraining the human circadian system. In simulations, our schedules are found to significantly outperform other recently proposed schedules. Moreover, our schedules appear to be significantly more robust to both noise in light and to inter-individual variations in endogenous circadian period than other proposed schedules. By comparing the optimal schedules for thousands of different situations, and by using general mathematical arguments, we are also able to translate our findings into general principles of optimal circadian re-entrainment. These principles include: 1 a class of schedules where circadian amplitude is only slightly perturbed, optimal for dim light and for small shifts 2 another class of schedules where shifting occurs along the shortest path in phase-space, optimal for bright light and for large shifts 3 the determination that short light pulses are less effective than sustained light if the goal is to re-entrain quickly, and 4 the determination that length of daytime should be significantly shorter when delaying the clock than when advancing it.

  3. Circadian rhythms and depression: human psychopathology and animal models.

    Science.gov (United States)

    Kronfeld-Schor, Noga; Einat, Haim

    2012-01-01

    Most organisms (including humans) developed daily rhythms in almost every aspect of their body. It is not surprising that rhythms are also related to affect in health and disease. In the present review we present data that demonstrate the evidence for significant interactions between circadian rhythms and affect from both human studies and animal models research. A number of lines of evidence obtained from human and from animal models research clearly demonstrate relationships between depression and circadian rhythms including (1) daily patterns of depression; (2) seasonal affective disorder; (3) connections between circadian clock genes and depression; (4) relationship between sleep disorders and depression; (5) the antidepressant effect of sleep deprivation; (6) the antidepressant effect of bright light exposure; and (7) the effects of antidepressant drugs on sleep and circadian rhythms. The integration of data suggests that the relationships between the circadian system and depression are well established but the underlying biology of the interactions is far from being understood. We suggest that an important factor hindering research into the underlying mechanisms is the lack of good animal models and we propose that additional efforts in that area should be made. One step in that direction could be the attempt to develop models utilizing diurnal animals which might have a better homology to humans with regard to their circadian rhythms. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The Circadian Clock in Cancer Development and Therapy

    Science.gov (United States)

    Fu, Loning; Kettner, Nicole M.

    2014-01-01

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600

  5. New Prophylactic and Therapeutic Strategies for Spinal Cord Injury.

    Science.gov (United States)

    Park, Sookyoung; Park, Kanghui; Lee, Youngjeon; Chang, Kyu-Tae; Hong, Yonggeun

    2013-03-01

    Melatonin production by the pineal gland in the vertebrate brain has attracted much scientific attention. Pineal melatonin is regulated by photoperiodicity, whereas circadian secretion of melatonin produced in the gastrointestinal tract is regulated by food intake. Thus, the circadian rhythm of pineal melatonin depends upon whether a species is diurnal or nocturnal. Spinal cord injury (SCI) involves damage to the spinal cord caused by trauma or disease that results in compromise or loss of body function. Melatonin is the most efficient and commonly used pharmacological antioxidant treatment for SCI. Melatonin is an indolamine secreted by the pineal gland during the dark phase of the circadian cycle. Neurorehabilitation is a complex medical process that focuses on improving function and repairing damaged connections in the brain and nervous system following injury. Physical activity associated with an active lifestyle reduces the risk of obesity, cardiovascular disease, type 2 diabetes, osteoporosis, and depression and protects against neurological conditions, including Parkinson's disease, Alzheimer's disease, and ischemic stroke. Physical activity has been shown to increase the gene expression of several brain neurotrophins (brain-derived neurotrophic factor [BDNF], nerve growth factor, and galanin) and the production of mitochondrial uncoupling protein 2, which promotes neuronal survival, differentiation, and growth. In summary, melatonin is a neural protectant, and when combined with therapeutic exercise, the hormone prevents the progression of secondary neuronal degeneration in SCI. The present review briefly describes the pathophysiological mechanisms underlying SCI, focusing on therapeutic targets and combined melatonin and exercise therapy, which can attenuate secondary injury mechanisms with minimal side effects.

  6. Self-sustained circadian rhythm in cultured human mononuclear cells isolated from peripheral blood.

    Science.gov (United States)

    Ebisawa, Takashi; Numazawa, Kahori; Shimada, Hiroko; Izutsu, Hiroyuki; Sasaki, Tsukasa; Kato, Nobumasa; Tokunaga, Katsushi; Mori, Akio; Honma, Ken-ichi; Honma, Sato; Shibata, Shigenobu

    2010-02-01

    Disturbed circadian rhythmicity is associated with human diseases such as sleep and mood disorders. However, study of human endogenous circadian rhythm is laborious and time-consuming, which hampers the elucidation of diseases. It has been reported that peripheral tissues exhibit circadian rhythmicity as the suprachiasmatic nucleus-the center of the biological clock. We tried to study human circadian rhythm using cultured peripheral blood mononuclear cells (PBMCs) obtained from a single collection of venous blood. Activated human PBMCs showed self-sustained circadian rhythm of clock gene expression, which indicates that they are useful for investigating human endogenous circadian rhythm.

  7. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing.

    Science.gov (United States)

    Phillips, Andrew J K; Clerx, William M; O'Brien, Conor S; Sano, Akane; Barger, Laura K; Picard, Rosalind W; Lockley, Steven W; Klerman, Elizabeth B; Czeisler, Charles A

    2017-06-12

    The association of irregular sleep schedules with circadian timing and academic performance has not been systematically examined. We studied 61 undergraduates for 30 days using sleep diaries, and quantified sleep regularity using a novel metric, the sleep regularity index (SRI). In the most and least regular quintiles, circadian phase and light exposure were assessed using salivary dim-light melatonin onset (DLMO) and wrist-worn photometry, respectively. DLMO occurred later (00:08 ± 1:54 vs. 21:32 ± 1:48; p sleep propensity rhythm peaked later (06:33 ± 0:19 vs. 04:45 ± 0:11; p academic performance and SRI was observed. These findings show that irregular sleep and light exposure patterns in college students are associated with delayed circadian rhythms and lower academic performance. Moreover, the modeling results reveal that light-based interventions may be therapeutically effective in improving sleep regularity in this population.

  8. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  9. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging

    Directory of Open Access Journals (Sweden)

    Alexander J. Stankiewicz

    2017-10-01

    Full Text Available Chronic high caloric intake (HCI is a risk factor for multiple major human disorders, from diabetes to neurodegeneration. Mounting evidence suggests a significant contribution of circadian misalignment and sleep alterations to this phenomenon. An inverse temporal relationship between sleep, activity, food intake, and clock mechanisms in nocturnal and diurnal animals suggests that a search for effective therapeutic approaches can benefit from the use of diurnal animal models. Here, we show that, similar to normal aging, HCI leads to the reduction in daily amplitude of expression for core clock genes, a decline in sleep duration, an increase in scoliosis, and anxiety-like behavior. A remarkable decline in adult neurogenesis in 1-year old HCI animals, amounting to only 21% of that in age-matched Control, exceeds age-dependent decline observed in normal 3-year old zebrafish. This is associated with misalignment or reduced amplitude of daily patterns for principal cell cycle regulators, cyclins A and B, and p20, in brain tissue. Together, these data establish HCI in zebrafish as a model for metabolically induced premature aging of sleep, circadian functions, and adult neurogenesis, allowing for a high throughput approach to mechanistic studies and drug trials in a diurnal vertebrate.

  10. The role of kisspeptin and RFRP in the circadian control of female reproduction.

    Science.gov (United States)

    Beymer, Matthew; Henningsen, Jo; Bahougne, Thibault; Simonneaux, Valérie

    2016-12-15

    In female mammals, reproduction shows ovarian and daily rhythms ensuring that the timing of the greatest fertility coincides with maximal activity and arousal. The ovarian cycle, which lasts from a few days to a few weeks, depends on the rhythm of follicle maturation and ovarian hormone production, whereas the daily cycle depends on a network of circadian clocks of which the main one is located in the suprachiasmatic nuclei (SCN). In the last ten years, major progress has been made in the understanding of the neuronal mechanisms governing mammalian reproduction with the finding that two hypothalamic Arg-Phe-amide peptides, kisspeptin (Kp) and RFRP, regulate GnRH neurons. In this review we discuss the pivotal role of Kp and RFRP neurons at the interface between the SCN clock signal and GnRH neurons to properly time gonadotropin-induced ovulation. We also report recent findings indicating that these neurons may be part of the multi-oscillatory circadian system that times female fertility. Finally, we will discuss recent investigations indicating a role, and putative therapeutic use, of these neuropeptides in human reproduction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Phase advancing the human circadian clock with blue-enriched polychromatic light.

    Science.gov (United States)

    Smith, Mark R; Revell, Victoria L; Eastman, Charmane I

    2009-03-01

    Previous studies have shown that the human circadian system is maximally sensitive to short-wavelength (blue) light. Whether this sensitivity can be utilized to increase the size of phase shifts using light boxes and protocols designed for practical settings is not known. We assessed whether bright polychromatic lamps enriched in the short-wavelength portion of the visible light spectrum could produce larger phase advances than standard bright white lamps. Twenty-two healthy young adults received either a bright white or bright blue-enriched 2-h phase advancing light pulse upon awakening on each of four treatment days. On the first treatment day the light pulse began 8h after the dim light melatonin onset (DLMO), on average about 2h before baseline wake time. On each subsequent day, light treatment began 1h earlier than the previous day, and the sleep schedule was also advanced. Phase advances of the DLMO for the blue-enriched (92+/-78 min, n=12) and white groups (76+/-45 min, n=10) were not significantly different. Bright blue-enriched polychromatic light is no more effective than standard bright light therapy for phase advancing circadian rhythms at commonly used therapeutic light levels.

  12. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging.

    Science.gov (United States)

    Stankiewicz, Alexander J; McGowan, Erin M; Yu, Lili; Zhdanova, Irina V

    2017-10-26

    Chronic high caloric intake (HCI) is a risk factor for multiple major human disorders, from diabetes to neurodegeneration. Mounting evidence suggests a significant contribution of circadian misalignment and sleep alterations to this phenomenon. An inverse temporal relationship between sleep, activity, food intake, and clock mechanisms in nocturnal and diurnal animals suggests that a search for effective therapeutic approaches can benefit from the use of diurnal animal models. Here, we show that, similar to normal aging, HCI leads to the reduction in daily amplitude of expression for core clock genes, a decline in sleep duration, an increase in scoliosis, and anxiety-like behavior. A remarkable decline in adult neurogenesis in 1-year old HCI animals, amounting to only 21% of that in age-matched Control, exceeds age-dependent decline observed in normal 3-year old zebrafish. This is associated with misalignment or reduced amplitude of daily patterns for principal cell cycle regulators, cyclins A and B, and p20, in brain tissue. Together, these data establish HCI in zebrafish as a model for metabolically induced premature aging of sleep, circadian functions, and adult neurogenesis, allowing for a high throughput approach to mechanistic studies and drug trials in a diurnal vertebrate.

  13. Ocular input for human melatonin regulation: relevance to breast cancer

    Science.gov (United States)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  14. Sleep and circadian rhythms in children and adolescents: relevance for athletic performance of young people.

    Science.gov (United States)

    Carskadon, Mary A

    2005-04-01

    The amount and timing of sleep play significant roles in forming a solid foundation for competitive performance in young athletes. As children mature into and through adolescence, their need for sleep does not decline substantially, although the opportunity to sleep is limited by lifestyle choices, academic and practice schedules, and compelling changes in the biological processes. The biological changes include a more "permissive" pace for the accumulation of sleep pressure across the day in older adolescents and a longer day length in the more mature. These factors all favor later bedtimes and rising times as children pass into adolescence, and a concomitant delay in the optimal timing for waking activities. Among the important threats to athletic performance are insufficient sleep during training and competition and poor appreciation for the best time of day for competitive activities. The specific consequences of these issues for individual athletes are not clear, though when considering young people as a group, support for adequate sleep is a rational intervention to maximize performance.

  15. Calcineurin inhibitors differentially alter the circadian rhythm of T-cell functionality in transplant recipients.

    Science.gov (United States)

    Leyking, Sarah; Budich, Karin; van Bentum, Kai; Thijssen, Stephan; Abdul-Khaliq, Hashim; Fliser, Danilo; Sester, Martina; Sester, Urban

    2015-02-06

    Graft survival in transplant recipients depends on pharmacokinetics and on individual susceptibility towards immunosuppressive drugs. Nevertheless, pharmacodynamic changes in T-cell functionality in response to drugs and in relation to pharmacokinetics are poorly characterized. We therefore investigated the immunosuppressive effect of calcineurin inhibitors and steroids on general T-cell functionality after polyclonal stimulation of whole blood samples. General T-cell functionality in the absence or presence of immunosuppressive drugs was determined in vitro directly from whole blood based on cytokine induction after stimulation with the polyclonal stimulus Staphylococcus aureus enterotoxin B. In addition, diurnal changes in leukocyte and lymphocyte subsets, and on T-cell function after intake of immunosuppressive drugs were analyzed in 19 patients during one day and compared to respective kinetics in six immunocompetent controls. Statistical analysis was performed using non-parametric and parametric tests. Susceptibility towards calcineurin inhibitors showed interindividual differences. When combined with steroids, tacrolimus led to more pronounced increase in the inhibitory activity as compared to cyclosporine A. While circadian alterations in leukocyte subpopulations and T-cell function in controls were related to endogenous cortisol levels, T-cell functionality in transplant recipients decreased after intake of the morning medication, which was more pronounced in patients with higher drug-dosages. Interestingly, calcineurin inhibitors differentially affected circadian rhythm of T-cell function, as patients on cyclosporine A showed a biphasic decrease in T-cell reactivity after drug-intake in the morning and evening, whereas T-cell reactivity in patients on tacrolimus remained rather stable. The whole blood assay allows assessment of the inhibitory activity of immunosuppressive drugs in clinically relevant concentrations. Circadian alterations in T-cell function

  16. Serotonin receptors: Subtypes, functional responses and therapeutic relevance

    NARCIS (Netherlands)

    P.R. Saxena (Pramod Ranjan)

    1995-01-01

    textabstractRecent, rapid progress in the molecular biology of serotonin (5-HT) receptors requires conceptual re-thinking with respect to receptor classification. Thus, based on operational criteria (agonist and antagonist rank order), as well as transduction mechanisms involved and the structure of

  17. A therapeutic community as a relevant and efficient ecclesial model ...

    African Journals Online (AJOL)

    2016-07-15

    Jul 15, 2016 ... They consult medical doctors, sangomas and prophets to ensure that their ... Laar (2006:231, 240) writes: 'In Western society, medicine is practised in the hospital, religion in the church. In Africa, ..... went wrong and what to do about it, affirms the oversight that occurred in these once powerful churches.

  18. Ras-mediated deregulation of the circadian clock in cancer.

    Directory of Open Access Journals (Sweden)

    Angela Relógio

    Full Text Available Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

  19. Circadian rhythms and new options for novel anticancer therapies

    Directory of Open Access Journals (Sweden)

    Prosenc Zmrzljak U

    2015-01-01

    Full Text Available Ursula Prosenc ZmrzljakFaculty of Medicine, Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, SloveniaAbstract: The patterns of activity/sleep, eating/fasting, etc show that our lives are under the control of an internal clock. Cancer is a systemic disease that affects sleep, feeding, and metabolism. All these processes are regulated by the circadian clock on the one hand, but on the other hand, they can serve as signals to tighten up the patient's circadian clock by robust daily routine. Usually, anticancer treatments take place in hospitals, where the patient's daily rest/activity pattern is changed. However, it has been shown that oncology patients with a disturbed circadian clock have poorer survival outcomes. The administration of different anticancer therapies can disturb the circadian cycle, but many cases show that circadian rhythms in tumors are deregulated per se. This fact can be used to plan anticancer therapies in such a manner that they will be most effective in antitumor action, but least toxic for the surrounding healthy tissue. Metabolic processes are highly regulated to prevent waste of energy and to ensure sufficient detoxification; as a consequence, xenobiotic metabolism is under tight circadian control. This gives the rationale for planning the administration of anticancer therapies in a chronomodulated manner. We review some of the potentially useful clinical praxes of anticancer therapies and discuss different possible approaches to be used in drug development and design in the future.Keywords: circadian rhythms, cancer, chronotherapy, detoxification metabolism

  20. Sex and ancestry determine the free-running circadian period.

    Science.gov (United States)

    Eastman, Charmane I; Tomaka, Victoria A; Crowley, Stephanie J

    2017-10-01

    The endogenous, free-running circadian period (τ) determines the phase relationship that an organism assumes when entrained to the 24-h day. We found a shorter circadian period in African Americans compared to non-Hispanic European Americans (24.07 versus 24.33 h). We speculate that a short circadian period, closer to 24 h, was advantageous to humans living around the equator, but when humans migrated North out of Africa, where the photoperiod changes with seasons, natural selection favoured people with longer circadian periods. Recently, in evolutionary terms, immigrants came from Europe and Africa to America ('the New World'). The Europeans were descendents of people who had lived in Europe for thousands of years with changing photoperiods (and presumably longer periods), whereas Africans had ancestors who had always lived around the equator (with shorter periods). It may have been advantageous to have a longer circadian period while living in Europe early in the evolution of humans. In our modern world, however, it is better to have a shorter period, because it helps make our circadian rhythms earlier, which is adaptive in our early-bird-dominated society. European American women had a shorter circadian period than men (24.24 versus 24.41), but there was no sex difference in African Americans (24.07 for both men and women). We speculate that selection pressures in Europe made men develop a slightly longer period than women to help them track dawn which could be useful for hunters, but less important for women as gatherers. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  1. Circadian misalignment increases cardiovascular disease risk factors in humans.

    Science.gov (United States)

    Morris, Christopher J; Purvis, Taylor E; Hu, Kun; Scheer, Frank A J L

    2016-03-08

    Shift work is a risk factor for hypertension, inflammation, and cardiovascular disease. This increased risk cannot be fully explained by classic risk factors. One of the key features of shift workers is that their behavioral and environmental cycles are typically misaligned relative to their endogenous circadian system. However, there is little information on the impact of acute circadian misalignment on cardiovascular disease risk in humans. Here we show-by using two 8-d laboratory protocols-that short-term circadian misalignment (12-h inverted behavioral and environmental cycles for three days) adversely affects cardiovascular risk factors in healthy adults. Circadian misalignment increased 24-h systolic blood pressure (SBP) and diastolic blood pressure (DBP) by 3.0 mmHg and 1.5 mmHg, respectively. These results were primarily explained by an increase in blood pressure during sleep opportunities (SBP, +5.6 mmHg; DBP, +1.9 mmHg) and, to a lesser extent, by raised blood pressure during wake periods (SBP, +1.6 mmHg; DBP, +1.4 mmHg). Circadian misalignment decreased wake cardiac vagal modulation by 8-15%, as determined by heart rate variability analysis, and decreased 24-h urinary epinephrine excretion rate by 7%, without a significant effect on 24-h urinary norepinephrine excretion rate. Circadian misalignment increased 24-h serum interleukin-6, C-reactive protein, resistin, and tumor necrosis factor-α levels by 3-29%. We demonstrate that circadian misalignment per se increases blood pressure and inflammatory markers. Our findings may help explain why shift work increases hypertension, inflammation, and cardiovascular disease risk.

  2. Ras-Mediated Deregulation of the Circadian Clock in Cancer

    Science.gov (United States)

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. PMID:24875049

  3. Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases.

    Science.gov (United States)

    Rahman, Asadur; Hasan, Arif Ul; Nishiyama, Akira; Kobori, Hiroyuki

    2018-01-30

    The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others' recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders.

  4. The circadian defect in plasma vasopressin and urine output is related to desmopressin response and enuresis status in children with nocturnal enuresis.

    Science.gov (United States)

    Rittig, Søren; Schaumburg, Henriette Lassen; Siggaard, Charlotte; Schmidt, Frank; Djurhuus, Jens Christian

    2008-06-01

    We correlated the circadian rhythm of plasma arginine vasopressin and urine output profile to desmopressin response, presence or absence of an enuretic episode, and age and gender in children with nocturnal enuresis. We studied 125 children 6 to 17 years old (mean age 10.4 +/- 3 years) with monosymptomatic nocturnal enuresis. Circadian inpatient studies were performed with standardized fluid intake, 7 blood sampling times and 6 urine collection periods. Subsequently, nocturnal urine volume was measured at home by diaper weighing for 4 weeks in 78 patients (2 weeks without treatment followed by 2 weeks of dose titration from 20 to 40 mug desmopressin at bedtime). The circadian studies showed that all groups of patients had an attenuated arginine vasopressin rhythm, females generally had lower circadian plasma arginine vasopressin levels than males, desmopressin responders with enuresis during the study night had the largest nocturnal urine excretion rate and most pronounced arginine vasopressin deficiency, and nocturnal urine output was significantly greater during nights with enuresis than nights without. Part of this polyuria was caused by increased sodium excretion. The home recordings confirmed higher nocturnal urine volume on enuresis nights. In addition to providing further pathophysiological support for the role of a nocturnal arginine vasopressin deficiency behind nocturnal polyuria in a subset of patients with enuresis, the results emphasize the clinical value of estimating nocturnal urine production on wet nights before selecting a therapeutic modality.

  5. 'The clocks that time us'-circadian rhythms in neurodegenerative disorders

    NARCIS (Netherlands)

    Videnovic, A.; Lazar, A.S.; Barker, R.A.; Overeem, S.

    2014-01-01

    Circadian rhythms are physiological and behavioural cycles generated by an endogenous biological clock, the suprachiasmatic nucleus. The circadian system influences the majority of physiological processes, including sleep-wake homeostasis. Impaired sleep and alertness are common symptoms of

  6. Fragmentation and stability of circadian activity rhythms predict mortality : the rotterdam study

    NARCIS (Netherlands)

    Zuurbier, Lisette A; Luik, Annemarie I; Hofman, Albert; Franco, Oscar H; Van Someren, Eus J W; Tiemeier, Henning

    2015-01-01

    Circadian rhythms and sleep patterns change as people age. Little is known about the associations between circadian rhythms and mortality rates. We investigated whether 24-hour activity rhythms and sleep characteristics independently predicted mortality. Actigraphy was used to determine the

  7. Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease

    NARCIS (Netherlands)

    Witting, W.; Kwa, I. H.; Eikelenboom, P.; Mirmiran, M.; Swaab, D. F.

    1990-01-01

    The suprachiasmatic nucleus, considered to be the endogenous circadian clock in the mammalian brain, shows morphological changes with aging, which become even more pronounced in Alzheimer's disease (AD). In order to assess possible functional implications of these alterations, circadian

  8. Sumoylation Contributes to Timekeeping and Temperature Compensation of the Plant Circadian Clock

    NARCIS (Netherlands)

    Hansen, L.L; van den Burg, H.A.; van Ooijen, G.

    2017-01-01

    The transcriptional circadian clock network is tuned into a 24-h oscillator by numerous posttranslational modifications on the proteins encoded by clock genes, differentially influencing their subcellular localization or activity. Clock proteins in any circadian organism are subject to

  9. Woolfian border poetics and contemporary circadian novels

    Directory of Open Access Journals (Sweden)

    Anka Ryall

    2014-07-01

    Full Text Available Virginia Woolf’s circadian novel Mrs Dalloway (1925 has inspired many successors, some of them important works in their own right. Although few of these novels are as explicitly linked to Mrs Dalloway as Michael Cunningham’s The Hours (1998, more recent novels such as Ian McEwan’s Saturday (2005 and Gail Jones’ Five Bells (2011 clearly pay homage to Woolf’s use of the one-day format to reveal whole lives and show how those individual private lives are entangled in history. The essay highlights one particular aspect of these three works, their imaginative and often transformative reworking of elements of Woolfian border poetics, particularly the predominance in Mrs Dalloway of boundary tropes – windows, doors, thresholds – that create a sense of synchronicity between present and past. Adapting Woolf’s boundary tropes to representations of contemporary realities, all three novels in different ways suggest how the present is deepened ”when backed by the past”, as Woolf puts it her memoirs; that is, when the present is not only informed by a remembered past but experienced in terms of both re-enactment and renewal, continuity and change.

  10. Timing of circadian genes in mammalian tissues

    Science.gov (United States)

    Korenčič, Anja; Košir, Rok; Bordyugov, Grigory; Lehmann, Robert; Rozman, Damjana; Herzel, Hanspeter

    2014-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology. The cell-autonomous clock is governed by an interlocked network of transcriptional feedback loops. Hundreds of clock-controlled genes (CCGs) regulate tissue specific functions. Transcriptome studies reveal that different organs (e.g. liver, heart, adrenal gland) feature substantially varying sets of CCGs with different peak phase distributions. To study the phase variability of CCGs in mammalian peripheral tissues, we develop a core clock model for mouse liver and adrenal gland based on expression profiles and known cis-regulatory sites. ‘Modulation factors’ associated with E-boxes, ROR-elements, and D-boxes can explain variable rhythms of CCGs, which is demonstrated for differential regulation of cytochromes P450 and 12 h harmonics. By varying model parameters we explore how tissue-specific peak phase distributions can be generated. The central role of E-boxes and ROR-elements is confirmed by analysing ChIP-seq data of BMAL1 and REV-ERB transcription factors. PMID:25048020

  11. Circadian rhythms, food timing and obesity.

    Science.gov (United States)

    Lopez-Minguez, J; Gómez-Abellán, P; Garaulet, M

    2016-11-01

    It is known that our physiology changes throughout the day and that several physiological hormones display circadian rhythmicity. The alteration of this normal pattern is called chronodisruption (CD). In recent years, it has been demonstrated that CD is related to obesity. Although several factors may be causing CD, one important aspect to consider is the failure in our internal clock. Indeed, studies performed in mutant animals have demonstrated that mutations in clock genes are related to obesity. In human subjects, mutations are rare (SNP, which underlie differences in our vulnerability to disease. Several SNP in clock genes are related to obesity and weight loss. Taking into account that genetics is behind CD, as has already been demonstrated in twins' models, the question is: Are we predestinated? We will see along these lines that nutrigenetics and epigenetics answer: 'No, we are not predestinated'. Through nutrigenetics we know that our behaviours may interact with our genes and may decrease the deleterious effect of one specific risk variant. From epigenetics the message is even more positive: it is demonstrated that by changing our behaviours we can change our genome. Herein, we propose modifying 'what, how, and when we eat' as an effective tool to decrease our genetic risk, and as a consequence to diminish CD and decrease obesity. This is a novel and very promising area in obesity prevention and treatment.

  12. PDF cycling in the dorsal protocerebrum of the Drosophila brain is not necessary for circadian clock function.

    Science.gov (United States)

    Kula, Elzbieta; Levitan, Edwin S; Pyza, Elzbieta; Rosbash, Michael

    2006-04-01

    In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is a likely circadian molecule, secreted by central pacemaker neurons (LNvs). PDF is expressed in both small and large LNvs (sLNvs and lLNvs), and there are striking circadian oscillations of PDF staining intensity in the small cell termini, which require a functional molecular clock. This cycling may be relevant to the proposed role of PDF as a synchronizer of the clock system or as an output signal connecting pacemaker cells to locomotor activity centers. In this study, the authors use a generic neuropeptide fusion protein (atrial natriuretic factor-green fluorescent protein [ANF-GFP]) and show that it can be expressed in the same neurons as PDF itself. Yet, ANF-GFP as well as PDF itself does not manifest any cyclical accumulation in sLNv termini in adult transgenic flies. Surprisingly, the absence of detectable PDF cycling is not accompanied by any detectable behavioral pheno-type, since these transgenic flies have normal morning and evening anticipation in a light-dark cycle (LD) and are fully rhythmic in constant darkness (DD). The molecular clock is also not compromised. The results suggest that robust PDF cycling in sLNv termini plays no more than a minor role in the Drosophila circadian system and is apparently not even necessary for clock output function.

  13. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking.

    Science.gov (United States)

    Militi, Stefania; Maywood, Elizabeth S; Sandate, Colby R; Chesham, Johanna E; Barnard, Alun R; Parsons, Michael J; Vibert, Jennifer L; Joynson, Greg M; Partch, Carrie L; Hastings, Michael H; Nolan, Patrick M

    2016-03-08

    The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.

  14. Light color importance for circadian entrainment in a diurnal (Octodon degus) and a nocturnal (Rattus norvegicus) rodent.

    Science.gov (United States)

    Bonmati-Carrion, Maria Angeles; Baño-Otalora, Beatriz; Madrid, Juan Antonio; Rol, Maria Angeles

    2017-08-18

    The central circadian pacemaker (Suprachiasmatic Nuclei, SCN) maintains the phase relationship with the external world thanks to the light/dark cycle. Light intensity, spectra, and timing are important for SCN synchronisation. Exposure to blue-light at night leads to circadian misalignment that could be avoided by using less circadian-disruptive wavelengths. This study tests the capacity of a diurnal Octodon degus and nocturnal Rattus norvegicus to synchronise to different nocturnal lights. Animals were subjected to combined red-green-blue lights (RGB) during the day and to: darkness; red light (R); combined red-green LED (RG) lights; and combined red-green-violet LED (RGV) lights during the night. Activity rhythms free-ran in rats under a RGB:RG cycle and became arrhythmic under RGB:RGV. Degus remained synchronised, despite the fact that day and night-time lighting systems differed only in spectra, but not in intensity. For degus SCN c-Fos activation by light was stronger with RGB-light than with RGV. This could be relevant for developing lighting that reduces the disruptive effects of nocturnal light in humans, without compromising chromaticity.

  15. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study

    OpenAIRE

    Zhu, Yong; Stevens, Richard G.; Hoffman, Aaron E.; FitzGerald, Liesel M.; Kwon, Erika M.; Ostrander, Elaine A.; Davis, Scott; Zheng, Tongzhang; Stanford, Janet L

    2009-01-01

    Circadian genes are responsible for maintaining the ancient adaptation of a 24-hour circadian rhythm and influence a variety of cancer-related biological pathways, including the regulation of sex hormone levels. However, few studies have been undertaken to investigate the role of circadian genes in the development of prostate cancer, the most common cancer type among men (excluding non-melanoma skin cancer). The current genetic association study tested the circadian gene hypothesis in relatio...

  16. Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock

    OpenAIRE

    Belle, Mino D.C.; Hughes, Alun T.L.; Bechtold, David A.; Cunningham, Peter; Pierucci, Massimo; Burdakov, Denis; Piggins, Hugh D.

    2014-01-01

    Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is uncle...

  17. Circadian clocks and neurodegenerative diseases: time to aggregate?

    Science.gov (United States)

    Hastings, Michael H; Goedert, Michel

    2013-10-01

    The major neurodegenerative diseases are characterised by a disabling loss of the daily pattern of sleep and wakefulness, which may be reflective of a compromise to the underlying circadian clock that times the sleep cycle. At a molecular level, the canonical property of neurodegenerative diseases is aberrant aggregation of otherwise soluble neuronal proteins. They can thus be viewed as disturbances of proteostasis, raising the question whether the two features - altered daily rhythms and molecular aggregation - are related. Recent discoveries have highlighted the fundamental contribution of circadian clocks to the correct ordering of daily cellular metabolic cycles, imposing on peripheral organs such as the liver a strict programme that alternates between anabolic and catabolic states. The discovery that circadian mechanisms are active in local brain regions suggests that they may impinge upon physiological and pathological elements that influence pro-neurodegenerative aggregation. This review explores how introducing the dimension of circadian time and the circadian clock might refine the analysis of aberrant aggregation, thus expanding our perspective on the cell biology common to neurodegenerative diseases. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    Directory of Open Access Journals (Sweden)

    M.A. Quera Salva

    2012-04-01

    Full Text Available Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC. Melatonin (N-acetyl-5-hydroxytryptamine is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  19. Integration of metabolic and cardiovascular diurnal rhythms by circadian clock.

    Science.gov (United States)

    Kohsaka, Akira; Waki, Hidefumi; Cui, He; Gouraud, Sabine S; Maeda, Masanobu

    2012-01-01

    Understanding how the 24-hour blood-pressure rhythm is programmed has been one of the most challenging questions in cardiovascular research. The 24-hour blood-pressure rhythm is primarily driven by the circadian clock system, in which the master circadian pacemaker within the suprachiasmatic nuclei of the hypothalamus is first entrained to the light/dark cycle and then transmits synchronizing signals to the peripheral clocks common to most tissues, including the heart and blood vessels. However, the circadian system is more complex than this basic hierarchical structure, as indicated by the discovery that peripheral clocks are either influenced to some degree or fully driven by temporal changes in energy homeostasis, independent of the light entrainment pathway. Through various comparative genomic approaches and through studies exploiting mouse genetics and transgenics, we now appreciate that cardiovascular tissues possess a large number of metabolic genes whose expression cycle and reciprocally affect the transcriptional control of major circadian clock genes. These findings indicate that metabolic cycles can directly or indirectly affect the diurnal rhythm of cardiovascular function. Here, we discuss a framework for understanding how the 24-hour blood-pressure rhythm is driven by the circadian system that integrates cardiovascular and metabolic function.

  20. Circadian intraocular pressure rhythm is generated by clock genes.

    Science.gov (United States)

    Maeda, Ari; Tsujiya, Sosuke; Higashide, Tomomi; Toida, Kazunori; Todo, Takeshi; Ueyama, Tomoko; Okamura, Hitoshi; Sugiyama, Kazuhisa

    2006-09-01

    The present study in a mouse model was undertaken to reveal the role of the circadian clock genes Cry1 and Cry2 in generation of 24-hour intraocular pressure (IOP) rhythm. IOP was measured at eight time points daily (circadian time [CT] 0, 3, 6, 9, 12, 15, 18, and 21 hours), using a microneedle method in four groups of C57BL/6J mice (groups 1 and 3, wild-type; groups 2 and 4, Cry-deficient [Cry1-/-Cry2-/-]). During the IOP measurements, mice in groups 1 and 2 were maintained in a 12-hour light-dark cycle (LD), whereas mice in groups 3 and 4 were kept in a constant darkness (DD) that started 24 to 48 hours before the measurements. Circadian IOP variations in each group were evaluated by one-way analysis of variance (ANOVA) and Scheffé tests. In wild-type mice living in LD conditions, pressures measured in the light phase were significantly lower than those in the dark phase. This daily rhythm was maintained under DD conditions with low pressure in the subjective day and high pressure in the subjective night. In contrast, Cry-deficient mice did not show significant circadian changes in IOP, regardless of environmental light conditions. These findings demonstrate that clock oscillatory mechanisms requiring the activity of core clock genes are essential for the generation of a circadian rhythm of intraocular pressure.

  1. The Circadian NAD+ Metabolism: Impact on Chromatin Remodeling and Aging

    Directory of Open Access Journals (Sweden)

    Yasukazu Nakahata

    2016-01-01

    Full Text Available Gene expression is known to be a stochastic phenomenon. The stochastic gene expression rate is thought to be altered by topological change of chromosome and/or by chromatin modifications such as acetylation and methylation. Changes in mechanical properties of chromosome/chromatin by soluble factors, mechanical stresses from the environment, or metabolites determine cell fate, regulate cellular functions, or maintain cellular homeostasis. Circadian clock, which drives the expression of thousands of genes with 24-hour rhythmicity, has been known to be indispensable for maintaining cellular functions/homeostasis. During the last decade, it has been demonstrated that chromatin also undergoes modifications with 24-hour rhythmicity and facilitates the fine-tuning of circadian gene expression patterns. In this review, we cover data which suggests that chromatin structure changes in a circadian manner and that NAD+ is the key metabolite for circadian chromatin remodeling. Furthermore, we discuss the relationship among circadian clock, NAD+ metabolism, and aging/age-related diseases. In addition, the interventions of NAD+ metabolism for the prevention and treatment of aging and age-related diseases are also discussed.

  2. Deregulated expression of circadian clock genes in gastric cancer.

    Science.gov (United States)

    Hu, Ming-Luen; Yeh, Kun-Tu; Lin, Pai-Mei; Hsu, Cheng-Ming; Hsiao, Hui-Hua; Liu, Yi-Chang; Lin, Hugo You-Hsien; Lin, Sheng-Fung; Yang, Ming-Yu

    2014-04-06

    Gastric cancer (GC), an aggressive malignant tumor of the alimentary tract, is a leading cause of cancer-related death. Circadian rhythm exhibits a 24-hour variation in physiological processes and behavior, such as hormone levels, metabolism, gene expression, sleep and wakefulness, and appetite. Disruption of circadian rhythm has been associated with various cancers, including chronic myeloid leukemia, head and neck squamous cell carcinoma, hepatocellular carcinoma, endometrial carcinoma, and breast cancer. However, the expression of circadian clock genes in GC remains unexplored. In this study, the expression profiles of eight circadian clock genes (PER1, PER2, PER3, CRY1, CRY2, CKIϵ, CLOCK, and BMAL1) of cancerous and noncancerous tissues from 29 GC patients were investigated using real-time quantitative reverse-transcriptase polymerase chain reaction and validated through immunohistochemical analysis. We found that PER2 was significantly up-regulated in cancer tissues (p clock genes exist in GC and circadian rhythm disturbance may be associated with the development of GC.

  3. The circadian clock in oral health and diseases.

    Science.gov (United States)

    Papagerakis, S; Zheng, L; Schnell, S; Sartor, M A; Somers, E; Marder, W; McAlpin, B; Kim, D; McHugh, J; Papagerakis, P

    2014-01-01

    Most physiological processes in mammals display circadian rhythms that are driven by the endogenous circadian clock. This clock is comprised of a central component located in the hypothalamic suprachiasmatic nucleus and subordinate clocks in peripheral tissues. Circadian rhythms sustain 24-hour oscillations of a large number of master genes controlling the correct timing and synchronization of diverse physiological and metabolic processes within our bodies. This complex regulatory network provides an important communication link between our brain and several peripheral organs and tissues. At the molecular level, circadian oscillations of gene expression are regulated by a family of transcription factors called "clock genes". Dysregulation of clock gene expression results in diverse human pathological conditions, including autoimmune diseases and cancer. There is increasing evidence that the circadian clock affects tooth development, salivary gland and oral epithelium homeostasis, and saliva production. This review summarizes current knowledge of the roles of clock genes in the formation and maintenance of oral tissues, and discusses potential links between "oral clocks" and diseases such as head and neck cancer and Sjögren's syndrome.

  4. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.

    Science.gov (United States)

    Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo

    2017-08-10

    The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD+-related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Temporal Regulation of Cytokines by the Circadian Clock

    Directory of Open Access Journals (Sweden)

    Atsuhito Nakao

    2014-01-01

    Full Text Available Several parameters of the immune system exhibit oscillations with a period of approximately 24 hours that refers to “circadian rhythms.” Such daily variations in host immune system status might evolve to maximize immune reactions at times when encounters with pathogens are most likely to occur. However, the mechanisms behind circadian immunity have not been fully understood. Recent studies reveal that the internal time keeping system “circadian clock” plays a key role in driving the daily rhythms evident in the immune system. Importantly, several studies unveil molecular mechanisms of how certain clock proteins (e.g., BMAL1 and CLOCK temporally regulate expression of cytokines. Since cytokines are crucial mediators for shaping immune responses, this review mainly summarizes the new knowledge that highlights an emerging role of the circadian clock as a novel regulator of cytokines. A greater understanding of circadian regulation of cytokines will be important to exploit new strategies to protect host against infection by efficient cytokine induction or to treat autoimmunity and allergy by ameliorating excessive activity of cytokines.

  6. Circadian typology and emotional intelligence in healthy adults.

    Science.gov (United States)

    Antúnez, Juan Manuel; Navarro, José Francisco; Adan, Ana

    2013-10-01

    Several aspects related to health, such as satisfaction with life, perceived well-being, and psychopathological symptomatology have been associated with circadian typology and with emotional intelligence. Nevertheless, the relationships between circadian typology and emotional intelligence have not been explored yet. The purpose of the present study is to examine the relationships between circadian typology and emotional intelligence, taking into account the possible interactions between sex and physical exercise, and controlling for age. A sample of 1011 participants (649 women), aged between 18 and 50 yrs (26.92 ± 6.53) completed the reduced Morningness-Eveningness Questionnaire (rMEQ) and the Trait Meta-Mood Scale-24 (TMMS-24). The TMMS-24 considers three dimensions of emotional intelligence: emotional attention, emotional clarity, and emotional repair. Women showed higher values for emotional attention, whereas men showed higher values for emotional repair (p values for emotional repair (p = 0.001) regardless of circadian typology or sex. Circadian typology presents differences in all scores of emotional intelligence dimensions. Morning-type had lower emotional attention than evening- and neither-type; neither-type had lower emotional repair than morning-type, and lower emotional clarity than both evening- and morning-type (p intelligence we can conclude that morning typology may be a protective factor in terms of general health, whereas we should be aware that the neither-type may present a possible vulnerability to develop psychological problems.

  7. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    Science.gov (United States)

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  8. Blood transcriptome based biomarkers for human circadian phase.

    Science.gov (United States)

    Laing, Emma E; Möller-Levet, Carla S; Poh, Norman; Santhi, Nayantara; Archer, Simon N; Dijk, Derk-Jan

    2017-02-20

    Diagnosis and treatment of circadian rhythm sleep-wake disorders both require assessment of circadian phase of the brain's circadian pacemaker. The gold-standard univariate method is based on collection of a 24-hr time series of plasma melatonin, a suprachiasmatic nucleus-driven pineal hormone. We developed and validated a multivariate whole-blood mRNA-based predictor of melatonin phase which requires few samples. Transcriptome data were collected under normal, sleep-deprivation and abnormal sleep-timing conditions to assess robustness of the predictor. Partial least square regression (PLSR), applied to the transcriptome, identified a set of 100 biomarkers primarily related to glucocorticoid signaling and immune function. Validation showed that PLSR-based predictors outperform published blood-derived circadian phase predictors. When given one sample as input, the R2 of predicted vs observed phase was 0.74, whereas for two samples taken 12 hr apart, R2 was 0.90. This blood transcriptome-based model enables assessment of circadian phase from a few samples.

  9. Cancer/testis antigen PASD1 silences the circadian clock

    Science.gov (United States)

    Michael, Alicia K.; Harvey, Stacy L.; Sammons, Patrick J.; Anderson, Amanda P.; Kopalle, Hema M.; Banham, Alison H.; Partch, Carrie L.

    2015-01-01

    SUMMARY The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals, but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms. PMID:25936801

  10. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    Directory of Open Access Journals (Sweden)

    Zohar Ben-Moshe Livne

    2016-11-01

    Full Text Available The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  11. Therapeutic misadventure.

    Science.gov (United States)

    Langford, N J

    2010-10-01

    Therapeutic misadventure can be defined as an injury or an adverse event caused by medical management rather than by an underlying disease. Within the National Health Service there were over 86,000 reported adverse incidents in 2007. In the USA medication errors have been rated as the fourth highest cause of death. Unfortunately one of the greatest contributors to iatrogenic injury is human error. The potential types of misadventure are infinite. Medication errors are a major part of this, being responsible for over 70% of cases that cause serious harm. However, many medication errors caused by slips, lapses, technical errors and mistakes are preventable; intentional violations of safe operating procedures are not. While medication errors were tolerated by society in the past, the readiness to institute criminal proceedings against health-care professionals has increased greatly in the UK over the last decade. The medication process consists of writing prescriptions, dispensing the product, administering it and monitoring its effects. Prescription errors arise owing to incomplete information, lack of appropriate labelling, environmental factors and human blunders. Even with a perfect prescription the right medication must be dispensed and appropriately labelled. Dispensing errors are not uncommon and may be compounded by non-clinical considerations. Administration of a drug by injection is one of the most dangerous aspects of the medication process, especially in inexperienced hands. The final component of medication supply is monitoring the effect of the medication. With short courses of medication such monitoring is easy, but with long-term medication, particularly with potent drugs where the margin between efficacy and toxicity is small, active procedures may be required to ensure toxicity does not ensue. Despite the endeavour of health-care professions to stick to the rule of 'first, do no harm', in reality this is difficult to achieve all of the time. When

  12. Towards assessing the impact of circadian lighting in elderly housing from a holistic perspective

    DEFF Research Database (Denmark)

    Sen, Sumit; Flyvholm, Anton; Xylakis, Emmanouil

    2017-01-01

    Circadian lighting has the potential to be used as a welfare technology, and improve the health and well-being of the general public. A research-based dynamic circadian lighting scheme can be developed using LED lighting. Testing and evaluating circadian lighting however requires a holistic...

  13. The circadian organization of the cardiovascular system in health and disease.

    Science.gov (United States)

    Portaluppi, Francesco

    2014-05-01

    In normal conditions, the temporal organization of blood pressure (BP) is mainly controlled by neuroendocrine mechanisms. Above all, the monoaminergic systems (including variations in activity of the autonomous nervous system, and in secretion of biogenic amines) appear to integrate the major driving factors of temporal variability, but evidence is available also for a role of the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, opioid, renin-angiotensin-aldosterone, and endothelial systems, as well as other vasoactive peptides. Many hormones with established actions on the cardiovascular system (arginine vasopressin, vasoactive intestinal peptide, melatonin, somatotropin, insulin, steroids, serotonin, CRF, ACTH, TRH, endogenous opioids, and prostaglandin E2) are also involved in sleep induction or arousal, which in turn affects BP regulation. Hence, physical, mental, and pathological stimuli which may drive activation or inhibition of these neuroendocrine effectors of biological rhythmicity, may also interfere with the temporal BP structure. On the other hand, the immediate adaptation of the exogenous components of BP rhythms to the demands of the environment are modulated by the circadian-time-dependent responsiveness of the biological oscillators and their neuroendocrine effectors. These notions may contribute to a better understanding of the pathophysiology and therapeutics of hypertension, myocardial ischemia and infarction, cardiac arrhythmias and all kind of acute cardiovascular accidents. For instance, the normal temporal balance between external stimuli and neurohumoral influences with endogenous rhythmicity is preserved in uncomplicated, essential hypertension, whereas it is frequently lost in complicated and secondary forms of hypertension where gross alterations are found in the circadian profile of BP. When all the gates of the critical physiologic functions are aligned at the same time, the susceptibility, and thus risk, of adverse

  14. Circadian rhythms of locomotor activity and hippocampal clock genes expression are dampened in vitamin A-deficient rats.

    Science.gov (United States)

    Navigatore-Fonzo, Lorena S; Delgado, Silvia M; Golini, Rebeca S; Anzulovich, Ana C

    2014-04-01

    The main external time giver is the day-night cycle; however, signals from feeding and the activity/rest cycles can entrain peripheral clocks, such as the hippocampus, in the absence of light. Knowing that vitamin A and its derivatives, the retinoids, may act as regulators of the endogenous clock activity, we hypothesized that the nutritional deficiency of vitamin A may influence the locomotor activity rhythm as well as the endogenous circadian patterns of clock genes in the rat hippocampus. Locomotor activity was recorded during the last week of the treatment period. Circadian rhythms of clock genes expression were analyzed by reverse transcription-polymerase chain reaction in hippocampus samples that were isolated every 4 hours during a 24-hour period. Reduced glutathione (GSH) levels were also determined by a kinetic assay. Regulatory regions of clock PER2, CRY1, and CRY2 genes were scanned for RXRE, RARE, and RORE sites. As expected, the locomotor activity pattern of rats shifted rightward under constant dark conditions. Clock genes expression and GSH levels displayed robust circadian oscillations in the rat hippocampus. We found RXRE and RORE sites on regulatory regions of clock genes. Vitamin A deficiency dampened rhythms of locomotor activity as well as modified endogenous rhythms of clock genes expression and GSH levels. Thus, vitamin A may have a role in endogenous clock functioning and participate in the circadian regulation of the cellular redox state in the hippocampus, a peripheral clock with relevant function in memory and learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  16. Therapeutic Adherence in Smoking Therapy

    Directory of Open Access Journals (Sweden)

    María Salvador Manzano

    2010-02-01

    Full Text Available Therapeutic adherence is a complex and multidimensional concept. The percentage of adherence to treatments involving a change in lifestyle, such as quitting smoking, is lower than in other disorders, a fact which has relevant clinical, psychological and economic consequences. This paper aims to review the associated factors with adherence to therapy in smoking treatment. Strategies to enhance therapeutic adherence involve the adequate choice of treatment, to know the smoker´s characteristics, breaking down organizational barriers in health system and the training of health professionals in communication skills with patients.

  17. Cerebral temperature varies across circadian phases in humans.

    Science.gov (United States)

    Boudreau, Philippe; Shechter, Ari; Dittmar, Andre; Gehin, Claudine; Delhomme, Georges; Nocua, Ronald; Dumont, Guy; Boivin, Diane B

    2008-01-01

    The 24-hour rhythm of core body temperature (CBT) is commonly used in humans as a tool to assess the oscillation of the central endogenous circadian pacemaker. The invasive nature of the rectal sensor used to collect CBT makes it difficult to use in ambulatory conditions. Here we validate the use of a newly developed brain temperature (BT) sensor against that of a standard rectal temperature sensor using a 72-hour ultra-rapid sleep-wake (URSW) cycle procedure. A significant circadian variation of both body temperature recordings was observed from which a phase and amplitude was reliably determined. These results indicate that BT can be refined as a non-invasive alternative to CBT measurements in the evaluation of circadian phase in field conditions.

  18. Pyrethroid residue dynamics in insects depends on the circadian clock.

    Science.gov (United States)

    Maliszewska, Justyna; Piechowicz, Bartosz; Maciąga, Gabriela; Zaręba, Lech; Marcinkowska, Sonia

    2018-02-27

    Many factors may affect pesticide effectiveness against pests. One of the factors that should be considered is circadian rhythmicity. In this study, we evaluated daily variations in pyrethroid susceptibility in the house cricket, Acheta domesticus L. Crickets were exposed to a standard dose of ß-cyfluthrin at different times of a day, and pesticide residue levels were evaluated using gas chromatography. Results demonstrate that the time of pyrethroid disappearance is correlated with the circadian clock, with the highest decomposition rate at night. Furthermore, crickets also showed the highest resistance to the insecticide at night, expressed as a high survival rate. Moreover, ß-cyfluthrin induced significant changes in thermal preferences of intoxicated crickets. This is the first report showing that pyrethroid residue levels in the crickets' body depend on its circadian clock.

  19. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    Directory of Open Access Journals (Sweden)

    David M. Virshup

    2017-04-01

    Full Text Available An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  20. Circadian rhythms in biologically closed electrical circuits of plants.

    Science.gov (United States)

    Volkov, Alexander; Waite, Astian J; Wooten, Joseph D; Markin, Vladislav S

    2012-02-01

    The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. Here, we discuss the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. Plants are able to memorize daytime and nighttime. Even at continuous light or darkness, plants recognize nighttime or daytime and change the input resistance. The circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge, and the speed of transmission of electrical energy from the electrostimulator to plants.

  1. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kazuki eSakata

    2015-06-01

    Full Text Available Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of D. melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP rhythm of Drosophila melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals.

  2. Biphasic effects of alcohol as a function of circadian phase.

    Science.gov (United States)

    Van Reen, Eliza; Rupp, Tracy L; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A

    2013-01-01

    To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Twenty-seven healthy young adults (age 21-26 yr) were studied. Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times.

  3. Sleep, Circadian Rhythms, and Performance During Space Shuttle Missions

    Science.gov (United States)

    Neri, David F.; Czeisler, Charles A.; Dijk, Derk-Jan; Wyatt, James K.; Ronda, Joseph M.; Hughes, Rod J.

    2003-01-01

    Sleep and circadian rhythms may be disturbed during spaceflight, and these disturbances can affect crewmembers' performance during waking hours. The mechanisms underlying sleep and circadian rhythm disturbances in space are not well understood, and effective countermeasures are not yet available. We investigated sleep, circadian rhythms, cognitive performance, and light-dark cycles in five astronauts prior to, during, and after the 16-day STS-90 mission and the IO-day STS-95 mission. The efficacy of low-dose, alternative-night, oral melatonin administration as a countermeasure for sleep disturbances was evaluated. During these missions, scheduled rest activity cycles were 20-35 minutes shorter than 24 hours. Light levels on the middeck and in the Spacelab were very low; whereas on the flight deck (which has several windows), they were highly variable. Circadian rhythm abnormalities were observed. During the second half of the missions, the rhythm of urinary cortisol appeared to be delayed relative to the sleep-wake schedule. Performance during wakefulness was impaired. Astronauts slept only about 6.5 hours per day, and subjective sleep quality was lower in space. No beneficial effects of melatonin (0.3 mg administered prior to sleep episodes on alternate nights) were observed. A surprising finding was a marked increase in rapid eye movement (REM) sleep upon return to Earth. We conclude that these Space Shuttle missions were associated with circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and alterations in REM sleep homeostasis. Shorter than 24-hour rest-activity schedules and exposure to light-dark cycles inadequate for optimal circadian synchronization may have contributed to these disturbances.

  4. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium.

    Science.gov (United States)

    Fu, Jianxin; Yang, Liwen; Dai, Silan

    2014-07-01

    In Arabidopsis, circadian clock genes play important roles in photoperiod pathway by regulating the daytime expression of CONSTANS (CO), but related reports for chrysanthemum are notably limited. In this study, we isolated eleven circadian clock genes, which lie in the three interconnected negative and positive feedback loops in a wild diploid chrysanthemum, Chrysanthemum lavandulifolium. With the exception of ClELF3, ClPRR1 and ClPRR73, most of the circadian clock genes are expressed more highly in leaves than in other tested tissues. The diurnal rhythms of these circadian clock genes are similar to those of their homologs in Arabidopsis. ClELF3 and ClZTL are constitutively expressed at all time points in both assessed photoperiods. The expression succession from morning to night of the PSEUDO RESPONSE REGULATOR (PRR) gene family occurs in the order ClPRR73/ClPRR37, ClPRR5, and then ClPRR1. ClLHY is expressed during the dawn period, and ClGIs is expressed during the dusk period. The peak expression levels of ClFKF1 and ClGIs are synchronous in the inductive photoperiod. However, in the non-inductive night break (NB) condition or non-24 h photoperiod, the peak expression level of ClFKF1 is significantly changed, indicating that ClFKF1 itself or the synchronous expression of ClFKF1 and ClGIs might be essential to initiate the flowering of C. lavandulifolium. This study provides the first extensive evaluation of circadian clock genes, and it presents a useful foundation for dissecting the functions of circadian clock genes in C. lavandulifolium. Copyright © 2014. Published by Elsevier Masson SAS.

  5. Breast cancer risk, nightwork, and circadian clock gene polymorphisms.

    Science.gov (United States)

    Truong, Thérèse; Liquet, Benoît; Menegaux, Florence; Plancoulaine, Sabine; Laurent-Puig, Pierre; Mulot, Claire; Cordina-Duverger, Emilie; Sanchez, Marie; Arveux, Patrick; Kerbrat, Pierre; Richardson, Sylvia; Guénel, Pascal

    2014-08-01

    Night shift work has been associated with an increased risk of breast cancer pointing to a role of circadian disruption. We investigated the role of circadian clock gene polymorphisms and their interaction with nightwork in breast cancer risk in a population-based case-control study in France including 1126 breast cancer cases and 1174 controls. We estimated breast cancer risk associated with each of the 577 single nucleotide polymorphisms (SNPs) in 23 circadian clock genes. We also used a gene- and pathway-based approach to investigate the overall effect on breast cancer of circadian clock gene variants that might not be detected in analyses based on individual SNPs. Interactions with nightwork were tested at the SNP, gene, and pathway levels. We found that two SNPs in RORA (rs1482057 and rs12914272) were associated with breast cancer in the whole sample and among postmenopausal women. In this subpopulation, we also reported an association with rs11932595 in CLOCK, and with CLOCK, RORA, and NPAS2 in the analyses at the gene level. Breast cancer risk in postmenopausal women was also associated with overall genetic variation in the circadian gene pathway (P=0.04), but this association was not detected in premenopausal women. There was some evidence of an interaction between PER1 and nightwork in breast cancer in the whole sample (P=0.024), although the effect was not statistically significant after correcting for multiple testing (P=0.452). Our results support the hypothesis that circadian clock gene variants modulate breast cancer risk. © 2014 Society for Endocrinology.

  6. Relationship between Human Pupillary Light Reflex and Circadian System Status

    Science.gov (United States)

    Bonmati-Carrion, Maria Angeles; Hild, Konstanze; Isherwood, Cheryl; Sweeney, Stephen J.; Revell, Victoria L.; Skene, Debra J.; Rol, Maria Angeles; Madrid, Juan Antonio

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (λmax ≤ 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from λmax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460–490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input. PMID:27636197

  7. Circadian rhythm of blood cardiac troponin T concentration.

    Science.gov (United States)

    Fournier, Stephane; Iten, Lea; Marques-Vidal, Pedro; Boulat, Olivier; Bardy, Daniel; Beggah, Ahmed; Calderara, Rachel; Morawiec, Beata; Lauriers, Nathalie; Monney, Pierre; Iglesias, Juan F; Pascale, Patrizio; Harbaoui, Brahim; Eeckhout, Eric; Muller, Olivier

    2017-12-01

    High-sensitivity cardiac troponin assays have significantly improved the sensitivity of myocardial infarction detection by using cutoff values and early absolute changes. However, variation in repeated measures also depends on biological variability. This study aimed to assess the potential circadian component of this biological variability. 17 healthy volunteers were recruited, and standardized conditions for physical activity, meals, exposure to light and duration of sleep were imposed. Blood samples were collected every 4 h and high-sensitivity troponin T assay with a limit of detection of 3 ng/l and a 99th percentile of 14 ng/l were used. Circadian variations were analyzed using the cosinor method. Statistically significant circadian variations were observed for body temperature, heart rate, and systolic/diastolic arterial blood pressures (p < 0.01 using both a non-adjusted cosinor model and a gender- and BMI-adjusted cosinor model). The amplitudes of the circadian variations were 18.93, 6, 15.35, and 1.92%, respectively. A statistically significant circadian biological variation of troponin blood concentrations was evidenced (p < 0.01 in both the non-adjusted cosinor model and the gender- and BMI-adjusted cosinor), with an amplitude of 20.5% (average: 4.39 ng/l; amplitude: 0.9 ng/l; peak at 06:00 and nadir at 18:00). This study demonstrates a circadian biological variation in blood troponin concentration in a healthy population. The amplitude of this variation challenges the cutoff value for instant rule-out of the rapid rule-in/rule-out of the recent European guidelines for the management of acute coronary syndromes. These findings deserve further investigation in a population at risk of myocardial infarction.

  8. Molecular and circadian controls of ameloblasts.

    Science.gov (United States)

    Athanassiou-Papaefthymiou, Maria; Kim, Doohak; Harbron, Lindsay; Papagerakis, Silvana; Schnell, Santiago; Harada, Hidemitsu; Papagerakis, Petros

    2011-12-01

    Stage-specific expression of ameloblast-specific genes is controlled by differential expression of transcription factors. In addition, ameloblasts follow daily rhythms in their main activities (i.e. enamel protein secretion and enamel mineralization). This time-related control is orchestrated by oscillations of clock proteins involved in the regulation of circadian rhythms. Our aim was to identify the potential links between daily rhythms and developmental controls of ameloblast differentiation. The effects of the transcription factors distal-less homeobox 3 (Dlx3) and runt-related transcription factor 2 (Runx2), and the clock gene nuclear receptor subfamily 1, group D, member 1 (Nr1d1), on secretory and maturation ameloblasts [using stage-specific markers amelogenin (Amelx), enamelin (Enam), and kallikrein-related peptidase 4 (Klk4)] were evaluated in the HAT-7 ameloblast cell line. Amelx and Enam steady-state mRNA expression levels were down-regulated in Runx2 over-expressing cells and up-regulated in Dlx3 over-expressing cells. In contrast, Klk4 mRNA was up-regulated by both Dlx3 and Runx2. Furthermore, a temporal and spatial relationship between clock genes and ameloblast differentiation markers was detected. Of interest, clock genes not only affected rhythmic expression of ameloblast-specific genes but also influenced the expression of Runx2. Multiscale mathematical modeling is being explored to further understand the temporal and developmental controls of ameloblast differentiation. Our study provides novel insights into the regulatory mechanisms sustaining ameloblast differentiation. © 2011 Eur J Oral Sci.

  9. Therapeutic and diagnostic nanomaterials

    CERN Document Server

    Devasena T

    2017-01-01

    This brief highlights nanoparticles used in the diagnosis and treatment of prominent diseases and toxic conditions. Ecofriendly methods which are ideal for the synthesis of medicinally valued nanoparticles are explained and the characteristic features of these particles projected. The role of these particles in the therapeutic field, and the induced biological changes in some diseases are discussed. The main focus is on inflammation, oxidative stress and cellular membrane integrity alterations. The effect of nanoparticles on these changes produced by various agents are highlighted using in vitro and in vivo models. The mechanism of nanoparticles in ameliorating the biological changes is supported by relevant images and data. Finally, the brief demonstrates recent developments on the use of nanoparticles in diagnosis or sensing of some biological materials and biologically hazardous environmental materials.

  10. Antibody Engineering and Therapeutics

    Science.gov (United States)

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  11. Circadian changes in long noncoding RNAs in the pineal gland

    DEFF Research Database (Denmark)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F

    2012-01-01

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat...... pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian...

  12. Chamber-dependent circadian expression of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Georg, Birgitte; Jørgensen, Henrik L

    2010-01-01

    OFF. Eight animals (4 males and 4 females) were included at each time point. Another 48 animals were killed during the second cycle of dark/dark (designated Circadian Time or CT: CT 4, CT 8, CT 12, CT 16, CT 20, and CT 24). The cellular contents of the clock genes Per1 and Bmal1 as well as ANP, BNP......Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) have important local functions within the myocardium, where they protect against accelerated fibrosis. As circadian expression of cardiac natriuretic peptides could be of importance in local cardiac protection against disease, we...

  13. Evening physical activity alters wrist temperature circadian rhythmicity

    OpenAIRE

    Rubio-Sastre, Patricia; Gómez-Abellán, Purificación; Martinez-Nicolas, Antonio; Ordovás, José María; Madrid, Juan Antonio; Garaulet, Marta

    2013-01-01

    The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45 min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028 ± 0.01 °C versus control: 0.03...

  14. The effects of chronic marijuana use on circadian entrainment.

    Science.gov (United States)

    Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff

    2015-05-01

    Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.

  15. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes.

    Science.gov (United States)

    Yu, Elizabeth A; Weaver, David R

    2011-05-01

    The circadian clock imparts 24-hour rhythmicity on gene expression and cellular physiology in virtually all cells. Disruption of the genes necessary for the circadian clock to function has diverse effects, including aging-related phenotypes. Some circadian clock genes have been described as tumor suppressors, while other genes have less clear functions in aging and cancer. In this Review, we highlight a recent study [Dubrovsky et al., Aging 2: 936-944, 2010] and discuss the much larger field examining the relationship between circadian clock genes, circadian rhythmicity, aging-related phenotypes, and cancer.

  16. MicroRNA in the molecular mechanism of the circadian clock in mammals.

    Science.gov (United States)

    Chu, Cheng; Zhao, Zhongxin

    2013-01-01

    The biochemical activity of mammals is controlled by an internal timekeeping mechanism driving a clock to run in approximate 24-hour (circadian) cycles. In mammals, this circadian clock is located both in the suprachiasmatic nuclei (SCN) and peripheral oscillators. Recently, microRNAs have emerged as significant players in circadian clock timing. The biological implications of miRNAs are extended further by recent studies that microRNAs are expressed in the SCN and peripheral circadian oscillators. In this study, we review recent work revealing the role of microRNAs in the molecular mechanism of circadian clock in mammals.

  17. The Circadian Timing System and Environmental Circadian Disruption: From Follicles to Fertility.

    Science.gov (United States)

    Sen, Aritro; Sellix, Michael T

    2016-09-01

    The internal or circadian timing system is deeply integrated in female reproductive physiology. Considerable details of rheostatic timing function in the neuroendocrine control of pituitary hormone secretion, adenohypophyseal hormone gene expression and secretion, gonadal steroid hormone biosynthesis and secretion, ovulation, implantation, and parturition have been reported. The molecular clock, an autonomous feedback loop oscillator of interacting transcriptional regulators, dictates the timing and amplitude of gene expression in each tissue of the female hypothalamic-pituitary-gonadal (HPG) axis. Although multiple targets of the molecular clock have been identified, many associated with critical physiological functions in the HPG axis, the full extent of clock-driven gene expression and physiology in this critical system remains unknown. Environmental circadian disruption (ECD), the disturbance of temporal relationships within and between internal clocks (brain and periphery), and external timing cues (eg, light, nutrients, social cues) due to rotating/night shift work or transmeridian travel have been linked to reproductive dysfunction and subfertility. Moreover, ECD resulting from exposure to endocrine disrupting chemicals, environmental toxins, and/or irregular hormone levels during sexual development can also reduce fertility. Thus, perturbations that disturb clock function at the molecular, cellular or systemic level correlate with significant declines in female reproductive function. Here we briefly review the evidence for molecular clock function in each tissue of the female HPG axis (GnRH neuron, pituitary, uterus, oviduct, and ovary), describe the human epidemiological and animal data supporting the negative effects of ECD on fertility, and explore the potential for novel chronotherapeutics in women's health and fertility.

  18. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.

    Science.gov (United States)

    Nakahata, Yasukazu; Sahar, Saurabh; Astarita, Giuseppe; Kaluzova, Milota; Sassone-Corsi, Paolo

    2009-05-01

    Many metabolic and physiological processes display circadian oscillations. We have shown that the core circadian regulator, CLOCK, is a histone acetyltransferase whose activity is counterbalanced by the nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase SIRT1. Here we show that intracellular NAD+ levels cycle with a 24-hour rhythm, an oscillation driven by the circadian clock. CLOCK:BMAL1 regulates the circadian expression of NAMPT (nicotinamide phosphoribosyltransferase), an enzyme that provides a rate-limiting step in the NAD+ salvage pathway. SIRT1 is recruited to the Nampt promoter and contributes to the circadian synthesis of its own coenzyme. Using the specific inhibitor FK866, we demonstrated that NAMPT is required to modulate circadian gene expression. Our findings in mouse embryo fibroblasts reveal an interlocked transcriptional-enzymatic feedback loop that governs the molecular interplay between cellular metabolism and circadian rhythms.

  19. Circadian Rhythms and Mood Disorders: Are The Phenomena and Mechanisms Causally Related?

    Directory of Open Access Journals (Sweden)

    William eBechtel

    2015-08-01

    Full Text Available This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent model for mania. While this evidence is suggestive of an etiological role for altered circadian rhythms in mood disorders, it is compatible with other explanations, including that disrupted circadian rhythms and mood disorders are effects of a common cause and that genes and proteins implicated in both simply have pleiotropic effects. In light of this, the paper advances a proposal as to what evidence would be needed to establish a direct causal link between disruption of circadian rhythms and mood disorders.

  20. Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria

    Science.gov (United States)

    2017-01-01

    The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. PMID:29239721

  1. Temporal phase relation of circadian neural oscillations as the basis ...

    Indian Academy of Sciences (India)

    MADHU

    Hence, the present study was undertaken to pinpoint the specific phase relation between the two injections which determines this change in gonadal response. To address the putative regulatory role of circadian oscillations in the reproductive development of laboratory mice and to pinpoint the exact temporal phase relation ...

  2. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. The Importance of the Circadian Clock in Regulating Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Jin A Kim

    2017-12-01

    Full Text Available Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle. The circadian clock mechanism and processes of metabolism controlled by the circadian rhythm were studied in the model plant Arabidopsis and in the crops potato and rice. However, the translation of molecular mechanisms obtained from studies of model plants to crop plants is still difficult. Crop plants have specific organs such as edible seed and tuber that increase the size or accumulate valuable metabolites by harvestable metabolic components. Human consumers are interested in the regulation and promotion of these agriculturally significant crops. Circadian clock manipulation may suggest various strategies for the increased productivity of food crops through using environmental signal or overcoming environmental stress.

  4. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  5. Circadian and pharmacological regulation of casein kinase I in the ...

    Indian Academy of Sciences (India)

    In mammals, the mechanism for the generation of circadian rhythms and entrainment by light–dark (LD) cycles resides in the hypothalamic suprachiasmatic nuclei (SCN), and the principal signal that adjusts this biological clock with environmental timing is the light:dark cycle. Within the SCN, rhythms are generated by a ...

  6. Circadian control of isoprene emissions from oil palm (Elaeis guineensis).

    Science.gov (United States)

    Wilkinson, Michael J; Owen, Susan M; Possell, Malcolm; Hartwell, James; Gould, Peter; Hall, Anthony; Vickers, Claudia; Nicholas Hewitt, C

    2006-09-01

    The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.

  7. Studies on circadian rhythm disturbances and melatonin in delirium

    NARCIS (Netherlands)

    de Jonghe, A.-M.

    2014-01-01

    The circadian sleep/wake rhythm disturbances that are seen in delirium and the role of melatonin supplementation provide a new angle in delirium research. More research is needed to determine the role of melatonin in the pathophysiological mechanisms of delirium and to determine whether the

  8. Organization of Circadian Behavior Relies on Glycinergic Transmission.

    Science.gov (United States)

    Frenkel, Lia; Muraro, Nara I; Beltrán González, Andrea N; Marcora, María S; Bernabó, Guillermo; Hermann-Luibl, Christiane; Romero, Juan I; Helfrich-Förster, Charlotte; Castaño, Eduardo M; Marino-Busjle, Cristina; Calvo, Daniel J; Ceriani, M Fernanda

    2017-04-04

    The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Light, the circadian timing system, and type 2 diabetes

    NARCIS (Netherlands)

    Stenvers, D.J.

    2017-01-01

    Life evolved in conditions of a 24-hour rhythm of light and darkness, as dictated by the rotation of the earth. To prepare for the resulting behavioral rhythms of feeding/fasting and activity/sleep, mammals possess a circadian timing system, consisting of a central brain clock and peripheral clocks

  10. Evolving roles of circadian rhythms in liver homeostasis and pathology

    Science.gov (United States)

    Chen, Lu; Jia, Leijuan; Yuan, Jie; Sun, Mei; Zhang, Wen; Wang, Peipei; Zuo, Jian; Xu, Zhenyu; Luan, Jiajie

    2016-01-01

    Circadian clock in mammals is determined by a core oscillator in the suprachiasmatic nucleus (SCN) of the hypothalamus and synchronized peripheral clocks in other tissues. The coherent timing systems could sustain robust output of circadian rhythms in response to the entrainment controlled environmentally. Disparate approaches have discovered that clock genes and clock-controlled genes (CCGs) exist in nearly all mammalian cell types and are essential for establishing the mechanisms and complexity of internal time-keeping systems. Accumulating evidence demonstrates that the control of homeostasis and pathology in the liver involves intricate loops of transcriptional and post-translational regulation of clock genes expression. This review will focus on the recent advances with great importance concerning clock rhythms linking liver homeostasis and diseases. We particularly highlight what is currently known of the evolving insights into the mechanisms underlying circadian clock. Eventually, findings during recent years in the field might prompt new circadian-related chronotherapeutic strategies for the diagnosis and treatment of liver diseases by coupling these processes PMID:26843619

  11. On the genetic basis of temperature compensation of circadian clocks

    Indian Academy of Sciences (India)

    Unknown

    Rhythms 1, 187–198. Mattern D. L., Forman L. R. and Brody S. 1982 Circadian rhythms in Neurospora crassa: a mutation affecting tempera- ture compensation. Proc. Natl. Acad. Sci. USA 79, 825–829. Sawyer L, Hennessy M. J., Peixoto A. A., Rosato E., Parkinson. H., Costa R. and Kyriacou C. P. 1997 Natural variation in a.

  12. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy.

    Science.gov (United States)

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-06-01

    Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. © 2016 Associated Professional Sleep Societies, LLC.

  13. The Effect of Cataract Surgery on Circadian Photoentrainment

    DEFF Research Database (Denmark)

    Brøndsted, Adam Elias; Sander, Birgit; Haargaard, Birgitte

    2015-01-01

    PURPOSE: Cataract decreases blue light transmission. Because of the selective blue light sensitivity of the retinal ganglion cells governing circadian photoentrainment, cataract may interfere with normal sleep-wake regulation and cause sleep disturbances. The purpose was to investigate the effect...

  14. Peripheral circadian clocks are diversely affected by adrenalectomy

    Czech Academy of Sciences Publication Activity Database

    Soták, Matúš; Bryndová, Jana; Ergang, Peter; Vagnerová, Karla; Kvapilová, Pavlína; Vodička, Martin; Pácha, Jiří; Sumová, Alena

    2016-01-01

    Roč. 33, č. 5 (2016), s. 520-529 ISSN 0742-0528 R&D Projects: GA ČR(CZ) GA13-08304S Institutional support: RVO:67985823 Keywords : adrenalectomy * circadian rhythms * corticosterone * peripheral clock Subject RIV: ED - Physiology Impact factor: 2.562, year: 2016

  15. Circadian effects of dopaminergic treatment in restless legs syndrome.

    Science.gov (United States)

    Garcia-Borreguero, Diego; Serrano, Carolina; Larrosa, Oscar; Granizo, Juan José

    2004-07-01

    Although an essential diagnostic feature of restless legs syndrome (RLS) is the presence of circadian symptom variations, with an increase in the evening or at night, the mechanisms underlying this time-bound variation remain unknown. Since dopaminergic mechanisms seem to play a central role in the pathophysiology of RLS, it is likely that circadian variations in the dopaminergic system or factors affecting it cause the nightly increase. The reverse is also possible; dopaminergic medication might affect melatonin function, a key element of the circadian system. The present study investigated the effects of dopaminergic medication on melatonin secretion in RLS. Eight previously untreated patients diagnosed with idiopathic RLS underwent a three-week, open-labeled treatment with 400 mg L-DOPA (+100 mg CarbiDOPA). Dim Light Melatonin Onset (DLMO), a marker of circadian phase, was determined before and after treatment. Compared to baseline, earlier DLMO was found in L-DOPA treated patients (21:00+/-1:20 vs. 18:50+/-0:55; P < 0.05). Anticipation of DLMO was more marked in the subgroup of patients showing augmentation. A positive correlation was observed between change of DLMO, sleep latency and time of onset of symptoms following treatment with L-DOPA. Our results suggest that L-DOPA may exert chronobiotic effects in RLS.

  16. Changes in the colour of light cue circadian activity

    Science.gov (United States)

    Kuchenbecker, James A.; Neitz, Maureen

    2012-01-01

    The discovery of melanopsin, the non-visual opsin present in intrinsically photosensitive retinal ganglion cells (ipRGCs), has created great excitement in the field of circadian biology. Now, researchers have emphasized melanopsin as the main photopigment governing circadian activity in vertebrates. Circadian biologists have tested this idea under standard laboratory, 12h Light: 12h Dark, lighting conditions that lack the dramatic daily colour changes of natural skylight. Here we used a stimulus paradigm in which the colour of the illumination changed throughout the day, thus mimicking natural skylight, but luminance, sensed intrinsically by melanopsin containing ganglion cells, was kept constant. We show in two species of cichlid, Aequidens pulcher and Labeotropheus fuelleborni, that changes in light colour, not intensity, are the primary determinants of natural circadian activity. Moreover, opponent-cone photoreceptor inputs to ipRGCs mediate the sensation of wavelength change, and not the intrinsic photopigment, melanopsin. These results have implications for understanding the evolutionary biology of non-visual photosensory pathways and answer long-standing questions about the nature and distribution of photopigments in organisms, including providing a solution to the mystery of why nocturnal animals routinely have mutations that interrupt the function of their short wavelength sensitive photopigment gene. PMID:22639465

  17. Quantitative analyses of circadian gene expression in mammalian cell cultures.

    Directory of Open Access Journals (Sweden)

    Mariko Izumo

    2006-10-01

    Full Text Available The central circadian pacemaker is located in the hypothalamus of mammals, but essentially the same oscillating system operates in peripheral tissues and even in immortalized cell lines. Using luciferase reporters that allow automated monitoring of circadian gene expression in mammalian fibroblasts, we report the collection and analysis of precise rhythmic data from these cells. We use these methods to analyze signaling pathways of peripheral tissues by studying the responses of Rat-1 fibroblasts to ten different compounds. To quantify these rhythms, which show significant variation and large non-stationarities (damping and baseline drifting, we developed a new fast Fourier transform-nonlinear least squares analysis procedure that specifically optimizes the quantification of amplitude for circadian rhythm data. This enhanced analysis method successfully distinguishes among the ten signaling compounds for their rhythm-inducing properties. We pursued detailed analyses of the responses to two of these compounds that induced the highest amplitude rhythms in fibroblasts, forskolin (an activator of adenylyl cyclase, and dexamethasone (an agonist of glucocorticoid receptors. Our quantitative analyses clearly indicate that the synchronization mechanisms by the cAMP and glucocorticoid pathways are different, implying that actions of different genes stimulated by these pathways lead to distinctive programs of circadian synchronization.

  18. Circadian remodeling of neuronal circuits involved in rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    María Paz Fernández

    2008-03-01

    Full Text Available Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

  19. On the genetic basis of temperature compensation of circadian clocks

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 83; Issue 1. On the genetic basis of temperature compensation of circadian clocks. Vijay Kumar Sharma. Hypothesis Volume 83 Issue 1 April 2004 pp 9-11. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jgen/083/01/0009-0011 ...

  20. The Cell Cycle & Circadian Clock: a tale of two cycles

    NARCIS (Netherlands)

    E. Destici (Eugin)

    2010-01-01

    textabstractMost organisms have evolved an internal timekeeper to anticipate and coordinate internal processes with the external 24-h environment imposed upon all living creatures due to rotation of the Earth around its axis. At the cellular level, the circadian clock is generated by a genetic

  1. The electroretinogram as a method for studying circadian rhythms in ...

    Indian Academy of Sciences (India)

    Circadian clocks are thought to regulate retinal physiology in anticipation of the large variation in environmental irradiance associated with the earth's rotation upon its axis. In this review we discuss some of the rhythmic events that occur in the mammalian retina, and their consequences for retinal physiology. We also review ...

  2. Stochastic Simulation of Delay-Induced Circadian Rhythms in Drosophila

    Directory of Open Access Journals (Sweden)

    Xu Zhouyi

    2009-01-01

    Full Text Available Circadian rhythms are ubiquitous in all eukaryotes and some prokaryotes. Several computational models with or without time delays have been developed for circadian rhythms. Exact stochastic simulations have been carried out for several models without time delays, but no exact stochastic simulation has been done for models with delays. In this paper, we proposed a detailed and a reduced stochastic model with delays for circadian rhythms in Drosophila based on two deterministic models of Smolen et al. and employed exact stochastic simulation to simulate circadian oscillations. Our simulations showed that both models can produce sustained oscillations and that the oscillation is robust to noise in the sense that there is very little variability in oscillation period although there are significant random fluctuations in oscillation peeks. Moreover, although average time delays are essential to simulation of oscillation, random changes in time delays within certain range around fixed average time delay cause little variability in the oscillation period. Our simulation results also showed that both models are robust to parameter variations and that oscillation can be entrained by light/dark circles. Our simulations further demonstrated that within a reasonable range around the experimental result, the rates that dclock and per promoters switch back and forth between activated and repressed sites have little impact on oscillation period.

  3. Circadian control of the sleep-wake cycle

    NARCIS (Netherlands)

    Beersma, Domien G. M.; Gordijn, Marijke C. M.

    2007-01-01

    It is beyond doubt that the timing of sleep is under control of the circadian pacemaker. Humans are a diurnal species; they sleep mostly at night, and they do so at approximately 24-h intervals. If they do not adhere to this general pattern, for instance when working night shifts or when travelling

  4. Circadian and pharmacological regulation of casein kinase I in the ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... Agostino P. V., Ferreyra G. A., Murad A. D., Watanabe Y. and. Golombek D. A. 2004 Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric ox- ide synthase in the hamster suprachiasmatic nuclei. Neurochem. Int. 44, 617–625. Agostino P. V., Harrington M. E., ...

  5. Evidence supporting a circadian control of natural killer cell function.

    Science.gov (United States)

    Arjona, Alvaro; Sarkar, Dipak K

    2006-09-01

    Natural killer (NK) cells participate in the immune response against infection and cancer. An emerging body of epidemiological data supports that circadian homeostasis may constitute a factor risk for cancer development. Physiological rhythms under circadian control persist in the absence of light entrainment and ultimately rely on a molecular clock. We have previously shown that NK cell cytolytic activity follows a daily rhythm and that NK cells enriched from light-entrained rats present 24-h oscillations of clock genes, cytolytic factors, and cytokines. To investigate whether these oscillations are under a genuine circadian control, we assessed the daily expression of clock genes (Per1, Per2, Clock, and Bmal1), a clock-controlled gene (Dbp), cytolytic factors (granzyme B and perforin), and cytokines (IFN-gamma and TNF-alpha) in NK cells enriched from rats maintained in constant darkness (DD). In addition, we investigated whether the disruption of the NK cell clock by RNA interference (RNAi) affects the expression of cytolytic factors and cytokines. Persistent 24-h oscillations were found in the expression levels of clock genes, cytolytic factors, and cytokines in NK cells enriched from DD rats. In addition, RNAi-mediated Per2 knockdown caused a significant decrease of granzyme B and perforin levels in the rat derived NK cell line RNK16. Taken together, these results provide evidence supporting that NK cell function is under circadian regulation.

  6. Transcripts from the Circadian Clock: Telling Time and Season

    NARCIS (Netherlands)

    K. Brand (Karl)

    2011-01-01

    textabstractWe all know it when we wake mere moments before an alarm clock is scheduled to wake us: our body clock made the alarm clock redundant. This phenomenon is driven by an endogenous timer known as the biological, or circadian clock. Each revolution of the Earth about its own axis produces

  7. The role of the circadian system in fractal neurophysiological control.

    Science.gov (United States)

    Pittman-Polletta, Benjamin R; Scheer, Frank A J L; Butler, Matthew P; Shea, Steven A; Hu, Kun

    2013-11-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  8. Does the circadian modulation of dream recall modify with age?

    Science.gov (United States)

    Chellappa, Sarah Laxhmi; Münch, Mirjam; Blatter, Katharina; Knoblauch, Vera; Cajochen, Christian

    2009-09-01

    The ultradian NREM-REM sleep cycle and the circadian modulation of REM sleep sum to generate dreaming. Here we investigated age-related changes in dream recall, number of dreams, and emotional domain characteristics of dreaming during both NREM and REM sleep. Analysis of dream recall and sleep EEG (NREM/REM sleep) during a 40-h multiple nap protocol (150 min of wakefulness and 75 min of sleep) under constant routine conditions. Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland. Seventeen young (20-31 years) and 15 older (57-74 years) healthy volunteers N/A. Dream recall and number of dreams varied significantly across the circadian cycle and between age groups, with older subjects exhibiting fewer dreams (P REM sleep. No significant age differences were observed for the emotional domain of dream content. Since aging was associated with attenuated amplitude in the circadian modulation of REM sleep, our data suggest that the age-related decrease in dream recall can result from an attenuated circadian modulation of REM sleep.

  9. Development of the circadian clockwork in the kidney

    DEFF Research Database (Denmark)

    Mészáros, Krisztina; Pruess, Linda; Szabó, Attila J.

    2014-01-01

    The circadian molecular clock is an internal time-keeping system composed of centrally synchronized tissue-level pacemakers. Here, we explored the ontogeny of the clock machinery in the developing kidney. Pregnant rats were housed at 12-12 h light-dark cycles. Offsprings were killed at 4-h...

  10. Circadian changes in pulsatile TSH release in primary hypothyroidism

    NARCIS (Netherlands)

    Adriaanse, R.; Brabant, G.; Prank, K.; Endert, E.; Wiersinga, W. M.

    1992-01-01

    We evaluated pulsatile and circadian TSH secretion in primary hypothyroidism. In a prospective study, blood was sampled every 10 minutes during 24 hours for assay of TSH (IRMA). Thyroid hormones and TSH responsiveness to TRH were then measured. Nine patients with overt primary hypothyroidism, seven

  11. Circadian secretion patterns of ß-endorphin and leucine enkephalin

    Directory of Open Access Journals (Sweden)

    E. H. de Wet

    1992-07-01

    Full Text Available ß-endorphin and leucine enkephalin are neuropeptides with potent opioid activity. In a study to investigate the circadian secretion patterns of the above-mentioned, blood samples were collected hourly from 12 healthy males who were subjected to the experiment for 24 hours. Radioimmunoassays were used in the analysis of plasma samples for ß-endorphin and leucine enkephalin. Peak concentrations of ß-endorphin were demonstrated from 08:00-09:00, while peak concentrations of leucine enkephalin occured from 23:00-07:00. Trough concentrations of ß-endorphin occurred from 24:00-05:00, while trough con­centrations of leucine enkephalin were demonstrated from 09:00-12:00. The illustrated circadian secretion pattern for ß-endorphin simulates the well-known circadian rhythm of cortisol. The answer to this may be in the fact that ß-endorphin and corticotropin stem from the same precursor. The illustrated circadian secretion pattern for leucine enkephalin simulates that of melatonin. The reason for this is unclear.

  12. Circadian urinary citrate excretion in a rat model of exercise.

    Science.gov (United States)

    Nuñez, Paula; Diaz, Irene; Perillan, Carmen; Arguelles, Juan; Diaz, Elena

    2017-01-15

    Circadian rhythms are the approximate 24h biological cycles that function to prepare an organism for daily environmental changes. Circadian rhythms unquestionably play critical roles in metabolic homeostasis and the exercise has emerged as a strong non-photic time cue or zeitgeber in animal models and humans. Numerous studies about the effects of exercise on the citrate synthase activity have been published. Citrate is used to assess energy production or expenditure because it is a substrate of the Krebs Cycle, a cycle for oxidative energy production. We tested the existence of a rhythmic urinary citrate excretion in a rat model that is made to exercise at six different points during the day. The data obtained by the enzyme assays were fitted to a mathematical model (Fourier series), showing for the first time, the existence of a distinct ultradian rhythm in the urinary citrate excretion. The aerobic exercise led to the increase in the period length of the ultradian rhythm and raised the acrophase value of the urinary citrate excretion. Therefore, the urinary citrate excretion pattern changed after exercise, showing a clear circadian rhythm fitted to the mathematical model. The citrate urine samples could provide accurate data for ranking an individual's metabolic status. Using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective to prevent cardiometabolic disease development. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Circadian rhythms, nutrition and implications for longevity in urban environments.

    Science.gov (United States)

    Froy, O

    2017-10-25

    Presently, about 12% of the population is 65 years or older and by the year 2030 that figure is expected to reach 21%. In order to promote the well-being of the elderly and to reduce the costs associated with health care demands, increased longevity should be accompanied by ageing attenuation. Energy restriction, which limits the amount of energy consumed to 60-70% of the daily intake, and intermittent fasting, which allows the food to be available ad libitum every other day, extend the life span of mammals and prevent or delay the onset of major age-related diseases, such as cancer, diabetes and cataracts. Recently, we have shown that well-being can be achieved by resetting of the circadian clock and induction of robust catabolic circadian rhythms via timed feeding. In addition, the clock mechanism regulates metabolism and major metabolic proteins are key factors in the core clock mechanism. Therefore, it is necessary to increase our understanding of circadian regulation over metabolism and longevity and to design new therapies based on this regulation. This review will explore the present data in the field of circadian rhythms, ageing and metabolism.

  14. Changes in the colour of light cue circadian activity.

    Science.gov (United States)

    Pauers, Michael J; Kuchenbecker, James A; Neitz, Maureen; Neitz, Jay

    2012-05-01

    The discovery of melanopsin, the non-visual opsin present in intrinsically photosensitive retinal ganglion cells (ipRGCs), has created great excitement in the field of circadian biology. Now, researchers have emphasized melanopsin as the main photopigment governing circadian activity in vertebrates. Circadian biologists have tested this idea under standard laboratory, 12h Light: 12h Dark, lighting conditions that lack the dramatic daily colour changes of natural skylight. Here we used a stimulus paradigm in which the colour of the illumination changed throughout the day, thus mimicking natural skylight, but luminance, sensed intrinsically by melanopsin containing ganglion cells, was kept constant. We show in two species of cichlid, Aequidens pulcher and Labeotropheus fuelleborni, that changes in light colour, not intensity, are the primary determinants of natural circadian activity. Moreover, opponent-cone photoreceptor inputs to ipRGCs mediate the sensation of wavelength change, and not the intrinsic photopigment, melanopsin. These results have implications for understanding the evolutionary biology of non-visual photosensory pathways and answer long-standing questions about the nature and distribution of photopigments in organisms, including providing a solution to the mystery of why nocturnal animals routinely have mutations that interrupt the function of their short wavelength sensitive photopigment gene.

  15. Adaptive Significance of Circadian Rhythms-Biological Clocks and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Adaptive Significance of Circadian Rhythms - Biological Clocks and Darwinian Fitness in Cyanobacteria. V Sheeba Vijay Kumar Sharma Amitabh Joshi. Research News Volume 4 Issue 1 January 1999 pp 73-75 ...

  16. Circadian organization is governed by extra-SCN pacemakers.

    Science.gov (United States)

    Pezuk, Pinar; Mohawk, Jennifer A; Yoshikawa, Tomoko; Sellix, Michael T; Menaker, Michael

    2010-12-01

    In mammals, a pacemaker in the suprachiasmatic nucleus (SCN) is thought to be required for behavioral, physiological, and molecular circadian rhythms. However, there is considerable evidence that temporal food restriction (restricted feedisng [RF]) and chronic methamphetamine (MA) can drive circadian rhythms of locomotor activity, body temperature, and endocrine function in the absence of SCN. This indicates the existence of extra-SCN pacemakers: the Food Entrainable Oscillator (FEO) and Methamphetamine Sensitive Circadian Oscillator (MASCO). Here, we show that these extra-SCN pacemakers control the phases of peripheral oscillators in intact as well as in SCN-ablated PER2::LUC mice. MA administration shifted the phases of SCN, cornea, pineal, pituitary, kidney, and salivary glands in intact animals. When the SCN was ablated, disrupted phase relationships among peripheral oscillators were reinstated by MA treatment. When intact animals were subjected to restricted feeding, the phases of cornea, pineal, kidney, salivary gland, lung, and liver were shifted. In SCN-lesioned restricted-fed mice, phases of all of the tissues shifted such that they aligned with the time of the meal. Taken together, these data show that FEO and MASCO are strong circadian pacemakers able to regulate the phases of peripheral oscillators.

  17. Considerations for RNA-seq analysis of circadian rhythms.

    Science.gov (United States)

    Li, Jiajia; Grant, Gregory R; Hogenesch, John B; Hughes, Michael E

    2015-01-01

    Circadian rhythms are daily endogenous oscillations of behavior, metabolism, and physiology. At a molecular level, these oscillations are generated by transcriptional-translational feedback loops composed of core clock genes. In turn, core clock genes drive the rhythmic accumulation of downstream outputs-termed clock-controlled genes (CCGs)-whose rhythmic translation and function ultimately underlie daily oscillations at a cellular and organismal level. Given the circadian clock's profound influence on human health and behavior, considerable efforts have been made to systematically identify CCGs. The recent development of next-generation sequencing has dramatically expanded our ability to study the expression, processing, and stability of rhythmically expressed mRNAs. Nevertheless, like any new technology, there are many technical issues to be addressed. Here, we discuss considerations for studying circadian rhythms using genome scale transcriptional profiling, with a particular emphasis on RNA sequencing. We make a number of practical recommendations-including the choice of sampling density, read depth, alignment algorithms, read-depth normalization, and cycling detection algorithms-based on computational simulations and our experience from previous studies. We believe that these results will be of interest to the circadian field and help investigators design experiments to derive most values from these large and complex data sets. © 2015 Elsevier Inc. All rights reserved.

  18. Circadian rhythms in a long-term duration space flight

    Science.gov (United States)

    Alpatov, Alexey M.

    In order to maintain cosmonaut health and performance, it is important for the work-rest schedule to follow human circadian rhythms (CR). What happens with CR in space flight? Investigations of CR in mammals revealed, that the circadian phase in flight is less stable, probably due to a displacement of the range of entrainment, resulting from internal period change (the latter was confirmed on insects). The circadian period may be a gravity-dependent parameter. If so, the basic biological requirement for the day length might be different in weightlessness. On this basis, a higher risk of desynchronosis is expected in a long-duration space flight. As a countermeasure, a non-24-hr day length could be suggested, being close to the internal circadian period (in humans about 25 hr). Taking into account a possible displacement of period in weightlessness, it seems reasonable to establish a flexible work-rest schedule, capable to follow the body temperature CR by means of biofeedback.

  19. Living by the clock: the circadian pacemaker in older people

    NARCIS (Netherlands)

    Hofman, Michel A.; Swaab, Dick F.

    2006-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be a critical component of a neural oscillator system implicated in the timing of a wide variety of biological processes. The circadian cycles established by this biological clock occur throughout nature and have a period of

  20. Circadian phase and its relationship to nighttime sleep in toddlers.

    Science.gov (United States)

    LeBourgeois, Monique K; Carskadon, Mary A; Akacem, Lameese D; Simpkin, Charles T; Wright, Kenneth P; Achermann, Peter; Jenni, Oskar G

    2013-10-01

    Circadian phase and its relation to sleep are increasingly recognized as fundamental factors influencing human physiology and behavior. Dim light melatonin onset (DLMO) is a reliable marker of the timing of the circadian clock, which has been used in experimental, clinical, and descriptive studies in the past few decades. Although DLMO and its relationship to sleep have been well documented in school-aged children, adolescents, and adults, very little is known about these processes in early childhood. The purpose of this study was 1) to describe circadian phase and phase angles of entrainment in toddlers and 2) to examine associations between DLMO and actigraphic measures of children's nighttime sleep. Participants were 45 healthy toddlers aged 30 to 36 months (33.5 ± 2.2 months; 21 females). After sleeping on a parent-selected schedule for 5 days (assessed with actigraphy and diaries), children participated in an in-home DLMO assessment involving the collection of saliva samples every 30 minutes for 6 hours. Average bedtime was 2015 ± 0036 h, average sleep onset time was 2043 ± 0043 h, average midsleep time was 0143 ± 0038 h, and average wake time was 0644 ± 0042 h. Average DLMO was 1929 ± 0051 h, with a 3.5-hour range. DLMO was normally distributed; however, the distribution of the bedtime, sleep onset time, and midsleep phase angles of entrainment were skewed. On average, DLMO occurred 47.8 ± 47.6 minutes (median = 39.4 minutes) before bedtime, 74.6 ± 48.0 minutes (median = 65.4 minutes) before sleep onset time, 6.2 ± 0.7 hours (median = 6.1 hours) before midsleep time, and 11.3 ± 0.7 hours before wake time. Toddlers with later DLMOs had later bedtimes (r = 0.46), sleep onset times (r = 0.51), midsleep times (r = 0.66), and wake times (r = 0.65) (all p < 0.001). Interindividual differences in toddlers' circadian phase are large and associated with their sleep timing. The early DLMOs of toddlers indicate a maturational delay in the circadian timing