TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [JLAB, Old Dominion U.
2013-05-01
Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, we discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.
Eikonal propagators and high-energy parton-parton scattering in gauge theories
International Nuclear Information System (INIS)
Meggiolaro, Enrico
2001-01-01
In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed
Nucleon parton distributions in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Moiseeva, Alena
2013-11-19
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ{sup 2}), H(x,ξ,Δ{sup 2}),E(x,ξ,Δ{sup 2}) valid in the region x>or similar a{sup 2}{sub χ}.
Generalized parton distributions for the nucleon in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics
2006-11-15
We complete the analysis of twist-two generalized parton distributions of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion. (orig.)
Generalized parton distributions for the nucleon in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, Theory Group, Hamburg (Germany); Manashov, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Sankt-Petersburg State University, Department of Theoretical Physics, St.-Petersburg (Russian Federation); Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany)
2007-03-15
We complete the analysis of twist-two generalized parton distributions of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion. (orig.)
Renormalization in Large Momentum Effective Theory of Parton Physics
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-01
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
Systematic improvement of parton showers with effective theory
International Nuclear Information System (INIS)
Baumgart, Matthew; Marcantonini, Claudio; Stewart, Iain W.
2011-01-01
We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1→2 and 1→3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.
Generalized parton distributions for the pion in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M.; Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation). Kafedra Teoreticheskoj Fiziki; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2005-05-01
Generalized parton distributions provide a unified parameterization of hadron structure and allow one to combine information from many different observables. Lattice QCD calculations already provide important input to determine these distributions and hold the promise to become even more important in the future. To this end, a reliable extrapolation of lattice calculations to the physical quark and pion masses is needed. We present an analysis for the moments of generalized parton distributions of the pion in one-loop order of chiral perturbation theory. (orig.)
Generalized parton distributions for the pion in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, D-22603 Hamburg (Germany); Manashov, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany) and Department of Theoretical Physics, Sankt-Petersburg State University, St. Petersburg (Russian Federation)]. E-mail: alexander.manashov@physik.uni-regensburg.de; Schaefer, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)
2005-08-25
Generalized parton distributions provide a unified parameterization of hadron structure and allow one to combine information from many different observables. Lattice QCD calculations already provide important input to determine these distributions and hold the promise to become even more important in the future. To this end, a reliable extrapolation of lattice calculations to the physical quark and pion masses is needed. We present an analysis for the moments of generalized parton distributions of the pion in one-loop order of chiral perturbation theory.
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, Theory Group, Hamburg (Germany); Manashov, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Schaefer, A. [Sankt-Petersburg State University, Department of Theoretical Physics, St.-Petersburg (Russian Federation)
2006-09-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Generalized Parton Distributions in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Kivel, Nikolai; Polyakov, Maxim; Vladimirov, Aleksey [Ruhr Universitaet, Bochum (Germany)
2009-07-01
We used {chi}PT approach to study the small-t behavior of the Generalized Parton Distributions (GPDs). We demonstrate that in the region of Bjorken x{sub Bj}{proportional_to}m{sub {pi}}{sup 2}/(4{pi}F{sub {pi}}){sup 2} and/or x{sub Bj}{proportional_to} vertical stroke t vertical stroke /(4{pi}F{sub {pi}}){sup 2} the standard {chi}PT for the pion GPDs is not sufficient and one must perform all order resummation of {chi}PT. We develop the technique in order to sum the problematic contributions with the leading logarithmic accuracy. We apply this approach for the pion GPDs and compute their behavior at the region of small-x{sub Bj}. Explicit resummation allows us to reveal novel phenomena - the form of the leading chiral correction to pion PDFs and GPDs depends on the small x asymptotic of the pion PDFs. In particular, if the pion PDF in the chiral limit has the Regge-like small x behaviour q(x){proportional_to}1/x{sup {omega}}, the leading large impact parameter (b {sub perpendicular} {sub to} {yields}{infinity}) asymptotics of the quark distribution in the transverse plane has the form (m{sub {pi}}=0) q(x,b {sub perpendicular} {sub to}){proportional_to}1/x{sup {omega}} ln{sup {omega}}(b {sub perpendicular} {sub to} {sup 2})/b {sub perpendicular} {sub to} {sup 2(1+{omega})}. This result is model independent and it is controlled completely by the all order resummed {chi}PT.
Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Wein, Philipp
2016-05-06
In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.
Parton Theory of Magnetic Polarons: Mesonic Resonances and Signatures in Dynamics
Grusdt, F.; Kánasz-Nagy, M.; Bohrdt, A.; Chiu, C. S.; Ji, G.; Greiner, M.; Greif, D.; Demler, E.
2018-01-01
When a mobile hole is moving in an antiferromagnet it distorts the surrounding Néel order and forms a magnetic polaron. Such interplay between hole motion and antiferromagnetism is believed to be at the heart of high-temperature superconductivity in cuprates. In this article, we study a single hole described by the t -Jz model with Ising interactions between the spins in two dimensions. This situation can be experimentally realized in quantum gas microscopes with Mott insulators of Rydberg-dressed bosons or fermions, or using polar molecules. We work at strong couplings, where hole hopping is much larger than couplings between the spins. In this regime we find strong theoretical evidence that magnetic polarons can be understood as bound states of two partons, a spinon and a holon carrying spin and charge quantum numbers, respectively. Starting from first principles, we introduce a microscopic parton description which is benchmarked by comparison with results from advanced numerical simulations. Using this parton theory, we predict a series of excited states that are invisible in the spectral function and correspond to rotational excitations of the spinon-holon pair. This is reminiscent of mesonic resonances observed in high-energy physics, which can be understood as rotating quark-antiquark pairs carrying orbital angular momentum. Moreover, we apply the strong-coupling parton theory to study far-from-equilibrium dynamics of magnetic polarons observable in current experiments with ultracold atoms. Our work supports earlier ideas that partons in a confining phase of matter represent a useful paradigm in condensed-matter physics and in the context of high-temperature superconductivity in particular. While direct observations of spinons and holons in real space are impossible in traditional solid-state experiments, quantum gas microscopes provide a new experimental toolbox. We show that, using this platform, direct observations of partons in and out of equilibrium are
Yangian and SUSY symmetry of high spin parton splitting amplitudes in generalised Yang-Mills theory
Kirschner, Roland; Savvidy, George
2017-07-01
We have calculated the high spin parton splitting amplitudes postulating the Yangian symmetry of the scattering amplitudes for tensor gluons. The resulting splitting amplitudes coincide with the earlier calculations, which were based on the BCFW recursion relations. The resulting formula unifies all known splitting probabilities found earlier in gauge field theories. It describes splitting probabilities for integer and half-integer spin particles. We also checked that the splitting probabilities fulfil the generalised Kounnas-Ross 𝒩 = 1 supersymmetry relations hinting to the fact that the underlying theory can be formulated in an explicit supersymmetric manner.
Energy Technology Data Exchange (ETDEWEB)
Dorati, Marina [Dipartimento di Fisica Nucleare e Teorica, Universita' degli Studi di Pavia and INFN, Pavia (Italy); Physik-Department, Theoretische Physik T39, TU Muenchen, D-85747 Garching (Germany); Gail, Tobias A. [Physik-Department, Theoretische Physik T39, TU Muenchen, D-85747 Garching (Germany)], E-mail: tgail@ph.tum.de; Hemmert, Thomas R. [Physik-Department, Theoretische Physik T39, TU Muenchen, D-85747 Garching (Germany)
2008-01-15
We discuss the first moments of the parity-even Generalized Parton Distributions (GPDs) in a nucleon, corresponding to six (generalized) vector form factors. We evaluate these fundamental properties of baryon structure at low energies, utilizing the methods of covariant Chiral Perturbation Theory in the baryon sector (BChPT). Our analysis is performed at leading-one-loop order in BChPT, predicting both the momentum and the quark-mass dependence for the three (generalized) isovector and (generalized) isoscalar form factors, which are currently under investigation in lattice QCD analyses of baryon structure. We also study the limit of vanishing four-momentum transfer where the GPD-moments reduce to the well-known moments of Parton Distribution Functions (PDFs). For the isovector moment
Effective field theory approach to parton-hadron conversion in high energy QCD processes
Kinder-Geiger, Klaus
1995-01-01
A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...
Dittmar, M.; Glazov, A.; Moch, S.; Altarelli, G.; Anderson, J.; Ball, R.D.; Beuf, G.; Boonekamp, M.; Burkhardt, H.; Caola, F.; Ciafaloni, M.; Colferai, D.; Cooper-Sarkar, A.; de Roeck, A.; Del Debbio, L.; Feltesse, J.; Gelis, F.; Grebenyuk, J.; Guffanti, A.; Halyol, V.; Latorre, J.I.; Lendermann, V.; Li, G.; Motyka, L.; Petersen, T.; Piccione, A.; Radescu, V.; Rogal, M.; Rojo, J.; Royon, C.; Salam, G.P.; Salek, D.; Stasto, A.M.; Thorne, R.S.; Ubiali, M.; Vermaseren, J.A.M.; Vogt, A.; Watt, G.; White, C.D.
2009-01-01
We provide an assessment of the state of the art in various issues related to experimental measurements, phenomenological methods and theoretical results relevant for the determination of parton distribution functions (PDFs) and their uncertainties, with the specific aim of providing benchmarks of different existing approaches and results in view of their application to physics at the LHC. We discuss higher order corrections, we review and compare different approaches to small x resummation, and we assess the possible relevance of parton saturation in the determination of PDFS at HERA and its possible study in LHC processes. We provide various benchmarks of PDF fits, with the specific aim of studying issues of error propagation, non-gaussian uncertainties, choice of functional forms of PDFs, and combination of data from different experiments and different processes. We study the impact of combined HERA (ZEUS-H1) structure function data, their impact on PDF uncertainties, and their implications for the computa...
Pre-equilibrium parton dynamics: Proceedings
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin-Nian [ed.
1993-12-31
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base.
Pre-equilibrium parton dynamics: Proceedings
International Nuclear Information System (INIS)
Wang, Xin-Nian
1993-01-01
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base
Structure functions and parton distributions
International Nuclear Information System (INIS)
Olness, F.; Tung, Wu-Ki
1991-04-01
Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed
Hsieh, Timothy H.; Halász, Gábor B.
2017-10-01
Fracton topological phases host fractionalized excitations that are either completely immobile or only mobile along certain lines or planes. We demonstrate how such phases can be understood in terms of two fundamentally different types of parton constructions, in which physical degrees of freedom are decomposed into clusters of "parton" degrees of freedom subject to emergent gauge constraints. First, we employ noninteracting partons subject to multiple overlapping constraints to describe a fermionic fracton model. Second, we demonstrate how interacting partons can be used to develop new models of bosonic fracton phases, both with string and membrane logical operators (type-I fracton phases) and with fractal logical operators (type-II fracton phases). In particular, we find a new type-II model, which saturates a bound on its information storage capacity. Our parton approach is generic beyond exactly solvable models and provides a variational route to realizing fracton phases in more physically realistic systems.
DEFF Research Database (Denmark)
Varbo, Anette; Nordestgaard, Børge G.
2017-01-01
Purpose of review: To review recent advances in the field of remnant lipoproteins and remnant cholesterol with a focus on cardiovascular disease risk. Recent findings: In line with previous years' research, current observational, genetic, and mechanistic studies find remnant lipoproteins (defined...
Are Parton Distributions Positive?
Forte, Stefano; Ridolfi, Giovanni; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni
1999-01-01
We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution
Are parton distributions positive?
International Nuclear Information System (INIS)
Forte, Stefano; Altarelli, Guido; Ridolfi, Giovanni
1999-01-01
We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution
Parton Distributions Working Group
International Nuclear Information System (INIS)
Barbaro, L. de; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.
2000-01-01
This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data
Parton Distributions Working Group
Energy Technology Data Exchange (ETDEWEB)
de Barbaro, L.; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.
2000-07-20
This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data.
Parton distribution functions in the context of parton showers
International Nuclear Information System (INIS)
Nagy, Zoltán; Soper, Davison E.
2014-01-01
When the initial state evolution of a parton shower is organized according to the standard “backward evolution” prescription, ratios of parton distribution functions appear in the splitting probabilities. The shower thus organized evolves from a hard scale to a soft cutoff scale. At the end of the shower, one expects that only the parton distributions at the soft scale should affect the results. The other effects of the parton distributions should have cancelled. This means that the kernels for parton evolution should be related to the shower splitting functions. If the initial state partons can have non-zero masses, this requires that the evolution kernels cannot be the usual (MS)-bar kernels. We work out what the parton evolution kernels should be to match the shower evolution contained in the parton shower event generator DEDUCTOR, in which the b and c quarks have non-zero masses.
International Nuclear Information System (INIS)
Close, F.E.
1976-01-01
The studies of inelastic electron scattering at SLAC and of neutrino scattering at CERN have been widely interpreted as giving support to the idea that the nucleon is built from elementary constituents, called partons, and that these partons have the same quantum numbers as the quarks that are familiar in spectroscopy. In particular, a very simple regularity in the data, known as scale invariance or just 'scaling' was seen at least at moderate energies (2 2 > approximately 1 GeV) which is natural in the parton model. The data on e + e - annihilation also appear to be consistent with scaling when Esub(cm) approximately 5 GeV. These lectures are concerned with the scaling phenomena. One may expect the new hadronic degree of freedom to generate scaling violations in inelastic electron and neutrino scattering. These are mentioned briefly in these lectures. (Auth.)
Ordering variable for parton showers
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-01-01
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Are partons confined tachyons?
International Nuclear Information System (INIS)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored
Giele, W.T.; Hartgring, L.; Kosower, D.A.; Laenen, E.L.M.P.; Larkoski, A.J.; Lopez-Villarejo, J.; Ritzmann, M.; Skands, P.
2013-01-01
We summarize recent developments in the VINCIA parton shower. After a brief review of the basics of the formalism, the extension of VINCIA to hadron collisions is sketched. We then turn to improvements of the efficiency of tree-level matching by making the shower history unique and by incorporating
Double parton scattering theory overview
Diehl, Markus; Gaunt, Jonathan R.
2017-01-01
The dynamics of double hard scattering in proton-proton collisions is quite involved compared with the familiar case of single hard scattering. In this contribution, we review our theoretical understanding of double hard scattering and of its interplay with other reaction mechanisms.
Thermalization through parton transport
International Nuclear Information System (INIS)
Zhang Bin
2010-01-01
A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.
Are partons confined tachyons?
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.
International Nuclear Information System (INIS)
Paschos, E.A.
1976-08-01
The quark parton model describes the inclusive electro- and neutrino production data if a clear distinction is made between reactions which take place at high and at low energies. For the low energy region the classical view of six structure functions of the proton is still adequate. For the high energy region models can be constructed which are consistent with the experimental data. (BJ) [de
Parton Distributions: Summary Report
Dittmar, M; Altarelli, Guido; Andersen, J; Ball, R D; Blümlein, J; Böttcher, Helmut B; Carli, T; Ciafaloni, Marcello; Colferai, D; Cooper-Sarkar, A; Corcella, Gennaro; Del Debbio, L; Dissertori, G; Feltesse, J; Forte, S; Glazov, A; Guffanti, A; Gwenlan, C; Huston, J; Ingelman, G; Klein, M; Lastoviicka, T; Lastoviicka-Medin, G; Latorre, J I; Magnea, L; Moch, S; Piccione, A; Pumplin, J; Ravindran, V; Reisert, B; Rojo, J; Salam, Gavin P; Siegert, F; Stasto, A M; Stenzel, H; Targett-Adams, C; Thorne, R S; Tricoli, A; Sabio Vera, Agustin; Vermaseren, J A M; Vogt, A
2005-01-01
We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC. We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of $F_L$), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbat...
Double parton scattering. A tale of two partons
Energy Technology Data Exchange (ETDEWEB)
Kasemets, Tomas
2013-08-15
Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)
Deep inelastic processes and the parton model
International Nuclear Information System (INIS)
Altarelli, G.
The lecture was intended as an elementary introduction to the physics of deep inelastic phenomena from the point of view of theory. General formulae and facts concerning inclusive deep inelastic processes in the form: l+N→l'+hadrons (electroproduction, neutrino scattering) are first recalled. The deep inelastic annihilation e + e - →hadrons is then envisaged. The light cone approach, the parton model and their relation are mainly emphasized
Directory of Open Access Journals (Sweden)
Kulagin S. A.
2017-01-01
Full Text Available We review a microscopic model of the nuclear parton distribution functions, which accounts for a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents, off-shell corrections to bound nucleon distributions and nuclear shadowing. We also discuss applications of this model to a number of processes including lepton-nucleus deep inelastic scattering, proton-nucleus Drell-Yan lepton pair production at Fermilab, as well as W± and Z0 boson production in proton-lead collisions at the LHC.
Unintegrated parton distributions in nuclei
de Oliveira, E. G.; Martin, A. D.; Navarra, F. S.; Ryskin, M. G.
2013-09-01
We study how unintegrated parton distributions in nuclei can be calculated from the corresponding integrated partons using the EPS09 parametrization. The role of nuclear effects is presented in terms of the ratio R A = uPDF A / A·PDF N for both large and small x domains.
Double parton scattering in the ultraviolet. Addressing the double counting problem
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [Nikhef Theory Group, Amsterdam (Netherlands); Amsterdam VU Univ. (Netherlands)
2016-11-15
An important question in the theory of double parton scattering is how to incorporate the possibility of the parton pairs being generated perturbatively via 1→ 2splitting into the theory, whilst avoiding double counting with single parton scattering loop corrections. Here, we describe a consistent approach for solving this problem, which retains the notion of double parton distributions (DPDs) for individual hadrons. Further, we discuss the construction of appropriate model DPDs in our framework, and the use of these to compute the DPS part, presenting DPS 'luminosities' from our model DPDs for a few sample cases.
BCFW recursion for TMD parton scattering
Energy Technology Data Exchange (ETDEWEB)
Hameren, Andreas van; Serino, Mirko [The H. Niewodniczański Institute of Nuclear Physics, Polisch Academy of Sciences,Radzikowskiego 152, 31-342, Cracow (Poland)
2015-07-03
We investigate the application of the BCFW recursion relation to scattering amplitudes with one off-shell particle in a Yang-Mills theory with fermions. We provide a set of conditions of applicability of the BCFW recursion, stressing some important differences with respect to the pure on-shell case. We show how the formulas for Maximally-Helicity-Violating (MHV) configurations with any number of partons, which are well known in the fully on-shell case, are generalized to this kinematic regime. We also derive analytic expressions for all the helicity configurations of the 5-point color-stripped tree-level amplitudes for any of the partons being off the mass shell.
Parton Distributions in the Higgs Boson Era
Rojo, Juan
2013-01-01
Parton distributions are an essential ingredient of the LHC program. PDFs are relevant for precision Standard Model measurements, for Higgs boson characterization as well as for New Physics searches. In this contribution I review recent progress in the determination of the parton distributions of the proton during the last year. Important developments include the impact of new LHC measurements to pin down poorly known PDFs, studies of theoretical uncertainties, higher order calculations for processes relevant for PDF determinations, PDF benchmarking exercises with LHC data, as well as methodological and statistical improvements in the global analysis framework. I conclude with some speculative considerations about future directions in PDF determinations from the theory point of view.
Nuclear Parton Distribution Functions
Energy Technology Data Exchange (ETDEWEB)
I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens
2009-06-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
Wee partons in large nuclei: From virtual dream to hard reality
International Nuclear Information System (INIS)
Venugopalan, R.
1995-01-01
We construct a weak coupling, many body theory to compute parton distributions in large nuclei for x much-lt A - 1/3 . The wee partons are highly coherent, non-Abelian Weizsaecker-Williams fields. Radiative corrections to the classical results axe discussed. The parton distributions for a single nucleus provide the initial conditions for the dynamical evolution of matter formed in ultrarelativistic nuclear collisions
Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming
2016-12-15
We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Parton shower and NLO-matching uncertainties in Higgs boson pair production
Jones, Stephen; Kuttimalai, Silvan
2018-02-01
We perform a detailed study of NLO parton shower matching uncertainties in Higgs boson pair production through gluon fusion at the LHC based on a generic and process independent implementation of NLO subtraction and parton shower matching schemes for loop-induced processes in the Sherpa event generator. We take into account the full top-quark mass dependence in the two-loop virtual corrections and compare the results to an effective theory approximation. In the full calculation, our findings suggest large parton shower matching uncertainties that are absent in the effective theory approximation. We observe large uncertainties even in regions of phase space where fixed-order calculations are theoretically well motivated and parton shower effects expected to be small. We compare our results to NLO matched parton shower simulations and analytic resummation results that are available in the literature.
QCD Matrix Elements + Parton Showers
Catani, S; Kühn, R; Webber, Bryan R
2001-01-01
We propose a method for combining QCD matrix elements and parton showers in Monte Carlo simulations of hadronic final states in $e^+e^-$ annihilation. The matrix element and parton shower domains are separated at some value $y_{ini}$ of the jet resolution, defined according to the $k_T$-clustering algorithm. The matrix elements are modified by Sudakov form factors and the parton showers are subjected to a veto procedure to cancel dependence on $y_{ini}$ to next-to-leading logarithmic accuracy. The method provides a leading-order description of hard multi-jet configurations together with jet fragmentation, while avoiding the most serious problems of double counting. We present first results of an approximate implementation using the event generator APACIC++.
Spin structure at the partonic level. Pt. 2
International Nuclear Information System (INIS)
Leader, E.
1983-01-01
Knowledge of the spin and momentum distribution of partons inside a polarised nucleon, as deduced from lepton scattering, is combined with lowest order QCD to calculate spin dependent parameters in large psub(T) hadronic reactions. Clear predictions emerge in some cases and are in conflict with present experimental results. There is a real challenge to improve both theory and experiment. (orig.)
On positivity of parton distributions
International Nuclear Information System (INIS)
Altarelli, G.; Forte, S.; Ridolfi, G.
1998-01-01
We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution. (orig.)
On positivity of parton distributions
Altarelli, Guido; Ridolfi, G; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni
1998-01-01
We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution.
Multiple Partonic Interactions in Herwig++
Gieseke, Stefan; Rohr, Christian; Siodmok, Andrzej
2013-01-01
We review the implementation of a model for multiple partonic interactions in Herwig++. Moreover, we show how recent studies on the colour structure of events in Herwig++ led to a significant improvement in the description of soft inclusive observables in pp interactions at the LHC.
Hadron Correlations and Parton Recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu
2007-02-15
Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.
Hadronization of dense partonic matter
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2006-12-15
The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.
Parametrization of nuclear parton distributions
Indian Academy of Sciences (India)
data on electron and muon deep inelastic scattering (DIS). The distributions are given at Й2 ... analysis of experimental data. The data are restricted to the inclusive electron and muon deep inelastic ...... [13] Nuclear parton-distribution subroutines could be obtained at the web site: http://www- hs.phys.saga-u.ac.jp. Pramana ...
Three-Dimensional parton structure of light nuclei
Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni
2018-03-01
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.
What Exactly is a Parton Density ?
International Nuclear Information System (INIS)
Collins, J.C.
2003-01-01
I give an account of the definitions of parton densities, both the conventional ones, integrated over parton transverse momentum, and unintegrated transverse-momentum-dependent densities. The aim is to get a precise and correct definition of a parton density as the target expectation value of a suitable quantum mechanical operator, so that a clear connection to non-perturbative QCD is provided. Starting from the intuitive ideas in the parton model that predate QCD, we will see how the simplest operator definitions suffer from divergences. Corrections to the definition are needed to eliminate the divergences. An improved definition of unintegrated parton densities is proposed. (author)
What Exactly is a Parton Density ?
Collins, J C
2003-01-01
I give an account of the definitions of parton densities, both the conventional ones, integrated over parton transverse momentum, and unintegrated transverse-momentum-dependent densities. The aim is to get a precise and correct definition of a parton density as the target expectation value of a suitable quantum mechanical operator, so that a clear connection to non-perturbative QCD is provided. Starting from the intuitive ideas in the parton model that predate QCD, we will see how the simplest operator definitions suffer from divergences. Corrections to the definition are needed to eliminate the divergences. An improved definition of unintegrated parton densities is proposed.
Parton distributions with threshold resummation
Bonvini, Marco; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.
2015-01-01
We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculation. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.
Directory of Open Access Journals (Sweden)
Sertac Ozturk
2014-01-01
Full Text Available Being able to distinguish parton pair type in a dijet event could significantly improve the search for new particles that are predicted by the theories beyond the Standard Model at the Large Hadron Collider. To explore whether parton pair types manifesting themselves as a dijet event could be distinguished on an event-by-event basis, I performed a simulation based study considering observable jet variables. I found that using a multivariate approach can filter out about 80% of the other parton pairs while keeping more than half of the quark-quark or gluon-gluon parton pairs in an inclusive QCD dijet distribution. The effects of event-by-event parton pair tagging for dijet resonance searches were also investigated and I found that improvement on signal significance after applying parton pair tagging can reach up to 4 times for gluon-gluon resonances.
Review of Parton Recombination Models
International Nuclear Information System (INIS)
Bass, Steffen A
2006-01-01
Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models
Structure functions and parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1995-01-01
The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed
On the transverse momentum in Z-boson production in a virtually ordered parton shower
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2009-12-15
Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)
On the transverse momentum in Z-boson production in a virtually ordered parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2009-12-01
Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)
Multi-parton interactions at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kulesza, A. [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Nagy, Z. (eds.) [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-11-15
We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on ''Multi-Parton Interactions at the LHC'', DESY Hamburg, 13-15 September 2010. (orig.)
Multiple Parton Interactions in ALICE
CERN. Geneva
2013-01-01
We will present in detail the measurement of the charged particle multiplicity dependence of per-trigger pair yields in azimuthal direction induced by low-energetic di-jets produced in proton-proton collisions. Using two-particle angular correlations with low transverse momentum thresholds, jet properties are measured on a statistical basis down to the lowest possible jet energies. The analysis can give information about the contribution from multiple parton interactions to particle production. Moreover, the results allow to optimize the parametrization of the jet fragmentation in phenomenological mode...
Parton Distribution Benchmarking with LHC Data
Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C. -P.
2012-01-01
We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko
2018-02-01
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p_t dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers.
Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko
2018-01-01
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high [Formula: see text] dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.
Avakian, H; Hasch, D; Schweitzer, P
2012-01-01
The three-dimensional nucleon structure is central to many theoretical and experimental activities, and research in this field has seen many advances in the last two decades, addressing fundamental questions such as the orbital motion of quarks and gluons inside the nucleons, their spatial distribution, and the correlation between spin and intrinsic motion. A real three-dimensional imaging of the nucleon as a composite object, both in momentum and coordinate space, is slowly emerging. This book presents lectures and seminars from the Enrico Fermi School: Three-Dimensional Partonic Structure of the Nucleon, held in Varenna, Italy, in June and July 2011. The topics covered include: partonic distributions, fragmentation functions and factorization in QCD; theory of transverse momentum dependent partonic distributions (TMDs) and generalized partonic distributions (GPDs); experimental methods in studies of hard scattering processes; extraction of TMDs and GPDs from data; analysis tools for azimuthal asymmetries; ...
Parton distributions with LHC data
DEFF Research Database (Denmark)
Ball, R.D.; Deans, C.S.; Del Debbio, L.
2013-01-01
with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness......We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF...... determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved...
A Parton Shower for High Energy Jets
DEFF Research Database (Denmark)
Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer
2011-01-01
We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...... it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...
Implementing NLO DGLAP evolution in parton showers
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Krauss, Frank; Prestel, Stefan
2017-10-01
We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.
Monte Carlo tuning for Multiple Parton Interactions from the ATLAS data (MPI@LHC 2016)
Cairo, Valentina; The ATLAS collaboration
2016-01-01
The modelling of Minimum Bias (MB) and Underlying Event (UE) is a crucial component in the description of soft QCD processes. They are both described by multi-parton interactions (MPI) models, the result of proton collisions containing more than one partonic interaction due to collective and beam remnant effects. We present recent ATLAS studies aimed at improving the description of MPI models in Monte Carlo generators. Results of tunes of the Pythia8 MPI parameters to recent ATLAS measurements at 7, 8 and 13 TeV are reported. Studies on the effect of tuning in presence of matching with leading and next-to-leading matrix elements are also presented for processes such as jets and Z-boson production.
Parton distributions: HERA-Tevatron-LHC
Watt, Graeme
2009-01-01
The parton distribution functions (PDFs) are a non-negotiable input to almost all theory predictions at hadron colliders. In this talk, I introduce PDF determination by global analysis and discuss selected topics concerning recent relevant data from HERA and the Tevatron, before giving some prospects for the LHC. The combination of H1 and ZEUS cross sections reduces uncertainties and will be an important input to future global PDF analyses. The theoretical description of the heavy-quark contribution to structure functions at HERA has a significant influence on predictions at the LHC. New W and Z data from the Tevatron Run II provide important PDF constraints, but there are currently problems describing the latest data on the lepton charge asymmetry from W -> l nu decays. The Tevatron Run II jet production data prefer a smaller high-x gluon than the previous Run I data, which impacts on predictions for Higgs cross sections at the Tevatron. It is now possible to consistently calculate a combined "PDF+alpha_S" u...
An analytic initial-state parton shower
International Nuclear Information System (INIS)
Kilian, W.
2011-12-01
We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)
Unraveling hadron structure with generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
Topological correspondance between hadrons and partons
International Nuclear Information System (INIS)
El Hassouni, Abdellah.
1981-06-01
The idea is to demonstrate the existence of a point structure of hadrons by D.T.U. (dual topological unitarization), an approach which involves confinement since its fundamental objects are hadrons. The aim is: - to establish rules of complementarity or correspondance between DTU and QCD at the level of invariant scale distributions; - to use these rules to predict either parton densities from hadron processes, or hadron distributions on the basis of the parton densities taken from deep inelastic processes [fr
Triple collinear emissions in parton showers
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Prestel, Stefan
2017-10-01
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.
Double parton scatterings at the CERN LHC
Del Fabbro, R
2001-01-01
Double parton collisions give important effects at the LHC and not only in the QCD sector. Given the relatively low threshold and the consequent large rate of production of bb pairs, one expects a large background of double parton collisions to the Higgs boson production and decay via the bbW channel, which is one of the most promising discovery channels at the LHC, if the Higgs mass is below the W/sup + /W/sup -/ threshold. (15 refs).
Fully NLO Parton Shower in QCD
International Nuclear Information System (INIS)
Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.
2011-01-01
The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)
Nucleon Parton Structure from Continuum QCD
Bednar, Kyle; Cloet, Ian; Tandy, Peter
2017-01-01
The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.
Coherence effects in parton showers
International Nuclear Information System (INIS)
Pettersson, U.
1988-10-01
A model for gluon emission based on the colour dipole approximation is presented. Gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge, with probability distribution given by generalizations of the Altarelli-Parisi equations. The model agrees very well with experimental data on e + e - annihilation. For the reaction e + e - -> W + W - -> qq ' QQ ' it is pointed out how to extract information about the QCD vacuum and the confinement mechanism by varying the CM energy. Finally the model is applied to deep inelastic lepton scattering. When a quark is kicked out in the lepton-proton interaction, separation of the colour charges leads to gluon emission. Since the proton remnant is not a pointlike object, coherence conditions lead to an asymmetry between gluons emitted in the forward and in the backward region. The asymmetry is controlled by the energy distribution in the force field. Experimental data are reproduced with a linear energy distribution, which is consistent with the proton behaving as a vortex line in a type II superconductor. (author)
Evolution of Supernova Remnants
Arbutina, B.
2017-12-01
This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.
Simple parametrizations of parton distributions with Q$^{2}$ dependence given by asymptotic freedom
Buras, Andrzej J
1978-01-01
The Q/sup 2/ dependence of parton distributions as given by asymptotically free gauge theories can be represented by simple analytic expressions. In particular the sea distributions can be read directly from the first two moments. The results are compared with the SLAC ep data and with the recent Fermilab mu p data. The agreement is good. (32 refs).
Parton Propagation and Fragmentation in QCD Matter
Energy Technology Data Exchange (ETDEWEB)
Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
Measurement of parton shower observables with OPAL
Directory of Open Access Journals (Sweden)
Fischer N.
2016-01-01
Full Text Available A study of QCD coherence is presented based on a sample of about 397,000 e+e- hadronic annihilation events collected at √s = 91 GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.
Revealing Partons in Hadrons: From the ISR to the SPS Collider
Darriulat, Pierre
2015-01-01
Our understanding of the structure of hadrons has developed during the seventies and early eighties from a few vague ideas to a precise theory, Quantum Chromodynamics, that describes hadrons as made of elementary partons (quarks and gluons). Deep inelastic scattering of electrons and neutrinos on nucleons and electron–positron collisions have played a major role in this development. Less well known is the role played by hadron collisions in revealing the parton structure, studying the dynamic of interactions between partons and offering an exclusive laboratory for the direct study of gluon interactions. The present article recalls the decisive contributions made by the CERN Intersecting Storage Rings and, later, the proton–antiproton SPS Collider to this chapter of physics.
Systematic improvement of QCD parton showers
Winter, Jan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Schumann, Steffen; Siegert, Frank; Zapp, Korinna
2012-01-01
In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron--positron collisions and by reporting on recent developments as accomplished within the Sherpa event generation framework.
Subleading-Nc improved parton showers
International Nuclear Information System (INIS)
Plaetzer, Simon; Sjoedahl, Malin
2012-06-01
We present an algorithm for improving subsequent parton shower emissions by full SU(3) colour correlations in the framework of a dipole-type shower. As a proof of concept, we present results from the first implementation of such an algorithm for a final state shower.
Correlations in the Parton Recombination Model
Energy Technology Data Exchange (ETDEWEB)
Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)
2006-08-07
We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.
Indian Academy of Sciences (India)
Partons and jets at the LHC. DAVISON E SOPER. Institute of Theoretical Science, University of Oregon, Eugene, OR 97403-5203, USA. Abstract. I review some issues related to short distance QCD and its relation to the experimental program of the large hadron collider (LHC) now under construction in Geneva. Keywords.
Parton distribution and Tevatron jet data
International Nuclear Information System (INIS)
Alekhin, S.; Bluemlein, J.; Moch, S.
2011-05-01
We study the impact of Tevatron jet data on a global fit of parton distribution functions and on the determination of the value of the strong coupling constant α s (M Z ). The consequences are illustrated for cross sections of Higgs boson production at Tevatron and the LHC. (orig.)
Real-time dynamics of parton-hadron conversion
Ellis, Jonathan Richard; Ellis, John; Geiger, Klaus
1995-01-01
We propose a new and universal approach to the hadronization problem that incorporates both perturbative QCD and effective field theory in their respective domains of validity and that models the transition between them in analogy to the finite temperature QCD phase transition. Using techniques of quantum kinetic theory, we formulate a real-time description in momentum and position space. The approach is applied to the evolution of fragmenting q\\bar q and gg jets as the system evolves from the initial 2-jet, via parton multiplication and cluster formation, to the final yield of hadrons. We investigate time scale of the transition, energy dependence, cluster size and mass distributions, and compare our results for particle production and Bose-Einstein correlations with experimental data for e^+e^-\\rightarrow hadrons. An interesting possibility to extract the space-time evolution of the system from Bose enhancement measurements is suggested.
Towards a global estimate for generalized parton distributions
International Nuclear Information System (INIS)
Lautenschlager, Tobias
2015-01-01
In this thesis, we give an extensive review of the phenomenology of generalized parton distributions (GPDs) utilizing the perturbative framework. Starting from basic principles, we derive the differential cross sections of deeply virtual Compton scattering and deeply virtual meson production (DVMP) in the twist-2 approximation. A special focus lies on the hard scattering amplitudes of DVMP at NLO of perturbation theory. The framework for the global analysis of GPDs relies on the uses of conformal symmetry. We give a short introduction leading to the Mellin-Barnes representation of the hard scattering amplitudes. We then derive the imaginary parts of the hard scattering amplitudes of DVMP. We utilize probability theory as extended logic to estimates GPDs. Therefore, we derive the formulas for the inference from the product and the sum rule. Afterwards, we present the results for the GPDs.
Probe initial parton density and formation time via jet quenching
International Nuclear Information System (INIS)
Wang, Xin-Nian
2002-01-01
Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed
Correlations in double parton distributions. Effects of evolution
International Nuclear Information System (INIS)
Diehl, Markus; Keane, Shane; Kasemets, Tomas; Vrije Univ., Amsterdam
2014-01-01
We numerically investigate the impact of scale evolution on double parton distributions, which are needed to compute multiple hard scattering processes. Assuming correlations between longitudinal and transverse variables or between the parton spins to be present at a low scale, we study how they are affected by evolution to higher scales, i.e. by repeated parton emission. We find that generically evolution tends to wash out correlations, but with a speed that may be slow or fast depending on kinematics and on the type of correlation. Nontrivial parton correlations may hence persist in double parton distributions at the high scales relevant for hard scattering processes.
Double parton scattering singularity in one-loop integrals
Gaunt, Jonathan R.; Stirling, W. James
2011-06-01
We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.
Generation of Cosmic rays in Historical Supernova Remnants
Directory of Open Access Journals (Sweden)
Sinitsyna V.Y.
2013-06-01
Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.
Hard exclusive reactions and generalized parton distributions
Directory of Open Access Journals (Sweden)
Hayrapetyan Avetik
2015-01-01
Full Text Available The recently developed formalism of Generalized Parton Distributions (GPDs allows connecting the experimental information of hard exclusive reactions to the spin contribution and even to the angular momentum contribution of quarks in the nucleon. By selecting different quantum numbers of the final state in exclusive productions, different GPDs can be addressed separately. The HERMES experiment at the HERA ring at DESY (Hamburg made pioneering contributions and first constraints to Generalized Parton Distributions (GPDs, using hard exclusive vector meson production (EVMP and Deeply Virtual Compton Scattering (DVCS. Using a novel recoil detector, HERMES managed to measure DVCS and EVMP free of any significant background. Selected results are highlighted and discussed in this paper.
Parton showers in a phenomenological context
International Nuclear Information System (INIS)
Bengtsson, M.
1987-08-01
Models for generating multiple parton final states, based on the Altarelli-Parisi equations, are presented. Algorithms are described for applications in e + e - physics, leptoproduction and hadron physics. The two latter cases are somewhat special since composite objects are present in the initial state. Constraints from structure function evolution are properly taken into account. The scheme in leptoproduction is made selfconsistent in the sense that parton shower evolution does not affect the measurable structure functions. The scheme developed in e + e - allows for a number of different features which are not given directly in this approach, i.e. matching onto matrix elements, coherence effects, argument in α s , implementation of kinematics etc. These options are systematically studied, using Lund string fragmentation for hadronization, and compared with experimental data. A note on α s determinations in hadron-hadron collisions is also included. (author)
Multiple Partonic Interaction Developments in Herwig++
Gieseke, S.; Röhr, C. A.; Siódmok, A.
2011-01-01
We briefly review the status of the multiple partonic interaction model in the Herwig++ event generator. First, we show how a change in the colour structure of an event in Herwig++ results in a significant improvement in the description of soft inclusive observables in $pp$ interactions at $\\sqrt{s}=900$ GeV. Then we present a comparison of some model results to ATLAS Underlying Event data at $\\sqrt{s}=7$ TeV.
Indian Academy of Sciences (India)
We also need the hard scattering cross-sections d ˆσab(µ) for these partons to produce the ... Here a jet is a spray of particles. The exact definition is important, but we leave it aside for the moment. ..... These power suppressed terms may be important for some of the Tevatron experiments involving jets with ET < 50 GeV, but ...
Generalized Parton Distributions and their Singularities
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin
2011-04-01
A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.
An introduction to the Generalized Parton Distributions
International Nuclear Information System (INIS)
Michel Garcon
2002-01-01
The concepts of Generalized Parton Distributions (GPD) are reviewed in an introductory and phenomenological fashion. These distributions provide a rich and unifying picture of the nucleon structure. Their physical meaning is discussed. The GPD are in principle measurable through exclusive deeply virtual production of photons (DVCS) or of mesons (DVMP). Experiments are starting to test the validity of these concepts. First results are discussed and new experimental projects presented, with an emphasis on this program at Jefferson Lab
Factorization of in-medium parton branching beyond the eikonal approximation
Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.
2017-08-01
The description of the in-medium modifications of partonic showers is at the forefront of current theoretical and experimental efforts in heavy-ion physics. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss off massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (q- q ‾ antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. This allows to fully explore the physical interplay between broadening and coherence/decoherence effects. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This provides a very strong indication that a probabilistic picture of parton shower evolution holds even in the presence of a QGP, a feature that is of the utmost importance for a successful future generation of Jet quenching Monte Carlos.
Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order
Bellm, Johannes; Plätzer, Simon; Schichtel, Peter; Siódmok, Andrzej
2016-01-01
We perform a detailed study of the sources of perturbative uncertainty in parton shower predictions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work.
Partonic energy loss and the Drell-Yan process.
Garvey, G T; Peng, J C
2003-03-07
We examine the current status of the extraction of the rate of partonic energy loss in nuclei from A-dependent data. The advantages and difficulties of using the Drell-Yan process to measure the energy loss of a parton traversing a cold nuclear medium are discussed. The prospects of using relatively low energy proton beams for a definitive measurement of partonic energy loss are presented.
Momentum conservation and unitarity in parton showers and NLL resummation
Höche, Stefan; Reichelt, Daniel; Siegert, Frank
2018-01-01
We present a systematic study of differences between NLL resummation and parton showers. We first construct a Markovian Monte-Carlo algorithm for resummation of additive observables in electron-positron annihilation. Approximations intrinsic to the pure NLL result are then removed, in order to obtain a traditional, momentum and probability conserving parton shower based on the coherent branching formalism. The impact of each approximation is studied, and an overall comparison is made between the parton shower and pure NLL resummation. Differences compared to modern parton-shower algorithms formulated in terms of color dipoles are analyzed.
Parton cascade description of nuclear collisions at RHIC
International Nuclear Information System (INIS)
Nara, Yasushi
2000-01-01
The baryon distribution is studied by using a parton cascade model which is based on pQCD incorporating hard partonic scattering and dynamical hadronization scheme. In order to study baryon distribution, baryonic cluster formation is newly implemented as well as hadronic higher resonance states from parton/beam cluster decay. The net baryon number and charged hadron distributions are calculated with different K-factors in which parameters are fixed by elementary pp-bar data at E c.m. =200 GeV. It is found that baryon stopping behavior at SPS and RHIC energies are not consequence of hard parton scattering but soft processes. (author)
Studies of double parton interactions with the ATLAS detector
AUTHOR|(INSPIRE)INSPIRE-00227648; The ATLAS collaboration
2015-01-01
The contributions of double and multiple parton scattering are sizable in many physics processes at the LHC, especially in the region of low particle transverse momenta. Studies of double-parton scattering using various final states, i.e. W+dijet, W+J/Psi, Z+J/Psi, double-J/psi and four-jet events, are presented along with measurements of the effective cross section, exploiting the different kinematic configurations of events with the double parton and single parton scattering.
Placental Remnant Removal With the Hysteroscopic Morcellator
Bongers, M Y; Veersema, S
2016-01-01
Study Objective To investigate the the effectiveness of removal of placental remnants with the hysteroscopic morcellator (Myosure, Hologic). Design Prospective trial multicenter. Setting Two Teaching Hospitals. Patients Patients with a placental remnant or miscarriage remnant were treated with a
Geiger, Klaus
1997-08-01
VNI is a general-purpose Monte Carlo event generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. On the basis of renormalization-group improved parton description and quantum-kinetic theory, it uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme that is governed by the dynamics itself. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position space, momentum space and color space. The parton evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi) hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. This article gives a brief review of the physics underlying VNI, which is followed by a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including a simple example), annotates input and control parameters, and discusses output data provided by it.
Parton shower evolution with subleading color
Nagy, Z.; Soper, D. E.
2012-01-01
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of $1/N_c^2$, where $N_c = 3$ is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading...
Improved parton showers in ep interactions
International Nuclear Information System (INIS)
Bengtsson, M.
1988-05-01
A scheme for including the first order matrix element in ep parton showers is presented. This is an important improvement since it applies to hard emission where the leading-log approximation is less reliable. The contributions from the initial and final state showers are treated on an equal footing, solving the potential problem of double counting of emission. Kinematical constraints, relating the dynamics of the two separate showers, are also solved in this context. The choice of splitting variable in initial state showers is furthermore discussed. (orig.)
International Nuclear Information System (INIS)
Katoh, Yutai; Muroga, Takeo; Kohyama, Akira; Stoller, R.E.; Namba, Chusei; Motojima, Osamu.
1995-11-01
Recent computational and experimental studies have confirmed that high energy cascades produce clustered defects of both vacancy- and interstitial-types as well as isolated point defects. However, the production probability, configuration, stability and other characteristics of the cascade clusters are not well understood in spite of the fact that clustered defect production would substantially affect the irradiation-induced microstructures and the consequent property changes in a certain range of temperatures and displacement rates. In this work, a model of point defect and cluster evolution in irradiated materials under cascade damage conditions was developed by combining the conventional reaction rate theory and the results from the latest molecular dynamics simulation studies. This paper provides a description of the model and a model-based fundamental investigation of the influence of configuration, production efficiency and the initial size distribution of cascade-produced vacancy clusters. In addition, using the model, issues on characterizing cascade-induced defect production by microstructural analysis will be discussed. In particular, the determination of cascade vacancy cluster configuration, surviving defect production efficiency and cascade-interaction volume is attempted by analyzing the temperature dependence of swelling rate and loop growth rate in austenitic steels and model alloys. (author)
2003-01-01
[figure removed for brevity, see original site] In eastern Arabia Terra, remnants of a once vast layered terrain are evident as isolated buttes, mesas, and deeply-filled craters. The origin of the presumed sediments that created the layers is unknown, but those same sediments, now eroded, may be the source of the thick mantle of dust that covers much of Arabia Terra today.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 20.5, Longitude 50 East (310 West). 19 meter/pixel resolution.
The GS09 double parton distribution functions
Gaunt, J. R.
It is anticipated that hard double parton scattering (DPS) will occur frequently in the collisions of the LHC, producing interesting signals and significant backgrounds to certain single scattering processes. In order to make theoretical predictions of double scattering rates and properties, the double parton distributions (dPDFs) D_p^{j_1j_2}(x_1,x_2;Q_A,Q_B) are required. We discuss the first publicly available set of equal-scale (Q_A=Q_B) leading order dPDFs -- the GS09 dPDFs. A brief account is given describing how pQCD evolution effects and sum rule constraints (the latter derived by us) have been incorporated into this set of dPDFs. We then present a summary of a phenomenological investigation into same-sign W pair production conducted using GS09. In this, the DPS signal produced using GS09 is compared with that obtained using simple products of single PDFs multiplied by (1-x_1-x_2)^n, and the single scattering backgrounds (W+-W+-jj, di-boson and heavy flavour) are carefully calculated. It is found that the correlations in GS09 manifest themselves in non-trivial kinematic correlations between the W bosons. However, it is unlikely that these correlations will be measurable at the LHC in the near future owing to the fact that the background is significant even after cuts.
Glauber gluons and multiple parton interactions
Energy Technology Data Exchange (ETDEWEB)
Gaunt, Jonathan R.
2014-05-15
We show that for hadronic transverse energy E{sub T} in hadron-hadron collisions, the classic Collins-Soper-Sterman (CSS) argument for the cancellation of Glauber gluons breaks down at the level of two Glauber gluons exchanged between the spectators. Through an argument that relates the diagrams with these Glauber gluons to events containing additional soft scatterings, we suggest that this failure of the CSS cancellation actually corresponds to a failure of the 'standard' factorisation formula with hard, soft and collinear functions to describe E{sub T} at leading power. This is because the observable receives a leading power contribution from multiple parton interaction (or spectator-spectator Glauber) processes. We also suggest that the same argument can be used to show that a whole class of observables, which we refer to as MPI sensitive observables, do not obey the standard factorisation at leading power. MPI sensitive observables are observables whose distributions in hadron-hadron collisions are disrupted strongly by the presence of multiple parton interactions (MPI) in the event. Examples of further MPI sensitive observables include the beam thrust B{sup +}{sub a,b} and transverse thrust.
Glauber gluons and multiple parton interactions
Gaunt, Jonathan R.
2014-07-01
We show that for hadronic transverse energy E T in hadron-hadron collisions, the classic Collins-Soper-Sterman (CSS) argument for the cancellation of Glauber gluons breaks down at the level of two Glauber gluons exchanged between the spectators. Through an argument that relates the diagrams with these Glauber gluons to events containing additional soft scatterings, we suggest that this failure of the CSS cancellation actually corresponds to a failure of the `standard' factorisation formula with hard, soft and collinear functions to describe E T at leading power. This is because the observable receives a leading power contribution from multiple parton interaction (or spectator-spectator Glauber) processes. We also suggest that the same argument can be used to show that a whole class of observables, which we refer to as MPI sensitive observables, do not obey the standard factorisation at leading power. MPI sensitive observables are observables whose distributions in hadron-hadron collisions are disrupted strongly by the presence of multiple parton interactions (MPI) in the event. Examples of further MPI sensitive observables include the beam thrust B {/a, b +} and transverse thrust.
Extent of sensitivity of single photon production to parton distribution ...
Indian Academy of Sciences (India)
Prompt photon; parton distribution function; perturbative quantum chromodyanmics. PACS Nos 13.75. ... Because of the point-like coupling, the photons produced through the processes (i) and. (ii) are called 'direct' ... where the fs are called the parton distribution functions (PDFs), which give the probability for the incoming ...
Kofler, Stefan; Pasquini, Barbara
2017-05-01
The unpolarized, helicity and transversity parton distribution functions of the nucleon are studied within a convolution model where the bare nucleon is dressed by its virtual meson cloud. Using light-front time-ordered perturbation theory, the Fock states of the physical nucleon are expanded in a series involving a bare nucleon and two-particle (meson-baryon) states. The bare baryons and mesons are described with light-front wave functions (LFWFs) for the corresponding valence-parton components. Using a representation in terms of overlap of LFWFs, the role of the nonperturbative antiquark degrees of freedom and the valence-quark contribution at the input scale of the model is discussed for the leading-twist collinear parton distributions. After introducing perturbative QCD effects through evolution to experimental scales, the results are compared with available data and phenomenological extractions. Predictions for the nucleon tensor charge are also presented, finding a very good agreement with recent phenomenological extractions.
HELAC-PHEGAS: A generator for all parton level processes
Cafarella, Alessandro; Papadopoulos, Costas G.; Worek, Malgorzata
2009-10-01
The updated version of the HELAC-PHEGAS event generator is presented. The matrix elements are calculated through Dyson-Schwinger recursive equations using color connection representation. Phase-space generation is based on a multichannel approach, including optimization. HELAC-PHEGAS generates parton level events with all necessary information, in the most recent Les Houches Accord format, for the study of any process within the Standard Model in hadron and lepton colliders. New version program summaryProgram title: HELAC-PHEGAS Catalogue identifier: ADMS_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMS_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 986 No. of bytes in distributed program, including test data, etc.: 380 214 Distribution format: tar.gz Programming language: Fortran Computer: All Operating system: Linux Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord (LHA) PDF Interface library ( http://projects.hepforge.org/lhapdf/) Catalogue identifier of previous version: ADMS_v1_0 Journal reference of previous version: Comput. Phys. Comm. 132 (2000) 306 Does the new version supersede the previous version?: Yes, partly Nature of problem: One of the most striking features of final states in current and future colliders is the large number of events with several jets. Being able to predict their features is essential. To achieve this, the calculations need to describe as accurately as possible the full matrix elements for the underlying hard processes. Even at leading order, perturbation theory based on Feynman graphs runs into computational problems, since the number of graphs contributing to the amplitude grows as n!. Solution method: Recursive algorithms based on Dyson-Schwinger equations have been developed recently in
Transverse momentum in double parton scattering. Factorisation, evolution and matching
International Nuclear Information System (INIS)
Buffing, Maarten G.A.; Diehl, Markus; Kasemets, Tomas
2017-08-01
We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.
Energy Technology Data Exchange (ETDEWEB)
Guzey, Vadim; Goeke, Klaus; Siddikov, Marat
2009-01-01
We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of the purely transverse momentum transfer, our nuclear GPDs become impact parameter dependent nuclear parton distributions (PDFs). Nuclear shadowing induces non-trivial correlations between the impact parameter $b$ and the light-cone fraction $x$. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude and the DVCS cross section on $^{208}$Pb at high energies. We calculate the cross section of the Bethe-Heitler (BH) process and address the issue of the extraction of the DVCS signal from the $e A \\to e \\gamma A$ cross section. We find that the $e A \\to e \\gamma A$ differential cross section is dominated by DVCS at the momentum transfer $t$ near the minima of the nuclear form factor. We also find that nuclear shadowing leads
Updated lattice results for parton distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-15
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Parton distributions in nuclei: Quagma or quagmire
Energy Technology Data Exchange (ETDEWEB)
Close, F.E.
1988-01-01
The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.
New model for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [JLAB, Newport News, VA (United States)
2014-01-01
We describe a new type of models for nucleon generalized parton distributions (GPDs) H and E. They are heavily based on the fact nucleon GPDs require to use two forms of double distribution (DD) representations. The outcome of the new treatment is that the usual DD+D-term construction should be amended by an extra term, {xi} E{sub +}{sup 1} (x,{xi}) which has the DD structure {alpha}/{beta} e({beta},{alpha}, with e({beta},{alpha}) being the DD that generates GPD E(x,{xi}). We found that this function, unlike the D-term, has support in the whole -1 <= x <= 1 region. Furthermore, it does not vanish at the border points |x|={xi}.
WW Same-Sign Double Parton Scattering
Fascione, Eleanor
2016-01-01
Data collected by the CMS detector of 13 TeV centre of mass proton-proton collisions, provided during run 2 of the LHC, constitutes an integrated luminosity of $12.9\\,\\mathrm{fb}^{-1}$. This provides a tool to probe a previously unmeasured process, double parton scattering (DPS) in same-sign WW. Leptonic decay to a muon and associated neutrino was selected for each W boson. In this manner complicated backgrounds were all but negated. A BDT was trained against the most kinematically similar background, and appropriate statistical measures were used to estimate the contribution of fake leptons from W+jets and, to a lesser extent, ttbar. An expected uncertainty on the signal of 52\\% was extracted, or $2 \\sigma$ significance. An in-progress analysis will determine a limit on the production cross section.
Insights into nucleon structure from parton distributions
Energy Technology Data Exchange (ETDEWEB)
Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.
Updated lattice results for parton distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2017-07-01
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
On chiral-odd Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)
2010-07-01
The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)
Parton shower evolution with subleading color
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2012-02-01
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)
Postprandial Hyperlipidemia and Remnant Lipoproteins
Yamashita, Shizuya
2017-01-01
Fasting hypertriglyceridemia is positively associated with the morbidity of coronary heart disease (CHD), and postprandial (non-fasting) hypertriglyceridemia is also correlated with the risk status for CHD, which is related to the increase in chylomicron (CM) remnant lipoproteins produced from the intestine. CM remnant particles, as well as oxidized low density lipoprotein (LDL) or very low density lipoprotein (VLDL) remnants, are highly atherogenic and act by enhancing systemic inflammation, platelet activation, coagulation, thrombus formation, and macrophage foam cell formation. The cholesterol levels of remnant lipoproteins significantly correlate with small, dense LDL; impaired glucose tolerance (IGT) and CHD prevalence. We have developed an assay of apolipoprotein (apo)B-48 levels to evaluate the accumulation of CM remnants. Fasting apoB-48 levels correlate with the morbidity of postprandial hypertriglyceridemia, obesity, type III hyperlipoproteinemia, the metabolic syndrome, hypothyroidism, chronic kidney disease, and IGT. Fasting apoB-48 levels also correlate with carotid intima-media thickening and CHD prevalence, and a high apoB-48 level is a significant predictor of CHD risk, independent of the fasting TG level. Diet interventions, such as dietary fibers, polyphenols, medium-chain fatty acids, diacylglycerol, and long-chain n-3 polyunsaturated fatty acids (PUFA), ameliorate postprandial hypertriglyceridemia, moreover, drugs for dyslipidemia (n-3 PUFA, statins, fibrates or ezetimibe) and diabetes concerning incretins (dipeptidyl-peptidase IV inhibitor or glucagon like peptide-1 analogue) may improve postprandial hypertriglyceridemia. Since the accumulation of CM remnants correlates to impaired lipid and glucose metabolism and atherosclerotic cardiovascular events, further studies are required to investigate the characteristics, physiological activities, and functions of CM remnants for the development of new interventions to reduce atherogenicity. PMID
An analytic parton shower. Algorithms, implementation and validation
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Sebastian
2012-06-15
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
An analytic parton shower. Algorithms, implementation and validation
International Nuclear Information System (INIS)
Schmidt, Sebastian
2012-06-01
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
Parton Distributions and the LHC W and Z Production
Martin, A D; Stirling, William James; Thorne, R S
2000-01-01
W and Z bosons will be produced copiously at the LHC proton-proton collider. We study the parton distribution dependence of the total production cross sections and rapidity distributions, paying particular attention to the uncertainties arising from uncertainties in the parton distributions themselves. Variations in the gluon, the strong coupling, the sea quarks and the overall normalisation are shown to lead to small but non-negligible variations in the cross section predictions. Ultimately, therefore, the measurement of these cross sections will provide a powerful cross check on our knowledge of parton distributions and their evolution.
Double parton scattering in the ultraviolet. Addressing the double counting problem
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); Vrije Univ. Amsterdam (Netherlands)
2016-03-15
In proton-proton collisions there is a smooth transition between the regime of double parton scattering, initiated by two pairs of partons at a large relative distance, and the regime where a single parton splits into a parton pair in one or both protons. We present a scheme for computing both contributions in a consistent and practicable way.
Benner's remnants: culture, tradition and everyday understanding.
Paley, John
2002-06-01
Benner's account of meaning and embodiment in nursing depends on a theory which she has never fully articulated, although she makes numerous allusions to it. Behind the background of shared meanings hovers something called 'culture', which provides each individual with meaning, determines what counts as real for her, and actively hands down interpretation-laden practices. This view is based, Benner claims, on the Heideggerian assumption that the meaning and organization of a culture precedes individual meaning-giving activity. I explore Benner's implicit view of culture, drawing on her published work over 15 years, and offer an appraisal of it. In doing so, I attempt to make sense of some rather strange remarks Benner has recently made about 'remnants' of Cartesian and Kantian thinking being found in the everyday understandings of people with asthma. The concept of culture is developed with reference to both Benner's own work and that of the anthropologist, Clifford Geertz, whose work she frequently cites. Having identified the principal tenets of what we might conveniently call the Benner-Geertz theory, I proceed to interrogate the theory, using the recent anthropological literature -- and, in particular, materialist attacks on the idea of culture as a system of meanings -- in order to cast doubt on it. I also review, very briefly, an alternative way of understanding 'culture', which is not vulnerable to the same criticisms. Benner's implicit theory of culture is revealed, somewhat ironically, as an inverted form of Cartesian dualism. Its intellectual provenance is not Heidegger, who appears to reject it, but the sort of American sociology associated with Talcott Parsons. As a corollary, it is suggested that Benner's 'remnants' analogy cannot be justified, and that the idea of Cartesian and Kantian concepts permeating Western culture, infecting both the providers and receivers of health care, is a myth.
Transverse momentum dependent (TMD) parton distribution functions : status and prospects
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, I.I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F.A.; Cherednikov, I.O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Luyando, J. Grados; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J.P.; Lelek, A.; Lykasov, G.; Martinez, J. D. Madrigal; Mulders, P. J.; Nocera, Emanuele R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Scimemi, I.; Signori, A.; Szymanowski, L.; Monfared, S. Taheri; van der Veken, F.F.; van Haevermaet, H.J.; van Mechelen, P.; Vladimirov, A.; Wallon, S.
2015-01-01
We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of
Parton model (Moessbauer) sum rules for b → c decays
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
The parton model is a starting point or zero-order approximation in many treatments. The author follows an approach previously used for the Moessbauer effect and shows how parton model sum rules derived for certain moments of the lepton energy spectrum in b → c semileptonic decays remain valid even when binding effects are included. The parton model appears as a open-quote semiclassical close-quote model whose results for certain averages also hold (correspondence principle) in quantum mechanics. Algebraic techniques developed for the Moessbauer effect exploit simple features of the commutator between the weak current operator and the bound state Hamiltonian to find the appropriate sum rules and show the validity of the parton model in the classical limit, ℎ → 0, where all commutators vanish
Probing early parton kinetics by photons, dileptons and charm
International Nuclear Information System (INIS)
Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.
1993-07-01
Equilibration processes in pre-equilibrium parton matter are considered. We investigate chemical quark equilibration, partial thermalization and overall thermalization, and their influence on electromagnetic (photons, dileptons) and charmed probes. (orig.)
Nucleon parton distributions in a light-front quark model
Energy Technology Data Exchange (ETDEWEB)
Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)
2017-02-15
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)
Multiple parton interactions in photoproduction at HERA/H1
Energy Technology Data Exchange (ETDEWEB)
Magro, Lluis Marti
2009-02-15
Photoproduction data of HERA-I are analysed by requiring dijets with transverse momenta of at least 5 GeV. The two jets define in azimuth a towards region (leading jet), an away region (usually the 2nd jet) and transverse regions between them. The charged particle and jet with low transverse momentum multiplicity, so called minijets, are measured in these regions as a function of the variables x{sup obs}{sub {gamma}} and P{sup Jet{sub 1T}} (leading jet). The measurement is compared to predictions including parton showers and matrix elements at leading order in {alpha}{sub s}. Some predictions include contributions from multiple parton interactions and use different parton evolution equations. It was found that existing MC programs do not fully describe the measurements but the description can be improved by including multiple parton interactions. (orig.)
Study of the partonic structure of the helium nucleus
International Nuclear Information System (INIS)
Perrin, Y.
2012-01-01
The structure of the nucleons and of the nuclei was actively studied during the twentieth century through electron elastic scattering (measuring the electromagnetic form factors) and deep inelastic electron scattering (measuring the parton distributions). The formalism of generalized parton distributions (GPD) achieved the unification of the form factors and the parton distributions. This link gives a source of information about parton dynamics, such as the distribution of nuclear forces and orbital momentum inside hadrons. The easiest experimental access to the GPD is the deeply virtual Compton scattering (DVCS), which corresponds to the hard electroproduction of a real photon. While several experiments focussed on DVCS off the nucleon, only a few experiments studied DVCS off a nuclear target. This thesis deals with the study of the coherent channel of DVCS off helium 4, with the aim of extracting the real and imaginary parts of the Compton form factor thanks to the beam spin asymmetry. (author)
Experimental tests of charge symmetry violation in parton distributions
International Nuclear Information System (INIS)
Londergan, J.T.; Murdock, D.P.; Thomas, A.W.
2005-01-01
Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions
Calculation of parton fragmentation functions from jet calculus: gluon applications
International Nuclear Information System (INIS)
Lassila, K.E.; Ng, A.
1985-01-01
A method is presented for calculation of general parton fragmentation functions based on jet calculus plus meson and baryon wave functions. Results for gluon fragmentation into mesons and baryons are discussed and related to recent information on upsilon decay into gluons. The expressions derived can be used directly in e + e - cross section predictions and will need to be folded in with baryon parton distribution functions when used in p-barp collisions. (author)
Hard Parton Rescatterings and Minijets in Nuclear Collisions at LHC
Accardi, A
2001-01-01
The average number of minijets and the corresponding transverse energy in heavy ion collisions are evaluated by including explicitly semi-hard parton rescatterings in the dynamics of the interaction. At the LHC semi-hard rescatterings have a sizable effect on global characteristics of the typical inelastic event. An interesting feature is that the dependence on the cutoff which separates soft and hard parton interactions becomes less critical after taking rescatterings into account.
QCD Sum Rules and Models for Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin
2004-10-01
I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.
Inclusive parton cross sections in photoproduction and photon structure
International Nuclear Information System (INIS)
Ahmed, T.; Aid, S.; Andreev, V.
1995-04-01
Photoproduction of 2-jet events is studied with the H1 detector at HERA. Parton cross sections are extracted from the data by an unfolding method using leading order parton-jet correlations of a QCD generator. The gluon distribution in the photon is derived in the fractional momentum range 0.04≤x≤1 at the average factorization scale 75 GeV 2 . (orig.)
Reweighting QCD matrix-element and parton-shower calculations
Bothmann, Enrico; Schönherr, Marek; Schumann, Steffen
2016-01-01
We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full αs and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncert...
Reweighting QCD matrix-element and parton-shower calculations
Energy Technology Data Exchange (ETDEWEB)
Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)
2016-11-15
We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)
QCD collinear factorization, its extensions and the partonic distributions
Szymanowski, Lech
2012-01-01
I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to repre...
Parton distributions from SMC and SLAC data
International Nuclear Information System (INIS)
Ramsey, G.P.
1996-01-01
We have extracted spin-weighted parton distributions in a proton from recent data at CERN and SLAC. The valence, sea quark and Antiquark spin-weighted distributions are determined separately. The data are all consistent with a small to moderate polarized gluon distribution, so that the anomaly term is not significant in the determination of the constituent contributions to the spin of the proton. We have analyzed the consistency of the results obtained from various sets of data and the Biorken sum rule. Although all data are consistent with the sum rule, the polarized distributions from different experiments vary, even with higher order QCD corrections taken into account. Results split into two models, one set implying a large polarized strange sea which violates the positivity bound, and the other set yielding a smaller polarized strange sea. Only further experiments which extract information about the polarized sea will reconcile these differences. We suggest specific experiments which can be performed to determine the size of the polarized sea and gluons
International Nuclear Information System (INIS)
Laidet, J.
2013-01-01
As the value of the longitudinal momentum carried by partons in a ultra-relativistic hadron becomes small, one observes a growth of their density. When the parton density becomes close to a value of order 1/α s , it does not grow any longer, it saturates. These high density effects seem to be well described by the Color Glass Condensate effective field theory. On the experimental side, the LHC provides the best tool ever for reaching the saturated phase of hadronic matter. For this reason saturation physics is a very active branch of QCD during these past and coming years since saturation theories and experimental data can be compared. I first deal with the phenomenology of the proton-lead collisions performed in winter 2013 at the LHC and whose data are about to be available. I compute the di-gluon production cross-section which provides the simplest observable for funding quantitative evidences of saturation in the kinematic range of the LHC. I also discuss the limit of the strongly correlated final state at large transverse momenta and by the way, generalize parton distribution to dense regime. The second main topic is the quantum evolution of the quark and gluon spectra in nucleus-nucleus collisions having in mind the proof of its universal character. This result is already known for gluons and here I detail the calculation carefully. For quarks universality has not been proved yet but I derive an intermediate leading order to next-to leading order recursion relation which is a crucial step for extracting the quantum evolution. Finally I briefly present an independent work in group theory. I detail a method I used for computing traces involving an arbitrary number of group generators, a situation often encountered in QCD calculations. (author) [fr
Stumpf, H.
2003-01-01
Generalized de Broglie-Bargmann-Wigner (BBW) equations are relativistically invariant quantum mechanical many body equations with nontrivial interaction, selfregularization and probability interpretation. Owing to these properties these equations are a suitable means for describing relativistic bound states of fermions. In accordance with de Broglie's fusion theory and modern assumptions about the partonic substructure of elementary fermions, i.e., leptons and quarks, the three-body generalized BBW-equations are investigated. The transformation properties and quantum numbers of the three-parton equations under the relevant group actions are elaborated in detail. Section 3 deals with the action of the isospin group SU(2), a U(1) global gauge group for the fermion number, the hypercharge and charge generators. The resulting quantum numbers of the composite partonic systems can be adapted to those of the phenomenological particles to be described. The space-time transformations and in particular rotations generated by angular momentum operators are considered in Section 4. Based on the compatibility of the BBW-equations and the group theoretical constraints, in Sect. 5 integral equations are formulated in a representation with diagonal energy and total angular momentum variables. The paper provides new insight into the solution space and quantum labels of resulting integral equations for three parton states and prepares the ground for representing leptons and quarks as composite systems.
Maltoni, Fabio; Mawatari, Kentarou; Zaro, Marco
Vector-boson fusion and associated production at the LHC can provide key information on the strength and structure of the Higgs couplings to the Standard Model particles. Using an effective field theory approach, we study the effects of next-to-leading order (NLO) QCD corrections matched to a parton shower on selected observables for various spin-0 hypotheses. We find that inclusion of NLO corrections is needed to reduce the theoretical uncertainties on the total rates as well as to reliably predict the shapes of the distributions. Our results are obtained in a fully automatic way via FeynRules and MadGraph5_aMC@NLO.
Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)
2017-05-01
The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.
Semiclassical geons as solitonic black hole remnants
Energy Technology Data Exchange (ETDEWEB)
Lobo, Francisco S.N. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal); Olmo, Gonzalo J.; Rubiera-Garcia, D., E-mail: flobo@cii.fc.ul.pt, E-mail: gonzalo.olmo@csic.es, E-mail: drubiera@fisica.ufpb.br2 [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC. Universidad de Valencia, Burjassot-46100, Valencia (Spain)
2013-07-01
We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to ∼ 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
HI Absorption in Merger Remnants
Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.
2012-01-01
It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.
Molecular clouds near supernova remnants
International Nuclear Information System (INIS)
Wootten, H.A.
1978-01-01
The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter
Impact of parton rescattering on analysis of p+p collision data at LHC energies
International Nuclear Information System (INIS)
Zhou Daimei; Limphirat, Ayut; Yan Yuliang; Li Xiaomei; Yan Yupeng; Sa Benhao
2011-01-01
ALICE, CMS, and ATLAS measurements for p + p collisions at LHC energies (√(s)=0.9, 2.36, and 7 TeV) are analyzed systematically using the parton and hadron cascade model PACIAE which is based on the PYTHIA model. We emphasize the impact of parton rescattering on the analysis of experimental data by comparing the PACIAE results (with parton rescattering) to the PYTHIA ones (without parton rescattering). It turned out that the parton rescattering in the initial fireball plays an role in understanding the experimental data and the parton rescattering effect increases with the reaction energy increasing.
NLO Corrections and Parton Showers in the LHC Era
Arnold, Ken Boris
The Large Hadron Collider provides a challenging environment, not only for experimentalists. Precise predictions are needed in order to use its potential to full capacity. This thesis focuses on predictions including higher-order corrections in a twofold way. Both results for a pure parton level calculation and for a calculation incorporating a parton shower are presented. Higgs boson plus photon production via vector boson fusion was implemented in a fully flexible parton-level Monte-Carlo program. The results at next-to-leading order accuracy are discussed. It is found that the corrections are large in some regions of phase space. For the simulation of a parton shower matched to a next-to-leading order matrix element, a mixed-language runtime interface was established to use existing matrix elements for Higgs boson production via vector boson fusion. Results are discussed for different parton shower algorithms and matching schemes. The simulation is shown to have a substantial dependence on the shower algor...
Unbiased determination of polarized parton distributions and their uncertainties
Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-01-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, ...
New advances in the statistical parton distributions approach*
Directory of Open Access Journals (Sweden)
Soffer Jacques
2016-01-01
Full Text Available The quantum statistical parton distributions approach proposed more than one decade ago is revisited by considering a larger set of recent and accurate Deep Inelastic Scattering experimental results. It enables us to improve the description of the data by means of a new determination of the parton distributions. This global next-to-leading order QCD analysis leads to a good description of several structure functions, involving unpolarized parton distributions and helicity distributions, in terms of a rather small number of free parameters. There are many serious challenging issues. The predictions of this theoretical approach will be tested for single-jet production and charge asymmetry in W± production in p̄p and pp collisions up to LHC energies, using recent data and also for forthcoming experimental results.
Polarized 3 parton production in inclusive DIS at small x
Energy Technology Data Exchange (ETDEWEB)
Ayala, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Hentschinski, Martin, E-mail: hentschinski@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 1152 (Mexico); Jalilian-Marian, Jamal [Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, NY 10010 (United States); CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Tejeda-Yeomans, Maria Elena [Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, Hermosillo, Sonora 83000 (Mexico)
2016-10-10
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
International Nuclear Information System (INIS)
Chan, J.; DePorcel, L.; Dixon, L.
1997-06-01
This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q 2 . Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Interference effect in elastic parton energy loss in a finitemedium
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin-Nian
2005-04-18
Similar to the radiative parton energy loss due to gluonbremsstrahlung, elastic energy loss of a parton undergoing multiplescattering in a finite medium is demonstrated to be sensitive tointerference effect. The interference between amplitudes of elasticscattering via a gluon exchange and that of gluon radiation reduces theeffective elastic energy loss in a finite medium and gives rise to anon-trivial length dependence. The reduction is most significant for apropagation length L<4/\\pi T in a medium with a temperature T. Thoughthe finite size effect is not significant for the average partonpropagation in the most central heavy-ion collisions, it will affect thecentrality dependence of its effect on jet quenching.
Transverse momentum dependent (TMD) parton distribution functions. Status and prospects
International Nuclear Information System (INIS)
Angeles-Martinez, R.; Bacchetta, A.; Pavia Univ.; Balitsky, I.I.
2015-07-01
We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T , and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present an application of a new tool, TMDlib, to parton density fits and parameterizations.
Unbiased Polarised Parton Distribution Functions and their Uncertainties
Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2012-01-01
We present preliminary results on the determination of spin-dependent, or polarised, Parton Distribution Functions (PDFs) from all relevant inclusive polarised DIS data. The analysis is performed within the NNPDF approach, which provides a faithful and statistically sound representation of PDFs and their uncertainties. We describe how the NNPDF methodology has been extended to the polarised case, and compare our results with other recent polarised parton sets. We show that polarised PDF uncertainties can be sizeably underestimated in standard determinations, most notably for the gluon.
The role of the input scale in parton distribution analyses
International Nuclear Information System (INIS)
Jimenez-Delgado, Pedro
2012-01-01
A first systematic study of the effects of the choice of the input scale in global determinations of parton distributions and QCD parameters is presented. It is shown that, although in principle the results should not depend on these choices, in practice a relevant dependence develops as a consequence of what is called procedural bias. This uncertainty should be considered in addition to other theoretical and experimental errors, and a practical procedure for its estimation is proposed. Possible sources of mistakes in the determination of QCD parameter from parton distribution analysis are pointed out.
Nucleon-generalized parton distributions in the light-front quark model
Indian Academy of Sciences (India)
2016-01-12
generalized parton distributions in the light-front quark model ... We calculate the generalized parton distributions (GPDs) for the up- and downquarks in nucleon using the effective light-front wavefunction. The results obtained for ...
Remnant cholesterol and ischemic heart disease
DEFF Research Database (Denmark)
Varbo, Anette; Nordestgaard, Børge G
2014-01-01
PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride......-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large...... genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering...
A study of parton fragmentation using photon-hadron correlation with the ALICE experiment at LHC
International Nuclear Information System (INIS)
Arbor, N.
2013-01-01
The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21. century and should lead to a better understanding of the fundamental symmetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally.The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, high energy parton energy loss is used to access medium characteristics such as density or temperature. Parton energy loss is estimated from the modification of the energy distribution of hadrons produced by fragmentation.This thesis is dedicated to the photon-hadron correlations analysis in order to study the modification of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy measurement and photon identification. The second part is dedicated to the photon-hadron correlation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An important work has been done to improve the prompt photon identification, one of the key point of this analysis. (author) [fr
A study of parton fragmentation using photon-hadron correlation with the ALICE experiment at LHC
International Nuclear Information System (INIS)
Arbor, Nicolas
2013-01-01
The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21. century and should lead to a better understanding of the fundamental symmetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally. The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, high energy parton energy loss is used to access medium characteristics such as density or temperature. Parton energy loss is estimated from the modification of the energy distribution of hadrons produced by fragmentation. This thesis is dedicated to the photon-hadron correlations analysis in order to study the modification of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy measurement and photon identification. The second part is dedicated to the photon-hadron correlation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An important work has been done to improve the prompt photon identification, one of the key point of this analysis. (author) [fr
Generalized parton distributions and deep virtual Compton scattering
International Nuclear Information System (INIS)
Hasell, D.; Milner, R.; Takase, K.
2001-01-01
A brief description of generalized parton distributions is presented together with a discussion on studying such distributions via deep virtual Compton scattering. The kinematics, estimates of rates, and accuracies achievable for measuring DVCS utilizing a 5+50 GeV ep collider are also provided
Probing the partonic structure of exotic particles in hard electroproduction
International Nuclear Information System (INIS)
Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.
2005-01-01
We argue that the electroproduction of exotic particles is a useful tool for study of their partonic structure. In the case of hybrid mesons, the magnitude of their cross sections shows that they are accessible for measurements in existing electroproduction experiments
Unbiased determination of polarized parton distributions and their uncertainties
Energy Technology Data Exchange (ETDEWEB)
Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)
2013-09-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations.
Unbiased determination of polarized parton distributions and their uncertainties
International Nuclear Information System (INIS)
Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-01-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations
Nuclear physics aspects in the parton model of Feynman
International Nuclear Information System (INIS)
Pauchy Hwang, W.Y.
1995-01-01
The basic fact that pions couple strongly to nucleons has dominated various nuclear physics thinkings since the birth of the field more than sixty years ago. The parton model of Feynman, in which the structure of a nucleon (or a hadron) is characterized by a set of parton distributions, was proposed originally in late 1960's to treat high energy deep inelastic scattering, and later many other high energy physics experiments involving hadrons. Introduction of the concept of parton distributions signifies the departure of particle physics from nuclear physics. Following the suggestion that the sea quark distributions in a nucleon, at low and moderate Q 2 (at least up to a few GeV 2 ), can be attributed primarily to the probability of finding such quarks or antiquarks in the mesons (or recoiling baryons) associated with the nucleon, the author examines how nuclear physics aspects offer quantitative understanding of several recent experimental results, including the observed violation of the Gotfried sum rule and the so-called open-quotes proton spin crisisclose quotes. These results suggest that determination of parton distributions of a hadron at Q 2 of a few GeV 2 (and at small x) must in general take into account nuclear physics aspects. Implication of these results for other high-energy reactions, such as semi-inclusive hadron production in deep inelastic scattering, are also discussed
On neutrino and antineutrino scattering by electrons, and by partons
International Nuclear Information System (INIS)
Bell, J.S.; Dass, G.V.
1975-09-01
Assuming a non-derivative point interaction, and Born approximation, there are some simple relations between neutrino and antineutrino scattering on electrons or partons. They have been observed already, for some special cases, in the results of explicit calculations. Here they are obtained from simple general considerations. (author)
Extent of sensitivity of single photon production to parton distribution ...
Indian Academy of Sciences (India)
The single-prompt photon yield is expected to be sensitive to parton distribution function (PDF) in general and to gluon distribution in particular of the colliding hadron [2–9]. It is also considered an essential ingredient to quantify the nuclear modification of direct photon production in the relativistic nucleus–nucleus collisions ...
Parton Distributions at a 100 TeV Hadron Collider
Rojo, Juan
2016-01-01
The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra
Diffraction scattering and the parton model in QCD
International Nuclear Information System (INIS)
White, A.
1985-01-01
Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described
Hot interstellar tunnels. I. Simulation of interacting supernova remnants
International Nuclear Information System (INIS)
Smith, B.W.
1977-01-01
Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10 -2 cm -3 and Tapprox.10 6 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10 -7 Myr -1 pc -3 . Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 10 7 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities
Proceedings of the first international workshop on multiple partonic interactions at the LHC. MPI'08
International Nuclear Information System (INIS)
Bartalini, Paolo; Fano, Livio
2009-06-01
The objective of this first workshop on Multiple Partonic Interactions (MPI) at the LHC, that can be regarded as a continuation and extension of the dedicated meetings held at DESY in the years 2006 and 2007, is to raise the profile of MPI studies, summarizing the legacy from the older phenomenology at hadronic colliders and favouring further specific contacts between the theory and experimental communities. The MPI are experiencing a growing popularity and are currently widely invoked to account for observations that would not be explained otherwise: the activity of the Underlying Event, the cross sections for multiple heavy flavour production, the survival probability of large rapidity gaps in hard diffraction, etc. At the same time, the implementation of the MPI effects in the Monte Carlo models is quickly proceeding through an increasing level of sophistication and complexity that in perspective achieves deep general implications for the LHC physics. The ultimate ambition of this workshop is to promote the MPI as unification concept between seemingly heterogeneous research lines and to profit of the complete experimental picture in order to constrain their implementation in the models, evaluating the spin offs on the LHC physics program. The workshop is structured in five sections, with the first one dedicated to few selected hot highlights in the High Energy Physics and directly connected to the other ones: Multiple Parton Interactions (in both the soft and the hard regimes), Diffraction, Monte Carlo Generators and Heavy Ions. (orig.)
Dynamical study of merger remnants
International Nuclear Information System (INIS)
Lake, G.; Dressler, A.; ATandT Bell Labs., Murray Hill, NJ; Mount Wilson and Las Campanas Observatories, Pasadena, CA; Carnegie Institution of Washington, Washington, DC)
1986-01-01
The velocity dispersion of objects from the Arp and the Arp-Madore atlases that have characteristics of recently merged galaxies is measured. These data are used to test the hypothesis that the remnants become normal elliptical galaxies after the fireworks of recent star formation subside. Accurate velocity dispersions of objects dominated by Balmer lines in the blue were measured using the uncontaminated Ca triplet feature in the extreme red (8400-8700 A). No deviation from the velocity dispersion expected for elliptical galaxies of comparable luminosity, is found, e.g., these systems follow the usual L-sigma relation with no zero-point shift. For a few galaxies without Balmer contamination, stellar rotation velocities are determined. One slow, one moderate, and one fast rotator are found. 54 references
Nonthermal Radiation from Supernova Remnant Shocks
Directory of Open Access Journals (Sweden)
Hyesung Kang
2013-09-01
Full Text Available Most of high energy cosmic rays (CRs are thought to be produced by diffusive shock acceleration (DSA at supernova remnants (SNRs within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the timedependent evolution of the self-amplified magnetic fields, Alfvénic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and γ-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.
Investigation of beauty production and parton shower effects at LHC
Jung, H.; Lipatov, A.V.; Zotov, N.P.
2011-01-01
We present hadron-level predictions from the Monte Carlo generator Cascade and parton level calculations of open b quark, b-flavored hadron and inclusive b-jet production in the framework of the kt-factorization QCD approach for the LHC energies. The unintegrated gluon densities in a proton are determined using the CCFM evolution equation and the Kimber-Martin-Ryskin (KMR) prescription. Our predictions are compared with the first data taken by the CMS and LHCb collaborations at 7 TeV. We study the theoretical uncertainties of our calculations and investigate the effects coming from parton showers in initial and final states. The special role of initial gluon transverse momenta in description of the data is pointed out.
Projective symmetry of partons in Kitaev's honeycomb model
Mellado, Paula
2015-03-01
Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-field background. We study the spectrum of Majorana fermions of Kitaev's honeycomb model on spherical clusters. The gauge field endows the partons with half-integer orbital angular momenta. As a consequence, the multiplicities reflect not the point-group symmetries of the cluster, but rather its projective symmetries, operations combining physical and gauge transformations. The projective symmetry group of the ground state is the double cover of the point group. We acknowledge Fondecyt under Grant No. 11121397, Conicyt under Grant No. 79112004, and the Simons Foundation (P.M.); the Max Planck Society and the Alexander von Humboldt Foundation (O.P.); and the US DOE Grant No. DE-FG02-08ER46544 (O.T.).
Measurements of soft QCD and double parton scattering at LHCb
An, Liupan
2017-01-01
Soft QCD and double parton scattering are of great interest in high energy physics. They are both actively studied at the LHCb experiment. The measurement of the central exclusive production of $J/\\psi$ and $\\psi(2S)$ mesons in $pp$ collisions at $\\sqrt{s} = 13 \\,{\\mathrm{TeV}}$ is presented. The result shows good agreement with the theoretical predictions. The measurement of the $J/\\psi$ pair production cross-section in $pp$ collisions at $\\sqrt{s} = 13 \\,{\\mathrm{TeV}}$ is reported. The differential cross-sections as functions of various kinematic variables are compared to the theoretical predictions, and show significant evidence of double parton scattering contribution.
Effects of subleading color in a parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-12-01
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color (LC) approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. In the parton shower event generator DEDUCTOR, we have introduced a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. In this paper, we explore the differences in results between the LC approximation and the LC+ approximation. Numerical comparisons suggest that, for simple observables, the LC approximation is quite accurate. We also find evidence that for gap-between-jets cross sections neither the LC approximation nor the LC+ approximation is adequate.
Matching fully differential NNLO calculations and parton showers
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-11-15
We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.
Combining states without scale hierarchies with ordered parton showers
Energy Technology Data Exchange (ETDEWEB)
Fischer, Nadine [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Prestel, Stefan [Fermi National Accelerator Laboratory, Batavia, IL (United States)
2017-09-15
We present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. The resulting algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHC data. (orig.)
Signatures of Parton Exogamy in e+ e- -> W+ W- -> hadrons
Ellis, John; Geiger, Klaus
1997-01-01
We propose possible signatures of `exogamous' combinations between partons in the different W+ and W- hadron showers in e+e- -> W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10 % between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W decays hadronically and the other leptonically,...
Three-particle correlations in QCD parton showers
International Nuclear Information System (INIS)
Perez-Ramos, Redamy; Mathieu, Vincent; Sanchis-Lozano, Miguel-Angel
2011-01-01
Three-particle correlations in quark and gluon jets are computed for the first time in perturbative QCD. We give results in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC.
Deeply Pseudoscalar Meson Electroproduction with CLAS and Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Guidal, Michel [Institut de Physique Nucleaire, Orsay (France); Kubarovsky, Valery P. [Jefferson Lab., Newport News, VA (United States)
2015-06-01
We discuss the recent data of exclusive $\\pi^0$ (and $\\pi^+$) electroproduction on the proton obtained by the CLAS collaboration at Jefferson Lab. It is observed that the cross sections, which have been decomposed in $\\sigma_T+\\epsilon\\sigma_L$, $\\sigma_{TT}$ and $\\sigma_{LT}$ structure functions, are dominated by transverse amplitude contributions. The data can be interpreted in the Generalized Parton Distribution formalism provided that one includes helicity-flip transversity GPDs.
Uncertainties of parton distributions and their physical predictions
Tung, W K
2001-01-01
A concrete program to study the uncertainties of parton distributions in global QCD analysis is outlined. The emphasis is on using all available experimental constraints in the analysis. A three-step practical procedure is formulated to take into account global constraints as well as error information at the level of individual experiments. Two complementary methods to make predictions, based on the Hessian error matrix and eLagrange multiplier methods, are described. (4 refs).
Moments of nucleon spin-dependent generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Wolfram Schroers; Richard Brower; Patrick Dreher; Robert Edwards; George Fleming; P. Hagler; Urs Heller; Thomas Lippert; John Negele; Andrew Pochinsky; Dru Renner; David Richards; Klaus Schilling
2004-03-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.
Towards the compression of parton densities through machine learning algorithms
Carrazza, Stefano
2016-01-01
One of the most fascinating challenges in the context of parton density function (PDF) is the determination of the best combined PDF uncertainty from individual PDF sets. Since 2014 multiple methodologies have been developed to achieve this goal. In this proceedings we first summarize the strategy adopted by the PDF4LHC15 recommendation and then, we discuss about a new approach to Monte Carlo PDF compression based on clustering through machine learning algorithms.
Symmetry Breaking in the Parton Distribution Functions of the Nucleon
Cao, Fu-Guang; Signal, A. I.
We study flavour symmetry breaking in the nucleon's parton distribution functions (PDF) using the meson cloud model and `Pauli blocking' mechanism. It was found that the `Pauli blocking' contribution to the integrated polarized asymmetry is much larger than the meson cloud, in contrast to approximate equality in the unpolarized case. We also investigate charge symmetry breaking in the nucleon's PDF using the meson cloud model. Our results are very different from the quark model calculations.
Nuclear parton distributions with the LHeC
International Nuclear Information System (INIS)
Klein, M.
2016-01-01
Nuclear parton distributions are far from being known today because of an infant experimental base. Based on design studies of the LHeC and using new simulations, of the inclusive neutral and charged current cross section measurements and of the strange, charm and beauty densities in nuclei, it is demonstrated how that energy frontier electron-ion collider would unfold the complete set of nuclear parton distributions (nPDFs) in a hugely extended kinematic range of deep inelastic scattering, extending in Bjorken x down to values near to 10 -6 in the perturbative domain. Together with a very precise and complete set of proton PDFs, the LHeC nPDFs will thoroughly change the theoretical understanding of parton dynamics and structure inside hadrons. This contribution is organised as follows: Section 2 summarises the status of the current nPDF determinations and presents a summary of the LHeC data simulation. Section 3 briefly summarises initial results of a study of the determination of PDFs in electron-deuteron scattering. Section 4 presents the nPDF simulation using LHeC data performed within an adapted EPS09 pQCD framework. Section 5 discusses the gluon distribution and the possible search for saturation of the rise of the gluon density towards low x. Section 6 includes the determination of the strange, charm and beauty distributions in nuclei from a future eA operation of the LHeC. A brief summary is presented in Section 7
Hydrodynamic evolution of neutron star merger remnants
Liu, Men-Quan; Zhang, Jie
2017-11-01
Based on the special relativistic hydrodynamic equations and updated cooling function, we investigate the long-term evolution of neutron stars merger (NSM) remnants by a one-dimensional hydrodynamic code. Three NSM models from one soft equation of state, SFHo, and two stiff equations of state, DD2 and TM1, are used to compare their influences on the hydrodynamic evolution of remnants. We present the luminosity, mass and radius of remnants, as well as the velocity, temperature and density of shocks. For a typical interstellar medium (ISM) density with solar metallicity, we find that the NSM remnant from the SFHo model makes much more changes to ISM in terms of velocity, density and temperature distributions, compared with the case of DD2 and TM1 models. The maximal luminosity of the NSM remnant from the SFHo model is 3.4 × 1038 erg s-1, which is several times larger than that from DD2 and TM1 models. The NSM remnant from the SFHo model can maintain high luminosity (>1038 erg s-1) for 2.29 × 104 yr. Furthermore, the density and temperature of remnants at the maximal luminosity are not sensitive to the power of the original remnant. For the ISM with the solar metallicity and nH = 1 cm- 3, the density of the first shock ∼10-23 g cm-3 and the temperature ∼3 × 105 K in the maximal luminosity phase; The temperature of the first shock decreases and there is a thin 'dense' shell with density ∼10-21 g cm-3 after the maximal luminosity. These characteristics may be helpful for future observations of NSM remnants.
Partonic structure of neutral pseudoscalars via two photon transition form factors
Raya, Khépani; Ding, Minghui; Bashir, Adnan; Chang, Lei; Roberts, Craig D.
2017-04-01
The γ γ*→ηc ,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γ γ*→ηc form factor, Gηc(Q2),is consistent with available data; significantly, at accessible momentum transfers, Q2Gη c(Q2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarks within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.
Remnants of strong tidal interactions
International Nuclear Information System (INIS)
Mcglynn, T.A.
1990-01-01
This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs
Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J. [Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Centro Mixto, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Sanchis-Alepuz, Helios [Justus-Liebig University of Giessen, Institute of Theoretical Physics, Giessen (Germany)
2014-03-15
We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale. (orig.)
Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity.
Olmo, Gonzalo J; Rubiera-Garcia, D; Sanchis-Alepuz, Helios
We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.
Energy Technology Data Exchange (ETDEWEB)
CARROLL,J.
1999-09-10
The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.
Triple parton scatterings in high-energy proton-proton collisions arXiv
d'Enterria, David
2017-01-01
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS. The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5±4.5 mb. Estimates for triple charm (cc¯) and bottom (bb¯) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc¯, bb¯ cross sections. At s≈100 TeV, about 15% of the pp collisions produce three cc¯ pairs from three different parton-parton scatterings.
Congenital esophageal stenosis owing to tracheobronchial remnants
Rebelo, Priscila Guyt; Ormonde, João Victor C.; Ormonde Filho, João Baptista C.
2013-01-01
OBJECTIVE To emphasize the need of an accurate diagnosis of congenital esophageal stenosis due to tracheobronchial remnants, since its treatment differs from other types of congenital narrowing. CASE DESCRIPTION Four cases of lower congenital esophageal stenosis due to tracheobronchial remnants, whose definitive diagnosis was made by histopathology. Except for the last case, in which a concomitant anti-reflux surgery was not performed, all had a favorable outcome after resection and anastomos...
Observational data on galactic supernova remnants: I. The supernova remnants within l = 0◦ - 90◦
Directory of Open Access Journals (Sweden)
Guseinov O.H.
2003-01-01
Full Text Available We have collected all the available data on Galactic supernova remnants given in the literature. The data on Galactic supernova remnants located in the Galactic longitude interval l=0◦-90◦ in all the spectral bands are presented in this work. We have established values of distance for the SNRs by examining these data. The data on various kinds on neutron stars connected to these supernova remnants are given. Not only the data, but also the comments to some of the authors and ourselves on the data and on some properties of both the supernova remnants and the point sources are given.
Observational data on Galactic supernova remnants: II. The supernova remnants within l = 90°-270°
Directory of Open Access Journals (Sweden)
Guseinov O.H.
2004-01-01
Full Text Available We have collected all the available data on Galactic supernova remnants given in the literature. The data of Galactic supernova remnants located in the Galactic longitude interval l=90° - 270° in all spectral bands are represented in this work. We have adopted distance values for the SNRs by examining these data. The data of various types on neutron stars connected to these supernova remnants are also represented. Remarks of some authors and by ourselves regarding the data and some properties of both the supernova remnants and the point sources are given.
Relating meson and baryon fragmentation functions by shower-parton recombination
International Nuclear Information System (INIS)
Hwa, Rudolph C.; Yang, C.B.
2006-01-01
We relate the fragmentation functions of partons into mesons and baryons in the framework of recombination of shower partons. The results are in reasonable agreement with the data. The implication is that the meson and baryon fragmentation functions are not independent when hadronization of the shower partons is taken into account. The conclusion therefore closes a conceptual gap in the system of fragmentation functions, whose Q 2 evolution has been more extensively studied than the interrelationship among various species of hadrons produced
Czech Academy of Sciences Publication Activity Database
Efremov, A.V.; Schweitzer, P.; Teryaev, O.V.; Závada, Petr
2009-01-01
Roč. 80, č. 1 (2009), 014021/1-014021/13 ISSN 1550-7998 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : covariant parton model * parton distribution function * transverse parton momentum Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.922, year: 2009 http://prd.aps.org/abstract/PRD/v80/i1/e014021
Scale breaking effects in the quark-parton model for large P perpendicular phenomena
International Nuclear Information System (INIS)
Baier, R.; Petersson, B.
1977-01-01
We discuss how the scaling violations suggested by an asymptotically free parton model, i.e., the Q 2 -dependence of the transverse momentum of partons within hadrons may affect the parton model description of large p perpendicular phenomena. We show that such a mechanism can provide an explanation for the magnitude of the opposite side correlations and their dependence on the trigger momentum. (author)
Associated W±D(*) production at the LHC and prospects to observe double parton interactions
International Nuclear Information System (INIS)
Baranov, S.P.; Lipatov, A.V.; Malyshev, M.A.; Snigirev, A.M.; Zotov, N.P.
2015-03-01
Associated production of charged gauge bosons and charged charmed mesons at the LHC is considered in the framework of k t -factorization approach. Theoretical predictions are compared with ATLAS data, and reasonably good agreement is found. Predictions on the same-sign W ± D ± configurations are presented including single parton scattering and double parton scattering contributions. The latter are shown to dominate over the former, thus giving evidence that the proposed process can serve as another indicator of double parton interactions.
2009-01-01
[figure removed for brevity, see original site] Click on the image for the movie For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays. Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images. To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount
Progress on multi-waveband observations of supernova remnants
Yang, Xuejuan; Lu, Fangjun; Tian, Wenwu
2008-01-01
The development of observational techniques has inriched our knowledge of supernova remnants. In this paper, we review the main progresses in the last decade, including new discoveries of supernova remnants and the associated (rare type of) pulsars, nucleosynthesis, the interaction between supernova remnants and molecular clouds, dust in the supernova remnants, shock physics, and cosmic ray accelerations.
Directory of Open Access Journals (Sweden)
Urošević Dejan V.
2003-01-01
Full Text Available We present a modification of the theoretical Σ − D relation for supernova remnants (SNRs in the adiabatic expansion phase. This modification is based on the convolution of the relation first derived by Shklovsky with the Σ − D relation derived in this paper for thermal bremsstrahlung radiation from the ionized gas cloud. We adopt McKee & Ostriker’s model for the components of the interstellar medium as part of our derivation. The modified Shklovsky theory agrees well with empirical results. Kesteven’s modified theoretical relation gives the best agreement with the updated Galactic empirical Σ − D relation.
Parton recombination model including resonance production. RL-78-040
International Nuclear Information System (INIS)
Roberts, R.G.; Hwa, R.C.; Matsuda, S.
1978-05-01
Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references
Nonscaling parametrization of hadronic spectra and dual parton model
International Nuclear Information System (INIS)
Gaponenko, O.N.
2001-01-01
Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru
Transverse momentum dependent parton distributions at small-x
Directory of Open Access Journals (Sweden)
Bo-Wen Xiao
2017-08-01
Full Text Available We study the transverse momentum dependent (TMD parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Recent results on UE and double parton scattering
Wynne, B M; The ATLAS collaboration
2013-01-01
The underlying event in jet production events is measured, with both an inclusive jet and exclusive di-jet selection. Results are corrected to the particle level and compared with a variety of MC models. Events containing a leptonic W-boson decay and 2 jets are examined to determine the effective cross-section for double-parton interactions. The vector sum of the jet pTs is examined, and templates are fitted to this distribution to determine the fraction of selected events arising from DPI. An effective cross-section of 15 mb (+- 3 stat, +5-3 sys) is extracted.
Helicity-dependent generalized parton distributions for nonzero skewness
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-09-15
We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)
APFELgrid: a high performance tool for parton density determinations
Bertone, Valerio; Hartland, Nathan P.
We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and $\\alpha_s$ evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.
Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.
2013-01-01
The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially
Energy Technology Data Exchange (ETDEWEB)
Chan, J.; DePorcel, L.; Dixon, L. [eds.
1997-06-01
This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}. Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Double parton correlations in Light-Front constituent quark models
Directory of Open Access Journals (Sweden)
Rinaldi Matteo
2015-01-01
Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.
LHAPDF6: parton density access in the LHC precision era
International Nuclear Information System (INIS)
Buckley, Andy; Ferrando, James; Nordstroem, Karl; Lloyd, Stephen; Page, Ben; Ruefenacht, Martin; Schoenherr, Marek; Watt, Graeme
2015-01-01
The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond. (orig.)
Uncertainties of predictions from parton distributions 2, theoretical errors
Martin, A D; Stirling, W J; Thorne, R S; 10.1140/epjc/s2004-01825-2
2004-01-01
We study the uncertainties in parton distributions, determined in global fits to deep inelastic and related hard scattering data, due to so-called theoretical errors. Amongst these, we include potential errors due to the change of perturbative order (NLO to NNLO), ln(1/x) and ln(1 - x) effects, absorptive corrections and higher-twist contributions. We investigate these uncertainties both by including explicit corrections to our standard global analysis and by examining the sensitivity to changes of the x, Q/sup 2/, W/sup 2/ cuts on the data that are fitted. In this way we expose those kinematic regions where the conventional DGLAP description is inadequate. As a consequence we obtain a set of NLO, and of NNLO, conservative partons where the data are fully consistent with DGLAP evolution, but over a restricted kinematic domain. We also examine the potential effects of such issues as the choice of input parametrisation, heavy target corrections, assumptions about. the strange quark sea and isospin violation. He...
Parton fragmentation in the vacuum and in the medium
Albino, S.; Arleo, F.; Besson, Dave Z.; Brooks, William K.; Buschbeck, B.; Cacciari, M.; Christova, E.; Corcella, G.; D'Enterria, David G.; Dolejsi, Jiri; Domdey, S.; Estienne, M.; Hamacher, Klaus; Heinz, M.; Hicks, K.; Kettler, D.; Kumano, S.; Moch, S.O.; Muccifora, V.; Pacetti, S.; Perez-Ramos, R.; Pirner, H.J.; Pronko, Alexandre Pavlovich; Radici, M.; Rak, J.; Roland, C.; Rudolph, Gerald; Rurikova, Z.; Salgado, C.A.; Sapeta, S.; Saxon, David H.; Seidl, Ralf-Christian; Seuster, R.; Stratmann, M.; Tannenbaum, Michael J.; Tasevsky, M.; Trainor, T.; Traynor, D.; Werlen, M.; Zhou, C.
2008-01-01
We present the mini-proceedings of the workshop on ``Parton fragmentation in the vacuum and in the medium'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) in February 2008. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of quark and gluon fragmentation into hadrons at different accelerator facilities (LEP, B-factories, JLab, HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) light-quark and gluon fragmentation in the vacuum including theoretical (global fits analyses and MLLA) and experimental (data from e+e-, p-p, e-p collisions) aspects, (ii) strange and heavy-quark fragmentation, (iii) parton fragmentation in cold QCD matter (nuclear DIS), and (iv) medium-modified fragmentation in hot and dense QCD matter (high-energy nucleus-nucleus collisions). These mini-proceedings consist of an introduction and short summ...
Initial-state parton shower kinematics for NLO event generators
International Nuclear Information System (INIS)
Odaka, Shigeru; Kurihara, Yoshimasa
2007-01-01
We are developing a consistent method to combine tree-level event generators for hadron collision interactions with those including one additional QCD radiation from the initial-state partons, based on the limited leading-log (LLL) subtraction method, aiming at an application to NLO event generators. In this method, a boundary between non-radiative and radiative processes necessarily appears at the factorization scale (μ F ). The radiation effects are simulated using a parton shower (PS) in non-radiative processes. It is therefore crucial in our method to apply a PS which well reproduces the radiation activities evaluated from the matrix-element (ME) calculations for radiative processes. The PS activity depends on the applied kinematics model. In this paper we introduce two models for our simple initial-state leading-log PS: a model similar to the 'old' PYTHIA-PS and a p T -prefixed model motivated by ME calculations. PS simulations employing these models are tested using W-boson production at LHC as an example. Both simulations show a smooth matching to the LLL subtracted W+1 jet simulation in the p T distribution of W bosons, and the summed p T spectra are stable against a variation of μ F , despite that the p T -prefixed PS results in an apparently harder p T spectrum. (orig.)
Sketching the pion's valence-quark generalised parton distribution
Directory of Open Access Journals (Sweden)
C. Mezrag
2015-02-01
Full Text Available In order to learn effectively from measurements of generalised parton distributions (GPDs, it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL truncation of QCD's Dyson–Schwinger equations and exemplified via the pion's valence dressed-quark GPD, Hπv(x,ξ,t. Our analysis focuses primarily on ξ=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting Hπv(x,ξ=±1,t with the pion's valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for Hπv(x,0,t, expressed as the Radon transform of a single amplitude. Therewith we obtain results for Hπv(x,0,t and the associated impact-parameter dependent distribution, qπv(x,|b→⊥|, which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ζ=2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.
Uncertainties of predictions from parton distributions 1, experimental errors
Martin, A D; Stirling, William James; Thorne, R S; CERN. Geneva
2003-01-01
We determine the uncertainties on observables arising from the errors on the experimental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce sets of partons suitable for use within the framework of linear propagation of errors, which is the most convenient method for calculating the uncertainties. Despite the potential limitations of this approach we find that it can be made to work well in practice. This is confirmed by our alternative approach of using the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly. As particular examples we determine the uncertainties on the predictions of the charged-current deep-inelastic structure functions, on the cross-sections for W production and for Higgs boson production via gluon--gluon fusion at the Tevatron and the LHC, on the ratio of W-minus to W-plus production at the LHC and on the moments of the non-singlet quark distributions. We discuss the corresponding uncertain...
Parton self-energies for general momentum-space anisotropy
Kasmaei, Babak S.; Strickland, Michael
2018-03-01
We introduce an efficient general method for calculating the self-energies, collective modes, and dispersion relations of quarks and gluons in a momentum-anisotropic high-temperature quark-gluon plasma. The method introduced is applicable to the most general classes of deformed anisotropic momentum distributions and the resulting self-energies are expressed in terms of a series of hypergeometric basis functions which are valid in the entire complex phase-velocity plane. Comparing to direct numerical integration of the self-energies, the proposed method is orders of magnitude faster and provides results with similar or better accuracy. To extend previous studies and demonstrate the application of the proposed method, we present numerical results for the parton self-energies and dispersion relations of partonic collective excitations for the case of an ellipsoidal momentum-space anisotropy. Finally, we also present, for the first time, the gluon unstable mode growth rate for the case of an ellipsoidal momentum-space anisotropy.
Parton-shower matching systematics in vector-boson-fusion WW production
Energy Technology Data Exchange (ETDEWEB)
Rauch, Michael [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom)
2017-05-15
We perform a detailed analysis of next-to-leading order plus parton-shower matching in vector-boson-fusion WW production including leptonic decays. The study is performed in the Herwig 7 framework interfaced to VBFNLO 3, using the angular-ordered and dipole-based parton-shower algorithms combined with the subtractive and multiplicative-matching algorithms. (orig.)
Autopsy of the Supernova Remnant Cassiopeia A
Milisavljevic, Dan; Fesen, Robert A.
2014-01-01
Three-dimensional kinematic reconstructions of optically emitting ejecta in the young Galactic supernova remnant Cassiopeia A (Cas A) are discussed. The reconstructions encompass the remnant's faint outlying ejecta knots, including the exceptionally high-velocity NE and SW streams of debris often referred to as `jets'. The bulk of Cas A's ejecta are arranged in several circular rings with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). We suggest that similar large-scale ejecta rings may be a common phenomenon of young core-collapse remnants and may explain lumpy emission line profile substructure sometimes observed in spectra of extragalactic core-collapse supernovae years after explosion. A likely origin for these large ejecta rings is post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material to form bubble-like structures.
Secondary Lenticule Remnant Removal After SMILE.
Ng, Alex L K; Kwok, Peter S K; Chan, Tommy C Y
2017-11-01
The authors report four cases of residual intrastromal lenticule after seemingly uneventful small incision lenticule extraction (SMILE) surgery and the outcome after a secondary procedure to remove the lenticule remnant. Case reports. All four cases presented with suboptimal corrected distance visual acuity (CDVA) and refractive surprise. Irregularities in the corneal curvature and elevation were detected on corneal topography and tomography. Careful review of the intraoperative video showed an incomplete removal of the SMILE lenticule. All four cases underwent a secondary surgical procedure to remove the residual lenticule remnant. All cases had improvements in the CDVA, refraction, and topography, with the CDVA returning to the preoperative value (20/20) in all cases. Performing an early, secondary lenticular remnant removal operation is feasible, safe, and can result in improvement in both refraction and visual acuity. During the original SMILE surgery, surgeons should routinely examine the removed lenticule for completeness. [J Refract Surg. 2017;33(11):779-782.]. Copyright 2017, SLACK Incorporated.
PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders
Ballestrero, Alessandro; Belhouari, Aissa; Bevilacqua, Giuseppe; Kashkan, Vladimir; Maina, Ezio
2009-03-01
electron-positron colliders. It computes all amplitudes at O(αEM6) and O(αEM4αs2) including possible interferences between the two sets of diagrams. The matrix elements are computed with the helicity formalism implemented in the program PHACT [1]. The integration makes use of an iterative-adaptive multichannel method which, relying on adaptivity, allows the use of only a few channels per process. Unweighted event generation can be performed for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. Restrictions: All Feynman diagrams are computed al LO. Unusual features: Phantom is written in Fortran 77 but it makes use of structures. The g77 compiler cannot compile it as it does not recognize the structures. The Intel, Portland Group, True64 HP Fortran 77 or Fortran 90 compilers have been tested and can be used. Running time: A few hours for a cross section integration of one process at per mille accuracy. One hour for one thousand unweighted events. References:A. Ballestrero, E. Maina, Phys. Lett. B 350 (1995) 225, hep-ph/9403244; A. Ballestrero, PHACT 1.0, Program for helicity amplitudes Calculations with Tau matrices, hep-ph/9911318, in: B.B. Levchenko, V.I. Savrin (Eds.), Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 99), SINP MSU, Moscow, p. 303.
Analytic solutions of QCD evolution equations for parton cascades inside nuclear matter at small x
International Nuclear Information System (INIS)
Geiger, K.
1994-01-01
An analytical method is presented to solve generalized QCD evolution equations for the time development of parton cascades in a nuclear environment. In addition to the usual parton branching processes in vacuum, these evolution equations provide a consistent description of interactions with the nuclear medium by accounting for stimulated branching processes, fusion, and scattering processes that are specific to QCD in a medium. Closed solutions for the spectra of produced partons with respect to the variables time, longitudinal momentum, and virtuality are obtained under some idealizing assumptions about the composition of the nuclear medium. Several characteristic features of the resulting parton distributions are discussed. One of the main conclusions is that the evolution of a parton shower in a medium is dilated as compared to free space and is accompanied by an enhancement of particle production. These effects become stronger with increasing nuclear density
Supernova remnants: the X-ray perspective
Vink, J.
2012-01-01
Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And
Grenvillian thermal event and remnant charnockite: Isotopic ...
Indian Academy of Sciences (India)
R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22
Grenvillian thermal event and remnant charnockite: Isotopic evidence from the Chilka Lake granulite-migmatite suite in the Eastern Ghats belt, India. S Bhattacharya1, M P Deomurari2 and W Teixeira3. 1Indian Statistical Institute, 203 B.T.Road, Calcutta 700 035, India. e-mail: samar@isical.ac.in. 2Physical Research ...
Chandra Observations of Tycho's Supernova Remnant
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We present a new Chandra observation of Tycho's supernova remnant with the Advanced CCD Imaging Spectrometer. Multicolor X-ray imaging reveals new details of the outer shock and ejecta. At energies between 4 and 6 keV, the outline of the outer shock is clearly revealed in X-rays for the first time.
Parton distribution functions and benchmark cross sections at NNLO
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Bluemlein, J.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2012-02-15
We present a determination of parton distribution functions (ABM11) and the strong coupling constant {alpha}{sub s} at next-to-leading order and next-to-next-to-leading order (NNLO) in QCD based on world data for deep-inelastic scattering and fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS-scheme for {alpha}{sub s} and the heavy-quark masses. At NNLO we obtain the value {alpha}{sub s}(MZ)=0.1134{+-}0.0011. The fit results are used to compute benchmark cross sections at hadron colliders to NNLO accuracy and to compare to data from the LHC. (orig.)
Transverse momentum-dependent parton distribution functions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Michael G. [New Mexico State University; Musch, Bernhard U. [Tech. University Munich; Haegler, Philipp G. [Tech. University Munich; Negele, John W. [MIT; Schaefer, Andreas [Regensburg
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Polarized Parton Distributions at an Electron-Ion Collider
Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2014-01-01
We study the potential impact of inclusive deep-inelastic scattering data from a future electron-ion collider (EIC) on longitudinally polarized parton distribution (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.
Polarized parton distributions at an electron–ion collider
Energy Technology Data Exchange (ETDEWEB)
Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)
2014-01-20
We study the potential impact of inclusive deep-inelastic scattering data from a future electron–ion collider (EIC) on longitudinally polarized parton distributions (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.
Evolution of truncated moments of singlet parton distributions
International Nuclear Information System (INIS)
Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.
2001-01-01
We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology
Polarized parton distributions at an electron–ion collider
International Nuclear Information System (INIS)
Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2014-01-01
We study the potential impact of inclusive deep-inelastic scattering data from a future electron–ion collider (EIC) on longitudinally polarized parton distributions (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin
Emissivity and conductivity of parton-hadron matter
Directory of Open Access Journals (Sweden)
Linnyk O.
2014-03-01
Full Text Available We investigate the properties of the QCD matter across the deconfinement phase transition. In the scope of the parton-hadron string dynamics (PHSD transport approach, we study the strongly interacting matter in equilibrium as well as the out-of equilibrium dynamics of relativistic heavy-ion collisions. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions and the relevant correlator in equilibrium, i.e. the electric conductivity. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow ν2 of direct photons.
QCD phenomenology of parton distribution functions at small x
International Nuclear Information System (INIS)
Tung, Wu-Ki
1990-09-01
The small x behavior of parton distributions is studied phenomenologically by examining in detail a series of QCD-evolved distribution sets obtained in a new global analysis of deep inelastic scattering and lepton-pair production experiments. The importance of 2-loop evolution is discussed. The main features and results of the global analysis are described. The range of small x behavior consistent with next-to-leading order QCD and current data is delineated. The extrapolated small x behavior is parameterized by effective Q-dependent power- and logarithmic-law parameters. Intriguing features of the evolution of these parameters with Q are presented. Alternative parametrizations based on the analytic solution for small x is also explored. 20 refs., 6 figs., 1 tab
Parton distribution functions with QED corrections in the valon model
Mottaghizadeh, Marzieh; Taghavi Shahri, Fatemeh; Eslami, Parvin
2017-10-01
The parton distribution functions (PDFs) with QED corrections are obtained by solving the QCD ⊗QED DGLAP evolution equations in the framework of the "valon" model at the next-to-leading-order QCD and the leading-order QED approximations. Our results for the PDFs with QED corrections in this phenomenological model are in good agreement with the newly related CT14QED global fits code [Phys. Rev. D 93, 114015 (2016), 10.1103/PhysRevD.93.114015] and APFEL (NNPDF2.3QED) program [Comput. Phys. Commun. 185, 1647 (2014), 10.1016/j.cpc.2014.03.007] in a wide range of x =[10-5,1 ] and Q2=[0.283 ,108] GeV2 . The model calculations agree rather well with those codes. In the latter, we proposed a new method for studying the symmetry breaking of the sea quark distribution functions inside the proton.
Electromagnetic contribution to charge symmetry violation in parton distributions
Directory of Open Access Journals (Sweden)
X.G. Wang
2016-02-01
Full Text Available We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2, the total CSV effect on the phenomenologically important difference between the d and u-quark distributions is some 20% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40% of the NuTeV anomaly.
Nucleon form factors, generalized parton distributions and quark angular momentum
International Nuclear Information System (INIS)
Diehl, Markus; Kroll, Peter; Regensburg Univ.
2013-02-01
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be J u v =0.230 +0.009 -0.024 and J d v =-0.004 +0.010 -0.016 .
Nucleon form factors, generalized parton distributions and quark angular momentum
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
Resummation of singlet parton evolution at small x
Altarelli, Guido; Forte, Stefano; Altarelli, Guido; Ball, Richard D.; Forte, Stefano
2000-01-01
We propose an improvement of the splitting functions at small x which overcomes the apparent problems encountered by the BFKL approach. We obtain a stable expansion for the x-evolution function chi(M) near M=0 by including in it a sequence of terms derived from the one- and two-loop anomalous dimension gamma. The requirement of momentum conservation is always satisfied. The residual ambiguity on the splitting functions is effectively parameterized in terms of the value of lambda, which fixes the small x asymptotic behaviour x^-lambda of the singlet parton distributions. We derive from this improved evolution function an expansion of the splitting function which leads to good apparent convergence, and to a description of scaling violations valid both at large and small x.
GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION
Directory of Open Access Journals (Sweden)
Manami Sasaki
2013-12-01
Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.
Working Group I: Parton distributions: Summary report for the HERA LHC Workshop Proceedings
Energy Technology Data Exchange (ETDEWEB)
Dittmar, M.; /Zurich, ETH; Forte, S.; /Milan U. /INFN, Milan; Glazov, A.; /DESY; Moch, S.; /DESY, Zeuthen; Alekhin, S.; Altarelli, G.; Andersen, Jeppe R.; Ball, R.D.; Blumlein, J.; Bottcher, H.; Carli, T.; Ciafaloni, M.; Colferai, D.; Cooper-Sarkar, A.; Corcella, G.; Del Debbio, L.; Dissertori, G.; Feltesse, J.; Guffanti, A.; Gwenlan, C.; Huston, J.; /Zurich, ETH /DESY, Zeuthen /Serpukhov, IHEP /CERN /Rome III U. /INFN, Rome3 /Cambridge U. /Edinburgh U. /Florence U. /INFN, Florence /Oxford U. /DSM, DAPNIA, Saclay
2005-11-01
We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC.We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of F{sub L}), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.
Proceedings of the first international workshop on multiple partonic interactions at the LHC. MPI'08
Energy Technology Data Exchange (ETDEWEB)
Bartalini, Paolo [National Taiwan Univ., Taipei (China); Fano, Livio (eds.) [Istituto Nazionale di Fisica Nucleare, Perugia (Italy)
2009-06-15
The objective of this first workshop on Multiple Partonic Interactions (MPI) at the LHC, that can be regarded as a continuation and extension of the dedicated meetings held at DESY in the years 2006 and 2007, is to raise the profile of MPI studies, summarizing the legacy from the older phenomenology at hadronic colliders and favouring further specific contacts between the theory and experimental communities. The MPI are experiencing a growing popularity and are currently widely invoked to account for observations that would not be explained otherwise: the activity of the Underlying Event, the cross sections for multiple heavy flavour production, the survival probability of large rapidity gaps in hard diffraction, etc. At the same time, the implementation of the MPI effects in the Monte Carlo models is quickly proceeding through an increasing level of sophistication and complexity that in perspective achieves deep general implications for the LHC physics. The ultimate ambition of this workshop is to promote the MPI as unification concept between seemingly heterogeneous research lines and to profit of the complete experimental picture in order to constrain their implementation in the models, evaluating the spin offs on the LHC physics program. The workshop is structured in five sections, with the first one dedicated to few selected hot highlights in the High Energy Physics and directly connected to the other ones: Multiple Parton Interactions (in both the soft and the hard regimes), Diffraction, Monte Carlo Generators and Heavy Ions. (orig.)
The effective cross section for double parton scattering within a holographic AdS/QCD approach
Energy Technology Data Exchange (ETDEWEB)
Traini, Marco, E-mail: marcoclaudio.traini@unitn.it [Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento (Italy); Rinaldi, Matteo [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Vento, Vicente [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain)
2017-05-10
A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the effective cross section for double parton scattering in proton–proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.
A parton shower based on factorization of the quantum density matrix
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-01-01
We present rst results from a new parton shower event generator, DEDUCTOR. Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, DEDUCTOR implements only a standard spin-averaged treatment of spin in parton splittings. Although DEDUCTOR implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we can compare to the generator PYTHIA. The algorithms used incorporate a virtuality based shower ordering parameter and massive initial state bottom and charm quarks.
Smeared quasidistributions in perturbation theory
Monahan, Christopher
2018-03-01
Quasi- and pseudodistributions provide a new approach to determining parton distribution functions from first principles' calculations of QCD. Here, I calculate the flavor nonsinglet unpolarized quasidistribution at one loop in perturbation theory, using the gradient flow to remove ultraviolet divergences. I demonstrate that, as expected, the gradient flow does not change the infrared structure of the quasidistribution at one loop and use the results to match the smeared matrix elements to those in the MS ¯ scheme. This matching calculation is required to relate numerical results obtained from nonperturbative lattice QCD computations to light-front parton distribution functions extracted from global analyses of experimental data.
What Are the Compact Central Objects in Supernova Remnants?
Graber, James
2002-04-01
Recent Chandra observations of the compact central objects in supernova remnants have shown puzzling results that do not seem to be consistent with either black holes or neutron stars. (See e.g. Pavlov, Sanwal, Garmire and Zavlin, astro-ph-0112322.) In particular, the inferred effective emitting surface is too small to be the entire surface of a neutron star, but too bright to be a black hole. We discuss the possibility that these compact objects might be red holes instead of black holes or neutron stars. Red holes, which occur in alternate theories of gravity, naturally predict both the greater brightness of the emissions and the smaller effective size of the emitting surface from a collapsed object of the appropriate mass.
Anterior cruciate ligament remnant and its values for preservation
Directory of Open Access Journals (Sweden)
Takeshi Muneta
2017-01-01
Full Text Available Controversy surrounds the remnant-preserving anterior cruciate ligament surgery. Advantages of remnant preservation have been reported in regard to better healing and knee function, although no consensus has been reached. This review article discussed the value and meaning of anterior cruciate ligament remnant preservation in several sections such as effects on healing, remnant classification, biomechanical evaluation, relation to proprioception, animal studies, and clinical studies. We hope that this review will facilitate further discussion and investigation for better treatment of anterior cruciate ligament injuries. So far, the current reviews have not provided sufficient scientific evidence to support the value of preserving the remnant.
THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG
Energy Technology Data Exchange (ETDEWEB)
Acero, F.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: francesco.depalma@ba.infn.it, E-mail: t.j.brandt@nasa.gov, E-mail: john.w.hewitt@unf.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others
2016-05-01
To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.
Impact of parton distribution functions on precision measurements of Drell-Yan observables
The ATLAS collaboration
2018-01-01
This note presents studies of the impact of precision measurements of Drell-Yan observables on the parton distribution functions and their related uncertainties. Two such studies are reported, based on simulated $W \\to \\ell\
Drell-Yan Production at NNLL'+NNLO Matched to Parton Showers
Alioli, Simone; Berggren, Calvin; Tackmann, Frank J; Walsh, Jonathan R
2015-01-01
We present results for Drell-Yan production from the GENEVA Monte-Carlo framework. We combine the fully-differential NNLO calculation with higher-order resummation in the 0-jettiness resolution variable. The resulting parton-level events are further combined with parton showering and hadronization provided by PYTHIA8. The 0-jettiness resummation is carried out to NNLL', which consistently incorporates all singular virtual and real NNLO corrections. It thus provides a natural perturbative connection between the NNLO calculation and the parton shower regime, including a systematic assessment of perturbative uncertainties. In this way, inclusive observables are correct to NNLO, up to small power corrections in the resolution cutoff. Furthermore, the perturbative accuracy of 0-jet-like resummation variables is significantly improved beyond the parton shower approximation. We provide comparisons with LHC measurements of Drell-Yan production at 7 TeV from ATLAS, CMS, and LHCb. As already observed in $e^+e^-$ collis...
Single perturbative splitting diagrams in double parton scattering
Gaunt, Jonathan R.
2013-01-01
We present a detailed study of a specific class of graph that can potentially contribute to the proton-proton double parton scattering (DPS) cross section. These are the `2v1' or `single perturbative splitting' graphs, in which two `nonperturbatively generated' ladders interact with two ladders that have been generated via a perturbative 1 → 2 branching process. Using a detailed calculation, we confirm the result written down originally by Ryskin and Snigirev — namely, that the 2v1 graphs in which the two nonperturbatively generated ladders do not interact with one another do contribute to the leading order proton-proton DPS cross section, albeit with a different geometrical prefactor to the one that applies to the `2v2'/`zero perturbative splitting' graphs. We then show that 2v1 graphs in which the `nonperturbatively generated' ladders exchange partons with one another also contribute to the leading order proton-proton DPS cross section, provided that this `crosstalk' occurs at a lower scale than the 1 → 2 branching on the other side of the graph. Due to the preference in the 2v1 graphs for the x value at which the branching occurs, and crosstalk ceases, to be very much larger than the x values at the hard scale, the effect of crosstalk interactions is likely to be a decrease in the 2v1 cross section except at exceedingly small x values (≲ 10-6). At moderate x values ≃ 10-3 -10-2, the x value at the splitting is in the region ≃ 10-1 where PDFs do not change much with scale, and the effect of crosstalk interactions is likely to be small. We give an explicit formula for the contribution from the 2v1 graphs to the DPS cross section, and combine this with a suggestion that we made in a previous publication, that the `double perturbative splitting'/`1v1' graphs should be completely removed from the DPS cross section, to obtain a formula for the DPS cross section. It is pointed out that there are two potentially concerning features in this equation, that
Testing partonic charge symmetry at a high-energy electron collider
International Nuclear Information System (INIS)
Hobbs, T.J.; Londergan, J.T.; Murdock, D.P.; Thomas, A.W.
2011-01-01
We examine the possibility that one could measure partonic charge symmetry violation (CSV) by comparing neutrino or antineutrino production through charged-current reactions induced by electrons or positrons at a possible electron collider at the LHC. We calculate the magnitude of CSV that might be expected at such a facility. We show that this is likely to be a several percent effect, substantially larger than the typical CSV effects expected for partonic reactions.
International Nuclear Information System (INIS)
Anselmino, M.; Avakian, H.; Chen, J.P.; Musch, B.; Prokudin, A.; Qiang, Y.; Sulkosky, V.; Zhang, Y.; Boer, D.; Bradamante, F.; Burkardt, M.; Cisbani, E.; Contalbrigo, M.; Crabb, D.; Dutta, D.; Gamberg, L.; Gao, H.; Huang, M.; Laskaris, G.; Ye, Q.; Ye, Q.J.; Zheng, W.; Hasch, D.; Rossi, P.; Huang, J.; Kang, Z.; Keppel, C.; Liang, Z.T.; Liu, M.X.; Makins, N.; Peng, J.C.; Mckeown, R.D.; Qian, X.; Metz, A.; Meziani, Z.E.; Soffer, J.; Zhou, J.; Qiu, J.W.; Schweitzer, P.; Wang, Y.; Xiao, B.; Yuan, F.; Zhan, X.
2011-01-01
We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse-momentum-dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single-spin asymmetries (SSA) from semi-inclusive deep inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D (anti D) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the unexplored sea quark region along with a study of their evolution. (orig.)
Parton distributions and lattice QCD calculations: A community white paper
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James
2018-05-01
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.
Lattice QCD exploration of parton pseudo-distribution functions
Orginos, Kostas; Radyushkin, Anatoly; Karpie, Joseph; Zafeiropoulos, Savvas
2017-11-01
We demonstrate a new method of extracting parton distributions from lattice calculations. The starting idea is to treat the generic equal-time matrix element M (P z3,z32) as a function of the Ioffe time ν =P z3 and the distance z3. The next step is to divide M (P z3,z32) by the rest-frame density M (0 ,z32). Our lattice calculation shows a linear exponential z3-dependence in the rest-frame function, expected from the Z (z32) factor generated by the gauge link. Still, we observe that the ratio M (P z3,z32)/M (0 ,z32) has a Gaussian-type behavior with respect to z3 for 6 values of P used in the calculation. This means that Z (z32) factor was canceled in the ratio. When plotted as a function of ν and z3, the data are very close to z3-independent functions. This phenomenon corresponds to factorization of the x - and k⊥-dependence for the TMD F (x ,k⊥2). For small z3≤4 a , the residual z3-dependence is explained by perturbative evolution, with αs/π =0.1 .
EPPS16: nuclear parton distributions with LHC data
Energy Technology Data Exchange (ETDEWEB)
Eskola, Kari J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, University of Jyvaskyla (Finland); Helsinki Institute of Physics, P.O. Box 64, University of Helsinki (Finland); Paakkinen, Petja [University of Jyvaskyla, Department of Physics, P.O. Box 35, University of Jyvaskyla (Finland); Paukkunen, Hannu [University of Jyvaskyla, Department of Physics, P.O. Box 35, University of Jyvaskyla (Finland); Helsinki Institute of Physics, P.O. Box 64, University of Helsinki (Finland); Universidade de Santiago de Compostela, Instituto Galego de Fisica de Altas Enerxias (IGFAE), Galicia (Spain); Salgado, Carlos A. [Universidade de Santiago de Compostela, Instituto Galego de Fisica de Altas Enerxias (IGFAE), Galicia (Spain)
2017-03-15
We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom for the flavor dependence of nuclear effects than in other currently available analyses. As a result, especially the uncertainty estimates are more objective flavor by flavor. The neutrino DIS plays a pivotal role in obtaining a mutually consistent behavior for both up and down valence quarks, and the LHC dijet data clearly constrain gluons at large momentum fraction. Mainly for insufficient statistics, the pion-nucleus DY and heavy-gauge-boson production in proton-lead collisions impose less visible constraints. The outcome - a new set of next-to-leading order nuclear PDFs called EPPS16 - is made available for applications in high-energy nuclear collisions. (orig.)
NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS
International Nuclear Information System (INIS)
Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C.
2012-01-01
The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, γ, and three distinct values are taken for the cavity (γ 1 ), the shell (γ 2 ), and the ISM (γ 3 ) with the condition γ 2 1 , γ 3 . This low value of γ 2 accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the angle. As a result, our model shows that the supernova remnant returns to a
VHE Gamma-ray Supernova Remnants
Energy Technology Data Exchange (ETDEWEB)
Funk, Stefan; /KIPAC, Menlo Park
2007-01-22
Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.
Supernova Remnants with Fermi Large Area Telescope
Directory of Open Access Journals (Sweden)
Caragiulo M.
2017-01-01
Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.
Remnant cholesterol as a cause of ischemic heart disease
DEFF Research Database (Denmark)
Varbo, Anette; Benn, Marianne; Nordestgaard, Børge G
2014-01-01
This review focuses on remnant cholesterol as a causal risk factor for ischemic heart disease (IHD), on its definition, measurement, atherogenicity, and levels in high risk patient groups; in addition, present and future pharmacological approaches to lowering remnant cholesterol levels...... are considered. Observational studies show association between elevated levels of remnant cholesterol and increased risk of cardiovascular disease, even when remnant cholesterol levels are defined, measured, or calculated in different ways. In-vitro and animal studies also support the contention that elevated...... levels of remnant cholesterol may cause atherosclerosis same way as elevated levels of low-density lipoprotein (LDL) cholesterol, by cholesterol accumulation in the arterial wall. Genetic studies of variants associated with elevated remnant cholesterol levels show that an increment of 1mmol/L (39mg...
Nagaraju, S; O'Donovan, D G; Cross, J; Fernandes, H
2010-01-01
The histogenesis of colloid cysts of the third ventricle remains unsettled. Initial theories favored a neuroepithelial (paraphysis, ependyma, choroid plexus) origin and some investigators based on morphologic analysis have offered an alternative endodermal source. We report a case of colloid cyst of the third ventricle arising in association with a remnant which we believe corresponds to the paraphysis cerebri in man.
Comparing Neutron Star Kicks to Supernova Remnant Asymmetries
Energy Technology Data Exchange (ETDEWEB)
Holland-Ashford, Tyler; Lopez, Laura A. [The Ohio State University Department of Astronomy, 140 W 18th Avenue, Columbus, OH 43201 (United States); Auchettl, Katie [The Ohio State University Center for Cosmology and Astro-particle Physics, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ramirez-Ruiz, Enrico, E-mail: holland-ashford.1@osu.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2017-07-20
Supernova explosions are inherently asymmetric and can accelerate new-born neutron stars (NSs) to hundreds of km s{sup −1}. Two prevailing theories to explain NS kicks are ejecta asymmetries (e.g., conservation of momentum between NS and ejecta) and anisotropic neutrino emission. Observations of supernova remnants (SNRs) can give us insights into the mechanism that generates these NS kicks. In this paper, we investigate the relationship between NS kick velocities and the X-ray morphologies of 18 SNRs observed with the Chandra X-ray Observatory and the Röntgen Satellite ( ROSAT ). We measure SNR asymmetries using the power-ratio method (a multipole expansion technique), focusing on the dipole, quadrupole, and octupole power ratios. Our results show no correlation between the magnitude of the power ratios and NS kick velocities, but we find that for Cas A and G292.0+1.8, whose emission traces the ejecta distribution, their NSs are preferentially moving opposite to the bulk of the X-ray emission. In addition, we find a similar result for PKS 1209–51, CTB 109, and Puppis A; however, their emission is dominated by circumstellar/interstellar material, so their asymmetries may not reflect their ejecta distributions. Our results are consistent with the theory that NS kicks are a consequence of ejecta asymmetries as opposed to anisotropic neutrino emission. In the future, additional observations to measure NS proper motions within ejecta-dominated SNRs are necessary to robustly constrain the NS kick mechanism.
The transverse momentum of partons in large psub(T) processes
International Nuclear Information System (INIS)
Chase, M.K.
1977-11-01
An approximate method is used to investigate the effects of parton transverse momentum in large psub(T) particle production within the framework of hard scattering models. An approximate expression is derived for the mean bias towards the trigger of each of the two participating partons and it is found that event by event one of the partons is biased more than the other, even with a 90 0 trigger. The transverse momentum of partons and their closely related off mass shell behaviour are treated as a perturbation in the equation for the single particle inclusive cross-section, which is then expanded in a Taylor series. The first non-zero correction term is calculated and it is found that to this order, the cross-section is increased by parton transverse momentum effects by typically a factor of 2 for psub(T) = 2 to 3 GeV/c, and that the correction decreases rapidly with increasing psub(T). (author)
D-meson production according to the parton model and their detection in ALICE
Kalliokoski, Tuomo; Trzaska, Wladyslaw
2007-01-01
Modern understanding in particle physics is constructed over lay- ers and layers of work. Most of the work was done during last century, starting from the quantum mechanics. Modern theoretical basis is the parton model, which is constructed from three independent parts: distribution of momentum to partons inside hadron, partonic cross-sections from QCD and from fragmentation of parton to hadrons. All of these parts are discussed in this work. Future experiments are aiming for higher energies and/or greater number of intresting events than what previous experiments were capable to gain. Main example of this is LHC and ALICE-experiment on it in CERN. While simulations have benefited greatly from fast increase of computing power during last few decades. With the following assumptions, p$_t$ $>$ 1 GeV, fixed QCD scale Q = 5 GeV, massless quarks and only gluon-gluon channel in partonic cross-section and $\\delta$-function fragmentation, the lowest order simulations for production of D-meson with midrapidity y = 0 a...
Parton distributions from high-precision collider data
Energy Technology Data Exchange (ETDEWEB)
Ball, Richard D.; Del Debbio, Luigi; Groth-Merrild, Patrick [University of Edinburgh, The Higgs Centre for Theoretical Physics, Edinburgh (United Kingdom); Bertone, Valerio; Hartland, Nathan P.; Rojo, Juan [VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Nikhef Theory Group, Amsterdam (Netherlands); Carrazza, Stefano [CERN, Theoretical Physics Department, Geneva (Switzerland); Forte, Stefano [Universita di Milano, Tif Lab, Dipartimento di Fisica, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Guffanti, Alberto [Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Kassabov, Zahari [Universita di Milano, Tif Lab, Dipartimento di Fisica, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Latorre, Jose I. [Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica, Barcelona (Spain); National University of Singapore, Center for Quantum Technologies, Singapore (Singapore); Nocera, Emanuele R.; Rottoli, Luca; Slade, Emma [University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom); Ubiali, Maria [University of Cambridge, Cavendish Laboratory, HEP Group, Cambridge (United Kingdom); Collaboration: NNPDF Collaboration
2017-10-15
We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test. The update is motivated by recent progress in methodology and available data, and involves both. On the methodological side, we now parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs. On the data side, we now include the D0 electron and muon W asymmetries from the final Tevatron dataset, the complete LHCb measurements of W and Z production in the forward region at 7 and 8 TeV, and new ATLAS and CMS measurements of inclusive jet and electroweak boson production. We also include for the first time top-quark pair differential distributions and the transverse momentum of the Z bosons from ATLAS and CMS. We investigate the impact of parametrizing charm and provide evidence that the accuracy and stability of the PDFs are thereby improved. We study the impact of the new data by producing a variety of determinations based on reduced datasets. We find that both improvements have a significant impact on the PDFs, with some substantial reductions in uncertainties, but with the new PDFs generally in agreement with the previous set at the one-sigma level. The most significant changes are seen in the light-quark flavor separation, and in increased precision in the determination of the gluon. We explore the implications of NNPDF3.1 for LHC phenomenology at Run II, compare with recent LHC measurements at 13 TeV, provide updated predictions for Higgs production cross-sections and discuss the strangeness and charm content of the proton in light of our improved dataset and methodology. The NNPDF3.1 PDFs are delivered for the first time both as Hessian sets, and as optimized Monte Carlo sets with a compressed number of replicas. (orig.)
Forte, Stefano; Ridolfi, G; Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni
2001-01-01
We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Delta q-Delta qbar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure.
International Nuclear Information System (INIS)
Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni
2001-01-01
We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading-order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading-order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Δq-Δq-bar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure
Measurement of hard double-parton interactions in $W (\\rightarrow \\ell \
Gueta, Orel; The ATLAS collaboration
2014-01-01
The productions of jets in association with a vector boson are important processes for understanding the effect of QCD radiation on forward and central jet activity and can be used to study the contribution of multi-particle interactions. ATLAS results are compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD predictions corrected for non-perturbative effects, which include multiple parton interactions and hadronisation effects. The contribution of double and multiple parton scattering plays a sizable contribution to vector bosons produced in association with light and heavy flavour jets, in the region of low jet transverse momentum. An explicit study of double-parton scattering using W+dijet events is presented, along with a measurement of the effective cross section.
Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach
Energy Technology Data Exchange (ETDEWEB)
Nefedov, M.A. [Samarskij Gosudarstvennyj Univ., Samara (Russian Federation); Saleev, V.A.; Shipilova, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Samarskij Gosudarstvennyj Univ., Samara (Russian Federation)
2013-04-15
We study inclusive dijet azimuthal decorrelations in proton-proton collisions at the CERN LHC invoking the hypothesis of parton Reggeization in t-channel exchanges at high energies. In the parton Reggeization approach, the main contribution to the azimuthal angle difference between the two most energetic jets is due to the Reggeon-Reggeon-Particle-Particle scattering, when the fusion of two Reggeized gluons into a pair of Yang-Mills gluons dominates. Using a high-energy factorization scheme with the Kimber-Martin-Ryskin unintegrated parton distribution functions and the Fadin-Lipatov effective vertices we obtain good agreement of our calculations with recent measurements by the ATLAS and CMS Collaborations at the CERN LHC.
Multi-parton loop amplitudes and next-to-leading order jet cross-sections
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.; Kosower, D.A.; Signer, A.
1998-02-01
The authors review recent developments in the calculation of QCD loop amplitudes with several external legs, and their application to next-to-leading order jet production cross-sections. When a number of calculational tools are combined together--helicity, color and supersymmetry decompositions, plus unitarity and factorization properties--it becomes possible to compute multi-parton one-loop QCD amplitudes without ever evaluating analytically standard one-loop Feynman diagrams. One-loop helicity amplitudes are now available for processes with five external partons (ggggg, q anti qggg and q anti qq anti q' g), and for an intermediate vector boson V ≡ γ * , Z, W plus four external partons (V q anti q and V q anti qq'anti q'). Using these amplitudes, numerical programs have been constructed for the next-to-leading order corrections to the processes p anti p → 3 jets (ignoring quark contributions so far) and e + e - → 4 jets
Measurement of hard double-parton interactions in $W(\\to l\
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Ochoa, Ines; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garay Walls, Francisca; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Hülsing, Tobias Alexander; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Kenyon, Mike; Keoshkerian, Houry; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Krauss, Frank; Kravchenko, Anton; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Dong; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander Kondrup; Maeno, Mayuko; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Homero; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Milutinovic-Dumbelovic, Gordana; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2013-03-25
The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}$=7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36/pb, collected with the ATLAS detector at the LHC. The fraction of events arising from double-parton interactions, $f_{DP}^{(D)}$ has been measured through the momentum balance between the two jets and amounts to $f_{DP}^{(D)} = 0.08 \\pm 0.01 (stat.) \\pm 0.02 (sys.)$ for jets with transverse momentum PT > 20 GeV and rapidity |y|<2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of $\\sigma_{eff} = 15 \\pm 3 (stat.)^{+5}_{-3}$ (sys.) mb.
Hautmann, F.; Jung, H.; Lelek, A.; Radescu, V.; Žlebčík, R.
2018-01-01
We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1% over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.
QCD-aware partonic jet clustering for truth-jet flavour labelling
International Nuclear Information System (INIS)
Buckley, Andy; Pollard, Chris
2016-01-01
We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)
International Nuclear Information System (INIS)
D'Alesio, U.; Leader, E.; Murgia, F.
2010-01-01
We show that respecting the underlying Lorentz structure in the parton model has very strong consequences. Failure to insist on the correct Lorentz covariance is responsible for the existence of contradictory results in the literature for the polarized structure function g 2 (x), whereas with the correct imposition we are able to derive the Wandzura-Wilczek relation for g 2 (x) and the target-mass corrections for polarized deep inelastic scattering without recourse to the operator product expansion. We comment briefly on the problem of threshold behavior in the presence of target-mass corrections. Careful attention to the Lorentz structure has also profound implications for the structure of the transverse momentum dependent parton densities often used in parton model treatments of hadron production, allowing the k T dependence to be derived explicitly. It also leads to stronger positivity and Soffer-type bounds than usually utilized for the collinear densities.
Three-particle correlations from parton cascades in Au+Au collisions
International Nuclear Information System (INIS)
Ma, G.L.; Ma, Y.G.; Zhang, S.; Cai, X.Z.; Chen, J.H.; He, Z.J.; Huang, H.Z.; Long, J.L.; Shen, W.Q.; Shi, X.H.; Zhong, C.; Zuo, J.X.
2007-01-01
We present a study of three-particle correlations among a trigger particle and two associated particles in Au+Au collisions at s NN =200 GeV using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. We found that three-particle correlation densities in different angular directions with respect to the triggered particle ('center', 'cone', 'deflected', 'near' and 'near-away') increase with the number of participants. The ratio of 'deflected' to 'cone' density approaches to 1.0 with the increasing of number of participants, which indicates that partonic Mach-like shock waves can be produced by strong parton cascades in central Au+Au collisions
Relating Eye Activity Measures to Human Controller Remnant Characteristics
Popovici, A; Zaal, P.M.T.; Pool, D.M.; Mulder, M.; Sawaragi, T
2016-01-01
This study attempts to partially explain the characteristics of the human perceptual remnant, following Levison’s representation of the remnant as an equivalent observation noise. Eye activity parameters are recorded using an eye tracker in two compensatory tracking tasks in which the visual
Observational Signatures of Particle Acceleration in Supernova Remnants
Helder, E.A.; Vink, J.; Bykov, A.M.; Ohira, Y.; Raymond, J.C.; Terrier, R.
2012-01-01
We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We
SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS
Aasi, J.; van den Brand, J.F.J.; Bulten, H.J.; Rabeling, D.S.
2015-01-01
We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing
Supernova remnants and the origin of cosmic rays
Vink, J.
2014-01-01
Supernova remnants have long been considered to be the dominant sources of Galactic cosmic rays. For a long time the prime evidence consisted of radio synchrotron radiation from supernova remnants, indicating the presence of electrons with energies of several GeV. However, in order to explain the
Supernova Remnants as the Sources of Galactic Cosmic Rays
Vink, J.
2013-01-01
The origin of cosmic rays holds still manymysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate
Pancreaticoduodenectomy with External Drainage of the Pancreatic Remnant
Suvit Sriussadaporn; Rattaplee Pak-art; Sukanya Sriussadaporn; Kritaya Kritayakirana; Supparerk Prichayudh
2008-01-01
Leakage of the pancreaticojejunal anastomosis is a serious complication after pancreaticoduodenectomy. External drainage of the pancreatic remnant is one of several methods for reducing pancreaticojejunal anastomotic leakage or fistula. We investigated complications after pancreaticoduodenectomy with and without external drainage of the pancreatic remnant. METHODS: Patients who underwent pancreaticoduodenectomy at King Chulalongkorn Memorial Hospital, Bangkok, Thailand from November 1991 t...
THE DRESSMAKER, REMNANTS OF A LIFE
DEFF Research Database (Denmark)
Carpe Pérez, Inmaculada Concepción
2015-01-01
The Dressmaker, remnants of a life, is a visual representation of our research in animation ,at the Animated Learning Lab, as a means of reflection on the construction of the self and memories. Through the artistic production of motion pictures, an introspection is done in the author’s personal...... history, where she compiles memories, charged of feelings and emotions, which later on will build the story and its characters. Currently it’s not very common to conceive animation as a communication media of biographies. Neverthless, features as Drawn from Memory (1995, Paul Fierlinger), Waltz...... the psychology of the self. Animation, for it’s metaphorical power and playfulness: mix of reality and fantasy, results a very attractive and effective tool to explore different points of view and work the neuroplasticity, facilitator of the physical changes of our brain and our behavior, area of study...
A Python Calculator for Supernova Remnant Evolution
Leahy, D. A.; Williams, J. E.
2017-05-01
A freely available Python code for modeling supernova remnant (SNR) evolution has been created. This software is intended for two purposes: to understand SNR evolution and to use in modeling observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs. In addition, alternate evolutionary models are available, including evolution in a cloudy ISM, the fractional energy-loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity versus time, as well as SNR surface brightness profile and spectrum. Some interesting properties of SNR evolution are demonstrated using the program.
Urachal remnant carcinoma - a rare entity
Directory of Open Access Journals (Sweden)
Vanesha Naidu
2013-06-01
Full Text Available Primary malignancy of the urachal remnant is a rare neoplasm that accounts for less than 0.01% of all adult cancers, with an estimated annual incidence of 1:5 million. The tumour carries a grave prognosis that attests to its highly aggressive nature. Owing to its extra-peritoneal location, the tumour runs a relatively silent clinical course until late presentation, when most patients display extensive local invasion and metastatic spread. In this report, we highlight a case of primary malignancy of the urachus that on initial clinical evaluation masqueraded as a Sister Mary Joseph’s nodule. Characteristic imaging features, however, proved decisive in establishing the diagnosis of a urachal carcinoma.
Exosat observations of the Kepler supernova remnant
International Nuclear Information System (INIS)
Smith, A.; Peacock, A.; Arnaud, M.; Ballet, J.; Rothenflug, R.
1989-01-01
The medium-energy experiment on board Exosat was used to measure the X-ray spectrum of the Kepler supernova remnant over the range 1.5-10 keV. An Fe emission line was clearly resolved with an energy of about 6.5 keV and equivalent width of about 1.8 keV. This was superposed on a continuum with a temperature of 5.0(+3.8, -1.9) keV. The medium-energy spectrum is shown to be consistent with a model in which the Kepler SNR is presently in a Sedov phase of evolution, the 5 keV continuum arises from the shocked interstellar/circumstellar medium, and thermal (but not ionization) equilibrium exists between electrons and ions behind the primary shock front. However, in this case, an overabundance of iron by more than 6 times cosmic is required. 28 refs
Multi-Wavelength Observations of Supernova Remnants
Williams, B.
2012-01-01
Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.
Correlations in double parton distributions: perturbative and non-perturbative effects
Energy Technology Data Exchange (ETDEWEB)
Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)
2016-10-12
The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.
X-ray emission from supernova remnants with particular reference to the Cygnus Loop
International Nuclear Information System (INIS)
Gronenschild, E.H.B.M.
1979-01-01
Observational or theoretical results related to the study of supernova remnants (SNRs) are described. Some background information is given by reviewing the present status of our knowledge of supernovae and supernova remnants, both from theory and observations. Also the distribution of all known radio, optical, and X-ray SNRs in the Galaxy is shown and a comparison is made. The X-ray observations of the well-known X-ray SNR the Cygnus Loop are discussed in detail and the discovery of a new X-ray emitting SNR W44 is described. Other radio sources are investigated, and the observed X-ray emission of SNRs are analysed using thermal spectra like exponential or bremsstrahlung spectra. The X-ray line spectrum that emerges from SNRs is described in detail. (Auth.)
Remnants of occipital vertebrae: proatlas segmentation abnormalities.
Menezes, Arnold H; Fenoy, Kathleen A
2009-05-01
Developmental remnants around the foramen magnum, or proatlas segmentation abnormalities, have been recorded in postmortem studies but very rarely in a clinical setting. Because of their rarity, the pathological anatomy has been misunderstood, and treatment has been fraught with failures. The objectives of this prospective study were to understand the correlative anatomy, pathology, and embryology and to recognize the clinical presentation and gain insights on the treatment and management. Our craniovertebral junction (CVJ) database started in 1977 and comprises 5200 cases. This prospective study has retrieval capabilities. Neurodiagnostic studies changed with the evolution of imaging. Seventy-two patients were recognized as having symptomatic proatlas segmentation abnormalities. Ventral bony masses from the clivus or medial occipital condyle occurred in 66% (44/72), lateral or anterolateral compressive masses in 37% (27 of 72 patients), and dorsal bony compression in 17% (12 of 72 patients). Hindbrain herniation was associated in 33%. The age at presentation was 3 to 23 years. Motor symptoms occurred in 72% (52 of 72 patients); palsies in Cranial Nerves IX, X, and XII in 33% (24 of 72 patients); and vertebrobasilar symptoms in 25% (18 of 72 patients). Trauma precipitated symptoms in 55% (40 of 72 patients). The best definition of the abnormality was demonstrated by 3-dimensional computed tomography combined with magnetic resonance imaging. Treatment was aimed at decompression of the pathology and stabilization. Remnants of the occipital vertebrae around the foramen magnum were recognized in 72 of 5200 CVJ cases (7.2%). Magnetic resonance imaging with 3-dimensional computed tomography of the CVJ provides the best definition and understanding of the lesions. Brainstem myelopathy and lower cranial nerve deficits are common clinical presentations in the first and second decades of life. Treatment is aimed at decompression of the pathology and CVJ stabilization.
Constraints on spin-dependent parton distributions at large x from global QCD analysis
Directory of Open Access Journals (Sweden)
P. Jimenez-Delgado
2014-11-01
Full Text Available We investigate the behavior of spin-dependent parton distribution functions (PDFs at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x→1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.
On AdS/QCD correspondence and the partonic picture of deep inelastic scattering
International Nuclear Information System (INIS)
Pire, B.; Roiesnel, C.; Szymanowski, L.; Wallon, S.
2008-01-01
We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'
On AdS/QCD correspondence and the partonic picture of deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Pire, B. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)], E-mail: pire@cpht.polytechnique.fr; Roiesnel, C. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France)
2008-12-04
We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'.
Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Noguera, Santiago [Departament de Fisica Teòrica and IFIC, Universitat de València - CSIC,E-46100 Burjassot (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia,via A. Pascoli, I - 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I - 06123 Perugia (Italy)
2015-11-16
An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny.
New simpler method of matching NLO corrections with parton shower Monte Carlo
Jadach, Stanislaw; Sapeta, Sebastian; Siodmok, Andrzej Konrad; Skrzypek, Maciej
2016-01-01
Next steps in development of the KrkNLO method of implementing NLO QCD corrections to hard processes in parton shower Monte Carlo programs are presented. This new method is a simpler alternative to other well-known approaches, such as MC@NLO and POWHEG. The KrkNLO method owns its simplicity to the use of parton distribution functions (PDFs) in a new, so-called Monte Carlo (MC), factorization scheme which was recently fully defined for the first time. Preliminary numerical results for the Higgs-boson production process are also presented.
DIS structure functions in the NLO approximation of the Parton Reggeization Approach
Nefedov, Maxim; Saleev, Vladimir
2017-10-01
The main ideas of the NLO calculations in Parton Reggeization Approach are illustrated on the example of the simplest NLO subprocess, which contributes to DIS: The double counting with the LO contribution is resolved. The problem of matching of the NLO results for single-scale observables in PRA on the corresponding NLO results in Collinear Parton Model is considered. In the developed framework, the usual NLO PDFs in the -scheme can be consistently used as the collinear input for the NLO calculation in PRA.
Energy Technology Data Exchange (ETDEWEB)
Xu, Nu
2004-01-01
We discuss recent results from RHIC. Issues of energy loss and partonic collectivity from Au + Au collisions at {radical}s{sub NN} = 200 GeV are the focus of this paper. We propose a path toward the understanding of the partonic Equation of State in high energy nuclear collisions.
Bernelot Moens, Sophie J.; Verweij, Simone L.; Schnitzler, Johan G.; Stiekema, Lotte C. A.; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J.; Nordestgaard, Børge G.; Stroes, Erik S. G.; Kroon, Jeffrey
2017-01-01
Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation,
DEFF Research Database (Denmark)
Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G
2017-01-01
OBJECTIVE: Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall...
Double Parton Scattering in 4-jet production at the LHC with and without open b-bar
Serino, Mirko; Kutak, Krzysztof; van Hameren, Andreas; Bury, Marcin
2017-01-01
We report the preliminary results of the ongoing update of our study of 4-jet production at the LHC in High Energy Factorization, which is being supplemented by parton showers. We focus on a specific angular variable introduced in two papers by the CMS collaboration on 4-jet production with and without two b-tagged jets. The variable is, by construction, sensitive to contributions from Multi Parton Interactions (MPIs), specifically hard Double Parton Scattering (DPS). We preliminarily find that, adding parton showers to the single parton scattering channel, the evidence for the need for MPIs is compatible with the one reported by the CMS collaboration after a comparison of the data with simulations based on collinear Monte Carlo event generators.
Research program in elementary particle theory, 1980. Progress report
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Ne'eman, Y.
1980-01-01
Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification
Research program in elementary particle theory, 1980. Progress report
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E. C.G.; Ne' eman, Y.
1980-01-01
Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)
Evolution of Supernova Remnants Near the Galactic Center
Energy Technology Data Exchange (ETDEWEB)
Yalinewich, A.; Piran, T.; Sari, R. [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)
2017-03-20
Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using these results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.
Energy dependence of jet transport parameter and parton saturationin quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge; Wang, Xin-Nian
2007-06-24
We study the evolution and saturation of the gluondistribution function in the quark-gluon plasma as probed by apropagating parton and its effect on the computation of jet quenching ortransport parameter $\\hat q $. For thermal partons, the saturation scale$Q2_s$ is found to be proportional to the Debye screening mass $\\mu_D2$.For hard probes, evolution at small $x=Q2_s/6ET$ leads to jet energydependence of hat q. We study this dependence for both a conformal gaugetheory in weak and strong coupling limit and for (pure gluon) QCD. Theenergy dependence can be used to extract the shear viscosity $\\eta$ ofthe medium since $\\eta$ can be related to the transport parameter forthermal partons in a transport description. We also derive upper boundson the transport parameter for both energetic and thermal partons. Thelater leads to a lower bound on shear viscosity-to-entropy density ratiowhich is consistent with the conjectured lower bound $\\eta/s\\geq 1/4\\pi$.Implications on the study of jet quenching at RHIC and LHC and the bulkproperties of the dense matter are discussed.
Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions
Energy Technology Data Exchange (ETDEWEB)
Prokudin, Alexei [JLAB; Bacchetta, Alessandro [INFN-PAVIA
2013-07-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Drell-Yan production at NNLL'+NNLO matched to parton showers
International Nuclear Information System (INIS)
Alioli, Simone; Tackmann, Frank J.
2015-08-01
We present results for Drell-Yan production from the GENEVA Monte-Carlo framework. We combine the fully-differential NNLO calculation with higher-order resummation in the 0-jettiness resolution variable. The resulting parton-level events are further combined with parton showering and hadronization provided by PYTHIA8. The 0-jettiness resummation is carried out to NNLL', which consistently incorporates all singular virtual and real NNLO corrections. It thus provides a natural perturbative connection between the NNLO calculation and the parton shower regime, including a systematic assessment of perturbative uncertainties. In this way, inclusive observables are correct to NNLO, up to small power corrections in the resolution cutoff. Furthermore, the perturbative accuracy of 0-jet-like resummation variables is significantly improved beyond the parton shower approximation. We provide comparisons with LHC measurements of Drell-Yan production at 7 TeV from ATLAS, CMS, and LHCb. As already observed in e + e - collisions, for resummation-sensitive observables, the agreement with data is noticeably improved by using a lower value of α s (M Z )=0.1135.
Double parton scattering background to Higgs boson production at the CERN LHC
Del Fabbro, R
2000-01-01
The Higgs boson production and decay via the bbW channel is one of the most promising discovery channels at the CERN LHC if the Higgs boson mass is below the W/sup +/W/sup -/ threshold. We point out that double parton collisions represent a sizable source of background to the process. (11 refs).
Parton distributions with small-x resummation : evidence for BFKL dynamics in HERA data
Ball, Richard D.; Bertone, Valerio; Bonvini, Marco; Marzani, Simone; Rojo, Juan; Rottoli, Luca
2017-01-01
We present a determination of the parton distribution functions of the proton in which NLO and NNLO fixed-order calculations are supplemented by NLLx small-x resummation. Deep inelastic structure functions are computed consistently at NLO+NLLx or NNLO+NLLx, while for hadronic processes small-x
Making Sense in the City: Dolly Parton, Early Reading and Educational Policy-Making
Hall, Christine; Jones, Susan
2016-01-01
In this paper, we present a case study of a philanthropic literacy initiative, Dolly Parton's Imagination Library, a book-gifting scheme for under 5s, and consider the impact of the scheme on literacy policy in the English city where it was introduced. We bring four lenses to bear on the case study. First, we analyse the operation of the scheme in…
Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD
International Nuclear Information System (INIS)
Hernández-Pinto, R. J.; Epele, M.; De Florian, D.; Sassot, R.; Stratmann, M.
2016-01-01
In this review, we discuss the results on the parton-to-pion fragmentation functions obtained in a combined NLO fit to data of single-inclusive hadron production in electron-positron annihilation, proton-proton collisions, and lepton-nucleon deep-inelastic scattering. A more complete discussion can be found in Ref. [1]. (paper)
International Nuclear Information System (INIS)
Bluemlein, J.
1993-08-01
The possibilities to measure structure functions, to extract parton distributions, and to measure α s and Λ QCD in current and future high energy deep inelastic scattering experiments are reviewed. A comparison is given for experiments at HERA, an ep option at LEP xLHC, and a high energy neutrino experiment. (orig.)
Polarized parton distributions from charged-current deep-inelastic scattering
International Nuclear Information System (INIS)
Ridolfi, G
2003-01-01
We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure
Nuclear and partonic dynamics in high energy elastic nucleus-nucleus scattering
International Nuclear Information System (INIS)
Malecki, A.
1991-01-01
A hybrid description of diffraction which combines a geometrical modelling of multiple scattering with many-channel effects resulting from intrinsic dynamics on nuclear and sub-nuclear level is presented. The application to the 4 He- 4 He elastic scattering is very satisfactory. Our analysis suggests that at large momentum transfers the parton constituents of nucleons immersed in nuclei are deconfined. (author)
Predicting gravitational lensing by stellar remnants
Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.
2018-03-01
Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.
Quantum remnants in the classical limit
Energy Technology Data Exchange (ETDEWEB)
Kowalski, A.M., E-mail: kowalski@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Comision de Investigaciones Científicas (CIC) (Argentina); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Argentina' s National Research Council (CONICET) (Argentina); SThAR, EPFL Innovation Park, Lausanne (Switzerland)
2016-09-16
We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.
Quantum remnants in the classical limit
International Nuclear Information System (INIS)
Kowalski, A.M.; Plastino, A.
2016-01-01
We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.
Partonic transverse momenta in non-relativistic hyper-central quark potential models
International Nuclear Information System (INIS)
Diakonos, F.K.; Kaplis, N.K.; Maintas, X.N.
2009-01-01
We investigate the impact of three-body forces on the transverse-momentum distribution of partons inside the proton. This is achieved by considering the three-body problem in a class of hyper-central quark potential models. Solving the corresponding Schroedinger equation, we determine the quark wave function in the proton and with appropriate transformations and projections we find the transverse-momentum distribution of a single quark. In each case the parameters of the quark potentials are adjusted in order to sufficiently describe observable properties of the proton. Using a factorization ansatz, we incorporate the obtained transverse-momentum distribution in a perturbative QCD scheme for the calculation of the cross-section for prompt photon production in pp collisions. A large set of experimental data is fitted using as a single free parameter the mean partonic transverse momentum. The dependence of left angle k T right angle on the collision characteristics (initial energy and transverse momentum of the final photon) is much smoother when compared with similar results found in the literature using a Gaussian distribution for the partonic transverse momenta. Within the considered class of hyper-central quark potentials the one with the weaker dependence on the hyper-radius is preferred for the description of the data since it leads to the smoothest mean partonic transverse-momentum profile. We have repeated all the calculations using a two-body potential of the same form as the optimal (within the considered class) hyper-central potential in order to check if the presence of three-body forces is supported by the experimental data. Our analysis indicates that three-body forces influence significantly the form of the parton transverse-momentum distribution and consequently lead to an improved description of the considered data. (orig.)
Black hole remnant in asymptotic anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Wen, Wen-Yu [Chung Yuan Christian University, Department of Physics, Center for High Energy Physics, Chung Li City (China); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Hsinchu (China)
2015-12-15
The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed. (orig.)
Black hole remnant in asymptotic anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Wen, Wen-Yu, E-mail: steve.wen@gmail.com [Department of Physics, Center for High Energy Physics, Chung Yuan Christian University, Chung Li City, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 106, Taipei, Taiwan (China); Wu, Shang-Yu, E-mail: loganwu@gmail.com [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China)
2015-12-21
The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking–Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados–Teitelboim–Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed.
Cystic duct remnant mucocele in a liver transplant recipient
International Nuclear Information System (INIS)
Ahlawat, Sushil K.; Fishbien, Thomas M.; Haddad, Nadim G.
2008-01-01
Cystic duct remnant mucocele is an extremely rare complication of liver transplantation in children. Surgical correction is usually required for cystic duct remnant mucocele when it causes biliary obstruction. We describe a 14-month-old liver transplant recipient who presented with biliary obstruction 1 month after orthotopic liver transplantation with an end-to-end choledochocholedocal biliary anastomosis for hepatoblastoma. US, CT and cholangiography findings were consistent with mucocele of the allograft cystic duct remnant. Surgery was not needed in our patient because the mucocele and biliary obstruction had resolved on repeat imaging most likely due to guidewire manipulation during cholangiography, resulting in opening of the cystic duct remnant orifice and drainage into the common duct. (orig.)
Cystic duct remnant mucocele in a liver transplant recipient
Energy Technology Data Exchange (ETDEWEB)
Ahlawat, Sushil K. [Georgetown University Hospital, Department of Medicine, Division of Gastroenterology, Washington, DC (United States); University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ (United States); Fishbien, Thomas M. [Georgetown University Hospital, Department of Medicine, Division of Gastroenterology, Washington, DC (United States); Haddad, Nadim G. [Georgetown University Hospital, Department of Surgery, Division of Transplant Surgery, Washington, DC (United States)
2008-08-15
Cystic duct remnant mucocele is an extremely rare complication of liver transplantation in children. Surgical correction is usually required for cystic duct remnant mucocele when it causes biliary obstruction. We describe a 14-month-old liver transplant recipient who presented with biliary obstruction 1 month after orthotopic liver transplantation with an end-to-end choledochocholedocal biliary anastomosis for hepatoblastoma. US, CT and cholangiography findings were consistent with mucocele of the allograft cystic duct remnant. Surgery was not needed in our patient because the mucocele and biliary obstruction had resolved on repeat imaging most likely due to guidewire manipulation during cholangiography, resulting in opening of the cystic duct remnant orifice and drainage into the common duct. (orig.)
1051 Ergs: The Evolution of Shell Supernova Remnants
National Research Council Canada - National Science Library
Jones, T. W; Rudnick, Lawrence; Jun, Byung-Il; Borkowski, Kazimierz J; Dubner, Gloria; Frail, Dale A; Kang, Hyesung; Kassim, Namir E; McCray, Richard
1997-01-01
Although the title points only to classical, shell SNR structures, the workshop also considered dynamical issues involving X-ray filled composite remnants and pulsar-driven shells, such as that in the Crab Nebula...
Remnant for all black objects due to gravity's rainbow
Directory of Open Access Journals (Sweden)
Ahmed Farag Ali
2015-05-01
Full Text Available We argue that a remnant is formed for all black objects in gravity's rainbow. This will be based on the observation that a remnant depends critically on the structure of the rainbow functions, and this dependence is a model independent phenomena. We thus propose general relations for the modified temperature and entropy of all black objects in gravity's rainbow. We explicitly check this to be the case for Kerr, Kerr–Newman-dS, charged-AdS, and higher dimensional Kerr–AdS black holes. We also try to argue that a remnant should form for black saturn in gravity's rainbow. This work extends our previous results on remnants of Schwarzschild black holes [1] and black rings [2].
Analytic treatment of leading-order parton evolution equations: Theory and tests
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; McKay, Douglas W.
2009-01-01
We recently derived an explicit expression for the gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) in terms of the proton structure function F 2 γp (x,Q 2 ) in leading-order (LO) QCD by solving the LO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for the Q 2 evolution of F 2 γp (x,Q 2 ) analytically, using a differential-equation method. We showed that accurate experimental knowledge of F 2 γp (x,Q 2 ) in a region of Bjorken x and virtuality Q 2 is all that is needed to determine the gluon distribution in that region. We rederive and extend the results here using a Laplace-transform technique, and show that the singlet quark structure function F S (x,Q 2 ) can be determined directly in terms of G from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi gluon evolution equation. To illustrate the method and check the consistency of existing LO quark and gluon distributions, we used the published values of the LO quark distributions from the CTEQ5L and MRST2001 LO analyses to form F 2 γp (x,Q 2 ), and then solved analytically for G(x,Q 2 ). We find that the analytic and fitted gluon distributions from MRST2001LO agree well with each other for all x and Q 2 , while those from CTEQ5L differ significantly from each other for large x values, x > or approx. 0.03-0.05, at all Q 2 . We conclude that the published CTEQ5L distributions are incompatible in this region. Using a nonsinglet evolution equation, we obtain a sensitive test of quark distributions which holds in both LO and next-to-leading order perturbative QCD. We find in either case that the CTEQ5 quark distributions satisfy the tests numerically for small x, but fail the tests for x > or approx. 0.03-0.05--their use could potentially lead to significant shifts in predictions of quantities sensitive to large x. We encountered no problems with the MRST2001LO distributions or later CTEQ distributions. We suggest caution in the use of the CTEQ5 distributions.
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Schönherr, Marek
2012-11-01
We quantify uncertainties in the Monte Carlo simulation of inclusive and dijet final states, which arise from using the MC@NLO technique for matching next-to-leading order parton-level calculations and parton showers. We analyse a large variety of data from early measurements at the LHC. In regions of phase space where Sudakov logarithms dominate over high-energy effects, we observe that the main uncertainty can be ascribed to the free parameters of the parton shower. In complementary regions, the main uncertainty stems from the considerable freedom in the simulation of underlying events.
Hydrodynamic Simulations of Kepler's Supernova Remnant
Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.
Healing Potential of the Anterior Cruciate Ligament Remnant Stump.
Trocan, Ilie; Ceausu, Raluca A; Jitariu, Andreea A; Haragus, Horia; Damian, Gratian; Raica, Marius
2016-01-01
The aim of this study was to analyze the microstructural architecture and cellular differentiation of the anterior cruciate ligament (ACL) stumps in different stages after injury, as this could augment graft biointegration. The histological appearance and immunoreaction for cluster of differentiation 34 antigen (CD34) of 54 biopsies from 27 remnants were compared to 10 biopsies from 5 normal cruciate ligaments. CD34 reaction in endothelial cells, fibroblasts and fibrocytes was consistently positive in small synovial vessels. Remnants also exhibited CD34(+) cells among collagen fibers. Blood vessel density varied between specimens. The mean vascular microdensity was 43 per ×200 field in remnants compared to 15.2 in controls. A total of 94.44% of remnant ACL samples had significant hyperplasia of stellate and fusiform stromal cells, CD34(+); 22.4% had developed capillary vessels inside the ligament; 33% exhibited ongoing angiogenesis. Significant differences exist between torn and intact ACL regarding microvascularization. The remnants contain stellate stromal cells and CD34(+) fibrocytes, and display angiogenesis both at synovia as well as in the ligament itself. These findings underline the potential contribution to neoligament healing when remnants are preserved. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Two-loop planar master integrals for Higgs →3 partons with full heavy-quark mass dependence
International Nuclear Information System (INIS)
Bonciani, Roberto; Duca, Vittorio Del; Frellesvig, Hjalte; Henn, Johannes M.; Moriello, Francesco; Smirnov, Vladimir A.
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs→3 partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic integrals. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kernels. We express the result for the elliptic sectors in terms of two and three-fold iterated integrals, which we find suitable for numerical evaluations. This is the first time that four-point multiscale Feynman integrals have been computed in a fully analytic way in terms of elliptic integrals.
Sensitivity of the LHC isolated-gamma+jet data to the parton distribution functions of the proton
Carminati, L.; D'Enterria, D.; Koletsou, I.; Marchiori, G.; Rojo, J.; Stockton, M.; Tartarelli, F.
2013-01-01
We study the impact of differential isolated-photon+jet cross sections measured in proton-proton collisions at a center-of-mass energy of sqrt{s} = 7 TeV on the parton distribution functions (PDF) of the proton. Next-to-leading order perturbative QCD (pQCD) calculations complemented with the NNPDF2.1 parton densities, and a Bayesian PDF reweighting method are employed. We find that although the current data provide only mild constraints to the parton densities, future gamma-jet measurements with reduced experimental uncertainties can improve our knowledge of the gluon density over a wide range of parton fractional momenta x as well as of the quarks at low-x.
Proton-antiproton annihilation into a lambdaC-antiLambdaC pair within the generalized parton picture
International Nuclear Information System (INIS)
Goritschnig, A. T.
2009-01-01
The proton-antiproton annihilation into a LambdaC-AntiLambdaC pair is investigated within the handbag approach. It is shown that the dominant dynamical mechanism, characterized by the partonic subprocess anti-u u -> anti-c c, factorizes in the sense that only the subprocess contains highly virtual partons, a gluon to lowest order of perturbative QCD, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling these parton distributions by overlaps of light-cone wave functions for the involved baryons were able to predict cross sections and spin correlation parameters for the process of interest. (author) [de
SUPERNOVA REMNANT PROGENITOR MASSES IN M31
Energy Technology Data Exchange (ETDEWEB)
Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)
2012-12-10
Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a
Complex structure of the supernova remnant HB 3
Leahy, D. A.; Venkatesan, D.; Long, K. S.; Naranan, S.
1985-01-01
HB 3 is an old, large (84 pc diameter) supernova remnant associated with the W3 H II region/molecular cloud complex. Observations of the imaging proportional counter (IPC) onboard the Einstein X-ray astronomy satellite have been reprocessed to yield a contour map of X-ray brightness and spectra of various regions of this remnant. The measured IPC flux is 2.4 x 10 to the -11th ergs per sq cm per s, giving a 0.2-4 keV luminosity of 1.6 x 10 to the 35th ergs/s for a column densityof 6 x 10 to the 21st per sq cm. The measured X-ray temperatures reveal a decrease from center to limb of the remnant of 1-0.3 keV. HB 3 is in the late adiabatic blast-wave phase of evolution, 30,000 to 50,000 yr old and with an initial blast energy of 3 x 10 to the 50th ergs. The X-ray map is compared with available radio and optical images. In X-rays, HB 3 has two components - a diffuse emission inside the 84 pc radio remnant and a ring of emission at the center of 30 pc in diameter. The diffuse emission is similar to that from other supernova remnants which are moderately obscured (column density, nH approximately 10 to the 22nd per sq cm). Three possibilities for the origin of the ring are explored: (1) a second supernova remnant, (2) a shocked shell in the interstellar medium surrounding HB 3, and (3) reverse-shock heated ejecta. There is no hot neutron star within the remnant.
Investigation of high-p{sub T} phenomena within a partonic transport model
Energy Technology Data Exchange (ETDEWEB)
Fochler, Oliver
2011-10-26
In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R{sub AA}, that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v{sub 2} within a common framework. (orig.)
Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Delgado, Pedro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Accardi, Alberto [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-02-01
We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.
Transverse Momentum Dependent Parton Distribution Functions through SIDIS and Drell-Yan at COMPASS
AUTHOR|(CDS)2079419; Ramos, Sérgio; Quintans, Catarina
The spin structure of the nucleon has been studied at the COMPASS experiment at CERN. The Semi-Inclusive Deep Inelastic Scattering (SIDIS) measurements are a powerful tool to access the Parton Distribution Functions (PDFs) and the Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs). The COMPASS polarised target gives the opportunity to measure the azimuthal modulations depending on the spin orientation and the extraction of the transverse spin asymmetries, which are convolutions of TMD PDFs of the nucleon and Fragmentation Functions (FF). The analysis of these data is done in several kinematic bins, which provides a vast input for the theoreticians to extract the TMDs and the FFs and their kinematic dependence. The TMD PDFs are also accessible through the measurement of the Drell-Yan process, in this case the transverse spin asymmetries are convolutions of two TMD PDFs, one corresponding to the annihilating quark from the beam hadron and the other to the annihilating quark from the target h...
Off-shell single-top production at NLO matched to parton showers
Energy Technology Data Exchange (ETDEWEB)
Frederix, R. [Physik Department T31, Technische Universität München,James-Franck-Str. 1, D-85748 Garching (Germany); Frixione, S. [INFN - Sezione di Genova,Via Dodecaneso 33, I-16146, Genoa (Italy); Papanastasiou, A.S. [Cavendish Laboratory, University of Cambridge,J.J. Thomson Avenue, CB3 0HE, Cambridge (United Kingdom); Prestel, S. [SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025-7090 (United States); Torrielli, P. [Dipartimento di Fisica, Università di Torino and INFN - Sezione di Torino,Via P. Giuria 1, I-10125, Turin (Italy)
2016-06-06
We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the HERWIG6 and PYTHIA8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. We formulate our approach so that it can be applied to the general case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.
Pion generalized parton distributions within a fully covariant constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Fanelli, Cristiano [Massachusetts Institute of Technology, Cambridge, MA (United States). Lab. for Nuclear Science; Pace, Emanuele [' ' Tor Vergata' ' Univ., Rome (Italy). Physics Dept.; INFN Sezione di TorVergata, Rome (Italy); Romanelli, Giovanni [Rutherford-Appleton Laboratory, Didcot (United Kingdom). STFC; Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Salmistraro, Marco [Rome La Sapienza Univ. (Italy). Physics Dept.; I.I.S. G. De Sanctis, Rome (Italy)
2016-05-15
We extend the investigation of the generalized parton distribution for a charged pion within a fully covariant constituent quark model, in two respects: (1) calculating the tensor distribution and (2) adding the treatment of the evolution, needed for achieving a meaningful comparison with both the experimental parton distribution and the lattice evaluation of the so-called generalized form factors. Distinct features of our phenomenological covariant quark model are: (1) a 4D Ansatz for the pion Bethe-Salpeter amplitude, to be used in the Mandelstam formula for matrix elements of the relevant current operators, and (2) only two parameters, namely a quark mass assumed to be m{sub q} = 220 MeV and a free parameter fixed through the value of the pion decay constant. The possibility of increasing the dynamical content of our covariant constituent quark model is briefly discussed in the context of the Nakanishi integral representation of the Bethe-Salpeter amplitude. (orig.)
Study of Parton Density Function Uncertainties with LHAPDF and PYTHIA at LHC
Bourilkov, D
2003-01-01
The experimental errors in current and future hadron colliders are expected to decrease to a level that will challenge the uncertainties in the theoretical calculations. One important component in the prediction uncertainties comes from the Parton Density Functions of the (anti)proton. In this work we develop an interface from the Les Houches Accord Parton Density Functions (LHAPDF) package to the very popular Monte Carlo generator {\\tt PYTHIA} version 6.2. Then we proceed to estimate the PDF uncertainties for the production of Drell-Yan pairs from the Z pole to masses above 1 $\\TeV$ and for Higgs bosons at LHC. The measurement of the electro-weak mixing angle at LHC as a particularly difficult case is studied.
International Nuclear Information System (INIS)
El-Bakry, M.Y.
2000-01-01
Pseudo-Rapidity distribution of created pions from proton-proton (p-p) interaction has been studied in the framework of artificial neural network (ANN) and the parton two fireball model (PTFM). The predicted distributions from the ANN based model and the parton two fireball model is compared with the corresponding experimental results. The ANN model has proved better matching for experimental data specially at high energies where the conventional two fireball model representation deteriorates
Probing virtual photon parton densities via γ*γ →jets at LEP
International Nuclear Information System (INIS)
Poetter, B.
2000-01-01
We present a next-to-leading order calculation of jet production in γ*γ collisions from e + e - scattering in a region where the virtuality Q 2 of the probing virtual photon is small compared to the transverse jet energy. We make predictions for cross sections which suggest, that different parametrizations of virtual photon parton densities should be distinguishable by measurements of jet cross sections at LEP
GeV partons and TeV hexons from a topological viewpoint
International Nuclear Information System (INIS)
Chew, G.F.; Issler, D.; Nicolescu, B.; Poenaru, V.
1984-04-01
An elementary TeV topological hadron supermultiplet breaks into GeV-scale mesons, baryons and baryoniums and TeV-scale ''hexons'' (extremely-heavy bosons corresponding to six topological constituents). Phenomena on the GeV scale are described by parton graphs which give meaning to constituent quarks of QCD type. Hexons are responsible -through mixing- for electroweak-bosons masses, may be responsible for cosmic-ray Centauro events, and promise novel TeV accelerator phenomena
Parton saturation effects to the Drell-Yan process in the color dipole picture
International Nuclear Information System (INIS)
Betemps, M.A.; Gay Ducati, M.B.; Machado, M.V.T.
2003-01-01
We report on the results obtained in the study of the parton saturation effects, taken into account through the multi-scattering Glauber-Mueller approach applied to the Drell-Yan (DY) process described in the color dipole picture. As a main result, one shows that those effects play an important role on the estimates of the DY differential cross section at RHIC energies. (author)
Constraints on the Parton Density Functions of the Proton by Measurements with the ATLAS Detector
Sutton, Mark; The ATLAS collaboration
2018-01-01
Parton distribution functions (PDFs) are crucial ingredients for measurements at hadron colliders, since they describe the initial states and therefore critically impact the precision of cross section predictions for observables. This talk will review recent precision analyses, where the PDFs play an important role and discuss the impact of several new ATLAS cross-section measurements on PDFs of the proton. Particular emphasis will be given to the determination of the strange and the gluon content of the proton.
LHC data challenges the contemporary parton-to-hadron fragmentation functions
d'Enterria, David; Helenius, Ilkka; Paukkunen, Hannu
2014-01-01
We discuss the inclusive high-pT charged-particle production in proton-proton collisions at the LHC. The experimental data are compared to the NLO perturbative QCD calculations employing various sets of parton-to-hadron fragmentation functions. Most of the theoretical predictions are found to disastrously overpredict the measured cross sections, even if the scale variations and PDF errors are accounted for. The problem appears to arise from the presently too hard gluon-to-hadron fragmentation functions.
The LO and the NLO unintegrated parton distributions in the modified DGLAP formalism
Hosseinkhani, H.; Modarres, M.
2012-02-01
The leading order (LO) and the next-to-leading order (NLO) unintegrated parton distribution functions (UPDF) are calculated by using the latest version of integrated parton distribution functions (PDF) of Martin et al. (MSTW2008) as the inputs. Similar to our previous works, rather than the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equations, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) collinear approximation is used to consider the dependence of parton distributions on the second scale, kt2, the partons transverse momenta, beside the first scale, μ2, which is included in the last step of DGLAP evolution equation (Kimber et al. procedure). The three-dimensional UPDF are presented in terms of different [ x ,μ2 ]-planes and in the range of CERN LHC energies and the parametrization procedure for the various values of kt2. It is shown that the two-scale UPDF behave similar to their corresponding PDF at large kt2 ≃106 GeV2. In both LO and NLO levels at each kt2 a peak is observed around μ2 =kt2 especially at x ≃10-4 (x ⩽10-4) for the gluons (quarks). In contrast to the complication which exists in the parameterized PDF i.e. the negative gluon distribution at small x and μ2, the UPDF are always positive except at large x (≃1) which is mainly due to the angular ordering which makes numerical instability in this region (the values of UPDF are very small). We hope present results could help a better understanding of the LHC data at CERN.
Dijet cross sections and parton densities in diffractive DIS at HERA
Energy Technology Data Exchange (ETDEWEB)
Aktas, A. [DESY, Hamburg (Germany); Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)
2007-08-15
Differential dijet cross sections in diffractive deep-inelastic scattering are measured with the H1 detector at HERA using an integrated luminosity of 51.5 pb{sup -1}. The selected events are of the type ep {yields} eXY, where the system X contains at least two jets and is well separated in rapidity from the low mass proton dissociation system Y. The dijet data are compared with QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from measurements of inclusive diffractive deepinelastic scattering. The prediction describes the dijet data well at low and intermediate z{sub P} (the fraction of the momentum of the diffractive exchange carried by the parton entering the hard interaction) where the gluon density is well determined from the inclusive diffractive data, supporting QCD factorisation. A new set of diffractive parton distribution functions is obtained through a simultaneous fit to the diffractive inclusive and dijet cross sections. This allows for a precise determination of both the diffractive quark and gluon distributions in the range 0.05
Multi-Parton Loop Amplitudes and Next-to-Leading Order Jet Cross-Sections
Bern, Zvi; Kosower, David A.; Signer, Adrian
1998-01-01
We review recent developments in the calculation of QCD loop amplitudes with several external legs, and their application to next-to-leading order jet production cross-sections. When a number of calculational tools are combined together --- helicity, color and supersymmetry decompositions, plus unitarity and factorization properties --- it becomes possible to compute multi-parton one-loop QCD amplitudes without ever evaluating analytically standard one-loop Feynman diagrams. One-loop helicity amplitudes are now available for processes with five external partons (ggggg, q\\bar{q}ggg and q\\bar{q}q'\\bar{q}'g), and for an intermediate vector boson V \\equiv \\gamma^*,Z,W plus four external partons (Vq\\bar{q}gg and Vq\\bar{q}q'\\bar{q}'). Using these amplitudes, numerical programs have been constructed for the next-to-leading order corrections to the processes p\\bar{p} to 3 jets (ignoring quark contributions so far) and e^+e^- to 4 jets.
Dijet Cross Sections and Parton Densities in Diffractive DIS at HERA
Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2007-01-01
Differential dijet cross sections in diffractive deep-inelastic scattering are measured with the H1 detector at HERA using an integrated luminosity of 51.5 pb-1. The selected events are of the type ep --> eXY, where the system X contains at least two jets and is well separated in rapidity from the low mass proton dissociation system Y. The dijet data are compared with QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from measurements of inclusive diffractive deep-inelastic scattering. The prediction describes the dijet data well at low and intermediate zpom (the fraction of the momentum of the diffractive exchange carried by the parton entering the hard interaction) where the gluon density is well determined from the inclusive diffractive data, supporting QCD factorisation. A new set of diffractive parton distribution functions is obtained through a simultaneous fit to the diffractive inclusive and dijet cross sections. This allows for a precise ...
Black hole remnants and the information loss paradox
International Nuclear Information System (INIS)
Chen, P.; Ong, Y.C.; Yeom, D.-H.
2015-01-01
Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a “remnant” has remained unpopular and is often dismissed due to some “undesired properties” of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.
Nuclear envelope remnants: fluid membranes enriched in sterols and polyphosphoinositides.
Directory of Open Access Journals (Sweden)
Marie Garnier-Lhomme
Full Text Available The cytoplasm of eukaryotic cells is a highly dynamic compartment where membranes readily undergo fission and fusion to reorganize the cytoplasmic architecture, and to import, export and transport various cargos within the cell. The double membrane of the nuclear envelope that surrounds the nucleus, segregates the chromosomes from cytoplasm and regulates nucleocytoplasmic transport through pores. Many details of its formation are still unclear. At fertilization the sperm devoid of nuclear envelope pores enters the egg. Although most of the sperm nuclear envelope disassembles, remnants of the envelope at the acrosomal and centriolar fossae do not and are subsequently incorporated into the newly forming male pronuclear envelope. Remnants are conserved from annelid to mammalian sperm.Using lipid mass spectrometry and a new application of deuterium solid-state NMR spectroscopy we have characterized the lipid composition and membrane dynamics of the sperm nuclear envelope remnants in isolated sperm nuclei.We report nuclear envelope remnants are relatively fluid membranes rich in sterols, devoid of sphingomyelin, and highly enriched in polyphosphoinositides and polyunsaturated phospholipids. The localization of the polybasic effector domain of MARCKS illustrates the non-nuclear aspect of the polyphosphoinositides. Based on their atypical biophysical characteristics and phospholipid composition, we suggest a possible role for nuclear envelope remnants in membrane fusion leading to nuclear envelope assembly.
Black hole remnants and the information loss paradox
Energy Technology Data Exchange (ETDEWEB)
Chen, P., E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Graduate Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, CA 94305 (United States); Ong, Y.C., E-mail: yenchin.ong@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Yeom, D.-H., E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-11-22
Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a “remnant” has remained unpopular and is often dismissed due to some “undesired properties” of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.
SPI Analysis of the Supernova Remnant DEM L71
Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.; Aisyah Mansoor, Siti; Crum, Ryan M.
2017-08-01
Supernova remnants are complex, three-dimensional objects; properly accounting for this complexity when modeling the resulting X-ray emission presents quite a challenge and makes it difficult to accurately characterize the properties of the full SNR volume. The SPIES (Smoothed Particle Inference Exploration of Supernova Remnants) project aims to address this challenge by applying a fundamentally different approach to analyzing X-ray observations of SNRs. Smoothed Particle Inference (SPI) is a Bayesian modeling process that fits a population of gas blobs ("smoothed particles") such that their superposed emission reproduces the observed spatial and spectral distribution of photons. We present here the results of an SPI analysis of the Type Ia supernova remnant DEM L71. Among other results, we find that despite its regular appearance, the temperature and other parameter maps exhibit irregular substructure.
Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants
DEFF Research Database (Denmark)
Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.
2016-01-01
The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...
The 1st Fermi Lat Supernova Remnant Catalog
Acero, Fabio; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, E.; Blandford, Roger; Bloom, E. D.; Bonino, Raffaella; Bottacini, Eugenio; Bregeon, J.; Bruel, Philippe
2015-01-01
To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Gala...
Improving jet distributions with effective field theory.
Bauer, Christian W; Schwartz, Matthew D
2006-10-06
We obtain perturbative expressions for jet distributions using soft-collinear effective theory (SCET). By matching SCET onto QCD at high energy, tree level matrix elements and higher order virtual corrections can be reproduced in SCET. The resulting operators are then evolved to lower scales, with additional operators being populated by required threshold matchings in the effective theory. We show that the renormalization group evolution and threshold matchings reproduce the Sudakov factors and splitting functions of QCD, and that the effective theory naturally combines QCD matrix elements and parton showers. The effective theory calculation is systematically improvable and any higher order perturbative effects can be included by a well-defined procedure.
Progress report on research program in elementary particle theory, 1979-1980
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Ne'eman, Y.
1980-01-01
A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed
Duplicated Muellerian remnant in a 6-year-old boy
Energy Technology Data Exchange (ETDEWEB)
Kuo, Helen J.; Cain, Mark P. [Indiana University School of Medicine, Riley Hospital for Children, Department of Pediatric Urology, Indianapolis, IN (United States); Karmazyn, Boaz [Indiana University School of Medicine, Riley Hospital for Children, Department of Radiology, Indianapolis, IN (United States)
2009-08-15
We report a 6-year-old boy with large duplicated Muellerian duct remnant who presented with recurrent urinary tract infections and dysuria. His prior urological problems included proximal hypospadias (repaired), urachal cyst, and a unilateral undescended testis. Imaging evaluation included US, MRI, and cystoscopy. Laparoscopic resection was performed via a retrovesical approach. The patient was free of symptoms after surgery. (orig.)
Efficacy of different I-131 doses for thyroid remnant ablation
International Nuclear Information System (INIS)
Nguyen, X.C.; Thiep, T.V.; Hung, N.C.
2007-01-01
Full text: Radioactive iodine 131 I has been widely used as a treatment modality of differentiated thyroid carcinoma. The need for high dose radioiodine ablation of thyroid remnant is still in question. The aim of this prospective study was to assess the efficacy of 131 I different single and fractionated doses in ablation of post-operative thyroid remnant. Patients and methods: One hundred-twelve patients were included in this study. Sixty-one patients with TSH≥30 μU/ml were treated 30 mCi in group 1 (36 patients) or 100 mCi in group 2 (25 patients). Fifty one patients with TSH 131 I high dose of 100 mCi and no severe adverse effect in the other groups. Conclusion: Single high dose (100 mCi) may be more efficient than single low dose (30 mCi) for post-operative remnant ablation with serum TSH≥30 μU/ml and the efficacy of low fractionated doses (30+30 mCi) was comparable with high-fractionated dose (30+100 mCi) for post-operative remnant ablation with low serum TSH in differentiated thyroid carcinoma. (author)
Core Formation by a Population of Massive Remnants
Merritt, D.; Piatek, S.; Portegies Zwart, S.F.; Hemsendorf, M.
2004-01-01
Core radii of globular clusters in the Large and Small Magellanic Clouds show an increasing trend with age. We propose that this trend is a dynamical effect resulting from the accumulation of massive stars and stellar-mass black holes at the cluster centers. The black holes are remnants of stars
X-Ray Emission Properties of Supernova Remnants
Vink, J.; Alsabti, A.W.; Murdin, P.
2016-01-01
X-ray emission from supernova remnants can be broadly divided into thermal X-ray emission from the shock-heated plasmas and in nonthermal (synchrotron) emission caused by very high-energy (10–100 TeV) electrons moving in the magnetic fields of the hot plasmas. The thermal X-ray emission of young
Supernova remnants, pulsar wind nebulae and their interaction
Swaluw, E. van der
2001-01-01
A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the
biodiversity status of urban remnant forests in cape coast, ghana
African Journals Online (AJOL)
User
The major threats to biological diversity that result from human activity .... stumps, in leaf litter, old termite mounds and rodent burrows). In addition ... diverse (Table 4). Table 1: Mammal species sampled in selected remnant forests in Cape Coast Metropolis. Family. Spices. Common. Name. Cercopitheci- dae. Chlorocebus.
Chandra Observations of Tycho's Supernova Remnant U. Hwang , R ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. We present a new Chandra observation of Tycho's supernova remnant with the Advanced CCD Imaging Spectrometer. Multicolor X- ray imaging reveals new details of the outer shock and ejecta. At energies between 4 and 6 keV, the outline of the outer shock is clearly revealed in. X-rays for the first time.
A Recurrent Nova Super-Remnant in the Andromeda Galaxy
DEFF Research Database (Denmark)
Darnley, M. J.; Hounsell, R.; O'Brien, T. J.
2017-01-01
Here we report that the most rapidly recurring nova, M31N 2008-12a, which erupts annually, is surrounded by a "nova super-remnant" which demonstrates that M31N 2008-12a has erupted with high frequency for millions of years....
Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model
International Nuclear Information System (INIS)
Ma, G.L.; Zhang, S.; Ma, Y.G.; Huang, H.Z.; Cai, X.Z.; Chen, J.H.; He, Z.J.; Long, J.L.; Shen, W.Q.; Shi, X.H.; Zuo, J.X.
2006-01-01
In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3 T trig T assoc T trig T assoc NN =200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process cannot be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of p T decrease, while the T > increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario
CJK-Improved 5 Flavour LO Parton Distributions in the Real Photon
International Nuclear Information System (INIS)
Cornet, F.; Jankowski, P.; Krawczyk, M.
2004-01-01
Radiatively generated, LO quark (u,d,s,c,b) and gluon densities in the real, unpolarized photon, improved in respect to our previous paper F. Cornet, P. Jankowski, M. Krawczyk and A. Lorca, Phys. Rev. D68, 014010 (2003), are presented. We perform three global fits to the F 2 γ data, using the LO DGLAP evolution equation. We improve the treatment of the strong coupling running and use lower values of Λ QCD , as we have found that the too high values adopted in the previous work caused the high χ 2 of the fits. In addition to the modified FFNS CJKL model, referred to as FFNS CJK 1 we analyse a FFNS CJK 2 model in which we take into account the resolved-photon heavy-quark contribution. New CJK model with an improved high-x behaviour of the F 2 γ (x,Q 2 ) is proposed. Finally, in the case of the CJK model we abandon the valence sum rule imposed on the VMD input densities. New fits give χ 2 per degree of freedom about 0.25 better than the old results. All features of the CJKL model, such as the realistic heavy-quark distributions, good description of the LEP data on the Q 2 dependence of the F 2 γ and on F 2,c γ are preserved. Moreover we present results of an analysis of the uncertainties of the CJK parton distributions due to the experimental errors. It is based on the Hessian method used for the proton and very recently applied for the photon by one of us. Parton and structure function parametrizations of the best fits in both FFNS CJK and CJK approaches are made accessible. For the CJK model we provide also sets of test parametrizations which allow for calculation of uncertainties of any physical value depending on the real photon parton densities. (author)
Sivers effect in single spin asymmetry based on the covariant parton model
Saffar, H. Mahdizadeh; Mirjalili, A.; Tehrani, S. Atashbar; Yazdanpanah, M. M.
2017-10-01
Sivers effect is describing the correlation between the transverse polarization of nucleon and the transverse momentum, k⊥, of its unpolarized constituent partons. This effect is an outstanding subject and in this regard, a great deal in recent years has been considered from experimental and phenomenological points of view. It also plays an essential role to extend our understanding from nucleon structure. Semi-inclusive DIS (SIDIS) process provides us an opportunity to access to Sivers function which is dependent on transverse momentum of partons. In this paper, for the first time the covariant parton model is used to deliver us the k⊥ and x dependence part of Sivers function. Based on this model, this combinatory dependence is arising out from the HERAPDF parametrization group. In this paper the other required parametrized functions in Sivers function is also changed with respect to Ref. 1. The unknown parameters which exist in Sivers function can be extracted, doing a global fit over the recent available experimental data, including HERMES, COMPASS and JLAB collaborations for the single spin asymmetry (SSA) in π‑ and π+ meson production as well as kaon production to constrain the evolved strange quark. This is done, considering advanced mathematical manipulations to overcome the difficulties which exist to compute the required multiple integrals and finally employing the CERN MINIUTE program to do a global fit. Our results for SSA are in good agreement with the available experimental data. For more confirmation a comparison between our results and the ones from Ref. 2 is also done.
X-ray surface brightness of Kepler's supernova remnant
International Nuclear Information System (INIS)
White, R.L.; Long, K.S.
1983-01-01
We have observed Kepler's supernova remnant (SNR) with the imaging instruments on board the Einstein Observatory. The 0.15-4.5 keV flux incident on the Earth is 1.2 x 10 - 10 ergs cm - 2 s - 1 ; the flux corrected for interstellar absorption is 3.4 x 10 - 10 ergs cm - 2 s - 1 (L/sub x/ = 1.0 x 10 36 ergs s - 1 at D = 5 kpc) if the absorbing column density is N/sub H/ = 2.8 x 10 21 cm - 2 . The remnant is circular and shows a strong shell which is at least 5 times brighter in the north than in the south. The X-ray observations do not unambiguously determine whether the remnant is in the adiabatic or the free expansion phase. If the remnant is in the adiabatic phase, the density of the interstellar medium (ISM) ( 2 /sub e/>/sup 1/2/) surrounding Kepler's SNR must be about 5 cm - 3 . If the remnant is in the free expansion phase, where most of the emission arises from shock-heated ejecta, the ISM density must still be relatively high, n/sub i/> or approx. =0.1 cm - 3 . Even if the ISM is very inhomogeneous, with very many small, dense clouds, we show that the mean density of the ISM must be greater than approx.0.1 cm - 3 . In any case, the density of the x-ray emitting gas must be high ( 2 /sub e/>/sup 1/2/ > or approx. =10 cm - 3 ), and the temperature must be fairly low (T/sub e/ 7 K). The relatively high ISM density which is required is surprising in view of Kepler's distance above the galactic plane, approx.600 pc. Possibly the ISM around Kepler's SNR and around other type i SNRs is dominated by the mass lost from the presupernova star
Photoproduction within the two-component Dual Parton Model: amplitudes and cross sections
International Nuclear Information System (INIS)
Engel, R.; Siegen Univ.
1995-01-01
In the framework of the Dual Parton Model an approximation scheme to describe high energy photoproduction processes is presented. Based on the distinction between direct, resolved soft, and resolved hard interaction processes we construct effective impact parameter amplitudes. In order to treat low mass diffraction within the eikonal formalism in a consistent way a phenomenological ansatz is proposed. The free parameters of the model are determined by fits to high energy hadro- and photoproduction cross sections. We calculate the partial photoproduction cross sections and discuss predictions of the model at HERA energies. Using hadro- and photoproduction data together, the uncertainties of the model predictions are strongly reduced. (orig.)
APFEL Web a web-based application for the graphical visualization of parton distribution functions
Carrazza, Stefano; Palazzo, Daniele; Rojo, Juan
2015-01-01
We present APFEL Web, a web-based application designed to provide a flexible user-friendly tool for the graphical visualization of parton distribution functions (PDFs). In this note we describe the technical design of the APFEL Web application, motivating the choices and the framework used for the development of this project. We document the basic usage of APFEL Web and show how it can be used to provide useful input for a variety of collider phenomenological studies. Finally we provide some examples showing the output generated by the application.
QCD Analysis of Polarized Scattering Data and New Polarized Parton Distributions
International Nuclear Information System (INIS)
Bluemlein, J.; Boettcher, H.
2002-01-01
In this talk results from a new QCD analysis in Leading (LO) and Next-to-Leading (NLO) Order are presented. New parametrizations of the polarized quark and gluon densities are derived together with parametrizations of their fully correlated 1σ error bands. Furthermore the value of α s (M 2 Z ) is determined. Finally a number of low moments of the polarized parton densities are compared with results from lattice simulations. All details of the analysis are given in J. Bluemlein, H. Boettcher, Nucl. Phys. B636, 225 (2002). (author)
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Celine; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng
2016-04-10
We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip
International Nuclear Information System (INIS)
Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.; Wallon, S.
2014-01-01
Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)
Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip
Energy Technology Data Exchange (ETDEWEB)
Pire, B. [CNRS, CPhT, Ecole Polytechnique, Palaiseau (France); Semenov-Tian-Shansky, K. [Universite de Liege, IFPA, Departement AGO, Liege (Belgium); Szymanowski, L. [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S. [Universite de Paris-Sud, CNRS, LPT, Orsay (France); Universite Paris 06, Faculte de Physique, UPMC, Paris (France)
2014-05-15
Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)
VBFNLO: A parton level Monte Carlo for processes with electroweak bosons
Arnold, K.; Bähr, M.; Bozzi, G.; Campanario, F.; Englert, C.; Figy, T.; Greiner, N.; Hackstein, C.; Hankele, V.; Jäger, B.; Klämke, G.; Kubocz, M.; Oleari, C.; Plätzer, S.; Prestel, S.; Worek, M.; Zeppenfeld, D.
2009-09-01
VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order in the strong coupling constant. VBFNLO includes Higgs and vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading-order one-loop level with the full top- and bottom-quark mass dependence in a generic two-Higgs-doublet model. A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order. Program summaryProgram title:VBFNLO Catalogue identifier: AEDO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL version 2 No. of lines in distributed program, including test data, etc.: 339 218 No. of bytes in distributed program, including test data, etc.: 2 620 847 Distribution format: tar.gz Programming language: Fortran, parts in C++ Computer: All Operating system: Linux, should also work on other systems Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord PDF Interface library and the GNU Scientific library Nature of problem: To resolve the large scale dependence inherent in leading order calculations and to quantify the cross section error induced by uncertainties in the determination of parton distribution functions, it is necessary to include NLO corrections. Moreover, whenever stringent cuts are required on decay products and/or identified jets the question arises whether the scale dependence and a k-factor, defined
Signatures of Parton Exogamy in $e^+ e^- \\to W^+ W^- \\to$ hadrons
Ellis, Jonathan Richard; Ellis, John; Geiger, Klaus
1997-01-01
We propose possible signatures of `exogamous' combinations between partons in the different W+ and W- hadron showers in e+e- -> W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10 % between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W decays hadronically and the other leptonically, i.e., \
The Adler sum rule and quark parton distribution functions in nucleon
International Nuclear Information System (INIS)
Niegawa, Akira; Sasaki, Ken.
1975-01-01
The behaviour of the quark parton distribution functions is discussed through the phenomenological analysis of the deep inelastic e-p and e-n data under constraint of the saturation of the Adler sum rule. It is concluded that in the region 0 0 where the Regge parametrization can be applied, anti u(x) is equal to anti d(x), and both behave as const/x, (x 0 will be 0.04--0.05); for x 0 x 0 is given. The rate of convergence of the Adler sum rule is also discussed. (auth.)
Lower bounds for ν and Q2 values leading to scaling in the simple parton model
International Nuclear Information System (INIS)
Nataf, R.S.
1979-06-01
The simple parton model leads to the Bjorken scaling law only for rather large values of the transfer. For small values, the scale invariance is broken by a purely kinematical effect which is shown to depend on: (1+(4M 2 x 2 /Q 2 ))sup(1/2)-1, M being the mass of the target nucleon. Thus, one has to consider: ν>=5M (5GeV) and: Q 2 >=10M 2 x (9GeV/c) 2 for the whole x range) if it is demanded that scaling holds within 10% to error
Pire, B.; Szymanowski, L.
2017-12-01
We calculate at the leading order in αs the QCD amplitude for exclusive neutrino production of a D* or Ds* charmed vector meson on a nucleon. We work in the framework of the collinear QCD approach where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We include O (mc) terms in the coefficient functions and the O (mD) term in the definition of heavy meson distribution amplitudes. The show that the analysis of the angular distribution of the decay D(s) *→D(s )π allows us to access the transversity gluon GPDs.
Probing the perturbative NLO parton evolution in the small-x region
International Nuclear Information System (INIS)
Glueck, M.; Pisano, C.; Reya, E.
2005-01-01
A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for F 2 p (x,Q 2 ), as well as with the present determination of the curvature of F 2 p . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as xdecreases. Future precision measurements in the very small x-region, x -4 , could provide a sensitive test of the range of validity of perturbative QCD. (orig.)
Computation of parton distributions from the quasi-PDF approach at the physical point
Directory of Open Access Journals (Sweden)
Alexandrou Constantia
2018-01-01
Full Text Available We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum p→ = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI’ scheme, following the non-perturbative renormalization prescription recently developed by our group.
$\\alpha_s$ from soft parton-to-hadron fragmentation functions
Perez-Ramos, Redamy
2015-01-01
The QCD coupling α s is extracted at approximate next-to-next-to-leading-order (NNLO ∗ ) accuracy from the energy evolution of the first two moments (multiplicity and mean) of the parton- to-hadron fragmentation functions at low fractional hadron momentum z. Comparisons of the experimental e + e − and DIS e ± p jet data to our NNLO ∗ +NNLL predictions, allow us to obtain α s (m 2 Z ) = 0.1205±0.0010 +0.0022 −0.0000 , in excellent agreement with the current world average.
Meson productions at large transverse momentum in core-valence parton model
Biyajima, M
1976-01-01
A quark parton model with an impulse approximation is presented for describing from small momentum to large momentum phenomena in inclusive reactions. An annihilation process by quark-antiquark collision and a pair creation process by gluon-gluon collision are assumed to be dominant. By making use of these two diagrams the authors can explain the particle ratios in addition to the various large p/sub T/-distributions at FNAL and CERN-ISR. Model calculations suggests that gluon collisions are playing an important role as well as quark-antiquark annihilation process. (24 refs).
APFEL Web: a web-based application for the graphical visualization of parton distribution functions
International Nuclear Information System (INIS)
Carrazza, Stefano; Ferrara, Alfio; Palazzo, Daniele; Rojo, Juan
2015-01-01
We present APFEL Web, a Web-based application designed to provide a flexible user-friendly tool for the graphical visualization of parton distribution functions. In this note we describe the technical design of the APFEL Web application, motivating the choices and the framework used for the development of this project. We document the basic usage of APFEL Web and show how it can be used to provide useful input for a variety of collider phenomenological studies. Finally we provide some examples showing the output generated by the application. (note)
Solving QCD using multi-regge theory
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
This talk outlines the derivation of a high-energy, transverse momentum cut-off, solution of QCD in which the Regge pole and ''single gluon'' properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. In first approximation, the pomeron is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a supercritical phase of Reggeon Field Theory
Same-sign W pair production as a probe of double-parton scattering at the LHC
Gaunt, Jonathan R.; Kom, Chun-Hay; Kulesza, Anna; Stirling, W. James
2010-09-01
We study the production of same-sign W boson pairs at the LHC in double parton interactions. Compared with simple factorised double parton distributions (dPDFs), we show that the recently developed dPDFs, GS09, lead to non-trivial kinematic correlations between the W bosons. A numerical study of the prospects for observing this process using same-sign dilepton signatures, including W ± W ± jj, diboson and heavy flavour backgrounds, at 14 TeV centre-of-mass energy is then performed. It is shown that a small excess of same-sign dilepton events from double parton scattering over a background dominated by single scattering W ± Z( γ *) production could be observed at the LHC.
Same-sign W pair production as a probe of double-parton scattering at the LHC
Energy Technology Data Exchange (ETDEWEB)
Gaunt, Jonathan R.; Kom, Chun-Hay; Stirling, W.J. [Cavendish Laboratory, Cambridge (United Kingdom); Kulesza, Anna [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)
2010-09-15
We study the production of same-sign W boson pairs at the LHC in double parton interactions. Compared with simple factorised double parton distributions (dPDFs), we show that the recently developed dPDFs, GS09, lead to non-trivial kinematic correlations between the W bosons. A numerical study of the prospects for observing this process using same-sign dilepton signatures, including W{sup {+-}}W{sup {+-}}jj, diboson and heavy flavour backgrounds, at 14 TeV centre-of-mass energy is then performed. It is shown that a small excess of same-sign dilepton events from double parton scattering over a background dominated by single scattering W {sup {+-}}Z({gamma}{sup *}) production could be observed at the LHC. (orig.)
NLO QCD+EW predictions for HV and HV +jet production including parton-shower effects
Granata, F.; Lindert, J. M.; Oleari, C.; Pozzorini, S.
2017-09-01
We present the first NLO QCD+EW predictions for Higgs boson production in association with a ℓν ℓ or ℓ + ℓ - pair plus zero or one jets at the LHC. Fixed-order NLO QCD+EW calculations are combined with a QCD+QED parton shower using the recently developed resonance-aware method in the POWHEG framework. Moreover, applying the improved MiNLO technique to Hℓν ℓ +jet and Hℓ + ℓ - +jet production at NLO QCD+EW, we obtain predictions that are NLO accurate for observables with both zero or one resolved jet. This approach permits also to capture higher-order effects associated with the interplay of EW corrections and QCD radiation. The behavior of EW corrections is studied for various kinematic distributions, relevant for experimental analyses of Higgsstrahlung processes at the 13 TeV LHC. Exact NLO EW corrections are complemented with approximate analytic formulae that account for the leading and next-to-leading Sudakov logarithms in the high-energy regime. In the tails of transverse-momentum distributions, relevant for analyses in the boosted Higgs regime, the Sudakov approximation works well, and NLO EW effects can largely exceed the ten percent level. Our predictions are based on the POWHEG BOX RES+OpenLoops framework in combination with the Pythia 8.1 parton shower.
Jet azimuthal correlations and parton saturation in the color glass condensate
International Nuclear Information System (INIS)
Kharzeev, Dmitri; Levin, Eugene; McLerran, Larry
2005-01-01
We consider the influence of parton saturation in the color glass condensate on the back-to-back azimuthal correlations of high-pT hadrons in pA (or dA) collisions. When both near-side and away-side hadrons are detected at mid-rapidity at RHIC energy, the effects of parton saturation are constrained to transverse momenta below the saturation scale pT=< Qs; in this case the back-to-back correlations do not disappear but exhibit broadening. In addition, the uncorrelated background reduces the apparent strength of back-to-back correlations in AA collisions. When near-side and away-side hadrons are separated by several units of rapidity, quantum evolution effects lead to the depletion of back-to-back correlations as a function of rapidity interval between the detected hadrons (at fixed pT). This applies to both pp and pA (or dA) collisions; however, due to the initial conditions provided by the color glass condensate, the depletion of the back-to-back correlations is significantly stronger in the pA case. An experimental study of this effect would thus help to clarify the origin of the high-pT hadron suppression at forward rapidities observed recently at RHIC
Signatures of parton exogamy in e+e- → W+W- → hadrons
Ellis, John; Geiger, Klaus
1997-02-01
We propose possible signatures of ‘exogamous’ combinations between partons in the different W+ and W- hadron showers in e+e- → W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10% between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W± decays hadronically and the other leptonically, i.e., « Nhad(2 W ≠ 2« Nhad( W), associated with the formation of hadronic clusters by ‘exogamous’ pairs of partons. We discuss the dependence of this possible difference in multiplicity on the center-of-mass energy, on the hadron momenta, and on the angular separation between the W± dijets. If it were observed, any such multiplicity difference would indicate that the W± do not hadronize independently, and hence raise questions about the accuracy with which the W± mass could be determined from purely hadronic final states.
Coherent deeply virtual Compton scattering off 3He and neutron generalized parton distributions
Directory of Open Access Journals (Sweden)
Rinaldi Matteo
2014-06-01
Full Text Available It has been recently proposed to study coherent deeply virtual Compton scattering (DVCS off 3He nuclei to access neutron generalized parton distributions (GPDs. In particular, it has been shown that, in Impulse Approximation (IA and at low momentum transfer, the sum of the quark helicity conserving GPDs of 3He, H and E, is dominated by the neutron contribution. This peculiar result makes the 3He target very promising to access the neutron information. We present here the IA calculation of the spin dependent GPD H See Formula in PDF of 3He. Also for this quantity the neutron contribution is found to be the dominant one, at low momentum transfer. The known forward limit of the IA calculation of H See Formula in PDF , yielding the polarized parton distributions of 3He, is correctly recovered. The extraction of the neutron information could be anyway non trivial, so that a procedure, able to take into account the nuclear effects encoded in the IA analysis, is proposed. These calculations, essential for the evaluation of the coherent DVCS cross section asymmetries, which depend on the GPDs H,E and H See Formula in PDF , represent a crucial step for planning possible experiments at Jefferson Lab.
International Nuclear Information System (INIS)
Girod, F.X.
2006-12-01
The structure of the nucleon, among the first fundamental problems in hadronic physics, is the subject of a renewed interest. The lightest baryonic state has historically been described in two complementary approaches: through elastic scattering, measuring form factors which reflect the spatial shape of charge distributions, and through deep inelastic scattering, providing access to parton distribution functions which encode the momentum content carried by the constituents. The recently developed formalism of Generalized Parton Distributions unifies those approaches and provides access to new informations. The cleanest process sensitive to GPDs is the deeply virtual Compton scattering (DVCS) contributing to the ep → epγ reaction. This work deals with a dedicated experiment accomplished with the CLAS detector, completed with two specific equipments: a lead tungstate calorimeter covering photon detection at small angles, and a superconducting solenoid actively shielding the electromagnetic background. The entire project is covered: from the upgrade of the experimental setup, through the update of the software, data taking and analysis, up to a first comparison of the beam spin asymmetry to model predictions. (author)
Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA
International Nuclear Information System (INIS)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Vermilion, Christopher K.; Walsh, Jonathan R.; Zuberi, Saba; Hornig, Andrew; Tackmann, Frank J.
2012-11-01
We extend the lowest-order matching of tree-level matrix elements with parton showers to give a complete description at the next higher perturbative accuracy in α s at both small and large jet resolutions, which has not been achieved so far. This requires the combination of the higher-order resummation of large Sudakov logarithms at small values of the jet resolution variable with the full next-to-leading order (NLO) matrix-element corrections at large values. As a by-product, this combination naturally leads to a smooth connection of the NLO calculations for different jet multiplicities. In this paper, we focus on the general construction of our method and discuss its application to e + e - and pp collisions. We present first results of the implementation in the GENEVA Monte Carlo framework. We employ N-jettiness as the jet resolution variable, combining its next-to-next-to-leading logarithmic resummation with fully exclusive NLO matrix elements, and PYTHIA 8 as the backend for further parton showering and hadronization. For hadronic collisions, we take Drell-Yan production as an example to apply our construction. For e + e - → jets, taking α s (m Z ) = 0.1135 from fits to LEP thrust data, together with the PYTHIA 8 hadronization model, we obtain good agreement with LEP data for a variety of 2-jet observables.
CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis
Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.
2018-02-01
We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.
Four-jet production in single- and double-parton scattering within high-energy factorization
Energy Technology Data Exchange (ETDEWEB)
Kutak, Krzysztof; Maciula, Rafal; Serino, Mirko [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,Radzikowskiego 152, 31-342 Kraków (Poland); Szczurek, Antoni [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,Radzikowskiego 152, 31-342 Kraków (Poland); Faculty of Mathematics and Natural Sciences, University of Rzeszów,ul. Pigonia 1, 35-310 Rzeszów (Poland); Hameren, Andreas van [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,Radzikowskiego 152, 31-342 Kraków (Poland)
2016-04-28
We perform a first study of 4-jet production in a complete high-energy factorization (HEF) framework. We include and discuss contributions from both single-parton scattering (SPS) and double-parton scattering (DPS). The calculations are performed for kinematical situations relevant for two experimental measurements (ATLAS and CMS) at the LHC. We compare our results to those reported by the ATLAS and CMS collaborations for different sets of kinematical cuts. The results of the HEF approach are compared with their counterparts for collinear factorization. For symmetric cuts the DPS HEF result is considerably smaller than the one obtained with collinear factorization. The mechanism leading to this difference is of kinematical nature. We conclude that an analysis of inclusive 4-jet production with asymmetric p{sub T}-cuts below 50 GeV would be useful to enhance the DPS contribution relative to the SPS contribution. In contrast to the collinear approach, the HEF approach nicely describes the distribution of the ΔS variable, which involves all four jets and their angular correlations.
Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Vermilion, Christopher K.; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Hornig, Andrew [Washington Univ., Seattle, WA (United States). Dept. of Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2012-11-15
We extend the lowest-order matching of tree-level matrix elements with parton showers to give a complete description at the next higher perturbative accuracy in {alpha}{sub s} at both small and large jet resolutions, which has not been achieved so far. This requires the combination of the higher-order resummation of large Sudakov logarithms at small values of the jet resolution variable with the full next-to-leading order (NLO) matrix-element corrections at large values. As a by-product, this combination naturally leads to a smooth connection of the NLO calculations for different jet multiplicities. In this paper, we focus on the general construction of our method and discuss its application to e{sup +}e{sup -} and pp collisions. We present first results of the implementation in the GENEVA Monte Carlo framework. We employ N-jettiness as the jet resolution variable, combining its next-to-next-to-leading logarithmic resummation with fully exclusive NLO matrix elements, and PYTHIA 8 as the backend for further parton showering and hadronization. For hadronic collisions, we take Drell-Yan production as an example to apply our construction. For e{sup +}e{sup -} {yields} jets, taking {alpha}{sub s}(m{sub Z}) = 0.1135 from fits to LEP thrust data, together with the PYTHIA 8 hadronization model, we obtain good agreement with LEP data for a variety of 2-jet observables.
YOUNG REMNANTS OF TYPE Ia SUPERNOVAE AND THEIR PROGENITORS: A STUDY OF SNR G1.9+0.3
Energy Technology Data Exchange (ETDEWEB)
Chakraborti, Sayan; Childs, Francesca; Soderberg, Alicia, E-mail: schakraborti@post.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2016-03-01
SNe Ia, with their remarkably homogeneous light curves and spectra, have been used as standardizable candles to measure the accelerating expansion of the universe. Yet, their progenitors remain elusive. Common explanations invoke a degenerate star (white dwarf) that explodes upon almost reaching the Chandrasekhar limit, by either steadily accreting mass from a companion star or violently merging with another degenerate star. We show that circumstellar interaction in young Galactic supernova remnants can be used to distinguish between these single and double degenerate (DD) progenitor scenarios. Here we propose a new diagnostic, the surface brightness index, which can be computed from theory and compared with Chandra and Very Large Array (VLA) observations. We use this method to demonstrate that a DD progenitor can explain the decades-long flux rise and size increase of the youngest known galactic supernova remnant (SNR), G1.9+0.3. We disfavor a single degenerate scenario for SNR G1.9+0.3. We attribute the observed properties to the interaction between a steep ejecta profile and a constant density environment. We suggest using the upgraded VLA, ASKAP, and MeerKAT to detect circumstellar interaction in the remnants of historical SNe Ia in the Local Group of galaxies. This may settle the long-standing debate over their progenitors.
The population of supernova remnants in the Magellanic Clouds
Dennefeld, M
1978-01-01
The detection of SNRs in the Magellanic Clouds is reviewed with emphasis on its limits. A sample of SNRs is then used to derive the mean interval between SN explosions, tau . After the maximum constraints have been put on all the other parameters, the distribution of diameters of remnants with diameter less than 30 pc in the LMC is shown to agree well with theoretical predictions. In adopting a mean value of E/sub 0//n/sub 0/ (energy at explosion over surrounding density) of 5*10/sup 51/ ergs cm/sup 3/, the best value of tau is 300+or-100 years in good agreement with predictions from statistics of supernovae in external galaxies. The small number of remnants in the SMC prevents a similar approach being used with any statistical significance. (20 refs).
The optical emission from the supernova remnant HB 3
Fesen, R. A.; Gull, T. R.
1983-01-01
The supernova remnant HB 3 was first detected as a radio source by Brown and Hazard (1953). On the basis of subsequent radio studies, it was concluded that the object was a supernova remnant (SNR). HB 3 is located at the far western edge of the H II region/molecular cloud complex W3-W4-W5 (IC 1795-1805-1848). However, a physical association of HB 3 with this complex is uncertain. In the present investigation, attention is called to the probability that HB 3 exhibits a more extensive optical emission structure than previously realized, and one which agrees well with both the position and morphology of the radio emission. It is found that narrow-passband optical images strongly suggest an almost complete optical emission shell for HB 3. Spectroscopic observations are, however, required to confirm that this emission is characteristic of a SNR.
Contribution of infrared observations to the study of supernovae remnants
International Nuclear Information System (INIS)
Douvion, Thomas
2000-01-01
This research thesis addresses the study of dust in young supernovae remnants observed in middle infrared, mainly by means of the ISOCAM instrument installed on the ISO satellite. The author first presents the supernovae physics and the studied young remnants, describes dusts and the main sites of formation and destruction, and outlines the difficulties and benefits of observations performed in the middle infrared. Then, the author reports acquired evidences related to the formation of dusts in supernovae, and the search for a millimetre emission by cold dust contained in regions which are not yet excited by the shock, in order to better assess the overall quantities created by supernovae. He reports the use of observations of dust and neon in Cassiopeia A to perform a diagnosis on the mixture of elements during the supernovae explosion [fr
Srivastava, Dinesh K.; Bass, Steffen A.; Chatterjee, Rupa
2017-12-01
We study the production and dynamics of heavy quarks in the parton cascade model for relativistic heavy ion collisions. The model is motivated by the QCD parton picture and describes the dynamics of an ultrarelativistic heavy ion collision in terms of cascading partons which undergo scattering and multiplication while propagating. We focus on the dynamics of charm quark production and evolution in p +p and Au + Au collisions for several different interaction scenarios, viz., collisions only between primary partons without radiation of gluons, multiple collisions without radiation of gluons, and multiple collisions with radiation of gluons, allowing us to isolate the contributions of parton rescattering and radiation to charm production. We also discuss results of an eikonal approximation of the collision which provides a valuable comparison with minijet calculations and clearly brings out the importance of multiple collisions.
Simulated galaxy remnants produced by binary and multiple mergers
Novak, Gregory S.
2008-10-01
I compute simulated integral field kinematic data for the remnants produced in a large suite of hydrodynamic binary galaxy merger simulations in order to compare to the galaxies observed as part of the SAURON survey. I find that binary mergers are plausibly the formation mechanism for the ~80% of SAURON galaxies with fast rotation velocities, in agreement with previous studies. However, the simulations of gas-rich binary mergers produce virtually no slow rotators observed to make up ~20% of the SAURON galaxies. In order to identify the origin of these slow rotators, I perform a new set of galaxy merger simulations involving merger histories more complex than single binary mergers of disk galaxies. I set up simple, idealized simulations with four or eight progenitor galaxies in order to build intuition about how a simulated galaxy's merger history affects its kinematic structure. I find that if the merger tree consists solely of roughly equal mass binary mergers, then the remnant is a fast rotator similar to that produced by a single binary merger of disk galaxies. However, if the progenitors merge with the central galaxy one after another in a sequence of mergers with decreasing mass ratios, then the remnant does not rotate. This is a plausible formation scenario for the observed SAURON slowly-rotating galaxies. To see how frequently this happens with realistic initial conditions, I extract halos from a large-scale cosmological simulation and re-simulate the region with higher resolution. These simulations include intergalactic gas that is able to replenish the galaxies' gas supply as the simulation runs. In all cases, I get rapidly rotating remnant galaxies in spite of having several halos with diverse merger histories.
Chandra Observations of Tycho's Supernova Remnant U. Hwang , R ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
runaway thermal instabilities in a white dwarf. It was observed for 50 ks with the superb 0.5 resolution mirror on the Chandra X-ray .... emission that comes from ejecta that have propagated to the forward shock. Such a spectrum, taken from a portion of the west rim of the remnant, is shown in the right panel of Fig. 2. The fitted ...
Study of the photon remnant in resolved photoproduction at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1995-01-01
Photoproduction at HERA is studied in ep collisions, with the ZEUS detector, for γp centre-of-mass energies ranging from 130-270 GeV. A sample of events with two high-p T jets (p T >6 GeV, η T with respect to the beam axis is measured to be 2.1±0.2 GeV, which demonstrates substantial mean transverse momenta for the photon remnant. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E.C.G.; Ne' eman, Y.
1980-01-01
A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed. (RWR)
Are young supernova remnants interacting with circumstellar gas
International Nuclear Information System (INIS)
Chevalier, R.A.
1982-01-01
The young remnants of galactic Type I supernovae (SN 1006, SN 1572, and SN 1604) appear to be interacting with moderately dense gas (n/sub O/> or =0.1 cm -3 ). If the gas in the ambient interstellar medium, the observations suggest that gas of this density is fairly pervasive. If the gas is circumstellar, there are important implications for the progenitors of Type I supernovae. A plausible density distribution for circumstellar gas is rhoinfinityr -2 . The expansion of a supernova into such a medium is examined and is compared with expansion into a uniform medium. The two cases can be distinguished on the basis of their density profiles and their rates of expansion. Currently available data factor the hypothesis of expansion in a uniform medium for all three Type I remnants; the evidence is the strongest for SN 1572 and the weakest for SN 1604. Further X-ray and radio observations of the galactic remnants and of extragalactic Type I supernovae should serve to test this hypothesis
Time evolution of gamma rays from supernova remnants
Gaggero, Daniele; Zandanel, Fabio; Cristofari, Pierre; Gabici, Stefano
2018-04-01
We present a systematic phenomenological study focused on the time evolution of the non-thermal radiation - from radio waves to gamma rays - emitted by typical supernova remnants via hadronic and leptonic mechanisms, for two classes of progenitors: thermonuclear and core-collapse. To this aim, we develop a numerical tool designed to model the evolution of the cosmic ray spectrum inside a supernova remnant, and compute the associated multi-wavelength emission. We demonstrate the potential of this tool in the context of future population studies based on large collection of high-energy gamma-ray data. We discuss and explore the relevant parameter space involved in the problem, and focus in particular on their impact on the maximum energy of accelerated particles, in order to study the effectiveness and duration of the PeVatron phase. We outline the crucial role of the ambient medium through which the shock propagates during the remnant evolution. In particular, we point out the role of dense clumps in creating a significant hardening in the hadronic gamma-ray spectrum.
Modelling neutrino and gamma-ray fluxes in supernova remnants
International Nuclear Information System (INIS)
Ballet, J; Cassam-Chenai, G; Maurin, G; Naumann, C
2008-01-01
Supernova remnants (SNRs) are believed to accelerate charged particles by diffusive shock acceleration (DSA) and to produce the majority of galactic cosmic rays, at least up to the 'knee' at 3-10 15 electron volts. In the framework of a hydrodynamic self-similar simulation of the evolution of young supernova remnants, its interaction with the ambient matter as well as the microwave and infrared background is studied. The photon spectra resulting from synchrotron and inverse Compton emission as well as from hadronic processes are calculated, as are the accompanying neutrino fluxes. Applying this method to the particular case of the SNR RXJ-1713, 7-3946, we find that its TeV emission can in principle be explained by pion decay if the ambient density is assumed to grow with increasing distance from the centre. The neutrino flux associated with this hadronic model is of a magnitude that may be detectable by a cubic-kilometre sized deep-sea neutrino telescope in the northern hemisphere. In this poster, a description of the supernova remnant simulation is given together with the results concerning RXJ-1713.
X-Ray Measured Dynamics of Tycho's Supernova Remnant
Katsuda, Satoru; Petre, Robert; Hughes, John; Hwang, Una; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi
2010-01-01
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr-1 (expansion index m = 0.33, where R = tm ) to 0.''40 yr-1 (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr-1 (m = 0.26) to 0.''40 yr-1 (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of [approx]0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr-1 and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of [less, similar]0.2 cm-3.
Dance into the fire: dust survival inside supernova remnants
Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.
2016-06-01
Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will
AUTHOR|(INSPIRE)INSPIRE-00173407; The ATLAS collaboration
2017-01-01
A correct modelling of the underlying event in proton-proton collisions at Large Hadron Collider is important for the proper simulation of kinematic distributions of final state objects. The ATLAS collaboration performed a study at 13 TeV, measuring the number and transverse-momentum sum of charged particles in different regions with respect to the direction of the reconstructed leading track. These measurements are sensitive to the underlying-event activity. The results are compared to predictions of several Monte Carlo generators. Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of 7 TeV in the ATLAS detector have been analysed for the presence of hard double parton scattering. The fraction of events originating from hard double parton scattering has been extracted, and used to measure the effective proton cross section. Distributions sensitive to the presence of double parton scattering were unfolded to the parton level and compared to various tunes of a selected Mo...
Evolution equation for the shape function in the parton model approach to inclusive B decays
International Nuclear Information System (INIS)
Baek, Seungwon; Lee, Kangyoung
2005-01-01
We derive an evolution equation for the shape function of the b quark in an analogous way to the Altarelli-Parisi equation by incorporating the perturbative QCD correction to the inclusive semileptonic decays of the B meson. Since the parton picture works well for inclusive B decays due to the heavy mass of the b quark, the scaling feature manifests and the decay rate may be expressed by a single structure function describing the light-cone distribution of the b quark apart from the kinematic factor. The evolution equation introduces a q 2 dependence of the shape function and violates the scaling properties. We solve the evolution equation and discuss the phenomenological implication.
Strangeness production in hadronic and nuclear collisions in the dual parton model
International Nuclear Information System (INIS)
Capella, A.; Tran Thanh Van, J.; Ranft, J.
1993-01-01
Λ, antiΛ and K s 0 production is studied in a Monte Carlo Dual Parton model for hadron-hadron, hadron-nucleus and nucleus-nucleus collisions with a SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation. Additionally, (qq)-(antiqantiq) production from the sea was introduced into the chain formation process with the same probability as for the q → qq branching within the chain decay process. This together with the popcorn mechanism of diquark fragmentation result in a new central component of hyperon production, which was not present in previous versions of the model. With these assumptions rapidity distributions and multiplicity ratios for strange particles in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are compared to a comprehensive collection of experimental data. 5 figs., 2 tabs., 15 refs
ZZ production in gluon fusion at NLO matched to parton-shower
Alioli, Simone
2017-01-01
We present a calculation of the next-to-leading order (NLO) QCD corrections to the hadroproduction process $gg\\to ZZ \\to e^+e^- \\mu^+ \\mu^-$, matched to the parton shower in the POWHEG framework. We take advantage of the POWHEG BOX tool for the implementation and rely on PYTHIA 8 for the showering and hadronization stages. We fully include $\\gamma^*/Z$ interference effects, while also covering the single-resonant region. For this phenomenological study we focus on four lepton production as a signal process, neglecting all quark mass effects as well as the Higgs-mediated contributions, which are known to be subdominant in this case. We provide predictions from our simulations for the 13 TeV LHC Run II setup, including realistic experimental cuts.
Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions
Energy Technology Data Exchange (ETDEWEB)
Garzelli, M.V.; Moch, S.; Placakyte, R.; Sigl, G. [Hamburg Univ. (Germany). 2. Inst. for Theoretical Physics; Zenaiev, O.; Geiser, A.; Lipka, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Cooper-Sarkar, A. [Oxford Univ. (United Kingdom). Dept. of Physics; Collaboration: PROSA Collaboration
2016-11-15
Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. A discussion is presented on how these uncertainties affect the expected number of atmospheric prompt neutrino events in the analysis of high-energy events characterized by interaction vertices fully contained within the instrumented volume of the detector, performed by the IceCube collaboration.
QCD parton showers and NLO EW corrections to Drell-Yan
Richardson, P; Sapronov, A A; Seymour, M H; Skands, P Z
2012-01-01
We report on the implementation of an interface between the SANC generator framework for Drell-Yan hard processes, which includes next-to-leading order electroweak (NLO EW) corrections, and the Herwig++ and Pythia8 QCD parton shower Monte Carlos. A special aspect of this implementation is that the initial-state shower evolution in both shower generators has been augmented to handle the case of an incoming photon-in-a-proton, diagrams for which appear at the NLO EW level. The difference between shower algorithms leads to residual differences in the relative corrections of 2-3% in the p_T(mu) distributions at p_T(mu)>~50 GeV (where the NLO EW correction itself is of order 10%).
Analytical Expressions for the Hard-Scattering Production of Massive Partons
Energy Technology Data Exchange (ETDEWEB)
Wong, Cheuk-Yin [ORNL
2016-01-01
We obtain explicit expressions for the two-particle differential cross section $E_c E_\\kappa d\\sigma (AB \\to c\\kappa X) /d\\bb c d \\bb \\kappa$ and the two-particle angular correlation function \\break $d\\sigma(AB$$ \\to$$ c\\kappa X)/d\\Delta \\phi \\, d\\Delta y$ in the hard-scattering production of massive partons in order to exhibit the ``ridge" structure on the away side in the hard-scattering process. The single-particle production cross section $d\\sigma(AB \\to cX) /dy_c c_T dc_T $ is also obtained and compared with the ALICE experimental data for charm production in $pp$ collisions at 7 TeV at LHC.
Generalized parton distributions: confining potential effects within AdS/QCD
Energy Technology Data Exchange (ETDEWEB)
Traini, Marco [Universite Paris Saclay, CEA, Institut de Physique Theorique, Gif-sur-Yvette (France); Universita degli Studi di Trento, Dipartimento di Fisica, Trento (Italy); INFN-TIFPA, Trento (Italy)
2017-04-15
Generalized parton distributions are investigated within a holographic approach where the string modes in the fifth dimension describe the nucleon in a bottom-up or AdS/QCD framework. The aim is to bring the AdS/QCD results in the realm of phenomenology in order to extract consequences and previsions. Two main aspects are studied: (i) the role of the confining potential needed for breaking conformal invariance and introducing confinement (both: classic soft-wall and recent infra-red potentials are investigated); (ii) the extension of the predicted GPDs to the entire range of off-forward kinematics by means of double distributions. Higher Fock states are included describing the nucleon as a superposition of three valence quarks and quark-antiquark pairs and gluons. (orig.)
Higgs pair production at the LHC with NLO and parton-shower effects
Frederix, R.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Torrielli, P.; Vryonidou, E.; Zaro, M.
2014-05-01
We present predictions for the SM-Higgs-pair production channels of relevance at the LHC: gluon-gluon fusion, VBF, and top-pair, W, Z and single-top associated production. All these results are at the NLO accuracy in QCD, and matched to parton showers by means of the MC@NLO method; hence, they are fully differential. With the exception of the gluon-gluon fusion process, for which a special treatment is needed in order to improve upon the infinite-top-mass limit, our predictions are obtained in a fully automatic way within the publicly available MadGraph5_aMC@NLO framework. We show that for all channels in general, and for gluon-gluon fusion and top-pair associated production in particular, NLO corrections reduce the theoretical uncertainties, and are needed in order to arrive at reliable predictions for total rates as well as for distributions.
Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions
International Nuclear Information System (INIS)
Garzelli, M.V.; Moch, S.; Placakyte, R.; Sigl, G.; Cooper-Sarkar, A.
2016-11-01
Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. A discussion is presented on how these uncertainties affect the expected number of atmospheric prompt neutrino events in the analysis of high-energy events characterized by interaction vertices fully contained within the instrumented volume of the detector, performed by the IceCube collaboration.
Gaunt, Jonathan R.; James Stirling, W.
2010-03-01
It is anticipated that hard double parton scatterings will occur frequently in the collisions of the LHC, producing interesting signals and significant backgrounds to certain single scattering processes. For double scattering processes in which the same hard scale t = ln( Q 2) is involved in both collisions, we require the double parton distributions (dPDFs) D_h^{{j_1}{j_2}}left( {{x_1},{x_2};t} right) in order to make theoretical predictions of their rates and properties. We describe the development of a new set of leading order dPDFs that represents an improvement on approaches used previously. First, we derive momentum and number sum rules that the dPDFs must satisfy. The fact that these must be obeyed at any scale is used to construct improved dPDFs at the input scale Q 0, for a particular choice of input scale ( Q {0/2} = 1GeV2) and corresponding single PDFs (the MSTW2008LO set). We then describe a novel program which uses a direct x-space method to numerically integrate theLO DGLAP equation for the dPDFs, and which may be used to evolve the input dPDFs to any other scale. This program has been used along with the improved input dPDFs to produce a set of publicly available dPDF grids covering the ranges 10-6 < x 1 < 1, 10-6 < x 2 < 1, and 1 < Q 2 < 109 GeV2.
Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field
Brienza, M.; Godfrey, L.; Morganti, R.; Prandoni, I.; Harwood, J.; Mahony, E. K.; Hardcastle, M. J.; Murgia, M.; Röttgering, H. J. A.; Shimwell, T. W.; Shulevski, A.
2017-10-01
Context. The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. Aims: In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied extragalactic field. We create mock catalogues of low-power radio galaxies based on Monte Carlo simulations to derive first-order predictions of the fraction of remnants in radio flux limited samples for comparison with our Lockman-Hole sample. Methods: Our search for remnant radio galaxies is based on LOFAR observations at 150 MHz combined with public survey data at higher frequencies. To enhance the selection process, and obtain a more complete picture of the remnant population, we use spectral criteria such as ultra-steep spectral index and high spectral curvature, and morphologre biased toward tinuum: galaxie ical criteria such as low radio core prominence and relaxed shapes to identify candidate remnant radio galaxies. Mock catalogues of radio galaxies are created based on existing spectral and dynamical evolution models combined with observed source properties. Results: We have identified 23 candidate remnant radio galaxies which cover a variety of morphologies and spectral characteristics. We suggest that these different properties are related to different stages of the remnant evolution. We find that ultra-steep spectrum remnants represent only a fraction of our remnant sample suggesting a very rapid luminosity evolution of the radio plasma. Results from mock catalogues demonstrate the importance of dynamical evolution in the remnant phase of low-power radio galaxies to obtain fractions of remnant sources consistent with our observations. Moreover, these results confirm that ultra-steep spectrum remnants represent only a small subset of the entire population ( 50%) when frequencies higher than 1400 MHz are not included in the selection process, and that they are
International Nuclear Information System (INIS)
1989-01-01
This report discusses topics on: Rare B decay; Physics beyond the standard model; Intermittency; Relativistic heavy-ion collisions; Cross section for jet production in hadron collisions; Factorization; Determination of the parton distribution function; Left-right electroweak theories; and Supersymmetry at Lepton colliders
Radio and X-ray emission from newly born remnants
International Nuclear Information System (INIS)
Salvati, M.
1983-01-01
Radio and X-ray observations of SN 1979c and SN 1980k offer a unique opportunity of monitoring the transition from supernovae to remnants. By means of the two-frequency radio light curves, the hypothesis that these objects are surrounded by circumstellar matter, originated in a presupernova wind, is tested, and the relevant parameters are derived. Then the absorption-corrected light curves are used to test the various proposed models. SN 1980k appears to be powered by a canonical shock, while SN 1979c is a good plerion candidate. An optical pulsar could still be detected at its location. (Auth.)
Radio and X-ray emission from supernova remnants
International Nuclear Information System (INIS)
Asvarova, A.I.; Novruzova, H.I.; Ahmedova, S.I.
2010-01-01
In this paper it was studied the statistical correlation between radio and X-ray emissions from shell-type supernova remnants (SNR). The primary aim of this study is to test the model of radio emission of shell-type SNRs presented by one of the authors. Based on this model of radio emission, by using the Monte Carlo techniques we have simulated statistical relations radio - X-ray luminosities (not surface brightnesses) which then were compared with the observations. X-ray emission is assumed to be thermal. To have a uniform statistical material it was used observational data on the SNRs in Magellanic Clouds
Dynamical evolution of supernova remnants breaking through molecular clouds
Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul
2015-01-01
We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the ou...
Age of remnants of a pleistocene glacier in Bolshezemelskaya tundra
International Nuclear Information System (INIS)
Astakhov, V.I.; Svensen, J.I.
2002-01-01
The age of remnants of the pleistocene glacier in Bolshezemelskaya tundra was determined by the methods of radiocarbon and uranium-thorium dating to ascertain the age of the last continental icing of the Arctic planes on European territory of Russia. It is shown that the last glacier, that has left behind fragments of its soiled bottom in the region under review, disintegrated not later than 50 thousand years ago. The age of the maximum advance of the last glacier probably falls in the range of 80-100 thousand years ago [ru
A 3D View of a Supernova Remnant
Kohler, Susanna
2017-06-01
The outlined regions mark the 57 knots in Tycho selected by the authors for velocity measurements. Magenta regions have redshifted line-of-sight velocities (moving away from us); cyan regions have blueshifted light-of-sight velocities (moving toward us). [Williams et al. 2017]The Tycho supernova remnant was first observed in the year 1572. Nearly 450 years later, astronomers have now used X-ray observations of Tycho to build the first-ever 3D map of a Type Ia supernova remnant.Signs of ExplosionsSupernova remnants are spectacular structures formed by the ejecta of stellar explosions as they expand outwards into the surrounding interstellar medium.One peculiarity of these remnants is that they often exhibit asymmetries in their appearance and motion. Is this because the ejecta are expanding into a nonuniform interstellar medium? Or was the explosion itself asymmetric? The best way we can explore this question is with detailed observations of the remnants.Histograms of the velocity in distribution of the knots in the X (green), Y (blue) and Z (red) directions (+Z is away from the observer). They show no evidence for asymmetric expansion of the knots. [Williams et al. 2017]Enter TychoTo this end, a team of scientists led by Brian Williams (Space Telescope Science Institute and NASA Goddard SFC) has worked to map out the 3D velocities of the ejecta in the Tycho supernova remnant. Tycho is a Type Ia supernova thought to be caused by the thermonuclear explosion of a white dwarf in a binary system that was destabilized by mass transfer from its companion.After 450 years of expansion, the remnant now has the morphological appearance of a roughly circular cloud of clumpy ejecta. The forward shock wave from the supernova, however, is known to have twice the velocity on one side of the shell as on the other.To better understand this asymmetry, Williams and collaborators selected a total of 57 knots in Tychos ejecta, spread out around the remnant. They then used 12 years of
Remarks on Remnants by Fermions’ Tunnelling from Black Strings
Directory of Open Access Journals (Sweden)
Deyou Chen
2014-01-01
Full Text Available Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.
Thyroglossal duct cyst cancer most likely arises from a thyroid gland remnant.
Rossi, Esther D; Martini, Maurizio; Straccia, Patrizia; Cocomazzi, Alessandra; Pennacchia, Ilaria; Revelli, Luca; Rossi, Armando; Lombardi, Celestino Pio; Larocca, Luigi M; Fadda, Guido
2014-07-01
Thyroglossal duct cancer is a rare entity, occurring in 1.5 % of all thyroglossal duct cysts (TDC). A definitive consensus about its neoplastic origin has not been established as two contrasting theories exist, one proposing an origin in extra-thyroid remnants and the other a metastatic localization of a primary thyroid cancer. We compare morphological and molecular characteristics of both thyroglossal and thyroid carcinomas in a case series from our institute. We evaluated histology of 80 TDC. In 12 cases, prior cytological evaluation had been performed by liquid-based cytology (LBC). The BRAF gene was examined for mutations, and the histology of both thyroglossal duct and synchronous thyroid carcinoma was reevaluated. In 9 out of 80 (11 %) TDC cases, a papillary thyroid cancer (PTC) was diagnosed. In five out of nine (56 %) thyroglossal carcinomas, a synchronous thyroid cancer was diagnosed: 3 PTC and 2 follicular variant PTC (FVPC). In five thyroglossal carcinomas, mutated BRAF (V600E) was found, three in PTC and in thyroglossal as well as in the synchronous tumor in the thyroid. All the patients are in a disease-free status and still alive. Our results suggest that the majority of thyroglossal carcinomas most likely develop as a primary malignancy from a thyroid remnant. Neither the presence of V600E BRAF mutations nor that of a well-differentiated thyroid carcinoma changed the outcome or disease-free survival. We suggest that a diagnosis of thyroglossal carcinoma should be followed by a detailed evaluation of the thyroid gland. In the absence of clinical and radiological thyroid alterations, follow-up as for thyroid cancer is the correct management.
Université de Genève
2012-01-01
GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 28 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11h15 - Science III, Auditoire 1S081 Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays Prof. Pasquale BLASI INAF, Arcetri Observatory, Firenze The process of cosmic ray energization in supernova remnant shocks is described by the theory of non linear diffusive shock acceleration (NLDSA). Such theory is able to describe the acceleration itself, the dynamical reaction of accelerated particles on the shock, and the crucial phenomenon of the magnetic field amplification, the very key to generate high energy cosmic rays. I will illustrate the basic aspects of this theoretical framework, as well as its successes and problems. I will then discuss the observations, in X-rays an...
DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES
International Nuclear Information System (INIS)
Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.
2015-01-01
Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM
DUST COOLING IN SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD
Energy Technology Data Exchange (ETDEWEB)
Seok, Ji Yeon [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Koo, Bon-Chul [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Hirashita, Hiroyuki, E-mail: seokji@missouri.edu [Institute for Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)
2015-07-01
The infrared-to-X-ray (IRX) flux ratio traces the relative importance of dust cooling to gas cooling in astrophysical plasma such as supernova remnants (SNRs). We derive IRX ratios of SNRs in the LMC using Spitzer and Chandra SNR survey data and compare them with those of Galactic SNRs. IRX ratios of all the SNRs in the sample are found to be moderately greater than unity, indicating that dust grains are a more efficient coolant than gas although gas cooling may not be negligible. The IRX ratios of the LMC SNRs are systematically lower than those of the Galactic SNRs. As both dust cooling and gas cooling pertain to the properties of the interstellar medium, the lower IRX ratios of the LMC SNRs may reflect the characteristics of the LMC, and the lower dust-to-gas ratio (a quarter of the Galactic value) is likely to be the most significant factor. The observed IRX ratios are compared with theoretical predictions that yield IRX ratios an order of magnitude larger. This discrepancy may originate from the dearth of dust in the remnants due to either the local variation of the dust abundance in the preshock medium with respect to the canonical abundance or the dust destruction in the postshock medium. The non-equilibrium ionization cooling of hot gas, in particular for young SNRs, may also cause the discrepancy. Finally, we discuss implications for the dominant cooling mechanism of SNRs in low-metallicity galaxies.
Small for size liver remnant following resection: prevention and management.
Eshkenazy, Rony; Dreznik, Yael; Lahat, Eylon; Zakai, Barak Bar; Zendel, Alex; Ariche, Arie
2014-10-01
In the latest decades an important change was registered in liver surgery, however the management of liver cirrhosis or small size hepatic remnant still remains a challenge. Currently post-hepatectomy liver failure (PLF) is the major cause of death after liver resection often associated with sepsis and ischemia-reperfusion injury (IRI). ''Small-for-size'' syndrome (SFSS) and PFL have similar mechanism presenting reduction of liver mass and portal hyper flow beyond a certain threshold. Few methods are described to prevent both syndromes, in the preoperative, perioperative and postoperative stages. Additionally to portal vein embolization (PVE), radiological examinations (mainly CT and/or MRI), and more recently 3D computed tomography are fundamental to quantify the liver volume (LV) at a preoperative stage. During surgery, in order to limit parenchymal damage and optimize regenerative capacity, some hepatoprotective measures may be employed, among them: intermittent portal clamping and hypothermic liver preservation. Regarding the treatment, since PLF is a quite complex disease, it is required a multi-disciplinary approach, where it management must be undertaken in conjunction with critical care, hepatology, microbiology and radiology services. The size of the liver cannot be considered the main variable in the development of liver dysfunction after extended hepatectomies. Additional characteristics should be taken into account, such as: the future liver remnant; the portal blood flow and pressure and the exploration of the potential effects of regeneration preconditioning are all promising strategies that could help to expand the indications and increase the safety of liver surgery.
Left Behind: A Bound Remnant from a White Dwarf Supernova?
Jha, Saurabh
2017-08-01
Type Ia supernovae (SN Ia) have enormous importance to cosmology and astrophysics, but their progenitors and explosion mechanisms are not understood in detail. Recently, observations and theoretical models have suggested that not all thermonuclear white-dwarf supernova explosions are normal SN Ia. In particular, type Iax supernovae (peculiar cousins to SN Ia), are thought to be exploding white dwarfs that are not completely disrupted, leaving behind a bound remnant. In deep and serendipitous HST pre-explosion data, we have discovered a luminous, blue progenitor system for the type Iax SN 2012Z in NGC 1309, which we interpret as a helium-star donor to the exploding white dwarf. HST observations of SN 2012Z in 2016, when the supernova light was expected to have faded away, still show a source at the location, as expected in our model where the pre-explosion flux was coming from the companion. However, the 2016 data also show a surprise: an excess flux compared to the progenitor system. Our proposed observations here will help unravel the mystery of that excess flux: is it from the bound ex-white dwarf remnant? Or is it from the shocked companion star that has been bombarded by supernova ejecta? Either of these possibilities would provide key new evidence as to the nature of these white dwarf supernovae.
[Management of urachal remnants in children: Is surgical excision mandatory?].
Heuga, B; Mouttalib, S; Bouali, O; Juricic, M; Galinier, P; Abbo, O
2015-09-01
The classical management of urachal remants consists in surgical resection, in order to prevent infections and long term malignancies. However, some reports have recently spread a wait and see management. The aim of our study was to report the results of the surgical management in our center. We conducted a retrospective, monocentric review of all patients managed for urachal remnants from January 2005 to December 2014. Thirty-five patients have been operated during the study period (18 girls and 17 boys). Mean age at surgery was 4,9±4,4 years old. Twenty-seven patients were referred due to symptoms whereas 8 were discovered incidentally (4 by ultrasound scan and 4 during laparoscopy). Among them, 10 were urachal cysts, 15 were urachus sinusa and 10 were patent urachus. Thirty were operated using an open approach and 5 using a laparoscopic approach. Mean length of stay was 3,8±1,7days (1-10) with a mean duration of bladder drainage of 2,5±1 days. No major complications occurred. No abnormal tissue was discovered at the histological analysis. Presentation of urachal remnants is variable but surgical outcomes remain excellent in our experience. When symptoms occur, the surgical decision is easy, but when the diagnosis is incidental, the decision is much more complicated. Official guidelines could ease the decision process and the management of urachal anomalies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Population III Stars and Remnants in High-redshift Galaxies
Xu, Hao; Wise, John H.; Norman, Michael L.
2013-08-01
Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 109 M ⊙ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ~ 107 M ⊙ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ~10-4 M ⊙ yr-1 Mpc-3 at redshift 15. The most massive starless halo has a mass of 7 × 107 M ⊙, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 108 M ⊙, culminating in 50 remnants located in 109 M ⊙ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.
FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147
Energy Technology Data Exchange (ETDEWEB)
Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Hanabata, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Lemoine-Goumard, M. [Universite Bordeaux 1, CNRS/IN2p3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33175 Gradignan (France); Takahashi, T., E-mail: katsuta@slac.stanford.edu, E-mail: uchiyama@slac.stanford.edu [Institute of Space and Astronautical Science, Japanese Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2012-06-20
We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.
Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves
Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.
2015-01-01
Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.
THE NATURE OF GAMMA-RAY EMISSION OF TYCHO'S SUPERNOVA REMNANT
International Nuclear Information System (INIS)
Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.
2013-01-01
The nature of the recently detected high-energy and very high-energy γ-ray emission of Tycho's supernova remnant (SNR) is studied. A nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs is employed to investigate the properties of Tycho's SNR and their correspondence with the existing experimental data, taking into account that the ambient interstellar medium (ISM) is expected to be clumpy. It is demonstrated that the overall steep γ-ray spectrum observed can be interpreted as the superposition of two spectra produced by the CR proton component in two different ISM phases: the first γ-ray component, extending up to about 10 14 eV, originates in the diluted warm ISM, whereas the second component, extending up to 100 GeV, comes from numerous dense, small-scale clouds embedded in this warm ISM. Given the consistency between acceleration theory and the observed properties of the nonthermal emission of Tycho's SNR, very efficient production of nuclear CRs in Tycho's SNR is established. The excess of the GeV γ-ray emission due to the clouds' contribution above the level expected in the case of a purely homogeneous ISM is inevitably expected in the case of Type Ia SNe.
Evidence of hadronic interaction in Tycho Supernova Remnant using Fermi-LAT data
Caragiulo, M.; Di Venere, L.
2014-11-01
The Fermi Large Area Telescope (LAT) has observed Tycho Supernova Remnant in the MeV-GeV energy range. The spectrum has been studied using the first three years of data and new data are being collected. We present a multiwavelength model of the observed spectrum from radio to TeV energy range, based on the hypothesis of hadronic origin of γ-rays. As described by the Fermi acceleration theory, a single proton population was considered, modeled with a simple power-law in momentum. The photon emissivity is computed following Kamae et al (2006) [T. Kamae, et al., ApJ 647 (2006) 692]. The leptonic component is also taken into account according to Giordano et al. (2012) [F. Giordano, et al., ApJ 744 (2012) L2] prescriptions and it turns out to be negligible with respect to the hadronic one. The model returns a spectral index of 2.23 (± 0.05) and an acceleration efficiency of 5% of the total kinetic energy expelled in Supernova explosion and it may provide a hint of the acceleration processes in SNRs up to energies close to the knee of cosmic ray spectrum. This work shows that experimental data can be easily explained with a simple model, representing a good test for the acceleration theory.
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati
2014-03-05
Double parton scattering is investigated in proton-proton collisions at $\\sqrt{s}$ = 7 TeV where the final state includes a W boson, which decays into a muon and a neutrino, and two jets. The data sample corresponds to an integrated luminosity of 5 inverse femtobarns, collected with the CMS detector at the LHC. Observables sensitive to double parton scattering are investigated after being corrected for detector effects and selection efficiencies. The fraction of W + 2-jet events due to double parton scattering is measured to be 0.055 $\\pm$ 0.002 (stat.) $\\pm$ 0.014 (syst.). The effective cross section, sigma[eff], characterizing the effective transverse area of hard partonic interactions in collisions between protons is measured to be 20.7 $\\pm$ 0.8 (stat.) $\\pm$ 6.6 (syst.) mb.
A case study of quark-gluon discrimination at NNLL{sup '} in comparison to parton showers
Energy Technology Data Exchange (ETDEWEB)
Mo, Jonathan; Waalewijn, Wouter J. [University of Amsterdam, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, Amsterdam (Netherlands); Nikhef, Theory Group, Amsterdam (Netherlands); Tackmann, Frank J. [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-11-15
Predictions for our ability to distinguish quark and gluon jets vary by more than a factor of two between different parton showers. We study this problem using analytic resummed predictions for the thrust event shape up to NNLL{sup '} using e{sup +}e{sup -} → Z → q anti q and e{sup +}e{sup -} → H → gg as proxies for quark and gluon jets. We account for hadronization effects through a nonperturbative shape function, and include an estimate of both perturbative and hadronization uncertainties. In contrast to previous studies, we find reasonable agreement between our results and predictions from both Pythia and Herwig parton showers. We find that this is due to a noticeable improvement in the description of gluon jets in the newest Herwig 7.1 compared to previous versions. (orig.)
Double parton interactions in photon+3 jet events in ppbar collisions sqrt{s}=1.96 TeV
Energy Technology Data Exchange (ETDEWEB)
Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Simon Fraser U. /York U., Canada; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan State U.; Alverson, G.; /Northeastern U. /Rio de Janeiro, CBPF
2009-12-01
We have used a sample of photon+3 jets events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} to determine the fraction of events with double parton scattering (f{sub DP}) in a single ppbar collision at {radical}s = 1.96 TeV. The DP fraction and effective cross section (sigma{sub eff}), a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in p{sub T}) jet transverse momentum pT{sub jet2} within the range 15 < pT{sub jet2} < 30 GeV. In this range, f{sub DP} varies between 0.23 < f{sub DP} < 0.47, while sigma{sub eff} has the average value sigma{sub effave} = 16.4 {+-} 0.3(stat) {+-} 2.3(syst) mb.
Astalos, R.; Bartalini, P.; Belyaev, I.; Bierlich, Ch.; Blok, B.; Buckley, A.; Ceccopieri, F.A.; Cherednikov, I.; Christiansen, J.R.; Ciangottini, D.; Deak, M.; Ducloue, B.; Field, R.; Gaunt, J.R.; Golec-Biernat, K.; Goerlich, L.; Grebenyuk, A.; Gueta, O.; Gunnellini, P.; Helenius, I.; Jung, H.; Kar, D.; Kepka, O.; Klusek-Gawenda, M.; Knutsson, A.; Kotko, P.; Krasny, M.W.; Kutak, K.; Lewandowska, E.; Lykasov, G.; Maciula, R.; Moraes, A.M.; Martin, T.; Mitsuka, G.; Motyka, L.; Myska, M.; Otwinowski, J.; Pierog, T.; Pleskot, V.; Rinaldi, M.; Schafer, W.; Siodmok, A.; Sjostrand, T.; Snigirev, A.; Stasto, A.; Staszewski, R.; Stebel, T.; Strikman, M.; Szczurek, A.; Treleani, D.; Trzebinski, M.; van Haevermaet, H.; van Hameren, A.; van Mechelen, P.; Waalewijn, W.; Wang, W.Y.; MPI@LHC 2014
2014-01-01
Multiple Partonic Interactions are often crucial for interpreting results obtained at the Large Hadron Collider (LHC). The quest for a sound understanding of the dynamics behind MPI - particularly at this time when the LHC is due to start its "Run II" operations - has focused the aim of this workshop. MPI@LHC2014 concentrated mainly on the phenomenology of LHC measurements whilst keeping in perspective those results obtained at previous hadron colliders. The workshop has also debated some of the state-of-the-art theoretical considerations and the modeling of MPI in Monte Carlo event generators. The topics debated in the workshop included: Phenomenology of MPI processes and multiparton distributions; Considerations for the description of MPI in Quantum Chromodynamics (QCD); Measuring multiple partonic interactions; Experimental results on inelastic hadronic collisions: underlying event, minimum bias, forward energy flow; Monte Carlo generator development and tuning; Connections with low-x phenomena, diffractio...
Chang, Wen-Chen
2016-01-01
The observation of the violation of Lam-Tung relation in the $\\pi N$ Drell-Yan process triggered many theoretical speculations. The TMD Boer-Mulders functions characterizing the correlation of transverse momentum and transverse spin for partons in unpolarized hadrons could nicely account for the violation. The COMPASS experiment at CERN will measure the angular distributions of dimuons from the unpolarized Drell-Yan process over a wide kinematic region and study the beam particle dependence. Significant statistics is expected from a successful run in 2015 which will bring further understanding of the origin of the violation of Lam-Tung relation and of the partonic transverse spin structure of the nucleon.
International Nuclear Information System (INIS)
Hautmann, F.; Kraemer, M.; Mulders, P.J.; Signori, A.; Nocera, E.R.; Rogers, T.C.
2014-08-01
Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.
A study of multi-jet events at the CERN anti pp collider and a search for double parton scattering
International Nuclear Information System (INIS)
Alitti, J.; Ambrosini, G.; Ansari, R.; Autiero, D.; Bareyre, P.; Bertram, I.A.; Blaylock, G.; Bonamy, P.; Borer, K.; Bourliaud, M.; Buskulic, D.; Carboni, G.; Cavalli, D.; Cavasinni, V.; Cenci, P.; Chollet, J.C.; Conta, C.; Costa, G.; Costantini, F.; Cozzi, L.; Cravero, A.; Curatolo, M.; Dell'Acqua, A.; DelPrete, T.; DeWolf, R.S.; DiLella, L.; Ducros, Y.; Egan, G.F.; Einsweiler, K.F.; Esposito, B.; Fayard, L.; Federspiel, A.; Ferrari, R.; Fraternali, M.; Froidevaux, D.; Fumagalli, G.; Gaillard, J.M.; Gianotti, F.; Gildemeister, O.; Goessling, C.; Goggi, V.G.; Gruenendahl, S.; Hara, K.; Hellman, S.; Hrivnac, J.; Hufnagel, H.; Hugentobler, E.; Hultqvist, K.; Iacopini, E.; Incandela, J.; Jakobs, K.; Jenni, P.; Kluge, E.E.; Kurz, N.; Lami, S.; Lariccia, P.; Lefebvre, M.; Linssen, L.; Livan, M.; Lubrano, P.; Magneville, C.; Mandelli, L.; Mapelli, L.; Mazzanti, M.; Meier, K.; Merkel, B.; Meyer, J.P.; Moniez, M.; Moning, R.; Morganti, M.; Mueller, L.; Munday, D.J.; Nessi, M.; Nessi-Tedaldi, F.; Onions, C.; Pal, T.; Parker, M.A.; Parrour, G.; Pastore, F.; Pennacchio, E.; Pentney, J.M.; Pepe, M.; Perini, L.; Petridou, C.; Petroff, P.; Plothow-Besch, H.; Polesello, G.; Poppleton, A.; Pretzl, K.; Primavera, M.; Punturo, M.; Repellin, J.P.; Rimoldi, A.; Sacchi, M.; Scampoli, P.; Schacher, J.; Simak, V.; Sing, S.L.; Sondermann, V.; Stapnes, S.; Talamonti, C.; Tondini, F.; Tovey, S.N.; Tsesmelis, E.; Unal, G.; Valdata-Nappi, M.; Vercesi, V.; Weidberg, A.R.; Wells, P.S.; White, T.O.; Wood, D.R.; Wotton, S.A.; Zaccone, H.; Zylberstejn, A.
1991-01-01
A study of events containing at least four high transverse momentum jets and a search for double parton scattering (DPS) have been performed using data collected with the UA2 detector at the CERN anti pp Collider (√s=630 GeV). The results are in good agreement with leading order QCD calculations. A value of σ DPS <0.82 nb at 95% confidence level (CL) is obtained for the DPS cross section. (orig.)
Modarres, M.; Hosseinkhani, H.; Olanj, N.
2013-03-01
The next-to-leading order (NLO) unintegrated parton distribution functions (UPDF) are calculated in the two schemes by using the latest version of the integrated parton distribution functions (PDF) of Martin et al. (MSTW2008) as the inputs and the final results are compared among each others. In the first method, so-called the Kimber-Martin-Ryskin (KMR) prescription, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) collinear approximation is used, instead of the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equations and the dependence of PDF on the second scale, kt (the partons transverse momenta), beside the first scale, μ (μ is the probe scale), is included in the last step of DGLAP evolution equation. In the second approach, which has been proposed by Martin, Ryskin and Watt (MRW), the current scale, the splitting functions, etc are modified in the KMR procedure. The three-dimensional UPDF are presented in terms of different [x,kt2]-planes for the large values of x (the longitudinal fraction of parton momentum) at μ2=102 and 104 GeV. It is shown that as in MRW calculations, at each μ2 a kink is observed around kt2≃μ2 and kt2≃0.38μ2 for the KMR and the MRW formalisms, respectively. Finally, it is demonstrated that the MRW gluon UPDF decrease with respect to the KMR ones, except of the small kt2 regions, i.e. the Higgs production domain, so it can be concluded that the application of the MRW procedure may improve the exclusive reaction cross sections.
Kuprash, Oleg; The ATLAS collaboration
2017-01-01
A correct modelling of the underlying event in proton-proton collisions is important for the proper simulation of kinematic distributions of high-energy collisions. The ATLAS collaboration extended previous studies at 7 TeV with a leading track or jet or Z boson by a new study at 13 TeV, measuring the number and transverse-momentum sum of charged particles as a function of pseudorapidity and azimuthal angle in dependence of the reconstructed leading track. These measurements are sensitive to the underlying-event as well as the onset of hard emissions. The results are compared to predictions of several MC generators. + Inclusive four-jet events produced in proton--proton collisions at a center-of-mass energy of 7 TeV have been analyzed for the presence of hard double parton scattering collected with the ATLAS detector. The contribution of hard double parton scattering to the production of four-jet events has been extracted using an artificial neural network. The assumption was made that hard double parton scat...
Lansberg, Jean-Philippe
2015-01-01
The recent observations of prompt J/psi-pair production by CMS at the LHC and by D0 at the Tevatron reveal the presence of different production mechanisms in different kinematical regions. We find out that next-to-leading-order single-parton-scattering contributions at alpha_s^5 dominate the yield at large transverse momenta of the pair. Our analysis further emphasises the importance of double-parton-scatterings --which are expected to dominate the yield at large rapidity differences-- at large invariant masses of the pair in the CMS acceptance. In addition, we provide the first exact --gauge-invariant and infrared-safe-- evaluation of a class of leading-P_T next-to-next-to-leading-order contributions, which are dominant in the region of large sub-leading transverse momenta, precisely where the colour-octet contributions can be non-negligible. Finally, we discuss the contribution from decays of excited charmonium states within both single- and double-parton scatterings and suggest measurements to distinguish ...
Reaction dynamics in Pb + Pb at the CERN/SPS from partonic degrees of freedom to freeze-out
Bass, S A; Ernst, C; Bleicher, M; Belkacem, M; Bravina, L V; Soff, S; Stöcker, H; Greiner, W; Spieles, C
1999-01-01
We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E > 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm^3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.
Hosseinkhani, H.; Modarres, M.; Olanj, N.
2017-07-01
Transverse momentum dependent (TMD) parton distributions, also referred to as unintegrated parton distribution functions (UPDFs), are produced via the Kimber-Martin-Ryskin (KMR) prescription. The GJR08 set of parton distribution functions (PDFs) which are based on the valence-like distributions is used, at the leading order (LO) and the next-to-leading order (NLO) approximations, as inputs of the KMR formalism. The general and the relative behaviors of the generated TMD PDFs at LO and NLO and their ratios in a wide range of the transverse momentum values, i.e. kt2 = 10, 102, 104 and 108GeV2 are investigated. It is shown that the properties of the parent valence-like PDFs are imprinted on the daughter TMD PDFs. Imposing the angular ordering constraint (AOC) leads to the dynamical variable limits on the integrals which in turn increase the contributions from the lower scales at lower kt2. The results are compared with our previous studies based on the MSTW2008 input PDFs and it is shown that the present calculation gives flatter TMD PDFs. Finally, a comparison of longitudinal structure function (FL) is made by using the produced TMD PDFs and those that were generated through the MSTW2008-LO PDF from our previous work and the corresponding data from H1 and ZEUS collaborations and a reasonable agreement is found.
Srivastava, Dinesh K.; Chatterjee, Rupa; Mustafa, Munshi G.
2018-01-01
We study the consequences of a premise that, if a thermalized and chemically equilibrating quark gluon plasma is formed in relativistic collisions of heavy nuclei, then a knowledge of energy and entropy densities of the plasma fixes the initial temperature and the product of gluon fugacity and formation time uniquely, provided we know the relative fugacities of quarks and gluons. Thus, a smaller formation time would imply a larger fugacity, independent of the initial temperature. Next, we explore the limits of chemical equilibration of partons during the initial stages in relativistic collisions of heavy nuclei. Experimentally measured rapidity densities of transverse energy and charged particle multiplicities at RHIC and LHC energies are used to estimate energy and number densities with the assumption of the formation of a kinetically equilibrated plasma that may not be chemically equilibrated for quarks and gluons. The estimates are found to be very sensitive to the correction factor used to multiply the Bjorken energy density to get the initial energy density. The evolution of the chemical equilibration during the quark gluon plasma phase is inferred by solving master equations, including the processes {gg}≤ftrightarrow {ggg} and {gg}≤ftrightarrow q\\overline{q} along with expansion and cooling of the plasma. Possible consequences for the invariant mass distribution of intermediate mass dileptons radiated from the plasma are discussed.
Uncertainties of Predictions from Parton Distribution Functions 1, the Lagrange Multiplier Method
Stump, D R; Brock, R; Casey, D; Huston, J; Kalk, J; Lai, H L; Tung, W K
2002-01-01
We apply the Lagrange Multiplier method to study the uncertainties of physical predictions due to the uncertainties of parton distribution functions (PDFs), using the cross section for W production at a hadron collider as an archetypal example. An effective chi-squared function based on the CTEQ global QCD analysis is used to generate a series of PDFs, each of which represents the best fit to the global data for some specified value of the cross section. By analyzing the likelihood of these "alterative hypotheses", using available information on errors from the individual experiments, we estimate that the fractional uncertainty of the cross section due to current experimental input to the PDF analysis is approximately 4% at the Tevatron, and 10% at the LHC. We give sets of PDFs corresponding to these up and down variations of the cross section. We also present similar results on Z production at the colliders. Our method can be applied to any combination of physical variables in precision QCD phenomenology, an...
Constraints on parton distributions and the strong coupling from LHC jet data
Rojo, Juan
2015-11-01
Jet production at hadron colliders provides powerful constraints on the parton distribution functions (PDFs) of the proton, in particular on the gluon PDF. Jet production can also be used to extract the QCD coupling αs(Q) and to test its running with the momentum transfer up to the TeV region. In this review, I summarize the information on PDFs and the strong coupling that has been provided by Run I LHC jet data. First of all, I discuss why jet production is directly sensitive to the gluon and quark PDFs at large-x, and then review the state-of-the-art perturbative calculations for jet production at hadron colliders and the corresponding fast calculations required for PDF fitting. Then I present the results of various recent studies on the impact on PDFs, in particular the gluon, that have been performed using as input jet measurements from ATLAS and CMS. I also review the available determinations of the strong coupling constant based on ATLAS and CMS jet data, with emphasis on the fact that LHC jet data provides, for the first time, a direct test of the αs(Q) running at the TeV scale. I conclude with a brief outlook on possible future developments.
Transverse Extension of Partons in the Proton probed by Deeply Virtual Compton Scattering
Akhunzyanov, R.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtin, E.; Burtsev, V.E.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr., M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Juraskova, K.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veit, B.M.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2018-01-01
We report on the first measurement of exclusive single-photon muoproduction on the proton by COMPASS using 160 GeV/$c$ polarized $\\mu^+$ and $\\mu^-$ beams of the CERN SPS impinging on a liquid hydrogen target. We determine the dependence of the average of the measured $\\mu^+$ and $\\mu^-$ cross sections for deeply virtual Compton scattering on the squared four-momentum transfer $t$ from the initial to the final final proton. The slope $B$ of the $t$-dependence is fitted with a single exponential function, which yields $B=(4.3 \\ \\pm \\ 0.6_{\\text{stat}}\\ _{- \\ 0.3}^{+ \\ 0.1}\\big\\rvert_{\\text{sys}})\\,(\\text{GeV}/c)^{-2}$. This result can be converted into an average transverse extension of partons in the proton, $\\sqrt{\\langle r_{\\perp}^2 \\rangle} = (0.58 \\ \\pm \\ 0.04_{\\text{stat}}\\ _{- \\ 0.02}^{+ \\ 0.01}\\big\\rvert_{\\text{sys}}) \\text{fm}$. For this measurement, the average virtuality of the photon mediating the interaction is $\\langle Q^2 \\rangle = 1.8\\,(\\text{GeV/}c)^2$ and the average value of the Bjorken va...
Parton distributions and EMC ratios of the 6Li nucleus in the constituent quark exchange model
Modarres, M.; Hadian, A.
2017-10-01
While the constituent quark model (CQM), in which the quarks are assumed to be the complex objects, is used to calculate the parton distribution functions of the iso-scalar lithium-6 (6Li) nucleus, the u-d constituent quark distribution functions of the 6Li nucleus are evaluated from the valence quark exchange formalism (VQEF) for the A = 6 iso-scalar system. After computing the valence quark, sea quark, and gluon distribution functions in the constituent quark exchange model (CQEM, i.e., CQM +VQEF), the nucleus structure function is calculated for the 6Li nucleus at the leading order (LO) and the next-to-leading-order (NLO) levels to extract the European muon collaboration (EMC) ratio, at different hard scales, using the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGALP) evolution equations. The outcomes are compared with those of our previous works and the available NMC experimental data, and various physical points are discussed. It is observed that the present EMC ratios are considerably improved compared with those of our previous works, in which only the valence quark distributions were considered to calculate the EMC ratio, and are closer to the NMC data. Finally, it is concluded that at a given appropriate hard scale, the LO approximation may be enough for calculating the nucleus EMC ratio.
Jet suppression and the flavor dependence of partonic energy loss with ATLAS
Kosek, Tomas; The ATLAS collaboration
2015-01-01
In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. One manifestation of the energy loss of jets propagating through the medium is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Therefore modifications of the jet yield are directly sensitive to the energy loss mechanism. Furthermore, jets with different flavor content are expected to be affected by the medium in different ways. Parton showers initiated by quarks tend to have fewer fragments carrying a larger fraction of the total jet energy than those resulting from gluons. Jets containing heavy quarks may lose less energy as the large quark mass suppresses the amount of medium-induced radiation. This would lead to different relative contributions of inelastic and elastic energy loss. In this talk, the latest ATLAS results on single jet suppression will be presented. Measurements of the nuclear modification factor, RAA, for fully reconstr...
de Graaf, W.; van Lienden, K.P.; Dinant, S.; Roelofs, J.J.T.H.; Busch, O.R.C.; Gouma, D.J.; Bennink, R.J.; van Gulik, T.M.
2010-01-01
Tc-99m-mebrofenin hepatobiliary scintigraphy (HBS) was used as a quantitative method to evaluate liver function. The aim of this study was to compare future remnant liver function assessed by Tc-99m-mebrofenin hepatobiliary scintigraphy with future remnant liver volume in the prediction of liver
Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field
Brienza, M.; Godfrey, L.; Morganti, R.; Prandoni, I.; Harwood, J.; Mahony, E. K.; Hardcastle, M. J.; Murgia, M.; Röttgering, H. J. A.; Shimwell, T. W.; Shulevski, A.
2017-01-01
Context. The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. Aims: In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied
An X-Ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant
Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.
2016-01-01
We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 years in the X-rays and 30 years in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. Consistent with earlier measurements, we find a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is approximately 23? toward the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.
The Youngest Known X-Ray Binary: Circinus X-1 and Its Natal Supernova Remnant
Heinz, S.; Sell, P.; Fender, R.P.; Jonker, P.G.; Brandt, W.N.; Calvelo-Santos, D.E.; Tzioumis, A.K.; Nowak, M.A.; Schulz, N.S.; Wijnands, R.; van der Klis, M.
2013-01-01
Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal
‘The Dressmaker, remnants of a life
DEFF Research Database (Denmark)
Carpe Pérez, Inmaculada Concepción; Garcia Rams, Maria Susana
) o Rocks in my Pockets (2014, Signe Baumane), are clear samples of the treatment of the autobiographic memory and documentary through animation techniques. When we produce an animated film, we can appreciate how the creation of characters and scenarios are transformed into visual metaphors, making......The Dressmaker, remnants of a life, is a study case of our research, at the Animated Learning Lab, as a means of reflection on the re-construction of the self through animation; understanding the self as our history and story. It’s about how we see our own story; everything starts with perception...... (Beau Lotto, 2013). Currently it’s not very common to conceive animation as a communication media of biographies. Nevertheless, features as Drawn from Memory (1995, Paul Fierlinger), Waltz with Bashir (2008, Ari Folman), It’s Such a Beautiful Day (2012, Don Hertzfeldt), Wrinkles (2012, Ignacio Ferreras...
Phosphorus in the young supernova remnant Cassiopeia A.
Koo, Bon-Chul; Lee, Yong-Hyun; Moon, Dae-Sik; Yoon, Sung-Chul; Raymond, John C
2013-12-13
Phosphorus ((31)P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here, we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ((56)Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.
Grain Destruction in a Supernova Remnant Shock Wave
Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi
2014-01-01
Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.
Compact binary merger and kilonova: outflows from remnant disc
Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying
2018-05-01
Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).
Remnants of black rings from gravity’s rainbow
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed Farag [Center for Fundamental Physics, Zewail City of Science and Technology,6th of October City, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University,Benha 13518 (Egypt); Faizal, Mir [Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada); Khalil, Mohammed M. [Department of Electrical Engineering, Alexandria University,El-Horreya Rd., Alexandria 12544 (Egypt)
2014-12-29
In this paper, we investigate a spinning black ring and a charged black ring in the context of gravity’s rainbow. By incorporating rainbow functions proposed by Amelino-Camelia, et al. in http://dx.doi.org/10.1142/S0217751X97000566 http://dx.doi.org/10.12942/lrr-2013-5 in the metric of the black rings, a considerable modification happens to their thermodynamical properties. We calculate corrections to the temperature, entropy and heat capacity of the black rings. These calculations demonstrate that the behavior of Hawking radiation changes considerably near the Planck scale in gravity’s rainbow, where it is shown that black rings do not evaporate completely and a remnant is left as the black rings evaporate down to Planck scale.
NON-MAXWELLIAN Hα PROFILES IN TYCHO'S SUPERNOVA REMNANT
International Nuclear Information System (INIS)
Raymond, John C.; Winkler, P. Frank; Blair, William P.; Lee, Jae-Joon; Park, Sangwook
2010-01-01
The broad components of the Hα lines in most non-radiative shocks can be fit with single-Gaussian components. We have obtained a high-quality spectrum of a position in Tycho's supernova remnant with the MMT and Blue Channel Spectrograph which shows, for the first time, that a single Gaussian does not provide an acceptable fit. This implies that a single temperature Maxwellian particle velocity distribution cannot produce the emission. Possible alternative explanations are explored, including multiple shocks along the line of sight, a pickup ion contribution, a non-thermal tail (Kappa distribution), emission from a precursor in a cosmic ray modified shock, or turbulence. An Hubble Space Telescope image shows a bright knot that might account for a low temperature contribution, and all the possibilities probably contribute at some level. We discuss the implications of each explanation for the shock parameters and physics of collisionless shocks, but cannot conclusively rule out any of them.
Godfrey, L. E. H.; Morganti, R.; Brienza, M.
2017-10-01
The purpose of this work is two-fold: (1) to quantify the occurrence of ultrasteep spectrum remnant Fanaroff-Riley type II (FRII) radio galaxies in a 74 MHz flux-limited sample, and (2) perform Monte Carlo simulations of the population of active and remnant FRII radio galaxies to confront models of remnant lobe evolution, and to provide guidance for further investigation of remnant radio galaxies. We find that fewer than 2 per cent of FRII radio galaxies with S74 MHz > 1.5 Jy are candidate ultrasteep spectrum remnants, where we define ultrasteep spectrum as α _74 MHz^1400 MHz > 1.2. Our Monte Carlo simulations demonstrate that models involving Sedov-like expansion in the remnant phase, resulting in rapid adiabatic energy losses, are consistent with this upper limit, and predict the existence of nearly twice as many remnants with normal (not ultrasteep) spectra in the observed frequency range as there are ultrasteep spectrum remnants. This model also predicts an ultrasteep remnant fraction approaching 10 per cent at redshifts z age distribution of remnants is a steeply decreasing function of age. In other words, young remnants are expected to be much more common than old remnants in flux-limited samples. For this reason, incorporating higher frequency data ≳5 GHz will be of great benefit to future studies of the remnant population.
Black hole remnants in Hayward solutions and noncommutative effects
Mehdipour, S. Hamid; Ahmadi, M. H.
2018-01-01
In this paper, we explore the final stages of the black hole evaporation for Hayward solutions. Our results show that the behavior of Hawking's radiation changes considerably at the small radii regime such that the black hole does not evaporate completely and a stable remnant is left. We show that stability conditions hold for the Hayward solutions found in the Einstein gravity coupled with nonlinear electrodynamics. We analyze the effect that an inspired model of the noncommutativity of spacetime can have on the thermodynamics of Hayward spacetimes. This has been done by applying the noncommutative effects to the non-rotating and rotating Hayward black holes. In this setup, all point structures get replaced by smeared distributions owing to this inspired approach. The noncommutative effects result in a colder black hole in the small radii regime as Hayward's free parameter g increases. As well as the effects of noncommutativity and the rotation factor, the configuration of the remnant can be substantially affected by the parameter g. However, in the rotating solution it is not so sensitive to g with respect to the non-rotating case. As a consequence, Hayward's parameter, the noncommutativity and the rotation may raise the minimum value of energy for the possible formation of black holes in TeV-scale collisions. This observation can be used as a potential explanation for the absence of black holes in the current energy scales produced at particle colliders. However, it is also found that if extra dimensions do exist, then the possibility of the black hole production at energy scales accessible at the LHC for large numbers of extra dimensions will be larger.
Integral Field Spectroscopy of the Merger Remnant NGC 7252
Weaver, John; Husemann, Bernd; Kuntschner, Harald; Martín-Navarro, Ignacio
2018-01-01
The merging of galaxies is a key aspect of the hierarchical ΛCDM Universe. The formation of massive quiescent elliptical galaxies may be explained through the merger of two star-forming disc galaxies. Despite nearly a century of effort, our understanding of this complex transformational process is remains incomplete and requires diligent observational study.NGC 7252 is one of the nearest starbursting major-merger galaxy remnants, formed about 1 Gyr after the collision of presumably two disc galaxies. It is therefore an ideal laboratory to study the underlying processes involved in transformation of two disc galaxies to an elliptical galaxy via a merger.We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50’’ × 50’’ of NGC 7252 to map the stellar and ionized gas kinematics, and the distribution and conditions of the ionized gas, revealing the extent of ongoing star formation and recent star formation history.Contrary to previous studies we find the inner gas disc not to be counter-rotating with respect to the overall stellar angular momentum. However, the stellar kinematics appear to be complex with a superposition of at least two nearly perpendicular angular momentum components. The host galaxy is still blue with g - i ~ 0.8 with an ongoing star formation rate of 2.2 ± 0.6 Msun/yr, placing NGC 7252 close to the blue cloud of galaxies and consistent with a disc-like molecular depletion time of ~2 Gyr.Although NGC 7252 appears as a fading starburst galaxy at the center, the elliptical-like major merger remnant appears to active, inconsistent with a fast quenching scenario. NGC 7252 may take several Gyr to reach the red sequence of galaxies unless star formation becomes quenched by either AGN feedback or inefficient gas conversion, leading to an H I-rich elliptical galaxy.
Black hole remnants in Hayward solutions and noncommutative effects
Directory of Open Access Journals (Sweden)
S. Hamid Mehdipour
2018-01-01
Full Text Available In this paper, we explore the final stages of the black hole evaporation for Hayward solutions. Our results show that the behavior of Hawking's radiation changes considerably at the small radii regime such that the black hole does not evaporate completely and a stable remnant is left. We show that stability conditions hold for the Hayward solutions found in the Einstein gravity coupled with nonlinear electrodynamics. We analyze the effect that an inspired model of the noncommutativity of spacetime can have on the thermodynamics of Hayward spacetimes. This has been done by applying the noncommutative effects to the non-rotating and rotating Hayward black holes. In this setup, all point structures get replaced by smeared distributions owing to this inspired approach. The noncommutative effects result in a colder black hole in the small radii regime as Hayward's free parameter g increases. As well as the effects of noncommutativity and the rotation factor, the configuration of the remnant can be substantially affected by the parameter g. However, in the rotating solution it is not so sensitive to g with respect to the non-rotating case. As a consequence, Hayward's parameter, the noncommutativity and the rotation may raise the minimum value of energy for the possible formation of black holes in TeV-scale collisions. This observation can be used as a potential explanation for the absence of black holes in the current energy scales produced at particle colliders. However, it is also found that if extra dimensions do exist, then the possibility of the black hole production at energy scales accessible at the LHC for large numbers of extra dimensions will be larger.
POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES
International Nuclear Information System (INIS)
Xu Hao; Norman, Michael L.; Wise, John H.
2013-01-01
Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10 9 M ☉ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ∼ 10 7 M ☉ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H 2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ∼10 –4 M ☉ yr –1 Mpc –3 at redshift 15. The most massive starless halo has a mass of 7 × 10 7 M ☉ , which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10 8 M ☉ , culminating in 50 remnants located in 10 9 M ☉ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies
Hubble Space Telescope Image, Supernova Remnant Cassiopeia A
2000-01-01
The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).
DEFF Research Database (Denmark)
Jørgensen, Peter Godsk; Jensen, Magnus Thorsten; Biering-Sørensen, Tor
2016-01-01
BACKGROUND: Recently, genetic studies have suggested a causal relationship between cholesterol remnants and ischemic heart disease. We aimed to determine whether cholesterol remnants and its marker, triglyceride levels, are associated with cardiac function as determined by sensitive...... secondary care centers. RESULTS: In multivariable analyses, triglycerides and cholesterol remnants were not associated with left ventricular ejection fraction, but with subtle measures of systolic function, including global longitudinal strain by speckle tracking and longitudinal displacement by tissue...... Doppler echocardiography: global longitudinal strain [0.33 % (0.14), p = 0.02 per doubling in cholesterol remnants and 0.28 % (0.13), p = 0.03 per doubling in triglyceride levels] and with longitudinal displacement [-0.25 mm (0.10), p = 0.01 per doubling in cholesterol remnants and -0.25 mm (0.09), p = 0...
Naraoka, Takuya; Kimura, Yuka; Tsuda, Eiichi; Yamamoto, Yuji; Ishibashi, Yasuyuki
2017-04-01
Remnant-preserved anterior cruciate ligament (ACL) reconstruction was introduced to improve clinical outcomes and biological healing. However, the effects of remnant preservation and the influence of the delay from injury until reconstruction on the outcomes of this technique are still uncertain. Purpose/Hypothesis: The purposes of this study were to evaluate whether remnant preservation improved the clinical outcomes and graft incorporation of ACL reconstruction and to examine the influence of the delay between ACL injury and reconstruction on the usefulness of remnant preservation. We hypothesized that remnant preservation improves clinical results and accelerates graft incorporation and that its effect is dependent on the delay between ACL injury and reconstruction. Cohort study; Level of evidence, 2. A total of 151 consecutive patients who underwent double-bundle ACL reconstruction using a semitendinosus graft were enrolled in this study: 74 knees underwent ACL reconstruction without a remnant (or the remnant was reconstruction with remnant preservation (RP group). These were divided into 4 subgroups based on the time from injury to surgery: phase 1 was 20 weeks (n = 25). Clinical measurements, including KT-1000 arthrometer side-to-side anterior tibial translation measurements, were assessed at 3, 6, 12, and 24 months after reconstruction. Magnetic resonance imaging evaluations of graft maturation and graft-tunnel integration of the anteromedial and posterolateral bundles were assessed at 3, 6, and 12 months after reconstruction. There was no difference in side-to-side anterior tibial translation between the NR and RP groups. There was also no difference in graft maturation between the 2 groups. Furthermore, the time from ACL injury until reconstruction did not affect graft maturation, except in the case of very long delays before reconstruction (phase 4). Graft-tunnel integration was significantly increased in both groups in a time-dependent manner. However
Freely-migrating defects: Their production and interaction with cascade remnants
International Nuclear Information System (INIS)
Rehn, L.E.; Wiedersich, H.
1991-05-01
Many microstructural changes that occur during irradiation are driven primarily by freely-migrating defects, i.e. those defects which escape from nascent cascades to migrate over distances that are large relative to typical cascade dimensions. Several measurements during irradiation at elevated temperatures have shown that the survival rate of freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the survival rate for defects generated at liquid helium temperatures. For typical fission or fusion recoil spectra, and for heavy-ion bombardment, the fraction of defects that migrate long-distances is apparently only ∼1% of the calculated dpa. This small surviving fraction of freely-migrating defects results at least partially from additional intracascade recombination at elevated temperatures. However, cascade remnants, e.g., vacancy and interstitial clusters, also contribute by enhancing intercascade defect annihilation. A recently developed rate-theory approach is used to discuss the relative importance of intra- and intercascade recombination to the survival rate of freely-migrating defects. Within the validity of certain simplifying assumptions, the additional sink density provided by defect clusters produced directly within individual cascades can explain the difference between a defect survival rate of about 30% for low dose, low temperature irradiations with heavy ions, and a survival rate of only ∼1% for freely-migrating defects at elevated temperatures. The status of our current understanding of freely-migrating defects, including remaining unanswered questions, is also discussed. 33 refs., 5 figs
Parton model description of multiparticle azimuthal correlations in p A collisions
Dusling, Kevin; Mace, Mark; Venugopalan, Raju
2018-01-01
In K. Dusling et al. [arXiv:1705.00745.], an initial-state "parton model" of quarks scattering off a dense nuclear target was shown to qualitatively reproduce the systematics of multiparticle azimuthal anisotropy cumulants measured in proton/deuteron-nucleus (p A ) collisions at the Relativistic Heavy Ion Collider and the LHC. The systematics included (i) the behavior of the four-particle cumulant c2{4 }, which generates a real four-particle second Fourier harmonic v2{4 }; (ii) the ordering v2{2 }>v2{4 }≈v2{6 }≈v2{8 } for two-, four-, six-, and eight-particle Fourier harmonics; and (iii) the behavior of so-called symmetric cumulants SC(2,3) and SC(2,4). These features of azimuthal multiparticle cumulants were previously interpreted as a signature of hydrodynamic flow; our results challenge this interpretation. We expand here upon our previous study and present further details and novel results on the saturation scale and transverse momentum (p⊥) dependence of multiparticle azimuthal correlations. We find that the dependence of v2{2 } and v2{4 } on the number of color domains in the target varies with the p⊥ window explored. We extend our prior discussion of symmetric cumulants and compute as yet unmeasured symmetric cumulants. We investigate the Nc dependence of v2{2 } and v2{4 }. We contrast our results, which include multiple scatterings of each quark off the target, to the Glasma graph approximation, where each quark suffers at most two-gluon exchanges with the target. We find that coherent multiple scattering is essential to obtain a positive definite v2{4 }. We provide an algorithm to compute expectation values of arbitrary products of the "dipole" lightlike Wilson line correlators.
Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G; Stiekema, Lotte C A; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J; Nordestgaard, Børge G; Stroes, Erik S G; Kroon, Jeffrey
2017-05-01
Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). Arterial wall inflammation and bone marrow activity were measured using 18 F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of 18 F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; P cholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD. © 2017 American Heart Association, Inc.
Importance of riparian remnants for frog species diversity in a highly fragmented rainforest
Rodríguez-Mendoza, Clara; Pineda, Eduardo
2010-01-01
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest. PMID:20554561
Interstellar and Ejecta Dust in the Cas A Supernova Remnant
Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una
2013-01-01
The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass