WorldWideScience

Sample records for theoretical mode amplitudes

  1. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available is an extension of a previously reported orbital angular momentum (OAM) sorting device[1]. The interferometer induces a phase shift, , which is proportional to both the OAM of the incoming beam and the relative angle, θ, between the two Dove prisms... and is given by: =2l [1]. A phase mask which decreases the OAM by 1ħ is inserted into path B (depicted in Fig. 1). 2. Theoretical Background When a Gaussian mode (l=0) enters the interferometer, there is no relative phase shift resulting in the mode...

  2. Particle Distribution Modification by Low Amplitude Modes

    International Nuclear Information System (INIS)

    White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.

    2009-01-01

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  3. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  4. Amplitude damping of Laguerre-Gaussian modes - Journal Article

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-10-01

    Full Text Available atmosphere,” Quant-ph, 1–5 (2009). 12. C. E. R. Souza and A. Z. Khoury, “A Michelson controlled-not gate with a single-lens astigmatic mode converter,” Opt. Express 18(9), 9207–9212 (2010). 13. R. Zambrini and S. M. Barnett, “Quasi-intrinsic angular... shown that LGl beams of odd and even orders of l could be sorted in a Mach-Zehnder interferometer incorporating Dove prisms in each arm [9]. In this paper we show that by adapting this device it may be used for a new application: an amplitude damping...

  5. Higgs amplitude mode in the BCS superconductors Nb1-xTi(x)N induced by terahertz pulse excitation.

    Science.gov (United States)

    Matsunaga, Ryusuke; Hamada, Yuki I; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Shimano, Ryo

    2013-08-02

    Ultrafast responses of BCS superconductor Nb(1-x)Ti(x)N films in a nonadiabatic excitation regime were investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast manipulation of the superconducting order parameter by optical means.

  6. Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2015-01-01

    Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.

  7. Mimicking an amplitude damping channel for Laguerre Gaussian Modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-10-01

    Full Text Available amplitude damping channel for single photons, given by Eq. 1, is verified by means of classical light carrying OAM. The evolution of the classical electric field in the interferometer can be described similarly to Eq. 1. Therefore, by measuring the power...

  8. Amplitude Noise Suppression and Orthogonal Multiplexing Using Injection-Locked Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; von Lerber, Tuomo; Lassas, Matti

    2017-01-01

    We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel....

  9. Scalar diffraction theory approach to estimating multimode-waveguide field-amplitude mode distributions.

    Science.gov (United States)

    Kemme, S A; Kostuk, R K

    1998-07-10

    We introduce a method to estimate the coupling coefficients of the guided field amplitude and the corresponding angular bandwidth in a multimode slab waveguide. This scalar diffraction theory approach is simpler than the more rigorous electromagnetic treatment and is directly applicable to communications systems that use large (dimensions or numerical aperture) waveguides, as in substrate-mode interconnects. Moreover, this method provides conceptual insight as to a parameter's effect on the field-amplitude mode distribution and angular bandwidth.

  10. Analytical mode decomposition of time series with decaying amplitudes and overlapping instantaneous frequencies

    International Nuclear Information System (INIS)

    Wang, Zuo-Cai; Chen, Gen-Da

    2013-01-01

    In this study, the recently developed analytical mode decomposition with Hilbert transform was extended to the decomposition of a non-stationary and nonlinear signal with two or more amplitude-decaying and frequency-changing components. The bisecting frequency in the analytical mode decomposition became time-varying, and could be selected between any two adjacent instantaneous frequencies estimated from a preliminary wavelet analysis. The mathematical foundation for this new extension was integration of the bisecting frequency over time so that the original time series is actually decomposed in the phase domain. Parametric studies indicated that the analytically derived components are insensitive to the selection of bisecting frequency and the presence of up to 20% noise, sufficiently accurate when the sampling rate meets the Nyquist–Shannon sampling criterion, and applicable to both narrowband and wideband frequency modulations even when the signal amplitude decays over time. The proposed analytical mode decomposition is superior to the empirical mode decomposition and wavelet analysis in the preservation of signal amplitude, frequency and phase relations. It can be directly applied for system identification of buildings with time-varying stiffness. (paper)

  11. Femtosecond inscribed mode modulators in large mode area fibers: experimental and theoretical analysis

    Science.gov (United States)

    Krämer, Ria G.; Gelszinnis, Philipp; Voigtländer, Christian; Schulze, Christian; Thomas, Jens U.; Richter, Daniel; Duparré, Michael; Nolte, Stefan

    2015-03-01

    We present the experimental and theoretical analysis of a mode modulator in a few mode LMA fiber. The mode modulator consists of a section with a modified refractive index alongside the fiber core in the cladding, disturbing the guidance of the modes in the core. The extent of excitation of these disturbed modes depends on the overlap of the excited undisturbed and disturbed modes. At the end of the modulator, undisturbed modes will be excited again in the fiber core, in dependency of the spatial field distribution of the disturbed modes at the boundary. In the mode modulator disturbed higher order modes lead to modal interference, causing a dependency of the spatial distribution of the light in the mode modulator on the propagation length of the disturbed modes. Hence, the modal output field depends on the length of the mode modulator. For the experiments, the mode modulator was inscribed directly into the LMA fiber with ultrashort laser pulses. During the inscription process the modal content at the end of the fiber was measured using a computer generated hologram as a correlation filter. In dependency of the length of the modulator strong oscillations between the content of the fundamental and the higher order modes are observable. In the case of an initially excited fundamental mode, its content could be reduced to below 5%, whereat the content of the LP11 modes was up to 90%. While measurement and simulation show qualitative agreement, differences are caused by inhomogeneities of the refractive index modifications.

  12. Flat pulse-amplitude rational-harmonic-mode-locking fiber lasers with GHz pulse repetition rates

    Science.gov (United States)

    Wang, Tianhe; Yang, Tianxin; Jia, Dongfang; Wang, Zhaoying; Sang, Mei; Bai, Neng; Li, Guifang

    2013-03-01

    Rational harmonic mode locking (RHML) in an active mode-locked fiber laser can increase the output pulse repetition rate a number of times the modulation frequency of an optical modulator in a cavity when driven by gigahertz (GHz) RF. The amplitudes of the output optical pulse train in a high order RHML operation are not equalized and flat due to the GHz RF drive signals. A modified RHML technique using standard instrumentation that generates 1 GHz electrical square wave signals to accomplish up to 6th order RHML in fiber lasers is presented for improving the flatness of the amplitudes of the output optical pulse train at the pulse repetition rate of up to 12 GHz.

  13. A theoretical study on critical phenomena of magnetic soft modes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiaoyan [Department of Mathematics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China); Yang, Guohong [Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China); Shanghai Key Lab for Astrophysics, 100 Guilin Road, 200234 Shanghai (China); Yan, Ming, E-mail: myan@shu.edu.cn [Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China)

    2017-02-01

    Below a threshold magnetic field, domain structures in ferromagnetic samples may start to nucleate from the initially saturated state via either continuous or discontinuous phase transitions. Such processes are usually accompanied by the occurrence of soft spin-wave modes at the critical point. In this paper, we present a theoretical study on the critical phenomena of uniform soft modes in a macrospin model and spatially non-uniform ones in ferromagnetic thin films. The critical exponents of the mode frequency and its polarization are derived. The value is found to be equal to one half, which is directly related to the breaking of a reflection-symmetry in the phase transition. At the critical point, the soft mode becomes linearly polarized, which provides an additional measurable effect of the critical phenomena.

  14. Amplitudes of solar p modes: Modelling of the eddy time-correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Belkacem, K [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17-B 4000 Liege (Belgium); Samadi, R; Goupil, M J, E-mail: Kevin.Belkacem@ulg.ac.BE [LESIA, UMR8109, Universite Pierre et Marie Curie, Universite Denis Diderot, Obs. de Paris, 92195 Meudon Cedex (France)

    2011-01-01

    Modelling amplitudes of stochastically excited oscillations in stars is a powerful tool for understanding the properties of the convective zones. For instance, it gives us information on the way turbulent eddies are temporally correlated in a very large Reynolds number regime. We discuss the way the time correlation between eddies is modelled and we present recent theoretical developments as well as observational results. Eventually, we discuss the physical underlying meaning of the results by introducing the Ornstein-Uhlenbeck process, which is a sub-class of a Gaussian Markov process.

  15. Usefulness of gated RapidArc radiation therapy patient evaluation and applied with the amplitude mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Lim, Hyun Sil; Kim, Wan Sun [Dept. of Radiation Oncology, Inha University Hospital, Incheon (Korea, Republic of)

    2014-06-15

    This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95

  16. Usefulness of gated RapidArc radiation therapy patient evaluation and applied with the amplitude mode

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Lim, Hyun Sil; Kim, Wan Sun

    2014-01-01

    This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95

  17. Restudy of the open-superstring tree amplitudes by looking at their field-theoretical limits

    International Nuclear Information System (INIS)

    Hsu, R.; Yeung, W.B.; Yu, H.L.

    1987-01-01

    We carry out complete computations of some open- and closed-superstring tree amplitudes by using the bosonized covariant vertices. Some open-superstring amplitudes so obtained are shown to be different from those obtained in the light-cone gauge approach by some numerical factors. The low-energy limits of our five open-superstring amplitudes are then shown to match the five super Yang-Mills field amplitudes while the five light-cone gauge open-superstring amplitudes fail to do so

  18. Near gap excitation of a CDW amplitude mode by time-resolved photoelectron spectroscopy

    Science.gov (United States)

    Leuenberger, Dominik; Yang, Shuolong; Sobota, Jonathan; Giraldo, Paula; Kirchmann, Patrick; Fisher, Ian; Shen, Zhi-Xun

    2014-03-01

    We present time-, angle- and energy-resolved photoelectron spectroscopy data from the light rear-earth tritelluride compound CeTe3. An in-plane Peierls distortion in the tellurium slabs leads to the formation of an incommensurate Charge Density Wave (CDW), accompanied by a CDW gap at the Fermi level. Ultrafast optical laser excitation and subsequent relaxation by means of electron-phonon coupling can coherently excite a periodic modulation of the CDW band position and the gap size in rear-earth tritellurides. In this work, the use of tuneable near infrared laser pulses allows for optical excitation slightly above and below the measured gap value of 570 meV. The smaller excitation phase space not only leads to cleaner amplitude mode signal but also helps to pin down the optical transitions, which are the driving mechanisms for the transient CDW phase transition. Financial support by the Swiss National Science Foundation is duly acknowledged.

  19. Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay

    Science.gov (United States)

    Zheng, Fei; Li, Jianping; Ding, Ruiqiang

    2017-11-01

    There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemisphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Niño3.4 area. Anomalous trade winds and SST anomalies over the Niño3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Niño3.4 area followed by the positive (negative) DJF SAM.

  20. Theoretical and Experimental Investigations of the Rotor Vibration Amplitude of the Turbocharger and Bearings Temperature

    Directory of Open Access Journals (Sweden)

    E. Zadorozhnaya

    2017-12-01

    Full Text Available One of the most urgent issues of the modern world and domestic automobile and tractor production is the problem of the production of efficient and reliable turbochargers. The rotor bearings largely determine the reliable operation of the turbocharger. By increasing the degree of the forcing of the engine the turbocharger rotor speed and the load increases significantly. Working conditions of bearings also complicated because of the temperature rise. In this case the bearing of the turbine and the compressor bearing works in different thermal conditions. The definition of the thermal state of the bearings can be performed experimentally. However, to perform these studies the sophisticated experimental equipment must be used. Researchers can't perform experiments for each type of turbocharger. Therefore, the applying of the theoretical approaches becomes more relevant. The peculiarity of the considered problem is the design of the bearings, which are made in the form of multilayer bearings with floating rings. Such designs increase the number of the parameters that affect the behaviour of the rotor. For the calculation of the multilayer bearings and turbocharger rotor dynamics a method and calculation algorithm was developed. A plan of the experiment based on the orthogonal central composite plan was drawn up. The regression equations for rotor amplitude and bearing temperature were obtained. As variable parameters the clearances (external and internal, rotor speed, pressure and lubricant temperature were used. The results of the calculation were compared with experimental results obtained at the plant. Non-Newtonian properties of the lubricants were taken into account in the calculations. Comparative results showed good agreement. In this way the resulting function can be applied to studies of the similarly multilayer bearings without complicated experimental studies.

  1. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  2. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Science.gov (United States)

    Zong, Weikai; Charpinet, Stéphane; Vauclair, Gérard; Giammichele, Noemi; Van Grootel, Valérie

    2017-10-01

    Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  3. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Directory of Open Access Journals (Sweden)

    Zong Weikai

    2017-01-01

    Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  4. Head-on collision of large amplitude internal solitary waves of the first mode

    Science.gov (United States)

    Terletska, Kateryna; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung Tae; Talipova, Tatiana

    2016-04-01

    The dynamics and energetics of a frontal collision of internal solitary waves of depression and elevation of moderate and large amplitudes propagating in a two-layer stratified fluid are studied numerically in frame of the Navier-Stokes equations. It was considered symmetric and asymmetric head-on collisions. We propose the dimensionless characteristic of the wave collision ξ that is the ratio of the wave steepnesses. Wave runup normalized on the amplitude of incoming wave as function of the waves steepness is proposed. Interval 01 corresponds to the larger wave in the case of asymmetric collision. Results of modeling were compared with the results of laboratory experiments [1]. It was shown that the frontal collision of internal solitary waves of moderate amplitude leads to a small phase shift and to the generation of dispersive wavetrain trailing behind transmitted solitary wave. The phase shift grows with increasing amplitudes of the interacting waves and approaches the limiting value when amplitudes of the waves are equal to the upper/lower layer for waves of depression/elevation. The deviation of the maximum wave height during collision from the twice the amplitude are maximal when wave amplitudes are equal to the upper/lower layer for waves of depression/elevation, then it decays with growth of amplitudes of interacting waves. It was found that the interaction of waves of large amplitude leads to the shear instability and the formation of Kelvin - Helmholtz vortices in the interface layer, however, subsequently waves again become stable. References [1] R.-C. Hsu, M. H. Cheng, C.-Y. Chen, Potential hazards and dynamical analysis of interfacial solitary wave interactions. Nat Hazards. 65 (2013) 255-278

  5. Amplitude and Temporal Jitter Associated with the NPS Active Mode-Locked Sigma Laser

    National Research Council Canada - National Science Library

    Anderson, James

    2000-01-01

    .... They have the capability of being used for direct signal reception and ADC at an antenna. A fundamental requirement for these designs is a high-frequency optical pulse train with uniform amplitude and pulse spacing...

  6. SU-F-T-253: Volumetric Comparison Between 4D CT Amplitude and Phase Binning Mode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G; Ma, R; Reyngold, M [Memorial Sloan-Kettering Cancer Center, Commack, NY (United States); Li, X; Xiong, W; Gewanter, R [Memorial Sloan-Kettering Cancer Center, Rockville Center, NY (United States); Yorke, E; Mageras, G; Wu, A; Deasy, J; Hunt, M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Tang, X [Memorial Sloan-Kettering Cancer Center, West Harrison, NY (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States)

    2016-06-15

    Purpose: Motion artifact in 4DCT images can affect radiation treatment quality. To identify the most robust and accurate binning method, we compare the volume difference between targets delineated on amplitude and phase binned 4DCT scans. Methods: Varian RPM system and CT scanner were used to acquire 4DCTs of a Quasar phantom with embedded cubic and spherical objects having superior-inferior motion. Eight patients’ respiration waveforms were used to drive the phantom. The 4DCT scan was reconstructed into 10 phase and 10 amplitude bins (2 mm slices). A scan of the static phantom was also acquired. For each waveform, sphere and cube volumes were generated automatically on each phase using HU thresholding. Phase (amplitude) ITVs were the union of object volumes over all phase (amplitude) binned images. The sphere and cube volumes measured in the static phantom scan were V{sub sphere}=4.19cc and V{sub cube}=27.0cc. Volume difference (VD) and dice similarity coefficient (DSC) of the ITVs, and mean volume error (MVE) defined as the average target volume percentage difference between each phase image and the static image, were used to evaluate the performance of amplitude and phase binning. Results: Averaged over the eight breathing traces, the VD and DSC of the internal target volume (ITV) between amplitude and phase binning were 3.4%±3.2% (mean ± std) and 95.9%±2.1% for sphere; 2.1%±3.3% and 98.0% ±1.5% for cube, respectively.For all waveforms, the average sphere MVE of amplitude and phase binning was 6.5% ± 5.0% and 8.2%±6.3%, respectively; and the average cube MVE of amplitude and phase binning was 5.7%±3.5%and 12.9%±8.9%, respectively. Conclusion: ITV volume and spatial overlap as assessed by VD and DSC are similar between amplitude and phase binning. Compared to phase binning, amplitude binning results in lower MVE suggesting it is less susceptible to motion artifact.

  7. Selection of a LGp0-shaped fundamental mode in a laser cavity: Phase versus amplitude masks

    CSIR Research Space (South Africa)

    Hasnaoui, A

    2012-01-01

    Full Text Available -plate (absorbing ring) set inside a diaphragmed laser cavity for selecting a pure LGp0 mode of radial order, p. We analyse, for each type of mask, the origin of the transverse mode selection, and contrary to what one might expect we find that it is not necessary...

  8. Injection-locked single-mode VCSEL for orthogonal multiplexing and amplitude noise suppression

    DEFF Research Database (Denmark)

    Chipouline, Arkadi; Lyubopytov, Vladimir S.; Malekizandi, Mohammadreza

    2017-01-01

    an injection-locked 1550 nm VCSEL as a slave laser providing separation of amplitude and phase modulations, carrying independent information flows. To validate the possibility of phase modulation extraction by an injection-locked VCSEL, an experimental setup shown in Fig. 1 has been built....

  9. Amplitude characteristics of a solid-state ring laser with active mode locking

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, E.M.; Klochan, E.L.; Lariontsev, E.G.

    1986-09-01

    A system of equations is obtained for the parameters of ultrashort light pulses (USLP) in a solid-state ring laser (SSRL) with periodic loss modulation. Allowance is made for the coupling between counterpropagating USLP due to backscattering in the modulator. The regime of counter-propagating wave frequency capture (CPWFC) is studied. It is shown that the coupling of counterpropagating waves due to backscattering at the modulator ends leads to the suppression of one of the counterpropagating waves during an increase in the detuning of the modulation frequency relative to its optimal value. The influence of rotation on the amplitude characteristics of an SSRL in the CPWFC regime is studied. 9 references.

  10. A Theoretical Investigation of Mode-Locking Phenomena in Reversed Field Pinches

    International Nuclear Information System (INIS)

    Richard Fitzpatrick

    2004-01-01

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field

  11. A theoretical investigation of mode-locking phenomena in reversed field pinches

    Energy Technology Data Exchange (ETDEWEB)

    Richard Fitzpatrick

    2004-03-17

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field.

  12. A Theoretical Investigation of Mode-Locking Phenomena in Reversed Field Pinches

    Energy Technology Data Exchange (ETDEWEB)

    Richard Fitzpatrick

    2004-04-07

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field.

  13. A theoretical investigation of mode-locking phenomena in reversed field pinches

    International Nuclear Information System (INIS)

    Richard Fitzpatrick

    2004-01-01

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field

  14. Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results

    Directory of Open Access Journals (Sweden)

    U. Jørgensen

    2011-07-01

    Full Text Available In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.

  15. Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Larsen, René Wugt

    2015-01-01

    The far-infrared absorption spectra have been recorded for hydrogen-bonded complexes of water with ethanol embedded in cryogenic neon matrices at 2.8 K. The partial isotopic H/D-substitution of the ethanol subunit enabled by a dual inlet deposition procedure enables the observation and unambiguous...... assignment of the intermolecular high-frequency out-of-plane and the low-frequency in-plane donor OH librational modes for two different conformations of the mixed binary ethanol/water complex. The resolved donor OH librational bands confirm directly previous experimental evidence that ethanol acts as the O......⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bondinteraction evidenced by a significantly blue...

  16. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    Energy Technology Data Exchange (ETDEWEB)

    Sorazu, B; Strain, K A; Heng, I S; Kumar, R, E-mail: b.sorazu@physics.gla.ac.u [Department of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow G12 8QQ (United Kingdom)

    2010-08-07

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  17. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    International Nuclear Information System (INIS)

    Sorazu, B; Strain, K A; Heng, I S; Kumar, R

    2010-01-01

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  18. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    Science.gov (United States)

    Sorazu, B.; Strain, K. A.; Heng, I. S.; Kumar, R.

    2010-08-01

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  19. Theoretical and experimental investigations of thickness- stretch modes in 1-3 piezoelectric composites

    International Nuclear Information System (INIS)

    Yang, Z T; Zeng, D P; He, M; Wang, H

    2015-01-01

    Bulk piezoelectric ceramics operating in thickness-stretch (TSt) modes have been widely used in acoustic-related devices. However, the fundamental TSt waves are always coupled with other modes, and the occurrence of these spurious modes in bulk piezoelectric ceramics affects its performance. To suppress the spurious modes, 1-3 piezoelectric composites are promising candidates. However, theoretical modeling of multiphase ceramic composite objects is very complex. In this study, a 1-3 piezoelectric composite sample and a bulk piezoelectric sample are fabricated. The electrical impedance of these two samples are compared. A simple analytical TSt vibration mode from the three dimensional equations of linear piezoelectricity is used to model the performance of 1-3 piezoelectric composites. The theoretical results agree well with the experimental results. (paper)

  20. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    2001-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  1. Rock Fracture Toughness Under Mode II Loading: A Theoretical Model Based on Local Strain Energy Density

    Science.gov (United States)

    Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.

    2018-01-01

    The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.

  2. Theoretical and experimental study of high-Q resonant modes in terahertz optical systems

    NARCIS (Netherlands)

    Jellema, Willem; Withington, S.; Trappe, Neil; Murphy, J. A.; Wild, Wolfgang

    2004-01-01

    The existence of multiple reflections in terahertz optical system causes numerous problems in applications ranging from astronomical to medical instrumentation. We have performed a detailed theoretical study, using waveguide and free-space modal matching, of the high-Q modes that appear on THz

  3. Theoretical and experimental study of modes associated to ion cyclotron heating on TFR

    International Nuclear Information System (INIS)

    Pignol, L.

    1985-05-01

    In this work, the ion cyclotron wave evolution is followed thanks to a coherent scattering device using carbon dioxide laser radiation. A theoretical part presents the dispersion equation that obey the waves excited in the plasma by antenna emitting ion cyclotron frequency. Then measurements given by the diagnostic are given. Fast and slow waves evidenced theoretically, are experimentally observed. Two simple theoretical models allow to extract physical quantities characteristics of the two modes. These two modes are followed along the radial coordinate of the tore and their behavior through the hybrid curve is studied. measured spectra shape is shown to confirm the described numerical code validity. Time study of the slow wave shows of internal relaxation phenomenon of plasma [fr

  4. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  5. Comparisons of theoretically predicted transport from ion temperature gradient instabilities to L-mode tokamak experiments

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.

    1991-12-01

    The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled

  6. Theoretical and experimental analysis of rare earth whispering gallery mode laser relative intensity noise

    Science.gov (United States)

    Ceppe, Jean-Baptiste; Mortier, Michel; Féron, Patrice; Dumeige, Yannick

    2017-12-01

    The relative intensity noise (RIN) of a solid state whispering-gallery-mode class-B laser is studied both theoretically and experimentally under different pumping regimes. In particular, we show that harmonics of the spiking frequency are observed in the RIN spectrum. A rate equation model including Langevin forces and the nonlinear coupling between inverted ion and photon number fluctuations has been developed to reproduce the experimental results and to extract relevant physical parameters from the fitting of the RIN spectrum.

  7. Global modes in Saturn’s main rings. Theoretical background and current issues

    Science.gov (United States)

    Longaretti, Pierre-Yves

    2017-06-01

    The dynamics of dense ring systems may conveniently be divided into two main topics: local structures, mostly driven be local, incoherent instabilities (most prominently, self-gravitational wakes and local viscous overstabilities) and global structures, involving in particular non-axisymmetric features over the whole extent in azimuth. The latter include density and bending waves, global narrow ring modes and edge modes; these structures can be globally viscously overstable.All global modes have a common dynamical origin and can be described in a unified dynamical framework, which will be reviewed in the first part of the talk. In particular, all planar narrow ring modes and edge modes can be described as trapped density waves and theoretically investigated as a nonlinear eigenvalue problem.The second part of the talk will focus on salient problems, some of which were discovered and characterized during the Cassini mission. These include, e.g., the numerous edge modes observed at gap edges and narrow ring edges, the peculiar structure of the B ring edge and the alternating series of gaps and rings populating the Cassini division. The possible dynamical origin of these structures will be reviewed; if available at the time of the conference, new numerical simulations investigating the dynamics of the B ring edge will be presented.

  8. Theoretical study on functionally graded cylindrical magnetoelectric composites using d15 shear-mode response

    Science.gov (United States)

    Shi, Yang; Gao, Yuanwen

    2017-08-01

    In this study, a novel functionally graded cylindrical magnetoelectric (ME) composite based on d15 shear-mode response is analyzed theoretical by using the elastic mechanics model and equivalent circuit model. The composite is mounted around AC current-carrying power lines to scavenge AC magnetic field energy. For different sensing configurations, the generated magnetic fields are calculated, respectively. Then, based on the theoretical models, the dependences of the ME performances, i.e., the ME voltage and power, upon the type of the material gradation, the material constants, and geometrical parameters of the cylindrical ME composite are numerically evaluated. The results show that the ME coupling effect in the functionally graded cylindrical ME composite with special gradation is stronger than that in the homogeneous structure. The ME performance can be improved by geometrical parameters as well. The presented two models can be synthesized under the open-circuit condition, which provide a theoretical basis to understand and improve the ME property of the d15 shear-mode cylindrical ME composites operating at resonant frequency and off-resonance frequency.

  9. Unusual magnetic excitations in the weakly ordered spin- 12 chain antiferromagnet Sr2CuO3: Possible evidence for Goldstone magnon coupled with the amplitude mode

    International Nuclear Information System (INIS)

    Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; Gu, G. D.; Zaliznyak, I. A.

    2017-01-01

    We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2 CuO 3 , with extremely weak magnetic ordering. The ESR spectra at T > T N , in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N , we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.

  10. Theoretical and experimental study of Gaussian beam and mode propagation in over-dimensioned circular guides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1984-06-01

    A theoretical study of modes in circular hollow over-dimensioned waveguides is developed; it shows the interest of dielectric or weakly conducting wall guide use. An optical model computing the transmitted power of gaussian beams through these guides, for different types of walls, is established. The formulas obtained allow to optimize the guide and to adapt the beam. Applied to the EH 11 mode this optical model leads to new results. Systematical measurements of gaussian beam propagation in over-dimensioned guides are realised; they are concerned with beam power transmission, polarization, its structure and its radiation at the guide exit in function of the different characteristics of the beam and the guide [fr

  11. Dual-Mode Measurement and Theoretical Analysis of Evaporation Kinetics of Binary Mixtures

    Science.gov (United States)

    Song, Hanyu; He, Chi-Ruei; Basdeo, Carl; Li, Ji-Qin; Ye, Dezhuang; Kalonia, Devendra; Li, Si-Yu; Fan, Tai-Hsi

    Theoretical and experimental investigations are presented for the precision measurement of evaporation kinetics of binary mixtures using a quartz crystal resonator. A thin layer of light alcohol mixture including a volatile (methanol) and a much less volatile (1-butanol) components is deployed on top of the resonator. The normal or acoustic mode is to detect the moving liquid-vapor interface due to evaporation with a great spatial precision on the order of microns, and simultaneously the shear mode is used for in-situ detection of point viscosity or concentration of the mixture near the resonator. A one-dimensional theoretical model is developed to describe the underlying mass transfer and interfacial transport phenomena. Along with the modeling results, the transient evaporation kinetics, moving interface, and the stratification of viscosity of the liquid mixture during evaporation are simultaneously measured by the impedance response of the shear and longitudinal waves emitted from the resonator. The system can be used to characterize complicated evaporation kinetics involving multi-component fuels. American Chemical Society Petroleum Research Fund, NSF CMMI-0952646.

  12. Theoretical and experimental investigations on powerful gyrotrons operating in asymmetrical high order modes

    International Nuclear Information System (INIS)

    Gantenbein, G.

    1993-09-01

    The application of high power mm-waves in nuclear fusion makes great demands on RF generators. Presently, high power (∝1 MW) per unit at frequencies around 140 GHz is required for economically reasonable and physically realizable heating and control of the stability of fusion plasmas. Owing to their advanced stage of development gyrotrons are the most promising devices to fulfill the various requirements. In this work the numerical and experimental optimisation of high power gyrotrons will be discussed. The experimental set-up and the theoretical model to describe the behaviour of gyrotron cavities will be presented. Experimental results and numerical simulations will be compared for the case of a TE 10,4 mode gyrotron. Particular attention is paid on the influence of non-optimal electron beam parameters and on reflections of RF oscillations in the cavity. Results of numerical investigations will be presented for cavities which are capable of generating RF powers around 1 MW. Some common problems and possible solutions will be described. (orig./HP) [de

  13. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser

    Directory of Open Access Journals (Sweden)

    Jia-Rui Wang

    2014-05-01

    Full Text Available The fundamental transverse mode (TEM00 is preferable for experimental and theoretical study on the laser-induced retinal injury effect, for it can produce the minimal retinal image and establish the most strict laser safety standards. But actually lasers with higher order mode were frequently used in both earlier and recent studies. Generally higher order mode leads to larger retinal spot size and so higher damage threshold, but there are few quantitative analyses on this problem. In this paper, a four-surface schematic eye model is established for human and macaque. The propagation of 532-nm laser in schematic eye is analyzed by the ABCD law of Gaussian optics. It is shown that retinal spot size increases with laser transverse mode order. For relative lower mode order, the retinal spot diameter will not exceed the minimum laser-induced retinal lesion (25 ~ 30 μm in diameter, and so has little effect on retinal damage threshold. While for higher order mode, the larger retinal spot requires more energy to induce injury and so the damage threshold increases. When beam divergence is lowered, the retinal spot size decreases correspondingly, so the effect of mode order can be compensated. The retinal spot size of macaque is slightly smaller than that of human and the ratio between them is independent of mode order. We conclude that the laser mode order has significant influence on retinal spot size but limited influence on the retinal injury effect.

  14. Excitation of high-radial-order Laguerre-Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    Science.gov (United States)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  15. Theoretical study of the mode of the mass-selective nonstable axial output ions from the nonlinear trap

    International Nuclear Information System (INIS)

    Sudakov, M.Yu.

    2000-01-01

    One studied theoretically the mode of mass-selective unstable output of ions from three-dimensional quadrupole ion trap. One developed a method represent coordinates of ions per one period of supplying HF voltage with regard to nonlinear distortions of quadrupole potential. One derived equation for an envelope of ion oscillations in the form of motion equation of mass point in the efficient force field. One explained the effect of output delay of ions at presence of the field negative even harmonics. One proved that the positive even distortions of quadrupole potential favored realization of that mode and studied the dynamics of ions in the course of output [ru

  16. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  17. Time-Dependent Amplitude Analysis of B0→KS0π+π- decays with the BaBar Experiment and constraints on the CKM matrix using the B→K*π and B→ρK modes

    International Nuclear Information System (INIS)

    Perez Perez, L.A.

    2008-12-01

    A time-dependent amplitude analysis of B 0 → K S 0 π + π - decays is performed to extract the CP violation parameters of f 0 (980)K S 0 and ρ 0 (770)K S 0 , and direct CP asymmetries of K * (892) ± π ± . The results are obtained from a data sample of (383 ± 3)*10 6 BB-bar decays, collected with the BaBar detector at the PEP-II asymmetric-energy B factory at SLAC. Two solutions are found, with equivalent goodness-of-fit merits. Including systematic and Dalitz plot model uncertainties, the combined confidence interval for values of β(eff) in B 0 decays to f 0 (980)K S 0 is 18 degrees 0 decays to f 0 (980)K S 0 is excluded at 3.5 σ, including systematics. For B 0 decays to ρ 0 (770)K S 0 , the combined confidence interval is -9 degrees * (892) ± π ± the measured direct CP asymmetry parameter is A(CP) -0.20 ± 0.10 ± 0.01 ± 0.02. The measured phase difference between the decay amplitudes of B 0 → K * (892) + π - and B-bar 0 → K * (892) - π + excludes the [-132 degrees: +25 degrees] interval (at 95% C.L.). Branching fractions and CP asymmetries are measured for all significant intermediate resonant modes. The measurements on ρ 0 (770)K S 0 and K *± (892)π ± are used as inputs to a phenomenological analysis of B → K * π and B → ρK decays based solely on SU(2) isospin symmetry. Adding external information on the CKM matrix, constraints on the hadronic parameter space are set. For B → K * π, the preferred intervals for color-allowed electroweak penguins are marginally compatible with theoretical expectations. The constraints on CKM parameters are dominated by theoretical uncertainties. A prospective study, based on the expected increase in precision from measurements at LHCb, and at future programs such as Super-B or Belle-upgrade, illustrates the physics potential of this approach. (author)

  18. Mode Deactivation Therapy (MDT): A Theoretical Case Analysis on a Suicidal Adolescent

    Science.gov (United States)

    Apsche, Jack A.; Siv, Alexander M.

    2005-01-01

    This case study presents a case study of the effectiveness of Mode deactivation therapy (MDT) (Apsche, Bass, Jennings, Murphy, Hunter, and Siv, 2005) with an adolescent male, with reactive conduct disorder, PTSD and 8 lethal suicide attempts. The youngster was hospitalized four times for suicide attempts, three previous placements in residential…

  19. The Role of the Top Management Team in the Choice of Entry ModesTheoretical Perspective

    Directory of Open Access Journals (Sweden)

    Sara JIMÉNEZ BURILLO

    2013-06-01

    Full Text Available Launching the process of internationalization is a critical decision, so using combinations  of  entry  modes  can  be  beneficial  to  sketch  an  easy  and  feasible international process. Members of TMT might have some special characteristics to achieve planned objectives and strategies and take appropriate decisions, especially combinations.  The  objective  of  the  article  is  to  present  the  main  themes  of  the literature discourse on the role of entry modes and their combinations. This paper discusses TMT’s characteristics that influence on the combinations of entry modes. The research design used here is qualitative because it attempts to describe the importance of these characteristics in as the alternatives in internationalization process. The results indicate the importance of considering some characteristics of TMT, and combinations of entry mode as an option to internationalize. Combinations of entrymode might enhance the firms’  internationalization  strategies,  making  them  more  effective  in  the  global environment. Knowing the relevant determinants of TMT will lead to more efficient strategies. The originality of this worklies in studying some aspects of  TMT  to  select  combinations  of  entry  modes  which  are  suited  in  a  given environment.

  20. On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography.

    Science.gov (United States)

    Marian, A; Charrière, F; Colomb, T; Montfort, F; Kühn, J; Marquet, P; Depeursinge, C

    2007-02-01

    The point spread function is widely used to characterize the three-dimensional imaging capabilities of an optical system. Usually, attention is paid only to the intensity point spread function, whereas the phase point spread function is most often neglected because the phase information is not retrieved in noninterferometric imaging systems. However, phase point spread functions are needed to evaluate phase-sensitive imaging systems and we believe that phase data can play an essential role in the full aberrations' characterization. In this paper, standard diffraction models have been used for the computation of the complex amplitude point spread function. In particular, the Debye vectorial model has been used to compute the amplitude point spread function of x63/0.85 and x100/1.3 microscope objectives, exemplifying the phase point spread function specific for each polarization component of the electromagnetic field. The effect of aberrations on the phase point spread function is then analyzed for a microscope objective used under nondesigned conditions, by developing the Gibson model (Gibson & Lanni, 1991), modified to compute the three-dimensional amplitude point spread function in amplitude and phase. The results have revealed a novel anomalous phase behaviour in the presence of spherical aberration, providing access to the quantification of the aberrations. This work mainly proposes a method to measure the complex three-dimensional amplitude point spread function of an optical imaging system. The approach consists in measuring and interpreting the amplitude point spread function by evaluating in amplitude and phase the image of a single emitting point, a 60-nm-diameter tip of a Near Field Scanning Optical Microscopy fibre, with an original digital holographic experimental setup. A single hologram gives access to the transverse amplitude point spread function. The three-dimensional amplitude point spread function is obtained by performing an axial scan of the

  1. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    Science.gov (United States)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  2. Experimental and theoretical model of reactivity and vibrational detection modes of triacetone triperoxide (TATP) and homologues

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.

    2004-12-01

    Fully optimized molecular geometry, parameters of reactivity and vibrational spectra of triacetone triperoxide (TATP) and homologue organic peroxides were calculated using B3LYP/6-31G(d,p) method within the Density Functional Theory formalism. Infrared and Raman Spectroscopy were utilized to obtain vibrational spectra of the energetic compound. The model consists in the relation found between the Raman Shift location of the important symmetric stretch ν(O-O) of the organic peroxides and the reactivity of the organic peroxides. A good correlation between the band location in the series studied and the x-y plane polarizability component and the ionization energy was found. Gas phase IR absorption of TATP in air was used for developing stand-off detection schemes of the important organic peroxide in air. The sublimation properties of TATP were measured using two methods: Grazing Angle Probe-Fiber Coupled FTIR and gravimetric on stainless steel surfaces. Sublimation rates, loading concentration values and absorbance band areas were measured and modeled using the persistent IR vibrational signature of the ν(C-O) mode.

  3. Theoretical analysis of stimulated polariton scattering from the A1-symmetry modes of KNbO3 crystal

    Science.gov (United States)

    Li, Zhong-yang; Wang, Meng-tao; Wang, Si-lei; Yuan, Bin; Xu, De-gang; Yao, Jian-quan

    2017-09-01

    Stimulated polariton scattering (SPS) based on noncollinear phase matching scheme from the A1-symmetry modes of KNbO3 crystal is investigated for generating terahertz (THz) wave. Frequency tuning characteristics of THz wave by varying the phase matching angle and pump wavelength are analyzed. The expression of the effective parametric gain length under the noncollinear phase matching condition is deduced. Parametric gain and absorption characteristics of THz wave in KNbO3 are theoretically simulated. The characteristics of KNbO3 for parametric oscillator (TPO) are compared with those of MgO:LiNbO3. The analysis results indicate that KNbO3 is an excellent optical crystal for TPO to enhance the output of THz wave.

  4. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    Energy Technology Data Exchange (ETDEWEB)

    Carriger, John F. [U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 32561 (United States); Martin, Todd M. [U.S. Environmental Protection Agency, Office of Research and Development, Sustainable Technology Division, Cincinnati, OH, 45220 (United States); Barron, Mace G., E-mail: barron.mace@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 32561 (United States)

    2016-11-15

    Highlights: • A Bayesian network was developed to classify chemical mode of action (MoA). • The network was based on the aquatic toxicity MoA for over 1000 chemicals. • A Markov blanket algorithm selected a subset of theoretical molecular descriptors. • Sensitivity analyses found influential descriptors for classifying the MoAs. • Overall precision of the Bayesian MoA classification model was 80%. - Abstract: The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally complex dataset can simplify analysis and interpretation by

  5. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train

    Science.gov (United States)

    Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2018-02-01

    Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.

  6. Investigating the impact of inquiry mode on self-reported sexual behavior: theoretical considerations and review of the literature.

    Science.gov (United States)

    McCallum, Ethan B; Peterson, Zoë D

    2012-01-01

    Measurement of sexual behaviors is typically reliant on retrospective self-reports of behaviors. Historically, self-reported sexual behavior data were primarily collected through face-to-face interviews or paper-and-pencil questionnaires, as these were the only modes of inquiry available. In recent decades, technological innovations such as telephones, computers, and the Internet have expanded the self-report inquiry modes available. The addition of these new inquiry modes further complicates the ability of sex researchers to evaluate the quality of research results and compare findings across studies. Self-report sexual behavior data are vulnerable to participation biases, as well as to sources of bias in individual responses, such as recollection and social desirability bias. This is true regardless of the inquiry mode being used, but some modes may be more vulnerable to bias than others. This review examines the available research regarding self-report sexual behavior research, inquiry mode, and relative bias across modes. The review also provides recommendations for advancing the current understanding of inquiry mode effects within sexual behavior research. Specifically, by shifting the focus away from evaluating specific modes of inquiry toward examination of factors common across all modes, researchers will be better able to interpret existing research and improve the designs of future studies as well.

  7. Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch

    Science.gov (United States)

    Drake, J. R.; Brunsell, P. R.; Yadikin, D.; Cecconello, M.; Malmberg, J. A.; Gregoratto, D.; Paccagnella, R.; Bolzonella, T.; Manduchi, G.; Marrelli, L.; Ortolani, S.; Spizzo, G.; Zanca, P.; Bondeson, A.; Liu, Y. Q.

    2005-07-01

    Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.

  8. Psychotherapists' personal identities, theoretical orientations, and professional relationships: elective affinity and role adjustment as modes of congruence.

    Science.gov (United States)

    Heinonen, Erkki; Orlinsky, David Elliot

    2013-01-01

    Research shows psychotherapists espousing different theoretical approaches differ in mentality (e.g., cognitive styles, beliefs and epistemologies) and personality (e.g., neuroticism). However, studies have not investigated the association between professional relational style prescribed by therapists' theoretical orientations and therapists' manner of relating in personal life. Analyses of over 4000 therapists of varied nationalities, professions and career levels having different theoretical preferences indicate: (i) therapists' self-experience in close personal relationships was significantly associated with the manner their theoretical orientations prescribed for relating with clients; (ii) therapists were less accepting, less tolerant and more demanding in their personal relationships than with clients; and (iii) therapists adjusted their professional relational manner in practice to meet the specific expectations of their preferred orientations.

  9. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.

  10. Theoretical modeling and experimental study of dielectric loss of the multi-push-pull mode magnetoelectric laminate composites

    Science.gov (United States)

    Xu, Bingbing; Ma, Jiashuai; Fang, Cong; Yao, Meng; Di, Wenning; Li, Xiaobing; Luo, Haosu

    2018-02-01

    In this work, we establish a dielectric loss model for multi-push-pull mode ME laminate composites. It deduces that the total dielectric loss of the ME composites equals the linear average of the dielectric loss of piezoelectric plate and epoxy resin. But further analysis of this model has indicated that we can ignore the dielectric loss of epoxy resin. To verify this model, we use three kinds of epoxy resin with different dielectric loss to fabricate multi-push-pull mode PMNT/Metglas ME laminate composites respectively. It turns out that the different kinds of epoxy resin have little influence on the total dielectric loss, capacitance and piezoelectricity of the composites, which demonstrates that our model conforms to the practical case. Therefore, we can pay more attention to the mechanical properties of epoxy resin rather than its dielectric loss on fabricating the ME laminate composites.

  11. Unstable Modes and Order Parameters of Bistable Signaling Pathways at Saddle-Node Bifurcations: A Theoretical Study Based on Synergetics

    Directory of Open Access Journals (Sweden)

    Till D. Frank

    2016-01-01

    Full Text Available Mathematical modeling has become an indispensable part of systems biology which is a discipline that has become increasingly popular in recent years. In this context, our understanding of bistable signaling pathways in terms of mathematical modeling is of particular importance because such bistable components perform crucial functions in living cells. Bistable signaling pathways can act as switches or memory functions and can determine cell fate. In the present study, properties of mathematical models of bistable signaling pathways are examined from the perspective of synergetics, a theory of self-organization and pattern formation founded by Hermann Haken. At the heart of synergetics is the concept of so-called unstable modes or order parameters that determine the behavior of systems as a whole close to bifurcation points. How to determine these order parameters for bistable signaling pathways at saddle-node bifurcation points is shown. The procedure is outlined in general and an explicit example is worked out in detail.

  12. Binding mode dependent signaling for the detection of Cu2 +: An experimental and theoretical approach with practical applications

    Science.gov (United States)

    Ghosh, Soumen; Khan, Mehebub Ali; Ganguly, Aniruddha; Masum, Abdulla Al; Alam, Md. Akhtarul; Guchhait, Nikhil

    2018-02-01

    Two amido-schiff bases (3-Hydroxy-naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide and Naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide) have been synthesized having a common structural unit and only differs by a -OH group in the naphthalene ring. Both of them can detect Cu2 + ion selectively in semi-aqueous medium in distinctly different output modes (one detects Cu2 + by naked-eye color change where as the other detects Cu2 + by fluorescence enhancement). The difference in the binding of Cu 2 + with the compounds is the reason for this observation. The detection limit is found to be micromolar region for compound which contains -OH group whereas the compound without -OH group detects copper in nano-molar region. DFT calculations have been performed in order to demonstrate the structure of the compounds and their copper complexes. Practical utility has been explored by successful paper strip response of both the compounds. The biological applications have been evaluated in RAW 264.7.

  13. Aberrant topographical organization in default-mode network in first-episode remitted geriatric depression: a graph-theoretical analysis.

    Science.gov (United States)

    Zhu, Yan; Wang, Dongqing; Liu, Zhe; Li, Yuefeng

    2018-02-12

    Neuroimaging studies have shown that major depressive disorder is associated with altered activity patterns of the default-mode network (DMN). In this study, we sought to investigate the topological organization of the DMN in patients with remitted geriatric depression (RGD) and whether RGD patients would be more likely to show disrupted topological configuration of the DMN during the resting-state. Thirty-three RGD patients and thirty-one healthy control participants underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans. The functional connectivity (FC) networks were constructed by thresholding Pearson correlation metrics of the DMN regions defined by group independent component analysis, and their topological properties (e.g. small-world and network efficiency) were analyzed using graph theory-based approaches. Relative to the healthy controls, the RGD patients showed decreased FC in the posterior regions of the DMN (i.e. the posterior cingulate cortex/precuneus, angular gyrus, and middle temporal gyrus). Furthermore, the RGD patients showed abnormal global topology of the DMN (i.e. increased characteristic path length and reduced global efficiency) when compared with healthy controls. Importantly, significant correlations between these network measures and cognitive performance indicated their potential use as biomarkers of cognitive dysfunction in RGD. The present study indicated disrupted FC and topological organization of the DMN in the context of RGD, and further implied their contribution to cognitive deficits in RGD patients.

  14. MRI Investigation of the Linkage Between Respiratory Motion of the Heart and Markers on Patient's Abdomen and Chest: Implications for Respiratory Amplitude Binning List-Mode PET and SPECT Studies.

    Science.gov (United States)

    Dasari, Paul; Johnson, Karen; Dey, Joyoni; Lindsay, Clifford; Shazeeb, Mohammed S; Mukherjee, Joyeeta Mitra; Zheng, Shaokuan; King, Michael A

    2014-02-06

    Respiratory motion of the heart impacts the diagnostic accuracy of myocardial-perfusion emission-imaging studies. Amplitude binning has come to be the method of choice for binning list-mode based acquisitions for correction of respiratory motion in PET and SPECT. In some subjects respiratory motion exhibits hysteretic behavior similar to damped non-linear cyclic systems. The detection and correction of hysteresis between the signals from surface movement of the patient's body used in binning and the motion of the heart within the chest remains an open area for investigation. This study reports our investigation in nine volunteers of the combined MRI tracking of the internal respiratory motion of the heart using Navigators with stereo-tracking of markers on the volunteer's chest and abdomen by a visual-tracking system (VTS). The respiratory motion signals from the internal organs and the external markers were evaluated for hysteretic behavior analyzing the temporal correspondence of the signals. In general, a strong, positive correlation between the external marker motion (AP direction) and the internal heart motion (SI direction) during respiration was observed. The average ± standard deviation in the Spearman's ranked correlation coefficient ( ρ ) over the nine volunteer studied was 0.92 ± 0.1 between the external abdomen marker and the internal heart, and 0.87 ± 0.2 between the external chest marker and the internal heart. However despite the good correlation on average for the nine volunteers, in three studies a poor correlation was observed due to hysteretic behavior between inspiration and expiration for either the chest marker and the internal motion of the heart, or the abdominal marker and the motion of the heart. In all cases we observed a good correlation of at least either the abdomen or the chest with the heart. Based on this result, we propose the use of marker motion from both the chest and abdomen regions when estimating the internal heart motion

  15. Amplitude Modulation in the δ Sct star KIC 7106205

    Directory of Open Access Journals (Sweden)

    Bowman Dominic. M.

    2015-01-01

    Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.

  16. Theoretical-methodological bases on the teaching-learning process of the opposition indefinido-perfecto in the indicative mode for Italian students

    Directory of Open Access Journals (Sweden)

    Lizandra Rivero-Cru

    2017-04-01

    Full Text Available Due to the level of abstraction and subjectivity, the teaching-learning process of the opposition indefinido-perfecto in the indicative mode is a complex content to teach in in the Spanish classrooms as a foreign language. For Italian speakers who learn Spanish in the sociocultural context where the language is spoken, the structural similarities between their mother language and the target language hinder the learning of these verbal tenses, because the perception of minimum distance allows the commutation of the linguistic systems of both languages. The previous bring about the excessive use of the transfer, the fossilization of errors and the consequent stagnation of the Interlingua. The insufficiencies that these students present, in particular, those of the elementary level, influence in the production of texts, both oral and written, with correction and in accordance with the linguistic norms of the sociocultural context where he/she learns the language. These reasons motivate the analysis of some theoretical-methodological bases on the particularities of the teaching-learning process of the opposition indefinido-perfecto in the indicative mode in the Spanish language for Italian students.

  17. Terahertz field control of interlayer transport modes in cuprate superconductors

    Science.gov (United States)

    Schlawin, Frank; Dietrich, Anastasia S. D.; Kiffner, Martin; Cavalleri, Andrea; Jaksch, Dieter

    2017-08-01

    We theoretically show that terahertz pulses with controlled amplitude and frequency can be used to switch between stable transport modes in layered superconductors, modeled as stacks of Josephson junctions. We find pulse shapes that deterministically switch the transport mode between superconducting, resistive, and solitonic states. We develop a simple model that explains the switching mechanism as a destabilization of the center-of-mass excitation of the Josephson phase, made possible by the highly nonlinear nature of the light-matter coupling.

  18. Diphoton generalized distribution amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.

  19. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  20. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  1. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas.

    Science.gov (United States)

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2017-12-15

    Higgs and Goldstone modes are collective excitations of the amplitude and phase of an order parameter that is related to the breaking of a continuous symmetry. We directly studied these modes in a supersolid quantum gas created by coupling a Bose-Einstein condensate to two optical cavities, whose field amplitudes form the real and imaginary parts of a U(1)-symmetric order parameter. Monitoring the cavity fields in real time allowed us to observe the dynamics of the associated Higgs and Goldstone modes and revealed their amplitude and phase nature. We used a spectroscopic method to measure their frequencies, and we gave a tunable mass to the Goldstone mode by exploring the crossover between continuous and discrete symmetry. Our experiments link spectroscopic measurements to the theoretical concept of Higgs and Goldstone modes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  3. Theoretical explanation and experimental observation of effective cyclotron coupling of traveling and near-cutoff modes on a phase-synchronized electron beam

    CERN Document Server

    Savilov, A V; Phelps, A D R; Samsonov, S V

    2000-01-01

    For a Cyclotron Resonance Maser (CRM) with a helical axis-encircling electron beam, the possibility of a strong interaction between cutoff (gyrotron) and traveling Doppler-up-shifted Cyclotron Autoresonance Maser (CARM) modes, which are in resonance with the electrons at the same frequency, is demonstrated. This effect can be used in a CRM-oscillator of a new type, where the feedback and the mode selectivity for the operating traveling mode are provided due to the excitation of the cutoff mode. According to both the theory and experiment, such a scheme can provide an effective excitation of the traveling mode with negligibly low losses associated with the cutoff mode.

  4. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  5. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    Science.gov (United States)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  6. FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems

    International Nuclear Information System (INIS)

    Xiao-Dong, Huang; Sheng-Zhi, Zhao; Jian-Jun, Wang; Ming-Zhong, Li; Dang-Peng, Xu; Hong-Huan, Lin; Rui, Zhang; Ying, Deng; Xiao-Min, Zhang

    2010-01-01

    The conversion of the frequency modulated pulse induced from frequency modulation (FM) to amplitude modulation (AM) by the polarization mode dispersion (PMD) is theoretically and experimentally investigated. When there is no polarizer at the output end of a fiber system, the amplitude modulation depth is stable by 8%. Random amplitude modulation is observed when a polarizer is placed at the output end of the fiber system. The observed minimum and maximum modulation depths in our experiment are 5% and 80%, respectively. Simulation results show that the amplitude modulation is stable by 4% induced mainly by group velocity dispersion (GVD) when there is no polarizer, and the amplitude modulation depth displays the random variation character induced by the GVD and PMD. Lastly, a new fiber system scheme is proposed and little amplitude modulation is observed at the top of the output pulse

  7. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  8. Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis

    DEFF Research Database (Denmark)

    Brøns, Morten; Kaper, T.J.; Rotstein, H.G.

    2008-01-01

    Mixed mode oscillations ( MMOs ) occur when a dynamical system switches between fast and slow motion and small and large amplitude. MMOs appear in a variety of systems in nature, and may be simple or complex. This focus issue presents a series of articles on theoretical, numerical, and experiment...

  9. Charmless B_{(s)}→ VV decays in factorization-assisted topological-amplitude approach

    Science.gov (United States)

    Wang, Chao; Zhang, Qi-An; Li, Ying; Lü, Cai-Dian

    2017-05-01

    Within the factorization-assisted topological-amplitude approach, we studied the 33 charmless B_{(s)} → VV decays, where V stands for a light vector meson. According to the flavor flows, the amplitude of each process can be decomposed into eight different topologies. In contrast to the conventional flavor diagrammatic approach, we further factorize each topological amplitude into decay constant, form factors and unknown universal parameters. By χ ^2 fitting 46 experimental observables, we extracted 10 theoretical parameters with χ ^2 per degree of freedom around 2. Using the fitted parameters, we calculated the branching fractions, polarization fractions, CP asymmetries and relative phases between polarization amplitudes of each decay mode. The decay channels dominated by tree diagram have large branching fractions and large longitudinal polarization fraction. The branching fractions and longitudinal polarization fractions of color-suppressed decays become smaller. Current experimental data of large transverse polarization fractions in the penguin dominant decay channels can be explained by only one transverse amplitude of penguin annihilation diagram. Our predictions of the not yet measured channels can be tested in the ongoing LHCb experiment and the Belle-II experiment in the future.

  10. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  11. Optimal Tuning of Amplitude Proportional Coulomb Friction Damper for Maximum Cable Damping

    DEFF Research Database (Denmark)

    Weber, Felix; Høgsberg, Jan Becker; Krenk, Steen

    2010-01-01

    This paper investigates numerically the optimal tuning of Coulomb friction dampers on cables, where the optimality criterion is maximum additional damping in the first vibration mode. The expression for the optimal friction force level of Coulomb friction dampers follows from the linear viscous...... is estimated. It is found that the damping efficiency agrees well with the expected value at the theoretical optimum. However, maximum damping is larger and achieved at a force to amplitude ratio of 1.4 times the analytical value. Investigations show that the increased damping results from energy spillover...

  12. Quantitative Analysis of GPR Signals: Transmitted Wavelet, Amplitude Decay, and Sampling-Related Amplitude Distortions

    Science.gov (United States)

    Dossi, M.; Forte, Emanuele; Pipan, M.

    2017-12-01

    We study the importance of accurately recording signal amplitudes for the quantitative analysis of GPR data sets. Specifically, we measure the peak amplitudes of signals emitted by GPR antennas with different central frequencies and study their amplitude decay with distance, in order to extrapolate the peak amplitude of the wavelet initially transmitted by each antenna. The purpose is to compare the reference and reflected amplitudes in order to accurately estimate the subsurface EM impedance contrasts. Moreover, we study how sampling-related amplitude distortions can affect the quantitative analysis, and subsequently the resulting subsurface models, even in the absence of aliasing effects. The well-known Nyquist-Shannon theorem gives practical lower limits for the sampling rate in order to preserve the spectral content of a digitized signal; however, we show that it does not prevent possible amplitude distortions. In particular, we demonstrate that significant and unrecoverable loss of amplitude information occurs even at sampling rates well above the Nyquist-Shannon threshold. Interpolation may theoretically reduce such amplitude distortions; however, its accuracy would depend on the implemented algorithm and it is not verifiable in real data sets, since the actual amplitude information is limited to the sampled values. Moreover, re-sampling the interpolated signal simply reintroduces the initial problem, when a new sampling rate is selected. Our analysis suggests that, in order to limit the maximum peak amplitude error within 5%, the sampling rate selected during data acquisition must be at least 12 times the signal central frequency, which is higher than the commonly adopted standards.

  13. Quantitative Analysis of GPR Signals: Transmitted Wavelet, Amplitude Decay, and Sampling-Related Amplitude Distortions

    Science.gov (United States)

    Dossi, M.; Forte, Emanuele; Pipan, M.

    2018-03-01

    We study the importance of accurately recording signal amplitudes for the quantitative analysis of GPR data sets. Specifically, we measure the peak amplitudes of signals emitted by GPR antennas with different central frequencies and study their amplitude decay with distance, in order to extrapolate the peak amplitude of the wavelet initially transmitted by each antenna. The purpose is to compare the reference and reflected amplitudes in order to accurately estimate the subsurface EM impedance contrasts. Moreover, we study how sampling-related amplitude distortions can affect the quantitative analysis, and subsequently the resulting subsurface models, even in the absence of aliasing effects. The well-known Nyquist-Shannon theorem gives practical lower limits for the sampling rate in order to preserve the spectral content of a digitized signal; however, we show that it does not prevent possible amplitude distortions. In particular, we demonstrate that significant and unrecoverable loss of amplitude information occurs even at sampling rates well above the Nyquist-Shannon threshold. Interpolation may theoretically reduce such amplitude distortions; however, its accuracy would depend on the implemented algorithm and it is not verifiable in real data sets, since the actual amplitude information is limited to the sampled values. Moreover, re-sampling the interpolated signal simply reintroduces the initial problem, when a new sampling rate is selected. Our analysis suggests that, in order to limit the maximum peak amplitude error within 5%, the sampling rate selected during data acquisition must be at least 12 times the signal central frequency, which is higher than the commonly adopted standards.

  14. OCT Amplitude and Speckle Statistics of Discrete Random Media

    NARCIS (Netherlands)

    Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2017-01-01

    Speckle, amplitude fluctuations in optical coherence tomography (OCT) images, contains information on sub-resolution structural properties of the imaged sample. Speckle statistics could therefore be utilized in the characterization of biological tissues. However, a rigorous theoretical framework

  15. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Science.gov (United States)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  16. Direct amplitude detuning measurement with ac dipole

    Directory of Open Access Journals (Sweden)

    S. White

    2013-07-01

    Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.

  17. Interpreting Changes in Surface EMG Amplitude During High-Level Fatiguing Contractions of the Brachioradialis

    National Research Council Canada - National Science Library

    Lowery, M

    2001-01-01

    ... to estimate muscle fatigue. In this paper, theoretical relationships between surface EMG amplitude measures and mean motor unit firing rates and muscle fiber conduction velocity (MFCV) are established...

  18. Scattering amplitudes in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver

    2011-07-15

    with regards to the duality between group-theoretical and kinematic contributions to tree-level amplitudes observed in the field theory.

  19. Unifying relations for scattering amplitudes

    Science.gov (United States)

    Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao

    2018-02-01

    We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.

  20. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    Science.gov (United States)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times

  1. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    International Nuclear Information System (INIS)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators

  2. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  3. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  4. Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, Jenny-Ann

    2003-06-01

    It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall

  5. A possible explanation for the divergent projection of ENSO amplitude change under global warming

    Science.gov (United States)

    Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.

  6. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  7. Basic mode of nonlinear spin-wave resonance in normally magnetized ferrite films

    International Nuclear Information System (INIS)

    Gulyaev, Yu.V.; Zil'berman, P.E.; Timiryazev, A.G.; Tikhomirova, M.P.

    2000-01-01

    Modes of nonlinear and spin-wave resonance (SWR) in the normally magnetized ferrite films were studied both theoretically and experimentally. The particular emphasis was placed on the basic mode of SWR. One showed theoretically that with the growth of the precession amplitude the profile of the basic mode changed. The nonlinear shift of the resonance field depends on the parameters of fixing of the surface spins. Films of ferroyttrium garnet (FYG) with strong gradient of the single-axis anisotropy field along the film thickness, as well as, FYG films of the submicron thickness where investigated experimentally. With the intensification of Uhf-power one observed the sublinear shift of the basic mode resonance field following by the superlinear growth of the absorbed power. That kind of behaviour is explained by variation of the profile of the varying magnetization space distribution [ru

  8. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  9. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  10. Motivic amplitudes and cluster coordinates

    International Nuclear Information System (INIS)

    Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity

  11. New results of investigations of whistler-mode chorus emissions

    Directory of Open Access Journals (Sweden)

    O. Santolík

    2008-07-01

    Full Text Available This review summarizes selected recent results obtained during investigation of whistler-mode chorus emissions in the Earth's magnetosphere. Special attention is paid to results published during the last five years, with a focus on the results of the CLUSTER project. The nonlinear nature of chorus emissions is demonstrated using both theoretical results and measurements. Selected areas of research on whistler-mode chorus are covered and the paper especially reports new results on substructure and amplitudes of chorus wave packets, on new observations of frequency differences of chorus wave packets at different points in space and on their possible interpretations, on results concerning determination of position and size of the source region of chorus, on recent observational and theoretical results which lead to improved description of propagation of chorus from its source, and, finally, on comparison of chorus measurements with corresponding values deduced from nonlinear theory and simulations.

  12. TMX tandem-mirror experiments and thermal-barrier theoretical studies

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

    1982-01-01

    This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions

  13. Adaptive suboptimal second-order sliding mode control for microgrids

    Science.gov (United States)

    Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella

    2016-09-01

    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.

  14. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  15. Shape of Pion Distribution Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  16. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  17. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t...... with a molecular weight of 145 kg/ mol was subjected to the oscillative flow. The onset of the steady periodic regime is reached at the same Hencky strain as the onset of the steady elongational viscosity ( Lambda = 0). The integral molecular stress function formulation within the 'interchain pressure' concept...

  18. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  19. Scattering Amplitudes from Intersection Theory.

    Science.gov (United States)

    Mizera, Sebastian

    2018-04-06

    We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.

  20. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  1. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  2. Scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Henn, Johannes M.; Plefka, Jan C.

    2014-01-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  3. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    Baez, John C; Christensen, J Daniel

    2002-01-01

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  4. Discontinuity formulas for multiparticle amplitudes

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1976-03-01

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations

  5. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    Science.gov (United States)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  6. Seismic amplitude processing and inversion

    Science.gov (United States)

    Dev, Ashwani

    2008-10-01

    Hydrocarbon exploration requires reliable seismic amplitudes to identify oil and gas reservoirs. Erroneous seismic amplitude processing can potentially generate large economic losses. Correct seismic amplitude processing is pre-requisite for any amplitude dependent analysis. The accuracy of the subsurface image and estimation of the elastic properties of subsurface sediments depends upon the reliability of the amplitudes. Geophone groups are wavenumber filters that change the seismic amplitudes because of a wavenumber dependent information loss. Numerically defined filters deconvolve the recording group response from horizontal and the vertical component seismic data recorded with groups of uniform and non-uniform geophone sensitivity, different group lengths and spacing, and noise. The filtering effect of an array increases as the group length increases, and only the wavenumber range defined by the group interval can be correctly compensated for the group effect. A rigorous, explicit spatial antialias filter is designed and applied by removing the energy above the first Nyquist wavenumber in the horizontal slowness-frequency domain. The filter removes the spatially aliased frequencies selectively at each slowness. The aliased energy is dispersive and present at both small and large horizontal slownesses. The filter can be explicitly applied to regularly spaced or irregularly spaced traces and is independent of any event linearity assumption. An integrative interpretation approach defines the effect of the structural setting on gas hydrate and free-gas accumulation at a site at the East Casey fault zone in the Gulf of Mexico. At a well location, hydrates are interpreted as fracture fillings with maximum saturation ˜30% of the available pore space. Two low acoustic impedance (Ip) free-gas features terminating at the bottom simulating reflector (BSR) are interpreted from the 3D seismic data and the derived Ip volumes. The 2D Ip profile shows a contrast in BSR

  7. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  8. Periodic instantons and scattering amplitudes

    International Nuclear Information System (INIS)

    Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.

    1991-04-01

    We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)

  9. Scattering amplitudes and Wilson loops in twistor space

    Science.gov (United States)

    Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David

    2011-11-01

    This paper reviews the recent progress in twistor approaches to Wilson loops, amplitudes and their duality for {N}=4 super-Yang-Mills. Wilson loops and amplitudes are derived from first principles using the twistor action for maximally supersymmetric Yang-Mills theory. We start by deriving the MHV rules for gauge theory amplitudes from the twistor action in an axial gauge in twistor space, and show that this gives rise to the original momentum space version given by Cachazo, Svrček and Witten. We then go on to obtain from these the construction of the momentum twistor space loop integrand using (planar) MHV rules and show how it arises as the expectation value of a holomorphic Wilson loop in twistor space. We explain the connection between the holomorphic Wilson loop and certain light-cone limits of correlation functions. We give a brief review of other ideas in connection with amplitudes in twistor space: twistor-strings, recursion in twistor space, the Grassmannian residue formula for leading singularities and amplitudes as polytopes. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Scattering amplitudes in gauge theories’.

  10. Scattering amplitudes and Wilson loops in twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim; Mason, Lionel [Mathematical Institute, 24-29 St. Giles' , Oxford OX1 3LB (United Kingdom); Bullimore, Mathew [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Skinner, David, E-mail: adamo@maths.ox.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2 L 2Y5 (Canada)

    2011-11-11

    This paper reviews the recent progress in twistor approaches to Wilson loops, amplitudes and their duality for N=4 super-Yang-Mills. Wilson loops and amplitudes are derived from first principles using the twistor action for maximally supersymmetric Yang-Mills theory. We start by deriving the MHV rules for gauge theory amplitudes from the twistor action in an axial gauge in twistor space, and show that this gives rise to the original momentum space version given by Cachazo, Svrcek and Witten. We then go on to obtain from these the construction of the momentum twistor space loop integrand using (planar) MHV rules and show how it arises as the expectation value of a holomorphic Wilson loop in twistor space. We explain the connection between the holomorphic Wilson loop and certain light-cone limits of correlation functions. We give a brief review of other ideas in connection with amplitudes in twistor space: twistor-strings, recursion in twistor space, the Grassmannian residue formula for leading singularities and amplitudes as polytopes. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to 'Scattering amplitudes in gauge theories'. (review)

  11. Error Field Assessment from Driven Mode Rotation: Results from Extrap-T2R Reversed-Field-Pinch and Perspectives for ITER

    Science.gov (United States)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2012-10-01

    A new ITER-relevant non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the Extrap-T2R reversed field pinch. Resistive Wall Modes (RWMs) were generated and their rotation sustained by rotating magnetic perturbations. In particular, stable modes of toroidal mode number n=8 and 10 and unstable modes of n=1 were used in this experiment. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the RWMs were observed to rotate non-uniformly and be modulated in amplitude (in the case of unstable modes, the observed oscillation was superimposed to the mode growth). This behavior was used to infer the amplitude and toroidal phase of n=1, 8 and 10 EFs. The method was first tested against known, deliberately applied EFs, and then against actual intrinsic EFs. Applying equal and opposite corrections resulted in longer discharges and more uniform mode rotation, indicating good EF compensation. The results agree with a simple theoretical model. Extensions to tearing modes, to the non-uniform plasma response to rotating perturbations, and to tokamaks, including ITER, will be discussed.

  12. Kepler observations of the high-amplitude δ Scuti star V2367 Cyg

    DEFF Research Database (Denmark)

    Balona, L. A.; Lenz, P.; Antoci, V.

    2012-01-01

    We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg (KIC 9408694). The variations are dominated by a mode with frequency f1= 5.6611 d−1. Two other independent modes with f2= 7.1490 d−1 and f3= 7.7756 d−1 have amplitudes an order of magnitude smaller than f1. Nearly...

  13. Surface-wave amplitude analysis for array data with non-linear waveform fitting: Toward high-resolution attenuation models of the upper mantle

    Science.gov (United States)

    Hamada, K.; Yoshizawa, K.

    2013-12-01

    Anelastic attenuation of seismic waves provides us with valuable information on temperature and water content in the Earth's mantle. While seismic velocity models have been investigated by many researchers, anelastic attenuation (or Q) models have yet to be investigated in detail mainly due to the intrinsic difficulties and uncertainties in the amplitude analysis of observed seismic waveforms. To increase the horizontal resolution of surface wave attenuation models on a regional scale, we have developed a new method of fully non-linear waveform fitting to measure inter-station phase velocities and amplitude ratios simultaneously, using the Neighborhood Algorithm (NA) as a global optimizer. Model parameter space (perturbations of phase speed and amplitude ratio) is explored to fit two observed waveforms on a common great-circle path by perturbing both phase and amplitude of the fundamental-mode surface waves. This method has been applied to observed waveform data of the USArray from 2007 to 2008, and a large-number of inter-station amplitude and phase speed data are corrected in a period range from 20 to 200 seconds. We have constructed preliminary phase speed and attenuation models using the observed phase and amplitude data, with careful considerations of the effects of elastic focusing and station correction factors for amplitude data. The phase velocity models indicate good correlation with the conventional tomographic results in North America on a large-scale; e.g., significant slow velocity anomaly in volcanic regions in the western United States. The preliminary results of surface-wave attenuation achieved a better variance reduction when the amplitude data are inverted for attenuation models in conjunction with corrections for receiver factors. We have also taken into account the amplitude correction for elastic focusing based on a geometrical ray theory, but its effects on the final model is somewhat limited and our attenuation model show anti

  14. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    Science.gov (United States)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    2017-06-14

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.

  15. String amplitudes: from field theories to number theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  16. Forward amplitude in pion deuteron

    International Nuclear Information System (INIS)

    Ferreira, E.M.; Munguia, G.A.P.; Rosa, L.P.; Thome, Z.D.

    1979-06-01

    The data on total cross section for πd scattering is analysed in terms of a single scattering calculation with Fermi motion dependence, in order to obtain a criterion to fix the value of the energy entering the two body meson nucleon amplitude. It is found that the prescription derived from the non-relativistic three body kinematics gives reasonable results. The introduction of a shift in the energy value, possibly representing nuclear binding effects, leads to a very good fitting of the data. The results are compared with those obtained in direct calculations of Faddeev equations and with the Brueckner model of fixed scatterers. (Author) [pt

  17. Superstring amplitudes and contact interactions

    International Nuclear Information System (INIS)

    Greensite, J.

    1987-08-01

    We show that scattering amplitudes computed from light-cone superstring field theory are divergent at tree level. The divergences can be eliminated, and supersymmetry restored, by the addition of certain counter terms to the light-cone Hamiltonian. These counter terms have the form of local contact interactions, whose existence we had previously deduced on grounds of vacuum stability, and closure of the super-Poincare algebra. The quartic contact interactions required in Type I and Type IIB superstring theories are constructed in detail. (orig.)

  18. Amplitude modulation reflectometer for FTU

    International Nuclear Information System (INIS)

    Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.

    1995-06-01

    Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed

  19. Compact representation of radiation patterns using spherical mode expansions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, T.L.; Chen, Yinchao (South Carolina Univ., Columbia, SC (USA). Dept. of Electrical and Computer Engineering)

    1990-07-15

    This report presents the results of an investigation of SM (Spherical Mode) expansions as a compact and efficient alternative to the use of current distributions for generating radiation patterns. The study included three areas: (1) SM expansion from the radiation pattern; (2) SM expansion from the antenna current; and (3) Literature search. SM expansions were obtained from radiation patterns during the initial phase of this study. Although straightforward in principal, however, this technique was found to be awkward for the treatment on theoretical radiation patterns. It is included here for completeness and for possible use to summarize experimental results in a more meaningful way than with an exhaustive display of amplitude with azimuth and elevation angles. In essence, the work in this area served as as warm-up problem to develop our skills in computing and manipulating spherical modes as mathematical entities. 6 refs., 21 figs., 6 tabs.

  20. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  1. Expansion of Einstein-Yang-Mills amplitude

    Science.gov (United States)

    Fu, Chih-Hao; Du, Yi-Jian; Huang, Rijun; Feng, Bo

    2017-09-01

    In this paper, we study from various perspectives the expansion of tree level single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes. By applying the gauge invariance principle, a programable recursive construction is devised to expand EYM amplitude with arbitrary number of gravitons into EYM amplitudes with fewer gravitons. Based on this recursive technique we write down the complete expansion of any single trace EYM amplitude in the basis of color-order Yang-Mills amplitude. As a byproduct, an algorithm for constructing a polynomial form of the BCJ numerator for Yang-Mills amplitudes is also outlined in this paper. In addition, by applying BCFW recursion relation we show how to arrive at the same EYM amplitude expansion from the on-shell perspective. And we examine the EYM expansion using KLT relations and show how to evaluate the expansion coefficients efficiently.

  2. Constructing Amplitudes from Their Soft Limits

    Energy Technology Data Exchange (ETDEWEB)

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  3. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  4. Stabilization of tearing modes to suppress major disruptions in tokamaks

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.; Hicks, H.R.; Lynch, S.J.; Waddell, B.V.

    1979-02-01

    It is shown, for q-profiles which lead to a disruption, that the control of the amplitude of the 2/1 tearing mode avoids the disruption. Q-profiles measured in T-4 and PLT before a major disruption were studied. Two methods of controlling the 2/1 mode amplitude have been considered: (1) Feedback stabilization with the feedback signal locked in phase with the 2/1 mode. (2) Heating slightly outside the q = 2 surface. In both cases it is only necessary to decrease the 2/1 mode amplitude to suppress the disruption. It is not always necessary to stabilize the unstable modes fully

  5. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    Science.gov (United States)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  6. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  7. Forerunning mode transition in a continuous waveguide

    OpenAIRE

    Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady

    2014-01-01

    We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....

  8. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    Directory of Open Access Journals (Sweden)

    Oliver Zobay

    2015-01-01

    Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.

  9. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  10. Theoretical analysis of laser-locked spectroscopy employing a confocal Fabry-Perot cavity

    International Nuclear Information System (INIS)

    Dong, Lei; Li, Linfeng; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2006-01-01

    A theoretical analysis of laser-locked enhanced absorption spectroscopy employing a confocal Fary-Perot cavity (CFPC) is presented. The signal-to-noise ratio and the minimum detectable absorbance, which are limited by either the shot noise or the amplitude noise due to the loose laser lock loop, are also discussed in detail. The results show that the effective absorption path length of a CFPC configuration is the same as that of the conventional nonconfocal Fary-Perot cavity configuration, with the CFPC configuration being more convenient to align without deliberate mode matching. Thus, the CFPC configuration should greatly simplify the complications of conventional laser-locked spectroscopy.

  11. Covariant N-string amplitude

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Sciuto, S.; Nakayama, R.; Petersen, J.L.; Sidenius, J.R.

    1986-11-01

    The BRST-invariant N-Reggeon vertex (for the bosonic string) previously given by us in the operator formulation is considered in more detail. In particular we present a direct derivation from the string path integral. Several crucial symmetry properties found a posteriori before, become a priori clearer in this formulation. A number of delicate points related to zero modes, cut off procedures and normal ordering prescriptions are treated in some detail. The old technique of letting the string field acquire a small dimension ε/2 → 0 + is found especially elegant. (orig.)

  12. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.

  13. Mixed-Mode Crack Growth in Wood

    Directory of Open Access Journals (Sweden)

    Octavian POP

    2012-09-01

    Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.

  14. Theoretical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Work in theoretical chemistry was organized under the following topics: scattering theory and dynamics (elastic scattering of the rare gas hydrides, inelastic scattering in Li + H 2 , statistical theory for bimolecular collisions, model study of dissociative scattering, comparative study of elastic scattering computational methods), studies of atmospheric diatomic and triatomic species, structure and spectra of diatomic molecules, the evaluation of van der Waals forces, potential energy surfaces and structure and dynamics, calculation of molecular polarizabilities, and development of theoretical techniques and computing systems. Spectroscopic parameters are tabulated for NO 2 , N 2 O, H 2 O + , VH, and NH. Self-consistent-field wave functions were computed for He 2 in two-center and three-center bases. Rare gas hydride intermolecular potentials are shown. (9 figures, 14 tables) (U.S.)

  15. The Dynamics of Large-Amplitude Motion in Energized Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry

    2016-05-27

    Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).

  16. Composite superstring model for hadron amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.A. [Petersburg Nuclear Physics Institute, P.O. Box 188300, Gatchina (Russian Federation)

    2010-01-15

    Hadron dynamics is formulated in terms of interacting composite strings. These composite string amplitudes give other possible solution of duality equations for crossing channels in addition to classical string amplitudes. The composite strings carry quark flavour and spin degrees of freedom on edging two-dimensional surfaces. Consistent composite string models with extended N=3 Virasoro superconformal symmetry are found. Simple amplitudes for interaction of pi and K-mesons in this model are represented.

  17. New relations for graviton-matter amplitudes

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I report on recent progress in finding compact expressions for scattering amplitudes involving gravitons and gluons as well as massive scalar and fermionic matter particles. At tree level the single graviton emission amplitudes may be expressed as linear combination of purely non-gravitational ones. At the one-loop level recent results on all four point Einstein-Yang-Mills amplitudes with at most one opposite helicity state using unitarity methods are reported. 

  18. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  19. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  20. DVCS amplitude with kinematical twist-3 terms

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Weiss, C.

    2000-01-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term

  1. Amplitude modulation in δ Sct stars: statistics from an ensemble of Kepler targets

    Science.gov (United States)

    Bowman, Dominic M.; Kurtz, Donald W.; Breger, Michel; Murphy, Simon J.; Holdsworth, Daniel L.

    2017-10-01

    The results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ⩽ Teff ⩽ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr, are presented. A total of 603 δ Sct stars (61.3 per cent) are found to exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Furthermore, it is found that amplitude modulation is not restricted to a specific region within the classical instability strip in the HR diagram, therefore its cause is not necessarily dependent on stellar parameters such as Teff or log g. On the other hand, many δ Sct stars show constant pulsation amplitudes demonstrating that the cause of pulsational non-linearity in these stars is not well understood.

  2. Theoretical physics

    CERN Document Server

    Joos, Georg

    1986-01-01

    Among the finest, most comprehensive treatments of theoretical physics ever written, this classic volume comprises a superb introduction to the main branches of the discipline and offers solid grounding for further research in a variety of fields. Students will find no better one-volume coverage of so many essential topics; moreover, since its first publication, the book has been substantially revised and updated with additional material on Bessel functions, spherical harmonics, superconductivity, elastomers, and other subjects.The first four chapters review mathematical topics needed by theo

  3. Understanding bimolecular machines: Theoretical and experimental approaches

    Science.gov (United States)

    Goler, Adam Scott

    This dissertation concerns the study of two classes of molecular machines from a physical perspective: enzymes and membrane proteins. Though the functions of these classes of proteins are different, they each represent important test-beds from which new understanding can be developed by the application of different techniques. HIV1 Reverse Transcriptase is an enzyme that performs multiple functions, including reverse transcription of RNA into an RNA/DNA duplex, RNA degradation by the RNaseH domain, and synthesis of dsDNA. These functions allow for the incorporation of the retroviral genes into the host genome. Its catalytic cycle requires repeated large-scale conformational changes fundamental to its mechanism. Motivated by experimental work, these motions were studied theoretically by the application of normal mode analysis. It was observed that the lowest order modes correlate with largest amplitude (low-frequency) motion, which are most likely to be catalytically relevant. Comparisons between normal modes obtained via an elastic network model to those calculated from the essential dynamics of a series of all-atom molecular dynamics simulations show the self-consistency between these calculations. That similar conformational motions are seen between independent theoretical methods reinforces the importance of large-scale subdomain motion for the biochemical action of DNA polymerases in general. Moreover, it was observed that the major subunits of HIV1 Reverse Transcriptase interact quasi-harmonically. The 5HT3A Serotonin receptor and P2X1 receptor, by contrast, are trans-membrane proteins that function as ligand gated ion channels. Such proteins feature a central pore, which allows for the transit of ions necessary for cellular function across a membrane. The pore is opened by the ligation of binding sites on the extracellular portion of different protein subunits. In an attempt to resolve the individual subunits of these membrane proteins beyond the diffraction

  4. A SENSOR AND A METHOD FOR DETERMINING THE DIRECTION AND THE AMPLITUDE OF A BEND

    DEFF Research Database (Denmark)

    2000-01-01

    The present invention relates to an optical based bending sensor. In particular, the present invention relates to a fibre-based bending sensor for the determination of the direction and the amplitude of a bend. The present invention further relates to fibre-based bending sensors using long...... and the cladding modes. Thereby a relative splitting of transmission peaks in the spectrum of the LPG is induced, which is used to determine the bending amplitude and direction....

  5. Robust seismic images amplitude recovery using curvelets

    NARCIS (Netherlands)

    Moghaddam, Peyman P.; Herrmann, Felix J.; Stolk, C.C.

    2007-01-01

    In this paper, we recover the amplitude of a seismic image by approximating the normal (demigration-migration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that

  6. Correlation of amplitude modulation to inflow characteristics

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2014-01-01

    Amplitude modulation (AM) of noise from wind turbines and its more extreme version named “other amplitude modulation” OAM have been investigated intensively during the last few years due to the additional annoyance impact this type of noise has compared to broad band noise. In a recent published...

  7. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are

  8. Amplitude image processing by diffractive optics.

    Science.gov (United States)

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  9. Temporal Control of Metabolic Amplitude by Nocturnin

    Directory of Open Access Journals (Sweden)

    Jeremy J. Stubblefield

    2018-01-01

    Full Text Available The timing of food intake and nutrient utilization is critical to health and regulated partly by the circadian clock. Increased amplitude of circadian oscillations and metabolic output has been found to improve health in diabetic and obesity mouse models. Here, we report a function for the circadian deadenylase Nocturnin as a regulator of metabolic amplitude across the day/night cycle and in response to nutrient challenge. We show that mice lacking Nocturnin (Noct−/− display significantly increased amplitudes of mRNA expression of hepatic genes encoding key metabolic enzymes regulating lipid and cholesterol synthesis, both over the daily circadian cycle and in response to fasting and refeeding. Noct−/− mice have increased plasma triglyceride throughout the night and increased amplitude of hepatic cholesterol levels. Therefore, posttranscriptional control by Nocturnin regulates the amplitude of these critical metabolic pathways, and loss of this activity results in increased metabolic flux and reduced obesity.

  10. Properties of the pulse train generated by repetition-rate-doubling rational-harmonic actively mode-locked Er-doped fiber lasers.

    Science.gov (United States)

    Kiyan, R; Deparis, O; Pottiez, O; Mégret, P; Blondel, M

    2000-10-01

    We demonstrate for the first time to our knowledge, experimentally and theoretically, that the pulse-to-pulse amplitude fluctuations that occur in pulse trains generated by actively mode-locked Er-doped fiber lasers in a repetition-rate-doubling rational-harmonic mode-locking regime are completely eliminated when the modulation frequency is properly tuned. Irregularity of the pulse position in the train was found to be the only drawback of this regime. One could reduce the irregularity to a value acceptable for applications by increasing the bandwidth of the optical filter installed in the laser cavity.

  11. Cross-Diffusion Induced Turing Instability and Amplitude Equation for a Toxic-Phytoplankton-Zooplankton Model with Nonmonotonic Functional Response

    Science.gov (United States)

    Han, Renji; Dai, Binxiang

    2017-06-01

    The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.

  12. Stabilization of the hypersonic boundary layer by finite-amplitude streaks

    Science.gov (United States)

    Ren, Jie; Fu, Song; Hanifi, Ardeshir

    2016-02-01

    Stabilization of two-dimensional disturbances in hypersonic boundary layer flows by finite-amplitude streaks is investigated using nonlinear parabolized stability equations. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which both first and second modes are supported. The streaks considered here are driven either by the so-called optimal perturbations (Klebanoff-type) or the centrifugal instability (Görtler-type). When the streak amplitude is in an appropriate range, i.e., large enough to modulate the laminar boundary layer but low enough to not trigger secondary instability, both first and second modes can effectively be suppressed.

  13. Conversion of phase-modulated signals to amplitude-modulated signals in SOAs due to mirror reflections

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors.......We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors....

  14. Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

    Directory of Open Access Journals (Sweden)

    Den Satipar

    2017-01-01

    Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

  15. Theoretical geodesy

    Directory of Open Access Journals (Sweden)

    Borkowski Andrzej

    2015-12-01

    Full Text Available The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+ that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis.

  16. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  17. Analytic continuation of dual Feynman amplitudes

    International Nuclear Information System (INIS)

    Bleher, P.M.

    1981-01-01

    A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)

  18. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  19. Transition amplitudes within the stochastic quantization scheme

    International Nuclear Information System (INIS)

    Hueffel, H.

    1993-01-01

    Quantum mechanical transition amplitudes are calculated within the stochastic quantization scheme for the free nonrelativistic particle, the harmonic oscillator and the nonrelativistic particle in a constant magnetic field; we close with free Grassmann quantum mechanics. (authors)

  20. An analysis of heavy ion scattering amplitudes

    International Nuclear Information System (INIS)

    Marty, C.

    1979-01-01

    A heurisht method is derived for the analysis of light heavy ion systems. It consists in splitting an oscillatory amplitude into subamplitudes each of them being smooth, at least in modulus. Applications are given

  1. Theoretical Mechanics Theoretical Physics 1

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. - A collection of 74 problems with detailed step-by-step guidance towards the solutions. - A col...

  2. A new type time-amplitude converter

    International Nuclear Information System (INIS)

    Mou Haiwei; Han Jian; Li Zhongwei

    2004-01-01

    The time-amplitude converter is used mostly in nuclear physics experiments where require fast time measurement, such as the identify of particles, the measurement of excitated life-span and flying time of nucleon, and so on. According to the requirement of experiment, a new type time-amplitude converter composing of IC has been developed. It is precision is 100 ns. It has the merits of stable performance, higher precision and so on. (authors)

  3. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  4. Scattering amplitudes of regularized bosonic strings

    Science.gov (United States)

    Ambjørn, J.; Makeenko, Y.

    2017-10-01

    We compute scattering amplitudes of the regularized bosonic Nambu-Goto string in the mean-field approximation, disregarding fluctuations of the Lagrange multiplier and an independent metric about their mean values. We use the previously introduced Lilliputian scaling limit to recover the Regge behavior of the amplitudes with the usual linear Regge trajectory in space-time dimensions d >2 . We demonstrate a stability of this minimum of the effective action under fluctuations for d <26 .

  5. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  6. The Cepheid bump progression and amplitude equations

    International Nuclear Information System (INIS)

    Kovacs, G.; Buchler, J.R.

    1989-01-01

    It is shown that the characteristic and systematic behavior of the low-order Fourier amplitudes and phases of hydrodynamically generated radial velocity and light curves of Cepheid model sequences is very well captured not only qualitatively but also quantitatively by the amplitude equation formalism. The 2:1 resonance between the fundamental and the second overtone plays an essential role in the behavior of the models 8 refs

  7. Dynamic Instability of Barlike Modes

    Science.gov (United States)

    Durisen, Richard H.; Pickett, Brian K.; Bate, Matthew R.; Imamura, James N.; Brandl, Andreas; Sterzik, Michael F.

    Numerical simulations during the 1980's established that prompt binary formation (or ``fission'') through dynamic growth of barlike modes is aborted by gravitational torques. Because these instabilities may occur during star formation and because their outcome over long times is still uncertain, we have combined various linear analyses with simulations by hydrodynamics codes to refine our understanding. We show that it is in fact the torques which cause nonlinear saturation of the mode amplitude. Excellent agreement for the early nonlinear phase is obtained using radically different hydrodynamics codes. However, the ultimate outcome is sensitive to assumptions about dissipative heating and is also somewhat code-dependent.

  8. Determination of electromagnetic modes in oversized corrugated waveguides on the electron cyclotron resonance heating installation at the tokamak Tore Supra; Determination de modes electromagnetiques de guides d'ondes corrugues surdimensionnes sur l'installation de chauffage des electrons de tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, L

    2001-03-09

    Electron cyclotron resonance heating (ECRH) in the Tore Supra tokamak constitutes an important step in the research aimed at obtaining thermonuclear fusion reactions. Electron heating is achieved by transmitting an electromagnetic wave from the oscillators (gyrotrons) to the plasma via the fundamental mode, propagating in oversized corrugated waveguides. Maximizing the proportion of the gyrotron power coupled to the fundamental waveguide mode is essential for the good functioning of the transmission line and for maximizing the effect on the plasma. This thesis gives all necessary tools for finding the proportion of the fundamental mode and all other modes present in passive components and at the output of the gyrotron as installed in the Tore Supra ECRH plant. This characterisation is based on obtaining amplitude and phase diagrams of the electric field on a plane transverse to the propagation axis. The most difficult part of obtaining these diagrams is measuring the phase which, despite the very short wavelength, is measured directly at low power levels. At high power levels the phase is numerically reconstructed from amplitude measurements for gyrotron characterisation. A complete theoretical study of the phase reconstruction code is given including its validation with theoretical diagrams. This study allows the realisation of a modal characterisation unit electromagnetic for measurement of radiated beams and usable in each part of the ECRH installation. At the end, the complete modal characterisation is given at low level for a mode converter and also at high level for the first series gyrotron installed at TORE SUPRA. (author)

  9. Multiple mode model of tokamak transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs

  10. Multiple mode model of tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs.

  11. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  12. Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL

    International Nuclear Information System (INIS)

    Jay R. Johnson; C.Z. Cheng

    2002-01-01

    At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in

  13. Nonlinear drift tearing mode. Strong mode of excitation and stabilization mechanisms

    International Nuclear Information System (INIS)

    Galeev, A.A.; Zelenyj, L.M.; Kuznetsova, M.M.

    1985-01-01

    A nonlinear theory of magnetic disturbance development in collisionless configurations with magnetic field shear is considered. The instability evolution is investigated with account for the dynamics of ions and potential electric fields which determine the mode stabilization. It has been found that the drift tearing mode possesses metastable properties: in a nonlinear mode even the growth of linearly stable disturbances of the finite amplitude is possible

  14. Separation of the kink and sausage modes of the flapping oscillations in the Earth's magnetotail

    Science.gov (United States)

    Kubyshkina, Daria; Sormakov, Dmitriy; Semenov, Vladimir; Sergeev, Victor

    2013-04-01

    Flapping oscillations observed in the current sheet of the Earth's magnetotail, represent rather slow waves propagating from the center to the flanks with a typical speed ~20-60 km/s, amplitude ~1-2Re and quasiperiod ~2-10 minutes. The relevant model is based on double gradient of magnetic field: gradient of tangential (Bx) component along the normal (zGSM) direction and gradient of the normal component (Bz) along the x-direction. In the framework of this model the rotation of the vector of magnetic field in the plane Z-Y as well as vector of plasma velocity is investigated to find differences between kink and sausage modes of the flapping oscillations. The theoretical results are compared to the flapping oscillations observed by space mission THEMIS on 2008.05.03 in the morning sector of the magnetotail. The rotation of the velocity vector simultaneously observed on two spacecrafts of THEMIS mission corresponds to the kink mode of the flapping oscillations. Behavior of the modes separating mechanism was investigated in cases of the noise, combined modes and additional sources of the flapping disturbance. It was shown that behavior of the speed vector is more stable than magnetic field's one. By this fact we can explain why theoretical prediction of magnetic field vector rotation was not found out in the experimental data.

  15. Three-mode resonant coupling of collective excitations in a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Ma Yongli; Huang, Guoxiang; Hu Bambi

    2005-01-01

    We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature in a Bose-Einstein condensate (BEC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly coupled envelope equations for a three-mode resonant interaction (TMRI) by means of a method of multiple scales. (ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-state wave function of the condensate. (iii) We provide the selection rules in mode-mode interaction processes [including TMRI and second-harmonic generation (SHG)] according to the symmetry of the excitations. (iv) By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the present study on the TMRI of collective excitations in a BEC

  16. Laser beam shaping for enhanced Zero-Group Velocity Lamb modes generation.

    Science.gov (United States)

    Bruno, François; Laurent, Jérôme; Jehanno, Paul; Royer, Daniel; Prada, Claire

    2016-10-01

    Optimization of Lamb modes induced by laser can be achieved by adjusting the spatial source distribution to the mode wavelength (λ). The excitability of Zero-Group Velocity (ZGV) resonances in isotropic plates is investigated both theoretically and experimentally for axially symmetric sources. Optimal parameters and amplitude gains are derived analytically for spot and annular sources of either Gaussian or rectangular energy profiles. For a Gaussian spot source, the optimal radius is found to be λ ZGV /π. Annular sources increase the amplitude by at least a factor of 3 compared to the optimal Gaussian source. Rectangular energy profiles provide higher gain than Gaussian ones. These predictions are confirmed by semi-analytical simulation of the thermoelastic generation of Lamb waves, including the effect of material attenuation. Experimentally, Gaussian ring sources of controlled width and radius are produced with an axicon-lens system. Measured optimal geometric parameters obtained for Gaussian and annular beams are in good agreement with theoretical predictions. A ZGV resonance amplification factor of 2.1 is obtained with the Gaussian ring. Such source should facilitate the inspection of highly attenuating plates made of low ablation threshold materials like composites.

  17. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  18. Using the Internet to Promote Health Behavior Change: A Systematic Review and Meta-analysis of the Impact of Theoretical Basis, Use of Behavior Change Techniques, and Mode of Delivery on Efficacy

    Science.gov (United States)

    Joseph, Judith; Yardley, Lucy; Michie, Susan

    2010-01-01

    Background The Internet is increasingly used as a medium for the delivery of interventions designed to promote health behavior change. However, reviews of these interventions to date have not systematically identified intervention characteristics and linked these to effectiveness. Objectives The present review sought to capitalize on recently published coding frames for assessing use of theory and behavior change techniques to investigate which characteristics of Internet-based interventions best promote health behavior change. In addition, we wanted to develop a novel coding scheme for assessing mode of delivery in Internet-based interventions and also to link different modes to effect sizes. Methods We conducted a computerized search of the databases indexed by ISI Web of Knowledge (including BIOSIS Previews and Medline) between 2000 and 2008. Studies were included if (1) the primary components of the intervention were delivered via the Internet, (2) participants were randomly assigned to conditions, and (3) a measure of behavior related to health was taken after the intervention. Results We found 85 studies that satisfied the inclusion criteria, providing a total sample size of 43,236 participants. On average, interventions had a statistically small but significant effect on health-related behavior (d+ = 0.16, 95% CI 0.09 to 0.23). More extensive use of theory was associated with increases in effect size (P = .049), and, in particular, interventions based on the theory of planned behavior tended to have substantial effects on behavior (d+ = 0.36, 95% CI 0.15 to 0.56). Interventions that incorporated more behavior change techniques also tended to have larger effects compared to interventions that incorporated fewer techniques (P Internet-based interventions was enhanced by the use of additional methods of communicating with participants, especially the use of short message service (SMS), or text, messages. Conclusions The review provides a framework for the

  19. Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy.

    Science.gov (United States)

    Webb, Thomas L; Joseph, Judith; Yardley, Lucy; Michie, Susan

    2010-02-17

    The Internet is increasingly used as a medium for the delivery of interventions designed to promote health behavior change. However, reviews of these interventions to date have not systematically identified intervention characteristics and linked these to effectiveness. The present review sought to capitalize on recently published coding frames for assessing use of theory and behavior change techniques to investigate which characteristics of Internet-based interventions best promote health behavior change. In addition, we wanted to develop a novel coding scheme for assessing mode of delivery in Internet-based interventions and also to link different modes to effect sizes. We conducted a computerized search of the databases indexed by ISI Web of Knowledge (including BIOSIS Previews and Medline) between 2000 and 2008. Studies were included if (1) the primary components of the intervention were delivered via the Internet, (2) participants were randomly assigned to conditions, and (3) a measure of behavior related to health was taken after the intervention. We found 85 studies that satisfied the inclusion criteria, providing a total sample size of 43,236 participants. On average, interventions had a statistically small but significant effect on health-related behavior (d(+) = 0.16, 95% CI 0.09 to 0.23). More extensive use of theory was associated with increases in effect size (P = .049), and, in particular, interventions based on the theory of planned behavior tended to have substantial effects on behavior (d(+) = 0.36, 95% CI 0.15 to 0.56). Interventions that incorporated more behavior change techniques also tended to have larger effects compared to interventions that incorporated fewer techniques (P Internet-based interventions was enhanced by the use of additional methods of communicating with participants, especially the use of short message service (SMS), or text, messages. The review provides a framework for the development of a science of Internet

  20. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K.D. [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  1. On the joint distribution of excursion duration and amplitude of a narrow-band Gaussian process

    DEFF Research Database (Denmark)

    Ghane, Mahdi; Gao, Zhen; Blanke, Mogens

    2018-01-01

    The probability density of crest amplitude and of duration of exceeding a given level are used in many theoretical and practical problems in engineering. The joint density is essential for design of constructions that are subjected to waves and wind. The presently available joint distributions...... of amplitude and period are limited to excursion through a mean-level or to describe the asymptotic behavior of high level excursions. This paper extends the knowledge by presenting a theoretical derivation of probability of wave exceedance amplitude and duration, for a narrow-band Gaussian process...... distribution, as expected, and that the marginal distribution of excursion duration works both for asymptotic and non-asymptotic cases. The suggested model is found to be a good replacement for the empirical distributions that are widely used. Results from simulations of narrow-band Gaussian processes, real...

  2. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  3. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2009-01-01

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  4. Numerical Predictions of Mode Reflections in an Open Circular Duct: Comparison with Theory

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Ray

    2015-01-01

    The NASA Broadband Aeroacoustic Stator Simulation code was used to compute the acoustic field for higher-order modes in a circular duct geometry. To test the accuracy of the results computed by the code, the duct was terminated by an open end with an infinite flange or no flange. Both open end conditions have a theoretical solution that was used to compare with the computed results. Excellent comparison for reflection matrix values was achieved after suitable refinement of the grid at the open end. The study also revealed issues with the level of the mode amplitude introduced into the acoustic held from the source boundary and the amount of reflection that occurred at the source boundary when a general nonreflecting boundary condition was applied.

  5. Spinfoam cosmology with the proper vertex amplitude

    Science.gov (United States)

    Vilensky, Ilya

    2017-11-01

    The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.

  6. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique bea...... for cold atoms and for optical manipulation of microscopic particles.......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...

  7. Cut-constructible part of QCD amplitudes

    International Nuclear Information System (INIS)

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-01-01

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes

  8. Nonlinear (super)symmetries and amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2017-03-07

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

  9. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-01-01

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  10. Relativistic amplitudes in terms of wave functions

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1978-01-01

    In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum

  11. Scattering Amplitudes and Worldsheet Models of QFTs

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.

  12. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  13. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  14. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  15. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  16. Chiral symmetry constraints on resonant amplitudes

    Science.gov (United States)

    Bruns, Peter C.; Mai, Maxim

    2018-03-01

    We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.

  17. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...

  18. Microwave Imaging using Amplitude-only Data

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using...... amplitude-only data are compared with images obtained using the same data sets in which the phase information has been retained. In addition to this, some modifications for the imaging algorithm is presented which to some extent counters the effects of excluding the phase information in the reconstruction....

  19. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained...

  20. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    Double-time temperature dependent Green's function is used to derive soft mode frequency, dielectric permittivity, microwave absorption, quality factor, acoustic attenuation, electric conductivity, smooth function, relaxation time, ratio of figure of merits and respective applications in modern technologies. All theoretical results ...

  1. Intramolecular energy transfer and the driving mechanisms for large-amplitude collective motions of clusters

    Science.gov (United States)

    Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.

    2009-04-01

    This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to

  2. Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements.

    Science.gov (United States)

    Toussaint, Paule-Joanne; Maiz, Sofiane; Coynel, David; Doyon, Julien; Messé, Arnaud; de Souza, Leonardo Cruz; Sarazin, Marie; Perlbarg, Vincent; Habert, Marie-Odile; Benali, Habib

    2014-11-01

    Cognitive decline in normal ageing and Alzheimer's disease (AD) emerges from functional disruption in the coordination of large-scale brain systems sustaining cognition. Integrity of these systems can be examined by correlation methods based on analysis of resting state functional magnetic resonance imaging (fMRI). Here we investigate functional connectivity within the default mode network (DMN) in normal ageing and AD using resting state fMRI. Images from young and elderly controls, and patients with AD were processed using spatial independent component analysis to identify the DMN. Functional connectivity was quantified using integration and indices derived from graph theory. Four DMN sub-systems were identified: Frontal (medial and superior), parietal (precuneus-posterior cingulate, lateral parietal), temporal (medial temporal), and hippocampal (bilateral). There was a decrease in antero-posterior interactions (lower global efficiency), but increased interactions within the frontal and parietal sub-systems (higher local clustering) in elderly compared to young controls. This decreased antero-posterior integration was more pronounced in AD patients compared to elderly controls, particularly in the precuneus-posterior cingulate region. Conjoint knowledge of integration measures and graph indices in the same data helps in the interpretation of functional connectivity results, as comprehension of one measure improves with understanding of the other. The approach allows for complete characterisation of connectivity changes and could be applied to other resting state networks and different pathologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators.

    Science.gov (United States)

    Ghosh, Siddhartha; Piazza, Gianluca

    2015-06-15

    We present a fully-integrated monolithic aluminum nitride optomechanical device in which lateral vibrations generated by a piezoelectric contour mode acoustic ring resonator are used to produce amplitude modulation of an optical signal in a whispering gallery mode photonic ring resonator. Acoustic and optical resonances are independently characterized in this contour mode optomechanical resonator (CMOMR). Electrically driven mechanical modes are optically detected at 35MHz, 654MHz and 884MHz.

  4. Spectral Amplitude Coding (SAC)-OCDMA Network with 8DPSK

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Fadhil, Hilal A.; Anuar, M. S.

    2013-09-01

    Optical code division multiple access (OCDMA) technique is required to meet the increased demand for high speed, large capacity communications in optical networks. In this paper, the transmission performance of a spectral amplitude coding (SAC)-OCDMA network is investigated when a conventional single-mode fiber (SMF) is used as the transmission link using 8DPSK modulation. The DW has a fixed weight of two. Simulation results reveal that the transmission distance is limited mainly by the fiber dispersion when high coding chip rate is used. For a two-user SAC-OCDMA network operating with 2 Gbit/s data rate and two wavelengths for each user, the maximum allowable transmission distance is about 15 km.

  5. Stora's fine notion of divergent amplitudes

    Directory of Open Access Journals (Sweden)

    Joseph C. Várilly

    2016-11-01

    Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  6. Ward identities for amplitudes with reggeized gluons

    International Nuclear Information System (INIS)

    Bartles, J.; Vacca, G.P.

    2012-05-01

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  7. Connected formulas for amplitudes in standard model

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)

    2017-03-17

    Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  8. Scattering amplitudes in super-renormalizable gravity

    International Nuclear Information System (INIS)

    Donà, Pietro; Giaccari, Stefano; Modesto, Leonardo; Rachwał, Lesław; Zhu, Yiwei

    2015-01-01

    We explicitly compute the tree-level on-shell four-graviton amplitudes in four, five and six dimensions for local and weakly nonlocal gravitational theories that are quadratic in both, the Ricci and scalar curvature with form factors of the d’Alembertian operator inserted between. More specifically we are interested in renormalizable, super-renormalizable or finite theories. The scattering amplitudes for these theories turn out to be the same as the ones of Einstein gravity regardless of the explicit form of the form factors. As a special case the four-graviton scattering amplitudes in Weyl conformal gravity are identically zero. Using a field redefinition, we prove that the outcome is correct for any number of external gravitons (on-shell n−point functions) and in any dimension for a large class of theories. However, when an operator quadratic in the Riemann tensor is added in any dimension (with the exception of the Gauss-Bonnet term in four dimensions) the result is completely altered, and the scattering amplitudes depend on all the form factors introduced in the action.

  9. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution for the init...

  10. Kaon decay amplitudes using staggered fermions

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1986-12-01

    A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model

  11. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  12. Source of low frequency modulation of ENSO amplitude in a CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung-Kwon [Chonbuk National University, Division of Science Education/Institute of Science Education, Jeonju (Korea); Yeh, Sang-Wook [Korea Ocean Research and Development Institute, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Jhun, Jong-Ghap [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea); Kang, In-Sik [Seoul National University, Climate Environment System Research Center (CES), Seoul (Korea)

    2007-07-15

    We study the relationship between changes in equatorial stratification and low frequency El Nino/Southern Oscillation (ENSO) amplitude modulation in a coupled general circulation model (CGCM) that uses an anomaly coupling strategy to prevent climate drifts in the mean state. The stratification is intensified at upper levels in the western and central equatorial Pacific during periods of high ENSO amplitude. Furthermore, changes in equatorial stratification are connected with subsurface temperature anomalies originating from the central south tropical Pacific. The correlation analysis of ocean temperature anomalies against an index for the ENSO modulation supports the hypothesis of the existence of an oceanic ''tunnel'' that connects the south tropical Pacific to the equatorial wave guide. Further analysis of the wind stress projection coefficient onto the oceanic baroclinic modes suggests that the low frequency modulation of ENSO amplitude is associated with a significant contribution of higher-order modes in the western and central equatorial Pacific. In the light of these results, we suggest that, in the CGCM, change in the baroclinic mode energy distribution associated with low frequency ENSO amplitude modulation have its source in the central south tropical Pacific. (orig.)

  13. Separating fast and slow modes in coupled chaotic systems

    Directory of Open Access Journals (Sweden)

    M. Peña

    2004-01-01

    Full Text Available We test a simple technique based on breeding to separate fast and slow unstable modes in coupled systems with different time scales of evolution and variable amplitudes. The technique takes advantage of the earlier saturation of error growth rate of the fastest mode and of the lower value of the saturation amplitude of perturbation of either the fast or the slow modes. These properties of the coupled system allow a physically-based selection of the rescaling time interval and the amplitude of initial perturbations in the 'breeding' of unstable modes (Toth and Kalnay, 1993, 1996, 1997; Aurell et al., 1997; Boffetta et al., 1998 to isolate the desired mode. We perform tests in coupled models composed of fast and slow versions of the Lorenz (1963 model with different strengths of coupling. As examples we present first a coupled system which we denote 'weather with convection', with a slow, large amplitude model coupled with a fast, small amplitude model, second an 'ENSO' system with a 'tropical atmosphere' strongly coupled with a 'tropical ocean', and finally a triply coupled system denoted 'tropical-extratropical' in which a fast model (representing the 'extratropical atmosphere' is loosely coupled to the 'ENSO' system. We find that it is always possible to isolate the fast modes by taking the limit of small amplitudes and short rescaling intervals, in which case, as expected, the results are the same as the local Lyapunov growth obtained with the linear tangent model. In contrast, slow modes cannot be isolated with either Lyapunov or Singular vectors, since the linear tangent and adjoint models are dominated by the fast modes. Breeding is successful in isolating slow modes if rescaling intervals and amplitudes are chosen from physically appropriate scales.

  14. Phase-stepped television holographic technique for measuring phase and amplitude maps of small vibrations

    Science.gov (United States)

    Saldner, Henrik O.

    1996-07-01

    Phase stepping between frames in TV holography is combined with sinusoidal phase modulation to determine phase and amplitude distributions of objects vibrating with small amplitudes ( less than lambda /20, where lambda is the wavelength of the laser light used). This technique has applications in, for example, optical modal analysis and the determination of harmonic sound fields in air and water. The noise reduction that is obtained with the phase-stepping technique reduces the number of interferograms needed by one-half, which can shorten experimental time. The technique is robust, easy to use, and illustrated by modes of vibration in a simple plate and in a more complicated structure (a violin).

  15. Dynamo mode dynamics in reversed field pinches

    Science.gov (United States)

    Fitzpatrick, Richard

    1999-11-01

    Reversed field pinches (RFPs) are unstable to multiple m=1 tearing modes, resonant in the plasma core. These ``dynamo modes'' are ultimately responsible for the dynamo action which maintains the reversal of the edge toroidal magnetic field against ohmic decay. Unfortunately, the dynamo modes also generally disrupt magnetic flux surfaces in the core, thereby strongly degrading the plasma confinement. However, recent experiments in the Madison Symmetric Torus (MST) and the Reversed Field Experiment (RFX) indicate that a well-confined RFP plasma is a possibility provided that the amplitude of the dynamo modes is controlled, and the rotation of these modes is also maintained. An analytic formalism has been developed in order to investigate the nonlinear interaction of dynamo modes with one another, with static error-fields, and with eddy currents excited in the vacuum vessel or stabilizing shell. The dynamo modes are found to couple nonlinearly to form a toroidally localized magnetic structure which can be identified as the ``slinky mode,'' reported in many RFP experiments. As the mode amplitudes increase, the slinky mode forms via a series of bifurcations in which the overall mode structure and the plasma rotation profile both change discontinuously. The threshold amplitude for the onset of these bifurcations is similar to that observed experimentally. The absence of mode rotation in RFX (which gives rise to serious edge loading problems) is shown to be due to strong eddy currents excited in the resistive vacuum vessel. Dynamo modes are slowed down by these eddy currents to such an extent that they are easily locked by small static error-fields which would otherwise (i.e., in the absence of the vacuum vessel eddy currents) be unable to affect the mode rotation. Since MST does not possess a resistive vacuum vessel (in MST the thick stabilizing shell also plays the role of the vacuum vessel: in RFX there is a separate vacuum vessel inside the shell) there are no vacuum

  16. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions

    Directory of Open Access Journals (Sweden)

    Jianfa Gu

    2017-01-01

    Full Text Available The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L = 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.

  17. A comparative study of the single-mode Richtmyer-Meshkov instability

    Science.gov (United States)

    Bai, X.; Deng, X.-L.; Jiang, L.

    2017-11-01

    In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.

  18. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  19. Modified amplitude of the gravitational wave spectrum

    International Nuclear Information System (INIS)

    Ghayour, Basem; Suresh, P K

    2012-01-01

    The spectrum of thermal gravitational waves is obtained by including the high-frequency thermal gravitons created from extra-dimensional effects and is a new feature of the spectrum. The amplitude and spectral energy density of gravitational waves in a thermal vacuum state are found to be enhanced. The amplitude of the waves is modified in the frequency range (10 −16 –10 8 Hz) but the corresponding spectral energy density is less than the upper bound of various estimated results. With the addition of higher frequency thermal waves, the obtained spectral energy density of the wave in the thermal vacuum state does not exceed the upper bound put by the nucleosynthesis rate. The existence of cosmologically originated thermal gravitational waves due to extra dimension is not ruled out. (paper)

  20. Loop Amplitude Diagrams in Manifest, Maximal Supergravity

    Science.gov (United States)

    Karlsson, Anna

    The issue of finiteness of maximal supergravity has been subject to research for quite some time. Here, we approach that question through an examination of how to describe amplitude diagrams in D = 11 maximal supergravity from a field theory point of view. The strength of the formulation is the presence of manifest supersymmetry through the use of pure spinors. An initial analysis of what the subsequent characteristics turn out to be, partly in lower dimensions through dimensional reduction, gives at hand results that agree with previous work, pointing towards a first divergence for the 7-loop contribution to the 4-point amplitude in four dimensions. The text is mainly based on and may be regarded as an introduction to the main points presented there.

  1. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung; An, Soon-Il [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-06-15

    In this study, we classified two types of El Nino-Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states - strong and weak ENSO amplitude periods - and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Nino and La Nina events; the second is that the El Nino-La Nina asymmetry is reversed during strong and weak ENSO amplitude periods. El Nino events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Nino in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Nino is identical to that for weak (strong) La Nina, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east-west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Nino-La Nina asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Nino and weak La Nina over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode

  2. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...

  3. A brief introduction to modern amplitude methods

    CERN Document Server

    Dixon, Lance J.

    2014-12-10

    I provide a basic introduction to modern helicity amplitude methods, including color organization, the spinor helicity formalism, and factorization properties. I also describe the BCFW (on-shell) recursion relation at tree level, and explain how similar ideas - unitarity and on-shell methods - work at the loop level. These notes are based on lectures delivered at the 2012 CERN Summer School and at TASI 2013.

  4. Phase analysis of amplitude binary mask structures

    Science.gov (United States)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Vogler, Uwe; Bramati, Arianna; Voelkel, Reinhard

    2016-03-01

    Shaping of light behind masks using different techniques is the milestone of the printing industry. The aerial image distribution or the intensity distribution at the printing distances defines the resolution of the structure after printing. Contrast and phase are the two parameters that play a major role in shaping of light to get the desired intensity pattern. Here, in contrast to many other contributions that focus on intensity, we discuss the phase evolution for different structures. The amplitude or intensity characteristics of the structures in a binary mask at different proximity gaps have been analyzed extensively for many industrial applications. But the phase evolution from the binary mask having OPC structures is not considered so far. The mask we consider here is the normal amplitude binary mask but having high resolution Optical Proximity Correction (OPC) structures for corners. The corner structures represent a two dimensional problem which is difficult to handle with simple rules of phase masks design and therefore of particular interest. The evolution of light from small amplitude structures might lead to high contrast by creating sharp phase changes or phase singularities which are points of zero intensity. We show the phase modulation at different proximity gaps and can visualize the shaping of light according to the phase changes. The analysis is done with an instrument called High Resolution Interference Microscopy (HRIM), a Mach-Zehnder interferometer that gives access to three-dimensional phase and amplitude images. The current paper emphasizes on the phase measurement of different optical proximity correction structures, and especially on corners of a binary mask.

  5. Deep Inelastic Scattering at the Amplitude Level

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances

  6. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Transversity Amplitudes in Hypercharge Exchange Processes

    International Nuclear Information System (INIS)

    Aguilar Benitez de Lugo, M.

    1979-01-01

    ' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from K p and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs

  8. Accommodative Amplitude in School-Age Children

    Directory of Open Access Journals (Sweden)

    Ikaunieks Gatis

    2017-10-01

    Full Text Available In children, intensive near-work affects the accommodation system of the eye. Younger children, due to anatomical parameters, read at smaller distance than older children and we can expect that the accommodation system of younger can be affected more than that of older children. We wanted to test this hypothesis. Some authors showed that the norms of amplitude of accommodation (AA developed by Hofstetter (1950 not always could be applied for children. We also wanted to verify these results. A total of 106 (age 7-15 children participated in the study. Distance visual acuity was measured for all children and only data of children with good visual acuity 1.0 or more (dec. units were analysed (73 children. Accommodative amplitude was measured before and after lessons using subjective push-up technique (with RAF Near Point Ruler. The results showed that the amplitude of accommodation reduced significantly (p < 0.05 during the day and decrease of AA was similar in different age groups (about ~0.70 D. Additional measurements are needed to verify that the observed changes in AA were associated with fatigue effect. The results showed lower accommodation values compared to average values calculated according to the Hofstetter equation (p < 0.05.

  9. Differential equations for Feynman graph amplitudes

    International Nuclear Information System (INIS)

    Remiddi, E.

    1997-01-01

    It is by now well established that, by means of the integration by part identities all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first-order differential equations for the master integrals themselves. The equations con then be used for the numerical evaluation of the amplitudes as well as for investigating their analytic properties, such as the asymptotic and threshold behaviours and the corresponding expansions (and for analytic integration purposes, when possible). The new method is illustrated through its somewhat detailed application to the case of the one-loop self-mass amplitude, by explicitly working out expansions and quadrature formulas, both in arbitrary continuous dimension n and in the n→4 limit. It is then shortly discussed which features of the new method are expected to work in the more general case of multi-point, multi-loop amplitudes

  10. Amplitude analysis for hypercharge exchange reactions

    CERN Document Server

    Barger, V

    1972-01-01

    The s channel helicity non-flip amplitudes for the line reversed reactions pi N to K( Sigma , Lambda ) and KN to pi ( Sigma , Lambda ) are determined directly from cross-section and polarization data at 4 GeV/c. Rigorous bounds are obtained on the magnitudes of the flip amplitudes, whose phases are assumed to be given by an exchange degenerate K*-K** Regge trajectory. The solution for the non-flip amplitude is unique and shows the following characteristics: (i) Im K* ( Delta lambda =0) has a 'cross-over' zero at t approximately=-0.15 in both Sigma and Lambda reactions, (ii) Im K** ( Delta lambda =0) has an approximate double zero near t approximately=-0.6 in Sigma reactions and a positive minimum there in Lambda reactions, (iii) Re K* ( Delta lambda =0) and Re K** ( Delta lambda =0) are less peripheral in character than their imaginary counter-part and have similar behaviour at alpha =0 to simple Regge poles. (12 refs).

  11. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  12. Synthetic Amplitude Spectrum and Its Extensions for Analyzing the Two Perpendicular Directional Vibration Displacement Signals of a Rotating Rotor

    Directory of Open Access Journals (Sweden)

    Liang Yonggang

    2013-01-01

    Full Text Available Classical Amplitude Spectrum analysis and Full Amplitude Spectrum analysis exhibit deficiencies in analyzing the two perpendicular directional vibration displacement signals of a rotating rotor. The shape of Classical Amplitude Spectrum is influenced by the installing position of its sensor. Neither Classical Amplitude Spectrum nor Full Amplitude Spectrum can indicate the actual radial rotor vibration amplitude on every frequency. Therefore, the previous two methods are not convenient to be used in rotating machine diagnoses. To solve these problems, this paper proposes a new rotor vibration analyzing tool here called Synthetic Amplitude Spectrum (SAS. The paper discusses the principle of SAS analysis, provides the specific making process of SAS, and applies it to two other current important analyzing methods in rotating machine diagnoses, resulting in two SAS extensions. The two extensions include a short-time SAS array tool for rotor vibration time-frequency analysis and a SAS waterfall plot tool for analyzing rotor vibration during machine startup or shutdown. The experiments and theoretical analysis showed that SAS and its two extension methods are not influenced by the installation position of the two sensors, and each amplitude of the spectrums can represent the actual radial rotor vibration amplitude on the frequency.

  13. Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models

    Science.gov (United States)

    Muir, Les C.; Fedorov, Alexey V.

    2017-03-01

    Climate models show a broad diversity in the simulations of the Atlantic meridional overturning circulation (AMOC) with its leading modes of variability having different amplitudes, periods and driving mechanisms. Theoretical considerations and computations using ocean GCMs suggest that on interdecadal timescales this variability can be controlled by an internal weakly-damped oceanic mode associated with westward propagation of large-scale density anomalies in the North Atlantic Ocean. These anomalies are dominated by temperature with some compensation from salinity. The quadrature phases of this mode include the strengthening of the AMOC, followed a quarter-period later by the development of a broad warm temperature anomaly in the northern Atlantic extending to about 1000 m, then followed by the weakening of the AMOC, and then the upper-ocean cooling. Here, we investigate whether this mode is present in the simulations of Coupled Model Intercomparison Project 5 (CMIP5). Out of the 25 models investigated, we find that more than half of the models exhibit variability consistent with this mode. Some of the relevant modal features includes statistically significant spectral peaks in the band between 15 and 35 years, the westward propagation of density anomalies in the 40°N-60°N latitudinal band, which sets the period of the mode, the existence of the distinct quadrature phases of the AMOC variability, and the predominant effect of temperature on density anomalies.

  14. Equilibrium calculations and mode analysis

    International Nuclear Information System (INIS)

    Herrnegger, F.

    1987-01-01

    The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device

  15. Unidirectional edge modes launched by surface fluctuation in magnetic metamaterials

    Science.gov (United States)

    Chen, Huajin; Luo, Youzhu; Liang, Chenghua; Li, Zhenglin; Liu, Shiyang; Lin, Zhifang

    2018-03-01

    We demonstrate theoretically that the surface fluctuation can be used to launch the unidirectional electromagnetic edge mode for a Gaussian beam incident normal to the magnetic metamaterials (MMs) composed of an array of ferrite rods with the uppermost layer introduced position or size fluctuation in the coupling region. Such an edge mode is solely allowed to propagate in one direction due to the time-reversal symmetry breaking in MMs under the exertion of an external magnetic field, and it is substantially enhanced by the magnetic surface plasmon resonance. The nonreciprocal excitation of the edge states can also be understood by examining the scattering amplitudes of different partial waves, which indicate that the 1st order of the angular momentum channel plays a crucial role in realizing the nonreciprocity. The present research might be significant for the implementation of unidirectional absorption and the reexamination of bound states in the continuum in the context of MMs. In addition, the unique optical property can be exploited to design electromagnetic waveguide devices, such as one-way waveguide and wave bender, which are strongly robust against the obstacles placed in the channel of designed devices, facilitating to realize optical integrated circuits.

  16. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T⊥/T∥>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  17. Coupling of tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Finn, J.M.

    1977-01-01

    The simultaneous presence of tearing modes of different helical pitches leads to the destruction of magnetic surfaces, which has been suggested as the mechanism leading to the onset of the disruptive instability in tokamaks. For current profiles in which the m = 2 mode is unstable, but the m = 3 is stable, the coupling of the m = 3 to the m = 2 through the poloidal variation of the toroidal field can drive the m = 3 amplitude psi 3 to order psi 2 times the inverse aspect ratio. Detailed calculations, both analytical and numerical, have been performed for two models for the equilibrium and m = 2 mode structure. A slab model and incompressible m = 3 perturbations are assumed. The m = 3 amplitude increases with shear, up to a point, showing that as the current channel shrinks, overlap of resonances becomes more likely. The results also apply qualitatively to other m, m +- 1 interactions

  18. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    Science.gov (United States)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  19. Responses to amplitude modulated infrared stimuli in the guinea pig inferior colliculus

    Science.gov (United States)

    Richter, Claus-Peter; Young, Hunter

    2013-03-01

    Responses of units in the central nucleus of the inferior colliculus of the guinea pig were recorded with tungsten electrodes. The set of data presented here is limited to high stimulus levels. The effect of changing the modulation frequency and the modulation depth was explored for acoustic and laser stimuli. The selected units responded to sinusoidal amplitude modulated (AM) tones, AM trains of clicks, and AM trains of laser pulses with a modulation of their spike discharge. At modulation frequencies of 20 Hz, some units tended to respond with 40 Hz to the acoustic stimuli, but only at 20 Hz for the trains of laser pulses. For all modes of stimulation the responses revealed a dominant response to the first cycle of the modulation, with decreasing number of action potential during successive cycles. While amplitude modulated tone bursts and amplitude modulated trains of acoustic clicks showed similar patterns, the response to trains of laser pulses was different.

  20. THE THEORETICAL FOUNDATIONS OF VIBRATION DAMPERS BY ROLLING FRICTION

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2015-06-01

    Full Text Available Purpose. There are some unresolved issues in vibration damping – the lack of engineering calculations for the vibration dampers by rolling friction; the absence of evidence of their application appropriateness. Considering this fact, the authors suggest to prove that the dampers based on rolling friction, are similar in rate of oscillation damping by hydraulic shock absorbers. At the same time, they are easier for the hydraulic design, and easily amenable to manual adjustment, both in automatic and manual mode. Methodology. Fixed techniques of practice in order to determine amplitudes of the oscillations of a shock absorber led to a predetermined result and will apply this theory in the calculation of other vibration dampers. Findings. Analysis of the formulas and graphs leads to the following conclusions and recommendations: 1 the nature of the oscillation damping at vibration dampers by rolling friction is close to their decay in the viscous resistance; 2 when conducting the necessary experiments the shock absorber rolling can be recommended as alternatives to hydraulic ones. The research results of this task will help implement the new trend in reduction of dynamic loads in vehicles. Originality. With the help of theoretical curves to determine the coefficients of rolling friction the dependences for determining the amplitudes of the oscillations in the vertical movement of cargo were obtained. At the same time, the previously proposed analytical dependence for determining the coefficient of rolling friction contains only conventional mechanical constants of the contacting bodies and there geometrical dimensions. Practical value. Due to the existing well-known disadvantages of hydraulic shock absorbers it would be logical to apply shock absorbers that are technologically convenient in manufacturing and easy to adjust the damping rate. The proposed theory can be used in the design of shock absorbers rolling as an alternative to the hydraulic

  1. Teaching Modes for Manchu Language and Culture

    Directory of Open Access Journals (Sweden)

    Zhao Aping

    2009-10-01

    Full Text Available The paper is concerned with the combination of Manchu language teaching with culture teaching in two aspects, from which the basic teaching modes can be concluded. First, on the theoretical level, the author states the combined learning mode of ethnic language and culture learning in connection with the multi-cultural interactive mode, and analyzes its theoretic foundation. Second, on the practical level, the paper introduces some of the effective language and culture teaching methods, such as culture lectures, culture discussions, culture investigations, culture comparisons and culture research.

  2. Ethnic differences in electrocardiographic amplitude measurements

    International Nuclear Information System (INIS)

    Mansi, Ishak A.; Nash, Ira S.

    2004-01-01

    There is a controversy regarding ethnic differences in electrocardiographic (ECG) patterns because of the potentially confounding socioeconomic, nutritional, environmental and occupational factors. We reviewed the first 1000 medical files of a multiethnic community, where all individuals shared similar living conditions. Only healthy adults age 15 to 60 years were included. Wave amplitudes were measured manually from the standard 12lead ECG. Minnesota coding was used. ECG from 597 subjects were included in the study: 350 Saudi Arabians, 95 Indians, 17 Sri-Lankans, 39 Filipinos, and 57 Caucasians; 349 were men. the mean +-SD of Sokolow-Lyon voltage (SLV) in men was signifcantly different among ethnic groups (2.9+-0.86, 2.64+-0.79, 2.73+-0.72, 3.23+-0.61, 2.94+-0.6, 2.58+-0.79 mV, P=0.0006, for Saudi's, Indians, Jordanians, Filipinos, Sri-Lankans, and Caucasians, respectively). SLV was similar among ethnic groups in women. The prevalence of early transition pattern was also different among ethnic groups in men but not women (15.8%, 34.6%, 17.9%, 21.7%, 35.3%, 26.8% in Suadi, Indian, Jordanian, Filipino, Sri-Lankan, and Caucasian, respectively, P=0.037). T wave amplitude was significantly different among ethnic groups in selected lead. ECG wave amplitude differs with ethnic region even when other factors are similar. Using SLV of 3.5 mV as a criterion may overestimate the incidence of left ventricular hypertrophy in some ethnic groups. The pattern of high R wave in lead V1is common in healthy adults in certain ethnic groups. T wave height differs with ethnic origin and sex. (author)

  3. The Effect of Amplitude Modulation on the Axial Resolution of Doppler-Based Ultrasonic Topography Measurement

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid

    2016-01-01

    Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance...... of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement...

  4. From correlation functions to scattering amplitudes

    Science.gov (United States)

    Eden, Burkhard; Korchemsky, Gregory P.; Sokatchev, Emery

    2011-12-01

    We study the correlation functions of half-BPS protected operators in mathcal{N} = {4} super-Yang-Mills theory, in the limit where the positions of adjacent operators become light-like separated. We compute the loop corrections by means of Lagrangian insertions. The divergences resulting from the light-cone limit are regularized by changing the dimension of the integration measure over the insertion points. Switching from coordinates to dual momenta, we show that the logarithm of the correlation function is identical with twice the logarithm of the matching MHV gluon scattering amplitude. We present a number of examples of this new relation, at one and two loops.

  5. Inlaying vertex function and scattering amplitude

    International Nuclear Information System (INIS)

    Naito, S.

    1997-01-01

    Scattering processes among strings are analyzed by using fundamental equations of three types, which divide the whole complex z-plane into various types of N punctured ring domains plus various unpunctured ring domains, where internal strings freely propagate. In order to calculate scattering amplitudes (among physical particles) in Witten close-quote s quantum string field theory, we derive and apply the open-quotes Gluing theorem,close-quote close-quote mathematical proof of which is given (in operator forms) by constructing various (inlint) conformal mapping operators. copyright 1997 American Institute of Physics

  6. Multiloop integrand reduction for dimensionally regulated amplitudes

    Science.gov (United States)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2013-12-01

    We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

  7. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    Science.gov (United States)

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  8. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    Science.gov (United States)

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook

    2017-08-01

    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  9. A novel amplitude modulated triangular carrier gain linearization technique for SPWM inverter

    OpenAIRE

    Ramkumar Subburam; Jeevananthan Seenithangam; Kamaraj Vijayarajan

    2009-01-01

    This paper presents a new method to extend the linearity of the sinusoidal pulse width modulation (SPWM) to full range of the pulse dropping region. The proposed amplitude modulated triangular carrier PWM method (AMTCPWM) increases the dynamic range of the SPWM control and eliminates the need of nonlinear modulation in the pulse dropping region to reach the square wave boundary. The novel method combines the spectral quality of SPWM with the efficient single-mode linear control. A simple anal...

  10. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.

    Science.gov (United States)

    Ma, Zong Min; Kou, Lili; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2013-06-07

    The effect of stray capacitance on potential measurements was investigated using Kelvin probe force microscopy (KPFM) at room temperature under ultra-high vacuum (UHV). The stray capacitance effect was explored in three modes, including frequency modulation (FM), amplitude modulation (AM) and heterodyne amplitude modulation (heterodyne AM). We showed theoretically that the distance-dependence of the modulated electrostatic force in AM-KPFM is significantly weaker than in FM- and heterodyne AM-KPFMs and that the stray capacitance of the cantilever, which seriously influences the potential measurements in AM-KPFM, was almost completely eliminated in FM- and heterodyne AM-KPFMs. We experimentally confirmed that the contact potential difference (CPD) in AM-KPFM, which compensates the electrostatic force between the tip and the surface, was significantly larger than in FM- and heterodyne AM-KPFMs due to the stray capacitance effect. We also compared the atomic scale corrugations in the local contact potential difference (LCPD) among the three modes on the surface of Si(111)-7 × 7 finding that the LCPD corrugation in AM-KPFM was significantly weaker than in FM- and heterodyne AM-KPFMs under low AC bias voltage conditions. The very weak LCPD corrugation in AM-KPFM was attributed to the artefact induced by topographic feedback.

  11. Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides

    Science.gov (United States)

    Zografopoulos, D. C.; Sinatkas, G.; Lotfi, E.; Shahada, L. A.; Swillam, M. A.; Kriezis, E. E.; Beccherelli, R.

    2018-02-01

    A class of electro-optically tunable metamaterial absorbers is designed and theoretically investigated in the infrared regime towards realizing free-space amplitude modulators. The spacer between a subwavelength metallic stripe grating and a back metal reflector is occupied by a bilayer of indium tin oxide (ITO) and hafnium oxide (HfO_2). The application of a bias voltage across the bilayer induces free-carrier accumulation at the HfO_2/ITO interface that locally modulates the ITO permittivity and drastically modifies the optical response of the absorber owing to the induced epsilon-near-zero (ENZ) effect. The carrier distribution and dynamics are solved via the drift-diffusion model, which is coupled with optical wave propagation studies in a common finite-element method platform. Optimized structures are derived that enable the amplitude modulation of the reflected wave with moderate insertion losses, theoretically infinite extinction ratio, sub-picosecond switching times and low operating voltages.

  12. Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes.

    Science.gov (United States)

    Spagnolie, Saverio E; Liu, Bin; Powers, Thomas R

    2013-08-09

    The motion of a rotating helical body in a viscoelastic fluid is considered. In the case of force-free swimming, the introduction of viscoelasticity can either enhance or retard the swimming speed and locomotive efficiency, depending on the body geometry, fluid properties, and the body rotation rate. Numerical solutions of the Oldroyd-B equations show how previous theoretical predictions break down with increasing helical radius or with decreasing filament thickness. Helices of large pitch angle show an increase in swimming speed to a local maximum at a Deborah number of order unity. The numerical results show how the small-amplitude theoretical calculations connect smoothly to the large-amplitude experimental measurements.

  13. Getting superstring amplitudes by degenerating Riemann surfaces

    International Nuclear Information System (INIS)

    Matone, Marco; Volpato, Roberto

    2010-01-01

    We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.

  14. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  15. Wrist proprioception: amplitude or position coding?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-10-01

    Full Text Available This work examines physiological mechanisms underlying the position sense of the wrist, namely the codification of proprioceptive information related to pointing movements of the wrist towards kinesthetic targets. Twenty-four healthy subjects participated to a robot-aided assessment of their wrist proprioceptive acuity to investigate if the sensorimotor transformation involved in matching targets located by proprioceptive receptors relies on amplitude or positional cues. A joint position matching test was performed in order to explore such dichotomy. In this test, the wrist of a blindfolded participant is passively moved by a robotic device to a preset target position and, after a removal movement from this position, the participant has to actively replicate and match it as accurately as possible. The test involved two separate conditions: in the first the matching movements started from the same initial location; in the second one the initial location was randomly assigned. Target matching accuracy, precision and bias in the two conditions were then compared. Overall results showed a consistent higher performance in the former condition than in the latter, thus supporting the hypothesis that the joint position sense is based on vectorial or amplitude coding rather than positional.

  16. Scattering amplitudes with off-shell quarks

    Science.gov (United States)

    van Hameren, A.; Kutak, K.; Salwa, T.

    2013-11-01

    We present a prescription to calculate manifestly gauge invariant tree-level scattering amplitudes for arbitrary scattering processes with off-shell initial-state quarks within the kinematics of high-energy scattering. Consider the embedding of the process, in which the off-shell u-quark is replaced by an auxiliary quark qA, and an auxiliary photon γA is added in final state. The momentum flow is as if qA carries momentum k1 and the momentum of γA is identical to 0. γA only interacts via Eq. (3), and qA further only interacts with gluons via normal quark-gluon vertices. qA-line propagators are interpreted as iℓ̸1/(2ℓ1ṡp), and are diagonal in color space. Sum the squared amplitude over helicities of the auxiliary photon. For one helicity, simultaneously assign to the external qA-quark and to γA the spinor and polarization vector |ℓ1], {, {}. Multiply the amplitude with √{-x1k12/2}. For the rest, normal Feynman rules apply.Some remarks are at order. Regarding the momentum flow, we stress, as in [20], that momentum components proportional to k1 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta flowing through qA-lines.Regarding the sum over helicities, one might argue that only one of them leads to a non-zero result for given helicity of the final-state quark, but there may, for example, be several identical such quarks in the final state with different helicities.In case of more than one quark in the final state with the same flavor as the off-shell quark, the rules as such admit graphs with γA-propagators. These must be omitted. They do not survive the limit Λ→∞ in the derivation, since the γA-propagators are suppressed by 1/Λ.The rules regarding the qA-line could be elaborated further like in [20], leading to simplified vertices for gluons attached to this line and reducing the numerator of the eikonal propagators to 1. Formulated as above, however, the prescription is more straightforward and

  17. Specific frequency bands of amplitude low-frequency oscillation encodes personality.

    Science.gov (United States)

    Wei, Luqing; Duan, Xujun; Zheng, Chunyan; Wang, Shanshan; Gao, Qing; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2014-01-01

    The biological model of extraversion and neuroticism identified by Eysenck has stimulated increasing interest in uncovering neurobiological substrate of the two fundamental dimensions. Here we aim to explore brain disturbances underlying extraversion and neuroticism in 87 healthy individuals using fractional amplitude of low-frequency fluctuations (LFF) on resting-state functional magnetic resonance imaging. Two different frequency bands, Slow-5 (0.01-0.027 Hz) exhibiting higher power and involving larger brain regions, and Slow-4 (0.027-0.073 Hz) exhibiting less power and emerging locally, were analyzed. Our results showed a positive correlation between LFF amplitude at Slow-5 and extraversion in medial prefrontal cortex and precuneus, important portions of the default mode network, thus suggesting a link between default network activity and personality traits. LFF amplitude at Slow-5 was correlated positively with neuroticism in right posterior portion of the frontal lobe, further validating neuroticism with frontal lateralization. In addition, LFF amplitude at Slow-4 was negatively associated with extraversion and neuroticism in left hippocampus (HIP) and bilateral superior temporal cortex (STC) respectively, supporting the hypothesized (inverse) relationship between extraversion and resting arousal, also implying neural circuit underlying emotional process influencing on personality. Overall, these findings suggest the important relationships, between personality and LFF amplitude dynamic, depend on specific frequency bands. Copyright © 2012 Wiley Periodicals, Inc.

  18. Small--radiation-amplitude dynamical voltage model of an irradiated, externally unbiased Josephson tunnel junction

    International Nuclear Information System (INIS)

    McAdory, R.T. Jr.

    1988-01-01

    A theory is presented for the nonequilibrium voltage states of an irradiated Josephson junction shunted by an external resistor but with no external current or voltage biasing. This device, referred to as a free-running Josephson junction, is modeled in a small--radiation-amplitude, deterministic regime extending the previous work of Shenoy and Agarwal. The time-averaged induced voltage is treated as a dynamical variable, the external radiation is modeled as a current source, and the induced junction-radiation vector potential, with and without a mode structure, is treated to first order in the driving currents. A dynamical equation for the time-averaged induced voltage yields a (nonequilibrium) steady-state relation between the time-averaged induced voltage and the incident radiation amplitude valid for a wide range of voltages, including zero. Regions of bistability occur in the voltage--versus--incident-amplitude curves, some of which are dependent on the external resistor. The zero-voltage state breaks down, as the external radiation amplitude is increased, at a critical value of the incident-radiation amplitude inversely proportional to the external resistance

  19. Modified pi pi amplitude with sigma pole

    Czech Academy of Sciences Publication Activity Database

    Bydžovský, Petr; Kaminski, R.; Nazari, V.

    2014-01-01

    Roč. 90, č. 11 (2014), s. 116005 ISSN 1550-7998 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : scattering data * equation * phase-shifts Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014

  20. System-theoretic Interpretation of the Mode Sensing Hypothesis

    Science.gov (United States)

    2014-08-01

    Cheng, Xinyan Deng, and Tyson L. Hedrick. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta). J. Exp. Biol...Control. Academic Press, San Diego, 1995. [59] R. H. Bartels and G. W. Stewart. Algorithm 432 : Solution of the matrix equation AX C XB D C . Communications

  1. Theoretical molecular structure, vibrational frequencies and NMR ...

    African Journals Online (AJOL)

    Theoretical results have been successfully compared with available experimental data in the literature. Regarding the calculations, 2mpe-4bb prefers enol-imine form and DFT method is superior to HF approach except for predicting bond lengths. KEY WORDS: Schiff bases, Normal mode frequencies, HF, DFT, NMR. Bull.

  2. Failure Modes of thin supported Membranes

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette

    2007-01-01

    Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....

  3. Further Development of Rotating Rake Mode Measurement Data Analysis

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.

    2013-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.

  4. Stability of coupled tearing and twisting modes in tokamaks

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1994-03-01

    A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable open-quote compound close-quote modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, open-quote compound close-quote modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-β plasma, but twisting parity layers become more probable as the plasma β is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up

  5. Recovery of seismic attributes by using the amplitude zero offset migration; Recuperacao de atributos sismicos utilizando a migracao para afastamento nulo em verdadeira amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Angela Cristina Romero

    1999-07-01

    In the present work a method was developed to extract reflections coefficients after applying amplitude zero offset migration (TA MZO) on synthetic seismic data composed of several common offset sections. Sorting to the common mid point domain (CMP) provides the conventional amplitude versus offset curve directly. A second MZO application with different weights provides an estimation of incident angles, transforming AVO in AVA. Four models were developed with this objective, which basic difference is the structural complexity. One of these models is based on Brazilian turbidity reservoir of Neo-Albian age and proves the wide applicability of this methodology on reservoir characterization. Final, AVA results were compared with the theoretical AVA, quantifying the relative errors between them.

  6. A Logarithmic-Amplitude Polar Diagram

    Directory of Open Access Journals (Sweden)

    Trond Andresen

    2001-04-01

    Full Text Available A polar diagram where the amplitude of the transfer function is on a logarithmic scale, is presented. This gives a one-size-fits-all diagram with no need for zooming in and out, and no need for additional reasoning about infinite-radius encirclements when there are poles on the imaginary axis - as opposed to what is usually neccessary with the standard polar (Nyquist- diagram. All properties needed for stability considerations are upheld, such as encirclements, gain and phase margins. The path for s in the loop transfer function is carefully chosen with regard to possible poles on the imaginary axis. Small excursions into the right half plane in the form of arcs of different-sized logarithmic spirals result in corresponding large but finite arcs that do not overlap in the logarithmic polar plots.

  7. Subleading soft graviton theorem for loop amplitudes

    Science.gov (United States)

    Sen, Ashoke

    2017-11-01

    Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.

  8. Geological characteristics of low-amplitude faults

    Energy Technology Data Exchange (ETDEWEB)

    Matveyev, A.K.; Kozel' skiy, I.T.; Mazor, Yu.R.; Shimorina, Ye.F.; Stefanova, Ye.I.

    1982-01-01

    It is indicated that the faults which developed in the coal mass of the Kuznetsk Basin change the mineralogical-petrographic properties of the sedimentary rocks and coals. This results in a corresponding change in physical properties. The established local transformations of rocks associated with the formation of a fault (intensification of microfracturing in the quartz grains, increase in the content of quartz with structural defect, change in structural-textural features of rocks; decrease in the quantity of swelling blocks in mixed-stratified formations of the series montmorillonite-hydromica; change in the inner structure of coal, etc.) can be used to create new methods and techniques aimed at finding low amplitude disorders.

  9. Polynomial structures in one-loop amplitudes

    International Nuclear Information System (INIS)

    Britto, Ruth; Feng Bo; Yang Gang

    2008-01-01

    A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.

  10. More on the duality correlators/amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Durham University, Science Laboratories, South Rd, Durham DH1 3LE (United Kingdom); Korchemsky, Gregory P., E-mail: gregory.korchemsky@cea.fr [Institut de Physique Theorique (Unite de Recherche Associee au CNRS URA 2306), CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Sokatchev, Emery [LAPTH (Laboratoire d' Annecy-le-Vieux de Physique Theorique, UMR 5108), Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France)

    2012-03-19

    We continue the study of n-point correlation functions of half-BPS protected operators in N=4 super-Yang-Mills theory, in the limit where the positions of the adjacent operators become light-like separated. We compute the l-loop corrections by making l Lagrangian insertions. We argue that there exists a simple relation between the (n+l)-point Born-level correlator with l Lagrangian insertions and the integrand of the n-particle l-loop MHV scattering amplitude, as obtained by the recent momentum twistor construction of Arkani-Hamed et al. We present several examples of this new duality, at one and two loops.

  11. The evolution of transmission mode

    Science.gov (United States)

    Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.

    2017-01-01

    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251

  12. Amplitude correlations for inelastic proton scattering from 48Ti

    International Nuclear Information System (INIS)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.

    1981-01-01

    The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)

  13. Correlations for reduced-width amplitudes in 49V

    International Nuclear Information System (INIS)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.

    1980-01-01

    Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution

  14. Theoretical perspectives on strange physics

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K 0 -anti K 0 mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, μ decays, hyperon decays and neutrino physics is given

  15. Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna

    International Nuclear Information System (INIS)

    Park, J.-K.; Goldston, R.J.; Fredrickson, E.D.; Bell, M.G.; Jaworski, M.A.; Kelly, F.; Gerhardt, S.P.; Kaye, S.M.; Menard, J.E.; Ono, M.; Crocker, N.A.; Kubota, S.; Maingi, R.; Tritz, K.

    2014-01-01

    Two important topics for tokamak edge-localized modes (ELM) control, based on non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: experimental observations of the edge harmonic oscillation (EHO) in NSTX (with lower frequency than EHOs in DIII-D and elsewhere), and theoretical study of its external drive using the high-harmonic fast wave (HHFW) antenna as a 3D field coil. EHOs were observed particularly clearly in NSTX ELM-free operation with very low n core modes. A number of diagnostics have confirmed n = 4–6 edge-localized and coherent oscillations in the 2–8 kHz frequency range. These oscillations seem to have a favoured operational window in rotational shear, similar to EHOs in DIII-D quiescent H modes. However, in NSTX, they are not observed to provide significant particle or impurity transport, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4–6 while minimizing n = 1–3. Also, ideal perturbed equilibrium code calculations show that the optimized configuration with only 1 kAt current can produce comparable or larger displacements than the observed internal modes. Thus it may be possible to use externally driven EHOs to relax the edge pressure gradient and control ELMs in NSTX-U and future devices. Fine and external control over the edge pressure gradient would be a very valuable tool for tokamak control. (paper)

  16. Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer

    Science.gov (United States)

    Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick

    2017-12-01

    This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.

  17. MHV Vertices And Tree Amplitudes In Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward E-mail: witten@ias.edu

    2004-09-01

    As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)

  18. MHV Vertices And Tree Amplitudes In Gauge Theory

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)

  19. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...

  20. Active Control of Compressor Stall inception: A Bifurcation-Theoretic Approach

    National Research Council Canada - National Science Library

    Liaw, Der-Cherng; Abed, Eyad H

    1994-01-01

    ...). This model consists of three ordinary differential equations with state variables being the mass flow rate, pressure rise, and the amplitude of the first harmonic mode of the asymmetric component...

  1. Experimental evidence and theory for the interaction of superthermal electrons with the MHD modes during ECRH

    International Nuclear Information System (INIS)

    Lazaros, Avrilios

    2000-01-01

    The interaction of ECRH with the m/n=2/1 tearing mode, which was observed in toroidal plasmas, is attributed to the superthermal electrons which are produced on the EC resonance by the ECRH. Superthermal electrons diffusing across the q=2 surface, exchange power with the m/n=2/1 MHD mode which is either suppressed or enhanced. When the EC resonance is outside the rational surface, the mode is always suppressed. When the EC resonance is inside the rational surface, modes with large amplitude are enhanced while modes with small amplitude are suppressed. (author)

  2. Effects of shape distortions and imperfections on mode frequencies and collective linewidths in nanomagnets

    Science.gov (United States)

    Nembach, H. T.; Shaw, Justin M.; Silva, T. J.; Johnson, W. L.; Kim, S. A.; McMichael, R. D.; Kabos, P.

    2011-03-01

    Brillouin light scattering shows that shape distortions in Ni80Fe20 nanomagnets can have a dramatic effect on the measured collective linewidth of certain spin-wave modes. The intentional introduction of quantifiable asymmetric egglike shape distortion to an ideal elliptical structure lifts the degeneracy of end modes with concentrated amplitude at the nanomagnet edges. In contrast, modes with concentrated amplitude at the interior are significantly less affected by the distortion. The splitting of end modes by asymmetric distortions explains the large inhomogeneous linewidth broadening in end modes found in large ensembles of nanomagnets that contain a relatively small statistical variation in the degree of distortion.

  3. Finite-time Stückelberg interferometry with nanomechanical modes

    Science.gov (United States)

    Seitner, Maximilian J.; Ribeiro, Hugo; Kölbl, Johannes; Faust, Thomas; Weig, Eva M.

    2017-03-01

    Stückelberg interferometry describes the interference of two strongly coupled modes during a double passage through an avoided energy level crossing. In this work, we investigate finite-time effects in Stückelberg interferometry and discuss the exact analytical solution of the double passage Stückelberg problem by expanding the finite-time solution of the Landau-Zener problem. Approximating the return probability amplitudes of the double passage in distinct limits reveals uncharted parameter regimes of Stückelberg interferometry where finite-time effects affect the coherent exchange of energy. We find the long-time limit of the exact solution to formally coincide with the well-established adiabatic impulse model which is, to the best of our knowledge, the only regime of Stückelberg interferometry reported so far. Experimentally, we study all predicted regimes using a purely classical, strongly coupled nanomechanical two-mode system of high quality factor. The classical two-mode system consists of the in-plane and out-of-plane fundamental flexural mode of a high stress silicon nitride string resonator, coupled via electric gradient fields. We exploit our experimental and theoretical findings by studying the onset of Stückelberg interference in dependence of the characteristic system control parameters and obtain characteristic excitation oscillations between the two modes even without the explicit need of traversing the avoided crossing. The presented findings are not limited to classical mechanical two-mode systems but can be applied to every strongly coupled (quantum) two-level system, for example a spin-1/2 system or superconducting qubit.

  4. Eigenvalue amplitudes of the Potts model on a torus

    Science.gov (United States)

    Richard, Jean-François; Jacobsen, Jesper Lykke

    2007-05-01

    We consider the Q-state Potts model in the random-cluster formulation, defined on finite two-dimensional lattices of size L×N with toroidal boundary conditions. Due to the non-locality of the clusters, the partition function Z(L,N) cannot be written simply as a trace of the transfer matrix T. Using a combinatorial method, we establish the decomposition Z(L,N)=∑bK, where the characters K=∑( are simple traces. In this decomposition, the amplitudes b of the eigenvalues λ of T are labelled by the number l=0,1,…,L of clusters which are non-contractible with respect to the transfer ( N) direction, and a representation D of the cyclic group C. We obtain rigorously a general expression for b in terms of the characters of C, and, using number theoretic results, show that it coincides with an expression previously obtained in the continuum limit by Read and Saleur.

  5. Effects of 6q bags in the 1D2 pp scattering amplitude and the problem of dibaryon resonances

    International Nuclear Information System (INIS)

    Grach, I.L.; Kalashnikova, Yu.S.; Narodetskij, I.M.

    1987-01-01

    It is shown that the short-range NN forces in the quark compound bag method reproduce the energy dependence of the 1 D 2 pp-scattering amplitude predicted by existing phaseshift analyses. The parameters of the six-quark bag wave function obtained by description of the experimental data are in agreement with the theoretical predictions of the MIT bag model

  6. Variable amplitude fatigue, modelling and testing

    International Nuclear Information System (INIS)

    Svensson, Thomas.

    1993-01-01

    Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated

  7. Timing and amplitude jitter in a gain-switched multimode semiconductor laser

    Science.gov (United States)

    Wada, Kenji; Kitagawa, Naoaki; Matsukura, Satoru; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2016-04-01

    The differences in timing jitter between a gain-switched single-mode semiconductor laser and a gain-switched multimode semiconductor laser are examined using rate equations that include Langevin noise. The timing jitter in a gain-switched multimode semiconductor laser is found to be effectively suppressed by a decrease in the coherence time of the amplified spontaneous emission (ASE) based on a broad bandwidth of multimode oscillation. Instead, fluctuations in the ASE cause amplitude jitter in the pulse components of the respective modes. A pulse train of gain-switched pulses from a multimode semiconductor laser with timing jitter is equivalently simulated by assuming a high spontaneous emission factor and a short coherence time of the ASE in the single-mode semiconductor laser rate equations.

  8. Monodromies and the structure of gauge and gravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, Pierre [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Institut des Hautes Etudes Scientifiques - IHES, Le Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette (France)

    2010-07-01

    We show that different color-ordered tree-level amplitudes in gauge theories satisfy monodromy relations. These relations imply the existence of minimal basis of amplitude and provide the numerator factors of the amplitude for a parametrisation of the tree-level amplitude using only cubic vertices. Applications to supergravity amplitudes follow straightforwardly through the KLT-relations. Through the cuts, these tree-level relations give rise to non-trivial identities at loop level. At higher loop this constrains the critical ultraviolet behaviour of the four-graviton amplitude in N=8 supergravity to all order in perturbation. We argue this implies that the four-graviton N=8 amplitudes has a seven-loop logarithmic divergence in four dimensions. (author)

  9. Effects of amplitude modulation on perception of wind turbine noise

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2016-10-15

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.

  10. Effects of amplitude modulation on perception of wind turbine noise

    International Nuclear Information System (INIS)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young

    2016-01-01

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation

  11. Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules

    Science.gov (United States)

    Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.

    2017-12-01

    The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.

  12. The pulsed amplitude unit for the SLC

    International Nuclear Information System (INIS)

    Rolfe, J.; Browne, M.J.; Jobe, R.K.

    1987-02-01

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed

  13. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  14. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  15. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  16. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  17. Open string topological amplitudes and gaugino masses

    International Nuclear Information System (INIS)

    Antoniadis, I.; Narain, K.S.; Taylor, T.R.

    2005-09-01

    We discuss the moduli-dependent couplings of the higher derivative F-terms (TrW 2 ) h-1 , where W is the gauge N =1 chiral superfield. They are determined by the genus zero topological partition function F (0,h) , on a world-sheet with h boundaries. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal N =(2,0) superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form Π n (TrW 2 ) h-2 , where Π's represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for h ≥ 3. As a result, once supersymmetry is broken by D-term expectation values, (TrW 2 ) 2 generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as m 1/2 ∼ m 0 4 in string units. Similarly, ΠTrW 2 generates Dirac masses for non-chiral brane fermions, of the same order of magnitude. This mechanism can be used for instance to obtain fermion masses at the TeV scale for scalar masses as high as m 0 ∼ O (10 13 ) GeV. We present explicit examples in toroidal string compactifications with intersecting D-branes. (author)

  18. Efficient reverse time migration with amplitude encoding

    Science.gov (United States)

    Hu, Jiangtao; Wang, Huazhong; Zhao, Lei; Shao, Yu; Wang, Meixia; Osen, Are

    2015-08-01

    Reverse time migration (RTM) is an accurate seismic imaging method for imaging the complex subsurface structure. Traditional common shot RTM suffers from low efficiency due to the large number of single shot gathers, especially for marine seismic data. Phase encoding is commonly used to reduce the computational cost of RTM. Phase encoding in the frequency domain is usually related to time shift in the time domain. Therefore, phase-encoding-based RTM needs time padding to avoid information loss which degrades the efficiency of the time-domain wavefield extrapolator. In this paper, an efficient time-domain RTM scheme based on the amplitude encoding is proposed. This scheme uses the orthogonal cosine basis as the encoding function, which has similar physical meaning to plane wave encoding (i.e. plane-wave components with different surface shooting angles). The proposed scheme can generate a qualified imaging result as well as common shot RTM but with less computational cost. Since this scheme does not need time padding, it is more efficient than the phase encoding schemes and can be conveniently implemented in the time domain. Numerical examples on the Sigsbee2a synthetic dataset demonstrate the feasibility of the proposed method.

  19. Electroweak amplitudes in chiral quark models

    International Nuclear Information System (INIS)

    Fiolhais, Manuel

    2004-01-01

    After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes

  20. Casimir amplitudes in topological quantum phase transitions

    Science.gov (United States)

    Griffith, M. A.; Continentino, M. A.

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  1. Sliding mode observers for automotive alternator

    Science.gov (United States)

    Chen, De-Shiou

    Estimator development for synchronous rectification of the automotive alternator is a desirable approach for estimating alternator's back electromotive forces (EMFs) without a direct mechanical sensor of the rotor position. Recent theoretical studies show that estimation of the back EMF may be observed based on system's phase current model by sensing electrical variables (AC phase currents and DC bus voltage) of the synchronous rectifier. Observer design of the back EMF estimation has been developed for constant engine speed. In this work, we are interested in nonlinear observer design of the back EMF estimation for the real case of variable engine speed. Initial back EMF estimate can be obtained from a first-order sliding mode observer (SMO) based on the phase current model. A fourth-order nonlinear asymptotic observer (NAO), complemented by the dynamics of the back EMF with time-varying frequency and amplitude, is then incorporated into the observer design for chattering reduction. Since the cost of required phase current sensors may be prohibitive, the most applicable approach in real implementation by measuring DC current of the synchronous rectifier is carried out in the dissertation. It is shown that the DC link current consists of sequential "windows" with partial information of the phase currents, hence, the cascaded NAO is responsible not only for the purpose of chattering reduction but also for necessarily accomplishing the process of estimation. Stability analyses of the proposed estimators are considered for most linear and time-varying cases. The stability of the NAO without speed information is substantiated by both numerical and experimental results. Prospective estimation algorithms for the case of battery current measurements are investigated. Theoretical study indicates that the convergence of the proposed LAO may be provided by high gain inputs. Since the order of the LAO/NAO for the battery current case is one order higher than that of the link

  2. Nonlinear Interchange Modes in 3D

    Science.gov (United States)

    Bagaipo, Jupiter; Hassam, Adil

    2012-10-01

    We have shown previously that, in 2D, the ideal magnetohydrodynamic interchange mode stabilized by a constant transverse magnetic field is nonlinearly unstable if near marginal conditions. This study is extended to a 3D system where the mode is marginally stabilized by allowing for wavenumbers weakly transverse to an axial field. Two different boundary conditions are studied: periodic and line-tied in the axial direction. Periodic boundary conditions have applications in toroidal fusion devices while line-tied systems are common in the solar corona. We use reduced equations for a strong axial field to find an analytic solution as a function of the deviation from marginality. Using a systematic perturbation analysis we show that, to lowest order, there exists a secondary, quasistatic equilibrium with a critical field strength. Allowing for deviations from criticality yield a nonlinear time-evolution equation for the perturbation amplitude. The periodic case allows for two types of modes, and it is shown that the mode isomorphic to the earlier 2D problem is nonlinearly unstable, while the ``sausage''-type mode is nonlinearly stable. These modes are modes along a rational surface and ballooning type modes, respectively. The line-tied case is shown to always be nonlinearly stable.

  3. Spatial light modulation for mode conditioning

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    We demonstrate patented techniques for generating tuneable complex field distributions for controllable coupling to high-order guided modes of micro-structured fibres. The optical Fourier transform of binary phase-only patterns which are encoded on a computer-controlled spatial light modulator......, generates complex field distributions for selective launching of a desired mode. Both the amplitude and the phase of the programmable fields are modulated by straightforward and fast adjustments of simple pre-defined binary phase-only diffractive patterns. Experiments demonstrate tuneable coupling...

  4. Scissors mode with a simple Hamiltonians

    International Nuclear Information System (INIS)

    Bal'butsev, E.B.; ); Shuk, P.

    2002-01-01

    The system of the motion bound equation for the nucleus angular moment and its quadrupole moments in the coordinate and pulse spaces is derived from the equation of the Hartree-Fock time-dependent theory. The formulae for the energy, B(M1)- and B(E2)-factors of the scissors mode are obtained in the approximation of low amplitudes; the physical nature of the event is explained. The calculation results qualitatively agree with the experiment [ru

  5. Transversity Amplitudes in Hypercharge Exchange Processes; Amplitudes de transversidad en procesos de intercambio de hipercarga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Benitez de Lugo, M.

    1979-07-01

    In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.

  6. Small amplitude oscillations before the L-H transition in EAST

    Science.gov (United States)

    Shao, L. M.; Xu, G. S.; Chen, R.; Chen, L.; Birkenmeier, G.; Duan, Y. M.; Gao, W.; Manz, P.; Shi, T. H.; Wang, H. Q.; Wang, L.; Xu, M.; Yan, N.; Zhang, L.; the EAST Team

    2018-03-01

    Before L- to H-mode transition small amplitude oscillations (SAOs), different from the widely known intermediate phase (I-phase), at a frequency of a few kilohertz can be observed on EAST. Under sufficient auxiliary heating, SAOs can transit to the H-mode or I-phase. The edge radial electric field ({E}{{r}}) located inside the separatrix can be observed to deepen after bursts of SAOs. In SAOs, the turbulence level preceding the negative radial electric field and floating potential perturbation about 90° in phase, consistent with the model of zonal-flows and turbulence interaction, is measured by the Langmuir probe at the bottom of the edge {E}{{r}} well. A physical mechanism for SAOs is developed: at a critical gradient in pressure and {E}{{r}}, turbulence increases at the inboard edge of the {E}{{r}} well. The increased turbulence level enhances the radial particle, energy and momentum transport at the plasma edge and increases the amplitude of the zonal flow at the bottom of the {E}{{r}} well due to the increased Reynolds force. The increase in the zonal flow amplitude acts to mitigate the turbulence on the inboard edge of the {E}{{r}} well, driving a limit-cycle oscillation. The poloidal magnetic perturbations of the oscillations are poloidal in-out/up-down asymmetric and toroidal symmetric in the SAOs.

  7. Parametrically excited MEMS vibration energy harvesters with design approaches to overcome the initiation threshold amplitude

    International Nuclear Information System (INIS)

    Jia, Yu; Yan, Jize; Soga, Kenichi; Seshia, Ashwin A

    2013-01-01

    Resonant-based vibration harvesters have conventionally relied upon accessing the fundamental mode of directly excited resonance to maximize the conversion efficiency of mechanical-to-electrical power transduction. This paper explores the use of parametric resonance, which unlike the former, the resonant-induced amplitude growth, is not limited by linear damping and wherein can potentially offer higher and broader nonlinear peaks. A numerical model has been constructed to demonstrate the potential improvements over the convention. Despite the promising potential, a damping-dependent initiation threshold amplitude has to be attained prior to accessing this alternative resonant phenomenon. Design approaches have been explored to passively reduce this initiation threshold. Furthermore, three representative MEMS designs were fabricated with both 25 and 10 μm thick device silicon. The devices include electrostatic cantilever-based harvesters, with and without the additional design modification to overcome initiation threshold amplitude. The optimum performance was recorded for the 25 μm thick threshold-aided MEMS prototype with device volume ∼0.147 mm 3 . When driven at 4.2 ms −2 , this prototype demonstrated a peak power output of 10.7 nW at the fundamental mode of resonance and 156 nW at the principal parametric resonance, as well as a 23-fold decrease in initiation threshold over the purely parametric prototype. An approximate doubling of the half-power bandwidth was also observed for the parametrically excited scenario. (paper)

  8. Field-theoretic calculation of kinetic helicity flux

    Indian Academy of Sciences (India)

    Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...

  9. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  10. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  11. Numerical study of the quasinormal mode excitation of Kerr black holes

    International Nuclear Information System (INIS)

    Dorband, Ernst Nils; Diener, Peter; Tiglio, Manuel; Berti, Emanuele; Schnetter, Erik

    2006-01-01

    We present numerical results from three-dimensional evolutions of scalar perturbations of Kerr black holes. Our simulations make use of a high-order accurate multiblock code which naturally allows for adapted grids and smooth inner (excision) and outer boundaries. We focus on the quasinormal ringing phase, presenting a systematic method for extraction of the quasinormal mode frequencies and amplitudes and comparing our results against perturbation theory. The detection of a single mode in a ringdown waveform allows for a measurement of the mass and spin of a black hole; a multimode detection would allow a test of the Kerr nature of the source. Since the possibility of a multimode detection depends on the relative mode amplitude, we study this topic in some detail. The amplitude of each mode depends exponentially on the starting time of the quasinormal regime, which is not defined unambiguously. We show that this time-shift problem can be circumvented by looking at appropriately chosen relative mode amplitudes. From our simulations we extract the quasinormal frequencies and the relative and absolute amplitudes of corotating and counterrotating modes (including overtones in the corotating case). We study the dependence of these amplitudes on the shape of the initial perturbation, the angular dependence of the mode, and the black hole spin, comparing against results from perturbation theory in the so-called asymptotic approximation. We also compare the quasinormal frequencies from our numerical simulations with predictions from perturbation theory, finding excellent agreement. For rapidly rotating black holes (of spin j=0.98) we can extract the quasinormal frequencies of not only the fundamental mode, but also of the first two overtones. Finally we study under what conditions the relative amplitude between given pairs of modes gets maximally excited and present a quantitative analysis of rotational mode-mode coupling. The main conclusions and techniques of our

  12. Surface Loving and Surface Avoiding modes

    OpenAIRE

    Combe, Nicolas; Huntzinger, Jean Roch; Morillo, Joseph

    2008-01-01

    International audience; We theoretically study the propagation of sound waves in GaAs/AlAs superlattices focussing on periodic modes in the vicinity of the band gaps. Based on analytical and numerical calculations, we show that these modes are the product of a quickly oscillating function times a slowly varying envelope function. We carefully study the phase of the envelope function compared to the surface of a semi-infinite superlattice. Especially, the dephasing of the superlattice compared...

  13. Analysis of Energy Transmission Modes of Flyback Converter

    Directory of Open Access Journals (Sweden)

    GONG Shu

    2014-08-01

    Full Text Available It is of significance to investigate energy transmission modes of a flyback converter for its optimum design. In this paper, the ETMs of a flyback converter are divided into three modes, which are continuous conduction mode-complete inductor supply mode, continuous conduction mode- incomplete inductor supply mode and discontinuous conduction mode-incomplete inductor supply mode, respectively. A deep analysis of the operation is made, a reduction of the boundary condition between the modes is conducted and a comparison of current stress, transformer AP and output ripple voltage between the modes is performed. A 30W prototype is developed and its experiment is done. The experiment results are in agreement with the theoretical analysis quite well.

  14. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  15. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  16. Comparative studies on the quality factors of whispering gallery modes and hybrid plasmon photon modes.

    Science.gov (United States)

    Gu, Ping; Chen, Jiawei; Wan, Mingjie; Chen, Zhuo; Wang, Zhenlin

    2017-04-17

    We theoretically and experimentally investigate the multipolar hybrid plasmon-photon modes supported by a dielectric-metal core-shell resonator consisting of a dielectric core wrapped by a thin silver shell and the whispering-gallery modes in its pure dielectric counterpart (the dielectric sphere with the same size). We theoretically demonstrate that in a certain wavelength range the achievable maximum Q-factors of hybrid modes could be either larger or smaller than that of whispering-gallery modes, depending on the size of the resonator. By means of the coupling of the dye molecules to the hybrid and whispering-gallery modes, the reshaped fluorescence spectra are measured for resonators containing two different sized dye-doped dielectric spheres, which allow us to compare the Q-factors of hybrid and whispering-gallery modes, providing direct experimental support to the theoretical predictions. Our results provide guidance for appropriately choosing plasmonic core-shell (hybrid modes) or dielectric resonators (whispering-gallery modes) in applications such as ultrasensitive bio-sensors, low-threshold lasing, slow-light and nonlinear optical devices.

  17. Available pressure amplitude of linear compressor based on phasor triangle model

    Science.gov (United States)

    Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.

    2017-12-01

    The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.

  18. Analysis of stationary power/amplitude distributions for multiple channels of sampled FBGs.

    Science.gov (United States)

    Xing, Ya; Zou, Xihua; Pan, Wei; Yan, Lianshan; Luo, Bin; Shao, Liyang

    2015-08-10

    Stationary power/amplitude distributions for multiple channels of the sampled fiber Bragg grating (SFBG) along the grating length are analyzed. Unlike a uniform FBG, the SFBG has multiple channels in the reflection spectrum, not a single channel. Thus, the stationary power/amplitude distributions for these multiple channels are analyzed by using two different theoretical models. In the first model, the SFBG is regarded as a set of grating sections and non-grating sections, which are alternately stacked. A step-like distribution is obtained for the corresponding power/amplitude of each channel along the grating length. While, in the second model, the SFBG is decomposed into multiple uniform "ghost" gratings, and a continuous distribution is obtained for each ghost grating (i.e., each channel). After a comparison, the distributions obtained in the two models are identical, and the equivalence between the two models is demonstrated. In addition, the impacts of the duty cycle on the power/amplitude distributions of multiple channels of SFBG are presented.

  19. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 4; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 4

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.

  20. Properties of solar gravity mode signals in total irradiance observations

    International Nuclear Information System (INIS)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs

  1. High CW power, phase and amplitude modulatorrealized with fast ferrite phase-shifters

    CERN Document Server

    Valuch, D

    2004-01-01

    Superconducting cavity resonators are suffering from detuning effects caused by high internal electromagnetic fields (Lorentz force detuning). For classical resonators working with continuous wave signals, this detuning is static and compensated by the slow mechanical tuning system. However, pulsing of superconducting cavities, an operational mode only recently considered, results in dynamic detuning effects. New ways to handle this effect have to be found and worked out. A way to supply several superconducting cavities in the particle accelerator by one large transmitter while keeping the possibility of controlling the field in each individual cavity is shown. By introducing a fast phase and amplitude modulator into each cavity feeder line, the individual deviations of each cavity with respect to the average can be compensated in order to equalize their behaviour for the main control loop, which will compensate the global detuning of all cavities. Several types of phase and amplitude modulators suitable for ...

  2. Theoretical Physics Division

    International Nuclear Information System (INIS)

    This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr

  3. Tensor exchange amplitudes in K +- N charge exchange reactions

    International Nuclear Information System (INIS)

    Svec, M.

    1979-01-01

    Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy

  4. Improved pion pion scattering amplitude from dispersion relation formalism

    International Nuclear Information System (INIS)

    Cavalcante, I.P.; Coutinho, Y.A.; Borges, J. Sa

    2005-01-01

    Pion-pion scattering amplitude is obtained from Chiral Perturbation Theory at one- and two-loop approximations. Dispersion relation formalism provides a more economic method, which was proved to reproduce the analytical structure of that amplitude at both approximation levels. This work extends the use of the formalism in order to compute further unitarity corrections to partial waves, including the D-wave amplitude. (author)

  5. Efficient analytic computation of higher-order QCD amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.

    1995-01-01

    The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints

  6. Ambitwistor strings and reggeon amplitudes in N=4 SYM

    Directory of Open Access Journals (Sweden)

    L.V. Bork

    2017-11-01

    Full Text Available We consider the description of reggeon amplitudes (Wilson lines form factors in N=4 SYM within the framework of four dimensional ambitwistor string theory. The latter is used to derive scattering equations representation for reggeon amplitudes with multiple reggeized gluons present. It is shown, that corresponding tree-level string correlation function correctly reproduces previously obtained Grassmannian integral representation of reggeon amplitudes in N=4 SYM.

  7. Phase and amplitude control system for Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Yoo, S.J.

    1983-01-01

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  8. Analytic all-plus-helicity gluon amplitudes in QCD

    Science.gov (United States)

    Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.

    2017-12-01

    We detail the calculation of two-loop all-plus-helicity amplitudes for pure Yang-Mills theory. The four-dimensional unitarity methods and augmented recursion techniques we have developed, together with a knowledge of the singular structure of the amplitudes, allow us to compute these in compact analytic forms. Specifically we present the computation and analytic results for the six- and seven-gluon leading color two-loop amplitudes, these being the first QCD two-loop amplitudes beyond five points.

  9. Proof of the fundamental BCJ relations for QCD amplitudes

    International Nuclear Information System (INIS)

    Cruz, Leonardo de la; Kniss, Alexander; Weinzierl, Stefan

    2015-01-01

    The fundamental BCJ-relation is a linear relation between primitive tree amplitudes with different cyclic orderings. The cyclic orderings differ by the insertion place of one gluon. The coefficients of the fundamental BCJ-relation are linear in the Lorentz invariants 2p i p j . The BCJ-relations are well established for pure gluonic amplitudes as well as for amplitudes in N=4 super-Yang-Mills theory. Recently, it has been conjectured that the BCJ-relations hold also for QCD amplitudes. In this paper we give a proof of this conjecture. The proof is valid for massless and massive quarks.

  10. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  11. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  12. More about solar g modes

    Science.gov (United States)

    Fossat, E.; Schmider, F. X.

    2018-04-01

    Context. The detection of asymptotic solar g-mode parameters was the main goal of the GOLF instrument onboard the SOHO space observatory. This detection has recently been reported and has identified a rapid mean rotation of the solar core, with a one-week period, nearly four times faster than all the rest of the solar body, from the surface to the bottom of the radiative zone. Aim. We present here the detection of more g modes of higher degree, and a more precise estimation of all their parameters, which will have to be exploited as additional constraints in modeling the solar core. Methods: Having identified the period equidistance and the splitting of a large number of asymptotic g modes of degrees 1 and 2, we test a model of frequencies of these modes by a cross-correlation with the power spectrum from which they have been detected. It shows a high correlation peak at lag zero, showing that the model is hidden but present in the real spectrum. The model parameters can then be adjusted to optimize the position (at exactly zero lag) and the height of this correlation peak. The same method is then extended to the search for modes of degrees 3 and 4, which were not detected in the previous analysis. Results: g-mode parameters are optimally measured in similar-frequency bandwidths, ranging from 7 to 8 μHz at one end and all close to 30 μHz at the other end, for the degrees 1 to 4. They include the four asymptotic period equidistances, the slight departure from equidistance of the detected periods for l = 1 and l = 2, the measured amplitudes, functions of the degree and the tesseral order, and the splittings that will possibly constrain the estimated sharpness of the transition between the one-week mean rotation of the core and the almost four-week rotation of the radiative envelope. The g-mode periods themselves are crucial inputs in the solar core structure helioseismic investigation.

  13. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    Science.gov (United States)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  14. Beam orbit control in TESLA superconducting cavities from dipole mode measurements

    International Nuclear Information System (INIS)

    Paparella, R.

    2006-09-01

    The knowledge of the electromagnetic interaction between a beam and the surrounding vacuum chamber is necessary in order to optimize the accelerator performance in terms of stored current. Many instability phenomena may occur in the machine because of the fields produced by the beam and acting back on itself. Basically, these fields, wake-fields, produce an extra voltage, affecting the longitudinal dynamics, and a transverse kick which deflects the beam. In this thesis we present the results of theoretical and experimental investigations to demonstrate the possibility of using the dipolar wake fields of the superconducting accelerating to measure the beam transverse position. After an introduction to the ILC project and to the TESLA technology, of superconducting RF cavities, we will approach the problem from an analytical point of view in chapter 2. The expression of the wake fields in a cylindrical cavity will be investigated and the electromagnetic field modes derived from Maxwell equations in an original way. Graphical solutions of a Matlab program simulating the fields due to a particle passing through a pill-box cavity along a generic path will be shown. The interaction of the beam with higher order modes (HOM) in the TESLA cavities has been studied in the past at the TESLA Test Facility (TTF) in order to determine whether the modes with the highest loss factor are sufficiently damped. Starting from the results obtained before 2003, HOM signals has been better observed and examined in order to use dipole modes to find the electric center of each cavity in the first TTF accelerating module. The results presented in chapter 3 will show that by monitoring the HOM signal amplitude for two polarizations of a dipole mode, one can measure electrical center of the modes with a resolution of 50 μm. Moreover, a misalignment of the first TTF module with respect to the gun axis has been predicted using cavity dipole modes. Alternatives to this method are described in

  15. Ab initio study of fast small-amplitude vibrations as functions of slow large-amplitude motions in CD3OH and comparison to CH3OH

    Science.gov (United States)

    Reid, Elias M.; Xu, Li-Hong; Lees, R. M.

    2017-12-01

    Ab initio quantum chemical calculations generating a two-dimensional map of the energy surface and vibrational frequencies have been carried out for CD3OH and CH3OH over ranges of the torsional angle γ and the OH bend angle ρ. We have explored the frequency variation of the fast small-amplitude asymmetric ν2 and ν9 Csbnd D and Csbnd H stretching modes of E parentage as functions of the slow large-amplitude γ and ρ coordinates associated with the torsional and OH-bending modes that would form a degenerate e pair in the ρ = 0° limit of COH linearity. The Gaussian09 program package was employed to calculate minimized energies, structures and Hessians on a grid of points with γ varying from 120° to 180° from the top to the bottom of the torsional potential barrier and ρ varying from 0° at linearity up to a 100° bend. The energies, average frequencies and frequency differences for each species have been fitted to a model combining Fourier expansions in the torsional angle with power-series in the OH-bend angle (Thapaliya et al., 2015) and the expansion constants are presented and compared for the two isotopologues. The conical intersection points of degeneracy between the ν2 and ν9 frequencies have been located for CD3OH, close to those known for CH3OH (Dawadi and Perry, 2014). For CD3OH, Csbnd D stretching frequencies calculated along the IRC torsional path from top to bottom of the barrier have been fitted to a high-order local mode model for comparison with earlier results for CH3OH (Xu, 2000), and A-E torsional splittings have been predicted for the three Csbnd D stretches.

  16. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  17. Experiment study of edge localized mode with plasma vertical jogging in HL-2A tokamak

    Science.gov (United States)

    Wu, N.; Chen, S. Y.; Song, X. M.; Mou, M. L.; Huang, J.; Wang, Z. T.; Tang, C. J.; Song, X.; Xia, F.; Jiang, M.; HL-2A Team

    2017-09-01

    The effect of plasma vertical jogging on edge localized modes (ELMs) is investigated in HL-2A tokamak. During the experiment, plasma jogging with a period of about 75 ms is performed, and the results show that both the ELM amplitude and period decrease when the plasma moves upward, which are qualitatively explained by the simulation based on the theory of peeling-ballooning mode including the resistivity effect. The upward movement of plasma causes a change in pedestal parameters, and then the dominant toroidal mode shifts to a relatively high-n mode with the effects of resistivity and diamagnetic, which lead to smaller ELM amplitudes.

  18. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    1979-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  19. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  20. Determination of refractive index and absorbance modulation amplitudes from angular selectivity of holograms in polymer material with phenanthrenequinone

    Science.gov (United States)

    Borisov, Vladimir; Veniaminov, Andrey

    2015-10-01

    Amplitude and phase contributions to mixed volume holographic gratings were extracted from measured contours of angular selectivity. Holograms for the investigation were recorded in the glassy polymer material with phenan-threnequinone (PQ) using the DPSS CW laser (532 nm) and then self-developed due to molecular diffusion of PQ, reaching diffraction efficiency about 40%. Refractive index and absorbance modulation amplitudes of those holograms were obtained as adjustable parameters from theoretical equations by fitting angular dependencies of zeros and 1st orders diffraction efficiency measured at 450, 473, 532, and 633 nm at the different stages of hologram development. Mixed gratings manifest themselves in asymmetrical transmittance selectivity contours with one minimum and one maximum shifted with respect to the Bragg angle, while symmetrical contours with a minimum or a maximum at the Bragg angle are characteristic of pure phase and amplitude gratings, respectively. In the course of a hologram development, it converts from a predominantly amplitude-mixed to almost purely phase one in the case of readout using a light within the absorption band of PQ and maintains the phase nature besides it. The value of refractive index amplitude is ranging from 5×10-6 to 10-4 and the value of absorbance amplitude is up to 140 m-1.

  1. Giant resonances: a comparison between TDHF and fluid dynamics in small amplitude vibrations of spherical nuclei

    International Nuclear Information System (INIS)

    Sagawa, Hiroyuki; Holzwarth, G.

    1978-01-01

    Small amplitude vibrations of spherical nuclei are considered in microscopic (RPA) and fluid-dynamical description. Assuming the concentration of transition strength into one collective state, the microscopic result can be brought into close analogy to constrained fluid-dynamical motion. The decisive difference occurs in the contribution of the microscopic kinetic energy to the collective potential energy. It is shown that extension of fluid dynamics to include dynamical distortions of the local Fermi surface is sufficient to reproduce the microscopic results. Numerical examples are given for L=0 and L=2 isoscalar modes for a Skyrme-type nucleon-nucleon force. (auth.)

  2. Whispering gallery mode sensors

    Science.gov (United States)

    Foreman, Matthew R.; Swaim, Jon D.; Vollmer, Frank

    2015-01-01

    We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further. PMID:26973759

  3. Theory of tokamak resistive fishbone modes

    International Nuclear Information System (INIS)

    Shi Bingren; Sui Guofang

    1995-12-01

    A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasmas. Theoretical analyses of fishbone modes based on the ideal MHD framework have predicted that two branches of modes exists. One is the Chen-White branch with ω∼ω-bar dm , corresponding to a higher threshold in β h ; the other is the Coppis branch with ω∼ω *i , and a much lower threshold in β h . The latter mode would put a rather unfavourable restriction on heating efficiency and on plasma confinement. However. It is found that the resistivity effect is essential for this mode. In this paper, a new resistive fishbone mode analysis is carried out. In the (γ mhd ,β H ) space, the stability diagram shows complicate structure, the Coppis branch is replaced by a weakly unstable mode and there is no longer closed stable region. The growth rate of this mode varies with β h , its peak value is still very low compared to other internal modes. The implications of these results to future tokamak experiments are discussed. (8 figs.)

  4. Applications of sliding mode control

    CERN Document Server

    Ghommam, Jawhar; Zhu, Quanmin

    2017-01-01

    This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry. .

  5. Gauge theory amplitudes in twistor space and holomorphic anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Cachazo, Freddy [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States)]. E-mail: cachazo@ias.edu; Witten, Edward [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States); Svrcek, Peter [Department of Physics, Joseph Henry Laboratories, Princeton NJ 08540 (United States)

    2004-10-01

    We show that, in analyzing differential equations obeyed by one-loop gauge theory amplitudes, one must take into account a certain holomorphic anomaly. When this is done, the results are consistent with the simplest twistor-space picture of the available one-loop amplitudes. (author)

  6. Online measurement method for pulse amplitude in pulsed extraction columns

    International Nuclear Information System (INIS)

    Wang Xinghai; Li Shichang; Chen Jing

    2009-01-01

    Online measurement of pulse amplitude by air purge was studied. The pulse amplitude in a pulsed extraction column was calculated online by measurement of characteristic parameters of the signal's curve. The method can be used for calculation of different pulsed extraction columns. (authors)

  7. Time-varying interaction leads to amplitude death in coupled ...

    Indian Academy of Sciences (India)

    2013-09-05

    Sep 5, 2013 ... phenomenon called amplitude death even in diffusively coupled identical oscillators. ... [16] or by using conjugate coupling [11], amplitude death can occur without mismatch in oscillators. Several ..... [2] K Kaneko, Theory and applications of coupled map lattices (John Wiley and Sons, New York,. 1993).

  8. Coupled Higgs field equation and Hamiltonian amplitude equation ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, coupled Higgs field equation and Hamiltonian amplitude equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the ...

  9. Investigating the amplitude of interactive footstep sounds and soundscape reproduction

    DEFF Research Database (Denmark)

    Turchet, Luca; Serafin, Stefania

    2013-01-01

    In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which is con...

  10. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD

    Science.gov (United States)

    Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman

    2006-01-01

    This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…

  11. Miracles in Scattering Amplitudes: from QCD to Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Volovich, Anastasia [Brown Univ., Providence, RI (United States)

    2016-10-09

    The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.

  12. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  13. Double logarithmic asymptotics of quark amplitudes with flavour exchange

    International Nuclear Information System (INIS)

    Kirschner, R.

    1982-01-01

    Results on the quark scattering and annihilation amplitudes in the Regge region are presented. The perturbative contribution to those amplitudes in the double logarithmic approximation are calculated. In the calculations a method based on dispersion relations and gauge invariance is used. (M.F.W.)

  14. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr

  15. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  16. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    The studies in 1977 are reviewed. In theoretical nuclear physics: nuclear structure, nuclear reactions, intermediate energy physics; in elementary particle physics: field theory, strong interactions dynamics, nucleon-nucleon interactions, new particles, current algebra, symmetries and quarks are studied [fr

  17. Photo double ionization of helium 100 eV and 450 eV above threshold: III. Gerade and ungerade amplitudes and their relative phases

    International Nuclear Information System (INIS)

    Knapp, A; Kraessig, B; Kheifets, A; Bray, I; Weber, Th; Landers, A L; Schoessler, S; Jahnke, T; Nickles, J; Kammer, S; Jagutzki, O; Schmidt, L Ph H; Schoeffler, M; Osipov, T; Prior, M H; Schmidt-Boecking, H; Cocke, C L; Doerner, R

    2005-01-01

    We present a joint experimental and theoretical study of the gerade and ungerade amplitudes of the photo double ionization of helium at excess energies of 100 eV and 450 eV above the threshold. We describe a method of extracting the amplitudes from a COLTRIMS data set. The experimental results are well reproduced by convergent close-coupling (CCC) calculations. The fully differential cross section data underlying this study can be found in our companion papers immediately preceding this one

  18. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    desired trajectory. In Bandhyopadhyay and Deepak (2009), nonlinear sliding surface is created for varying the damping factor for improving the performance of the multi-input and multi-output linear systems with matched conditions. Some of the concepts and theoretical advances of continuous time sliding mode control are ...

  19. Compression modes and the nuclear matter incompressibility ...

    Indian Academy of Sciences (India)

    We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefficient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conflicting ...

  20. Nonlinear plastic modes in disordered solids

    NARCIS (Netherlands)

    Gartner, L.; Lerner, E.

    We propose a theoretical framework within which a robust micromechanical definition of precursors to plastic instabilities, often termed soft spots, naturally emerges. They are shown to be collective displacements (modes) ˆz that correspond to local minima of a barrier function b(ˆz), which depends

  1. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, Vitalii Lazarevich

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  2. Conformal higher spin scattering amplitudes from twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim [Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom); Hähnel, Philipp; McLoughlin, Tristan [School of Mathematics, Trinity College Dublin, College Green, Dublin 2 (Ireland)

    2017-04-04

    We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.

  3. Planar amplitudes in maximally supersymmetric Yang-Mills theory.

    Science.gov (United States)

    Anastasiou, C; Dixon, L; Bern, Z; Kosower, D A

    2003-12-19

    The collinear factorization properties of two-loop scattering amplitudes in dimensionally regulated N=4 super-Yang-Mills theory suggest that, in the planar ('t Hooft) limit, higher-loop contributions can be expressed entirely in terms of one-loop amplitudes. We demonstrate this relation explicitly for the two-loop four-point amplitude and, based on the collinear limits, conjecture an analogous relation for n-point amplitudes. The simplicity of the relation is consistent with intuition based on the anti-de Sitter/conformal field theory correspondence that the form of the large-N(c) L-loop amplitudes should be simple enough to allow a resummation to all orders.

  4. New formulas for amplitudes from higher-dimensional operators

    Science.gov (United States)

    He, Song; Zhang, Yong

    2017-02-01

    In this paper we study tree-level amplitudes from higher-dimensional operators, including F 3 operator of gauge theory, and R 2, R 3 operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of F 3, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet R 2 term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for F 3 and R 3 amplitudes.

  5. Simplicity in the structure of QED and gravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique

    2008-11-15

    We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)

  6. Conformal higher spin scattering amplitudes from twistor space

    Science.gov (United States)

    Adamo, Tim; Hähnel, Philipp; McLoughlin, Tristan

    2017-04-01

    We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point \\overline{MHV} amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.

  7. Gauge and Gravity Amplitudes from Trees to Loops

    DEFF Research Database (Denmark)

    Huang, Rijun

    This thesis describes two subjects that I mainly work on during my PhD study. They are both about scattering amplitudes, covering gravity and gauge theories, tree and loop level, with or without supersymmetry. The rst subject is Kawai-Lewellen-Tye(KLT) relation in field theory, which mysteriously...... relates Yang-Mills amplitudes to gravity amplitudes. Based on many known works about KLT and super-KLT relations, we provide a complete map between super-gravity amplitudes and super-Yang-Mills amplitudes for any number of supersymmetry that allowed in 4-dimensional theory. We also provide an explanation...... a special type of two-loop and three-loop diagrams where equations of maximal unitarity cut de ne complex curve. Geometry genus of complex curve is a topological invariant, and characterizes the property of curve. We compute the genus of complex curve for some two-loop and three-loop diagrams from...

  8. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  9. Wideband Phase Retrieval Technique from Amplitude-Only Near-Field Data

    Directory of Open Access Journals (Sweden)

    G. D. Massa

    2008-12-01

    Full Text Available A wideband frequency behavior is demonstrated for a phaseless near-field technique of basically interferometric approach, which uses two identical probes interfering each other through a microstrip circuit and performing amplitude-only near-field measurements on a single scanning surface. The phase retrieval procedure is properly formulated to take into account the frequency dependence without changing neither the microstrip circuit nor the distance between the probes. Numerical simulations on a linear array of elementary sources are presented to validate the theoretical results.

  10. Exclusive two-photon processes: Tests of QCD at the amplitude level

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1992-07-01

    Exclusive two-photon processes at large momentum transfer, particularly Compton scattering γp→γp and its crossed-channel reactions γγ→ bar pp and bar pp→γγ, can provide definitive information on the bound-state distributions of quarks in hadrons at the amplitude level. Recent theoretical work has shown that QCD predictions based on the factorization of long and short distance physics are already applicable at momentum transfers of order of a few GeV

  11. Secondary Instability of Second Modes in Hypersonic Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.

    2012-01-01

    Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.

  12. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    Science.gov (United States)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  14. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    Science.gov (United States)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  15. Low frequency coupled mode sound propagation over a continental shelf.

    Science.gov (United States)

    Knobles, D P; Stotts, S A; Koch, R A

    2003-02-01

    A two-way integral equation coupled mode method is applied to a continental shelf ocean waveguide proposed for a special session devoted to range-dependent acoustic modeling at the 141st meeting of the Acoustical Society of America. The coupled mode solution includes both sediment trapped and continuum modes. The continuum is approximated by a finite number of leaky modes but neglects the branch cut contribution. Mode coupling matrix elements and the range evolution of the modal amplitudes show the nature of the mode coupling. Transmission loss versus range at 100 Hz predicted by the integral equation approach is compared to the transmission loss predicted by a wide angle parabolic equation method. While there is very good agreement, one observes small differences that can be interpreted as backscattering predicted by the integral equation solution.

  16. Alfven frequency modes at the edge of TFTR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Z.; Fredrickson, E.D.; Zweben, S.J. [and others

    1995-07-01

    An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as ohmic plasmas. This quasi-coherent mode is so far only seen on the magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a > 0.85. No direct impact of this mode on the plasma global performance or fast ion loss (e.g., the {alpha}-particles in DT experiments) has been observed. This mode is apparently not the conventional TAE (toroidicity-induced Alfven eigenmodes). The present TAE theory cannot explain the observation. Other possible explanations are discussed.

  17. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    Science.gov (United States)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  18. Fatigue behaviour of fiberglass wind turbine blade material under variable amplitude loading

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D.R.V. Van; Winkel, G.D. de [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands); Joosse, P.A. [Stork Product Engineering b.v., Amsterdam (Netherlands)

    1996-09-01

    In the work presented here fatigue tests with the WISPER and WISPERX load sequence have been carried out and analysed. The test programme includes tests at low stress levels which results in fatigue lives of 50 millions of cycles. The results are compared with constant amplitude tests in the very high cycle range, carried out in a previous programme. The results are also compared with ECN results in the lower cycle range (on identical specimens). It appeared, that the difference between the fatigue life of the specimens tested with the WISPER and the WISPERX load sequence is larger than can be expected from the theoretical damage rates. Moreover, the slope of the S-N data differs from theoretical values obtained by using commonly applied design rules. (au)

  19. 'String amplitudes': What can we do about the divergent integrals?

    International Nuclear Information System (INIS)

    Amano, Kaoru

    1990-01-01

    The rules for perturbative construction of scattering amplitude constitute the most well-established part of the string theory. They lead to neat integral expressions that represent the amplitude as the sum over the geometry of the string world sheet. However, if one really tries to evaluate the expression, one has to go a long way from there, for the integral does not represent the amplitude in any direct way. The present report focuses on this problem. A study is made to show that the traditional integrals purporting to be string amplitudes are divergent and to identify a remedy. Obviously, any divergent amplitude is not acceptable in a case like the one-loop four-point amplitude. Although the origin of the divergences seems to relate to physical singularities, the integral fails to give imaginary part required for unitarity but only gives infinities which are not desired. Respecting the observation that the integral representation corresponds to the Euclidean Feynman integral, one may modify the integral by postulating an offshell integral for a certain Euclidean, then continuing the function analytically, and defining the physical amplitude by the limit value of the function. This would take one to the correct Minkowskian expression. Some examples are also shown. (N.K.)

  20. Fringe image analysis based on the amplitude modulation method.

    Science.gov (United States)

    Gai, Shaoyan; Da, Feipeng

    2010-05-10

    A novel phase-analysis method is proposed. To get the fringe order of a fringe image, the amplitude-modulation fringe pattern is carried out, which is combined with the phase-shift method. The primary phase value is obtained by a phase-shift algorithm, and the fringe-order information is encoded in the amplitude-modulation fringe pattern. Different from other methods, the amplitude-modulation fringe identifies the fringe order by the amplitude of the fringe pattern. In an amplitude-modulation fringe pattern, each fringe has its own amplitude; thus, the order information is integrated in one fringe pattern, and the absolute fringe phase can be calculated correctly and quickly with the amplitude-modulation fringe image. The detailed algorithm is given, and the error analysis of this method is also discussed. Experimental results are presented by a full-field shape measurement system where the data has been processed using the proposed algorithm. (c) 2010 Optical Society of America.

  1. Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites

    CERN Document Server

    Krawczyk, M; Levy, J C S; Mercier, D

    2003-01-01

    Spin-wave excitations in ferromagnetic layered composite (AB centre dot centre dot centre dot BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of th...

  2. Information Theoretic Subspace Clustering.

    Science.gov (United States)

    He, Ran; Wang, Liang; Sun, Zhenan; Zhang, Yingya; Li, Bo

    2016-12-01

    This paper addresses the problem of grouping the data points sampled from a union of multiple subspaces in the presence of outliers. Information theoretic objective functions are proposed to combine structured low-rank representations (LRRs) to capture the global structure of data and information theoretic measures to handle outliers. In theoretical part, we point out that group sparsity-induced measures ( l 2,1 -norm, l α -norm, and correntropy) can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates both convergence study and algorithmic development. In particular, a general formulation is accordingly proposed to unify HQ-based group sparsity methods into a common framework. In algorithmic part, we develop information theoretic subspace clustering methods via correntropy. With the help of Parzen window estimation, correntropy is used to handle either outliers under any distributions or sample-specific errors in data. Pairwise link constraints are further treated as a prior structure of LRRs. Based on the HQ framework, iterative algorithms are developed to solve the nonconvex information theoretic loss functions. Experimental results on three benchmark databases show that our methods can further improve the robustness of LRR subspace clustering and outperform other state-of-the-art subspace clustering methods.

  3. Bifurcation Analysis on Phase-Amplitude Cross-Frequency Coupling in Neural Networks with Dynamic Synapses

    Science.gov (United States)

    Sase, Takumi; Katori, Yuichi; Komuro, Motomasa; Aihara, Kazuyuki

    2017-01-01

    We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex. PMID:28424606

  4. Fuzzy Sliding Mode Control of Plate Vibrations

    Directory of Open Access Journals (Sweden)

    Manu Sharma

    2010-01-01

    Full Text Available In this paper, fuzzy logic is meshed with sliding mode control, in order to control vibrations of a cantilevered plate. Test plate is instrumented with a piezoelectric sensor patch and a piezoelectric actuator patch. Finite element method is used to obtain mathematical model of the test plate. A design approach of a sliding mode controller for linear systems with mismatched time-varying uncertainties is used in this paper. It is found that chattering around the sliding surface in the sliding mode control can be checked by the proposed fuzzy sliding mode control approach. With presented fuzzy sliding mode approach the actuator voltage time response has a smooth decay. This is important because an abrupt decay can excite higher modes in the structure. Fuzzy rule base consisting of nine rules, is generated from the sliding mode inequality. Experimental implementation of the control approach verify the theoretical findings. For experimental implementation, size of the problem is reduced using modal truncation technique. Modal displacements as well as velocities of first two modes are observed using real-time kalman observer. Real time implementation of fuzzy logic based control has always been a challenge because a given set of rules has to be executed in every sampling interval. Results in this paper establish feasibility of experimental implementation of presented fuzzy logic based controller for active vibration control.

  5. Topics in Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew [Boston Univ., MA (United States); Schmaltz, Martin [Boston Univ., MA (United States); Katz, Emmanuel [Boston Univ., MA (United States); Rebbi, Claudio [Boston Univ., MA (United States); Glashow, Sheldon [Boston Univ., MA (United States); Brower, Richard [Boston Univ., MA (United States); Pi, So-Young [Boston Univ., MA (United States)

    2016-09-30

    This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of

  6. Renormalization Scale-Fixing for Complex Scattering Amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.

    2005-12-21

    We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.

  7. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  8. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    OpenAIRE

    Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao

    2016-01-01

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton ca...

  9. Scattering Amplitudes: The Most Perfect Microscopic Structures in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC

    2011-11-04

    This article gives an overview of many of the recent developments in understanding the structure of relativistic scattering amplitudes in gauge theories ranging from QCD to N = 4 super-Yang-Mills theory, as well as (super)gravity. I also provide a pedagogical introduction to some of the basic tools used to organize and illuminate the color and kinematic structure of amplitudes. This article is an invited review introducing a special issue of Journal of Physics A devoted to 'Scattering Amplitudes in Gauge Theories'.

  10. SNV's modes of ordering

    NARCIS (Netherlands)

    Hummel, John; Duim, van der Rene

    2016-01-01

    This article adopts an aidnographic approach to examine how internal organizational modes of ordering have influenced tourism development practices of SNV Netherlands Development Organisation (SNV). Our research revealed six modes of ordering: administration, project management, enterprising,

  11. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  12. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  13. Modified Clemmow-Mullaly-Allis diagram for large-amplitude electromagnetic waves in magnetoplasmas

    International Nuclear Information System (INIS)

    Minami, K.; Mori, Y.; Takeda, S.

    1975-02-01

    A possible modification to the well known Clemmow- Mullaly-Allis diagram is analysed taking into account the radiation pressure force due to a large-amplitude electromagnetic field E in magnetoplasmas. We restrict ourselves here to the propagations parallel (the right and left-hand circularly polarized waves) and/or perpendicular (the ordinary and extraordinary modes) to the static magnetic field Bsub(o). We analyse electromagnetic waves incident normally on a semi-infinite uniform plasma, on which Bsub(o) is applied parallel and/or perpendicular to the surface. Considerations are limited to a cold collisionless plasma where the incident waves are evanescent. Simple expressions are obtained for the cut-off conditions of the waves except the extraordinary mode. In the latter case, the cut-off condition is calculated numerically solving an integral equation. The results are demonstrated in the usual Clemmow-Mullaly-Allis diagram for the various values of b=2Esub(i) 2 e 2 /mω 2 kappaTsub(e') where Esub(i) and ω are, respectively, the amplitude and the angular frequency of the incident wave. The cut-off lines are shown to move towards the higher densities with increasing b. (auth.)

  14. Analysis of charmless two-body B decays in factorization-assisted topological-amplitude approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Si-Hong; Zhang, Qi-An; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physics, Beijing (China); Lyu, Wei-Ran [Renmin University of China, Physics Department, Beijing (China)

    2017-02-15

    We analyze charmless two-body non-leptonic B decays B → PP, PV under the framework of a factorization-assisted topological-amplitude approach, where P(V) denotes a light pseudoscalar (vector) meson. Compared with the conventional flavor diagram approach, we consider the flavor SU(3) breaking effect assisted by a factorization hypothesis for topological diagram amplitudes of different decay modes, factorizing out the corresponding decay constants and form factors. The non-perturbative parameters of topology diagram magnitudes χ and the strong phase φ are universal; they can be extracted by χ{sup 2} fit from current abundant experimental data of charmless B decays. The number of free parameters and the χ{sup 2} per degree of freedom are both reduced compared with previous analyses. With these best fitted parameters, we predict branching fractions and CP asymmetry parameters of nearly 100 B{sub u,d} and B{sub s} decay modes. The long-standing ππ and πK-CP puzzles are solved simultaneously. (orig.)

  15. Pulse amplitude method for determining the pyroelectric coefficient of pyroelectric materials

    International Nuclear Information System (INIS)

    Tuzzolino, A.J.

    1983-01-01

    A simple amplitude method of measuring the pyroelectric coefficient of pyroelectric materials is described. Intense, short-duration (0.4 μs) light pulses generated by a semiconductor laser diode are absorbed at one surface of a thermally insulated sample of pyroelectric material, resulting in thermal pulses in the sample. The time and amplitude characteristics of the resulting charge pulses from the sample are measured using electronics of the type used with semiconductor charged-particle detectors. Theoretical calculations of the charge pulse shapes expected from samples having various assumed volume polarization distributions and measured charge rise times are used to determine optimum time constants for the pulse shaping electronics. These techniques are applied to a number of pyroelectric samples of polyvinylidene fluoride and lithium tantalate with thickness in the range 9 μm to 1 mm, and area of 0.07 cm 2 and 0.28 cm 2 . The absolute pyroelectric coefficient of the sample is obtained directly from the measured amplitude distribution of the charge pulses, the measured sample reflectivity, and the photon and electronic calibrations for the system. In addition, useful information regarding the polarization distribution in the sample is directly obtained during measurements. The results of these studies are reported and show that the pyroelectric coefficients determined by this method are in good agreement with previously reported values for these materials. (orig.)

  16. Study of the behavior of welded assemblies subjected to cyclic loads of variable amplitudes

    International Nuclear Information System (INIS)

    Plumier, A.

    1977-01-01

    The optimum design of structures subjected to variable loads requires the fatigue loading to be defined not only by the extreme stresses which can occur in the structure, but also by the distribution of the amplitudes of loadings. This emphasizes the importance of relations allowing the definition of permissible stresses under variable amplitude loading on the basis of permissible stresses under constant amplitude loading: such relations lead to a thorough use of the very numerous results acquired in classical fatigue testings. The statistical analysis of our tests results confirms, for four as welded joints, the good fit of theoretical values calculated on the basis of BIERETT's theory, so that this theory seems precise enough for calculations rules. However, the differences between theory and experiments, as well as regards the passage from classical fatigue to programmed fatigue, as for the definition of resistance of a welded joint on the basis of classes in classial fatigue, can reach as much as 30%. This lack of precision can be reduced by precise definition of joints classes, also defining permissible sizes of welds defects, on the one hand, and by the precise definition of a curve taking account of an influence of the severity of the notch effect of joints on the passage from classical fatigue to programmed fatigue, on the other hand. Our tests results, which were obtained on joints with very weak or very strong notches led to suggest such a curve

  17. Unified treatment: analyticity, Regge trajectories, Veneziano amplitude, fundamental regions and Moebius transformations

    International Nuclear Information System (INIS)

    Choudhary, A.R.

    2003-01-01

    In this paper we present a unified treatment that combines the analyticity properties of the scattering amplitudes, the threshold and asymptotic behaviors, the invariance group of Moebius transformations, the automorphic functions defined over this invariance group, the fundamental region in (Poincare) geometry, and the generators of the invariance group as they relate to the fundamental region. Using these concepts and techniques, we provide a theoretical basis for Veneziano type amplitudes with the ghost elimination condition built in, related the Regge trajectory functions to the generators of the invariance group, constrained the values of the Regge trajectories to take only inverse integer values at the threshold, used the threshold behavior in the forward direction to deduce the Pomeranchuk trajectory as well as other relations. The enabling tool for this unified treatment came from the multi-sheet conformal mapping techniques that map the physical sheet to a fundamental region which in turn defines a Riemann surface on which a global uniformization variable for the scattering amplitude is calculated via an automorphic function, which in turn can be constructed as a quotient of two automorphic forms of the same dimension. (orig.)

  18. Quantitative Understanding on the Amplitude Decay Characteristic of the Evanescent Electromagnetic Waves Generated by Seismoelectric Conversion

    Science.gov (United States)

    Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei

    2018-03-01

    We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.

  19. Competition of periodic and homogeneous modes in extended dynamical systems.

    Science.gov (United States)

    Dressel, B; Joets, A; Pastur, L; Pesch, W; Plaut, E; Ribotta, R

    2002-01-14

    Despite their simple structure, spatially homogeneous modes can participate directly in pattern-formation processes. This is demonstrated by new experimental and theoretical results for thermo- and electroconvection in planar nematic liquid crystals, where two distinct homogeneous modes, twist and splay distortions of the director field, emerge. Their nonlinear excitation is due to certain spontaneous symmetry-breaking bifurcations.

  20. Modes of log gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized

  1. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    International Nuclear Information System (INIS)

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-01-01

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 λ/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at ∼1.2 λ/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below ∼ 10 8 ), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where

  2. From dressed particle to dressed mode in plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2002-05-01

    A theoretical method to analyze the strong turbulence in far-nonequilibrium plasma is discussed. In this approach, a test mode is treated being dressed with interactions with other modes. Nonlinear dispersion relation of the dressed mode and statistical treatment of turbulence is briefly explained. Analogue to the method of dressed particle, which has given Balescu-Lenard collision operator for inter-particle collisions, is mentioned. (author)

  3. A pulse amplitude discriminator with very low-power consuming

    International Nuclear Information System (INIS)

    Deng Changming; Liu Zhengshan; Zhang Zhiyong; Cheng Chang

    2000-01-01

    A low-power pulse amplitude discriminator is described. The discriminator circuit is mainly composed of an integrated voltage comparator, MAX921, and owns the characters of very low-power and low operating voltage

  4. Interaction amplitudes of hadrons as composite superconformal strings

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.

    1995-01-01

    Construction of hadron interaction amplitudes is discussed in terms of the recently proposed new string dynamics. Inclusion of the nucleon and the flavor characterizing hadron quantum numbers into dynamics of composite superconformal strings is discussed

  5. Amplitude chimeras and chimera death in dynamical networks

    International Nuclear Information System (INIS)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-01-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions. (paper)

  6. Bessel–Gauss resonator with internal amplitude filter

    CSIR Research Space (South Africa)

    Litvin, IA

    2008-05-01

    Full Text Available The authors investigate a conventional resonator configuration, using only spherical curvature optical elements, for the generation of Bessel–Gauss beams. This is achieved through the deployment of a suitable amplitude filter at a Fourier plane...

  7. Some tree-level string amplitudes in the NSR formalism

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Melnikov, Ilarion V.; Robbins, Daniel; Royston, Andrew B.

    2015-01-01

    We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric F 4 effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.

  8. Amplitudes, recursion relations and unitarity in the Abelian Higgs model

    Science.gov (United States)

    Kleiss, Ronald; Luna, Oscar Boher

    2017-12-01

    The Abelian Higgs model forms an essential part of the electroweak standard model: it is the sector containing only Z0 and Higgs bosons. We present a diagram-based proof of the tree-level unitarity of this model inside the unitary gauge, where only physical degrees of freedom occur. We derive combinatorial recursion relations for off-shell amplitudes in the massless approximation, which allows us to prove the cancellation of the first two orders in energy of unitarity-violating high-energy behaviour for any tree-level amplitude in this model. We describe a deformation of the amplitudes by extending the physical phase space to at least 7 spacetime dimensions, which leads to on-shell recursion relations à la BCFW. These lead to a simple proof that all on-shell tree amplitudes obey partial-wave unitarity.

  9. The zerology of kaon-nucleon forward scattering amplitudes

    International Nuclear Information System (INIS)

    Dumbrajs, O.

    1981-01-01

    It has been realized for a long time that zeros of the forward kaon-nucleon scattering amplitudes are useful in correlating different low and high-energy scattering parameters and in providing a consistency test of available data. The simplest possibility of exploring zeros is to evaluate the ordinary dispersion relations in the complex energy plane. The more natural way of bringing zeros of amplitudes into play is to consider either one of the more sophisticated forms of dispersion relations: i) phase dispersion relations, ii) inverse-amplitude dispersion relations, iii) logarithmic dispersion relations, or to apply the maximum modulus theorem and a factorization theorem. The author concentrates on the use of logarithmic dispersion relations because this approach seems to be the most convenient one for future extensions to nonforward scattering data analyses based on the zeros of the amplitude. (Auth.)

  10. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  11. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    2017-01-15

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)

  12. Euclidean to Minkowski Bethe-Salpeter amplitude and observables

    International Nuclear Information System (INIS)

    Carbonell, J.; Frederico, T.; Karmanov, V.A.

    2017-01-01

    We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)

  13. Stora's fine notion of divergent amplitudes

    International Nuclear Information System (INIS)

    Várilly, Joseph C.; Gracia-Bondía, José M.

    2016-01-01

    Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  14. The super-correlator/super-amplitude duality: Part II

    CERN Document Server

    Eden, Burkhard; Korchemsky, Gregory P; Sokatchev, Emery

    2013-01-01

    We continue the study of the duality between super-correlators and scattering super-amplitudes in planar N=4 SYM. We provide a number of further examples supporting the conjectured duality relation between these two seemingly different objects. We consider the five- and six-point one-loop NMHV and the six-point tree-level NNMHV amplitudes, obtaining them from the appropriate correlators of strength tensor multiplets in N=4 SYM. In particular, we find exact agreement between the rather non-trivial parity-odd sector of the integrand of the six-point one-loop NMHV amplitude, as obtained from the correlator or from BCFW recursion relations. Together these results lead to the conjecture that the integrands of any N^kMHV amplitude at any loop order in planar N=4 SYM can be described by the correlators of stress-tensor multiplets.

  15. Stora's fine notion of divergent amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Várilly, Joseph C., E-mail: joseph.varilly@ucr.ac.cr [Escuela de Matemática, Universidad de Costa Rica, San José 11501 (Costa Rica); Gracia-Bondía, José M. [Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física, Universidad de Costa Rica, San Pedro 11501 (Costa Rica)

    2016-11-15

    Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  16. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  17. Mode specificity in unimolecular reaction dynamics

    International Nuclear Information System (INIS)

    Waite, B.A.

    1982-07-01

    Theoretical studies on mode specificity in unimolecular reaction dynamics are presented, based on essentially exact quantum mechanical methods, a semi-classical multichannel branching model, and classical trajectory methods. The principal aim is to discover the relevant factors governing whether a unimolecular system exhibits mode specificity in its individual state rate constants, i.e., whether quasi-degenerate metastable states decay with significantly different rates. Model studies of two nonlinearly coupled oscillators (one of which can dissociate) demonstrate the effects of various features of potential energy surfaces on the character of the rates (e.g., degeneracy of modes, reaction path curvature, frequency modulation, etc.). These results and those obtained for the Henon-Heiles potential energy surface indicate and apparent absence of correlation between the quasi-periodic/ergodic motion of classical mechanics and the mode specific/statistical behavior of the unimolecular rate constants

  18. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices......We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K....... The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high-temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, such as the magnetic interaction and the axial anisotropy, are in excellent agreement...

  19. Theoretical Chemistry Symposium 2006

    Indian Academy of Sciences (India)

    WINTEC

    This special issue of the Journal of Chemical Sciences contains 29 original papers presented at the Theoretical Chemistry Symposium (TCS 2006) held at Bharathi- dasan University during December 11–13, 2006. Earlier meetings on this theme were organized in various parts of the country viz. Chandigarh (1986), IIT ...

  20. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...... complexity of learning logic programs and avoiding coding tricks by hyperrobust learning....

  1. Riemann and Theoretical Physics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Riemann and Theoretical Physics. Joseph Samuel. General Article Volume 11 Issue 11 November 2006 pp 56-60. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/011/11/0056-0060. Keywords.

  2. Field theory amplitudes in a space with SU(2) fuzziness

    Science.gov (United States)

    Komaie-Moghaddam, H.; Fatollahi, A. H.; Khorrami, M.

    2008-02-01

    The structure of transition amplitudes in field theory in a three-dimensional space whose spatial coordinates are noncommutative and satisfy the SU(2) Lie algebra commutation relations is examined. In particular, the basic notions for constructing the observables of the theory as well as subtleties related to the proper treatment of δ distributions (corresponding to conservation laws) are introduced. Explicit examples are given for scalar field theory amplitudes in the lowest order of perturbation.

  3. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  4. Examining the time dependence of DAMA's modulation amplitude

    Science.gov (United States)

    Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo

    2018-03-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.

  5. Superstring vertex operators and scattering amplitudes on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Aldazabel, G.; Nunez, C.; Iengo, R.; Bonini, M.

    1987-12-01

    The construction of scattering amplitudes involving arbitrary bosonic mass level states is considered in both the closed superstring and in the heterotic string theories, at any order of perturbation. From massless particle scattering on a general Riemann surface, the super-covariant form of the vertex operators is derived via factorization. The super-covariant rules, including the normal ordering prescriptions, to be used in computing amplitudes, are automatically given by this procedure. (author). 22 refs, 1 fig

  6. Schwinger's effective Lagrangian from reflection and transmission amplitudes

    International Nuclear Information System (INIS)

    Warke, C.S.

    1992-01-01

    The reflection and transmission amplitudes are defined from the asymptotic form of the solution of Dirac equation of a charged fermion in the presence of uniform time independent external electromagnetic field (E, H). Schwinger's effective Lagrangian is derived from the reflection and transmission amplitudes. It is found that both the real and imaginary parts of the effective Lagrangian agree with Schwinger's expressions derived from the elegant method of proper time formalism. (author). 14 refs

  7. Lectures on scattering amplitudes via AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Alday, L.F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands)

    2008-08-05

    We review recent progress on computing scattering amplitudes of planar N=4 super Yang-Mills at strong coupling by using the AdS/CFT duality. We consider in detail the scattering of four gluons and do explicit computations by using both, dimensional regularization and a cut-off in the radial direction. The later scheme is particularly appropriate for understanding the conformal properties of the amplitudes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Three Point Tree Level Amplitude in Superstring Theory

    CERN Document Server

    Hatefi, Ehsan

    2011-01-01

    In order to check the definite amplitude and the exact zero result of the amplitude of three massless points $(CAA)$ in both string theory and field theory side for $p=n$ case and to find all gauge field couplings to R-R closed string, we investigate the disk level S-matrix element of one Ramond-Ramond field and two gauge field vertex operators in the world volume of BPS branes.

  9. Multiple pole in the electron--hydrogen-atom scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Kuchiev, M.Y.

    1982-01-01

    It is demonstrated that the amplitude for electron--hydrogen-atom forward scattering has the third-order pole at the point E = -13.6 eV, E being the energy of the incident electron. The coefficients which characterize the pole are calculated exactly. The invalidity of the Born approximation is proved. The contribution of the pole singularity to the dispersion relation for the scattering amplitude is discussed

  10. Fatigue life assessment under multiaxial variable amplitude loading

    International Nuclear Information System (INIS)

    Morilhat, P.; Kenmeugne, B.; Vidal-Salle, E.; Robert, J.L.

    1996-06-01

    A variable amplitude multiaxial fatigue life prediction method is presented in this paper. It is based on a stress as input data are the stress tensor histories which may be calculated by FEM analysis or measured directly on the structure during the service loading. The different steps of he method are first presented then its experimental validation is realized for log and finite fatigue lives through biaxial variable amplitude loading tests using cruciform steel samples. (authors). 9 refs., 7 figs

  11. Mapping Pn amplitude spreading and attenuation in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Laboratory; Phillips, William S [Los Alamos National Laboratory; Stead, Richard J [Los Alamos National Laboratory

    2010-12-06

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  12. A proposed physical analog for a quantum probability amplitude

    Science.gov (United States)

    Boyd, Jeffrey

    What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.

  13. String scattering amplitudes and deformed cubic string field theory

    Directory of Open Access Journals (Sweden)

    Sheng-Hong Lai

    2018-01-01

    Full Text Available We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz–Christoffel mapping.

  14. Mapping Pn Amplitude Spreading and Attenuation in Asia (Invited)

    Science.gov (United States)

    Yang, X.; Phillips, W. S.; Stead, R. J.

    2010-12-01

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  15. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 3; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T. [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center

    1996-10-01

    For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.

  16. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  17. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  18. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  19. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  20. Tidal energy redistribution among vertical modes in a fluid with a mid-depth pycnocline

    NARCIS (Netherlands)

    Bordois, L.; Auclair, F.; Paci, A.; Dossmann, Y.; Gerkema, T.; Nguyen, C.

    2016-01-01

    We modeled internal tide generation above a high sinusoidal ridge in a fluid with a mid-depth pycnocline and developed an original method to quantify internal tide vertical mode amplitude in two-dimensional-vertical simulations. Since lowest modes can propagate over considerable distances, while

  1. A neural network for mode space source depth estimation

    Science.gov (United States)

    Lee, William; Lee, Yung

    2005-04-01

    A great deal of research in mode space source localization processing exists. One technique proposed by Shang performs mode filtering of the observed pressure field on a vertical line array, using the calculated mode amplitude distributions and phase differences to estimate source location. Ozard et al. proposed a feed forward neural network using input vectors of mode energy distribution for source localization, a dedicated neuron for each possible source location was employed in their study. Instead of employing a dedicated neuron for each possible search location, the interest of this study is to determine an efficient setup of neurons to properly sample the search space. In MATLAB neural network toolbox, the self-organizing-map function learns to classify input vectors according to how they are grouped in the input space, specifically their distribution and topology. We used this function to examine how input vectors of mode energy distribution for signals at different depths are grouped to determine the sampling grids of the search space in depth. We also compared the neural network performance using input vectors of mode amplitude distribution with those using input vectors of mode energy distribution.

  2. Dispersion of strongly confined channel plasmon polariton modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua

    2011-01-01

    We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode...... index, width, and propagation length) are determined directly from the experimental near-field images and compared to theoretical results obtained using an analytic description of CPP modes supported by (infinitely deep) V-grooves and finite-element simulations implemented in COMSOL....

  3. Reflection of oblique electron thermal modes in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1980-04-01

    In an inhomogeneous magnetoplasma, reflection of an oblique electron thermal mode radiated from a local source is investigated experimentally and theoretically near the electron plasma frequency layer. The experimental observation of reflection in the lower plasma density region than the f sub(p)-layer is found to be in qualitative accord with the theoretical reflection, which is obtained from a kinetic theory in an inhomogeneous magnetoplasma. The reflection of the thermal mode is also compared with that of an electromagnetic mode at the f sub(p)-layer. (author)

  4. The open superstring 6-point amplitude with manifest symmetries

    International Nuclear Information System (INIS)

    Barreiro, Luiz Antonio; Medina, Ricardo; Stieberger, Stephan

    2011-01-01

    Full text: The general tree level amplitude for massless bosons states of open superstrings has been known for a long time ago. It is clear how to obtain this general formula using vertex operators in the Ramond-Neveu-Schwarz formalism. From the beginning of the eighties the explicit expression for this formula has been known in the case of 3 and 4-point amplitudes. In that decade an attempt (with partial success) was done, by Kitazawa, to obtain the corresponding 5-point amplitude. Only in 2002 a complete and correct expression for this amplitude was obtained. Its low energy expansion was compared to the corresponding one from the low energy effective Lagrangian of the open superstring, finding a perfect match. A few years later, in 2005, it was realized that the 5-point formula could be written in a very much compact form, as a sum of two terms: each of them consisting of a momentum factor and a kinematic expression. This constituted a generalization of the 4-point amplitude case, which had been known to be cast in only one momentum factor multiplied by one kinematic expression. For this simplification to happen, known symmetries of the (tree level) scattering amplitudes were implemented in a manifest form. These symmetries are (on-shell) gauge symmetry, cyclic symmetry and twisting symmetry (or world sheet parity). In the recent years it has been realized that the N-point amplitude can be written as a sum of (N - 3)! terms (where N > 3). This result not only agrees with the 3, 4 and 5-point results, but also with the 6-point result which had been obtained by 2005, written as a sum of six terms. The expression that up to now has been obtained for the 6-point amplitude is quite complicated and, besides knowing that it consists of six terms, is not very illuminating. In this work we report on the recent result of writing the 6-point amplitude with gauge, cyclic and twisting symmetries manifest. Not only because of the manifest symmetries this result is important

  5. Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation

    Science.gov (United States)

    Macdonald, J. H. G.

    2016-02-01

    Cables are often prone to potentially damaging large amplitude vibrations. The dynamic excitation may be from external loading or motion of the cable ends, the latter including direct excitation, normally from components of end motion transverse to the cable, and parametric excitation induced by axial components of end motion causing dynamic tension variations. Geometric nonlinearity can be important, causing stiffening behaviour and nonlinear modal coupling. Previous analyses of the vibrations, often neglecting sag, have generally dealt with direct and parametric excitation separately or have reverted to numerical solutions of the responses. Here a nonlinear cable model is adopted, applicable to taut cables such as on cable-stayed bridges, that allows for cable inclination, small sag (such that the vibration modes are similar to those of a taut string), multiple modes in both planes and end motion and/or external forcing close to any natural frequency. Based on the method of scaling and averaging it is found that, for sinusoidal inputs and positive damping, non-zero steady state responses can only occur in the modes in each plane with natural frequencies close to the excitation frequency and those with natural frequencies close to half this frequency. Analytical solutions, in the form of non-dimensional polynomial equations, are derived for the steady state vibration amplitudes in up to three modes simultaneously: the directly excited mode, the corresponding nonlinearly coupled mode in the orthogonal plane and a parametrically excited mode with half the natural frequency. The stability of the solutions is also identified. The outputs of the equations are consistent with previous results, where available. Example results from the analytical solutions are presented for a typical inclined bridge cable subject to vertical excitation of the lower end, and they are validated by numerical integration of the equations of motion and against some previous experimental

  6. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  7. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  8. Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease.

    Science.gov (United States)

    Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy

    2017-11-01

    Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Amplitude normalization reduces cervical vestibular evoked myogenic potential (cVEMP) amplitude asymmetries in normal subjects: proof of concept.

    Science.gov (United States)

    McCaslin, Devin L; Fowler, Andrea; Jacobson, Gary P

    2014-03-01

    The cervical vestibular evoked myogenic potential (cVEMP) is an acoustically synchronized, signal averaged, brief inhibitory response of a contracted muscle usually resulting from an acoustic stimulus. The cVEMP is recorded from the tonically contracted sternocleidomastoid muscle (SCM). The presence and amplitude of the cVEMP is related to both the integrity of the sacculo-collic pathway and magnitude of electromyographic (EMG) activity at the time of recording. Measurement variables include the absolute latency of the primary positive going component (referred to as P13) and interaural (i.e., left versus right) latency differences. Also measured is the peak-to-peak interaural amplitude asymmetry (IAA; percent difference in amplitude, left versus right). It is known that the amplitude of the cVEMP is positively correlated with the magnitude of tonic EMG from which the evoked potential is extracted. Thus, if EMG amplitude is uncontrolled, one cannot determine whether cVEMP asymmetries are occurring due to unilateral end organ disease or asymmetric tonic EMG activity. Two methods have been suggested to control for tonic EMG activity. These include (1) patient self-monitoring of EMG activity with biofeedback and (2) mathematical correction (i.e., amplitude normalization) of the left and right cVEMP waveforms. Currently, it is unknown how effective amplitude normalization techniques are at reducing cVEMP amplitude asymmetry in the presence of varying levels of EMG. The purpose of this investigation was to determine whether the use of amplitude correction techniques would reduce significantly the P13-N23 IAA data in otologically and neurologically intact adults when the level of EMG was varied between right and left sides. A prospective, repeated measures design was used for three different investigations in which cVEMPs were recorded and then processed using amplitude correction. Subjects were 20 otologically and neurologically health young adults between 21 and 29 yr

  10. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  11. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  12. Concluding theoretical remarks

    International Nuclear Information System (INIS)

    Ellis, J.

    1986-01-01

    My task in this talk is to review the happenings of this workshop from a theoretical perspective, and to emphasize lines for possible future research. My remarks are organized into a theoretical overview of the what, why, (mainly the hierarchy problem) how, (supersymmetry must be broken: softly or spontaneously, and if the latter, by means of a new U tilde(1) gauge group or through the chiral superfields) when (how heavy are supersymmetric partner particles in different types of theories) and where (can one find evidence for) supersymmetry. In the last part are discussed various ongoing and future searches for photinos γ tilde, gravitinos G tilde, the U vector boson, shiggses H tilde, squarks q tilde and sleptons l tilde, gluinos g tilde, winos W tilde and other gauginos, as well as hunts for indirect effects of supersymmetry, such as for example in baryon decay. Finally there is a little message of encouragement to our experimental colleagues, based on historical precedent. (orig.)

  13. Compendium of theoretical physics

    CERN Document Server

    Wachter, Armin

    2006-01-01

    Mechanics, Electrodynamics, Quantum Mechanics, and Statistical Mechanics and Thermodynamics comprise the canonical undergraduate curriculum of theoretical physics. In Compendium of Theoretical Physics, Armin Wachter and Henning Hoeber offer a concise, rigorous and structured overview that will be invaluable for students preparing for their qualifying examinations, readers needing a supplement to standard textbooks, and research or industrial physicists seeking a bridge between extensive textbooks and formula books. The authors take an axiomatic-deductive approach to each topic, starting the discussion of each theory with its fundamental equations. By subsequently deriving the various physical relationships and laws in logical rather than chronological order, and by using a consistent presentation and notation throughout, they emphasize the connections between the individual theories. The reader’s understanding is then reinforced with exercises, solutions and topic summaries. Unique Features: Every topic is ...

  14. MARKETING MIX THEORETICAL ASPECTS

    OpenAIRE

    Margarita Išoraitė

    2016-01-01

    Aim of article is to analyze marketing mix theoretical aspects. The article discusses that marketing mix is one of the main objectives of the marketing mix elements for setting objectives and marketing budget measures. The importance of each element depends not only on the company and its activities, but also on the competition and time. All marketing elements are interrelated and should be seen in the whole of their actions. Some items may have greater importance than others; it depends main...

  15. Silicene: Recent theoretical advances

    KAUST Repository

    Lew Yan Voon, L. C.

    2016-04-14

    Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.

  16. 3. Theoretical Physics Division

    International Nuclear Information System (INIS)

    For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr

  17. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  18. Design project management mode as the introduction

    International Nuclear Information System (INIS)

    Zhang Xiaoping

    2014-01-01

    This article consider nuclear power plant's current design schedule management mode as the introduction, analysis of current management in-depth, summed up the advantage and disadvantage of the existing management mode. It makes use of mature closed loop cycle project management, and submits progress tracking model assumptions. It also introduces the purpose and background of the progress automation model, the theoretical assumptions of the model, the design criteria and evaluation system of indicators of progress. Based on the achievement process model, this article mainly discusses the specific processes and key points of the project closed loop cycle, and the improvement of the process of project management. (author)

  19. Theoretical developments in SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)

    2009-01-15

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)

  20. Theoretical Developments in SUSY

    Science.gov (United States)

    Shifman, M.

    2009-01-01

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.

  1. Fundamental uncertainty in the BAO scale from isocurvature modes

    Energy Technology Data Exchange (ETDEWEB)

    Zunckel, C., E-mail: caroline.zunckel@gmail.co [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of Kwazulu-Natal, Durban 4041 (South Africa); Astrophysics Department, Princeton University, Peyton Hall, 4 Ivy Lane, NJ 08544 (United States); Okouma, P. [Department of Maths and Applied Maths, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Centre for High Performance Computing, CSIR Campus, 15 Lower Hope St., Rosebank, Cape Town (South Africa); South African Astronomical Observatory, Observatory, Cape Town (South Africa); African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town (South Africa); Muya Kasanda, S.; Moodley, K. [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of Kwazulu-Natal, Durban 4041 (South Africa); Centre for High Performance Computing, CSIR Campus, 15 Lower Hope St., Rosebank, Cape Town (South Africa); Bassett, B.A. [Department of Maths and Applied Maths, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Centre for High Performance Computing, CSIR Campus, 15 Lower Hope St., Rosebank, Cape Town (South Africa); South African Astronomical Observatory, Observatory, Cape Town (South Africa); African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town (South Africa)

    2011-02-14

    Small fractions of isocurvature perturbations correlated with the dominant adiabatic mode are shown to be a significant primordial systematic for Baryon Acoustic Oscillation (BAO) surveys which must be accounted for in future surveys. Isocurvature modes distort the standard ruler distance by broadening and shifting the peak in the galaxy correlation function. While a single isocurvature mode does not significantly degrade dark energy constraints, the general case with multiple isocurvature modes leads to biases that exceed 7{sigma} on average in the dark energy parameters even for isocurvature amplitudes undetectable by PLANCK. Accounting for all isocurvature modes corrects for this bias but degrades the dark energy figure of merit by at least 50% in the case of the BOSS experiment. However the BAO data in turn provides significantly stronger constraints on the nature of the primordial perturbations. Future large galaxy surveys will thus be powerful probes of exotic physics in the early Universe in addition to helping pin down the nature of dark energy.

  2. Standing sausage modes in curved coronal slabs

    Science.gov (United States)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  3. A discrete model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode

    International Nuclear Information System (INIS)

    Vanyushin, I. V.; Gergel, V. A.; Gontar', V. M.; Zimoglyad, V. A.; Tishin, Yu. I.; Kholodnov, V. A.; Shcheleva, I. M.

    2007-01-01

    A new discrete theoretical model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode is developed. It is shown that the spreading resistance in the substrate profoundly affects both the amplitude of a single-photon electrical pulse and the possibility of attaining the steady-state form of the avalanche breakdown excluding the Geiger mode of the photodiode's operation. The model is employed to interpret the experimental data obtained using test single-photon cells of avalanche photodiodes fabricated on the basis of the 0.25-μm silicon technology with the use of deep implantation to form the region of avalanche multiplication for the charge carriers. Excellent functional properties of the studied type of the single-photon (Geiger) cell are noted. A typical amplitude characteristic of the cell for optical radiation with the wavelength λ = 0.56 μm in the irradiance range of 10 -3 -10 2 lx is presented; this characteristic indicates that the quantum efficiency of photoconversion is extremely high

  4. ASTEROSEISMOLOGY OF THE NEARBY SN II PROGENITOR RIGEL. II. {epsilon}-MECHANISM TRIGGERING GRAVITY-MODE PULSATIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Moravveji, Ehsan [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Moya, Andres [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Guinan, Edward F., E-mail: moravveji@iasbs.ac.ir [Department of Astronomy, Villanova University, 800 Lancaster Avenue, Villanova, PA (United States)

    2012-04-10

    The cores of luminous B- and A-type (BA) supergiant stars are the seeds of later core-collapse supernovae. Thus, constraining the near-core conditions in this class of stars can place tighter constraints on the size, mass, and chemical composition of supernova remnants. Asteroseismology of these massive stars is one possible approach into such investigations. Recently, Moravveji et al. in 2012 (hereafter Paper I) extracted 19 significant frequencies from a 6-year radial velocity monitoring of Rigel ({beta} Ori, B8 Ia). The periods they determined broadly range from 1.22 to 74.74 days. Based on our differentially rotating stellar structure and evolution model, Rigel, at its current evolutionary state, is undergoing core He burning and shell H burning. Linear fully non-adiabatic non-radial stability analyses result in the excitation of a dense spectrum of non-radial gravity-dominated mixed modes. The fundamental radial mode (l = 0) and its overtones are all stable. When the hydrogen-burning shell is located even partially in the radiative zone, a favorable condition for destabilization of g-modes through the so-called {epsilon}-mechanism becomes viable. Only those g-modes that have high relative amplitudes in the hydrogen-burning (radiative) zone can survive the strong radiative damping. From the entire observed range of variability periods of Rigel (found in Paper I), and based on our model, only those modes with periods ranging between 21 and 127 days can be theoretically explained by the {epsilon}-mechanism. The origin of the short-period variations (found in Paper I) still remains unexplained. Because Rigel is similar to other massive BA supergiants, we believe that the {epsilon}-mechanism may be able to explain the long-period variations in {alpha} Cygni class of pulsating stars.

  5. Retrieving impulse response function amplitudes from the ambient seismic field

    Science.gov (United States)

    Viens, Loïc; Denolle, Marine; Miyake, Hiroe; Sakai, Shin'ichi; Nakagawa, Shigeki

    2017-07-01

    Seismic interferometry is now widely used to retrieve the impulse response function of the Earth between two distant seismometers. The phase information has been the focus of most passive imaging studies, as conventional seismic tomography uses traveltime measurements. The amplitude information, however, is harder to interpret because it strongly depends on the distribution of ambient seismic field sources and on the multitude of processing methods. Our study focuses on the latter by comparing the amplitudes of the impulse response functions calculated between seismic stations in the Kanto sedimentary basin, Japan, using several processing techniques. This region provides a unique natural laboratory to test the reliability of the amplitudes with complex wave propagation through the basin, and dense observations from the Metropolitan Seismic Observation network. We compute the impulse response functions using the cross correlation, coherency and deconvolution techniques of the raw ambient seismic field and the cross correlation of 1-bit normalized data. To validate the amplitudes of the impulse response functions, we use a shallow Mw 5.8 earthquake that occurred on the eastern edge of Kanto Basin and close to a station that is used as the virtual source. Both S and surface waves are retrieved in the causal part of the impulse response functions computed with all the different techniques. However, the amplitudes obtained from the deconvolution method agree better with those of the earthquake. Despite the expected wave attenuation due to the soft sediments of the Kanto Basin, seismic amplification caused by the basin geometry dominates the amplitudes of S and surface waves and is captured by the ambient seismic field. To test whether or not the anticausal part of the impulse response functions from deconvolution also contains reliable amplitude information, we use another virtual source located on the western edge of the basin. We show that the surface wave amplitudes

  6. Kinetic slow mode-type solitons

    Directory of Open Access Journals (Sweden)

    K. Baumgärtel

    2005-01-01

    Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.

  7. An overlooked effect of systemic anticholinergics: alteration on accommodation amplitude

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Sekeroglu

    2016-05-01

    Full Text Available AIM: To investigate the effect of oral solifenacin succinate, tolterodine-L-tartarate and oxybutinin hydrochloride (HCl on accommodation amplitude. METHODS: Female overactive bladder syndrome (OAB patients who were planned to use oral anticholinergics, patients that uses solifenacin succinate 5 mg (Group I, n=25, tolterodine-L-tartarate 4 mg (Group II, n=25, and oxybutinin HCl 5 mg b.i.d (Group III, n=25 and age matched healthy female subjects (Group IV, n=25 were recruited and complete ophthalmological examination and accommodation amplitude assessment were done at baseline and 4wk after initiation of treatment. RESULTS: The mean age of 100 consecutive female subjects was 51.6±5.7 (40-60y and there were no statistically significant difference with regard to the mean age (P=0.107 and baseline accommodation amplitude (P=0.148 between study groups. All treatment groups showed a significant decrease in accommodation amplitude following a 4-week course of anticholinergic treatment (P=0.008 in Group I, P=0.002 in Group II, P=0.001 in Group III, but there was no statistically significant difference in Group IV (P=0.065. CONCLUSION: A 4-week course of oral anticholinergic treatment have statistically significant effect on accommodation amplitude. Clinicians should avoid both overestimating this result, as this would unnecessarily restrict therapeutic possibilities, and also underestimating it which may lead to drug intolerance.

  8. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    Science.gov (United States)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  9. New formulas for amplitudes from higher-dimensional operators

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No.19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)

    2017-02-06

    In this paper we study tree-level amplitudes from higher-dimensional operators, including F{sup 3} operator of gauge theory, and R{sup 2}, R{sup 3} operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of F{sup 3}, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet R{sup 2} term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for F{sup 3} and R{sup 3} amplitudes.

  10. T-wave amplitude is related to physical fitness status.

    Science.gov (United States)

    Arbel, Yaron; Birati, Edo Y; Shapira, Itzhak; Topilsky, Yan; Wirguin, Michal; Canaani M D, Jonathan

    2012-07-01

    Abnormalities in repolarization may reflect underlying myocardial pathology and play a prominent role in arrhythmogenesis The T-wave amplitude has been associated with cardiovascular outcome in patients with acute myocardial infarction (MI) Additionally, T-wave amplitude is considered a predictor of arrhythmias, as well as being related to an individual's inflammatory status. The combined influence of different variables, such as inflammation, cardiovascular risk factors and physical fitness status, on the T-wave amplitude has not been evaluated to date. The aim of this study was to identify factors that affect the T-wave amplitude. Data from 255 consecutive apparently healthy individuals included in the Tel Aviv Medical Center Inflammation Survey (TAMCIS) were reviewed. All patients had undergone a physical examination and an exercise stress test, and different inflammatory and metabolic biomarkers (fibrinogen, potassium, and high-sensitivity C-reactive protein) were measured. Multivariate stepwise analysis revealed that the body mass index and the resting heart rate were significantly associated with the T-wave amplitude (β=-0.34, P physical fitness and not to his/her inflammatory status. ©2012, Wiley Periodicals, Inc.

  11. All Tree-level Amplitudes in Massless QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Henn, Johannes M.; Plefka, Jan; Schuster, Theodor; /Humboldt U., Berlin

    2010-10-25

    We derive compact analytical formulae for all tree-level color-ordered gauge theory amplitudes involving any number of external gluons and up to three massless quark-anti-quark pairs. A general formula is presented based on the combinatorics of paths along a rooted tree and associated determinants. Explicit expressions are displayed for the next-to-maximally helicity violating (NMHV) and next-to-next-to-maximally helicity violating (NNMHV) gauge theory amplitudes. Our results are obtained by projecting the previously-found expressions for the super-amplitudes of the maximally supersymmetric Yang-Mills theory (N = 4 SYM) onto the relevant components yielding all gluon-gluino tree amplitudes in N = 4 SYM. We show how these results carry over to the corresponding QCD amplitudes, including massless quarks of different flavors as well as a single electroweak vector boson. The public Mathematica package GGT is described, which encodes the results of this work and yields analytical formulae for all N = 4 SYM gluon-gluino trees. These in turn yield all QCD trees with up to four external arbitrary-flavored massless quark-anti-quark-pairs.

  12. Theoretical studies in elementary particle physics: [Progress report for the period June 1986 to February 1987

    International Nuclear Information System (INIS)

    Collins, J.C.

    1987-01-01

    Theoretical research on elementary particles is reported, with progress discussed in these areas: heavy quark production, the cosmic rays observed from Cygnus X-3, hadron-hadron collisions at small values of x, Monte Carlo event generators for hadron-hadron collisions, review of perturbative QCD theorems, direct computation of helicity amplitudes for tree diagrams, and application of the factorization of helicity amplitudes to the effective W approximation

  13. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  14. Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.

    Science.gov (United States)

    Panek, Paweł T; Jacob, Christoph R

    2016-08-18

    Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra.

  15. Quantification of guided mode propagation in fractured long bones.

    Science.gov (United States)

    Xu, Kailiang; Liu, Dan; Ta, Dean; Hu, Bo; Wang, Weiqi

    2014-07-01

    Guided modes propagation in intact, fractured and healing long bone has drawn significant research interests. However, mode quantifications for the direct comparison are still necessary to address. The aim of the study is to analyze the mode interaction with a notch-fracture in the long bone and find quantitative ultrasound parameters sensitive to depth and width variation of the fracture. We analyzed the impacts of the partially and completely diaphyseal osteotomy on fundamental guided modes propagation using the two-dimension finite-difference time-domain (2D-FDTD) simulations. The long bones were built as three layer models by a cortical plate embedded between overlying soft tissue and inner-coated marrow. Narrowband low-frequency sinusoids (100 kHz) were employed to only excite two fundamental guided modes. The mode amplitude variations were investigated as functions of the gap-breakage width and depth. It is found that the transverse fractures have strong influences on the anti-symmetric mode A0 transmission and reflection, whereas amplitudes of the symmetric mode S0 are not sensitive to the fracture degree. The quantitative results consistently indicate that reflection energy and transmission coefficients of the S0 and A0 modes can be used to quantify the mode interaction in the fractured long bone and further to evaluate long bone fracture status. Future study is needed to investigate the physical experiments on realistic fractured long bone and to insure that the proposed ultrasound parameters can be used to quantitatively evaluate the long bone fracture in clinical application. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Antipastorialism : Resistant Georgic Mode

    National Research Council Canada - National Science Library

    Zimmerman, Donald

    2000-01-01

    .... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...

  17. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  18. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  19. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions.

    Science.gov (United States)

    Zhao, Yifan; Wang, Andong; Zhu, Long; Lv, Weichao; Xu, Jing; Li, Shuhui; Wang, Jian

    2017-11-15

    Spatial modes have attracted increasing interest in free-space and fiber-based optical communications. Underwater wireless optical communication is becoming a promising technique in marine exploration. Here we investigate the underwater wireless optical communications using different spatial modes, i.e., traditional Gaussian modes, orbital angular momentum modes having helical phase fronts, and diffraction-free and obstruction-tolerant Bessel modes. We evaluate the underwater transmission performance of three spatial modes subjected to dynamic bubbles, which cause similar power fluctuations, regardless of spatial modes. We also demonstrate an underwater transmission link subjected to static obstructions using three spatial modes carrying 1.4 Gbaud orthogonal frequency division multiplexing 16-ary quadrature amplitude modulation (16-QAM) signals. The Bessel mode shows the best performance against obstructions.

  20. Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay

    Science.gov (United States)

    Xie, X. H.; Cuypers, Y.; Bouruet-Aubertot, P.; Ferron, B.; Pichon, A.; LourençO, A.; Cortes, N.

    2013-06-01

    and fine-scale measurements collected in the central Bay of Biscay during the MOUTON experiment are analyzed to investigate the dynamics of internal waves and associated mixing. Large-amplitude internal tides (ITs) that excite internal solitary waves (ISWs) in the thermocline are observed. ITs are dominated by modes 3 and 4, while ISWs projected on mode 1 that is trapped in the thermocline. Therein, ITs generate a persistent narrow shear band, which is strongly correlated with the enhanced dissipation rate in the thermocline. This strong dissipation rate is further reinforced in the presence of ISWs. Dissipation rates during the period without ISWs largely agree with the MacKinnon-Gregg scaling proposed for internal wavefields dominated by a low-frequency mode, while they show poor agreement with the Gregg-Henyey parameterization valid for internal wavefields close to the Garrett-Munk model. The agreement with the MacKinnon-Gregg scaling is consistent with the fact that turbulent mixing here is driven by the low-frequency internal tidal shear.