WorldWideScience

Sample records for thaliana seed germination

  1. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Toorop, P.E.; Barroco, R.M.; Engler, G.; Groot, S.P.C.; Hilhorst, H.W.M.

    2005-01-01

    Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was

  2. Allelopathic Effects of Plant-Derived Aerosol Smoke on Seed Germination of Arabidopsis thaliana (L.) Heynh

    International Nuclear Information System (INIS)

    Pennacchio, M.; Jefferson, L.V.; Havens, K.

    2007-01-01

    The role that plant-derived smoke plays in promoting seed germination is well documented, but little is known about its ability to inhibit seed germination. To better understand this phenomenon, we tested the effects of eight aerosol smoke treatments on the Columbia-3 ecotype of non dormant Arabidopsis thaliana (L.) Heynh. seeds. Our results revealed that aerosol smoke significantly inhibits germination when seeds were exposed to prolonged periods of aerosol smoke. Short durations of smoke treatments significantly promoted the rate of germination of A. thaliana seed. We briefly discuss this dual regulation of smoke and its possible impact on conservation and restoration practices. We also propose that plant-derived smoke may be another vehicle by which allelo chemicals can be introduced into the environment.

  3. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    Science.gov (United States)

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  4. DOG1 expression is predicted by the seed-maturation envornment and contributes to geographical variation in germination in Arabidopsis thaliana

    NARCIS (Netherlands)

    Chiang, G.C.K.; Bartsch, M.; Barua, D.; Nakabayashi, K.; Debieu, M.; Kronholm, I.; Koornneef, M.; Soppe, W.J.J.; Donohue, K.; Meaux, De J.

    2011-01-01

    Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed

  5. Cryptic Genetic Variation for Arabidopsis thaliana Seed Germination Speed in a Novel Salt Stress Environment.

    Science.gov (United States)

    Yuan, Wei; Flowers, Jonathan M; Sahraie, Dustin J; Purugganan, Michael D

    2016-10-13

    The expansion of species ranges frequently necessitates responses to novel environments. In plants, the ability of seeds to disperse to marginal areas relies in part to its ability to germinate under stressful conditions. Here we examine the genetic architecture of Arabidopsis thaliana germination speed under a novel, saline environment, using an Extreme QTL (X-QTL) mapping platform we previously developed. We find that early germination in normal and salt conditions both rely on a QTL on the distal arm of chromosome 4, but we also find unique QTL on chromosomes 1, 2, 4, and 5 that are specific to salt stress environments. Moreover, different QTLs are responsible for early vs. late germination, suggesting a temporal component to the expression of life history under these stress conditions. Our results indicate that cryptic genetic variation exists for responses to a novel abiotic stress, which may suggest a role of such variation in adaptation to new climactic conditions or growth environments. Copyright © 2016 Yuan et al.

  6. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana.

    Science.gov (United States)

    Hernández, Iker; Munné-Bosch, Sergi

    2012-12-01

    Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from oxidative stress. The present study aimed at determining the role of flavonoids in Arabidopsis thaliana (L.) seed germination, and the involvement of salicylic acid (SA) and auxin (indole-3-acetic acid), two phytohormones with the same biosynthetic origin as flavonoids, the shikimate pathway, in such a putative role. We show that naringenin, a flavanone, strongly inhibits the germination of A. thaliana seeds in a dose-dependent and SA-independent manner. Altered auxin levels do not affect seed germination in Arabidopsis, but impaired auxin transport does, although to a minor extent. Naringenin and N-1-naphthylphthalamic acid (NPA) impair auxin transport through the same mechanisms, so the inhibition of germination by naringenin might involve impaired auxin transport among other mechanisms. From the present study it is concluded that naringenin inhibits the germination of Arabidopsis seeds in a dose-dependent and SA-independent manner, and the results also suggest that such effects are exerted, at least to some extent, through impaired auxin transport, although additional mechanisms seem to operate as well. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Multiple paths to similar germination behavior in Arabidopsis thaliana.

    Science.gov (United States)

    Burghardt, Liana T; Edwards, Brianne R; Donohue, Kathleen

    2016-02-01

    Germination timing influences plant fitness, and its sensitivity to temperature may cause it to change as climate shifts. These changes are likely to be complex because temperatures that occur during seed maturation and temperatures that occur post-dispersal interact to define germination timing. We used the model organism Arabidopsis thaliana to determine how flowering time (which defines seed-maturation temperature) and post-dispersal temperature influence germination and the expression of genetic variation for germination. Germination responses to temperature (germination envelopes) changed as seeds aged, or after-ripened, and these germination trajectories depended on seed-maturation temperature and genotype. Different combinations of genotype, seed-maturation temperature, and after-ripening produced similar germination envelopes. Likewise, different genotypes and seed-maturation temperatures combined to produce similar germination trajectories. Differences between genotypes were most likely to be observed at high and low germination temperatures. The germination behavior of some genotypes responds weakly to maternal temperature but others are highly plastic. We hypothesize that weak dormancy induction could synchronize germination of seeds dispersed at different times. By contrast, we hypothesize that strongly responsive genotypes may spread offspring germination over several possible germination windows. Considering germination responses to temperature is important for predicting phenology expression and evolution in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.

    Science.gov (United States)

    Bolte, Susanne; Lanquar, Viviane; Soler, Marie-Noëlle; Beebo, Azeez; Satiat-Jeunemaître, Béatrice; Bouhidel, Karim; Thomine, Sébastien

    2011-07-01

    Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.

  9. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds.

    Science.gov (United States)

    Costa, Maria Cecília D; Righetti, Karima; Nijveen, Harm; Yazdanpanah, Farzaneh; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk W M

    2015-08-01

    During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.

  11. Germination of red alder seed.

    Science.gov (United States)

    M.A. Radwan; D.S. DeBell

    1981-01-01

    Red alder seeds were collected from six locations throughout the natural range of the species. Each seed lot was obtained from a single tree, and the seeds were used to determine germination with and without stratification treatment. Irrespective of treatment, germination varied significantly (P

  12. Extensive translational regulation during seed germination revealed by polysomal profiling

    NARCIS (Netherlands)

    Bai, Bing; Peviani, Alessia; Horst, van der Sjors; Gamm, Magdalena; Snel, Berend; Bentsink, Leónie; Hanson, Johannes

    2017-01-01

    This work investigates the extent of translational regulation during seed germination. The polysome occupancy of each gene is determined by genome-wide profiling of total mRNA and polysome-associated mRNA. This reveals extensive translational regulation during Arabidopsis thaliana seed

  13. Use of ultrasonication to increase germination rates of Arabidopsis seeds.

    Science.gov (United States)

    López-Ribera, Ignacio; Vicient, Carlos M

    2017-01-01

    Arabidopsis thaliana is widely used as model organism in plant biology. Although not of agronomic significance, it offers important advantages for basic research in genetics and molecular biology including the availability of a large number of mutants and genetically modified lines. However, Arabidopsis seed longevity is limited and seeds stored for more than 10 years usually show a very low capacity for germination. The influence of ultrasonic stimulation was investigated on the germination of A. thaliana L. seeds. All experiments have been performed using a frequency of 45 kHz at constant temperature (24 °C). No germination rate differences were observed when using freshly collected seeds. However, using artificially deteriorated seeds, our results show that short ultrasonic stimulation (seeds after ultrasonic stimulation. Scanning electron microscopy observations showed an increase in the presence of pores in the seed coat after sonication that may be the cause, at least in part, of the increase in germination. The ultrasound treated seeds developed normally to mature fertile plants. Ultrasound technology can be used to enhance the germination process of old Arabidopsis seeds without negatively affecting seedling development. This effect seems to be, at least in part, due to the opening of pores in the seed coat. The use of ultrasonic stimulation in Arabidopsis seeds may contribute to the recovering of long time stored lines.

  14. Molecular analysis of endo-β-mannanase genes upon seed imbibition suggest a cross-talk between radicle and micropylar endosperm during germination of Arabidopsis thaliana

    Science.gov (United States)

    Iglesias-Fernández, Raquel; del Carmen Rodríguez-Gacio, María; Barrero-Sicilia, Cristina; Carbonero, Pilar

    2011-01-01

    The endo-β-mannanase (MAN) family is represented in the Arabidopsis genome by eight members, all with canonical signal peptides and only half of them being expressed in germinating seeds. The transcripts of these genes were localized in the radicle and micropylar endosperm (ME) before radicle protrusion and this expression disappears as soon as the endosperm is broken by the emerging radicle tip. However, only three of these MAN genes, AtMAN5, AtMAN7 and especially AtMAN6 influence the germination time (t50) as assessed by the analysis of the corresponding knock-out lines. The data suggest a possible interaction between embryo and ME regarding the role of MAN during the Arabidopsis germination process. PMID:21301215

  15. on germination of chickpea seed

    African Journals Online (AJOL)

    patience

    2014-01-01

    Jan 1, 2014 ... electric field (by varying voltage) on the water absorption and germination of chickpea (Cicer arietinum L.) seeds. Chickpea seeds were exposed to the electric field (by varying voltage from zero to 1300 V) for 15 min at three different temperatures (13, 16 and 19°C). The present study was conducted to find ...

  16. seed germination and seedlings growth

    African Journals Online (AJOL)

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... 20-hydroxyecdysone (20E) is the major phytoecdysteroid of about 6% of plants. Its role in plant physiology has not been fully elucidated. In this work we studied the effects of 20E application on some morphological and biochemical parameters of tomato, Lycopersicum esculentum, seed during germination ...

  17. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    Science.gov (United States)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  18. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    The present study was conducted to examine the influence of Lagenaria siceraria seed fermentation method on seed germination and vigor. Three seed fermentation methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested on two cultivars during two years. Seed germination and ...

  19. [The research of Valeriana amurensis seed germination characteristics].

    Science.gov (United States)

    Liu, Juan; Yang, Chun-Rong; Jiang, Bo; Fang, Min; Du, Juan

    2011-10-01

    To study the effect of different treatments on the Valeriana amurensis seed germination rate. Used different chemical reagents and seed soakings on the routine germination test and the orthogonal test of the Valeriana amurensis seed, calculated the germination rate under different germination condition. Valeriana amurensis treated with different chemical reagends had different germination rate. The suitable immersion time could enhance Valeriana amurensis seed germination rate. Different treatment time, different disposal temperature, different germination temperature would have an impact on the Valeriana amurensis seed germination rate. In order to raise the Valeriana amurensis seed germination rate, use appropriate treatment on the seed before plant seeds; The seed growing must under suitable time and temperature.

  20. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination. © 2014 Scandinavian Plant Physiology Society.

  1. Is seed conditioning essential for Orobanche germination?

    Science.gov (United States)

    Plakhine, Dina; Ziadna, Hammam; Joel, Daniel M

    2009-05-01

    Parasitic Orobanchaceae germinate only after receiving a chemical stimulus from roots of potential host plants. A preparatory phase of several days that follows seed imbibition, termed conditioning, is known to be required; thereafter the seeds can respond to germination stimulants. The aim of this study was to examine whether conditioning is essential for stimulant receptivity. Non-conditioned seeds of both Orobanche cumana Wallr. and O. aegyptiaca Pers. [syn. Phelipanche aegyptiaca (Pers.) Pomel] were able to germinate in response to chemical stimulation by GR24 even without prior conditioning. Stimulated seeds reached maximal germination rates about 2 weeks after the onset of imbibition, no matter whether the seeds had or had not been conditioned before stimulation. Whereas the lag time between stimulation and germination response of non-conditioned seeds was longer than for conditioned seeds, the total time between imbibition and germination was shorter for the non-conditioned seeds. Unlike the above two species, O. crenata Forsk. was found to require conditioning prior to stimulation. Seeds of O. cumana and O. aegyptiaca are already receptive before conditioning. Thus, conditioning is not involved in stimulant receptivity. A hypothesis is put forward, suggesting that conditioning includes (a) a parasite-specific early phase that allows the imbibed seeds to overcome the stress caused by failing to receive an immediate germination stimulus, and (b) a non-specific later phase that is identical to the pregermination phase between seed imbibition and actual germination that is typical for all higher plants.

  2. High-Throughput Scoring of Seed Germination.

    Science.gov (United States)

    Ligterink, Wilco; Hilhorst, Henk W M

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very informative as it lacks information about start, rate, and uniformity of germination, which are highly indicative of such traits as dormancy, stress tolerance, and seed longevity. The calculation of cumulative germination curves requires information about germination percentage at various time points. We developed the GERMINATOR package: a simple, highly cost-efficient, and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The GERMINATOR package contains three modules: (I) design of experimental setup with various options to replicate and randomize samples; (II) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (III) curve fitting of cumulative germination data and the extraction, recap, and visualization of the various germination parameters. GERMINATOR is a freely available package that allows the monitoring and analysis of several thousands of germination tests, several times a day by a single person.

  3. Germination of beans and snap beans seed

    Directory of Open Access Journals (Sweden)

    Zdravković Milan

    2000-01-01

    Full Text Available The aim of this study was to investigate germination of good bean seed of the variety Galeb and the bad bean seed of the same variety. We were also interested in germination of bean and snap bean seed damaged by grain weevil, and in germination of the seed treated by freezing which was aimed at controlling grain weevil by cold. We also recorded the differences between bean and snap bean seed, which was or was not treated by freezing in laboratory conditions. This investigation was carried out by applying the two factorial block system. The obtained results were evaluated by the variance analysis and x2 test These results suggest that the bean seed of a bad fraction had low levels of germination, but still it was present. Although the seed of good appearance was carefully selected, germination was slightly lower than it should have been. The seed with the large amount of grain weevils performed a high level germination in laboratory conditions. There were no differences in germination between the seed injured by grain weevil either in beans or in snap beans. As for the seed treated or untreated by freezing, there also were no differences between beans and snap beans. .

  4. Factors influencing seed germination in Cerrado grasses

    OpenAIRE

    Kolb, Rosana Marta; Pilon, Natashi Aparecida Lima; Durigan, Giselda

    2016-01-01

    Few studies address the ecology of herbs of Cerrado grasslands, which are ecosystems where the long dry season, high temperatures, insolation, fire and invasive grasses greatly influencing germination and the establishment of plants. We assessed germination of 13 species of Poaceae from Cerrado grasslands under nursery conditions or in germination chambers, the latter with i) recently collected seeds and seeds after six months storage, ii) under constant and alternating temperatures, and iii)...

  5. Gravitational stress on germinating Pinus pinea seeds.

    Science.gov (United States)

    Ranaldi, Francesco; Giachetti, Eugenio; Guerin, Elizabeth; Bacci, Stefano; Paoletti, Elena; Boddi, Vieri; Vanni, Paolo

    2003-06-01

    In the germination of lipid-rich seeds, the glyoxylate cycle plays a control role in that, bypassing the two decarboxylative steps of the Krebs cycle; it allows the net synthesis of carbohydrates from lipids. The activity of isocitrate lyase, the key enzyme of the glyoxylate cycle, is an indicator of the state of seed germination: stage of germination, growth of embryo, activation and progress of protein synthesis, depletion of lipidic supplies. In order to investigate the effects of gravity on seed germination, we carried out a study on the time pattern of germination of Pinus pinea seeds that were subjected to a hypergravitational stress (1000 g for 64 h at 4 degrees C), either in a dry or in a wet environment, before to be placed in germination plates. During the whole time of germination, we monitored the state of embryo growth and the most representative enzymes of the main metabolic pathways. In treated wet seeds, we observed an average germination of only 20% with a slowdown of the enzyme activities assayed and a noticeable degradation of lipidic reserves with respect to the controls. These differences in germination are not found for dry seeds.

  6. Seed germination behavior of swallow wort

    Directory of Open Access Journals (Sweden)

    amir hosein pahlavani

    2009-06-01

    Full Text Available The exotic plant, Swallow- wort, a twining perennial of the Milkweed family, has become increasingly invasive in some place of Iran, especially orchards. Increased knowledge of wort germination biology would facilitate development of an optimum control program. Germination of Swallow wort seeds as affected by environmental factors was studied under controlled-environment growth chamber conditions. The following studies were conducted in plant Pests & Diseases Research Institute during the years 2003-4: 1- Effect of constant temperature on germination that including 10, 15, 18, 20, 25, 30, 35 and 40˚C; 2- Effect of light on constant germination; 3- Effect of temperature fluctuations on seed germination: 15/7, 20/12, 25/17 and 30/22˚C. All experiments were conducted with 8 replications. Swallow wort seeds showed no dormancy when detachment from mother plant. Seed germination was strongly influenced by temperature. Light did not play a crucial role on seed germination of this weed. Therefore Swallow wort seeds were not photoblastic and temperature fluctuations did not increase seed germination of Swallow wort. The above characteristics are very important in making swallowwort an invasive weed. Having precise information of these traits enables us to a better management and control of this troublesome weed.

  7. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    Science.gov (United States)

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Mitochondrial Proteome Studies in Seeds during Germination

    Directory of Open Access Journals (Sweden)

    Malgorzata Czarna

    2016-06-01

    Full Text Available Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs and the regulation of seed germination.

  9. Factors influencing seed germination in Cerrado grasses

    Directory of Open Access Journals (Sweden)

    Rosana Marta Kolb

    2016-03-01

    Full Text Available Few studies address the ecology of herbs of Cerrado grasslands, which are ecosystems where the long dry season, high temperatures, insolation, fire and invasive grasses greatly influencing germination and the establishment of plants. We assessed germination of 13 species of Poaceae from Cerrado grasslands under nursery conditions or in germination chambers, the latter with i recently collected seeds and seeds after six months storage, ii under constant and alternating temperatures, and iii in the presence and absence of light. Germinability, mean germination time (MGT and required light were quantified to elucidate factors involved in successful germination. Germinability was low for most grasses, probably because of low seed viability. For most species, germinability and MGT were not altered by seed storage. Germination percentages were higher at alternating temperatures and in the presence of light, factors that are more similar to natural environmental situations compared with constant temperature or the absence of light. Our findings indicate that alternating temperatures and light incidence are key factors for germination of species of Poaceae. The maintenance of these environmental factors, which are crucial for the conservation of Cerrado grasslands, depends on appropriate management interventions, such as fire management and the control of biological invasion.

  10. 7 CFR 201.53 - Source of seeds for germination.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Source of seeds for germination. 201.53 Section 201.53... REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination. (a) When both purity and germination tests are required, seeds for germination shall be taken from the...

  11. The role of seed priming in improving seed germination and ...

    African Journals Online (AJOL)

    win7

    2013-11-13

    Nov 13, 2013 ... the effect of seed priming with 5 g/L NaCl on germination and seedling growth of maize (Zea mays L.) exposed to five salinity levels ... Seed priming alleviated the inhibitory effect of salt stress on germination and seedling ..... Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress.

  12. Seed dormancy and germination : light and nitrate

    NARCIS (Netherlands)

    Hilhorst, H.W.M.

    1990-01-01

    One of the most important aspects of the life cycle of seed plants is the formation and development of seeds on the motherplant and the subsequent dispersal. An equally important element of the survival strategy is the ability of seeds to prevent germination in unfavorable

  13. 7 CFR 201.54 - Number of seeds for germination.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Number of seeds for germination. 201.54 Section 201.54... REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination. At least 400 seeds shall be tested for germination; except that in mixtures, 200 seeds of each of those...

  14. Freezing tolerance of conifer seeds and germinants.

    Science.gov (United States)

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation

  15. High-throughput scoring of seed germination

    NARCIS (Netherlands)

    Ligterink, Wilco; Hilhorst, Henk W.M.

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very

  16. Seed priming to alleviate salinity stress in germinating seeds.

    Science.gov (United States)

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Seed germination and sowing options [Chapter 8

    Science.gov (United States)

    Tara Luna; Kim Wilkinson; R. Kasten Dumroese

    2009-01-01

    Seeds of many native species are challenging to germinate. One important thing a grower can do is learn as much as possible about the life history, ecology, and habitat of the species they wish to grow.What processes do seeds of this species go through in nature? Any observations will be valuable when trying to germinate and grow species that have little or no...

  18. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana.

    Science.gov (United States)

    Postma, Froukje M; Lundemo, Sverre; Ågren, Jon

    2016-02-01

    Intraspecific variation in seed bank dynamics should contribute to local adaptation, but is not well studied. The extent to which genetic and environmental factors affect dormancy cycling and seed mortality was investigated in the annual herb Arabidopsis thaliana by conducting a reciprocal seed burial experiment. Seeds from two locally adapted populations (from Italy and Sweden) were buried at both of the sites of origin, and seed mortality and germinability were determined during the following 2 years for initially non-dormant glasshouse-matured seeds and dormant field-matured seeds. Mean soil temperature was higher at the Italian site compared with the Swedish site throughout the year, and the germination proportions were in general higher for seeds buried in Italy than in Sweden. The rate of secondary dormancy induction of the Italian genotype was faster than that of the Swedish genotype at both sites, while the opposite was true for the rate of dormancy release, at least at the Swedish site. The comparison of non-dormant glasshouse seeds with dormant field seeds demonstrated that A. thaliana seeds can adjust their dormancy levels to current environmental conditions, and suggests that maternal environmental conditions have only minor effects on dormancy cycles. At both sites, locally produced seeds had low germinability in the first year compared with the second year, suggesting that a considerable fraction of the seeds would enter the seed bank. In Italy, but not in Sweden, seed mortality increased rapidly during the second year of burial. This is the first demonstration of intraspecific genetic differentiation in the annual seed dormancy cycle of any species, and the documented difference is likely to contribute to local adaptation. The results suggest that the contribution of a seed bank to seedling recruitment should vary among environments due to differences in the rate of seed mortality. © The Author 2015. Published by Oxford University Press on behalf of

  19. Oxidative signaling in seed germination and dormancy

    OpenAIRE

    El-Maarouf-Bouteau, Hayat; Bailly, Christophe

    2008-01-01

    Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumul...

  20. Influence of diesel fuel on seed germination

    International Nuclear Information System (INIS)

    Adam, Gillian; Duncan, Harry

    2002-01-01

    The volatile fraction of diesel fuel played a major role in delaying seed emergence and reducing percentage germination. - The use of plant-based systems to remediate contaminated soils has become an area of intense scientific study in recent years and it is apparent that plants which grow well in contaminated soils need to be identified and screened for use in phytoremediation technologies. This study investigated the effect of diesel fuel on germination of selected plant species. Germination response varied greatly with plant species and was species specific, as members of the same plant family showed differential sensitivity to diesel fuel contamination. Differences were also seen within plant subspecies. At relatively low levels of diesel fuel contamination, delayed seed emergence and reduced percentage germination was observed for the majority of plant species investigated. Results suggest the volatile fraction of diesel fuel played an influential role in delaying seed emergence and reducing percentage germination. In addition, the remaining diesel fuel in the soil added to this inhibitory effect on germination by physically impeding water and oxygen transfer between the seed and the surrounding soil environment, thus hindering the germination response

  1. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  2. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  3. [Study on physiological characteristics of seed germination of Ephedra sinica].

    Science.gov (United States)

    Seqinbateer; Khasbagan; Wurina; Wei, Xian-Jun

    2009-05-01

    To study the characteristics of the Ephedra sinica seed germination, to provide a basis for its cultivation. The seed germination inhibitive substances were studied by water washing method; the seed vigor was determined by TTC method and red ink method, the influence of growth substances to seed germination was studied by agar medium cultivation, and the influence of different sand burying depth on seed germination was studied by sand medium cultivation. The seed germination rates of dry seeds, seeds as 12 h soaking with distilled water, 12 h washing by water and with ensheathe phyllary were 44%, 61%, 79.9% and 0%. Treated with 40 mg/L GA, the seed germination enhanced significantly as the maximum seed germination rate was 94% after 2 d. Treated with 40 mg/L IAA and 40 mg/L 6-BA, the seed germination delayed as the maximum seed germination rate appeared after 7 d, and the difference of seed germination index between treated and CK was significant (Pseed germination rate gradually increased. But above 6 cm, when the depth increased, the seed germination rate gradually decreased. Moreover, as the sand burying depth increased, the root length changed in parabola-shaped and the stem length increased, but the root top radio decreased. The phyllary and seed of Ephedra sinica contain some seed germination inhibitors, adequate water washing, dealing with GA and so on can improve the seed germination rate and speed up the seed germination. Appropriate deep sand burying can also improve seed germination and seedling emergence of Ephedra sinica.

  4. Promotion of seed germination by cyanide.

    Science.gov (United States)

    Taylorson, R B; Hendricks, S B

    1973-07-01

    Potassium cyanide at 3 mum to 10 mm promotes germination of Amaranthus albus, Lactuca sativa, and Lepidium virginicum seeds. l-Cysteine hydrogen sulfide lyase, which catalyzes the reaction of HCN with l-cysteine to form beta-l cyanoalanine, is active in the seeds. beta-l-Cyanoalanine is the most effective of the 23 alpha-amino acids tested for promoting germination of A. albus seeds. Aspartate, which is produced by enzymatic hydrolysis of asparagine formed by hydrolysis from beta-cyanoalanine, is the second most effective of the 23 amino acids. Uptake of aspartate-4-(14)C is much lower than of cyanide.Radioactive tracer in K(14)CN shows uptake of about 1.5 mumoles of HCN per gram of A. albus and L. sativa seeds after 20 hours of imbibition. Extracts of the seeds gave high (14)C activity in beta-cyanoalanine, asparagine, and aspartate. The acid-hydrolyzed protein extract gave high activity only in aspartate. Tests were negative for free cyanide in the seed. Respiration of the seed is inhibited more than 75% by KCN and by KN(3) at 10 mm. Azide at greater than 1.0 mm inhibits the promotion of germination by cyanides. Neither 0.1 mm KCN nor KN(3) inhibit O(2) consumption, whereas lower concentrations promote germination. It is concluded that the high rate of utilization of cyanide in the reaction to form beta-l-cyanoalanine and the subsequent incorporation into protein limit any inhibition of oxygen consumption. The promotion of seed germination is substrate-limited by asparagine-aspartate, which is required for protein synthesis.

  5. The multifunctional protein AtMFP2 is co-ordinately expressed with other genes of fatty acid beta-oxidation during seed germination in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Eastmond, P J; Graham, I A

    2000-02-01

    In germinating oilseeds peroxisomal fatty acid beta-oxidation is responsible for the mobilization of storage lipids. This pathway also occurs in other tissues where it has a variety of additional physiological functions. The central enzymatic steps of peroxisomal beta-oxidation are performed by acyl-CoA oxidase (ACOX), the multifunctional protein (MFP) and 3-ketoacyl-CoA thiolase (thiolase). In order to investigate the function and regulation of beta-oxidation in plants it is first necessary to identify and characterize genes encoding the relevant enzymes in a single model species. Recently we and others have reported on the cloning and characterization of genes encoding four ACOXs and a thiolase from the oilseed Arabidopsis thaliana. Here we identify a gene encoding an Arabidopsis MFP (AtMFP2) that is induced transiently during germination. The pattern of AtMFP2 expression closely reflects changes in the activities of 2-trans-enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase. Similar patterns of expression have previously been reported for ACOX and thiolase genes. We conclude that genes encoding the three main proteins responsible for beta-oxidation are co-ordinately expressed during oilseed germination and may share a common mechanism of regulation.

  6. Monte Carlo simulation of the seed germination process

    International Nuclear Information System (INIS)

    Gladyszewska, B.; Koper, R.

    2000-01-01

    Paper presented a mathematical model of seed germination process based on the Monte Carlo method and theoretical premises resulted from the physiology of seed germination suggesting three consecutive stages: physical, biochemical and physiological. The model was experimentally verified by determination of germination characteristics for seeds of ground tomatoes, Promyk cultivar, within broad range of temperatures (from 15 to 30 deg C)

  7. Unravelling desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.

    2014-01-01

    How different organisms survive in the absence or under very limited amounts of water is still an open question. The aim of the research presented in this thesis is to explore the molecular basis of desiccation tolerance in seeds. We investigated the possibilities of using germinated desiccation

  8. Investigation on carob seed germination under controlled conditions

    Directory of Open Access Journals (Sweden)

    Hamide GÜBBÜK

    2012-12-01

    Full Text Available In this study, the effects of some pre-treatments on seed germination of wild carob seeds were investigated under two different conditions (germination cabinet and greenhouse. Twenty two pre-treatments were applied to the seeds. Pre-treated and control seeds were placed under dark conditions at 25°C. All treated seeds were germinated at 27°C temperature in the germination cabinet and greenhouse conditions. Seed germination rate was determined according to the pre-treatments for both conditions. The results showed that if the seeds were soaked in pure (98 % or diluted sulphuric acid (H2SO4, 40 %, 90 % for 30 minutes then kept in water for 2 days or just soaking the seeds in H2SO4 sulfuric acid for 30 minute gave the best results in terms of seed germination as the seed germination rate was over 90 %. The lowest germination rate under both conditions was observed in the control and soaking the seeds in 60 % H2SO4 for 30 minutes. On the other hands, seeds soaked in 60 % H2SO4 and then kept in water for 2 days did not germinate as they lost germination ability. The highest germination rates were recorded after ten days of pre-treatments in both conditions.

  9. Germination Ecophysiology of Annona crassiflora Seeds

    Science.gov (United States)

    da Silva, Edvaldo A. A.; de Melo, Daniel L. B.; Davide, Antonio C.; de Bode, Nienke; Abreu, Guilherme B.; Faria, José M. R.; Hilhorst, Henk W. M.

    2007-01-01

    Background and Aims Little is known about environmental factors that break morphophysiological dormancy in seeds of the Annonaceae and the mechanisms involved. The aim of this study was to characterize the morphological and physiological components of dormancy of Annona crassiflora, a tree species native to the Cerrado of Brazil, in an ecophysiological context. Methods Morphological and biochemical characteristics of both embryo and endosperm were monitored during dormancy break and germination at field conditions. Seeds were buried in the field and exhumed monthly for 2 years. Germination, embryo length and endosperm digestion, with endo-β-mannanase activity as a marker, were measured in exhumed seeds, and scanning electron microscopy was used to detect cell division. The effect of constant low and high temperatures and exogenous gibberellins on dormancy break and germination was also tested under laboratory conditions. Key Results After burial in April, A. crassiflora seeds lost their physiological dormancy in the winter months with lowest monthly average minimum temperatures (May–August) prior to the first rainfall of the wet season. The loss of physiological dormancy enabled initiation of embryo growth within the seed during the first 2 months of the rainy season (September–October), resulting in a germination peak in November. Embryo growth occurred mainly through cell expansion but some dividing cells were also observed. Endosperm digestion started at the micropylar side around the embryo and diffused to the rest of the endosperm. Exogenous gibberellins induced both embryo growth and endo-β-mannanase activity in dormant seeds. Conclusions The physiological dormancy component is broken by low temperature and/or temperature fluctuations preceding the rainy season. Subsequent embryo growth and digestion of the endosperm are both likely to be controlled by gibberellins synthesized during the breaking of physiological dormancy. Radicle protrusion thus

  10. Factors Defining Field Germination of Oilseed Radish Seeds

    Directory of Open Access Journals (Sweden)

    N.V. Dorofeev

    2013-08-01

    Full Text Available Influence of temperature, depth of crops and granulometric of soil structure on germination speed, laboratory and field germination of oilseed radish seeds were studied. It was established that the period of seed-germination is defined both by temperature and granulometric structure of soil. The highest field germination was marked on sandy loam at depth of crops' seeds at 3 cm and 20°С.

  11. Effects of hydropriming on seed germination and seedling growth in ...

    African Journals Online (AJOL)

    The germination of Salvia officinalis L. (sage) seeds is a problem of great concern that may be overcome by employing seed priming techniques. Seed priming is an efficient technique for improvement of seed vigor, increasing germination and seedling growth. Little information has been reported on seedling development ...

  12. 12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis[C][W][OA

    Science.gov (United States)

    Dave, Anuja; Hernández, M. Luisa; He, Zhesi; Andriotis, Vasilios M.E.; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2011-01-01

    Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis. PMID:21335376

  13. Genome-wide association mapping unravels the genetic control of seed germination and vigour in Brassica napus

    Directory of Open Access Journals (Sweden)

    Sarah Vanessa Hatzig

    2015-04-01

    Full Text Available Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigour would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.. A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60kSNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigour, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding,. Conditions during seed production and storage were shown to have a profound effect on seed vigour, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologues of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1, ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4 and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1, which have been shown previously to play a role in seed germination and seedling growth in A. thaliana.

  14. Moisture stress affects germination of longleaf and slash pine seeds

    Science.gov (United States)

    James P. Barnett

    1969-01-01

    Osmotic stresses greater than 8 atm markedly reduced germination of both Pinus palustris Mill. P. elliotii Engelm. seeds. At stresses of 18 or more atm, no germination occurred. Moisture content at the onset of germination was twice as high in longleaf as in slash pine seeds.

  15. Biorhythms in conifer seed germination during extended storage

    Science.gov (United States)

    James P. Barnett; N.I. Marnonov

    1989-01-01

    A proportion of sound seeds of conifer species do not germinate during certain periods of the year, even when conditions are favorable. Mamonov et al. (1986) report that the non-germinating seeds have apparently undergone physiological changes that affected germination. This phenomenon may be due to seasonal periodicity, or biorhythms. As early as the mid-1930'...

  16. Effect of fungicides on Wyoming big sagebrush seed germination

    Science.gov (United States)

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  17. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    Science.gov (United States)

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  18. Germination of fresh seed of thirty Cenchrus ciliaris ecotypes as ...

    African Journals Online (AJOL)

    Germination tests were carried out with fresh seed of 30 ecotypes of Cenchrus ciliaris produced under uniform conditions. Untreated seeds were compared with washed and shelled seeds. Illustrates with a graphLanguage: English. Keywords: Buffel grass; Caryopsis; Cenchrus ciliaris; Dormancy; Ecotypes; Germination; ...

  19. Effects of seed pretreatment and seed source on germination of five ...

    African Journals Online (AJOL)

    The effects of seed pre-sowing treatment and geographic source of seeds on three germination parameters of five Acacia species (GP = germination percent; GMT = germination mean time (days) and GI = germination index) were studied. Pre-sowing treatment included immersion in concentrated sulphuric acid for 5, 10 and ...

  20. [Research advance in seed germination of desert woody plants].

    Science.gov (United States)

    Chang, Wei; Wu, Jian-guo; Liu, Yan-hong

    2007-02-01

    This paper reviewed the research methods of desert woody plants seed germination, and the effects of internal and external ecological factors on it. Most researchers use incubator and artificial climate chamber to dispose the seeds, while field investigation was few involved. Seed dormancy is the important physiological factor affecting germination, while seed size, mass and color are closely correlated with its maturity and vigor. The poor permeability of seed capsule is a barrier that restrains the germination, which can be weakened or eliminated by shaving, cutting, treating with low temperature, and dipping in chemical reagent, etc. Seed water content has a close correlation with its storage life and water-absorbing capability. Suitable temperature is the prerequisite of seed germination, while changing temperature can accelerate the germination. Soil moisture content is a limiting factor, while illumination is not so essential to the seed germination of most desert woody plants. Sand-burying plays an important role in the seed germination through regulating illumination, temperature, and soil moisture content. Salinity stress restrains the seed germination of desert woody plants observably. In further studies, the effects of multi-factors and the eco-physiological and molecular biological mechanisms of germination should be more concerned.

  1. Effects of graphene on seed germination and seedling growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Gao, Bin, E-mail: bg55@ufl.edu [University of Florida, Department of Agricultural and Biological Engineering (United States); Chen, Jianjun [University of Florida, Department of Environmental Horticulture and Mid-Florida Research & Education Center (United States); Li, Yuncong [University of Florida, Soil and Water Science Department Tropical Research & Education Center (United States)

    2015-02-15

    The environmental impact of graphene has recently attracted great attention. In this work, we show that graphene at a low concentration affected tomato seed germination and seedling growth. Graphene-treated seeds germinated much faster than control seeds. Analytical results indicated that graphene penetrated seed husks. The penetration might break the husks to facilitate water uptake, resulting in faster germination and higher germination rates. At the stage of seedling growth, graphene was also able to penetrate root tip cells. Seedlings germinated from graphene-treated seeds had slightly lower biomass accumulation than the control, but exhibited significantly longer stems and roots than the control, which suggests that graphene, in contrast with other nanoparticles, had different effects on seedling growth. Taken together, our results imply that graphene played complicated roles in affecting the initial stage of seed germination and subsequent seedling growth.

  2. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata.

    Science.gov (United States)

    Hämälä, Tuomas; Mattila, Tiina M; Leinonen, Päivi H; Kuittinen, Helmi; Savolainen, Outi

    2017-07-01

    Seed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp. petraea (Eurasia) and ssp. lyrata (North America). Postdormancy germination time, a potentially adaptive trait, showed differentiation between the populations, and quantitative trait loci (QTL) mapping revealed that the trait variation is mainly controlled by two antagonistic loci. These QTL areas contain several candidate genes with known function in postdormancy germination in A. thaliana. The sequence variation of three genes was consistent with differential selection, and they also included fixed nonsynonymous substitutions with potential to account for the phenotypic differentiation. We further show that the divergence between the subspecies has led to a slight but significant reduction in hybrid germination proportions, indicating incipient reproductive isolation. Comparison of reciprocal F 1 and F 2 progenies suggests that Bateson-Dobzhansky-Muller incompatibilities likely act through uniparentally inherited factors. Examination of genomewide transmission ratio distortion further revealed that cytonuclear interactions cause substantial pregermination inviability in the hybrids. These results confirm that seed germination has adaptive potential beyond the dormancy stage and that hybrid seed inviability can be one of the first reproductive barriers to arise during divergence. © 2017 John Wiley & Sons Ltd.

  3. The pleiotropic effects of the seed germination inhibitor germostatin.

    Science.gov (United States)

    Ye, Yajin; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination.

  4. Desiccation effects on germination and vigor of King palm seeds

    Directory of Open Access Journals (Sweden)

    Martins Cibele C.

    2003-01-01

    Full Text Available The desiccation tolerance of Archontophoenix alexandrae (Wendl. & Drude seeds was determined and the most sensitive vigor test for assessing seed deterioration of this species was identified. Mature fruits were harvested in the palm collection of the Instituto Agronomico in Campinas, Brazil. Depulped fruits were transported in impermeable packages to the Faculdade de Agronomia in Botucatu, where the seeds were dried. As the seed moisture decreased, germination, seedling length, electrical conductivity and moisture were measured. The seeds of A. alexandrae are recalcitrant, with high germination percentage (over 67% when undried (47% seed moisture. Lowering seed moisture below 31.5% reduced the germination rate significantly (<52.5%. Total germination failure was observed when seed moisture reached 15.1%. The electrical conductivity was the most sensitive vigor test to identify seed deterioration.

  5. Compartmentation and dynamics of flavone metabolism in dry and germinated rice seeds.

    Science.gov (United States)

    Galland, Marc; Boutet-Mercey, Stéphanie; Lounifi, Imen; Godin, Béatrice; Balzergue, Sandrine; Grandjean, Olivier; Morin, Halima; Perreau, François; Debeaujon, Isabelle; Rajjou, Loïc

    2014-09-01

    Among secondary metabolites, flavonoids are particularly important for the plant life cycle and could be beneficial for human health. The study of Arabidopsis thaliana transparent testa mutants showed that seed flavonoids are important for environmental adaptation, reactive oxygen species homeostasis, dormancy and longevity. Compared with Arabidopsis and maize (Zea mays L.), far less research has been conducted on rice (Oryza sativa L.) particularly for cultivars with non-pigmented seeds. In this study, we describe the localization, nature and relative abundance of flavonoids in mature and germinated non-pigmented Nipponbare seeds using a combination of confocal microscopy, mass spectrometry and gene expression analysis. The mature seed exclusively accumulates flavones mostly in the embryo and to a lesser extent in the pericarp/testa. Due to the variety of flavone conjugation patterns, 21 different flavones were identified, including sulfated flavones never mentioned before in cereals. Schaftoside (apigenin-6-C-glucoside-8-C-arabinoside) and its two isomers represent nearly 50% of all rice seed flavones and are the only flavonoids accumulated in the pericarp/testa seed compartment. These 21 conjugated flavones showed a very stable profile during rice seed germination sensu stricto, while expression of key flavone synthesis genes strongly increases before the completion of germination. We discuss the potential roles of these rice seed flavones in a seed biology context. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. [Viability and germination of Hechtia perotensis (Bromeliaceae) seed].

    Science.gov (United States)

    Elizalde, Violeta; García, José Rodolfo; Peña-Valdivia, Cecilia Beatriz; Ybarra, Ma Carmen; Leyva, Otto Raúl; Trejo, Carlos

    2017-03-01

    Endemic populations of Hechtia perotensis have been described in Puebla and Veracruz, Mexico. Good quality seed collections can be used in conservation, research and ecological restoration. To evaluate seed quality of wild and endemic species, some compounds are used as effective promoters of germination, such as potassium nitrate (KNO3) and gibberellic acid (AG3), because they increase seed germination capacity and reduce latency. The triphenyl tetrazolium chloride (tetrazolium) test correlates seed viability because it is based on the activity of dehydrogenases in live tissues that catalyze mitochondrial respiration. The objective of this study was to obtain information on size and weight of capsules and seeds and seed germination and viability of H. perotensis, collected in Veracruz in the year 2012 and 2015. The hypotheses were 1) that seed germination and viability are independent of the year of collection, 2) that there is a tetrazolium concentration that can identify seed viability better than others, and 3) that pretreatment with KNO3 or AG3 improves seed germination. Seed germination was assessed using a completely randomized design with three treatments (control and the germination promoters 0.2 % KNO3 and 500 mg/L AG3), four treatments for the viability test (control, 0.2, 0.5 and 1.0 % of tetrazolium) and six replicates for each treatment. A total of one hundred seeds for germination experiments, and 25 seeds for the viability test were used. The results between and within years were analyzed with ANOVA and multiple comparison with the Tukey test. The proportion of non-germinated seeds was quantified along with the number of normal and abnormal seedlings, seeds with viable embryo, seeds without embryo, and seeds with low or no viability. On average, for the 2012 collected sample, 36 % had viable embryos, 7 % had low viability, 24 % were not viable and 33 % had no embryo. This result was significantly different from the 2015 sample, for which 87 % of

  7. Investigating the Influence of Karrikins on Seed Germination

    Science.gov (United States)

    de Beer, Josef

    2012-01-01

    Recent research has identified a karrikin (a butenolide derative) known as 3-methyl-2H-furo[2,3-c]pyran-2-one, formed from burning cellulose, that stimulates seed germination. Here, I present ideas on how to investigate the influence of karrikins on seed germination in the laboratory.

  8. Improving the seed germination of little bluestem with selection

    Science.gov (United States)

    Rapid seed germination is an important characteristic when it comes to plant stand establishment under variable environmental conditions. This research was designed to improve the seed germination of six experimental Syn-0 lines of little bluestem [Schizachyrium scoparium (Michx.) Nash]. Two cycle...

  9. The effect of different treatments on improving seed germination ...

    African Journals Online (AJOL)

    Creating optimal conditions for germination of medicinal plants seed is essential for their cultivation. Therefore, to evaluate the effect of different treatments on seed germination of two medicinal species, Descurainia sophia and Plantago ovata collected in 2009 from Tehran Province, an experiment with a factorial ...

  10. Smoke-induced seed germination in California chaparral

    Science.gov (United States)

    Keeley, J.E.; Fotheringham, C.J.

    1998-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hydrophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum (Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 families, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass > 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by

  11. Effects of Seed Size on Germination and Early Morphorlogical and ...

    African Journals Online (AJOL)

    A research was carried out to determine the effects of seed size on germination and early growth rate of Gmelina arborea. Mature seeds of. Gmelina arborea were collected from the mother trees in Uyo Local Government Area, Akwa Ibom State. They were grouped into 3 categories as large seed size (LSS), medium seed ...

  12. Dependence of rate of germination of teak ( Tectona grandis ) seeds ...

    African Journals Online (AJOL)

    A study was conducted to determine suitable sources of teak (Tectona grandis) seeds and methods of treating the seeds to promote higher rate of germination, with the objective to supply large quantities of seedlings for developing commercial teak plantations in Ghana. The field work involved seed collection, seed pericarp ...

  13. Germination of Croton urucurana L. seeds exposed to different storage temperatures and pre-germinative treatments.

    Science.gov (United States)

    Scalon, Silvana P Q; Mussury, Rosilda M; Lima, Andréa A

    2012-03-01

    The present work evaluated the germinability and vigor of Croton urucurana seeds. 1) Seeds were sorted by color (caramel, gray and black) and were subjected to seven different pre-germination treatments followed by incubation at 20ºC, 25°C or 20/30°C. 2) Seeds were stored in cold chambers or at room temperature for up to 300 days and were subsequently incubated at 20/30ºC in a germination chamber or under greenhouse conditions. Only gray seeds showed significant germination rates. The highest first count percentages of total germination and the highest germination speed indices were observed in control seeds and in those which were treated with water or 200 mg.L(-1) gibberellic acid for 12 hours. Seeds stored under refrigeration showed the highest values for all of the characteristics examined, as well as less electrical conductivity of the imbibing solution. Seedlings were more vigorous when seeds were stored for 300 days in a cold chamber. The seedlings production can be increased by incubating the seeds at alternating temperatures (20/30°C). The seeds do not need pre-germination treatments.

  14. IAA production during germination of Orobanche spp. seeds.

    Science.gov (United States)

    Slavov, Slavtcho; van Onckelen, Henry; Batchvarova, Rossitza; Atanassov, Atanas; Prinsen, Els

    2004-07-01

    Broomrapes (Orobanche spp.) are parasitic plants, whose growth and development fully depend on the nutritional connection established between the parasite and the roots of the respective host plant. Phytohormones are known to play a role in establishing the specific Orobanche-host plant interaction. The first step in the interaction is seed germination triggered by a germination stimulant secreted by the host-plant roots. We quantified indole-3-acetic acid (IAA) and abscisic acid (ABA) during the seed germination of tobacco broomrape (Orobanche ramosa) and sunflower broomrape (O. cumana). IAA was mainly released from Orobanche seeds in host-parasite interactions as compared to non-host-parasite interactions. Moreover, germinating seeds of O. ramosa released IAA as early as 24 h after the seeds were exposed to the germination stimulant, even before development of the germ tube. ABA levels remained unchanged during the germination of the parasites' seeds. The results presented here show that IAA production is probably part of a mechanism triggering germination upon the induction by the host factor, thus resulting in seed germination.

  15. Mycoflora in Exhumed Seeds of Opuntia tomentosa and Its Possible Role in Seed Germination

    Directory of Open Access Journals (Sweden)

    María Esther Sánchez-Coronado

    2011-01-01

    Full Text Available The funicular cover of the Opuntia tomentosa seed limits imbibition; germination occurs only when the funicle is weakened or the funicular valve is removed. We investigated the role of fungi in funicular weakening and seed germination. Seeds that had been either buried in one of two sites or stored in the laboratory were germinated with and without a valve. Disinfected or nondisinfected seeds and their naked embryos were cultivated on agar or PDA. None of the 11 identified fungal genera grew on the disinfected control seeds or the embryos. The mycoflora present on disinfected and nondisinfected exhumed seeds suggest that the fungal colonization occurred in the soil and differed between the burial sites. Exhumed seeds with and without a valve germinated in high percentages, whereas only the control seeds without a valve germinated. Scanning electron micrographs showed that the hyphae penetrated, cracked, and eroded the funicular envelope of exhumed seeds.

  16. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  17. Germination and storage of caranda seeds (Copernicia alba

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    2012-12-01

    Full Text Available Caranda is a Brazilian native palm tree, belonging to Arecaceae family and occurring, predominan,t in the Brazilian Swampland. This work studied the germination and the caranda seeds storage behavior. The germination study was carried out in the temperatures of 25ºC and 30ºC in constant white light and the alternate temperature of 20/30ºC with 10 hours of darkness for the lowest temperature and 14 hours of light for the highest temperature, using paper and paper roll as substratum. At the end of test, the germination percentage, germination speed index, germination medium time and the primary root length were evaluated. After the seeds improvement, it was obtained two sub-samples destined for 30 days storage in two invironments: cold and dry chamber (16ºC/55% UR and freezer (-18ºC. The following tests, water content, germination, germination medium time and primary root length were evaluated. The caranda seeds germination in paper roll and on paper is favored by the temperature of 20/30ºC in paper roll and on paper and paper roll on 30ºC. The freezing and cold camera storage during 30 days are efficient to reduce the germination medium time of caranda seeds and to keep the germination percentage.

  18. Effects of chronic exposure of seeds and seeds and seedlings of Arabidopsis Thaliana by low doses of γ-radiation on plant growth and development

    International Nuclear Information System (INIS)

    Litvinov, S.V.

    2013-01-01

    Article presents the results of research on the effect of chronic γ-irradiation in small doses on A. Thaliana seedlings and seeds growth and development. Exposure rate for the seeds was 0,45 mGy/h (total absorbed dose 30 cSv) and 0,18 mGy/h for seedlings (total absorbed dose 3 cSv). Statistically significant differences in the germination capacity, in the time of primary leaf rosette formation, in the hypocotyl length were revealed between irradiated and control seedlings. Plants from irradiated seeds differed by the higher growth rate of stem, they flowered and fruited earlier, but they also characterized on average shorter vegetative cycle in comparison with control plants. In our experiments it is shown significant impact of chronic low doses of γ-irradiation of seeds and seedlings on the ontogeny in A. Thaliana and on the parameters that reflect the growth and development of the irradiated plants

  19. Mean germination time and germination rate of oat seeds subjected to stationary magnetic field

    International Nuclear Information System (INIS)

    Martinez Ramirez, Elvira; Florez Garcia, Mercedes; Carbonell, Maria Victoria; Amaya Garcia de la Escosura, Jose Manuel

    2007-01-01

    The objective of the present study is to determine and quantify the effect produced by stationary magnetic fields on oat seed germination (Avena sativa, L. var. c obena ) . For this purpose, seeds were exposed to a magnetic field 125 mT of 250 mT during different periods of time: 20 minutes (E1, E5), 1 hour (E2, E6), 24 hours (E3, E7), or in a conic form (E4, E8) during the whole germination process. Germination tests were carried out under laboratory conditions with cylindrical magnets to obtain the magnetic field. For magnetic treatment seed on Petri dishes were placed on magnets during time necessary for each treatment. Seeds without exposition to the magnetic field were used as control group. Parameters used for germination speed analysis were: number of germinated seeds (G), mean germination time (MGT) and necessary time for germination of 1, 10, 25, 50 and 75% of N number of speeds used for each treatment (T1, T10, T25, T50, and T75). These parameters were supplied through the software Seed calculator, as well as the corresponding germination curves. In general, from the results obtained it can be said that the time required to obtain different germination percentages was lower for seeds exposed to the magnetic field (treatments E1 and E8). Reduction in time for E1 treatment stands up with 20 a minutes-exposition-time to 125 mT. MGT obtained for seeds with magnetic treatment E1 was significantly lower (11.48%) than the control group. Parameters T1, T10, T25 were also lower for seeds submitted to treatment, obtaining reductions of 46.62 %, 24.02 % and 13.46 % respectively. Reduction in germination parameters indicates that germination speed is higher. Because parameters T1 and T10 are related to the beginning of germination, this study represents a progress in germination and a reduction in the induction phase in most of the magnetic treatments applied. Previous studies done by authors about the influence of stationary magnetic fields have shown increases in

  20. Different Modes of Hydrogen Peroxide Action During Seed Germination.

    Science.gov (United States)

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging.

  1. Clone variation of seed traits, germination and seedling growth in Dalbergia sissoo Roxb. clonal seed orchard

    Directory of Open Access Journals (Sweden)

    O. Singh

    2011-11-01

    Full Text Available A clonal seed orchard (CSO of Dalbergia sissoo Roxb. at Hoshiarpur, India consisting of 20 clones originating from different agro-climatic conditions of four northern states (Uttar Pradesh, Rajasthan, Haryana and Uttarakhand was the source of seeds for variability studies. There was lot of variation in seed size, seed weight, germination percent, germination value and growth rate in nursery of different clones over the years. Seed length, seed width and seed weight were positively correlated to each other but seed size had no effect on germination percent and germination value under laboratory conditions. However, seed weight was found positively correlated with germination percent in nursery with the seed lot of 2008 collection. The genetic parameters for seed traits and seedling growth also showed a wide range of variations in the orchard clones. Heritability values were found to be over 50 percent for seed weight and seed length. However, only seed weight showed high heritability value coupled with more genetic gain across the years, which indicate the presence of good amount of heritable additive component in seed weight. There was no consistency in the seed characters, germination and seedling growth parameters studied across the two years. Effect of clones was dominant and accounted for variation in seed size, seed weight, seed germination and growth parameters. Seed size or seed weight should not be used as criteria for grading of bulked seed lots of different clones, as it can narrow down genetic diversity by rejecting small seeds. The impact of these genetic differences in handling of seed lots during bulking and grading for mass propagation of nursery planting stock of D. sissoo is also discussed.

  2. Clone variation of seed traits, germination and seedling growth in Dalbergia sissoo Roxb. clonal seed orchard

    Directory of Open Access Journals (Sweden)

    Ombir Singh

    2013-12-01

    Full Text Available A clonal seed orchard (CSO of Dalbergia sissoo Roxb. at Hoshiarpur, India consisting of 20 clones originating from different agro-climatic conditions of four northern states (Uttar Pradesh, Rajasthan, Haryana and Uttarakhand was the source of seeds for variability studies. There was lot of variation in seed size, seed weight, germination percent, germination value and growth rate in nursery of different clones over the years. Seed length, seed width and seed weight were positively correlated to each other but seed size had no effect on germination percent and germination value under laboratory conditions. However, seed weight was found positively correlated with germination percent in nursery with the seed lot of 2008 collection. The genetic parameters for seed traits and seedling growth also showed a wide range of variations in the orchard clones. Heritability values were found to be over 50 percent for seed weight and seed length. However, only seed weight showed high heritability value coupled with more genetic gain across the years, which indicate the presence of good amount of heritable additive component in seed weight. There was no consistency in the seed characters, germination and seedling growth parameters studied across the two years. Effect of clones was dominant and accounted for variation in seed size, seed weight, seed germination and growth parameters. Seed size or seed weight should not be used as criteria for grading of bulked seed lots of different clones, as it can narrow down genetic diversity by rejecting small seeds. The impact of these genetic differences in handling of seed lots during bulking and grading for mass propagation of nursery planting stock of D. sissoo is also discussed.

  3. Seed longevity and germination characteristics of six fen plant species.

    Science.gov (United States)

    Tatár, S

    2010-01-01

    Fens are among the most threatened habitats in Europe as their area has decreased considerably in the last centuries. For successful management and restoration conservationists need detailed knowledge about seed bank formation and seed longevity of plants, as these features are closely related to successional and vegetation dynamical processes. I analysed seed longevity and the germination characteristics of six fen plant species by seed burial experiments. Based on seed weight, seed bank was expected for long-term persistent for the light-seeded Schoenus nigricans, Carex appropinquata, C. pseudocyperus, C. davalliana and Peucedanum palustre and also that for the medium-seeded Cicuta virosa. It was proved that, the latter two species have short-term persistent seed banks, while Carex pseudocyperus has a transient seed bank, therefore these species may only have a limited role in restoration from seed banks. It was found that Schoenus nigricans, Carex appropinquata and C. davalliana have persistent seed banks, because some of their four-year-old seeds have emerged. Fresh seeds had low germination rate in all studied species and majority of seeds emerged after winter, except for Carex pseudocyperus. After the germination peak in spring, the majority of the ungerminated seeds of Schoenus nigricans, Peucedanum palustre, Carex appropinquata, C. davalliana and Cicuta virosa entered a secondary dormancy phase that was broken in autumn. I found the seasonal emergence of the latter three species highly similar.

  4. Seed Germination of selected Taxa from Kachchh Desert, India

    Directory of Open Access Journals (Sweden)

    Vinay Madhukar RAOLE

    2010-06-01

    Full Text Available The district of Kachchh contains many culturally important plants. However, their conservation status is little known due to direct and indirect human activities. This study was undertaken with the aim of contributing to the conservation of the native species of these semi-arid regions through germination trials under laboratory conditions. Mature fruits of ten selected species were collected randomly from the known habitats to obtain viable seeds. These seeds were pre-treated with growth regulators singly or in combination after acid scarification or without scarification. Seeds were found to be dormant due to presence of thick seed coat or due to low level of endogenous hormonal level. Most of these seeds required different storage period to mature. Only seeds of Capparis cartilaginea germinated without treatment while the other species required treatments. Addition of growth regulators has enhanced seed germination in few taxa singly and in some plant cases in combination.

  5. Assessment of Seed Germination and Dormancy of Thirty Seeds Lots of

    Directory of Open Access Journals (Sweden)

    H.R Ehyaee

    2012-06-01

    Full Text Available Most seeds of medicinal plants due to ecological adaptation to environmental conditions have several types of dormancy. Hence, it's necessary to recognize ecological factors that affect dormancy and provide optimum conditions for germination in medicinal plant species. Thirty seed lots were used to estimate germination and dormancy of medicinal plants. Treatments were KNO3, (2% and scarification of seeds by sand paper, hypochlorite sodium and removing the seed coat with four replicates of 25 seeds. Maximum and minimum germination observed in H2O for Digitalis purpure 100% and Saponaria officinalis 0%. In KNO3 treatment, Portulaca oleracea had the highest germination of 91% and Hyocyamus niger had no any germinated seeds. In sand paper treatment, the Saponaria officinalis and Datura stramonium had maximum, 33% and minimum 0% germination respectively.

  6. TIME REDUCTION FOR SURINAM GRASS SEED GERMINATION TEST

    Directory of Open Access Journals (Sweden)

    Camila de Aquino Tomaz

    2015-10-01

    Full Text Available ABSTRACTThe period for the germination test of Surinam grass seeds established by the Rules for Seeds Testing is 28 days, considered too lengthy by producers, venders, and seed analysis laboratories. So, the objective of this research was to evaluate the possibility of reducing the time for the germination test of Surinam grass seeds and to establish a method for dormancy breaking and the ideal temperature. Ten seed lots were submitted to the following treatments to overcome seed dormancy: control; substrate moistening with 0.2% KNO3; and scarification with sulfuric acid (98% 36 N for 15 minutes. After the treatments, the lots were submitted to seed water content, germination and tetrazolium tests. During the germination test, conducted with four replicates of 100 seeds per treatment for 28 days, two conditions of alternating temperatures (20-35 °C and 15-35 °C with 8 hours of light were tested. Attempting to determine the test end date, daily counts of the number of normal seedlings were made and for each lot, treatment, and temperature, a growth curve for the evaluation of germination was adjusted. The segmented regression model parameter estimations were calculated for each treatment. The germination test of Braquiaria decumbensseeds may be evaluated in 12 days after sowing using alternating temperatures of 20-35 °C and without any treatment to overcome dormancy.

  7. Seed viability, germination and seedling growth of canola (Brassica ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... investigated. The effect of mutagen dosage on seed viability was also assessed using the tetrazolium staining test. Results revealed the significant effects of mutagen dosages and treatment periods on seed viability and seed germination as well as on seedling characteristics for all the mutagens tested.

  8. Comparison of seed priming techniques with regards to germination ...

    African Journals Online (AJOL)

    Seeds of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai, cv. Crimson Sweet] were used to investigate the effects of different priming techniques on seed germination and early seedling growth. The seeds were soaked in solutions of 0.2% gibberellin (50 mg L–1 gibberellic acid), 0.2% cytokinin (90 mg L–1 kinetin) ...

  9. Comparison of seed priming techniques with regards to germination ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-16

    Nov 16, 2016 ... Seeds of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai, cv. Crimson Sweet] were used to investigate the effects of different priming techniques on seed germination and early seedling growth. The seeds were soaked in solutions of 0.2% gibberellin (50 mg L. –1 gibberellic acid), 0.2% cytokinin ( ...

  10. Storage period, husking and seed treatment effects on germination ...

    African Journals Online (AJOL)

    Two experiments were conducted with the aim to assess the effects of storage period (years), husking and seed treatment on germination rate of Rhodes grass seeds of two cultivars, Callide and Masaba, at Kulumsa and Debre Zeit Research Centers. The first experiment included two seed lots (harvested in years 2013 and ...

  11. Evaluation of seed priming on germination of Gladiolus alatus ...

    African Journals Online (AJOL)

    Seed priming improves seed performance under environmental conditions. The study was designed to evaluate the effect of different priming treatments on germination behavior of Gladiolus alatus. The experiment was conducted under complete randomized design (CRD) with four replications. Seed priming was done with ...

  12. The effect of hydro and osmopriming on alfalfa seed germination ...

    African Journals Online (AJOL)

    Seeds of two alfalfa (Medicago sativa L) varieties, cv. Hamedani and Yazdi, were used to investigate the effects of osmo- and hydro-priming on seed germination, growth parameters, biochemical changes and antioxidant enzymes activities under high-level salt concentration (150 mM NaCl) stress. Seeds were primed with ...

  13. Seed germination and in vitro propagation of Piliostigma thonningii ...

    African Journals Online (AJOL)

    Piliostigma thonningii is a multipurpose tree of high priority for conservation in Nigeria. Almost all its parts are used in traditional medicine and its seeds are a good source of antioxidant micronutrients, rich in crude protein and carbohydrate. Its seeds are however dormant and the plant is uncultivated. Seed germination and ...

  14. Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii.

    Science.gov (United States)

    Warpeha, Katherine M; Park, Yoon-Dong; Williamson, Peter R

    2013-05-01

    The fungus Cryptococcus contributes a large global burden of infectious death in both HIV-infected and healthy individuals. As Cryptococcus is an opportunistic pathogen, much of the evolutionary pressure shaping virulence occurs in environments in contact with plants and soil. The present studies investigated inoculation of intact seeds of the common weed Arabidopsis thaliana with fungal cells over a 21-day period. C. gattii was the more virulent plant pathogen, resulting in disrupted germination as well as increased stem lodging, fungal burden, and plant tissue colocalization. C. neoformans was a less virulent plant pathogen but exhibited prolonged tissue residence within the cuticle and vascular spaces. Arabidopsis mutants of the PRN1 gene, which is involved in abiotic and biotic signaling affecting phenylalanine-derived flavonoids, showed altered susceptibility to cryptoccocal infections, suggesting roles for this pathway in cryptococcal defense. The fungal virulence factor laccase was also implicated in plant pathogenesis, as a cryptococcal lac1Δ strain was less virulent than wild-type fungi and was unable to colonize seedlings. In conclusion, these studies expand knowledge concerning the ecological niche of Cryptococcus by demonstrating the pathogenic capacity of the anamorphic form of cryptococcal cells against healthy seedlings under physiologically relevant conditions. In addition, an important role of laccase in plant as well as human virulence may suggest mechanisms for laccase retention and optimization during evolution of this fungal pathogen.

  15. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.)

    OpenAIRE

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended pri...

  16. Mannans and endo-β-mannanase transcripts are located in different seed compartments during Brassicaceae germination.

    Science.gov (United States)

    Carrillo-Barral, Néstor; Matilla, Angel J; Rodríguez-Gacio, María Del Carmen; Iglesias-Fernández, Raquel

    2018-03-01

    Mannans but not endo-β-mannanases are mainly found in the mucilage layer of two Brassicaceae seeds. Nonetheless, mannanase mobilization from inner to outer seed layers cannot be ruled out. The contribution of endo-β-mannanase (MAN) genes to the germination of the wild-type Sisymbrium officinale and cultivated Brassica rapa (Brassicaceae) species has been explored. In both species, mannans have been localized to the imbibed external seed coat layer (mucilage) by fluorescence immunolocalization and MAN enzymatic activity increases in seeds as imbibition progresses, reaching a peak before 100% germination is achieved. The MAN gene families have been annotated and the expression of their members analyzed in vegetative and reproductive organs. In S. officinale and B. rapa, MAN2, MAN5, MAN6, and MAN7 transcripts accumulate upon seed imbibition. SoMAN7 is the most expressed MAN gene in S. officinale germinating seeds, as occurs with its ortholog in Arabidopsis thaliana, but in B. rapa, the most abundant transcripts are BrMAN2 and BrMAN5. These genes (MAN2, MAN5, MAN6, and MAN7) are localized, by mRNA in situ hybridization, to the micropylar at the endosperm layer and to the radicle in S. officinale, but in B. rapa, these mRNAs are faintly found to the micropylar living seed coat layer and are mainly present at the radicle tip and the vascular bundles. If the domestication process undergone by B. rapa is responsible for these different MAN expression patterns, upon germination remains to be elucidated. Since mannans and MAN genes are not spatially distributed in the same seed tissues, a movement of MAN enzymes that are synthesized with typical signal peptides from the embryo tissues to the mucilage layer (via apoplastic space) is necessary for the mannans to be hydrolyzed.

  17. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  18. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes

    Science.gov (United States)

    Basbouss-Serhal, Isabelle; Soubigou-Taconnat, Ludivine; Bailly, Christophe; Leymarie, Juliette

    2015-01-01

    Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25°C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5′ untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process. PMID:26019300

  19. Changes in Lipid Content of Ungerminated and Germinated Seeds ...

    African Journals Online (AJOL)

    The lipid contents of ungerminated and germinated seeds of Capsicunl srmuurn and Atremomum melequeta were studied to determine the level of total lipids, neutral lipids and phospholipids. The percentage germination of Capsicum annuum and Aframomum melequeta were 95+2.0% and 90+1.5% respectively. The total ...

  20. Temperature and substrate on Plukenetia volubilis L. seed germination

    Directory of Open Access Journals (Sweden)

    Givanildo Z. da Silva

    Full Text Available ABSTRACT The objective of this work was to evaluate the effect of temperature and substrate on the germination of P. volubilis seeds. Seeds harvested from 25 matrix plants were submitted, in two studies, to conditions of (i sowing in rolled paper towel at the temperatures of 10, 15, 20, 25, 30, 35, 40, and 45 °C, for the evaluation of germination, first count of germination, germination speed index and mean time for germination, and (ii sowing in the substrates paper towel, sand, Bioplant®, Bioplant® and micron, superfine, fine, medium and coarse vermiculite. The same evaluations mentioned in the first study were conducted at the temperature of 30 oC, as well as plant growth. The treatment replicates were distributed in a completely randomized block design and the effects of temperature were compared by polynomial regression analysis. The substrates were compared by the Scott-Knott test at 0.05 probability level. The data show that the ideal range of temperature for the germination of P. volubilis is between 25 and 30 °C. The temperature of 20 °C is the minimum for germination and those above 35 °C are lethal to these seeds. The most favorable substrate for P. volubilis seed germination is micron or fine vermiculite.

  1. Nitrogen fertilization stimulates germination of dormant pin cherry seed

    Science.gov (United States)

    L.R. Auchmoody

    1979-01-01

    Nitrogen fertilizers triggered germination of dormant Prunus pensylvanica L. seed naturally buried in the forest floor of 60-year-old Allegheny hardwood stands. Neither triple superphosphate nor muriate of potash applied with urea increased germination over that which occurred with urea alone. Rates as low as 56 kg/ha N from urea and calcium...

  2. Variation in seed morphometric traits, germination and early ...

    African Journals Online (AJOL)

    Results evidence that pre-treatment is not necessarily relevant to reach a high germination percentage for tamarind seeds but may speed germination. The Guineo-Congolian provenance may be preferably used as rootstock onto which further selected cultivars will be grafted and used to rejuvenate traditional agroforestry ...

  3. Effects of animal's rumen juice on seed germination of Vicia ...

    African Journals Online (AJOL)

    To help understand the effects of grazing on seed germination characteristics of Vicia angustifolia L., we conducted a laboratory germination experiment of V. angustifolia L., which is a main companion species of Leguminosae family in alpine grassland of the Qinghai-Tibetan Plateau, using Yak and Tibetan sheep rumen ...

  4. Modelling the effect of temperature on seed germination in some ...

    African Journals Online (AJOL)

    USER

    2010-03-01

    Mar 1, 2010 ... The prediction of germination percentage (GP) and germination speed (GS) of the seeds for some cucurbits (watermelon, melon, cucumber, summer squash, pumpkin and winter squash) was investigated by mathematical model based on temperature. The model, D = [a - (b x T) + (c x T2)] of Uzun et al.

  5. Seed germination of five Poa species at negative water potentials

    Science.gov (United States)

    Under field conditions water is often inadequate for satisfactory seed germination. An experiment was conducted to determine the effects of simulated dry conditions on germination and seedling growth of five bluegrass (Poa) species including: Texas, P. arachnifera Torr.; annual, P. annua L.; mutto...

  6. Modelling the effect of temperature on seed germination in some ...

    African Journals Online (AJOL)

    The prediction of germination percentage (GP) and germination speed (GS) of the seeds for some cucurbits (watermelon, melon, cucumber, summer squash, pumpkin and winter squash) was investigated by mathematical model based on temperature. The model, D = [a - (b x T) + (c x T2)] of Uzun et al. (2001), was adapted ...

  7. IMPORTANCE OF STORAGE CONDITIONS AND SEED TREATMENT FOR SUNFLOWER HYBRIDS SEEDS GERMINATION

    Directory of Open Access Journals (Sweden)

    Goran Krizmanić

    2014-12-01

    Full Text Available In this research we have determined germination energy and germination of seeds of sunflower hybrids ‘Luka’ and ‘Apolon’, at the beginning of storage and 6, 12 and 18 months after of storage period (2011-2012 in the floor concrete storage at two different air temperatures and humidity (S-1: air temperature 15-18°C and relative air humidity 65-70% as well as in climate chamber (S-2: air temperature 10-12°C and relative air humidity 60-65%, stored in four treatments (Control: processed-untreated seed; T-1: treated with A.I. metalaxyl-M; T-2: treated with A.I. metalaxyl-M + A.I. imidacloprid and T-3: treated with A.I. metalaxyl-M + A.I. clothianidin. Based on the obtained results we have determined that sunflower hybrid ‘Luka’, compared to hybrid ‘Apolon’, in the given storage conditions and with the same seed treatment has 5-8% higher germination energy and seed germination and that in climate chamber both hybrids have 5-7% higher germination energy. Seed treatment of both sunflower hybrids with A.I. imidacloprid maximally reduced initial germination energy and seed germination in all tested periods and conditions of storage. On the average, natural seed, after 18 months of storage did not have better seed quality compared to seed treated with A.I. metalaxyl-M while other treatments had more significant influence on reduction of germination energy and seed germination, 6-15%. On the average, compared to other variants, seeds treated with A.I. metalaxyl-M after 18 months of storage in both storage conditions had higher germination energy by 4-15%, and seed germination by 2-12%.

  8. Effect of Estrogen and Progeterone on seed germination

    Directory of Open Access Journals (Sweden)

    Nirmala

    Full Text Available Early pregnancy detection in dairy cattle is an integral part of a successful animal husbandry practice. A simple seed germination technique (Punyakoti test comprises observation of differential seed germination response of wheat seeds to diluted fresh urine samples as reflected by significant inhibition of germination percentage in pregnant cow urine when compared to non pregnant cow urine. Hormone metabolites excreted through urine might affect the seed germination in pregnant cow urine. In the present study an attempt was made to test the effect of hormones (in their natural forms at different concentrations of estrogen (17-ß estradiol and progesterone on wheat and green gram germination. Stock solutions of estrogen and progesterone were prepared in alcohol (1mg/ml and serial dilutions made using distilled water to get the concentrations of T1=10, T2=1, T3=0.1 and T4=0.01 μg/ml respectively in treatment groups. About 15 seeds each of wheat and green gram were taken in sterile Petri dishes into which 15ml of each test preparation was poured. The treatments were compared with distilled water and alcohol controls. The study was conducted for a period of five days during which seed germination was observed after 48 hrs and shoot lengths were also measured by the end of study. The average seed germination and shoot length in treatment groups did not vary significantly (P>0.05 when compared with that of control groups. Thus from the present study, it can be concluded that estrogen and progesterone in their natural form will not affect seed germination and shoot length. [Veterinary World 2008; 1(8.000: 241-242

  9. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    Directory of Open Access Journals (Sweden)

    Daniel eOsuna

    2015-11-01

    Full Text Available Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO and phytohormones (ABA, auxins and GAs in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  10. Assessment of Seed Germination and Dormancy of Thirty Seeds Lots of

    OpenAIRE

    H.R Ehyaee; M Khajeh Hosseini

    2012-01-01

    Most seeds of medicinal plants due to ecological adaptation to environmental conditions have several types of dormancy. Hence, it's necessary to recognize ecological factors that affect dormancy and provide optimum conditions for germination in medicinal plant species. Thirty seed lots were used to estimate germination and dormancy of medicinal plants. Treatments were KNO3, (2%) and scarification of seeds by sand paper, hypochlorite sodium and removing the seed coat with four repl...

  11. Proteins induced by salt stress in tomato germinating seeds

    International Nuclear Information System (INIS)

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A.

    1989-01-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ( 35 S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present

  12. Effect of seed stimulation on germination and sugar beet yield

    Science.gov (United States)

    Prośba-Białczyk, U.; Szajsner, H.; Grzyś, E.; Demczuk, A.; Sacała, E.; Bąk, K.

    2013-03-01

    Germination and sugar beet yield after seed stimulation were investigated. The seeds came from the energ'hill technology and were subject to laser irradiation. The experiments were conducted in the laboratory and field conditions. Lengthening of germinal roots and hypocotyls was observed. A positive effect of the stimulation on the morphological features was observed for the Eh seeds and laser irradiation applied in a three-fold dose. The energ'hill seeds exhibited a significantly higher content of carotenoids in seedlings and an increase in the content of chlorophylls. Laser light irradiation favourably modified the ratio of chlorophyll a to b. The leaves and roots of plants developed from the energ'hill and irradiated seeds were characterized by higher dry matter content thanin non-stimulated seeds. Seed stimulation had a positive influence on yielding and the saccharose content.

  13. Proteomics and posttranslational proteomics of seed dormancy and germination.

    Science.gov (United States)

    Rajjou, Loïc; Belghazi, Maya; Catusse, Julie; Ogé, Laurent; Arc, Erwann; Godin, Béatrice; Chibani, Kamel; Ali-Rachidi, Sonia; Collet, Boris; Grappin, Philippe; Jullien, Marc; Gallardo, Karine; Job, Claudette; Job, Dominique

    2011-01-01

    The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops.

  14. The Germination of Some Species Tropical Legume Seeds

    Directory of Open Access Journals (Sweden)

    Eko Poetri

    2005-09-01

    Full Text Available A study to evaluate the seed germination of Leucaena pallida under climatic and soil conditions in Palu was conducted in village of Taipa, Sub district of North Palu, District of Palu. To compare with other species of legume trees however, this study involved Leucaena leucocephala cv Tarramba, Leucaena leucocephala cv Gumph and Gliricidia maculata. This experiment used completely randomized design with species of tropical tree legumes as treatment.  Each treatment was replicated five times.  Each experimental unit consisted of one tray (size 12.5 x 25 cm and planted by 20 seed.  Each tray was filled with soil while the seeds were planted one cm deep.  All seeds were immersed in warm water (600C for five minutes before planted.  The base of the trays were drilled to create some holes for water to drain out.  The trays were sprayed twice daily (07.00 am and 03.00 pm to keep the soil to be moist using a very smooth sprayer.  The variables recorded included the initiation time of germination, the range time of germination and the percentage of seed germination.  The data obtained were analyses using the Minitab 11. Least significance difference was used to test for possible differences between treatment means. The result revealed that initiation time of germination and the range of germination were not varied (P>0.05 among the seeds tested. The initiation time of germination ranged between 9 to 12 d after sowing.  Gliricidia maculata seed has the shortest period to germinate (12-16 d after sowing, meanwhile Leucaena leucocephala cv. Tarramba appear to be the longest (9-17 d after sowing. The highest seed viability was 60% in Leucaena leucocephala, cv Gump while the lowest was found in Gliricidia maculata (29%. In addition, both Leucaena pallida and Leucaena leucocephala cv Tarramba had medium seed germination (40% and 53% respectively. (Animal Production 7(3: 156-160 (2005Key Words: Seed, Germination, Tropical Leguminous

  15. pre-germination treatments in castor seeds, cultivar IAC 226

    International Nuclear Information System (INIS)

    Costa Nobre, Danubia Aparecida; Gomes Damascena, Joyce; Marcia, Andreia; Santos de Souza, David; Pereira dos Santos, Marlucia; Rodrigues Pereira, Adriana; Goncalves Pereira, Cassio

    2013-01-01

    The present study aimed to evaluate the efficiency of different pre-germination treatments in castor beans, IAC 226. The experimental design was completely randomized in a factorial 4 x 4 (four temperatures and four immersion times), with four replications. Pre-germination treatments were: immersion in water at room temperature (25 Celsius degrade) and immersion in hot water at temperatures of 60, 70 and 80 Celsius degrade for 2, 4, 6 and 8 minutes. Water content of the seeds was determined before treatments. Before and after each treatment, seeds were subjected to germination test; 20-30 Celsius degrade alternating temperature, determining the percentages of normal and abnormal seedlings, dormant and dead seeds. Independent of time, immersion in 70 Celsius degrade, water was the most efficient treatment for accelerating germination of castor bean cultivar IAC 226.

  16. Seed Priming with Melatonin Effects on Seed Germination and Seedling Growth in Maize under Salinity Stress

    International Nuclear Information System (INIS)

    Jiang, X.; Li, H.; Song, X.

    2016-01-01

    The effects on seed germination and seedling growth in maize under salinity stress by seed priming with melatonin were investigated. Seeds of maize cultivar Nonghua101 were soaked in 0.4, 0.8 and 1.6 mM aerated solution of melatonin for 24 h, and primed seeds were germinated under the condition of 150 mM NaCl with paper media. The results showed seed priming with 0.8 mM melatonin was the best performance of all the treatments to seed germination and seedling growth in maize under salinity stress. Then primed with 0.8 mM melatonin or water for 24 h and unprimed seeds were germination under the condition of 150 mM NaCl with sand media. The results showed seed priming with 0.8 mM melatonin significantly improved germination energy, germination percentage, seedling vigor index, shoot and root lengths, seedling fresh and dry weights, K/sup +/ content, relative water content, proline and total phenolic contents, superoxide dismutase, catalase and phenylalanin ammonia lyase activities; and significantly decreased mean emergence time, Na/sup +/ content, electrolyte leakage and malondialdehyde content compared with untreated seeds under salinity stress. These results suggest that seed priming with melatonin alleviates the salinity damage to maize and seed priming with melatonin may be an important alternative approach to decrease the impact of salinity stress in maize. (author)

  17. Germination characteristics of autumn collected Pinus sylvestris seeds.

    OpenAIRE

    Nygren, Markku

    1987-01-01

    Tests on seeds from a natural stand and from a clone archive, with various photoperiods and temperature regimes, showed that germination was delayed at low temperature (10 degrees C) and in darkness. This effect diminished the later in autumn seeds were collected.

  18. Marking tree seeds with spray paint for germination studies

    Science.gov (United States)

    R. Kasten Dumroese

    2003-01-01

    I evaluated the potential use of spray paint for marking conifer seeds for germination studies in forest nurseries. For bulk seedlots of large-seeded species like western white pine (Pinus monticola), ponderosa pine (Pinus ponderosa), and Douglas-fir (Pseudotsuga menziesii), paint had little or no effect on six...

  19. on seed germination and growth of Garcinia kola

    African Journals Online (AJOL)

    SARAH

    2016-07-31

    Jul 31, 2016 ... plastic bags, seeds were washed abundantly with tap water. Cleaned seeds were then subjected to different treatments (mechanical scarification, chemical and soaking). Treatments applied were based on previous results of germination experiments in several plant species (Bradbeer, 1988; Yang et al., ...

  20. Effects of water stress and seed mass on germination and ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... forest. The northern Loess Plateau of China is dry and has little rain, resulting in water as a limiting factor to plant growth. X. sorbifolia seed varies greatly in mass. Thus, whether water and seed mass influence the germination of X. sorbifolia in this region must be determined. The primary objectives of this ...

  1. Fast neutron sensitivity of dry and germinating tomato seeds

    NARCIS (Netherlands)

    Contant, R.B.

    1970-01-01

    A study was made of changes in fast neutron effectiveness during the hydration and germination of tomato seeds. The main findings and conclusions are the following,

    Section 3.6

    Samples of unirradiated seeds and their constituent parts (seedcoat+endosperm and embryo) were taken at short

  2. Changes in germination behavior of wheat seeds exposed to ...

    African Journals Online (AJOL)

    It was concluded that wheat seeds with low vigor can be invigorated with the use of magnetized water; whereas, the potential to use magnetized seed remain to be extensively studied on larger groups of crops/samples. Key words: Wheat, magnetized water, germination behavior, biomagnetism, presowing magnetic ...

  3. Study on Seed Germination and Seedling Growth of Piliostigma ...

    African Journals Online (AJOL)

    Piliostigma thonningii exits and flourishes in arid ecological zones of Nigeria where aforestation and reforestation is required. Seed germination and seedling growth of Piliostigma thonningii was studied. Seeds of P. thonningii were collected, separated into five batches and soaked in concentrated H2SO4 at four different ...

  4. Effect of Seed Storage on Germination and Seedling Growth of ...

    African Journals Online (AJOL)

    The effects of seed storage on germination and seedling growth of Dacryodes edulis (Don G.I and A.J.) was investigated. There were five treatments in all as follows: Sharp sand, shade, fresh water, stagnant water, and ambient temperature; they were replicated three times. The results showed that seeds stored in sharp ...

  5. (Cicer arietinum L.) seeds during germination by NMR spectroscopy

    African Journals Online (AJOL)

    Experiments were conducted to characterize the changes in water status during imbibition by nuclear magnetic resonance (NMR) spectroscopy in chickpea seeds exposed to static magnetic fields of 100 mT for 1 h. Water uptake during seed germination showed three phases with rapid initial hydration phase I, followed by ...

  6. Seed viability, germination and seedling growth of canola ( Brassica ...

    African Journals Online (AJOL)

    Mutation induction is considered as an effective way to enrich plant genetic variation, particularly for traits with a very low level of genetic variation. The objectives of this study were to evaluate the effect of different dosages of chemical mutagens on seed germination, seed viability and seedling growth characteristics and to ...

  7. Relationships Between Fruits And Seed Sizes, Germination And ...

    African Journals Online (AJOL)

    Relationships between fruits and seeds sizes; seed germination and early seedling growth of seedlings of 25 plant species were studied at the University of Agriculture, Umudike, Nigeria. The destruction of Nigeria rainforest without an assured method of naturally regenerating it, has contributed to some edible plant species ...

  8. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  9. Seed germination and seedling emergence of Scotch broom (Cytisus scoparius)

    Science.gov (United States)

    Timothy B. Harrington

    2009-01-01

    Scotch broom is a large, leguminous shrub that has invaded 27 U.S. states. The species produces seeds with a hard coat that remain viable in the soil for years. Growth-chamber studies were conducted to determine effects of temperature regime and cold-stratification period on seed germination. Seedling emergence, mortality, and biomass also were studied in response to...

  10. Effects of temperature and salinity on the seeds germination of ...

    African Journals Online (AJOL)

    The present study consists of the elimination of tegumentary inhibition affecting seeds of Retama raetam by the chemical scarification. This pretreatment was carried out using pure sulfuric acid (98 %) and the seeds' germinative behavior was studied in the laboratory under controlled conditions of temperature and salinity.

  11. Germination of guatambu seeds subjected to two light regimes

    Directory of Open Access Journals (Sweden)

    Karina Guollo

    2015-09-01

    Full Text Available Guatambu (Aspidosperma parvifolium A. DC. is a species that faces extinction in different regions of Brazil. The aim of this study was to evaluate the influence of photoperiod on germination of guatambu seeds at 25°C. The statistical procedure used was factorial design with two factors. Factor A was seed lots (Mother tree A, B, and C and factor B was photoperiod (dark and 12 h of photoperiod. Guatambu seeds are not affected by photoperiod condition during the germination process.

  12. Proteomic analysis of Magnolia sieboldii K. Koch seed germination.

    Science.gov (United States)

    Lu, Xiu-Jun; Zhang, Xiao-Lin; Mei, Mei; Liu, Guang-Lin; Ma, Bei-Bei

    2016-02-05

    Magnolia sieboldii is a deciduous tree native to China. This species has a deep dormancy characteristic. To better understand seed germination, we used protein analysis of changes in seed protein at 0, 65, 110 and 150 d of stratification. Comparative 2DE analysis of M. sieboldii seed protein profiles at 0, 65, 110 and 150 d of stratification revealed 80 differentially abundance protein species. Comparative analysis showed that ADP-glucose pyrophosphorylase small subunit was degraded during germination. In particular, it was degraded almost completely at 110 d of germination. Starch granules in the microstructure decreased after 65 d of stratification. Starch granules provided a sufficient amount of substrates and ATPs for subsequent germination. Four storage protein species were identified, of which all were down accumulated. Spots 44 and 46 had different MW and pI values, spots 36 and 46 had nearly the same MW with pI shift in the 2-DE gels, suggesting that they might be present as different isoforms of the same protein family and the post translational modification. Our results suggested that degradation of starch granules and storage protein species prepared the seed embryo for growth, as well as regulated seed germination. The present proteomics analysis provides novel insights into the mobilisation of nutrient reserves during the germination of M. sieboldii seeds. To better understand seed germination, a complex developmental process, we developed a proteome analysis of M. sieboldii seed. We performed the first comprehensive proteomic and microstructure analysis during different seed stratification stages of M. sieboldii. Among the 80 protein species, 26 were identified, 7 and 14 protein species were up or down accumulated significantly. Many of the identified key proteins were involved in embryo development, starch biosynthesis and energy metabolism, Microstructure of stratification seed analysis revealed degradation of starch was used for preparing the seed

  13. Evolution of nutrient ingredients in tartary buckwheat seeds during germination.

    Science.gov (United States)

    Yiming, Zhou; Hong, Wang; Linlin, Cui; Xiaoli, Zhou; Wen, Tang; Xinli, Song

    2015-11-01

    Evolution of nutrient components and the antioxidative activity of seed sprouts of tartary buckwheat (Fagopyrum tataricum L. Gaertn) were investigated in the course of germination. Results showed that the contents of total flavonoids increased with germination time and leveled off after the third germination day with the changing trend of rutin and quercetin opposite to each other. The decrease of total protein and total sugar contents in the germinated seeds was accompanied respectively by an increase of amino acid and reducing sugar contents. The contents of vitamin C (Vc) and B1(V(B1)) exhibited a minimum with no appreciable changes found for vitamin B(2) (V(B2)) and B(6) (V(B6)). The contents of total chlorophyll, chlorophyll A and B all exhibited a maximum on the fifth germination day. The contents of fatty acids had no regular changing trend with germination time. The free radical-scavenging activities of the seeds increased with germination time and were caused by an increase in their antioxidative activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cellular recycling of proteins in seed dormancy alleviation and germination

    Directory of Open Access Journals (Sweden)

    Krystyna Oracz

    2016-07-01

    Full Text Available Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway (UPP is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well characterized since many years, but in nonphotosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is

  15. Association mapping of soybean seed germination under salt stress.

    Science.gov (United States)

    Kan, Guizhen; Zhang, Wei; Yang, Wenming; Ma, Deyuan; Zhang, Dan; Hao, Derong; Hu, Zhenbin; Yu, Deyue

    2015-12-01

    Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.

  16. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, g1erminated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated......-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P , 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C...... to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased...

  17. Comparative germination of Tamarix ramosissima spring and summer seeds

    OpenAIRE

    Yan, Cheng; Wei, Yan; Yang, Meilin

    2011-01-01

    Tamarix ramosissima has bi-seasonal flowering and fruit-setting characteristics. This study compared the morphology and germination characteristics of seeds from Tamarix ramosissima plants during the spring flowering period and the summer flowering period. The results are as follows: there is no significant difference in morphology, such as size and thousand-seed weight, between seeds from different the spring and summer flowering periods. Freshly harvested spring and summer flowering period ...

  18. The roles of auxin in seed dormancy and germination.

    Science.gov (United States)

    Shuai, Hai-wei; Meng, Yong-jie; Luo, Xiao-feng; Chen, Feng; Qi, Ying; Yang, Wen-yu; Shu, Kai

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions.

  19. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of... a germination equal to or better than the standard set forth in § 201.31 need not be labeled to show...

  20. Dormancy and germination: How does the crop seed decide?

    Science.gov (United States)

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Germinative potential of encrusted seed of tropical forage species

    Directory of Open Access Journals (Sweden)

    José Rafael de Souza

    Full Text Available ABSTRACT: Brazil is the largest producer, consumer and exporter of seeds of forage species, thus the adoption of new technologies for expansion and maintenance of this market is of great importance. The aim of this work was to evaluate encrustation effect on germination potential in seeds of Brachiaria sp. species. The experiment was carried out in Biofabrica laboratory from June to August 2014, in Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista-BA. The experimental design was completely randomized, in a factorial scheme 6x2, with two treatments (with and without coating and four replications. For germination quality of seeds were evaluated germination and vigor (emergence, emergence speed index, total length of seedling, shoot and root. The encrustation affected positively the germination of seeds in all species tested and encrustation did not affect the total length, shoot and root of the seedlings. Coating after chemical scarification is an alternative to improve germination of the seeds of tropical forage species.

  2. EFFECT OF SEED XYLOGLUCANS AND DERIVATES ON THE GROWTH OF Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Adriana Tourinho Salamoni

    2009-10-01

    Full Text Available Studies on xyloglucan (XG extracted from Hymenaea courbaril L. (jatoba seeds showed that this biopolymer has biological activity that enhanced wheat coleoptiles growth. In apple tree micropropagation, the culture medium containing XG combined with agar induced a higher multiplication rate, rooting rate and root length than medium solidified with agar only. The purpose of this study was to determine the effect of XG from jatobá seeds extracted from jatoba seeds collected in Sinope/MT (XGS and Cuiabá/MT (XGC, and from XGC hydrolysed with a cellulase (XGCH, as well from Tamarindus indica seeds (XGT collected in Bahia/BA, on the growth of in vitro cultured Arabidopsis thaliana plantlets. In the first experiment, XGCH (0.25, 25 and 250 nM or XGC (0.5, 50 and 500 nM were added to a liquid half-strength MS medium. In the second experiment, XGs from several origins were compared: XGC (500 nM, XGS (1200 nM and XGT (800 nM, using culture medium solidified with 6 g.L-1agar. Arabidopsis thaliana L. seeds germinated in Petri plates for 4 to 5 days were transferred to culture media containing the different concentrations of XGs and cultured in a growing room. When the plantlets were cultured in a liquid medium, their growth was very slow in the presence of XGC and XGCH at the highest concentration tested, and it was faster at the lowest concentration. In the semi-solid culture medium, XGs also reduced growth. It was concluded that XGs can play a biological role in Arabidopsis thaliana (L. Heynh. plantlets, stimulating or inhibiting the root system growth and the lateral root formation. These opposite effects varied according to the plant specie that furnished the seeds containing XG, as well as the place where the seeds were collected, to the XG form used (hydrolyzed or not and to its concentration in the culture media. 

  3. Seed quality characteristics of Pinus halepensis – seed germination strategy and early seedling growth

    Directory of Open Access Journals (Sweden)

    T. K. Tsitsoni

    2009-12-01

    Full Text Available Pinus halepensis is a Mediterranean tree species occupying areas of high tourist interest, where it forms aesthetic and recreational forests. However, intense human pressure, adverse climatic conditions and overgrazing degrade Aleppo pine forest ecosystems and render the natural regeneration of this species difficult. The ecological, landscape, recreational and soil conservation uses of P. halepensis along with its aesthetic value, make this species important for landscape planning and multi-purpose forestry. For these reasons, artificial regeneration may be required in order to render ecosystem restoration faster. Although P. halepensis is characterized by a high germination capacity and a constant temperature of 20 °C is considered optimal for germination, no research has dealt with the germination behaviour and early growth of seedlings under alternative temperature conditions similar to those dominating outdoors. Moreover, little research was conducted on seed quality characteristics of this species. Thus, in this study seed quality of P. halepensis was estimated by measuring purity, number of seeds per kg, weight of 1000 seeds, average seed weight, seed moisture content and percentage of empty seeds. Also, seed germination capacity, germination rate, percentage of infected and not germinated viable seeds, abnormal seedlings as well as the total seedling length were studied under laboratory (alternative temperature and chamber (constant temperature conditions with the same photoperiod. Results showed that the percentage of empty seeds and abnormal seedlings was extremely low and the total germination percentage was very high (87–90% in both environments. Germination capacity, germination rate and the total length of seedlings did not show any differences among the two growth environments.

  4. Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in Arabidopsis.

    Science.gov (United States)

    Huang, Z; Footitt, S; Tang, A; Finch-Savage, W E

    2018-01-01

    Seed characteristics are key components of plant fitness that are influenced by temperature in their maternal environment, and temperature will change with global warming. To study the effect of such temperature changes, Arabidopsis thaliana plants were grown to produce seeds along a uniquely designed polyethylene tunnel having a thermal gradient reflecting local global warming predictions. Plants therefore experienced the same variations in temperature and light conditions but different mean temperatures. A range of seed-related plant fitness estimates were measured. There were dramatic non-linear temperature effects on the germination behaviour in two contrasting ecotypes. Maternal temperatures lower than 15-16 °C resulted in significantly greater primary dormancy. In addition, the impact of nitrate in the growing media on dormancy was shown only by seeds produced below 15-16 °C. However, there were no consistent effects on seed yield, number, or size. Effects on germination behaviour were shown to be a species characteristic responding to temperature and not time of year. Elevating temperature above this critical value during seed development has the potential to dramatically alter the timing of subsequent seed germination and the proportion entering the soil seed bank. This has potential consequences for the whole plant life cycle and species fitness. © 2017 John Wiley & Sons Ltd.

  5. Pre-germination treatments on palm tree seeds

    Directory of Open Access Journals (Sweden)

    Maitê dos Santos Ribeiro

    2015-12-01

    Full Text Available Palm tree seeds present slow and uneven germination. Therefore, the objective of this research was to evaluate the efficiency of pre-germination treatments in promoting germination and early seedling growth of palm tree (Euterpe edulis Martius. Treatments were: control, immersion in GA3 solution, exposure to ethylene, water immersion, H2SO4 immersion, mechanical scarification, stratification for 30 days at 10 °C, and scarification followed by stratification. Soaking seeds in gibberellic acid (GA3; 2000 µL L-1 for 24 h or their exposure to ethylene (1000 µL L-1 for 24 h are effective for promoting emergence, which started 30 days after seed treatment, and for early seedling growth of palm tree.

  6. Intraspecific variation in seed size and light intensity affect seed germination and initial seedling growth of a tropical shrub

    Directory of Open Access Journals (Sweden)

    Aniele C. R. Veloso

    2017-09-01

    Full Text Available ABSTRACT Seed germination and seedling performance are affected by environmental factors and seed traits. In this study we investigated the effects of seed size and light intensity on germinability and seedling development of Copaifera oblongifolia. A total of 225 seeds were individually weighed and sown in three germination trays composed of 75 cells each. Each tray was placed in a different germination chamber with controlled photoperiod, temperature and light intensity. Seed size showed a positive relationship with time required for seed germination, and seeds exposed to high light intensity required more time to germinate. Seed size did not affect germination percentage, but seeds sown under high light intensity had a lower germination percentage than seeds sown under low light intensity and darkness. Seedling shoot mass showed a positive relationship with seeds mass, and seedlings grown in high light intensity had greater shoot mass than seedling growth in low light intensity and darkness. Thus, seed germinability of C. oblongifolia was higher in darkness while seedlings exhibited greater development under light. Looking to explain the ability of C. oblongifolia to colonize open/disturbed sites, it seems possible that plowing soil can bury seeds, thereby stimulating the germination of seeds present in the seed bank.

  7. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  8. Optimal treatment increased the seed germination of Salvia verticillata L.

    Directory of Open Access Journals (Sweden)

    ALALEH KHAKPOOR

    2015-12-01

    Full Text Available Most seeds of the medicinal species are variable regarding their ecological compatibility with environmental conditions. Therefore, identifying the ecophysiological factors that affect dormancy and create optimal conditions for seed germination of medicinal plants is necessary for their culture and production. To evaluate the effect of different treatments on seed germination of medicinal species of Salvia verticillata, collected in the summer of 2010 in Eastern Azarbaijan, we have performed completely randomized experimental tests with 4 replications. The experimental design of treatment prior to growth included: scrape the skin with sandpaper, treatment with 500 ppm gibberellic acid for 24 and 48 h, treatment with citric acid for 10, 20 and 30 minutes, chilling for 2 and 4 weeks, treatment with warm water at 70°C and control treatment. Results showed that the effect of different treatments was significant on seed germination percent of the medicinal plant Salvia verticillata. Scrape the skin with sandpaper, citric acid treatment for 10, 20 and 30 minutes, and gibberellic acid treatment for 24 hours, increased the germination percentage compared to the control treatment. The most positive impact was observed on the dormancy breaking and germination of medicinal species Salvia verticillata.

  9. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    Science.gov (United States)

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Desiccation tolerance and longevity of germinated Sesbania virgata (Cav.) Pers.seeds

    OpenAIRE

    Costa,Maria Cecília Dias; Faria,José Marcio Rocha; José,Anderson Cleiton; Ligterink,Wilco; Hilhorst,Henk W.M.

    2016-01-01

    Abstract: Seed desiccation tolerance (DT) and longevity are necessary for better dissemination of plant species and establishment of soil seed bank. They are acquired by orthodox seeds during the maturation phase of development and lost upon germination. DT can be re-induced in germinated seeds by an osmotic and/or abscisic acid treatment. However, there is no information on how these treatments affect seed longevity. Germinated Sesbania virgata seeds were used as a model system to investigat...

  11. Molecular dynamics in germinating, endophyte-colonized quinoa seeds

    Science.gov (United States)

    2017-01-01

    Aims The pseudo-cereal quinoa has an outstanding nutritional value. Seed germination is unusually fast, and plant tolerance to salt stress exceptionally high. Seemingly all seeds harbor bacterial endophytes. This work examines mitogen-activated protein kinase (MAPK) activities during early development. It evaluates possible contribution of endophytes to rapid germination and plant robustness. Methods MAPK activities were monitored in water- and NaCl-imbibed seeds over a 4-h-period using an immunoblot-based approach. Cellulolytic and pectinolytic abilities of bacteria were assessed biochemically, and cellular movement, biofilm, elicitor and antimicrobial compound synthesis genes sequenced. GyrA-based, cultivation-independent studies provided first insight into endophyte diversity. Results Quinoa seeds and seedlings exhibit remarkably complex and dynamic MAPK activity profiles. Depending on seed origin, variances exist in MAPK patterns and probably also in endophyte assemblages. Mucilage-degrading activities enable endophytes to colonize seed surfaces of a non-host species, chia, without apparent adverse effects. Conclusions Owing to their motility, cell wall-loosening and elicitor-generating abilities, quinoa endophytes have the potential to drive cell expansion, move across cell walls, generate damage-associated molecular patterns and activate MAPKs in their host. Bacteria may thus facilitate rapid germination and confer a primed state directly upon seed rehydration. Transfer into non-native crops appears both desirable and feasible. PMID:29416180

  12. Temperature in the seeds germination of pitaya genotypes

    Directory of Open Access Journals (Sweden)

    Alessandro Borini Lone

    2014-09-01

    Full Text Available The optimum temperature for germination of cacti vary with the species. With this work, we aimed to evaluate the seeds germination of pitaya genotypes under different temperatures. The used genotypes were: Hylocereus undatus (PB, H. polyrhizus (PV, Selenicereus megalanthus (PA, H. undatus x H. costaricensis (PH1 and H. costaricensis x H. undatus (PH2. For each genotype we used four replicates of 50 seeds, in a completely randomized design. The sowing was carried out on blotter paper in boxes type Gerbox ®, maintained at temperatures of 15, 20, 25, 30 and 35 oC constant and 15-25, 20-30 and 25-35 oC alternating with photoperiod 12 hours. The test lasted 30 days which were appraised the germination percentage, the germination speed index and the average time of germination. For seeds germination of PB, the result obtained in the temperature of 25 oC didn’t differ of the obtained to 30 and 20-30 oC, however it was superior to the others temperatures. In PV, the result at 25 oC didn’t differ of the obtained to 20 and 30 oC, being superior to the results of the others temperatures. For PA, the best result was obtained to 25 oC. In PH1, the temperatures of 25, 30 and 20-30 oC presented superiors results to the others. For PH2, the result obtained in 15-25oC didn’t differ of the obtained at 25 oC, however it was superior to the others temperatures. The constants temperatures of 25 and 30 °C and alternating 20-30 °C are suitable for germination of H. undatus and for the hybrid H. undatus x H. costaricensis. For H. polyrhizus, constant temperatures of 20, 25 to 30 °C are suitable for seed germination. The constant temperature of 25 °C is the most suitable for the germination of S. megalanthus. For the hybrid H. costaricensis x H. undatus, constant temperature of 25 °C and alternating 15-25°C are suitable for seed germination.

  13. Substrate water availability and seed water content on niger germination

    Directory of Open Access Journals (Sweden)

    Carla Regina Baptista Gordin

    2015-09-01

    Full Text Available Niger is an oleaginous species whose cultivation has been spreading, but there is not much information on the adverse conditions during its seedling establishment. This study aimed at evaluating the effects of substrate water availability and seed water content on niger germination. Seeds were moistened using the humid atmosphere method for 0; 24; 48; and 72 hours, obtaining the water contents of 7.0 %, 12.8 %, 16.8 % and 32.2 %. Then, they were sown in substrate moistened with PEG 6000 solutions with different osmotic potentials: 0.0 MPa (control, -0.1 MPa, -0.2 MPa, -0.3 MPa and -0.4 MPa. A completely randomized design, in a 4 x 5 factorial scheme (water content x osmotic potential, with four replications of 50 seeds, was used. First count and germination percentage, germination speed index and mean time, shoot and root length and seedlings dry weight were evaluated. The reduction in the substrate osmotic potential decreases the niger seed germination and seedling growth, regardless of water content, but with a higher evidence in seed water contents below 32.2 % and 12.8 %, respectively.

  14. Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases.

    Science.gov (United States)

    Scheler, Claudia; Weitbrecht, Karin; Pearce, Simon P; Hampstead, Anthony; Büttner-Mainik, Annette; Lee, Kieran J D; Voegele, Antje; Oracz, Krystyna; Dekkers, Bas J W; Wang, Xiaofeng; Wood, Andrew T A; Bentsink, Leónie; King, John R; Knox, J Paul; Holdsworth, Michael J; Müller, Kerstin; Leubner-Metzger, Gerhard

    2015-01-01

    Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. The role of seed priming in improving seed germination and ...

    African Journals Online (AJOL)

    Salinity is considered as a major abiotic stress affecting germination, seedling growth and crop production in arid and semi-arid regions. Many techniques are used to improve tolerance to salinity. Priming is believed to be an effective technique that increases germination, plant growth and improve yield of several ...

  16. Apparent seed digestibility and germination of seeds after passage through the digestive system of northern bobwhite

    Science.gov (United States)

    Limited information is available regarding the digestibility or germination of seed after the passage through the digestive system of northern bobwhites (Colinus virginianus), especially of plants associated with the sand sagebrush (Artemisia filifolia)-mixed prairie community. Thus, our objectives...

  17. Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda

    Science.gov (United States)

    Connor W. Barth; Susan E. Meyer; Julie Beckstead; Phil S. Allen

    2015-01-01

    Population-based threshold models using hydrothermal time (HTT) have been widely used to model seed germination. We used HTT to model conidial germination and mycelial growth for the seed pathogen Pyrenophora semeniperda in a novel approach to understanding its interactions with host seeds. Germination time courses and mycelial growth rates for P.semeniperda were...

  18. Enhancement of radiation damage in germinating wheat seeds by hyperthermia

    International Nuclear Information System (INIS)

    Guo Fangqing; Gu Ruiqi

    1994-01-01

    Enhancement of X-ray induced radiation damage in germinating wheat seeds by heat treatment (44 degree C or 41 degree C, 20 min) has been investigated. The enhancement effect of heat treatment after irradiation was more significant than that of heat treatment before irradiation at dose range of 4.3-8.6 Gy. It was observed that germinating wheat seeds were very sensitive to heat treatment within 15 min after irradiation, which indicated that the repair of radiation damage was very active and rapid in a short period after irradiation. The repair of radiation damage in interval of fractionated irradiation was severely inhibited by heat treatment. The sensitivity of seeds to heat treatment corresponded with the levels of their repair activities. The more active the repairs of the seeds are, the more sensitive to heat treatment the seeds show. It was assumed that the enhancement of radiation damage by heat treatment in germinating wheat seeds was attributed to the inhibition of radiation damage repair by heat treatment, which is similar to the results of animal experiments

  19. Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids.

    Science.gov (United States)

    Hashimoto, Yasushi; Fukukawa, Satoru; Kunishi, Ayako; Suga, Haruhisa; Richard, Franck; Sauve, Mathieu; Selosse, Marc-André

    2012-08-01

    Dust seeds that germinate by obtaining nutrients from symbiotic fungi have evolved independently in orchids and 11 other plant lineages. The fungi involved in this 'mycoheterotrophic' germination have been identified in some orchids and non-photosynthetic Ericaceae, and proved identical to mycorrhizal fungi of adult plants. We investigated a third lineage, the Pyroleae, chlorophyllous Ericaceae species whose partial mycoheterotrophy at adulthood has recently attracted much attention. We observed experimental Pyrola asarifolia germination at four Japanese sites and investigated the germination pattern and symbiotic fungi, which we compared to mycorrhizal fungi of adult plants. Adult P. asarifolia, like other Pyroleae, associated with diverse fungal species that were a subset of those mycorrhizal on surrounding trees. Conversely, seedlings specifically associated with a lineage of Sebacinales clade B (endophytic Basidiomycetes) revealed an intriguing evolutionary convergence with orchids, some of which also germinate with Sebacinales clade B. Congruently, seedlings clustered spatially together, but not with adults. This unexpected transition in specificity and ecology of partners could support the developmental transition from full to partial mycoheterotrophy, but probably challenges survival and distribution during development. We discuss the physiological and ecological traits that predisposed to the repeated recruitment of Sebacinales clade B for dust seed germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Seed germination of peanuts irradiated with cobalt (60CO)

    International Nuclear Information System (INIS)

    Alves, Niedja Marrize C.; Almeida, Francisco de Assis C.; Gomes, Josivanda P.; Pessoa, Elvira B.; Leal, Artur S. Cavalcanti

    2010-01-01

    This work was realized to evaluate the effect of gamma irradiation ( 60 Co) at doses 0, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00 and 4.00 kGy, on germination of seeds of peanut, cultivar BR1. Irradiation Department of Nuclear, UFPE, where he received after the irradiation, they were stored in packing of PET and polyethylene braided with a time of 90 days. Through the results, obtained monthly, concluded that the dose of 0.5 kGy was effective in the germination of seeds of peanut, not affecting its power of germination and overcoming the witness within 30 to 60 days. (author)

  1. Coffee (Coffea arabica cv. Rubi) seed germination: mechanisms and regulation

    NARCIS (Netherlands)

    Silva, da E.A.A.

    2002-01-01

    Coffee seeds display slow and variable germination which severely hampers the production of seedlings for planting in the following growth season. Little work has been done with the aim to understand the behavior of

  2. PLANT INDUCTION OF GERMINATION OF WITCH WEED SEEDS

    African Journals Online (AJOL)

    Orobanche control using synthetic germination stimulants. Weed Research 16: 223-227. Kim, S.K. and Adetimirin, V.O. 1997. Striga hermonthica seed inoculum rate effects on maize hybrid tolerance and susceptibility expression. Crop Science 37:1066-1071. M'Boob, S.S. 1989. A regional program for. Striga control in West ...

  3. Lectins, Mitogenicity and Seed Germination: A Comparative Study ...

    African Journals Online (AJOL)

    The fate of lectins contained in the seeds of T. occidentalis, C. papaya and A. communis have been followed during the germinative process. Under the same culture conditions, the emergence of both the radicle and the plumule (the 3rd and 5th day; 18th and 20th and 12th and the 15th day respectively for T. occidentalis, C.

  4. Effects of seed priming on germination in Gladiolus

    African Journals Online (AJOL)

    SOHAIL JAFFAR

    2012-06-28

    Jun 28, 2012 ... Enhancement of germination and emergence of canola seeds by different priming techniques. Caderno de Pesquisa. Serie Biologia, 16: 19-33. Afzal I, Basra SMA, Farooq M, Nawaz A (2006).Alleviation of salinity stress in spring wheat by hormonal priming with. ABA, salicyclic acid and ascorbic acid.

  5. Response of soybean seed germination to cadmium and acid rain.

    Science.gov (United States)

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain.

  6. A simple staining method for observation of germinated Striga seeds

    NARCIS (Netherlands)

    Shusheng Long,; Lendzemo, V.W.; Kuyper, T.W.; Zhengsheng Kang,; Vierheilig, H.; Steinkellner, S.

    2008-01-01

    In vitro techniques are essential for Striga research and the development of appropriate control methods. In the laboratory, pre-screening of non-host or false-host plants of Striga for trap cropping or the screening of hosts for resistance involves visual evaluation of Striga seed germination that

  7. Effects of natural long storage duration on seed germination ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the effect of long-term natural aging on germination ability and several biochemical characteristics regarding soluble sugars and polyphenol matter contents and radical scavenging activity of Periploca angustifolia Labill. (Asclepiadaceae) stored seeds for 1, 3, 7, 10, 11 and 15-years, ...

  8. Effect of gibberellic acid and potassium nitrate on seed germination ...

    African Journals Online (AJOL)

    Ramonda serbica and Ramonda nathaliae are rare resurrection plants, endemic and relict species from Balkan Peninsula. The effect of gibberellic acid (GA3) and potassium nitrate (KNO3) were conducted to determine the seed germination response for these two species. An experiment was conducted with four ...

  9. Seed germination and growth of Eleucine indica and Euphorbia ...

    African Journals Online (AJOL)

    Three experiments were conducted in a glasshouse and a laboratory to provide information on the effect of glyphosate (N-(phosphonomethyl) glycine) on, seed germination, seedling emergence and growth of goosegrass (Eleucine indica (L.) Gaertn) and wild poinsettia (Euphorbia heterophylla Linn), Glyphosate sprayed ...

  10. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... for seed germination and seedling growth of Cymbidium elegans and Coelogyne punctulata (Sharma et al., 1991). Mariat (1949) reported that vitamin B favoured germi- nation and differentiation in Cattleya seedlings; thiamine, nicotinic acid and biotin were most effective in Cattleya hybrids. Pyridoxine was ...

  11. Asymbiotic seed germination and in vitro propagation of ...

    African Journals Online (AJOL)

    Joe Krawczyszyn

    2015-10-13

    Oct 13, 2015 ... Christenson. Plant Growth Regul. 65:381-387. Knudson L (1946). A new nutrient solution for the germination of orchid seed. Am. Orchid Soc. Bull. 14:214-217. Lloyd G, MCCown B (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int. Plant. Prop.

  12. Inhibitory effects of monoterpenes on seed germination and seedling growth.

    Science.gov (United States)

    Kordali, Saban; Cakir, Ahmet; Sutay, Sunay

    2007-01-01

    Monoterpenes, the chemical constituents of essential oils found in plants, are known biologically active compounds. The present study was conducted to investigate the inhibitory effects of 30 monoterpenes including monoterpene hydrocarbons and oxygenated monoterpenes on seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus under laboratory conditions. The monoterpenes were applied at contents of 10 and 20 microl for liquid compounds and 10 and 20 microg for solid compounds. The results show that most of the monoterpenes significantly inhibited seed germination and seedling growth of the tested plants. Oxygenated monoterpenes including beta-citronellol, nerol and terpinen-4-ol completely inhibited seed germination and seedling growth of all tested plants. Their inhibitory effects were also stronger than that of the herbicide 2,4-D. In general, monoterpenes were less effective against seed germination and seedling growth of C. album as compared with R. crispus and A. retroflexus. Phytotoxic effects of monoterpene hydrocarbons were found to be lower than those of oxygenated monoterpenes. The alcohol derivatives of oxygenated monoterpenes were also found to be more phytotoxic as compared with their acetate derivatives. Based on the present results, it can be concluded that the oxygenated monoterpenes can be used as potential bio-herbicides.

  13. Influence of ultrasonic stimulation on the germination of barley seed ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... by measuring the reducing sugars released as a result of the alpha-amylase action on soluble starch using 3,5-dinitrosalicylate ... have applied sonication under dry conditions which may be carried out up to several ... days faster germination of corn seeds (Hebling and Silva,. 1995; Shors et al., 1999) and a ...

  14. Studies on seed germination and in vitro shoot multiplication of ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... 2Department of Botany, School of Biology, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran,. Iran. ... (50%) and also the synergistic effect between cold stratification and other factors on seed germination ... For shoot proliferation, the node explants were cultured on Linsmaier and.

  15. Grazing influences Stipa breviflora seed germination in desert grasslands of the Inner Mongolia Plateau

    Science.gov (United States)

    Liu, Wenting; Wang, Tianle; Zhang, Shuang; Ding, Lijun

    2018-01-01

    Seed germination plays an important role in determining the composition and regeneration of plant populations (Stipa breviflora). However, the influencing factors and strategies employed for seed germination in desert grasslands under grazing remain unknown. Therefore, in this study, the reproductive allocation, seed density, seed properties, and corresponding seed germination rates of S. breviflora were examined. Possible situations encountered during dispersal were also simulated to determine their effects on seed germination. The results showed that reproductive individual density not subjected to grazing were significantly higher than those subjected to moderate and heavy grazing. For seed density and seed bank in soil, the highest values were observed for the no grazing treatment, followed by the moderate and heavy grazing treatments. The seed density for germination of soil seed banks was nearly one-fourth of seed density during the growing season. In addition, grazing treatments affected the phenotypic characteristics of seeds and reduced the lower limit of the weight of germinable seeds. Awn removal significantly increased germination. The longest germination time was observed for seeds that entered the soil at an angle of 0°. Our research demonstrated that grazing negatively affected the desert grassland edificator. Individual plants adopted different adaptation strategies under different grazing intensities; for example, a fixed proportion of the seed number and seed germination number of S. breviflora in the soil seed bank was maintained by exceeding the minimum weight of a seed for seed germination. During seed dispersion, the awn effectively prevented germination under unfavourable conditions and helped seeds enter the soil at an optimal angle for promoting germination. PMID:29507838

  16. Seed longevity: survival and maintenance of high germination ability of dry seeds.

    Science.gov (United States)

    Rajjou, Loïc; Debeaujon, Isabelle

    2008-10-01

    The seed constitutes the main vector of plant propagation and it is a critical development stage with many specificities. Seed longevity is a major challenge for the conservation of plant biodiversity and for crop success. Seeds possess a wide range of systems (protection, detoxification, repair) allowing them to survive in the dry state and to preserve a high germination ability. Therefore, the seed system provides an appropriate model to study longevity and aging.

  17. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    Science.gov (United States)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (Pseeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. [Grain filling dynamics and germination characteristics of Bupleurum chinense seeds].

    Science.gov (United States)

    Jin, Xin; Ren, Bing; Cao, Ai-Nong; Jin, Xiao-Jun

    2014-10-01

    Bupleurum chinense used in the study were cultivated in the experimental fields of Gansu agricultural University for three years. The seeds of B. chinense were collected every 3 days 10 d after the blossom. The result showed that the 1 000-grain fresh weight reached the maximum 43 d after the blossom and then decreased rapidly, at the mature period the fresh weight of seeds were falling to the same level of the dry weight. The dynamic change of the grain dry matter accumulation showed as an S-shape curve, the rapid increase stage was 25-34 d following the flower, and the grain filling was ended 46 d after blossom. Grain filling rate was under the law "fast-slow-fast-slow". And there were two peaks of grain filling rate appeared, after reached the second peak 28 d after the flower the filling rate decreased rapidly and stayed steadily 43 d after flowering. The dehydration rate was also measured at its maximum 43 d following flower. The indexes of seeds all reached the top 52 days following the blossom, when the germination rate reached the peak (34.33%) and water content of seeds was near 10%. The rate of germination and the 1 000-graid weight of seed showed significant positive correlation, while the water content of seeds was found significant negatively correlation with germination percentage. So the best time for harvest should be 52 d after flowering (9 month), the seeds collected at that time showed both high quality and germination rate.

  19. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Mori, Y; Yokota, S; Ono, F

    2012-01-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  20. Germination of vegetable seeds exposed to very high pressure

    Science.gov (United States)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  1. DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1.

    Science.gov (United States)

    Santopolo, Silvia; Boccaccini, Alessandra; Lorrai, Riccardo; Ruta, Veronica; Capauto, Davide; Minutello, Emanuele; Serino, Giovanna; Costantino, Paolo; Vittorioso, Paola

    2015-03-04

    The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of the light-mediated seed germination process. DAG1 acts downstream PHYTOCHROME INTERACTING FACTOR3-LIKE 5 (PIL5), the master repressor, and negatively regulates gibberellin biosynthesis by directly repressing the biosynthetic gene AtGA3ox1. The Dof protein DOF AFFECTING GERMINATION (DAG2) shares a high degree of aminoacidic identity with DAG1. While DAG1 inactivation considerably increases the germination capability of seeds, the dag2 mutant has seeds with a germination potential substantially lower than the wild-type, indicating that these factors may play opposite roles in seed germination. We show here that DAG2 expression is positively regulated by environmental factors triggering germination, whereas its expression is repressed by PIL5 and DAG1; by Chromatin Immuno Precipitation (ChIP) analysis we prove that DAG1 directly regulates DAG2. In addition, we show that Red light significantly reduces germination of dag2 mutant seeds. In agreement with the seed germination phenotype of the dag2 mutant previously published, the present data prove that DAG2 is a positive regulator of the light-mediated seed germination process, and particularly reveal that this protein plays its main role downstream of PIL5 and DAG1 in the phytochrome B (phyB)-mediated pathway.

  2. Comparative Germination of Barley Seeds (Hordeum Vulgare ...

    African Journals Online (AJOL)

    Where-as the rate of germination for the solutions of NaOH and NaHCO3 remained the same as that of the water. The influence in length of rootlets was also examined as a function of the nature of the soaking solutions. Sharp increase in the length was observed in case of Mg (OH)2 and KOH while in NaOH, Ca(OH)2 and ...

  3. A Quick-Test for Biochar Effects on Seed Germination ...

    Science.gov (United States)

    Biochar is being globally evaluated as a soil amendment to improve soil characteristics (e.g. soil water holding, nutrient exchange, microbiology, pesticides and chemical availability) to increase crop yields. Unfortunately, there are no quick tests to determine what biochar types are most effective at improving soil characteristics amenable for higher crop yields. Seed germination is a critical parameter for plant establishment and may be a quick indicator of biochar quality. We adapted Oregon State University Seed Laboratory procedures to develop a “quick-test” for screening the effects of biochar on seed germination. We used 11.0 cm rectangular x 3.5 cm deep containers fitted with blotter paper. The paper was premoistened with reverse-osmosis water, followed by placement of seeds (25 in a uniform 5 x 5 vacuum-assisted pattern, and biochar mixtures). A Norfolk and Coxville soil series from South Carolina were used. A total of 18 biochars were evaluated that were produced from 6 feedstocks (pine chips, poultry litter, swine solids, switchgrass, and two blends of pine chips and poultry litter); with biochar from each feedstock made by pyrolysis at 350, 500 and 700 ̊ C. Crops were cabbage, cucumber, onion, ryegrass and tomato. Preliminary results from the test indicated differences in seed germination due to soil type and possibly soil x biochar feedstock interactions. Other measurements including shoot dry weight per plate and pH of the soil+ biochar mixtur

  4. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  5. Interactions of light and a temperature shift on seed germination.

    Science.gov (United States)

    Taylorson, R B; Hendricks, S B

    1972-02-01

    Germination of Rumex obtusifolius L. seeds is potentiated to an observable degree in 2 minutes by a single shift in temperature from 20 to 35 C. Half-maximal potentiation requires less than 32 minutes at the higher temperature. Similar sensitivities to shifts in temperature were observed for seeds of Barbarea vulgaris, R.Br. B. verna (Mill.) Asch., and Lepidium virginicum L. A shift in temperature interacts strongly with change in form of phytochrome induced by light on germination of the four kinds of seeds. The potentiated effects for R. obtusifolius are only moderately affected by 40 mum cycloheximide. Both the temperature shift and light actions are apparently independent of processes of synthesis necessary for growth.

  6. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    Science.gov (United States)

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  7. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    BERTIN

    2013-11-27

    Nov 27, 2013 ... Low seed quality was observed in ... Seed quality did not vary between cultivars. Regardless of the fermentation process and cultivars used, the best seed and seedling qualities were observed when the amount of rainfall during the experiment ..... wet (Bouaziz and Hicks, 1990; Evans and Etherington.

  8. Key factors affecting seed germination of Copaifera langsdorffii, a Neotropical tree

    Directory of Open Access Journals (Sweden)

    Matheus Lopes Souza

    2015-12-01

    Full Text Available In natural conditions biotic and abiotic factors interact, synergistically affecting seed germination. In this study, we experimentally simulated natural conditions that occur during seed dispersal that can affect the germination of Copaifera langsdorffii. Specifically we evaluated the effect of aril removal by different dispersal agents (birds and ants and fire on germination. The seeds were submitted to the following treatments: Control (seeds placed to germinate with aril intact; Acid (simulation of passage through the digestive tract of a bird; Aril removal (simulation of aril removed by ants; Fire (seeds exposed to fire. Germination percentage and time varied among treatments (X²=89.735, P<0.001; X²=16.225, P<0.001, respectively. None of the control seeds (intact aril germinated. Treatments that simulated dispersal (Acid, Aril removal did not differ in germination percentage, with about 50% of the seeds germinating, however, the acid treatment accelerated seed germination. Fire also had a positive effect on seed germination with about 80% of the seeds germinating. Our results demonstrate the importance of dispersal agents to the population dynamics of C. langsdorffii. Furthermore, the capacity of seeds of C. langsdorffii to tolerate high temperatures is an important attribute for the occurrence of this species in the Cerrado.

  9. Seed germination in a southern Australian temperate seagrass

    OpenAIRE

    Cumming, Erin; Jarvis, Jessie C.; Sherman, Craig D.H.; York, Paul H.; Smith, Timothy M.

    2017-01-01

    In a series of experiments, seeds from a temperate seagrass species, Zostera nigricaulis collected in Port Phillip Bay, Victoria, Australia were exposed to a range of salinities (20 PSU pulse/no pulse, 25 PSU, 30 PSU, 35 PSU), temperatures (13 °C, 17 °C, 22 °C), burial depths (0 cm, 1 cm, 2 cm) and site specific sediment characteristics (fine, medium, coarse) to quantify their impacts on germination rate and maximum overall germination. In southern Australia the seagrass Z. nigricaulis is a c...

  10. Effect of pre-sowing treatments on seed germination and seedling ...

    African Journals Online (AJOL)

    Pre-sowing treatments were evaluated for Tetracarpidium conophorum. Mechanically scarified T. conophorum seeds soaked in indole acetic acid for 24 h yielded 90% seed germination. Smoked- and sun-dried seeds for 14 days yielded 73 and 33.3% seed germination, respectively. Poorest values were obtained from acid ...

  11. Effects of seed priming and water potential on seed germination and ...

    African Journals Online (AJOL)

    Poor crop establishment is a major problem in wheat production due to low soil moisture. Two experiments were undertaken to determine the effects of seed priming on seed germination and seedling emergence of wheat varieties. The first experiment determined the effects of water potentials (0, -0.01, -0.1, -0.2, -0.5 and ...

  12. Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought*

    Science.gov (United States)

    Su, Li-qiang; Li, Jia-guo; Xue, Hua; Wang, Xiao-feng

    2017-01-01

    Coating seeds with water absorbent materials can improve their survival, especially for those planted in drought or barren areas. In this study, effects of five kinds of super absorbent polymers (SAPs) on seed germination and seedling growth of Caragana korshinskii under drought conditions were investigated. Our results showed that SAP coatings could significantly improve the percentage and energy of seed germination, as well as reduce the relative electrical conductivity (REC), proline, malondialdehyde (MDA), H2O2 content, and peroxidase (POD) activity during germination. These results implied that seeds could uptake moisture from SAP coatings to alleviate drought-induced oxidative stress and membrane damage, thus exhibiting a better vigor and germination performance. After coating C. korshinskii seeds with SAPs, more seedlings emerged and grew better. Under the combined influence of the water absorption capacity of SAP and other factors, the efficiencies of five SAP coatings are in the sequence D>E>B>A>C. The function of the SAP coating on promoting seedling survival was confirmed in Mu Us Sandy Land in Ordos, Inner Mongolia Autonomous Region, China. The average seedling number of SAP D-coated seeds increased twofold on that of naked seeds. Our results are expected to be helpful in understanding and utilizing SAP seed coatings in improving plant survival under drought conditions. PMID:28786244

  13. Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought.

    Science.gov (United States)

    Su, Li-Qiang; Li, Jia-Guo; Xue, Hua; Wang, Xiao-Feng

    Coating seeds with water absorbent materials can improve their survival, especially for those planted in drought or barren areas. In this study, effects of five kinds of super absorbent polymers (SAPs) on seed germination and seedling growth of Caragana korshinskii under drought conditions were investigated. Our results showed that SAP coatings could significantly improve the percentage and energy of seed germination, as well as reduce the relative electrical conductivity (REC), proline, malondialdehyde (MDA), H 2 O 2 content, and peroxidase (POD) activity during germination. These results implied that seeds could uptake moisture from SAP coatings to alleviate drought-induced oxidative stress and membrane damage, thus exhibiting a better vigor and germination performance. After coating C. korshinskii seeds with SAPs, more seedlings emerged and grew better. Under the combined influence of the water absorption capacity of SAP and other factors, the efficiencies of five SAP coatings are in the sequence D>E>B>A>C. The function of the SAP coating on promoting seedling survival was confirmed in Mu Us Sandy Land in Ordos, Inner Mongolia Autonomous Region, China. The average seedling number of SAP D-coated seeds increased twofold on that of naked seeds. Our results are expected to be helpful in understanding and utilizing SAP seed coatings in improving plant survival under drought conditions.

  14. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Directory of Open Access Journals (Sweden)

    Julien De Giorgi

    2015-12-01

    Full Text Available Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA and abscisic acid (ABA signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  15. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination

    Science.gov (United States)

    Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-01-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322

  16. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Science.gov (United States)

    De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-12-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  17. Effect of endosperm mutants on maize seed germination

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2004-01-01

    Full Text Available The expression of genetic potential of yielding and quality of a certain genotype depends among other factors on seed quality. Seed is very important not only for the reproduction of the particular plant species, but also, for the contemporary plant production. Each part of maize seed (pericarp endosperm and germ has a specific function in the complex process of germination and emergence. The following three genotypes of different endosperm types were observed: ZPSC 42A (standard grain quality dent hybrid ZPSC 504 su (sweet maize hybrid with a sugary gene and ZPSyn.II sh2 (synthetic population with a shranken2 gene. Seed viability of the stated genotypes was determined by the accepted ISTA methods: standard method accelerating age and cold test. Obtained results point out to differences in the germination capacity of the observed genotypes. The greatest reduction of the germination capacity and the emergence rate was expressed by the application of the accelerating ageing method. Appeared differences are probably a result of the endosperm texture (type, grain weight, sugar content and pericarp thickens and composition.

  18. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance

    Science.gov (United States)

    Yang, Fan; Baskin, Jerry M.; Baskin, Carol C.; Yang, Xuejun; Cao, Dechang; Huang, Zhenying

    2015-01-01

    Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring. Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined. Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds. Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment. PMID:25395107

  19. Effects of salinity, temperature, light and dormancy regulating chemicals on seed germination of salsola drummondii ulbr

    International Nuclear Information System (INIS)

    Rasheed, A.; Hameed, A.; Khan, M.A.; Gul, B.

    2015-01-01

    Salsola drummondii Ulbr. is a perennial halophyte found in salt deserts of southern Balochistan, Pakistan. Experiments were conducted to study the effects of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl), thermoperiod (10/20, 15/25, 20/30 and 25/35 degree C), light (12-h photoperiod and dark) and dormancy regulating chemicals (DRCs) on germination, recovery and viability of the seeds of S. drummondii. Seeds of S. drummondii germinated quickly in distilled water at different temperature regimes and increases in salinity decreased seed germination. Interestingly, few seeds could even germinate in 1000 mM NaCl treatment, which is about twice as high as seawater salinity. Seeds were partially photoblastic and showed relatively higher germination under 12-h photoperiod than in dark. Seeds showed poor recovery of germination from salinity and particularly when germinated in dark. Germination inhibition at high salinity (800 mM NaCl) under 12-h photoperiod was partially alleviated by the exogenous application of different DRCs, particularly fusicoccin. Moreover, all the DRCs, except GA4+7, ameliorated germination of salt stressed seeds under complete darkness and GA4 and fusicoccin were most effective. Our study shows that seeds of S. drummondii are highly tolerant to salinity and variation in temperature but partially photoblastic nature indicate that seeds will not germinate if buried under the soil. Seed germination under saline conditions can be improved by the use of DRCs particularly by application of fusicoccin. (author)

  20. Germination ecophysiology of Annona crassiflora Mart. seeds

    NARCIS (Netherlands)

    Silva, da E.A.A.; Melo, de D.L.B.; Davide, A.C.; Bode, N.; Abreu, G.B.; Faria, J.M.R.; Hilhorst, H.W.M.

    2007-01-01

    Background and Aims Little is known about environmental factors that break morphophysiological dormancy in seeds of the Annonaceae and the mechanisms involved. The aim of this study was to characterize the morphological and physiological components of dormancy of Annona crassiflora, a tree species

  1. Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents

    Science.gov (United States)

    To, Alexandra; Barthole, Guillaume; Lepiniec, Loïc

    2018-01-01

    Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination. PMID:29381741

  2. Ethylene evolution and endo-b-mannanase activity during lettuce seed germination at high temperature

    Directory of Open Access Journals (Sweden)

    Nascimento Warley Marcos

    2004-01-01

    Full Text Available High temperatures during lettuce seed imbibition can delay or completely inhibit germination and the endosperm layer appears to restrict the radicle protrusion. The role of endo-beta-mannanase during lettuce seed germination at 35°C and the influence of ethylene in endo-beta-mannanase regulation were investigated. Seeds of 'Dark Green Boston' (DGB and 'Everglades' (EVE were germinated in water, or 10 mmol L-1 of 1-aminocyclopropane-1-carboxylic acid (ACC, or 10 mmol L-1 of aminoethoxyvinylglycine (AVG, or 20 mmol L-1 of silver thiosulphate (STS. Seeds were also primed in polyethylene glycol (PEG, or PEG + ACC, PEG + AVG, or PEG + STS. Untreated seeds germinated 100% at 20°C. At 35°C, EVE seeds germinated 100%, whereas DGB seeds germinated only 33%. Seed priming or adding ACC during incubation increased germination at 35°C. Higher ethylene evolution was detected in EVE than in DGB during germination at 35°C. AVG did not inhibit seed germination of DGB at 35°C, but STS did. Higher endo-beta-mannanase activity was observed in EVE compared with DGB seeds. Providing ACC either during priming or during germination increased endo-beta-mannanase activity, whereas AVG and STS led to decreased or no activity. Ethylene may overcome the inhibitory effect of high temperature in thermosensitive lettuce seeds due to increased endo-beta-mannanase, possibly leading to weakening of the endosperm.

  3. Seed longevity and fire: germination responses of an exotic perennial herb in NW Patagonian grasslands (Argentina).

    Science.gov (United States)

    Franzese, J; Ghermandi, L

    2011-11-01

    Fire affects grassland composition by selectively influencing recruitment. Some exotic species can increase their abundance as a consequence of fire-stimulated seed germination, but response may depend on seed age. Rumex acetosella L. (Polygonaceae, sheep's sorrel) is a cosmopolitan herb that has invaded NW Patagonia's grasslands. This species forms persistent soil seed banks and increases after disturbances, particularly fire. We studied how fire and seed longevity influence R. acetosella germination. In 2008, we conducted laboratory experiments where we exposed different-aged seeds (up to 19 years old) to heat, smoke, charcoal, ash and control treatments. Total percentage germination and mean germination time depended on both seed age and fire treatment. Germination of younger seeds decreased with increasing temperature. There was no general pattern in germination responses of different-aged seeds to smoke, charcoal and ash. While smoke improved the germination of fresh seeds, charcoal decreased germination. Germination of untreated seeds was negatively correlated with seed age, and mean germination time increased with seed age. In most treatments, fresh seeds had lower germination than 1-5-year-old seeds, indicating an after-ripening requirement. Smoke stimulates R. acetosella germination, causing successful recruitment during post-fire conditions. Fresh seeds are particularly responsive to fire factors, possibly because they have not experienced physical degradation and are more receptive to environmental stimuli. Knowing the colonisation potential from the soil seed bank of this species during post-fire conditions will allow us to predict their impact on native communities. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Optimum storage and germination conditions for seeds of pickerelweed (Pontetieria cordata L.) from Florida

    Science.gov (United States)

    Lyn A. Gettys; R. Kasten Dumroese

    2009-01-01

    Clean seeds of pickerelweed (Pontederia cordata L. [Pontederiaceae]) germinated best (84 to 94%) under water, even after being stored dry up to 6 mo at about 25 °C (77 °F), but germination of clean seeds under water was reduced to 43% when seeds were stored at 4 °C (39 3 F) for 6 mo. Underwater germination of seeds enclosed in fruits was less...

  5. Effects of Seed Cryopreservation and Priming on Germination in Several Cultivars of Apium graveolens.

    Science.gov (United States)

    Gonzalez-Benito, M E; Iriondo, J M; Pita, J M; Pérez-García, F

    1995-01-01

    Seed germination of seven celery cultivars was studied after storage in liquid nitrogen for 1 or 30 d. Cryopreservation was also carried out on pelleted and primed seeds. None of the treatments applied reduced germination percentages. T(50) (time for germination to reach 50%) significantly decreased in Florida, Utah and Istar cultivars when priming, alone or in combination with cryopreservation, was used.

  6. 7 CFR 201.31 - Germination standards for vegetable seeds in interstate commerce.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination standards for vegetable seeds in interstate commerce. 201.31 Section 201.31 Agriculture Regulations of the Department of Agriculture... Germination standards for vegetable seeds in interstate commerce. The following germination standards for...

  7. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis.

    Science.gov (United States)

    Ogé, Laurent; Bourdais, Gildas; Bove, Jérôme; Collet, Boris; Godin, Béatrice; Granier, Fabienne; Boutin, Jean-Pierre; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2008-11-01

    The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments.

  8. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Science.gov (United States)

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  9. Dormancy release and germination of Taxus yunnanensis seeds during wet sand storage.

    Science.gov (United States)

    Bian, Fangyuan; Su, Jianrong; Liu, Wande; Li, Shuaifeng

    2018-02-16

    Dormancy is an innate constraint on germination that occurs across all life forms. In this study, we investigated the seed dormancy release and germination characters of Taxus yunnanensis by exploring the seed morphology, permeability, germination inhibitors, endogenous hormones, and embryo germination in vitro during wet sand storage. Our results showed that seeds and embryos grew to a critical size to germination and permeability increased with the extension of storage. Seed coat and kernel methanol extracts reduced Brassica campestris seed vigor index. The in vitro embryo germination rate increased by 12.20% after storage for 30-360 d, whereas seed germination occurred after 450 d. Gibberellic acid and zeatin riboside contents were relatively stable, whereas abscisic acid (ABA) content decreased; indole acetic acid (IAA) content and the IAA/ABA ratio showed increasing trends. These results indicate that ABA is the key inhibitor of germination in Taxus. The chemical(s) in seed coat and kernel cause the inhibition of seed germination. Taken together, Taxus seeds have morphophysiological dormancy, in which the embryos can continue to grow and hormone imbalance inhibits further development and germination. Further, seed dormancy is active even during the middle of storage and shows "double peaks" during the entire dormancy process.

  10. EFFECT OF HEAT TREATMENT ON THE GERMINATION OF SEEDS SOEL

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-01-01

    Full Text Available The object of this work was to study the effect of thermal treatments (in the oven and in the compost on the seed germination SOEL. The laboratory evaluation on the treatment in the oven berries at two temperatures (50°C and 60°C for three exposure time ( one day, two days and three days gave a germination rate zero for 60°C for an exposure time of one day. The spatio-temporal thermal monitoring of forestry compost windrow which was introduced to deal with berries SOEL showed a substantially homogeneous distribution of the temperature rising to 60°C and even longer swath stretching and used for a time period of 5 consecutive days. The germination rate was zero for all fruit seeds treated before the first reversal fact, regardless of the depth and location of the windrow considered that the berries were introduced. Thus, composting can be a solution to prevent the spread of SOEL by seed.

  11. Germinability of Cook pine (Araucaria columnaris) seeds under different storage conditions

    Science.gov (United States)

    Paul G. Scowcroft

    1988-01-01

    Up to 25 metric tonnes of seeds of Cook pine, raucaria columnaris (Forst. f.) Hook., are exported from Hawaii in abundant seed years. Excess seeds cannot be stored and used to fill orders in poor seed years because the seeds quickly lose their ability to germinate. The effects of storage temperature, seed moisture content, and nitrogen enrichment...

  12. Effects of Exogenous Spermine on Seed Germination and Early Growth of Sunflower Seeds Under Salinity Stress

    OpenAIRE

    MUTLU, Fatma; BOZCUK, Suna

    2014-01-01

    The effects of various concentrations (0.01, 1, 2mM) of spermine (Spm) on germination and some early growth parameters of sunflower ( Helianthus annuus L. cv. Santafe) seeds were investigated in media containing different concentrations of NaCl (50, 100, 200mM). Regardless of its concentrations, application of Spm under non-saline conditions remained ineffective on germination percentage as well as on the early growth parameters studied (length of radicle, fresh and dry weights). The sal...

  13. Interspecific Difference in Seed Germination of the Genus Avena, at Various Temperatures

    OpenAIRE

    Ogawa, Yukiyoshi; Tachibana, Shoji; 小川, 幸持; 橘, 昌司

    1997-01-01

    Germination of seeds in different diploid, tetraploid and hexaploid Avena species as affecbed by temperatures of 18°, 24° and 30℃ was examined. Most species of seeds stored for 5 to 6 months after harvesting showed the decrease in seed germination percentage as the temperature increased.The poor germination of seeds at 30℃ was attributed to secondary dormancy induced by exposing to a high temperature. The seeds became capable of germinating at the same temperature after having stored for 10 ...

  14. The effect of seed source, light during germination, and cold-moist stratification on seed germination in three species of Echinacea for organic production.

    Science.gov (United States)

    Romero, Fredy R; Delate, Kathleen; Hannapel, David J

    2005-10-01

    Organic production of one of the most popular botanical supplements, Echinacea, continues to expand in the U.S. Echinacea seeds typically show a high degree of dormancy that can be broken by ethephon or gibberelic acid (GA), but these methods are currently disallowed in organic production. In order to determine the efficacy of non-chemical seed treatments, we evaluated the effect of varying seed source and supplying light, with and without cold-moist stratification, on seed germination of the three most important medicinal species of Echinacea, E. angustifolia DC, E. purpurea (L) Moench, and E. pallida (Nutt.) Nutt. Treatments included cold-moist stratification under 24 h light, 24 h dark, and 16/8 h light/dark to break seed dormancy. We found that germination was greater in the E. purpurea and E. pallida seeds from a commercial organic seed source compared to a public germplasm source. When seeds were not cold-moist stratified, 16-24 h light increased germination in E. angustifolia only. Echinacea angustifolia, E. purpurea, and E. pallida seeds that were cold-moist stratified under 16-24 h of light for 4 wk had a significantly greater percentage and rate of germination compared to seeds germinated in the dark. Therefore, cold-moist stratification under light conditions is recommended as a method to break seed dormancy and increase germination rates in organic production of Echinacea.

  15. Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium

    International Nuclear Information System (INIS)

    Zhu, Y.; She, X.P.

    2017-01-01

    The main aim of this study was to analyze the mobilization of storage reserves during seed germination of Ammodendron bifolium by host plant-endophytic bacteria interaction and to determine the contribution of endophytic bacteria in plant establishment. The seeds were inoculated with three different endophytic bacteria from A. bifolium, Staphylococcus sp. AY3, Kocuria sp. AY9 and Bacillus sp. AG18, and they were germinated in the dark. Fresh weight changes and early seedling growth were assessed, and the content of storage compounds was quantified using biochemical assays in all germinated and non-germinated seeds. To understand the mechanism promoting seed germination, the activities of extracellular enzymes of bacterial isolates were also analyzed by the plate assay method. The results showed that treatment with endophytic bacteria accelerated seed germination; promoted further water absorption and radicle growth; and also promoted degradation of sucrose, protein and lipids during the germination process. At the same time, our results also showed that strain AG18 was able to produce protease and amylase, strain AY9 had only amylase activity, and strain AY3 had no extracellular enzyme activity. In summary, our current study showed that (i) endophytic bacteria improved seed germination and post-germination seedling growth of A. bifolium; (ii) inoculation with endophytic bacteria could promote storage reserve mobilization during or following germination; (iii) the degradation of protein, lipids and sucrose could provide essential energy for post-germination growth; and (iv) three bacterial isolates might have different action mechanisms on seed germination. (author)

  16. Germination of Croton urucurana L. seeds exposed to different storage temperatures and pre-germinative treatments

    Directory of Open Access Journals (Sweden)

    Silvana P.Q. Scalon

    2012-03-01

    Full Text Available The present work evaluated the germinability and vigor of Croton urucurana seeds. 1 Seeds were sorted by color (caramel, gray and black and were subjected to seven different pre-germination treatments followed by incubation at 20ºC, 25°C or 20/30°C. 2 Seeds were stored in cold chambers or at room temperature for up to 300 days and were subsequently incubated at 20/30ºC in a germination chamber or under greenhouse conditions. Only gray seeds showed significant germination rates. The highest first count percentages of total germination and the highest germination speed indices were observed in control seeds and in those which were treated with water or 200 mg. L-1 gibberellic acid for 12 hours. Seeds stored under refrigeration showed the highest values for all of the characteristics examined, as well as less electrical conductivity of the imbibing solution. Seedlings were more vigorous when seeds were stored for 300 days in a cold chamber. The seedlings production can be increased by incubating the seeds at alternating temperatures (20/30°C. The seeds do not need pre-germination treatments.O presente trabalho avaliou a germinação e vigor de sementes de Croton urucurana. 1 As sementes foram classificadas por cores (caramelo, cinza e preto e foram submetidas a sete diferentes tratamentos pré-germinativos seguidos de incubação a 20ºC, 25°C e 20/30°C. 2 As sementes foram armazenadas em câmaras frias ou em temperatura ambiente por até 300 dias e foram posteriormente incubadas a 20/30ºC em câmara de germinação ou em condições de estufa. Somente sementes cinza apresentaram taxas significativas de germinação. As maiores percentagens de primeira contagem de germinação total e os maiores índices de velocidade de germinação foram observados em sementes de controle e naquelas que foram tratadas com água ou 200 mg L-1 de ácido giberélico por 12 horas. Sementes armazenadas sob refrigeração apresentaram os maiores valores para

  17. Seed germination in Miconia theaezans (Bonpl. Cogniaux (Melastomataceae

    Directory of Open Access Journals (Sweden)

    Simone Godoi

    2007-07-01

    Full Text Available The effects of light and temperature were studied on the seeds of Miconia theazeans by isothermic and alternating temperature incubations. The optimum temperature for seed germination was determined by final percentage and germination rates as located in the range of 27.5 to 30 °C and by germination kinetics at the range of 19.5 to 30 °C. The germination was dependent on diffusion processes. The minimum and maximum temperatures were 12.5-15°C and 32.5-35°C, respectively. The seeds showed strong light dependence for germination with the necessity of daily 4-6 h white light irradiation for the maximum induction of germination. However, under 30-20 °C alternating temperatures, daily 2 hours white light was enough to induce germination and attained maximum under 4 h photoperiod. The results indicated that M. theazeans presented characteristics of early successional species.O efeito da luz e da temperatura na germinação de sementes de Miconia theazeans foi analisado através de incubações isotérmicas e de alternâncias de temperaturas. Através das porcentagens finais e velocidade de germinação concluímos que a temperatura ótima de germinação localizaram-se entre 27,5 e 30 °C e pela cinética de germinação verificamos que entre 19,5 e 30 °C a germinação é dependente de processos de difusão. As temperaturas mínima e máxima foram de 12,5-15 °C e 32,5-35 °C, respectivamente. As sementes apresentaram forte dependência da presença de luz branca para a indução da germinação com a necessidade de 4-6 horas de luz diária para a máxima indução do processo. Entretanto, com a alternância de temperaturas de 30 e 20 °C, fotoperíodo de 2 horas foi suficiente para a indução da germinação sendo o máximo de indução obtida a partir de 4 horas diárias. Estes resultados indicam que Miconia theazeans é uma espécie importante que coloniza clareiras e áreas perturbadas em uma floresta natural.

  18. Seed Biology Updates - Highlights and New Discoveries in Seed Dormancy and Germination Research.

    Science.gov (United States)

    Nonogaki, Hiroyuki

    2017-01-01

    An understanding of the biology of seeds has been greatly advanced in recent years. The progresses, particularly in the field of seed dormancy and germination research, have been made at a remarkable speed. Some of the possible epigenetic mechanisms, including an involvement of non-coding RNA, which were predicted for DELAY OF GERMINATION1 just a few years ago, have now been demonstrated with strong molecular and genetic evidence. Imprinting, or parent-of-origin-specific gene silencing/expression, which was characterized particularly for developing seeds, was also found in imbibed seeds and suggested for dormancy mechanisms. Hormone biology in seeds, which is the most advanced and almost a traditional area of seed research, also presents a new dimension. Upstream regulators of hormone metabolism and hormone transporters, such as abscisic acid and gibberellin influx/efflux carriers, have been identified. Characterization of the novel posttranslational modification pathways, including the N-end rule and S -nitrosylation pathways, which play a critical role in turnover of the major hormone signal transduction proteins, also expanded our knowledge about the complexity of hormone signaling in seeds. These progresses made at the molecular level are significant steps toward a better understanding of how seeds translate soil and other environmental signals into their internal hormone biology and make an important decision to stay dormant or commence with germination.

  19. Environmental and genetic effects on tomato seed metabolic balance and its association with germination vigor.

    Science.gov (United States)

    Rosental, Leah; Perelman, Adi; Nevo, Noa; Toubiana, David; Samani, Talya; Batushansky, Albert; Sikron, Noga; Saranga, Yehoshua; Fait, Aaron

    2016-12-19

    The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.

  20. Seed germination of Pinus koraiensis Siebold and Zucc. in response to light regimes caused by shading and seed positions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Zhu, J.; Yan, Q.

    2012-07-01

    Pinus koraiensis Siebold and Zucc. (Korean pine), the dominant tree species in the mixed broadleaved Korean pine forests (regional climax), is severely restricted by its regeneration failure. To determine the effects of light regimes on P. koraiensis regeneration, the seed germination process was examined in shade houses and forest stands (before and after leaf expansion) with various light levels created by shading and seed positions. Despite the large size of P. koraiensis seeds (500-600 mg), both light intensity and quality significantly affected the germination percentage in both shade houses and forests. Substantial changes in light intensity and quality led the majority of seeds (80%) to germinate in leafless forests and shade houses, while only a minority ({<=}20%) germinated after leaf expansion in the forests. Moreover, seed germination in shade houses and leafless forests exhibited similar patterns; they consistently reached a 70% shading degree, which was optimal for the seed germination of P. koraiensis on topsoil. Seed positioning significantly affected germination for each shading degree, especially when litter and soil coverings drastically inhibited germination. In conclusion, (1) when seeds were not stressed by temperature and moisture, light irradiance played a critical role in the seed germination of P. koraiensis; (2) seed positioning, in relation to alterations in light intensity and quality, affected the germination of P. koraiensis; (3) a shade house experiment using neutral cloth provided an applicable and controllable way to monitor the P. koraiensis seed germination in early spring before leaf expansion. The light requirement for the germination of P. koraiensis played a key role in the regeneration of P. koraiensis throughout the temperate secondary forests. (Author) 41 refs.

  1. Proteomic analysis of seed germination under salt stress in soybeans.

    Science.gov (United States)

    Xu, Xiao-yan; Fan, Rui; Zheng, Rui; Li, Chun-mei; Yu, De-yue

    2011-07-01

    Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop, and its production is severely affected by saline soils. Therefore, the response of soybean seeds to salt stress during germination was investigated at both physiological and proteomic levels. The salt-tolerant cultivar Lee68 and salt-sensitive cultivar N2899 were exposed to 100 mmol/L NaCl until radicle protrusion from the seed coat. In both cultivars, the final germination percentage was not affected by salt, but the mean germination times of Lee68 and N2899 were delayed by 0.3 and 1.0 d, respectively, compared with controls. In response to salt stress, the abscisic acid content increased, and gibberellic acid (GA₁+₃) and isopentenyladenosine decreased. Indole-3-acetic acid increased in Lee68, but remained unchanged in N2899. The proteins extracted from germinated seeds were separated using two-dimensional gel electrophoresis (2-DE), followed by Coomassie brilliant blue G-250 staining. About 350 protein spots from 2-DE gels of pH range 3 to 10 and 650 spots from gels of pH range 4 to 7 were reproducibly resolved, of which 18 protein spots showed changes in abundance as a result of salt stress in both cultivars. After matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of the differentially expressed proteins, the peptide mass fingerprint was searched against the soybean UniGene database and nine proteins were successfully identified. Ferritin and 20S proteasome subunit β-6 were up-regulated in both cultivars. Glyceraldehyde 3-phosphate dehydrogenase, glutathione S-transferase (GST) 9, GST 10, and seed maturation protein PM36 were down-regulated in Lee68 by salt, but still remained at a certain level. However, these proteins were present in lower levels in control N2899 and were up-regulated under salt stress. The results indicate that these proteins might have important roles in defense mechanisms against salt stress during soybean seed germination.

  2. Stratification requirements for germination of western larch (Larix occidentalis Nutt.) seed.

    Science.gov (United States)

    Frank C. Sorenson

    1990-01-01

    A northeast Washington collection of western larch seeds was stratified for 0,10, 20, 40, and 80 days and incubated at 55, 64, and 73 °F. The germination percentage of filled seeds and speed and uniformity of germination were improved by long stratification, particularly at the lowest incubation temperature. Stratified seeds were also nursery sown in early April and...

  3. The Florida Harvester Ant, Pogonomyrmex badius, Relies on Germination to Consume Large Seeds.

    Science.gov (United States)

    Tschinkel, Walter R; Kwapich, Christina L

    2016-01-01

    The Florida harvester ant, Pogonomyrmex badius, is one of many ant species and genera that stores large numbers of seeds in damp, underground chambers for later consumption. A comparison of the sizes of seeds recovered from storage chambers with those of seed husks discarded following consumption revealed that the used seeds are far smaller than stored seeds. This difference in use-rate was confirmed in field and laboratory colonies by offering marked seeds of various sizes and monitoring the appearance of size-specific chaff. Because foragers collect a range of seed sizes but only open small seeds, large seeds accumulate, forming 70% or more of the weight of seed stores. Major workers increase the rates at which small and medium seeds are opened, but do not increase the size range of opened seeds. Experiments limiting ant access to portions of natural seed chambers showed that seeds germinate during storage, but that the ants rapidly remove them. When offered alongside non germinating seeds, germinating seeds were preferentially fed to larvae. The rate of germination during the annual cycle was determined by both burial in artificial chambers at various depths and under four laboratory temperatures. The germination rate depends upon the species of seed, the soil/laboratory temperature and/or the elapsed time. The seasonal soil temperature cycle generated germination patterns that vary with the mix of locally-available seeds. Taken together, exploitation of germination greatly increases the resources available to the ants in space and time. While the largest seeds may have the nutritional value of 15 small seeds, the inability of workers to open large seeds at will precludes them from rapid use during catastrophic events. The harvester ant's approach to seed harvesting is therefore two-pronged, with both immediate and delayed payoffs arising from the tendency to forage for a wide variety of seeds sizes.

  4. The Florida Harvester Ant, Pogonomyrmex badius, Relies on Germination to Consume Large Seeds

    Science.gov (United States)

    Kwapich, Christina L.

    2016-01-01

    The Florida harvester ant, Pogonomyrmex badius, is one of many ant species and genera that stores large numbers of seeds in damp, underground chambers for later consumption. A comparison of the sizes of seeds recovered from storage chambers with those of seed husks discarded following consumption revealed that the used seeds are far smaller than stored seeds. This difference in use-rate was confirmed in field and laboratory colonies by offering marked seeds of various sizes and monitoring the appearance of size-specific chaff. Because foragers collect a range of seed sizes but only open small seeds, large seeds accumulate, forming 70% or more of the weight of seed stores. Major workers increase the rates at which small and medium seeds are opened, but do not increase the size range of opened seeds. Experiments limiting ant access to portions of natural seed chambers showed that seeds germinate during storage, but that the ants rapidly remove them. When offered alongside non germinating seeds, germinating seeds were preferentially fed to larvae. The rate of germination during the annual cycle was determined by both burial in artificial chambers at various depths and under four laboratory temperatures. The germination rate depends upon the species of seed, the soil/laboratory temperature and/or the elapsed time. The seasonal soil temperature cycle generated germination patterns that vary with the mix of locally-available seeds. Taken together, exploitation of germination greatly increases the resources available to the ants in space and time. While the largest seeds may have the nutritional value of 15 small seeds, the inability of workers to open large seeds at will precludes them from rapid use during catastrophic events. The harvester ant’s approach to seed harvesting is therefore two-pronged, with both immediate and delayed payoffs arising from the tendency to forage for a wide variety of seeds sizes. PMID:27893844

  5. Effect of seed coat on the seed germination and seedling development of Calophyllum brasiliense Cambess. (Clusiaceae

    Directory of Open Access Journals (Sweden)

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available This work aimed to study the effect of the Calophyllum brasiliense seed coat on the seed germination process. To this end, three experiments were conducted in laboratory, greenhouse and screenhouse. From a total of six treatments, five are related to the seed coat (mechanical scarification; mechanical scarification followed by 2 hours in water, chemical scarification, hot water immersion and complete seed coat removal and one control. Laboratory and greenhouse experiments were conducted in a completely randomized design (CRD. Screenhouse experiment was conducted in a completely randomized block design (RBD. We evaluated the total percentage, the speed index and the average time of germination or emergence. Data were subjected to analysis of variance and means compared by LSD test, at 5%. Under the conditions of this work, it was possible to infer that, in laboratory, mechanical scarification followed by 2 hours in water increases the proportion and germination speed index (GSI, in the greenhouse, the complete seed coat removal increases the percentage and emergence speed index (ESI, and in the screenhouse, mechanical scarification followed by 2 hours in water and chemical scarification presented the best results. The average germination time was not significantly different in the three experiments evaluated.

  6. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin

    Czech Academy of Sciences Publication Activity Database

    Chen, Ch.; Letnik, I.; Hacham, Y.; Dobrev, Petre; Ben-Daniel, B.H.; Vaňková, Radomíra; Amir, R.; Miller, G.

    2014-01-01

    Roč. 166, č. 1 (2014), s. 370-383 ISSN 0032-0889 R&D Projects: GA ČR GA206/09/2062 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * abscisic acid * germinating seeds Subject RIV: ED - Physiology Impact factor: 6.841, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25049361

  7. Seed germination of three species of Fabaceae typical of seasonally dry forest

    Directory of Open Access Journals (Sweden)

    Daniel Meira Arruda

    2015-06-01

    Full Text Available This study evaluates seeds germination of Anadenanthera colubrina, Acacia polyphylla and Bauhinia cheilantha, typical species of deciduous forests. Seeds were submitted to pre-germination treatments and attack of native insects. The seeds of each species were grouped in: seeds scarified with sandpaper; seeds immersed in water heated to 70 °C, seeds with signs of attack by herbivore insects and the control group. The largest proportion of germinated seeds occurred in the first week of incubation and germination peak, ranged from first to third day. All groups of A. polyphylla and B.cheilantha showed high germination rate (> 90%, being reduced only when seeds were attacked by insects (< 25%. Mechanic scarification was efficient in A. polyphylla by enhancing germination to maximum (100% and accelerating germination. A. colubrina showed no difference among groups, and germination rate was lower (< 50%, which was attributed to infestation by fungi, commonly reported in this species and apparently independent of usual hygiene procedures. Finally, except the fungi infestation in A. colubrina, evaluated species were independent of pre-germination treatment to obtain a high rate of germination.

  8. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana

    Science.gov (United States)

    Piskurewicz, Urszula; Iwasaki, Mayumi; Susaki, Daichi; Megies, Christian; Kinoshita, Tetsu; Lopez-Molina, Luis

    2016-01-01

    Mature seed dormancy is a vital plant trait that prevents germination out of season. In Arabidopsis, the trait can be maternally regulated but the underlying mechanisms sustaining this regulation, its general occurrence and its biological significance among accessions are poorly understood. Upon seed imbibition, the endosperm is essential to repress the germination of dormant seeds. Investigation of genomic imprinting in the mature seed endosperm led us to identify a novel set of imprinted genes that are expressed upon seed imbibition. Remarkably, programs of imprinted gene expression are adapted according to the dormancy status of the seed. We provide direct evidence that imprinted genes play a role in regulating germination processes and that preferential maternal allelic expression can implement maternal inheritance of seed dormancy levels. DOI: http://dx.doi.org/10.7554/eLife.19573.001 PMID:28005006

  9. [Study on morphology, quality and germination characteristics of Acanthopanax trifoliatus seeds under different habitats].

    Science.gov (United States)

    Xiao, Juan

    2014-05-01

    To preliminary explore the difference of the morphological, quality and germinal characteristics of Acanthopanax trifoliatus seeds under different habitats. Collect the wild seeds from different habitats in West Mountain, and then observe their external appearances and internal structure, and test the thousand seeds weight,water content and seed vigor. What's more, the influence to germination rates of the seeds from different temperatures and light intensities in artificial bioclimatic chamber was studied. Orthogonal test in experimental plots was carried out to screen the different sowing dates, matrix types and soil depths which may influence germination rate. The external appearances and quality characteristics of wild seeds from three habitats were different. Seeds could germinate in the both light and dark, the germination rate of the habitat II was as high as 70.5% at the optimum temperature 20 degrees C in artificial bioclimatic chamber. The optimal combination A1, B1, C1 was screened out through orthogonal test, namely, the germination rate would be the highest when the seeds sowed in autumn covering with 2 cm depth of matrix type which component of the ratio of soil, sand and organic fertilizer was 6: 3: 1. There was significant difference in the morphology and germination rate of the three habitats seeds. The habitat II seeds were the optimal choice when culture seedling. The influences of different temperatures on germination rate were different, and the dried seeds should sow in current autumn, better than the next spring.

  10. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica.

    Science.gov (United States)

    Cao, Dechang; Baskin, Carol C; Baskin, Jerry M; Yang, Fan; Huang, Zhenying

    2012-12-01

    Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds.

  11. Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana.

    Science.gov (United States)

    Pan, Wen-Juan; Xiong, Can; Wua, Qiu-Ping; Liu, Jin-Xia; Liao, Hong-Mei; Chen, Wei; Liu, Yong-Sheng; Zheng, Lei

    2013-11-01

    Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 µM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 µM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination.

  12. Germination and Seed Bank Studies of Macbridea alba (Lamiaceae), a Federally Theatened Plant

    Science.gov (United States)

    Dana Madsen Schulze; John L. Walker; Timothy P. Spira

    2002-01-01

    Macbridea alba (Lamiaceae) is a Federally threatened plant endemic to Florida. Seedlings are rarely observed in natural populations, but seed production has been documented. We assessed the germinability of dry-stored seeds and of experimentally buried seeds, and sampled soil to detect a persistent seed bank.More than 20% of recorded seeds...

  13. Germination of Styrax camporum Pohl. seeds in response to substrate types, moisture contents and the seed morphology.

    Science.gov (United States)

    Simão, Edson; Nakamura, Adriana T; Takaki, Massanori

    2013-03-01

    This study evaluated the contributions of Styrax camporum seed morphology (size of seeds, presence or absence of endocarp attached to the seed), different substrates (filter paper, vermiculite, sand and the soils of cerrado s. str., cerradão and a riparian forest), different water potentials (0, -0.1, -0.2, -0.3, -0.4 and -0.5 MPa), light and temperature to seed germination. Seed size did not affect the germination percentage when seeds were sown on vermiculite. Seeds were affected by small variations in the moisture content of the tested substrates, showing a significant decrease in germination under water potentials lower than -0.1 MPa, close to the field capacity of cerrado s. str. soils. At the temperatures of 15 and 20°C, a significant decrease in germination was observed. Thus, the availability of water in cerrado soils associated to temperature modulate the distribution of germination in this species. Seed morphology contributes to the maintenance of seeds in the soil, and the lack of synchrony in seed germination spreads the distribution of germination in time. These peculiarities allow the emergency of seedlings at different time periods and establishment conditions, an adaptative response of S. camporum to the cerrado environment.

  14. Individual electrical conductivity test for the assessment of soybean seed germination

    Directory of Open Access Journals (Sweden)

    Nilson Matheus Mattioni

    2015-02-01

    Full Text Available Soybean seed quality is affected by many factors, which may occur during the production, processing, and storage phases. To ensure the quality of seeds, the adoption of fast and efficient methods to estimate seed viability in quality control programs is important. This study aimed to determine a partition point of the individual electrical conductivity test to predict soybean seed germination. Three lots each of five different soybean cultivars (Fundacep 57 RR, BMX Potência RR, BMX Força RR, BMX Turbo RR, and Nidera 7321 RG were used. Seed quality was assessed through the mass of 1,000 seeds (MTS, moisture content (MC, germination test (G, bulk electrical conductivity (BEC, individual electrical conductivity (IEC, accelerated ageing (AA, and field seedling emergence (FSE. To determine a partition point in the IEC test for predicting germination, seeds were subjected to the germination test in the same position used for the IEC test. The accuracy of the partition point was tested by comparing predicted germination with the standard germination test. The partition point obtained for normal seeds was 130 ?S .cm-1.seed-1. The IEC test, however, had limitations in predicting soybean seed germination. The data for predicted germination were different from those obtained by the standard test, because the characteristics of each lot led to differences in the electrical conductivity values.

  15. Vigour Test to Predict Seed Germination and Normal Seedling Emergence of Acacia mangium in Nursery

    Directory of Open Access Journals (Sweden)

    Endang Pujiastuti

    2017-12-01

    Full Text Available Standard germination does not always indicate seed lot potential performance, especially if field germination conditions are less than optimal. Seed vigour tests therefore have been proposed to detect more accurate differences in potential seed lot performance. This study is aimed to obtain more precise method to assess Acacia mangium seed vigour correlated to germination success in a greenhouse and normal seedling emergency in a nursery. Tests were conducted on 13 seed lots collected from some certified seed sources. Seed testing and nursery activities were carried out at the Seed Laboratory of Forest Tree Seed Technology Research & Development Centre, Bogor. Experimental designs were arranged in a completely randomized design with four replications for laboratory tests (standard germination, germination index, number of normal seedling in the first count, radicle length, tetrazolium test, controlled deterioration test, accelerated aging, conductivity test, germination in a greenhouse and direct sowing in a nursery. Results showed that all tests were significantly different for ranking seed vigor in the different seed lots. Seed lot from Subanjeriji-2 provided the best germination performance in the greenhouse and direct sowingin the nursery, followed by seed lot from Parungpanjang, while seed lot from Kenangan had the lowest germination performance. The relationship between some laboratory tests, i.e. top paper test, germination index, and electrical conductivity test, and the greenhouse and nursery tests were significant. The electrical conductivity test had the highest accuracy with R2= 0,6278 for greenhouse test and R2= 0,4057 for nursery test. Overall, among all the laboratory tests, electrical conductivity test showed seeds well, so the usage of the electrical conductivity test for predicting normal seedling emergence could be suitable in A. mangium nursery programs.

  16. Proteomics of seed development, desiccation tolerance, germination and vigor.

    Science.gov (United States)

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. [Effects of treating with concentrated sulfuric acid on the seed germination of ten Hibiscus hamabo provenance families].

    Science.gov (United States)

    Wang, Xiao-Xue; Sun, Hai-Jing; Liu, Yun; Chen, Yi-Tai; Feng, Da-Lan; Li, Sha

    2012-11-01

    The seeds from ten Hibiscus hamabo provenance families were treated with concentrated sulfuric acid for different durations (0, 10, 15, and 20 min) , and the seed germination rate, germination energy, and germination index, as well as the seed relative water adsorption rate, soluble sugar and starch contents, and alpha-amylase activity during the germination, were determined, aimed to study the effects of treating with concentrated sulfuric acid on the seed germination of H. hamabo and the differences of the seed germination among different H. hamabo provenance families. After treated with concentrated sulfuric acid, the seed germination rate, germination energy, and germination index increased significantly, and the germination time shortened remarkably. Treating with concentrated sulfuric acid for 15 minutes had the best effect, i. e., the germination rate, germination energy, and germination index were up to 95.7%, 91.3%, and 13.28, respectively, and the germination time was the shortest. The seed germination rate, germination energy, and germination index differed significantly with different provenance families, the highest germination index (15.13) being 2.12 times of the lowest germination index (7.15), and the highest germination energy (98.0%) being 1.77 times of the lowest one (55.5%). Treating with concentrated sulfuric acid accelerated the physiological and biochemical processes of seed germination, and the relative water absorption rate, soluble sugar content, and a-amylase activity were decreased after an initial increase, with the maximum at the early stage of germination. There was a significant negative relationship between the seed starch content and the seed germination index.

  18. Effect of colour and size grading of China aster (Callistephus chinensis Nees seeds on their germination

    Directory of Open Access Journals (Sweden)

    Agnieszka Rosińska

    2012-12-01

    Full Text Available Seeds of 3 commercial China aster (Callistephus chinensis Nees lots were divided by hand into 3 grades with different colours: dark brown, brown and light brown, and 2 grades with a different size: length below 3.9 mm (small and above 3.9 mm (large. The colour grading was done based on the Royal Horticultural Society Colour Chart and size grading was done by hand for each seed. Then, seeds were routinely germinated based on the International Seed Testing Association (ISTA rules. The size of seeds had no effect on their germination. The dark brown seeds germinated better than the light brown ones. Removing light brown seeds from the China aster seed lot improved their germination.

  19. Effects of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed

    International Nuclear Information System (INIS)

    Li Shuifeng; Wang Bingliang; Guan Xueyu; Zhang Yan

    2006-01-01

    The effect of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed was studied. The results showed that the germination potentiality and germination rate of hot pepper seed after boarding return satellite were increased by 3.5% and 5.3%, respectively. During seed germination, soluble protein and MDA contents decreased, however, the SOD activities increased. SOD activity of treated seeds was higher than that of the control especially during the initial period of germination, while the content of soluble and MDA contents were much lower than those of control. The activities of SOD, G-POD, APX and CAT in 13d seedlings of treated seeds were increased by 14.29%, 25.23%, 1.84% and 21.52%, respectively. It was concluded that space flight enhanced antioxidant enzyme activities of seeds and seedlings, which were very important to prevent membrane lipid superoxide. (authors)

  20. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress

    Directory of Open Access Journals (Sweden)

    LARISSA C. SNEIDERIS

    2015-09-01

    Full Text Available In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.

  1. Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks

    NARCIS (Netherlands)

    Sarneel, J.M.; Janssen, R.H.; Rip, W.J.; Bender, I.; Bakker, E.S.

    2014-01-01

    Restoration activities aiming at increasing vegetation diversity often try to stimulate both dispersal and germination. In wetlands, dispersal and germination are coupled as water and water level fluctuations (WLF) simultaneously influence seed transport and germination conditions (soil moisture).

  2. Effect of irradiation on seed germination and seedling growth of Pinus armandi Franch

    International Nuclear Information System (INIS)

    Xu Yihua; Zhang Yuping; Chen Meixiang; Lu Renqiang

    2005-01-01

    The soaking seeds of Pinus armandi Franch. were irradiated with 60 Co γ-ray at dose of 0, 20, 40, 60 and 80 Gy, and the treated seeds were planted. The result showed that the irradiation treatment retarded the time of germination, and the seed germination rate, for reduced, the ratio of yellow to living seedlings. The treatment also lowered the height of seeding, especially for the yellow seedlings. (authors)

  3. Effects of Intentionally Treated Water on Growth of Arabidopsis thaliana Seeds with Cryptochrome Mutations.

    Science.gov (United States)

    Shiah, Yung-Jong; Hsieh, Hsu-Liang; Chen, Huai-Ju; Radin, Dean I

    A previous experiment suggested that consumption of intentionally treated tea influenced subjective mood under double-blind, controlled conditions. To investigate that effect objectively, again under double-blind, controlled conditions, we studied whether Arabidopsis thaliana seeds hydrated with intentionally treated vs. untreated water would show differences in hypocotyl length, anthocyanin, and chlorophyll. Three Buddhist monks focused their intention on commercially bottled water with the goal of improving the growth of seeds; bottled water from the same source served as an untreated control. Seeds with the following three variations of cryptochrome (CRY) were used: the wild type Arabidopsis (Columbia-4), a gain-of-function mutation (His-CRY2), and a loss-of function mutation (cry1/2), where "gain" and "loss" refer to enhanced and reduced sensitivity to blue light, respectively. Seeds were hydrated with treated or untreated water under blinded conditions, and then placed in random positions in an incubator. The germination process was repeated three times in each experiment, each time using new seeds, and then the entire experiment was repeated four times. Data combined across the four experiments showed a significant decrease in hypocotyl length in the His-CRY2 seedlings (treated mean 1.31 ± 0.01mm, untreated mean 1.43 ± 0.01mm, P < 10 -13 ), a significant increase in anthocyanin with all three forms of cry, particularly His-CRY2 (treated mean 17.0 ± 0.31mg, untreated mean 14.5 ± 0.31mg, P < 10 -4 ), and a modest increase in chlorophyll in His-CRY2 (treated mean 247.6 ± 5.63mg, untreated mean 230.6 ± 5.63mg, P = .05). These outcomes conformed to the monks' intentions because a decrease in hypocotyl length and increase in anthocyanin and chlorophyll are associated with enhanced photomorphogenic growth. These experiments suggest that the His-CRY2 mutation of Arabidopsis may be an especially robust "detector" of intention. Copyright © 2017 Elsevier Inc. All

  4. Impact of crop residues on seed germination of native desert plants ...

    African Journals Online (AJOL)

    Crop residues produce allelochemicals that may inhibit seed germination of many weeds. In this study, I assessed the effect of aqueous extracts of three crop residues (radish, rocket and rhodes) on final germination percentage and germination rate of four desert plants recorded as weeds in the United Arab Emirates farms ...

  5. Longevity and germination of Syagrus romanzoffiana (Arecaceae seeds and its ecological implications

    Directory of Open Access Journals (Sweden)

    Túlio Gabriel Soares Oliveira

    2015-06-01

    Full Text Available Syagrus romanzoffiana is a palm tree native and widely distributed of South America. The present study investigated the longevity and germination of the buried seeds of this species in an experimental seed bank. Laboratory germination and viability tests were performed for comparison with field results. Pyrenes (seeds enclosed by the endocarp were buried in a forest fragment edge in July 2012 (dry season and exhumed monthly during one year, for the assessment of water content and percentage of germinated and viable seeds. Germination tests were conducted in a Mangelsdorf-type germinator at 30°C under constant light and the viability was assessed by the tetrazolium test. An additional sample of pyrenes was buried to evaluate the percentage of seedling emergence and survival. Climatic and soil moisture data were recorded. In the laboratory, the pyrenes were stored for one year in a temperature-controlled room at 20ºC and 75% (±10% relative air humidity to assess changes in the percentage of germination and viability over time. In the field, a reduction in seed viability was observed over the study period, with a total loss of viability of non-germinated seeds at seven months after burial. The maximum germination (close to 26% was observed in the samples that were exhumed between five and seven months after burial. In the field, seedling emergence did not exceed 10% and seedling mortality was not observed. The percentages of germination and of viable seeds decreased both in burial and stored seeds. The stored seeds maintained viability at up to six months, with marked reduction thereafter. After the germination tests (four months in the laboratory, all of the remaining seeds were nonviable. The ecological, physiological and reproductive characteristics of the species are discussed, and we concluded that S. romanzoffiana seeds have short longevity after imbibition, and low potential for soil seed bank formation. Rev. Biol. Trop. 63 (2: 333

  6. Selected aspects of tiny vetch [Vicia hirsuta (L. Gray S.F.] seed ecology: generative reproduction and effects of seed maturity and seed storage on seed germination

    Directory of Open Access Journals (Sweden)

    Magdalena Kucewicz

    2012-12-01

    Full Text Available Vicia hirsuta (L. Gray S.F. (tiny vetch is a common and persistent segetal weed. Tiny vetch seeds and pods reach different stages of maturity during the crop harvest season. Some seeds that mature before cereal harvest are shed in the field and deposited in the soil seed bank, while others become incorporated into seed material. The objective of this study was to describe selected aspects of tiny vetch seed ecology: to determine the rate of individual reproduction of vetch plants growing in winter and spring grain crops and to evaluate the germination of seeds at different stages of maturity, subject to storage conditions. The seeds and pods of V. hirsuta were sorted according to their development stages at harvest and divided into two groups. The first group was stored under laboratory conditions for two months. In the autumn of the same year, the seeds were subjected to germination tests. The remaining seeds were stored in a storeroom, and were planted in soil in the spring. The germination rate was evaluated after 8 months of storage. Potential productivity (developed pods and flowers, fruit buds was higher in plants fruiting in winter wheat than in spring barley. Vetch plants produced around 17-26% more pods (including cracked, mature, greenish-brown and green pods and around 25% less buds in winter wheat than in spring barley. Immature seeds were characterized by the highest germination capacity. Following storage under laboratory conditions and stratification in soil, mature seeds germinated at a rate of several percent. After storage in a storeroom, seeds at all three development stages broke dormancy at a rate of 72- 75%. The high germination power of tiny vetch seeds stored in a storeroom indicates that this plant can be classified as an obligatory speirochoric weed species.

  7. Impact of salinity stress on seed germination indices of maize (Zea mays L.) genotypes

    OpenAIRE

    Mohammad Muhebbullah Ibne Hoque; Jun Zheng; Guoying Wang

    2014-01-01

    This investigation was done to find germination response of nine maize (Zea mays L.) genotypes under three levels of NaCl salinity (0 mM, 100 mM and 200 mM). Seeds were germinated and grown in Petri plates on filter paper, using above mentioned salt solution as treatment with three replications, incubated at 28±1 0C in a growth chamber following randomized complete block design. Germination percentage (GP), germination speed (GS), germination index (GI), seedling dry weight (SDW), seed vigor ...

  8. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana

    Science.gov (United States)

    Khan, Kasim; Agarwal, Pallavi; Shanware, Arti; Sane, Vidhu Aniruddha

    2015-01-01

    Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs), with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7) and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils. PMID:26067295

  9. [Study on configuration fabric and germinative conditions of Salvia miltiorrhizy seeds].

    Science.gov (United States)

    Sun, Qun; Liang, Zong-suo; Li, Shao-jun; Liu, Wen-ting; Li, Xiao-Li; Jiang, Chuan-zhong; Wang, Jing-min; Wei, Xin-rong

    2004-10-01

    To provide theoretic warrant and technical reference for Salvia miltiorrhizr standardization planting, by carrying out various systemic studies such as observation of seeds configuration fabric, idiosyncrasy of water absorption and groping germinating conditions. In the study of configuration fabric, seeds were observed and taken photos by scanning electronic microscope, and heft method was used for measuring changes of water absorption velocity and dehydration velocity. Seeds germination conditions were probed into under the national test regulations for crop seeds and related prescription from international standards. (1) There was a layer of slime about 10-20 microm thickness covering epicarp of Danshen seeds. The slime formed as diamond meshwork (reseau) and the weight of it was 8%-10% of total seeds weight. (2) The speed of water absorption of seeds was extremely rapid. The weight of seeds could increase above 10 times as original while the dehydration velocity was quite low. (3) The optimal temperature for the seeds germination is around 25 degrees C, and the germination rate of the new seeds gained yearly was above 75%, but the rate would decrease sharply as years went by. It was also found that the seeds germination power and exponent of vigor were quite high under the temperature transformation between 23 degrees C, 28 degrees C. Such treatments as pre-cool, PEG treatment and infusing with GA3 could increase the rate of seeds germination capacity obviously.

  10. Responses of quinoa (Chenopodium quinoa Willd. seeds stored under different germination temperatures

    Directory of Open Access Journals (Sweden)

    Andressa Strenske

    2017-01-01

    Full Text Available In this experiment, we assessed the germination and vigor of quinoa seeds packed in paper bags and stored at room temperature for 36, 85, 119, 146, 177 and 270 days. The seeds were harvested under experimental conditions in Marechal Candido Rondon, Paraná, during the 2012/13 growing seasons. Four replicates of 100 seeds each were established for each storage time, and the seeds were evaluated, on paper, based on the BOD under the following experimental temperature conditions: alternating temperatures of 20 and 30°C and a constant temperature of 25°C. The seeds from both treatments were subject to seven-hour photoperiods and 25°C under continuous darkness. The germinated seeds were counted daily for eight days after sowing, and we evaluated the percentages of normal and abnormal seedlings and the germination index. The experimental design was completely randomized using a split-plot design. Increasing the storage time decreased the percentage of germinated seeds and seed vigor due to the increased number of abnormal seedlings. Over the 430-day study period, quinoa seed germination completely declined under the experimental conditions. The final number of germinating seeds should be evaluated 7 days after the beginning of the germination test.

  11. Comparative effects of NaCl and sea salt on seed germination of arthrocnemum indicum

    International Nuclear Information System (INIS)

    Saeed, S.; Gul, B.; Khan, M.A.

    2011-01-01

    Arthrocnemum indicum is a stem succulent perennial halophyte from the family Chenopodiaceae. Experiments on seed germination were carried out using NaCl and sea salt (0, 20, 40, 60, 80 and 100 dS m/sup -1) at alternating temperature regimes (10:20 deg.C, 15:25 deg. C, 20:30 deg. C and 25:35 deg. C) at photo period of 12 h dark: 12 h light and in 24 h dark. Seed germination of A. indicum was substantially delayed and/or prevented with an increase in NaCl and sea salt concentrations. Only few seeds germinated above 20 dS m/sup -1/. Sodium chloride and sea salt differ in their effect on seed germination at all temperature regimes. NaCl prevented more seeds from germination in comparison to sea salt. Optimal germination was obtained in non saline control at lower temperature regime whereas warmer temperatures in our experiment inhibited more seeds from germination. Seed germination was not affected either by photo period or dark conditions in non saline control at all temperature regimes. At low NaCl treatments there were significant differences between light and dark germinated seeds at 15:25 deg. C and 20:30 deg. C. Seed germination in sea salt was similar in both light and dark conditions except at 20 dS m/sup -1/ at 15:25 deg. C. Highest recovery was obtained at cooler temperature regime of 10:20 deg. C while lowest at warmer temperature regime of 25:35 deg. C. Most of the un-germinated seeds were found dead in both salt treatments and their mortality increased with an increase in temperature. (author)

  12. SEED GERMINATION BEHAVIOUR OF THREE ALPINE SPECIES FROM ULUDAĞ MOUNT,TURKEY

    Directory of Open Access Journals (Sweden)

    HülyaARSLAN

    2013-02-01

    Full Text Available In this study, the germination requirements of three species from alpine belt of Uludağ Mount; Gypsophila olympica Boiss., Matthiola montana Boiss. and Silene rhynchocarpa Boiss. We tested thegermination under (20 °C dark, (20 °C continuous light, and photoperiod 20/10 °C (12/12h with distilled water. Different germination behaviour was found for these three species from closely related habitat conditions. G. olympica showed similar germination percentages in dark, light and photoperiod, and germinated faster in light (3.9 days. S. rhyncocarpa germinated 100 % at all the threeconditions but faster in dark with 2.0 days. M. montana seeds were found to require light for germination. The germination was 27.2 % at dark, whereas the seeds were germinated 90 % under photoperiod.The results can be useful for both in situ and ex situ conservation of these plant species.

  13. Systems biology of seeds: deciphering the molecular mechanisms of seed storage, dormancy and onset of germination.

    Science.gov (United States)

    Sreenivasulu, Nese

    2017-05-01

    Seeds are heterogeneous storage reserves with wide array of storage compounds that include various soluble carbohydrates, starch polymer, storage proteins and lipids. These stored reserves comprise 70% of the world's caloric intake in the form of food and animal feed produced through sustainable agriculture, which contributes to food and nutritional security. Seed systems biology remains an enigmatic subject in understanding seed storage processes, maturation and pre-germinative metabolism. The reviews and research articles covered in this special issue of Plant Cell Reports highlight recent advances made in the area of seed biology that cover various systems biology applications such as gene regulatory networks, metabolomics, epigenetics and the role of micro-RNA in seed development.

  14. Hidden Effects of Seed Quality Breeding on Germination in Oilseed Rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Sarah Hatzig

    2018-04-01

    Full Text Available Intense selection for specific seed qualities in winter oilseed rape breeding has had an inadvertent negative influence on seed germination performance. In a panel of 215 diverse winter oilseed rape varieties spanning over 50 years of breeding progress in winter-type rapeseed, we found that low seed erucic acid content and reduced seed glucosinolate content were significantly related with prolonged germination time. Genome-wide association mapping revealed that this relationship is caused by linkage drag between important loci for seed quality and germination traits. One QTL for mean germination time on chromosome A09 co-localized with significant but minor QTL for both seed erucic acid and seed glucosinolate content. This suggested either potential pleiotropy or close linkage of minor factors influencing all three traits. Therefore, a reduction in germination performance may be due to inadvertent co-selection of genetic variants associated with 00 seed quality that have a negative influence on germination. Our results suggest that marker-assisted selection of positive alleles for mean germination time within the modern quality pool can help breeders to maintain maximal germination capacity in new 00-quality oilseed rape cultivars.

  15. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth

    NARCIS (Netherlands)

    Muller, K.; Linkies, A.; Vreeburg, R.A.M.; Fry, S.C.; Krieger-Liszkay, A.; Leubner-Metzger, G.

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and

  16. GERMINATION IN VITRO AND E EX VITRO OF EMBRYOS/SEEDS OF Tabebuia serratifolia (VAHL NICH

    Directory of Open Access Journals (Sweden)

    Marcela Carlota Nery

    2008-03-01

    Full Text Available The knowledge of germination of seeds allows understanding the behavior of seeds during development and theconservation mechanism. For evaluating the germination of the seeds of ipê amarelo collected during seven development stages, 10,18, 25 32, 39, 47 and 53 days after the anthesis, the medium of culture in vitro were tested, MS and WPM, and methods ofdisinfestations of the seeds in the germination ex vitro. Seeds of yellow ipê disinfestations with carbendazim (2% for 2 minutes, sodiumhypochlorite (2% of the active chlorine for 3 minutes and seeds without surface sterilisation, were submitted to the germination teston sand to 30 ºC, under constant white light. In the cultivation in vitro, seeds acquired germinative capacity 39 days after the anthesisand superior germination 53 days after the anthesis, independent of the medium of culture. In the germination ex vitro, the seedsdisinfestations with carbendazim and without surface sterilization presented superior germination, the use of sodium hypochloritecaused fitotoxin effect to the seeds.

  17. Seed germination of roundleaf buffaloberry (Shepherdia rotundifolia) and silver buffaloberry (Shepherdia argentea) in three substrates

    Science.gov (United States)

    Taun Beddes; Heidi A. Kratsch

    2009-01-01

    Many western native plant species occur in areas characterized by well-drained soils low in organic matter. Some drought-tolerant native plant species exhibit poor seed germination. It was hypothesized that traditional growing substrates high in organic matter may impede their germination; therefore, stratified seeds of roundleaf buffaloherry (Shepherdia rotundifolia)...

  18. Seed dormancy and germination of Halophila ovalis mediated by simulated seasonal temperature changes

    Science.gov (United States)

    Statton, John; Sellers, Robert; Dixon, Kingsley W.; Kilminster, Kieryn; Merritt, David J.; Kendrick, Gary A.

    2017-11-01

    The seagrass, Halophila ovalis plays an important ecological and sediment stability role in estuarine systems in Australia with the species in decline in many sites. Halophila ovalis is a facultative annual, relying mainly on recruitment from the sediment seed bank for the annual regeneration of meadows. Despite this, there is little understanding of seed dormancy releasing mechanisms and germination cues. Using H. ovalis seed from the warm temperate Swan River Estuary in Western Australia, the germination ecology of H. ovalis was investigated by simulating the natural seasonal variation in water temperatures. The proportion of germinating seeds was found to be significantly different among temperature treatments (p germination of 32% and the fastest germination rate. Seeds exposed to constant mean winter temperatures of 15 °C had the slowest germination rate with less than two seeds germinating over 118 days. Thus temperature is a key germination cue for H. ovalis seeds and these data infer that cold stratification is an important dormancy releasing mechanism. This finding has implications for recruitment in facultative annual species like H. ovalis under global warming since the trend for increasing water temperatures in the region may limit seed-based recruitment in the future.

  19. Recurrent selection increases the seed germination of little bluestem (Schizachyrium scoparium)

    Science.gov (United States)

    Rainfall is often inadequate for satisfactory seed germination and emergence under field conditions. This research was designed to improve the seed germination of six experimental lines of little bluestem [Schizachyrium scoparium (Michx.) Nash]. Two cycle of recurrent selection were used to develo...

  20. [Primary study on shapes of fruits and germination characters of seeds of Radix et Rhizoma Rhei].

    Science.gov (United States)

    Xiao, Su-ping; Chen, Min; Huang, Lu-qi; Gao, Feng

    2007-02-01

    To explore the difference of the shapes of fruits and germination characters of seeds of Rheum palmatum, R. tanguticum and R. officinale. The seeds of three Rheum species including wild and cultivation one were collected from different regions. Character of the fruits appearance were observed. The purification, weights per thousand seeds, content of moisture, seed vigor and different germination rates of Radix et Rhizoma Rhei were measured. The germination rates of the seeds of R. palmatum were determined under different temperature and hormone treatment . It was markedly variant in shapes of the fruits, rates of germination and all quality characters of the three category of Radix et Rhizoma Rhei. As reported, the size of the fruit and seed and weights per thousand seeds of R. officinale was the biggest. The seed vigor and germination rate of R. palmatum caltivated in Ming county of Gangsu were 95.7% and 94% respectively. The rate of seed vigor was closely correlated with the rate of germination for other species. Results indicated that temperature had some effects on the germination, and there were obvious difference in the active effect of gibberellin, kinetin and 6-benzyl aminopurine on the germination of the seed. Our experimental results showed that the kinetin concentration of 50 x 10(-6) g x L(-1) had the most active effect, and its rates of germination increase 18 percent than the control one. Significant differences exist in the shapes of fruits, rates of germination of the seeds of Rheum, which are affected by the factors of temperatures and hormones. The result of this study provides scientific evidences for identify, growth and cultivation of Rheum.

  1. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    Science.gov (United States)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this

  3. Effect of pre-treatments on seed germination of Parkia biglobosa ...

    African Journals Online (AJOL)

    This study was carried out to investigate the most effective pre-sowing treatments to break seed dormancy and to stimulate seed germination. Matured seeds of P. biglobosa were collected from farmers at Mbalagh council ward of Makurdi area of Benue, Nigeria. The seeds were dried at room temperature and tested for ...

  4. Seed germination of Agave species as influenced by substrate water potential

    Directory of Open Access Journals (Sweden)

    Hugo M Ramírez-Tobías

    2014-01-01

    Full Text Available BACKGROUND: Plants of Agave spp. perform Crassulacean acid metabolism (CAM and are highly drought-tolerant, but little is known concerning seed germination under low water availability. The aim of this study was to assess the effect of substrate water potential (ΨW on seed germination and contrast hydrotime parameters of seven valuable and commercially-important Agave species from different geographical distributions and climatic regions of Mexico. Our hypothesis was that seed germination of Agave species is not affected by low water availability independently of seed biomass and the climate of their distribution area. RESULTS: Seed germination (at 25°C and in the dark between 85 and 100% for all species occurred within 80 - 180 h at -0.03 MPa and 250 - 430 h at -1.0 MPa. Seed germination at -1.5 MPa declined to less than 50% (p < 0.05 for A. asperrima and A. cupreata but did not change significantly for A. americana var. marginata, A. lechuguilla and A. striata, although they showed the lowest mean base water potential (-2.01 to -2.64 MPa. Seed germination of 40% Agave species, from arid and semi-arid climates in this study, was not affected by the lower ΨW. CONCLUSION: Germination of seeds of Agave species is moderately affected by low water availability, is partially dependent of their ecological distribution, and is independent of seed mass.

  5. Promotion of Testa Rupture during Garden Cress Germination Involves Seed Compartment-Specific Expression and Activity of Pectin Methylesterases1[OPEN

    Science.gov (United States)

    Scheler, Claudia; Weitbrecht, Karin; Pearce, Simon P.; Hampstead, Anthony; Büttner-Mainik, Annette; Lee, Kieran J.D.; Voegele, Antje; Oracz, Krystyna; Dekkers, Bas J.W.; Wang, Xiaofeng; Wood, Andrew T.A.; Bentsink, Leónie; King, John R.; Knox, J. Paul; Holdsworth, Michael J.; Müller, Kerstin; Leubner-Metzger, Gerhard

    2015-01-01

    Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination. PMID:25429110

  6. Comparing seeds germination of some local plant species on two hydroseeding mulches for post mining revegetation

    Directory of Open Access Journals (Sweden)

    M F Anshari

    2018-01-01

    Full Text Available The aims of this study were to determine seed germination rate of some local plant species in two hydroseeding mulches containing different tackifier concentration, as well as to determine the optimal hydroseeding mulch media composition for germinating seeds. This study used seeds of 13 local plant species: two species of Cyperaceae (Cyperus brevifolius, C. javanicus, five species of Leguminosae (Cajanus cajan, Crotalaria pallida, Sesbania grandiflora, S. sesban, Tephrosia purpurea, and six species of Poaceae (Eleusine indica, Paspalum conjugatum, Sorghum timorense, S. bicolor, Sporobolus indicus, Themeda arundinaceae. Two hydroseeding mulch media with different tackifier composition were mixed with seeds of each species and then sowed in pots. Each treatment was repeated three times. Moistened cotton wool was used as control and comparative media for observing seed viability. Seed germination in mulch media was observed during 13 days. The results showed that only 8 of 13 species could be germinated: S. indicus, S. timorense, T. arundinaceae, C. cajan, C. pallida, S. grandiflora, S. sesban, and T. purpurea. The highest germination rate was shown by S. sesban (67% in M2 medium and the lowest one was shown by T. arundinaceae (2% in both media. The fastest germination time was recorded for C. pallida and S. sesban seeds that germinated in 2 days after sowing (DAS in both media, while S. timorense and T. arundinaceae seeds showed the lowest ones in 11 DAS. The fluid M1 medium was optimal for seeds germination of S. sesban (50% and S. grandiflora (35%, while the thicker M2 medium was optimal for seeds germination of S. sesban (67% and S. timorense (50% in 13 DAS. The maximum germination rate was generally reached in 11 DAS.

  7. Seed germination of Phillyrea angustifolia L., a species of difficult propagation

    Directory of Open Access Journals (Sweden)

    Sara Mira

    2017-05-01

    Full Text Available Aim of study: The purpose was to determine the type of dormancy and the optimal germination conditions of Phillyrea angustifolia (Oleaceae seeds. Area of study: Germination requirements of P. angustifolia seeds collected from wild plants growing in the province of Ávila (Central Spain were studied. Materials and methods: Seed water uptake was measured. Seeds with and without an endocarp were germinated at different temperatures, and several treatments were tested. Main results: The lignified endocarp interferes mechanically with the emergence of the radicle, and the treatments that achieved the highest germination percentages were the total removal of the endocarp with pliers (84% or the immersion in liquid nitrogen for 1 min (97%. Scarification with concentrated sulphuric acid did not significantly increase germination compared to the control seeds, and treatments with dry heat or wet heat were detrimental to seed germination. The optimum temperature for germination was 15 ºC. A pre-sowing treatment of soaking in distilled water for 24 h slightly increased germination speed. Neither cold stratification at 5 ºC nor soaking in a gibberellic acid solution improved seed germination. Research highlights: Phillyrea angustifolia seeds have physiological dormancy – that is, the embryo does not have enough growth potential to overcome the mechanical restriction of the lignified endocarp. The seeds do not exhibit physical dormancy, given their water-permeable lignified endocarp. Our results suggest that the optimum germination protocol for P. angustifolia would be the total removal of the endocarp or immersion in liquid nitrogen for 1 min, followed by immersion in distilled water for 24 h and then seed incubation at 15 ºC in light or darkness.

  8. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin

    DEFF Research Database (Denmark)

    Li, Xiangnan; Jiang, Haidong; Liu, Fulai

    2013-01-01

    Chilling depresses seed germination and seedling establishment, and is one major constraint to grain yield formation in late sown winter wheat. Seeds of winter wheat (Triticum aestivum L.) were separately pre-soaked with sodium nitroprusside (SNP, as nitric oxide donor) and Gibberellic acid (GA3......) before germination and then germinated under low temperature. SNP and GA3 pre-treatment increased seed germination rate, germination index, weights and lengths of coleoptile and radicle, while they decreased mean germination time and weight of seeds germinating under low temperature. Exogenous NO and GA3...... by exogenous NO and GA3 as a result of improved seed germination and maintenance of better reactive oxygen species homeostasis in seedling growing under chilling temperatures. It is indicated that exogenous NO was more effective than GA3 in alleviating chilling stress during seed germination and seedling...

  9. Light regime and temperature on seed germination in Salvia hispanica L.

    Directory of Open Access Journals (Sweden)

    Emanoela Pereira de Paiva

    2016-09-01

    Full Text Available This study evaluated the effects of different light regimes and temperatures on the germination of S. hispanica seeds and used a factorial scheme in a completely randomized experimental design, in which three light conditions were combined with six temperatures (constant 20, 25, 30 and 35°C and alternating 20-30 and 25-30°C, totaling 18 treatments with four 50-seed replications. The seeds were sown on blotting paper in transparent plastic boxes and then allowed to germinate in Biochemical Oxygen Demand germinators. The seeds were evaluated over a period of eight days with respect to the following variables: germination percentage, average germination time, shoot and root lengths, shoot and root dry weights and root-shoot ratio. The data were submitted to Tukey’s test (p ≤ 0.05%. The S. hispanica seed (beige colored germination test can be carried out at constant (25°C or alternating (25-30°C temperatures. The germination of the seeds was indifferent to the light conditions evaluated; however, there was increased seedling growth and dry matter accumulation in the presence of light. The duration of the S. hispanica seed germination test can be five days, with the first count on the second day after sowing.

  10. Proteomic analysis reveals key proteins and phosphoproteins upon seed germination of wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Kun eDong

    2015-11-01

    Full Text Available Wheat (Triticum aestivum L. is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE-based proteomic approach. A total of 166 differentially expressed protein (DEP spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/ transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.

  11. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of more... Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds in containers of more than 1 pound shall be labeled to show the percentage of germination and the percentage of...

  12. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Effects of hypobaria and hypoxia on seed germination of six plant species

    Science.gov (United States)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  14. Reduced germination success of temperate grassland seeds sown in dung: consequences for post-dispersal seed fate.

    Science.gov (United States)

    Milotić, T; Hoffmann, M

    2016-11-01

    Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment. We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions). Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions. According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Seed fate in the myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination

    Science.gov (United States)

    Salazar-Rojas, Betzabeth; Rico-Gray, Víctor; Canto, Azucena; Cuautle, Mariana

    2012-04-01

    Myrmecochory (seed dispersal by ants) differs from other dispersal systems in a series of advantages offered by the ants to the plants. Here, seed fate, from fruit to germination, of the myrmecochorous Neotropical plant Turnera ulmifolia L. is described. Seed movement from the fruit to their germination was studied, using different measurements and experiments. The results show that a T. ulmifolia individual produces ca. 5000 seeds per year. The main pre-seed-fall predators are the larvae of the Microlepidopteran Crocidosema plebejana Zeller, which consumed 1% of the seeds on the plant. The red-land crab Gecarcinus lateralis (Freminville) consumed 19% of the seeds beneath the plant and was the main post-seed-fall predator. Seed removal by ants was recorded on and beneath the plant, and ants removed 49% of the total seed production. Considering the seed removal events, the ant Forelius analis contributed with 64% of the total number of events. F. analis took seeds to its nest and discarded 23% of the seeds collected. Germination of seeds collected by F. analis was two to four times higher than that of seeds with and without elaiosome, respectively. The relatively low seed predation was probably related to ant defense, associated with the presence of extrafloral nectaries in this plant and with seed removal on the plant. Our results suggest that F. analis is a quantitatively efficient but qualitatively inefficient seed disperser of T. ulmifolia.

  16. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species.

    Science.gov (United States)

    Seglias, Alexandra E; Williams, Evelyn; Bilge, Arman; Kramer, Andrea T

    2018-01-01

    For many species and seed sources used in restoration activities, specific seed germination requirements are often unknown. Because seed dormancy and germination traits can be constrained by phylogenetic history, related species are often assumed to have similar traits. However, significant variation in these traits is also present within species as a result of adaptation to local climatic conditions. A growing number of studies have attempted to disentangle how phylogeny and climate influence seed dormancy and germination traits, but they have focused primarily on species-level effects, ignoring potential population-level variation. We examined the relationships between phylogeny, climate, and seed dormancy and germination traits for 24 populations of eight native, restoration-relevant forb species found in a wide range of climatic conditions in the Southwest United States. The seeds were exposed to eight temperature and stratification length regimes designed to mimic regional climatic conditions. Phylogenetic relatedness, overall climatic conditions, and temperature conditions at the site were all significantly correlated with final germination response, with significant among-population variation in germination response across incubation treatments for seven of our eight study species. Notably, germination during stratification was significantly predicted by precipitation seasonality and differed significantly among populations for seven species. While previous studies have not examined germination during stratification as a potential trait influencing overall germination response, our results suggest that this trait should be included in germination studies as well as seed sourcing decisions. Results of this study deepen our understanding of the relationships between source climate, species identity, and germination, leading to improved seed sourcing decisions for restorations.

  17. Influence of hydrogel on germination of lettuce and onion seed at different moisture levels

    Directory of Open Access Journals (Sweden)

    Kateřina Pazderů

    2013-01-01

    Full Text Available The influence of Agrisorb (water solution 1, 3, 5 g/l on lettuce and onion seed germination was tested in different moisture conditions (30 ml and 15 ml of water in germination box. Variants with reduced water level germinated much more slowly (MGT parameter than standard variants, though differences in total germination at the end of the test were insignificant. Treated variants of lettuce seeds showed a statistically significant increase in germination energy (GE on the first day (GE1, both water levels, but a significant decrease on the second day (columns GE2, 15 ml. Higher doses of Agrisorb slowed lettuce seed germination (GE2, 30 ml, dose 5 g significantly, similarly see GE2 (15 ml, doses 1, 3, 5 g. This slowdown was apparent for GE3 (both water amount as well. A similar but insignificant effect was evident for onions. There was an influence of cultivar and seed vigour on sensitivity to water stress. The hydrogel application influenced germination of lettuce and onion seeds. Treated lettuce seeds germinated faster than non-treated control in the beginning of germination process. This effect was not recorded in case of slowly germinated onion seed lots. Although influence of Agrisorb was positive in the beginning, higher doses of hydrogel reduced germination energy of treated seed lots (for example GE2, GE4 of both crops in comparison with non-treated control. Higher doses of hydrogel caused longer MGT of lettuce and onion as well.

  18. Valorizing guava (Psidium guajava L.) seeds through germination-induced carbohydrate changes.

    Science.gov (United States)

    Ling, Cheng Xian; Chang, Ying Ping

    2017-06-01

    Guava seeds are produced as a waste product by the guava processing industry. Their high carbohydrate contents may suit the carbohydrate needs of the feed sector but their high dietary fiber content limits their feed value. The feed values of fruit seeds can be improved through germination, which involves the mobilization of nutrients through seed enzymes and alters the seed carbohydrate composition. The changes of selected carbohydrates in guava ( Psidium guajava L.) seeds brought by germination to those in red bean ( Vigna angularis ) and winter wheat ( Triticum aestivum L.) were compared. The contents of soluble carbohydrates, digestible starch, resistant starch and cellulose in the seeds were determined. The radial diffusion method was used to detect carbohydrate-degrading enzymes in the seed extracts. Guava seeds were rich in cellulose (402.2 mg/g), which decreased progressively during germination, probably through the action of cellulase. Winter wheat contained the highest starch content (412.2 mg/g) and also distinct quantities of α-amylase and cellulase. The starch contents of all the seeds decreased, but the soluble carbohydrate contents in red beans and guava seeds increased significantly by the end of germination, suggesting the transient oversupply of reserve metabolites. The content of hydrolyzed polysaccharides increased in the germinated seeds with detectable amounts of cellulose-degrading enzymes present, indicating improved value as feed. Further research is warranted to explore the potential of guava seeds as a source of low-cost animal feed supplements.

  19. Enhanced tocopherol levels during early germination events in Chamaerops humilis var. humilis seeds.

    Science.gov (United States)

    Siles, Laura; Alegre, Leonor; Tijero, Verónica; Munné-Bosch, Sergi

    2015-10-01

    Most angiosperms accumulate vitamin E in the form of tocopherols in seeds, exerting a protective antioxidant role. However, several palm trees principally accumulate tocotrienols, rather than tocopherols, in seeds, as it occurs in other monocots. To unravel the protective role of either tocopherols or tocotrienols against lipid peroxidation during seed germination in Chamaerops humilis var. humilis; seed viability, natural and induced germination capacity, seed water content, malondialdehyde levels (as an indicator of the extent of lipid peroxidation) and vitamin E levels (including both tocopherols and tocotrienols) were examined at various germination phases in a simulated, natural seed bank. At the very early stages of germination (operculum removal), malondialdehyde levels increased 2.8-fold, to decrease later up to 74%, thus indicating a transient lipid peroxidation at early stages of germination. Tocopherol levels were absent in quiescent seeds and did not increase during operculum removal, but increased later presumably dampening malondialdehyde accumulation. Thereafter, tocopherols continued increasing, while lipid peroxidation levels decreased. By contrast, tocotrienols levels remained constant or even decreased as germination progressed, showing no correlation with lipid peroxidation levels. We hypothesize that despite their high tocotrienol content, seeds synthesize tocopherols during germination to protect lipids from peroxidation events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Response of sunflower to various pre-germination techniques for breaking seed dormancy

    International Nuclear Information System (INIS)

    Nasreen, S.; Khan, M.A.; Uddin, S.

    2015-01-01

    Seed dormancy is considered to be a serious constraint in sunflower seed production. Viable seeds sometimes do not germinate even in the presence of favorable environmental conditions. Such seeds are suspected to be dormant. The study was conducted under controlled/laboratory conditions during spring 2010 at National Agricultural Research Centre, Islamabad. The objective of the study was to evaluate some techniques to convert a seed from dormant to non-dormant germinable state. Dormant seeds of 21 sunflower hybrids were treated with three hot water treatments (100/80 degree C) and four chemicals potassium nitrate, 0.2%, thiourea, 0.5%, ethanol, 25%, acetone, 25% for breaking seed dormancy .The untreated seed was taken as control. Soaking seeds in hot water (80 degree C) for 15 minutes followed by one day dry and seed treatment with acetone were found to be the most effective and successful techniques in converting the seed from dormant to non-dormant state. (author)

  1. Seed washing, exogenous application of gibberellic acid, and cold stratification enhance the germination of sweet cherry (Prunus avium L.) seed

    NARCIS (Netherlands)

    Javanmard, T.; Zamani, Z.; Keshavarz Afshar, R.; Hashemi, M.; Struik, P.C.

    2014-01-01

    Seed germination in sweet cherry (Prunus avium L.) is a slow and lengthy process which has delayed breeding efforts. In this study, seed from ripe fruit of the sweet cherry cultivar ‘Lambert’ were collected and, after removing the endocarp, various dormancy-breaking treatments such as seed washing,

  2. Seed germination in response to chemicals: effect of nitrogen and pH in the media.

    Science.gov (United States)

    Pérez-Fernández, M A; Calvo-Magro, E; Montanero-Fernández, J; Oyola-Velasco, J A

    2006-01-01

    Seed germination generally presents a peak in the next growing season after a fire. Among other factors associated with fire are the increase of soil nitrogen and changes in the pH of the soil. In this study, we addressed the question, whether or not the germination response of eight species is linked with the increase in pH and nitrogenous compounds in the germination media? We assessed the separate and combined effects of nitrogenous compounds and pH on the percentage and rate of germination of seeds of Medicago arabica (L.) Hudson, Epilobium hirsutum L., Foeniculum vulgare Miller, Daucus carota L., Thapsia villosa L., Cynosurus cristatus L., Dactylis glomerata L. and Rumex crispus L. All these species are well represented in the Mediterranean ecosystems of the central-west Spain. Water and CaCl2 were used as controls. Nitrogenous compounds increased percent germination (level) and rate in three of the species studied. High pH negatively affected the germination rate of seeds from most species, but had no effect on the per cent germination of any of the species. The higher concentration of the nutritious solutions affected negatively the germination level and rate. The different germination responses of seeds of the studied species could not be exclusively attributed to pH values in the media, whereas the amount and form of Nitrogen in the media has a greater effect on it. These differences in germination are species dependent.

  3. Germination of Tabebuia heterophylla seeds (Bignoniaceae) from a wet and dry forest of Puerto Rico

    OpenAIRE

    Cordero, Roberto A; Molano-Flores, Brenda

    2015-01-01

    Seed germination response of the Puerto Rican wet and dry forest populations of Tabebuia heterophylla treo::s was tested using a gradient of osmotic potentials from O to -1.5 MPa. Morphological comparisons were also made from adult specimens. Dry forest tress showed smaller leaves, fiuits, and seeds, and greater specific leaf weigjrt. Dry forest fiuits produced smaller seeds than wá forest fiuits when similar small fiuits were compared. Germination percentage was strongly reduced as osmotic p...

  4. Germinating Seeds of Citrus aurantium a Good Source of Bioactive Limonoids.

    Science.gov (United States)

    Ariza, Marta R; Herrador del Pino, M Mar; Barrero, Alejandro F

    2015-06-01

    A simple method to obtain extracts enriched in bioactive limonoids from Citrus aurantium L. seeds has been developed, using solvents of increasing polarity. 1H NMR data from the extracts revealed that the highest amounts of limonoids were present in the t-butylmethylether extract. The comparison between extracts obtained from dormant and germinating seeds showed that the latter contained almost double amounts of limonoids, revealing germinating seeds as an excellent source of those bioactive compounds.

  5. Response of vegetable seed germination to solar radiation penetrating through soil

    International Nuclear Information System (INIS)

    Hamamoto, H.

    1999-01-01

    Response of vegetable seeds to irradiation and emergence of plants seeded at various depths were investigated to clarify the effects of solar radiation through soil on vegetable seed germination. Seeds of eight vegetable species were germinated in Petri dishes under 11-h irradiation per day. Seed germination was delayed in tomato (Licopersicon esculentum Mill.) but accelerated in perilla (Perilla ocymoides L.) and Japanese hornwort (Cryptotaenia japonica Hassk.) with increase in irradiation at the intensities higher than 0.4W m -2 . Seeds of Japanese radish (Raphanus sativus L.), watermelon (Citrullus lanatus Matsum.), and Chinese cabbage (Brassica campestris L.) showed delayed germination at more than 4-6W m -2 . No effect of irradiation on lettuce (Lactuca sativa L.) and carrot (Daucus carota L.) seed germination was seen. For tomato, Japanese radish and Japanese hornwort, the effects of irradiation time on germination were also investigated. Tomato seed germination was delayed and Japanese hornwort seed germination was accelerated with increase in irradiation time beyond 2h per day. The emergence of tomato and Japanese hornwort covered with Shimokuriyagawa loam soil (Kuriyagawa soil) and vermiculite at depths of less than 5mm, 5-10mm and 10-15mm was observed. Plants emerged more rapidly from 5-10mm depths than from less than 5mm depth in tomato. The plants seeded at 10-15mm depths emerged as rapidly as those at 5-10mm depths using vermiculite but later than those at other depths using Kuriyagawa soil, probably due to high bulk density. The early emergence of Japanese hornwort was fastest from less than 5mm depth. The plants seeded at 5-10mm depths did not emerge much slower than those at less than 5mm depth. A seeding depth of 5-10mm was suitable for the rapid emergence of those vegetables covered with both the soil and vermiculite. (author)

  6. Effect of X-rays on germination of some wild papilionaceous seeds

    International Nuclear Information System (INIS)

    Chaghtai, S.A.; Khan, S.S.; Sultan, Suman

    1978-01-01

    Dry seeds of Aeschynomene indica Linn., Alysicarpus rugosus, Desmodium gangeticum (Linn.) DC., three species of Indigofera Tephrosia purpurea (Linn.) Pers. and Zorniagibbosa were irradiated with 1500r dose of X-rays for breaking their dormancy. Whereas none of the seeds of Alysicarpus rugosus, Indigo fera enneaphylla, I.linifolia and Zornia gibbosa could germinate. 23%, 10%, 3% and 2% germination was recorded for the seeds of Indigofera hirsuta sansu Baker, Tephrosia purpurea Aeschynomene indica and Desmodium gangeticum respectively. (author)

  7. Effect of priming with potassium nitrate and dehusking on seed germination of gladiolus (gladiolus alatus)

    International Nuclear Information System (INIS)

    Ramzan, A.; Hafiz, I.A.; Ahmad, T.; Abbasi, N.A.

    2010-01-01

    Gladiolus (Gladiolus alatus), belonging to the family Iridaceae is rated as the most popular flower in the world at commercial scale. The effect of different concentrations of KNO/sub 3/ (1, 2, 3, 4, 5 and 0 %) on seed germination percentage, time required for 50% germination and on mean germination time (MGT) was studied under controlled conditions. Best germination rate of 92% was achieved in T6 (distilled water) followed by 80% in T1 (1% KNO/sub 3/) and 70% in T2 (2% KNO/sub 3/). Minimum time required for 50% germination i.e., 8 days was obtained with T6 (distilled water) and in the same way shortest mean germination time required by seeds was 15 days in T6. Bulb gained maximum weight (0.6467 g) and diameter (9.49 mm) in T3 (3% KNO/sub 3)/. Likewise, this treatment also resulted in an acquisition of 14 cm seedling length and a positive correlation was found between seedling length and growth parameters of bulb i.e., weight and diameter. In another experiment, effect of de husking on seed germination was tested. Seed without husk gave the promising outcome of 74% germination while seeds with husk merely acquired 63% germination after 30 days. (author)

  8. Characterization of physical and biochemical changes in plasma treated spinach seed during germination

    Science.gov (United States)

    Hye Ji, Sang; Ki, Se Hoon; Kang, Min Ho; Choi, Jin Sung; Park, Yeunsoo; Oh, Jaesung; Kim, Seong Bong; Yoo, Suk Jae; Choi, Eun Ha; Park, Gyungsoon

    2018-04-01

    Despite the accumulating data on the effect of plasma on seed germination, mechanisms of plasma action need more extensive research. In a previous study, we observed that high voltage nanosecond pulsed plasma enhanced the germination of spinach seeds and subsequent seedling growth. As a follow-up study, we investigated the physico-chemical, biochemical, and molecular changes in seed after plasma treatment, focusing on the early germination stage, to elucidate mechanism(s) for the stimulating effects of plasma on seed germination. The primary radicle protruded from seeds exposed to high voltage nanosecond pulsed plasma (one shot) slightly faster than the control seeds. The hydrophilicity of the seed surface significantly increased after treatment with high voltage nanosecond pulsed plasma (one shot). However, a very subtle increase in water uptake by plasma treated seeds was observed. Raman and FTIR spectroscopy analyses on chloroform extract of seed coats demonstrated no significant chemical etching on the surface of plasma treated seeds. This may be related to no dramatic increase in water absorption by seeds. The level of GA hormone and starch hydrolysis inside the plasma treated seeds was significantly elevated within 24 h. Taken together, our results suggest that high voltage nanosecond pulsed plasma may not only enhance hydrophilicity of the seed surface but also stimulate biochemical and molecular processes inside seed, leading to enhanced embryonic development.

  9. Phytochrome Control of Germination of Rumex crispus L. Seeds Induced by Temperature Shifts.

    Science.gov (United States)

    Taylorson, R B; Hendricks, S B

    1972-12-01

    High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.

  10. One-step analysis of seed storage data and the longevity of Arabidopsis thaliana seeds.

    Science.gov (United States)

    Hay, Fiona R; Mead, Andrew; Manger, Kirstine; Wilson, Fiona J

    2003-03-01

    Seeds of two ecotypes of Arabidopsis thaliana, NW20 and N1601, were aged over a range of saturated salt solutions at temperatures between 6 degrees C and 55 degrees C. For each ecotype, the results from 37 storage experiments were summarized using the Ellis and Roberts viability equations and a modified version of these equations which allows for a proportion of 'non-respondents'. For both models, two approaches were taken in order to model the effect of moisture content (MC) and temperature on seed longevity. The first, a two-step approach, involved fitting individual survival curves and then multiple regression analysis of the fitted parameters on moisture content and temperature. For the second approach, the full viability models were fitted in one step, including the multiple regression for the effects of MC and temperature within the generalized linear model used to describe each survival curve. This one-step approach takes into account the full variability of the data and provides the best predictions of seed longevity based on the original assumptions of the Ellis and Roberts viability equations. As a consequence of taking into account all the variation, this one-step approach is more sensitive and thus more likely to detect changes due to reducing the number of parameters in the model as being significant. Whilst both approaches indicated that seeds from the two Arabidopsis ecotypes have the same response to MC and temperature, parameter values did differ between the approaches, with the one-step approach providing the better fit. The best model for these two ecotypes, from the one-step approach, confirmed a quadratic relationship between temperature and longevity, but the magnitude of the non-linearity is not as large as indicated by the universal value for the quadratic term.

  11. A role for fruit structure in seed survival and germination of Swartzia langsdorffii Raddi beyond dispersal.

    Science.gov (United States)

    Vaz, T A A; Rodrigues-Junior, A G; Davide, A C; Nakamura, A T; Toorop, P E

    2018-03-01

    Diaspore structure has been hypothesised to play a role in seed viability and/or germination of recalcitrant seeds, especially for Swartzia langsdorffii. Thus, this work aims to (i) investigate the in situ contribution of pericarp and aril on seed viability and germination, and (ii) identify morphoanatomical traits of S. langsdorffii diaspores that allow its desiccation-sensitive seeds to remain viable. The role of the pericarp and aril in seed survival and germination was investigated by placing the whole fruit, whole seeds (arillate seed) and bare seeds (without aril) in soil in the forest understorey, assessing germination, emergence, dead, firm and predated seeds, and water content of pericarps, arils and seeds. Correlation analysis was performed between environmental variables and physiological parameters. Histochemical features of diaspores were also investigated. Pericarp water content fell after several months, while the aril maintained its water content. Seeds did not lose water even without the presence of the pericarp and aril. However, presence of the pericarp promoted seed water content, viability and germination long after dispersal. The embryo had a thickened outer periclinal cell wall. Pericarp and aril are not essential to prevent water loss in seeds, but do help to retain seed moisture, favouring viability maintenance and promoting germination during the rainy season. Morphoanatomical features of seeds are suggested as main factors that reduce water loss. Survival of these desiccation-sensitive seeds upon dispersal during the dry season appears to be facilitated by multiple diaspore features that prevent viability loss. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. A loose endosperm structure of wheat seed produced under low nitrogen level promotes early germination by accelerating water uptake.

    Science.gov (United States)

    Wen, Daxing; Xu, Haicheng; Xie, Liuyong; He, Mingrong; Hou, Hongcun; Zhang, Chunqing

    2017-06-08

    Water uptake is the fundamental requirement for the initiation and completion of seed germination that is a vital phase in the life cycle of seed plants. We found that seeds produced under four nitrogen levels showed significantly different germination speed. The objective of this study was to study the mechanism of rapid seed germination and explore which pathways and genes play critical roles in radicle protrusion. Anatomical data revealed that seed protein content affected endosperm structure of seeds. Moreover, scanning electron microscope maps showed that faster germinated seeds had a looser endosperm structure compared with other seeds. Subsequently, high throughout RNA-seq data were used to compare the transcriptomes of imbibed seeds with different germination speed. Gene ontology (GO) term enrichment analysis revealed that cell wall metabolism related genes significantly up-regulated in faster germinated seeds. In these genes, the top four were chitinase that had about fourfold higher expression in faster germinated seeds. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that faster germinated seeds had enhanced expression in glutathione metabolism. By combining these results, we propose a model for nitrogen fertilizer affects germination speed of wheat seed, which provide new insights into seed germination.

  13. Germination and biochemical changes in ‘Formosa’ papaya seeds treated with plant hormones

    Directory of Open Access Journals (Sweden)

    Rafael Fonsêca Zanotti

    2014-04-01

    Full Text Available This study aimed to investigate the effects of growth regulators on germination rates and biochemical compound concentrations in Carica papaya L. seeds (‘Formosa’ group. The seeds were harvested from fruits at maturation stages 3 and 5 (50 and 75% yellow fruit skin, respectively. The effects of 2-chloroethylphosphonic acid (CEPA, KNO3 and gibberellic acid (GA3on seed germination, germination index speed, soluble sugars, starch, lipids, soluble proteins and total proteins of the papaya seeds were evaluated. The seeds from stage 5 showed a higher rate of germination 30 days after sowing than did the seeds from stage 3. Treatment with CEPA decreased seed germination, apparently due to decreased starch mobilization; the opposite response was observed following KNO3 treatment. GA3, alone or in combination with KNO3, stimulated an increase in lipid mobilization. In general, with the exception of CEPA, all growth regulators tested were effective in overcoming seed dormancy, and KNO3 was the most effective. The seeds from stage 3 fruits treated with KNO3 or KNO3 + GA3 had higher rates of germination at 14 days.

  14. The Effect of Fungicides for Seed Treatment on Germination of Barley

    Directory of Open Access Journals (Sweden)

    Vesna Stevanović

    2009-01-01

    Full Text Available The application of chemicals, such as fungicides for seed treatment, is one of the most reliable and perhaps most efficient measures for integrated preservation of crops, and its practicing has become a legal obligation for all seed producers. This investigation was carried out in the laboratory for seed quality and phytopathology of the Small Grains Research Center in Kragujevac. The objective was to establish the effect of fungicides on germination energy and seed germinability (determined after treatments. Two varieties were tested due to a possibility of specific sensitivities of some varieties, so that the results acquired on one variety would not necessarily be valid for another one. Fungicides based on active ingredients from the triasol chemical group had different effects on the energy of germination of barley seeds. Applying Raxil S040-FS, the average germination of barley seeds was 79.3% for the variety Record, and 91.3% for the Grand variety. The variety Record achieved a lower value than the minimum for barley seed germination (88% stipulated by the Rules on Seed Quality of Agricultural Crops.Regardless of barley type, the product Raxil S040-FS showed a statistically significant effect on the number of atypical seedlings and increase in the number of non-germinated seeds, compared to the control.

  15. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  16. Seed germination and predation of the tropical monocarpic palm tree Corypha umbraculifera

    Directory of Open Access Journals (Sweden)

    R.P.V.G. Subhashi W. Rajapakshe

    2017-04-01

    Full Text Available Corypha umbraculifera L., the long lived monocarpic palm belonging to Arecaceae, is rare in the wild and is a possible candidate, which can be developed as an economic plant in Asia. However, little information is available about propagation of this species from seeds. Thus, we aimed to investigate the basic seed biology of this species and to facilitate its propagation and conservation. Effects of light and temperature on seed germination were studied. Morphology of seed germination and embryo: seed ratio were recorded. Seed predation percentages, initial moisture content and nutrient content were determined and optimum storage conditions identified. The highest germination percentage was in light/dark at 25 ˚C. In two trials, of 38.66 and 31.66 % of the seeds were predated. Total energy value of seeds was higher than that of Cocos nucifera, a common known polycarpic palm. Seeds of C. umbraculifera have morphophysiological dormancy as evidence by embryo growth prior to radicle emergence and the relatively long time (42-49 days taken for completion of germination. Low predation percentage and slow germination rate indicate that the predator satiation hypothesis is not sufficient to describe the evolution and existence of monocarpy in C. umbraculifera. Decreased viability during dry storage at ambient room conditions and a moisture content of 16 ± 3 % indicate that seeds have intermediate storage behaviour. Storage in open polythene bags at 8 ˚C is suggested as the best storage condition for C. umbraculifera seeds.

  17. Ecological implications and environment dependence of the seed germination of common species in cold deserts

    International Nuclear Information System (INIS)

    Yuan, S.Y.; Tong, L.; Chi, L.Z.

    2016-01-01

    Vegetation is increasingly affected by climate change in cold deserts. Nonetheless, research is limited regarding the natural environmental demands of seed germination in such deserts. This study was conducted in Gurbantunggut Desert as a research base and 17 common species as subjects to investigate the moisture and temperature needs of seed germination in artificial settings, as well as the relationship between characteristics of seed germination and the local distribution of dune and shrubs. Results showed:(1) all tested species generally display low germination percentages that range between 2.9% and 79.6%. Winter snow melt dictates seed germination in cold deserts. Moreover, the subsequent spring rainfall can increase the survival rate of seedlings and significantly affect the process of seed germination. (2) seeds start to germinate only two days after snow melts at the average daily temperature (day/night) of 3.5 degree C (6.7 degree C/-0.5 degree C) and at a soil volumetric water content of 24.2%. Fifteen days after snow melt, all species germinate when the soil volumetric water content is 6.0% and the average daily temperature is 12.9 degree C (18.3 degree C/7.1 degree C). (3) The seed germination of the tested species can be divided into four patterns: rapid, transitional, slow, and low. Low-pattern plants mainly grow on upper dunes and are significantly associated with shrubs. Rapid- and slow-pattern plants distribute in middle and lower dunes. A few of these plants are significantly associated with shrubs. Transitional-pattern plants generally develop in the low land between hills and middle dunes. This study provides a reference for the actual environmental needs of seed germination in cold deserts and for the temperature and moisture requirements of this process in future experimental settings. (author)

  18. The effect of frequency-specific sound signals on the germination of maize seeds.

    Science.gov (United States)

    Vicient, Carlos M

    2017-07-25

    The effects of sound treatments on the germination of maize seeds were determined. White noise and bass sounds (300 Hz) had a positive effect on the germination rate. Only 3 h treatment produced an increase of about 8%, and 5 h increased germination in about 10%. Fast-green staining shows that at least part of the effects of sound are due to a physical alteration in the integrity of the pericarp, increasing the porosity of the pericarp and facilitating oxygen availability and water and oxygen uptake. Accordingly, by removing the pericarp from the seeds the positive effect of the sound on the germination disappeared.

  19. Seed germination and seedling growth of two Pseudobombax species (Malvaceae) with contrasting habitats from Brazilian Cerrado.

    Science.gov (United States)

    Mendes-Rodrigues, Clesnan; Oliveira, Paulo Eugênio; Ranal, Marli Aparecida

    2011-12-01

    Pseudobombax tomentosum and P. longiflorum are common trees in the Cerrado region, but the former species is more common in forest edges while the later is present in open cerrado areas. This work aimed to investigate differences in seed germination and seedling growth in these species, from seed collected from Cerrado areas in Central Brazil. For this, a seed germination experiment was designed and included four replicates with 25 seeds per species; seeds were randomly distributed in the germination chamber. To evaluate initial seedling growth, seedlings height was measured up to 67 days after seedling emergence; besides, some of these seedlings were grown for biomass evaluation during nine months. Results showed that seeds of the two species had the same germinability (near 100%) and mean germination time (ca. 12 days). However, P. longiflorum showed a more spread seed germination through time, with higher values of coefficient of variation in germination time and uncertainty index; and lower values of synchronization than P. tomentosum. The two species showed basically the same growth pattern, but lower values for height of apical meristem, diameter of underground structures (mostly roots), dry mass of shoots, underground structure and total mass of seedlings in P. tomentosum were obtained, compared to P. longiflorum. Both species allocated more dry mass to underground structures in detriment of shoot. This probably allows resprouting behavior which prevents hydric stress and detrimental fire action typical of the open Cerrado areas.

  20. Seed germination and seedling growth of two Pseudobombax species (Malvaceae with contrasting habitats from Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Clesnan Mendes-Rodrigues

    2011-12-01

    Full Text Available Pseudobombax tomentosum and P. longiflorum are common trees in the Cerrado region, but the former species is more common in forest edges while the later is present in open cerrado areas. This work aimed to investigate differences in seed germination and seedling growth in these species, from seed collected from Cerrado areas in Central Brazil. For this, a seed germination experiment was designed and included four replicates with 25 seeds per species; seeds were randomly distributed in the germination chamber. To evaluate initial seedling growth, seedlings height was measured up to 67 days after seedling emergence; besides, some of these seedlings were grown for biomass evaluation during nine months. Results showed that seeds of the two species had the same germinability (near 100% and mean germination time (ca. 12 days. However, P. longiflorum showed a more spread seed germination through time, with higher values of coefficient of variation in germination time and uncertainty index; and lower values of synchronization than P. tomentosum. The two species showed basically the same growth pattern, but lower values for height of apical meristem, diameter of underground structures (mostly roots, dry mass of shoots, underground structure and total mass of seedlings in P. tomentosum were obtained, compared to P. longiflorum. Both species allocated more dry mass to underground structures in detriment of shoot. This probably allows resprouting behavior which prevents hydric stress and detrimental fire action typical of the open Cerrado areas. Rev. Biol. Trop. 59 (4: 1915-1925. Epub 2011 December 01.

  1. [Effect of exogenous calcium on seed germination and seedling physiological characteristics of Lycium ruthenium].

    Science.gov (United States)

    Han, Duo-Hong; Li, Shan-Ji; Wang, En-Jun; Meng, Hong-Mei; Chen, Ye; Zhang, Yong

    2014-01-01

    In order to get the method for improving the salt resistance of Lycium ruthenium seeds and seedlings under NaCl stress, the seed germination and physiological characteristics of L. ruthenium seedlings was studied. Several physiological indexes of L. ruthenium seeds under NaCl stress, such as the germination rate (Gr), germination vigor (Gv), germination index (Gi), vigor index (Vi), and relative salt damage rate were measured. Other indexes of the seedlings like relative water contents (RWC) , chlorophyll contents, soluble protein contents, electrolyte leakage, the contents of malondialdehyde (MDA), and peroxidase (POD) were also measured. NaCl at lower concentration could promote the seed germination but inhibit the seed germination at higher concentration. After the treatment by CaCl2 at the different concentrations, all germination indexes were increased. With the increase of salt concentration, the relative water contents and the contents of chlorophyll were decreased, the content of MDA and electrolyte leakage were increased. The change trend of POD activity showed the first increase and then decrease with the increase of salt concentration, which was similar to that of the soluble protein. After the treatment by CaCl2, relative water contents, chlorophyll and POD activities were decreased more slowly, and also electrolyte leakage and MDA contents increased slowly. The CaCl2 could significantly alleviate the damages to the seeds and seedlings of L. ruthenium under NaCl stress, and promote the salt resistance to the seeds and seedlings of L. ruthenium.

  2. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  3. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.

    Science.gov (United States)

    Hasannejad, S; Zad, S Javad; Alizade, H Mohamad; Rahymian, H

    2006-01-01

    Broomrape (Orobanche aegyptiaca L.), one of the most important parasitic weeds in Iran, is a root parasitic plant that can attack several crops such as tobacco, sunflower, tomato and etc. Several methods were used for Orobanche control, however these methods are inefficient and very costly. Biological control is an additional recent tool for the control of parasitic weeds. In order to study of the fungus Fusarium oxysporum (biocontrol agent) effects on broomrape seed germination, two laboratory studies were conducted in Tehran University. In the first experiment, different concentration of GR60 (0, 1, 2 and 5 ppm) as stimulation factor for Orobanche seeds germination were experimented. Results showed that concentrations of GR60 had a significant effect on seed germination. The highest seed germination percent was obtained in 1 ppm. In the second experiment, the effect of Fusarium oxysporum was tested on O. aegyptiaca seeds germination. The fungus Fusarium oxysporum were isolated from infested and juvenile O. aegyptiaca ower stalks in tomato field in karaj. Fungus spores suspension in different concentrations (0 (Control), 10(5) (T1), 10(6) (T2), 10(7) (T3) and 3 x 10(7) (T4)) from potato dextrose agar (PDA) prepared and together with 1ppm of GR60 concentration were tested on O. aegyptiaca seeds. Results show that the highest inhibition of seed germination obtained in 10(5) spores/ml. With increasing of suspension concentrations, inhibition percent was reduced and mortality of seeds germ tube was increased. In this investigation, Fusarium oxysporum can be used to inhibit seed germination, stimulate the "suicidal germination" of seeds and reduce the Orobanche seed bank.

  4. Influence of seed size and ecological factors on the germination and emergence of field bindweed (Convolvulus arvensis)

    OpenAIRE

    Tanveer,A; Tasneem,M; Khaliq,A; Javaid,M.M; Chaudhry,M.N

    2013-01-01

    An understanding of seed germination ecology of weeds can assist in predicting their potential distribution and developing effective management strategies. Influence of environmental factors and seed size on germination and seedling emergence of Convolvulus arvensis (field bindweed) was studied in laboratory and greenhouse conditions. Germination occurred over a wide range of constant temperatures, between 15 and 40 ºC, with optimum germination between 20 and 25 ºC. Time to start germination,...

  5. Seed flotation and germination of salt marsh plants: The effects of stratification, salinity, and/or inundation regime

    Science.gov (United States)

    Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.

    2009-01-01

    We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.

  6. Repeated Stand-Replacing Crown Fires Affect Seed Morphology and Germination in Aleppo pine.

    Science.gov (United States)

    Saracino, Antonio; Bellino, Alessandro; Allevato, Emilia; Mingo, Antonio; Conti, Stefano; Rossi, Sergio; Bonanomi, Giuliano; Carputo, Domenico; Mazzoleni, Stefano

    2017-01-01

    Post-fire reproductive niche of Aleppo pine ( Pinus halepensis ) is deeply interlaced with fire products. Indeed, the high pH and low osmotic potentials of ash beds under burnt crowns constitute the main constraints to seed germination. In this study, we aim to investigate whether fire recurrence, through the physico-chemical constraints imposed by the ash beds, affects the reproduction ability of P. halepensis at the germination stage. To this aim, Aleppo pine seeds were collected in neighboring even-aged stands subjected to 0, 1, or 2 fires (namely fire cohorts), and seed morphology and germination performance, in terms of cumulative germination and germination kinetics, were studied under increasing osmotic potentials (from 0.0 to -1.2 MPa) and pH (from 6 to 11). Besides fire history, the role of ontogenetic age of mother plants on seed morphology and germination was also investigated. Differences in seed morphology among the three cohorts have been highlighted in a multivariate context, with anisotropic enlargement of the seeds produced by pine stands experiencing repeated fires. The patterns of seed germination varied primarily in relation to the fire cohort, with seeds from the pine stand experiencing repeated fires exhibiting enhanced tolerance to pH stress. Conversely, germination performances under osmotic constraints mainly depends on tree ontogenetic stage, with an involvement of fire history especially in the timing of seed germination. Our results suggest that, at least in the short term, fire recurrence does not constrain the reproduction ability of Aleppo pine. These results highlight the need for further research to elucidate the mechanisms behind these responses to recurrent fires.

  7. Repeated Stand-Replacing Crown Fires Affect Seed Morphology and Germination in Aleppo pine

    Directory of Open Access Journals (Sweden)

    Antonio Saracino

    2017-06-01

    Full Text Available Post-fire reproductive niche of Aleppo pine (Pinus halepensis is deeply interlaced with fire products. Indeed, the high pH and low osmotic potentials of ash beds under burnt crowns constitute the main constraints to seed germination. In this study, we aim to investigate whether fire recurrence, through the physico-chemical constraints imposed by the ash beds, affects the reproduction ability of P. halepensis at the germination stage. To this aim, Aleppo pine seeds were collected in neighboring even-aged stands subjected to 0, 1, or 2 fires (namely fire cohorts, and seed morphology and germination performance, in terms of cumulative germination and germination kinetics, were studied under increasing osmotic potentials (from 0.0 to −1.2 MPa and pH (from 6 to 11. Besides fire history, the role of ontogenetic age of mother plants on seed morphology and germination was also investigated. Differences in seed morphology among the three cohorts have been highlighted in a multivariate context, with anisotropic enlargement of the seeds produced by pine stands experiencing repeated fires. The patterns of seed germination varied primarily in relation to the fire cohort, with seeds from the pine stand experiencing repeated fires exhibiting enhanced tolerance to pH stress. Conversely, germination performances under osmotic constraints mainly depends on tree ontogenetic stage, with an involvement of fire history especially in the timing of seed germination. Our results suggest that, at least in the short term, fire recurrence does not constrain the reproduction ability of Aleppo pine. These results highlight the need for further research to elucidate the mechanisms behind these responses to recurrent fires.

  8. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.)

    Science.gov (United States)

    Penado, Keith Nealson M.; Mahinay, Christian Lorenz S.; Culaba, Ivan B.

    2018-01-01

    Multiple methods of improving plant development have been utilized over the past decades. Despite these improvements, there still exists a need for better planting methods due to the increasing population of a global community. Studies have reported that plasma treatment affects the growth and germination of a variety of plant species, including a multitude of grains which often takes the bulk in the diet of the average human being. This study explores the effect of atmospheric air plasma jet treatment on the seed germination of rice (Oryza sativa L.). The seeds were treated using an atmospheric air plasma jet for 1, 2, and 3 s. The effect of plasma exposure shows a reduction of trichomes on the surface of the seed. This caused a possible increase in wettability which significantly affected the seed germ length but did not affect the seed germination count after the germination period of 72 h.

  9. RNA-seq assembly and analysis of Garcinia mangostana transcriptome during seed germination

    Directory of Open Access Journals (Sweden)

    Nur Diyana Kamal Azlan

    2017-10-01

    Full Text Available Garcinia mangostana is a tropical fruit plant rich in antioxidant and bears recalcitrant seeds. The extent of water loss and low temperature tolerable by recalcitrant seed varies from regular orthodox seeds. Present study generates transcriptome resources for G. mangostana to postulate potential transcriptome differences between recalcitrant and orthodox seeds during seed germination process. Raw reads of pooled samples used for the assembly have been deposited in genbank accession SRR5412332.

  10. Measuring effects of music, noise, and healing energy using a seed germination bioassay.

    Science.gov (United States)

    Creath, Katherine; Schwartz, Gary E

    2004-02-01

    To measure biologic effects of music, noise, and healing energy without human preferences or placebo effects using seed germination as an objective biomarker. A series of five experiments were performed utilizing okra and zucchini seeds germinated in acoustically shielded, thermally insulated, dark, humid growth chambers. Conditions compared were an untreated control, musical sound, pink noise, and healing energy. Healing energy was administered for 15-20 minutes every 12 hours with the intention that the treated seeds would germinate faster than the untreated seeds. The objective marker was the number of seeds sprouted out of groups of 25 seeds counted at 12-hour intervals over a 72-hour growing period. Temperature and relative humidity were monitored every 15 minutes inside the seed germination containers. A total of 14 trials were run testing a total of 4600 seeds. Musical sound had a highly statistically significant effect on the number of seeds sprouted compared to the untreated control over all five experiments for the main condition (p type, position in room, specific petri dish, and person doing the scoring. Musical sound had a significant effect compared to noise and an untreated control as a function of time (p musical sound. This study suggests that sound vibrations (music and noise) as well as biofields (bioelectromagnetic and healing intention) both directly affect living biologic systems, and that a seed germination bioassay has the sensitivity to enable detection of effects caused by various applied energetic conditions.

  11. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species

    Science.gov (United States)

    Pérez-Méndez, Néstor; Rodríguez, Airam; Nogales, Manuel

    2018-01-01

    The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.

  12. Variability in germination and germination dynamics of differently treated seeds of Serbian spruce (Picea omorika Pančić/Purkynĕ

    Directory of Open Access Journals (Sweden)

    Cvjetković Branislav

    2013-01-01

    Full Text Available Genetic-physiological approach was used in the study of the quality of Serbian spruce seed (Picea omorika /Pančić/Purkynĕ, collected in the populations on the left bank of the river Drina. The seed originated from the three populations that represent the overall ecological and productive conditions of Serbian spruce populations in Bosnia and Herzegovina. Two natural populations were selected: Veliki Stolac and Gostilj, and one planted forest population in Srebrenica. The cones were collected in late autumn 2009 and early spring 2010. They were collected from five trees from Srebrenica and Gostilj, and seven trees from Veliki Stolac. Immediately after they were collected, the cones and seeds were processed and germination tests were done. Germination, germination viability and germination dynamics were studied in three categories of seed treatment: 1 control unit (just processed seed, 2 seed stored for six months at 0-4 ºC, 3 seed stored for seven months at 0-4º C and treated with fungicide after five months of storing. The number of germinated seed was observed and noted on the third, fourth, fifth, seventh, tenth, fourteenth, twenty-first and twenty-eighth day. There were significant differences in germination dynamics at the population level and the level of treatment during the first couple of days of germination test. Fungicide (captan acted as an inhibitor on seed germination process. The seeds originating from the largest population of Veliki Stolac showed the best response to storing treatment with fungicide related to germination dynamics. The seed originating from Srebrenica andkept at low temperatures 0-4 °C without treatment with fungicides showed the best result in germination. Regardless of the presence of differences in the dynamics of germination, significant differences in germination regarding different treatments on the last day of the test, were not recorded.

  13. Seed germination of Agave species as influenced by substrate water potential.

    Science.gov (United States)

    Ramírez-Tobías, Hugo M; Peña-Valdivia, Cecilia B; Trejo, Carlos; Aguirre R, J Rogelio; Vaquera H, Humberto

    2014-04-01

    Plants of Agave spp. perform Crassulacean acid metabolism (CAM) and are highly drought-tolerant, but little is known concerning seed germination under low water availability. The aim of this study was to assess the effect of substrate water potential (ΨW) on seed germination and contrast hydrotime parameters of seven valuable and commercially-important Agave species from different geographical distributions and climatic regions of Mexico. Our hypothesis was that seed germination of Agave species is not affected by low water availability independently of seed biomass and the climate of their distribution area. Seed germination (at 25°C and in the dark) between 85 and 100% for all species occurred within 80-180 h at -0.03 MPa and 250-430 h at -1.0 MPa. Seed germination at -1.5 MPa declined to less than 50% (p Agave species, from arid and semi-arid climates in this study, was not affected by the lower ΨW. Germination of seeds of Agave species is moderately affected by low water availability, is partially dependent of their ecological distribution, and is independent of seed mass.

  14. Dynamics and partitioning of the ionome in seeds and germinating seedlings of winter oilseed rape.

    Science.gov (United States)

    Eggert, Kai; von Wirén, Nicolaus

    2013-09-01

    Germination and seedling establishment are among the most critical phases in the development of plants, and seed vigour has become an important trait for the selection of robust crop cultivars. Little is known about the potentially limiting role of mineral nutrients in early metabolic and developmental processes during germination. Therefore, we assessed the ionome and relative distribution of mineral elements in different seed and seedling tissues of oilseed rape (Brassica napus L.) and monitored the internal allocation of nutrients during germination. In seeds, cotyledons harboured the main pool of K, P, S, Mg, Fe, Mn and Zn, whereas the seed coat contained most of the Ca, Na, B, Cu and Mo. Although the early root and hypocotyl tissue expanded first, concentrations of most elements were initially low. Re-allocation of elements to the root/hypocotyl tissue from other pools set in two days after seed imbibition and was most rapid for K. Relative to the critical deficiency levels of vegetative tissues, seed tissues were particularly low in B, K and Fe. Further analyses of the ionome of seeds and seedlings, grouped according to their germination efficiency, indicated that in particular low S, Mg and Ca coincided with germination failure. This study documents highly dynamic changes in the ionome of seed and seedling tissues and provides evidence for potentially limiting elements during early germination and seedling establishment in rapeseed.

  15. Germination of Archontophoenix cunninghamiana (Australian king palm seeds based on different temperatures and substrates

    Directory of Open Access Journals (Sweden)

    Petterson Baptista da Luz

    2017-06-01

    Full Text Available Archontophoenix cunninghamiana or Australian King Palm, is a very popular ornamental palm in Brazil. Although A. cunninghamiana is propagated by seeds, few studies have reported on seed germination of this species. Therefore, this study aimed to evaluate the effect of different temperatures and substrates on the germination of A. cunninghamiana seeds. To carry out the temperature experiment, constant temperatures of 20, 25, 30 or 35 °C and alternating temperatures of 20/30 °C or 25/35 °C were used with four replications of 25 seeds each. For the substrate experiment, sand, vermiculite, and sphagnum moss were used with 7 replicates of 25 seeds per treatment in a completely randomized design. All temperatures, except 35 °C, favored the germination of A. cunninghamiana seeds (60%. Vermiculite was determined to be best suited for the germination of A. cunninghamiana seeds. Overall, the germination of A. cunninghamiana seeds is slow and uneven, in turn allowing for a longer period of germination.

  16. Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination.

    Science.gov (United States)

    Zhang, Hong; Zhou, Ke-Xin; Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan

    2017-06-01

    Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, Pgermination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Morphology, ecophysiology and germination of seeds of the Neotropical tree Alibertia patinoi (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Diego Fernando Escobar Escobar

    2013-06-01

    Full Text Available Alibertia patinoi (Rubiaceae. Alibertia patinoi (Rubiaceae is of economic and cultural importance for communities in the Colombian Pacific and Amazon regions, where it is cultivated and mature fruits are highly appreciated and consumed. Since there is a lack of knowledge of the seed physiology of this species, we describe here the germination behavior and morphometry of seeds of Alibertia patinoi, and relate them to its habitat. Fruits were collected from a mixed food crop and a commercial plantation in Guaimía village, Buenaventura, Colombia, a tropical rain forest area. We measured length, width, thickness, mass (n=1 400, and moisture content of seeds (n=252. Primary dormancy tests were conducted (n=200, followed by imbibition (n=252 and germination dynamics, under different conditions of light and temperature specific to understory and forest clearings (n=300 seeds. Finally, seed storage behavior was established (n=100 seeds. We observed that size and mass of seeds had a narrow range of values that did not differ within or among fruits and that the species did not exhibit primary dormancy. The seeds are recalcitrant, and recently harvested seeds exhibited higher seed moisture content (ca. 44% and continuous metabolism. The seed germination percentage was observed to be higher under the specific dense canopy forest light and temperature conditions; furthermore, neither enriched far-red light nor darkness conditions inhibited germination. We concluded that rapid germination could be the establishment strategy of this species. Also, the physiological traits (i.e., rapid germination rate, low germination requirements, absence of primary dormancy, and recalcitrant behavior and seed size and mass, suggest that A. patinoi is adapted to conditions of mature tropical rain forests.

  18. Morphology, ecophysiology and germination of seeds of the neotropical tree Alibertia patinoi (Rubiaceae).

    Science.gov (United States)

    Escobar Escobar, Diego Fernando; Torres, Alba Marina

    2013-06-01

    Alibertia patinoi (Rubiaceae) is of economic and cultural importance for communities in the Colombian Pacific and Amazon regions, where it is cultivated and mature fruits are highly appreciated and consumed. Since there is a lack of knowledge of the seed physiology of this species, we describe here the germination behavior and morphometry of seeds of Alibertia patinoi, and relate them to its habitat. Fruits were collected from a mixed food crop and a commercial plantation in Guaimía village, Buenaventura, Colombia, a tropical rain forest area. We measured length, width, thickness, mass (n = 1 400), and moisture content of seeds (n = 252). Primary dormancy tests were conducted (n = 200), followed by imbibition (n=252) and germination dynamics, under different conditions of light and temperature specific to understory and forest clearings (n = 300 seeds). Finally, seed storage behavior was established (n = 100 seeds). We observed that size and mass of seeds had a narrow range of values that did not differ within or among fruits and that the species did not exhibit primary dormancy. The seeds are recalcitrant, and recently harvested seeds exhibited higher seed moisture content (ca. 44%) and continuous metabolism. The seed germination percentage was observed to be higher under the specific dense canopy forest light and temperature conditions; furthermore, neither enriched far-red light nor darkness conditions inhibited germination. We concluded that rapid germination could be the establishment strategy of this species. Also, the physiological traits (i.e., rapid germination rate, low germination requirements, absence of primary dormancy, and recalcitrant behavior) and seed size and mass, suggest that A. patinoi is adapted to conditions of mature tropical rain forests.

  19. Influence of salicylic acid on seed germination of Vicia faba L. under salt stress

    OpenAIRE

    Fatima Anaya; Rachid Fghire; Said Wahbi; Kenza Loutfi

    2018-01-01

    Seed germination is the critical stage for species survival. Salinity affects germination and seedling growth and yield of several crop species, such as broad bean. That is why this study was carried to evaluate the effects of NaCl on seed germination and influence of salicylic acid on seed in order to improving salt tolerant on broad bean. Vicia faba L. is an important pulse crop in the Mediterranean region. In many cases broad bean is grown on saline soils where growth and yield are limited...

  20. Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa

    Science.gov (United States)

    Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang

    2018-03-01

    The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.

  1. Dormancy and germination in short-lived lepidium perfoliatu l. (brassicaceae) seeds

    International Nuclear Information System (INIS)

    Tang, An-Jun; Tian, M.; Long, Chun-Lin

    2010-01-01

    To understand germination timing in an ecological context, the response to environmental events that effect seed dormancy is central and has to be combined with knowledge of germination responses to different ecological factors. In this study, seed dormancy, germination and seedling survival of annual short-lived clasping pepper weed Lepidium perfoliatum L. (Brassicaceae) were investigated. Three types of pre-treatments viz., various temperature dry storage, light and water stress were tested as possible dormancy and survival-affecting environmental events. Fresh mature seeds were greatly dormant. Warm (30 deg. C) dry storage more facilitated breaking dormancy, they germinated well under apt conditions (e.g. 20 deg. C and 10/20 deg. C plus periodic light, 14 h/d). For those seeds which underwent after-ripening, they could germinate at a range of constant temperatures (4, 10, 15, 20, 25, and 30 deg. C) and one alternating temperature (10/20 deg. C). Under alternating temperature regimes, the final percent germination of L. perfoliatum seeds increased from 37 deg. C to 93% when temperature altered from 4/10 deg. C to 10/20 deg. C in light, then decreased with increasing temperature. The germination pattern under constant temperature conditions was similar to that under alternating temperature and significant differences in final percent germinations and rates of germination were observed among different temperatures. Under different light treatments, final germination of showed significant differences, only with 35% of germination percentage in dark, much lower than those in red and white light (i.e. 93% and 91%, respectively). GA3 could promote the germination of non-dormant seeds in dark. When water potentials were reduced, final percent germination decreased dramatically, and few seeds germinated at -0.98 MPa (generated by PEG-8000). The changes of proline content in resultant seedlings were reverse to that of final percent germination with changing water

  2. Development of a threshold model to predict germination of Populus tomentosa seeds after harvest and storage under ambient condition.

    Science.gov (United States)

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range.

  3. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    Science.gov (United States)

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  4. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    Science.gov (United States)

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  5. In vitro germination and structure of hard seed testa of natural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-03

    Mar 3, 2008 ... such cells were observed in the hard seed. The perme- ability of the testa can only be achieved via the cracks leaded by scarification. Our findings reveal that percentage of germination among the seeds of natural tetraploid T. pratense is higher in in vitro conditions. Testa structure of hard seed needs to be ...

  6. Tropical rodents change rapidly germinating seeds into long-term food supplies

    NARCIS (Netherlands)

    Jansen, P.A.; Bongers, F.J.J.M.; Prins, H.H.T.

    2006-01-01

    Seed-hoarding vertebrates may survive yearly periods of food scarcity by storing seeds during the preceding fruiting season. It is poorly understood why rodents creating long-term reserves, especially those in the tropics, incorporate seeds from plant species that germinate rapidly and hence seem

  7. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  8. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.

    Science.gov (United States)

    Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming

    2008-11-01

    Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.

  9. Modelling Soil Water Retention for Weed Seed Germination Sensitivity to Water Potential

    Directory of Open Access Journals (Sweden)

    W. John Bullied

    2012-01-01

    Full Text Available Soil water retention is important for the study of water availability to germinating weed seeds. Six soil water retention models (Campbell, Brooks-Corey, four- and five-parameter van Genuchten, Tani, and Russo with residual soil water parameter derivations were evaluated to describe water retention for weed seed germination at minimum threshold soil water potential for three hillslope positions. The Campbell, Brooks-Corey, and four-parameter van Genuchten model with modified or estimated forms of the residual parameter had superior but similar data fit. The Campbell model underestimated water retention at a potential less than −0.5 MPa for the upper hillslope that could result in underestimating seed germination. The Tani and Russo models overestimated water retention at a potential less than −0.1 MPa for all hillslope positions. Model selection and residual parameter specification are important for weed seed germination by representing water retention at the level of minimum threshold water potential for germination. Weed seed germination models driven by the hydrothermal soil environment rely on the best-fitting soil water retention model to produce dynamic predictions of seed germination.

  10. Germination of Ocotea pulchella (Nees Mez (Lauraceae seeds in laboratory and natural restinga environment conditions

    Directory of Open Access Journals (Sweden)

    LA. Pires

    Full Text Available The germination response of Ocotea pulchella (Nees Mez seeds to light, temperature, water level and pulp presence is introduced. The laboratory assays were carried out in germination chambers and thermal-gradient apparatus, whereas the field assays were performed in environments with distinct light, temperature and soil moisture conditions within a permanent parcel of Restinga forest of the Parque Estadual da Ilha do Cardoso, Cananéia, São Paulo. The seeds do not exhibit dormancy, they are non photoblastic, and a loss of viability in dry stored seeds can be related to a decrease in water content of the seed. The presence of the pulp and the flooded substratum influenced negatively the germination of O. pulchella seeds tested in the laboratory. Otherwise, light and temperature probably are not limiting factors of the germination of O. pulchella seeds in the natural environment of Restinga. The optimum temperature range for germination of Ocotea pulchella seeds was 20 to 32 ºC, the minimum or base temperature estimated was 11 ºC and the maximum ranged between 33 and 42 ºC. The isotherms exhibited a sigmoidal pattern well described by the Weibull model in the sub-optimal temperature range. The germinability of O. pulchella seeds in the understorey, both in wet and dry soil, was higher than in gaps. Germination was not affected by fluctuations in soil moisture content in the understorey environment, whereas in gaps, germination was higher in wet soils. Thus, the germination of this species involves the interaction of two or more factors and it cannot be explained by a single factor.

  11. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images.

    Science.gov (United States)

    Moore, Candace R; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P

    2013-01-01

    Seeds are studied to understand dispersal and establishment of the next generation, as units of agricultural yield, and for other important reasons. Thus, elucidating the genetic architecture of seed size and shape traits will benefit basic and applied plant biology research. This study sought quantitative trait loci (QTL) controlling the size and shape of Arabidopsis thaliana seeds by computational analysis of seed phenotypes in recombinant inbred lines derived from the small-seeded Landsberg erecta × large-seeded Cape Verde Islands accessions. On the order of 10(3) seeds from each recombinant inbred line were automatically measured with flatbed photo scanners and custom image analysis software. The eight significant QTL affecting seed area explained 63% of the variation, and overlapped with five of the six major-axis (length) QTL and three of the five minor-axis (width) QTL, which accounted for 57% and 38% of the variation in those traits, respectively. Because the Arabidopsis seed is exalbuminous, lacking an endosperm at maturity, the results are relatable to embryo length and width. The Cvi allele generally had a positive effect of 2.6-4.0%. Analysis of variance showed heritability of the three traits ranged between 60% and 73%. Repeating the experiment with 2.2 million seeds from a separate harvest of the RIL population and approximately 0.5 million seeds from 92 near-isogenic lines confirmed the aforementioned results. Structured for download are files containing phenotype measurements, all sets of seed images, and the seed trait measuring tool.

  12. Annual dormancy cycles in buried seeds of shrub species: germination ecology of Sideritis serrata (Labiatae).

    Science.gov (United States)

    Copete, M A; Herranz, J M; Ferrandis, P; Copete, E

    2015-07-01

    The germination ecology of Sideritis serrata was investigated in order to improve ex-situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non-deep physiological dormancy. Under unheated shade-house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade-house, exhibited an annual conditional dormancy/non-dormancy cycle, coming out of conditional dormancy in summer and re-entering it in winter. Non-dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non-dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non-dormancy cycle in seeds of shrub species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide.

    Science.gov (United States)

    Long, Rowena L; Stevens, Jason C; Griffiths, Erin M; Adamek, Markus; Gorecki, Marta J; Powles, Stephen B; Merritt, David J

    2011-10-01

    Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for

  14. Salinity induced metabolic changes in rice (oryza sativa l.) seeds during germination

    International Nuclear Information System (INIS)

    Shereen, A.; Ansari, R.; Raza, A.; Mumtaz, S.; Khan, M.A.; Khan, M.A.

    2011-01-01

    Six inbred lines of rice exhibiting differential tolerance to salinity were exposed to 0, 50, 75, 100 and 200 mM NaCl for 24, 48, 72 and 96 h. The salinity induced metabolic changes (solute leakage, K efflux and a-amylase activity) were studied during germination. Germination of rice seeds was not affected by NaCl concentration less than 100 mM. At higher salinity levels (100 and 200 mM NaCl), a delay of 3-6 days in germination was observed. In the present study, comparatively higher values of solute leakage were observed in those lines in which germination was comparatively affected more adversely (sensitive). Sodium chloride reduced alpha-amylase activity in germinating rice seeds to varying degree even at low NaCl concentrations (50 and 75 mM), where germination was not affected greatly. The tolerant lines exhibited higher enzymatic activity than the sensitive ones. (author)

  15. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Zhang, Zi-Sheng; Miao, Zi-Qing; Zhao, Ping-Xia; Wang, Zhen; Xiang, Cheng-Bin

    2017-06-05

    Seed germination is a crucial checkpoint for plant survival under unfavorable environmental conditions. Abscisic acid (ABA) signaling plays a vital role in integrating environmental information to regulate seed germination. It has been well known that MCM1/AGAMOUS/DEFICIENS/SRF (MADS)-box transcription factors are key regulators of seed and flower development in Arabidopsis. However, little is known about their functions in seed germination. Here we report that MADS-box transcription factor AGL21 is a negative regulator of seed germination and post-germination growth by controlling the expression of ABA-INSENSITIVE 5 (ABI5) in Arabidopsis. The AGL21-overexpressing plants were hypersensitive to ABA, salt, and osmotic stresses during seed germination and early post-germination growth, whereas agl21 mutants were less sensitive. We found that AGL21 positively regulated ABI5 expression in seeds. Consistently, genetic analyses showed that AGL21 is epistatic to ABI5 in controlling seed germination. Chromatin immunoprecipitation assays further demonstrated that AGL21 could directly bind to the ABI5 promoter in plant cells. Moreover, we found that AGL21 responded to multiple environmental stresses and plant hormones during seed germination. Taken together, our results suggest that AGL21 acts as a surveillance integrator that incorporates environmental cues and endogenous hormonal signals into ABA signaling to regulate seed germination and early post-germination growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  16. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed.

    Science.gov (United States)

    Webster, Rachel E; Waterworth, Wanda M; Stuppy, Wolfgang; West, Christopher E; Ennos, Roland; Bray, Clifford M; Pritchard, Hugh W

    2016-12-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA 3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA 3 , indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed

    Science.gov (United States)

    Webster, Rachel E.; Waterworth, Wanda M.; Stuppy, Wolfgang; West, Christopher E.; Ennos, Roland; Bray, Clifford M.; Pritchard, Hugh W.

    2016-01-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. PMID:27811004

  18. Effect of cold and scarification on seeds germination of pistacia atlantica l. for rapid multiplication

    International Nuclear Information System (INIS)

    Meziou, C.; Merabet, A.

    2014-01-01

    This study was carried out to determine the effects of mechanical scarification and cold treatment of seeds at + 4 degree C before sowing seed of Pistacia atlantica. In these cases, the durations at cold temperature, which have been taken into account, are successively 60, 50, 40, and 30 days. After these periods, the rate of germination and the speed of germination are calculated every 4 days. The rates of germinations concerning the not scarified seeds having undergone a cold treatment lasting 50 days are the most important that is a value of 39% from the 09-05-2010 until the 29-05-2010. The speed germination is maximum that is 89 germinated seeds /4 days. In addition this same rate reaches a maximum of 70%. Concerning the pistachio tree seeds of the atlas treated mechanically with duration of cold treatment at + 4 degree C during 30 days. For the same category of seed the speed of germination is maximum that is 214 seeds/4 days. Thus the scarification and the 30 days stay are the fastest means which allow to obtain the seedlings of pistachio tree in a rather short time. (author)

  19. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds.

    Science.gov (United States)

    Masetto, Tathiana E; Faria, Jose M; Fraiz, Ana C R

    2014-09-01

    This work aimed to characterize the re-induction of desiccation tolerance (DT) in germinated seeds, using polyethylene glycol (PEG 8000). Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy) as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm) in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h) and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa) and PEG (-2.04 MPa) + ABA (100 µM) before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival). The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations.

  20. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds

    Directory of Open Access Journals (Sweden)

    TATHIANA E. MASETTO

    2014-09-01

    Full Text Available This work aimed to characterize the re-induction of desiccation tolerance (DT in germinated seeds, using polyethylene glycol (PEG 8000. Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa and PEG (-2.04 MPa + ABA (100 µM before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival. The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations.

  1. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight.

    Science.gov (United States)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-11-01

    Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first molecular insights into the response of the germinating barley seeds to F. graminearum for controlling the disease, germinating seeds were treated with water as control or inoculated with F. graminearum conidia and samples were harvested at 1, 2 and 3 days after inoculation (dai). Although germination rates were not significantly different between F. graminearum-inoculated and control samples, albumins and hydrogen peroxide were accumulated in the inoculated samples at 1-3 dai, indicating that there was an interaction between the germinating seeds and F. graminearum. Subsequently, a gel-based proteomic approach was employed to identify differentially expressed proteins in the seeds responding to fungal infection at 3 dai, which revealed 42 protein spots, 41 of which were identified by mass spectrometry. The up-regulated proteins mainly included heat shock proteins, antioxidant enzymes and the proteins involved in primary metabolism and detoxification whereas the majority of down-regulated proteins were plant protease inhibitors. The results suggest that there is a link between increased energy metabolism and oxidative stress in the germinating barley seeds in response to F. graminearum infection, which provides the first molecular insight into Fusarium seedling blight. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    Science.gov (United States)

    Klinger, R.; Rejmanek, M.

    2010-01-01

    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.

  3. Regulation of soybean seed germination through ethylene production in response to reactive oxygen species

    Science.gov (United States)

    Ishibashi, Yushi; Koda, Yuka; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2013-01-01

    Background and Aims Despite their toxicity, reactive oxygen species (ROS) play important roles in plant cell signalling pathways, such as mediating responses to stress or infection and in programmed cell death, at lower levels. Although studies have indicated that hydrogen peroxide (H2O2) promotes seed germination of several plants such as Arabidopsis, barley, wheat, rice and sunflower, the role of H2O2 in soybean seed germination is not well known. The aim of this study therefore was to investigate the relationships between ROS, plant hormones and soybean seed germination. Methods An examination was made of soybean seed germination, the expression of genes related to ethylene biosynthesis, endogenous ethylene contents, and the number and area of cells in the root tip, using N-acetylcysteine, an antioxidant, to counteract the effect of ROS. Key Results H2O2 promoted germination, which N-acetylcysteine suppressed, suggesting that ROS are involved in the regulation of soybean germination. H2O2 was produced in the embryonic axis after imbibition. N-Acetylcysteine suppressed the expression of genes related to ethylene biosynthesis and the production of endogenous ethylene. Interestingly, ethephon, which is converted to ethylene, and H2O2 reversed the suppression of seed germination by N-acetylcysteine. Furthermore, morphological analysis revealed that N-acetylcysteine suppressed cell elongation at the root tip, and this suppression was also reversed by ethephon or H2O2 treatments, as was the case in germination. Conclusions In soybean seeds, ROS produced in the embryonic axis after imbibition induce the production of endogenous ethylene, which promotes cell elongation in the root tip. This appears to be how ROS regulate soybean seed germination. PMID:23131300

  4. Fruits, seeds, germination and seedling development of Amphilophium paniculatum (L Kunth. (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Lopez

    2017-01-01

    Full Text Available This article  describes the morphology description of fruits, seed, seedling and germination capacity of A. paniculatum, known in the area with the common name “Batero”.. Fruits were collected in Andean forest relict of the municipality of Sierra-Cauca, where floristic and ecological restoration studies are carried out. 20 fruits and 20 seeds were used for the morphological description; morphometric measurements of length, width and thickness were taken. Germination stages were observed and described based on four nursery planting replicates of 128 seeds each; seedling establishment transplant ability was also evaluated; observations were made every three days during the evaluation period and the establishment was determined by survival or seedling. The fruits of A. paniculatum are dry and capsule type. The seeds are narrow and winged. Germination is Chryptocotylar hypogeal type, average germination time is determined from 7 to 25 days and the survival rate by transplanting after the appearance of the first metafilos is 90%.

  5. Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae)

    Czech Academy of Sciences Publication Activity Database

    Eliášová, A.; Münzbergová, Zuzana

    2014-01-01

    Roč. 113, č. 1 (2014), s. 57-73 ISSN 0024-4066 Institutional support: RVO:67985939 Keywords : Vicia * autotetraploid * seed size * germination Subject RIV: EF - Botanics Impact factor: 2.264, year: 2014

  6. Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models

    Science.gov (United States)

    Susan E. Meyer; Phil S. Allen

    2009-01-01

    A principal goal of seed germination modelling for wild species is to predict germination timing under fluctuating field conditions. We coupled our previously developed hydrothermal time, thermal and hydrothermal afterripening time, and hydration-dehydration models for dormancy loss and germination with field seed zone temperature and water potential measurements from...

  7. Effects of drought and salt stress on seed germination of three ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... Okcu G, Kaya MD, Atak M (2005). Effects of Salt and Drought Stresses on Germination and Seedling Growth of Pea (Pisum Sativum L.),. Turk. J. Agric. Forest. pp. 237-242. Pratap V, Sharma YK (2010). Impact of Osmotic Stress on Seed. Germination and Seedling Growth in Black Gram (Phaseolus. Mungo).

  8. Light-sensitive features of seed germination in the invasive species ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-04-17

    Apr 17, 2012 ... Dormancy-breaking methods of low temperature pre-treatment, pre-soaking with KNO3 solution, polyethylene glycol, and salicylic acid did not influence germination under either light or dark conditions. Very low light (39 μmol·m-2·s-1, 25% light transmittance) tripled seed germination from 22.3 to 66.7%, ...

  9. Effects of drought and salt stress on seed germination of three ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... indicates that the seed germination of the three species was inhibited by PEG and NaCl but there was ... plants, seedling emergence is critical for the ..... Springer, New York. Huang J, Redmann R (1995). Salt Tolerance of Hordeum and Brassica. Species During Germination and Early Seedling Growth.

  10. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds.

    Science.gov (United States)

    Hahm, Tae-Shik; Park, Sung-Jin; Martin Lo, Y

    2009-02-01

    The changes of chemical composition and functional properties of derooted sesame (Sesamum indicum L.) seeds (DSS) before, during, and after germination were investigated. Sesame seeds germinated in dark chambers maintained near 100% relative humidity at 35 degrees C without presoaking reached >99% germination rate in 4 days with the final moisture content stayed ca. 2% (w/w), characterizing sesame seeds as orthodox seeds that are suitable for long term storage at low temperature and humidity under defined environment. With noticeable reduction in fat content (23%), germinated DSS were found rich in linolenic acid, P, and Na, increasing from 0.38% (w/w), 445 mg/100 g, and 7.6 mg/100 g before germination to 0.81% (w/w), 472 mg/100 g, and 8.4 mg/100 g after germination, respectively. DSS after germination contained considerable amount of Ca (462 mg/100 g), higher than that of soybean. Germinated DSS presents an excellent source of sesamol (475 mg/100 g), a potent natural antioxidant, and alpha-tocopherol (32 mg/100 g), the most active form of vitamin E.

  11. Effect of priming on germinability and salt tolerance in seeds and ...

    African Journals Online (AJOL)

    In some species, pre-germination treatments such as priming can increase germinability and the speed of the process, besides conferring tolerance to abiotic stress. The central effect of priming is the slow and controlled absorption of water in seed tissues, allowing the membranes to reorganize and synthesize protective ...

  12. Effects of drought and salt stress on seed germination of three ...

    African Journals Online (AJOL)

    The seeds of Medicago sativa (L.), Astragalus adsurgens (Pall.) and Coronilla varia (L.) were evaluated at germination for tolerance to salt (NaCl) and drought conditions induced by polyethylene glycol (PEG) in an experiment of orthogonal design. The results reveal that the germination percentages of M. sativa and A.

  13. Effects of irrigation frequency and grit color on the germination of lodgepole pine seeds

    Science.gov (United States)

    Jeremy R. Pinto; R. Kasten Dumroese; Douglas R. Cobos

    2009-01-01

    Nursery cultural practices during germination can be highly variable between existing production facilities. Although nursery guidebooks suggest keeping seeds moist, there are no known scientific answers indicating what sufficient moisture levels are. This study objective was to characterize differing irrigation regimes and grit color choices on different germination...

  14. Does smoke promote seed germination in 10 Interior West Penstemon species?

    Science.gov (United States)

    Paula J. Fornwalt

    2015-01-01

    Recent research has shown that exposing seeds to smoke stimulates germination for a multitude of plant species, including several species in the genus Penstemon (Scrophulariaceae). I evaluated whether smoke, either alone or followed by 10 wk of stratification (moist prechilling), influenced germination for 10 Penstemon species native to the Interior West of North...

  15. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    Science.gov (United States)

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  16. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    Science.gov (United States)

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of

  17. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  18. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions.

    Directory of Open Access Journals (Sweden)

    Zanping Han

    Full Text Available High seed vigor is important for agricultural production due to the associated potential for increased growth and productivity. However, a better understanding of the underlying molecular mechanisms is required because the genetic basis for seed vigor remains unknown. We used single-nucleotide polymorphism (SNP markers to map quantitative trait loci (QTLs for four seed vigor traits in two connected recombinant inbred line (RIL maize populations under four treatment conditions during seed germination. Sixty-five QTLs distributed between the two populations were identified and a meta-analysis was used to integrate genetic maps. Sixty-one initially identified QTLs were integrated into 18 meta-QTLs (mQTLs. Initial QTLs with contribution to phenotypic variation values of R(2>10% were integrated into mQTLs. Twenty-three candidate genes for association with seed vigor traits coincided with 13 mQTLs. The candidate genes had functions in the glycolytic pathway and in protein metabolism. QTLs with major effects (R(2>10% were identified under at least one treatment condition for mQTL2, mQTL3-2, and mQTL3-4. Candidate genes included a calcium-dependent protein kinase gene (302810918 involved in signal transduction that mapped in the mQTL3-2 interval associated with germination energy (GE and germination percentage (GP, and an hsp20/alpha crystallin family protein gene (At5g51440 that mapped in the mQTL3-4 interval associated with GE and GP. Two initial QTLs with a major effect under at least two treatment conditions were identified for mQTL5-2. A cucumisin-like Ser protease gene (At5g67360 mapped in the mQTL5-2 interval associated with GP. The chromosome regions for mQTL2, mQTL3-2, mQTL3-4, and mQTL5-2 may be hot spots for QTLs related to seed vigor traits. The mQTLs and candidate genes identified in this study provide valuable information for the identification of additional quantitative trait genes.

  19. Effects of heat shock on seed germination of Turkish red pine (Pinus brutia)

    OpenAIRE

    Boydak, Melih; Çalışkan, Servet

    2016-01-01

    Fire plays an important ecological role in Mediterranean-type ecosystems. Many Mediterranean plant species exhibit enhanced germination capacity when exposed to heat. In the present study, the effect of high temperatures and exposure times on germination of Turkish red pine (Pinus brutia) was analyzed in order to reveal the response of seeds to fire and the implications on species regeneration. Seeds were heated to a range of temperatures (from 75 to 170 ºC) and exposure times (from 30 second...

  20. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.

    Science.gov (United States)

    Shu, Kai; Liu, Xiao-Dong; Xie, Qi; He, Zu-Hua

    2016-01-04

    Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  2. Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification

    Directory of Open Access Journals (Sweden)

    Hong-Ling Wang

    2017-08-01

    Full Text Available Cold stratification is a requirement for seed dormancy breaking in many species, and thus it is one of the important factors for the regulation of timing of germination. However, few studies have examined the influence of various environmental conditions during cold stratification on subsequent germination, and no study has compared such effects on the performance of dormant versus non-dormant seeds. Seeds of halophytes in the cold desert might experience different light and salinity conditions during and after cold stratification. As such, dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy of Suaeda aralocaspica were cold stratified under different light (12 h light–12 h darkness photoperiod or continuous darkness or salinity (0, 200 or 1,000 mmol L-1 NaCl conditions for 20 or 40 days. Then stratified seeds were incubated under different light or salinity conditions at daily (12/12 h temperature regime of 10:25 °C for 20 days. For brown seeds, cold stratification was also part of the germination period. In contrast, almost no black seeds germinated during cold stratification. The longer the cold stratification, the better the subsequent germination of black seeds, regardless of light or salinity conditions. Light did not influence germination of brown seeds. Germination of cold-stratified black seeds was inhibited by darkness, especially when they were stratified in darkness. With an increase in salinity at the stage of cold stratification or germination, germination percentages of both seed morphs decreased. Combinational pre-treatments of cold stratification and salinity did not increase salt tolerance of dimorphic seeds in germination phase. Thus, light and salinity conditions during cold stratification partly interact with these conditions during germination stage and differentially affect germination of dimorphic seeds of S. aralocaspica.

  3. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  4. Inbreeding depression for seed germination and seedling vigor in strawberry (Fragaria × ananassa Duch.

    Directory of Open Access Journals (Sweden)

    Kaczmarska Elżbieta

    2014-12-01

    Full Text Available Experiments leading to the procurement of subsequent inbred generations were conducted in the years 2006- 2013. Seeds obtained from open pollination and after self-pollination of four strawberry cultivars (Teresa, Senga Sengana, Kent and Chandler and clone 1387 were used. These genotypes were evaluated for their tolerance to strong inbreeding under in vitro culture conditions. The aims of this study were to estimate the inbreeding depression of each of the progenies. During the investigation, the germination percentage as well as seedling viability were evaluated. The highest seed germination was shown for populations derived from ‘Teresa’ × open pollination (82% and ‘Kent’ (7 S4 (78%. Seeds derived from self-pollination resulted in the lowest germination - an average of 16.8%. Generally, seed germination was significantly lower for the five S1 offspring, whose depression was 0.62, in comparison with the S4 seedlings, whose depression was 0.31. Inbred offspring showed a depression in relation to the average weight of a single seedling of 0.08 in the case of S1 progeny, whereas in the case of S4 progeny it was 0.23. The highest germination energy was shown by ‘Kent’ (7 S4 seeds (74% and hybrids of ‘Teresa’ derived from open pollination (75%; whereas seeds obtained at the same time from self-pollination germinated 10.8% on average.

  5. Effect of different doses of gamma rays on seed germination of Carthamus L

    International Nuclear Information System (INIS)

    Malik, Anjali; Srivastava, A.K.

    2010-01-01

    Genetic variability is essential for any crop improvement programme. Experimentally induced mutation provides an important source of variability. The ionizing radiation treatment would be useful on account of the total randomness of action of radiation on genetic material as also the fact that an optimal dose radiation produces effect both through gene mutation and chromosomal mutations. The most commonly used ionizing radiation in plant improvement program are γ-rays. The control sets of different accessions/species showed significant variability in the germination pattern. γ-ray alteration in the mean total seed germination frequency of Carthamus accessions/species presently explored, was genotype dependent. However, these could also modify substantially the temporal patterns of the germination as compared to corresponding control sets. The seed lots of different accessions could be supposed to be a mixture of seeds showing differences in the time of induction of germination. That is, seed lots differed in their temporal seed germination pattern. On the basis of the present study it can be inferred that the temporal seed germination could be decided at genotypic and/or biochemical levels. (author)

  6. The Effects of Storage on Germination Characteristics and Enzyme Activity of Sorghum Seeds

    Directory of Open Access Journals (Sweden)

    Azadi M.S.

    2013-11-01

    Full Text Available Seed moisture content (MC and storage temperature are the most important factors affecting seed longevity and vigor. Exposure to warm, moist air is principally responsible for this. Proper storage and optimum seed moisture content can affect the grain quality significantly. The purpose of this study was to evaluate the different storage treatments on seed quality of sorghum. The seed materials were fresh without any storage period. For storage treatments, 3 seed moisture contents (6, 10, 14 % were stored for 8 month in 0.5 L capacity sealed aluminum foil packet in 0.3 bar inside incubators set at 4 temperatures (5, 15, 25, 35 °C. After storage time, the higher the storage temperature, the lower was the grain quality of sorghum. The highest germination percentage, germination index, normal seedling percentage were achieved in control conditions (0 day of storage. Our results showed that increasing storage duration resulted higher reduction in germination characteristics. Also our results showed that, germination percentage, means time to germination, germination index, normal seedling percentage decrease significantly by storage. Enzyme activity decrease significantly by increased in storage.

  7. Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds.

    Science.gov (United States)

    Porceddu, Marco; Mattana, Efisio; Pritchard, Hugh W; Bacchetta, Gianluigi

    2013-12-01

    Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia. Seeds were incubated in the light at a range of temperatures (10-25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures. Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17-2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations. Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination.

  8. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.

    OpenAIRE

    Alonso-Blanco, Carlos; Bentsink, Leónie; Hanhart, Corrie J; Blankestijn-de Vries, Hetty; Koornneef, Maarten

    2003-01-01

    Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seve...

  9. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24.

    Directory of Open Access Journals (Sweden)

    Ya Zhou Bao

    Full Text Available P. aegyptiaca is one of the most destructive root parasitic plants worldwide, causing serious damage to many crop species. Under natural conditions P. aegyptiaca seeds must be conditioned and then stimulated by host root exudates before germinating. However, preliminary experiments indicated that TIS108 (a triazole-type inhibitor of strigolactone and fluridone (FL, an inhibitor of carotenoid-biosynthesis both stimulated the germination of P. aegyptiaca seeds without a water preconditioning step (i.e. unconditioned seeds. The objective of this study was to use deep RNA sequencing to learn more about the mechanisms by which TIS108 and FL stimulate the germination of unconditioned P. aegyptiaca seeds. Deep RNA sequencing was performed to compare the mechanisms of germination in the following treatments: (i unconditioned P. aegyptiaca seeds with no other treatment, (ii unconditioned seeds treated with 100 mg/L TIS108, (iii unconditioned seeds treated with 100 mg/L FL + 100 mg/L GA3, (iv conditioned seeds treated with sterile water, and (v conditioned seeds treated with 0.03 mg/L GR24. The de novo assembled transcriptome was used to analyze transcriptional dynamics during seed germination. The key gene categories involved in germination were also identified. The results showed that only 119 differentially expressed genes were identified in the conditioned treatment vs TIS108 treatment. This indicated that the vast majority of conditions for germination were met during the conditioning stage. Abscisic acid (ABA and gibberellic acid (GA played important roles during P. aegyptiaca germination. The common pathway of TIS108, FL+GA3, and GR24 in stimulating P. aegyptiaca germination was the simultaneous reduction in ABA concentrations and increase GA concentrations. These results could potentially aid the identification of more compounds that are capable of stimulating P. aegyptiaca germination. Some potential target sites of TIS108 were also identified in

  10. ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for Gibberellins in seed longevity.

    Science.gov (United States)

    Bueso, Eduardo; Muñoz-Bertomeu, Jesús; Campos, Francisco; Brunaud, Veronique; Martínez, Liliam; Sayas, Enric; Ballester, Patricia; Yenush, Lynne; Serrano, Ramón

    2014-02-01

    Seed longevity is crucial for agriculture and plant genetic diversity, but it is limited by cellular damage during storage. Seeds are protected against aging by cellular defenses and by structures such as the seed coat. We have screened an activation-tagging mutant collection of Arabidopsis (Arabidopsis thaliana) and selected four dominant mutants with improved seed longevity (isl1-1D to isl4-1D) under both natural and accelerated aging conditions. In the isl1-1D mutant, characterized in this work, overexpression of the transcription factor ARABIDOPSIS THALIANA HOMEOBOX25 (ATHB25; At5g65410) increases the expression of GIBBERELLIC ACID3-OXIDASE2, encoding a gibberellin (GA) biosynthetic enzyme, and the levels of GA1 and GA4 are higher (3.2- and 1.4-fold, respectively) in the mutant than in the wild type. The morphological and seed longevity phenotypes of the athb25-1D mutant were recapitulated in transgenic plants with moderate (4- to 6-fold) overexpression of ATHB25. Simultaneous knockdown of ATHB25, ATHB22, and ATHB31 expression decreases seed longevity, as does loss of ATHB25 and ATHB22 function in a double mutant line. Seeds from wild-type plants treated with GA and from a quintuple DELLA mutant (with constitutive GA signaling) are more tolerant to aging, providing additional evidence for a role of GA in seed longevity. A correlation was observed in several genotypes between seed longevity and mucilage formation at the seed surface, suggesting that GA may act by reinforcing the seed coat. This mechanism was supported by the observation of a maternal effect in reciprocal crosses between the wild type and the athb25-1D mutant.

  11. ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity1[C][W

    Science.gov (United States)

    Bueso, Eduardo; Muñoz-Bertomeu, Jesús; Campos, Francisco; Brunaud, Veronique; Martínez, Liliam; Sayas, Enric; Ballester, Patricia; Yenush, Lynne; Serrano, Ramón

    2014-01-01

    Seed longevity is crucial for agriculture and plant genetic diversity, but it is limited by cellular damage during storage. Seeds are protected against aging by cellular defenses and by structures such as the seed coat. We have screened an activation-tagging mutant collection of Arabidopsis (Arabidopsis thaliana) and selected four dominant mutants with improved seed longevity (isl1-1D to isl4-1D) under both natural and accelerated aging conditions. In the isl1-1D mutant, characterized in this work, overexpression of the transcription factor ARABIDOPSIS THALIANA HOMEOBOX25 (ATHB25; At5g65410) increases the expression of GIBBERELLIC ACID3-OXIDASE2, encoding a gibberellin (GA) biosynthetic enzyme, and the levels of GA1 and GA4 are higher (3.2- and 1.4-fold, respectively) in the mutant than in the wild type. The morphological and seed longevity phenotypes of the athb25-1D mutant were recapitulated in transgenic plants with moderate (4- to 6-fold) overexpression of ATHB25. Simultaneous knockdown of ATHB25, ATHB22, and ATHB31 expression decreases seed longevity, as does loss of ATHB25 and ATHB22 function in a double mutant line. Seeds from wild-type plants treated with GA and from a quintuple DELLA mutant (with constitutive GA signaling) are more tolerant to aging, providing additional evidence for a role of GA in seed longevity. A correlation was observed in several genotypes between seed longevity and mucilage formation at the seed surface, suggesting that GA may act by reinforcing the seed coat. This mechanism was supported by the observation of a maternal effect in reciprocal crosses between the wild type and the athb25-1D mutant. PMID:24335333

  12. Effect of Salinity Stress on Some Seed Germination Indices in Sour Orange (Citrus aurantium

    Directory of Open Access Journals (Sweden)

    M. A. Shiri

    2011-04-01

    Full Text Available In order to study the effect of sodium chloride (NaCl, as a salinity stress factor, on sour orange seed germination indices, an experiment was conducted in a completely randomized design with 3 replica‌tions (each replication included 20 seeds at the University of Guilan, in 2009. NaCl levels were 0, 7.8, 15.6 and 23.4 dS/m. The results showed that various levels of NaCl had significant effect on all the studied traits. Seed germination in 23.4 dS/m treatment started later than other treatments. The highest germination was in control and 7.8 dS/m NaCl treatments. The 15.6 and 23.4 dS/m NaCl treatments had the least germination percentage (85.7 and 46.9%, respectively. The highest germination index (length of germination period was in 23.4 dS/m treatment followed by 15.6 and 7.8 dS/m and control with no significant difference. T50 was highest in 23.4 dS/m and lowest in control treatments. Mean daily germination, seed growth rate and seed vigor were highest in control treatment, with no significant difference with 7.8 dS/m treatment. Overall, it was found that germination of sour orange seeds is resistant to 7.8 dS/m NaCl, and they are able to germinate and grow in saline soils, as well.

  13. Effect of maturation time on dormancy and germination of Citrullus colocynthis (Cucurbitaceae) seeds from the Arabian hyper-arid deserts.

    Science.gov (United States)

    El-Keblawy, Ali; Shabana, Hatem A; Navarro, Teresa; Soliman, Sameh

    2017-12-22

    Light and temperatures of germination greatly affect germination of several Cucurbitaceae species. Environmental conditions prevailing at seed maturation time can affect dormancy and germination requirements. Citrullus colocynthis seeds have a deep dormancy. This perennial prostrate shrub grows all over the year in the arid Arabian deserts. We explored if seed dormancy and germination requirements of C. colocynthis depend on time of fruit collection. Matured seeds were collected at five different times during 2014/2015 year from a population around Dubai city. Fresh seeds were germinated at three temperature regimes in both continuous darkness and alternating 12 h light/12 h darkness. Impacts of seed storage and other treatments on germination were applied on seeds collected in March and exhibited deep dormancy. March collected seeds almost did not germinate in both light and dark at the three temperatures, but those of the other collections responded differently to both light and temperatures. At the lowest temperatures, seeds of all collections did not germinate in light, but those of June, October and December collections germinated in dark. There were negative correlations between final germination and seed length, width, mass and coat thickness. Physical scarification, water soaking and seed storage did not break dormancy of March collection. Germination of C. colocynthis is very sensitive to light and incubation temperature as well as to the environmental conditions associated with the time of seed maturation. It is important to investigate the effects of environmental factors prevailing during seed maturation under controlled conditions to understand exact reasons for unusual seed dormancy and germination requirements of C. colocynthis, which seems to be very sensitive to maternal environment.

  14. The pivotal role of abscisic acid signaling during transition from seed maturation to germination.

    Science.gov (United States)

    Yan, An; Chen, Zhong

    2017-05-01

    Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.

  15. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential.

    Science.gov (United States)

    Fleming, Margaret B; Richards, Christopher M; Walters, Christina

    2017-04-01

    This study investigates the relationship between germination ability and damage to RNA in soybean seeds (cv 'Williams 82') stored dry at 5 °C for 1-27 years. Total germination of 14 age cohorts harvested between 2015 and 1989 ranged from 100% to 3%. Germination decline followed classic seed viability kinetics, with symptomatic seed aging beginning after 17 years of storage. RNA integrity was assessed in dry seeds by electrophoresis of total RNA, followed by calculation of the RNA integrity number (RIN, Agilent Bioanalyzer software), which evaluates RNA fragment size distributions. Analysis of RNA extracted from cotyledons, embryonic axes, plumules, and seed coats across the range of age cohorts showed consistent RNA degradation: older seeds had over-representation of small RNAs compared with younger seeds, which had nearly a 2:1 ratio of 25S and 18S rRNAs. RIN values for cotyledons and embryonic axes from the same seed were correlated. Decline in RIN tracked reduced germination, with a pronounced decrease in RIN after 17 years of storage. This led to a high correlation between the mean RIN of cotyledon RNA and the total germination percentage (R2=0.91, Pseeds within cohorts could not be distinguished unless the RIN was seed RNA incurs damage over time, observable in fragment size distributions. Under the experimental conditions used here, RIN appears to be a promising surrogate for germination tests used to monitor viability of stored seeds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Induction of seed germination in Orobanche spp. by extracts of traditional Chinese medicinal herbs.

    Science.gov (United States)

    Ma, YongQing; Zhang, Wei; Dong, ShuQi; Ren, XiangXiang; An, Yu; Lang, Ming

    2012-03-01

    The co-evolution of Orobanche spp. and their hosts within the same environment has resulted in a high degree of adaptation and effective parasitism whereby the host releases parasite germination stimulants, which are likely to be unstable in the soil. Our objective was to investigate whether extracts from non-host plants, specifically, Chinese medicinal plants, could stimulate germination of Orobanche spp. Samples of 606 Chinese medicinal herb species were extracted with deionized water and methanol. The extracts were used to induce germination of three Orobanche species; Orobanche minor, Orobanche cumana, and Orobanche aegyptiaca. O. minor exhibited a wide range of germination responses to the various herbal extracts. O. cumana and O. aegyptiaca exhibited an intermediate germination response to the herbal extracts. O. minor, which has a narrow host spectrum, showed higher germination rates in response to different herbal extracts compared with those of O. cumana and O. aegyptiaca, which have a broader host spectrum. Methanolic extracts of many Chinese herbal species effectively stimulated seed germination among the Orobanche spp., even though they were not the typical hosts. The effective herbs represent interesting examples of potential trap crops. Different countries can also screen extracts from indigenous herbaceous plants for their ability to induce germination of Orobanche spp. seeds. The use of such species as trap plants could diminish the global soil seed bank of Orobanche.

  17. Impact of salinity stress on seed germination indices of maize (Zea mays L. genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Muhebbullah Ibne Hoque

    2014-01-01

    Full Text Available This investigation was done to find germination response of nine maize (Zea mays L. genotypes under three levels of NaCl salinity (0 mM, 100 mM and 200 mM. Seeds were germinated and grown in Petri plates on filter paper, using above mentioned salt solution as treatment with three replications, incubated at 28±1 0C in a growth chamber following randomized complete block design. Germination percentage (GP, germination speed (GS, germination index (GI, seedling dry weight (SDW, seed vigor index (SVI and salt tolerance index (STI were all decreased as the level of NaCl was increased. Mean germination time (MGT and Percent reduction in dry weight over control (%ROC was increased as the NaCl levels increased. Interaction between genotypes and salt levels showed varying degree of differences. It is concluded that genotypes showed response variability for seed germination under saline stress. Among the investigated genotypes inbred line CZ-7 expressed as the tolerant genotype and B73 appeared to be more sensitive at germination stage.

  18. Study of Seed Germination by Soaking Methode of Cacao (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2014-12-01

    Full Text Available Study of germination methods conduct to get information about seed viability based on germination rate, percentage of germination and vigority. Germination methods was studied to get the efficiency and effectivity of germination, easy to handle, low costs with high vigority. Sand and gunny sack methods  for germination, need extensive place  and 3-4 days germination period after planting. This research will study the alternative of germination method with soaking. This method can be accelerating  germination rate and effectively place usage without decreasing the quality of cacao seedling.The research was done at Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institue. This research consist of two experiment was arranged based on factorial completely random design. First experiment will observed to compared germination rate and the second experiment will observed seedling quality between soaking and wet gunny sack germination method.The results showed that length of radicel on soaking method longer than wet gunny sack method. Growth of radicel started from 2 hours after soaking, moreover length of radicel at 4 hours after soaking have significant different value with gunny sack method. On 24 hours after soaking have 3,69 mm and 0,681 mm on wet gunny sack treatment. Except lengt of hipocotyl, there is not different condition between seedling that out came  from soaking and wet gunny sack method. Length of hipocotyl on 36 hours after soaking have 9,15 cm and significant different between wet gunny sack germination method that have 5,40 cm. Keywords : seed germination, soaking method, Theobroma cacao L., cocoa seedlings

  19. [Effects of different salt-alkaline stress on seed germination and physiological characteristics of Hedysarum polybotrys].

    Science.gov (United States)

    Zhang, Yong; Han, Duo-Hong; Jin, Ling; Wang, Sheng-Qing

    2012-10-01

    In order to get the method for improving the salt resistance of Hedysarum polybotrys seeds and seedlings under different salt-alkaline stress, the seed germination and physiological characteristics of H. polybotrys seedlings were studied. Several physiological indexes of H. polybotrys seeds under different salt-alkaline stress, such as the germination vigor, germination rate, relative germination rate, relative salt damage rate were measured. And others indexes of the seedlings like chlorophyll contents, soluble protein contents, the permeability of plasmalemma, the activities of POD and SOD were also measured. Different salt-alkaline stress decreased the germination rate, vigor of germinate, germination index, while relative salt damage rate increased. With the increased salt-alkaline concentration, the adverse effects became more obvious. The strength of the salts: Na2CO3 > Na2SO4 > NaCl. With the increase of the salt-alkaline concentration, the chlorophyll contents and the soluble protein contents decreased, but the permeability of plasmalemma increased. The change trend of SOD and POD activity was similar, it is increased firstly, and then decreased as the stress intensity extended, the most significant increase of Na2SO4 and Na2CO3 in the concentration of salt-alkaline was 25 mmol x L(-1), but NaCl was 50 mmol x L(-1). The seeds and seedlings inhibition of the salts was Na2CO3 > Na2SO4 > NaCl.

  20. Effects of water stress on germination of Pinus nigra Arnold. seeds

    International Nuclear Information System (INIS)

    Topacoglu, O.; Sevik, H.; Akkuzu, E.

    2016-01-01

    Climate change, global warming and the deterioration of related environmental conditions cause an important problem for forest tree species. For this reason, it is necessary to determine the response of trees to these conditions. The Objective of this study was to investigate the effects of water stress on seed germination of fifteen Pinus nigra Arnold. provenances in Turkey. For this purpose, the water stresses between 0 and -8.0 bars were obtained using polyethylene glycol-6000 (PEG) solutions. Seeds were kept for 35 days at 20 ± 0.5 degree C. In this study, significant variations between the provenances were found. Ankara Uluhan ( percent 95, 08) and Isparta Tota ( percent 85, 41) provenances at -8.0 bars having the highest cumulative germination percentages were the most resistant provenances against the water stress. This study has shown that the water stress reduced the germination speed, germination percentage and germination value. (author)

  1. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions.

    Science.gov (United States)

    Lee, Young Pyo; Baek, Kwang-Hyun; Lee, Haeng-Soon; Kwak, Sang-Soo; Bang, Jae-Woog; Kwon, Suk-Yoon

    2010-05-01

    Reactive oxygen species (ROS) are produced during seed desiccation, germination, and ageing, leading to cellular damage and seed deterioration and, therefore, decreased seed longevity. The effects of simultaneous over-expression of two antioxidant enzymes on seed longevity and seed germination under stressful conditions were investigated. Transgenic tobacco simultaneously over-expressing the Cu/Zn-superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes in plastids showed normal growth and seed development. Furthermore, the transgenic seeds displayed increased CuZnSOD and APX enzymatic activities during seed development and maintained antioxidant enzymatic activity after two years of dried storage at room temperature. The two-year stored non-transgenic seeds (aged NT seeds) had higher levels of ion leakage than the two-year stored transgenic seeds (aged CA seeds), indicating membrane damage caused by ROS was more severe in the aged NT seeds than the aged CA seeds. The aged CA seeds decreased germination rates as compared to newly harvested transgenic and non-transgenic seeds. The aged CA seeds, however, significantly increased germination rates under various abiotic stress conditions as compared to aged NT seeds. These data strongly suggest that simultaneous over-expression of the CuZnSOD and APX genes in plastids improves seed longevity and germination under various environmental stress conditions by attenuating the effects of oxidative stress produced by elongated storage conditions and harsh environmental stresses.

  2. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    Science.gov (United States)

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  3. Relationship of seed microsite to germination and survival of lodgepole pine on high-elevation clearcuts in northeastern Utah

    Science.gov (United States)

    Deborah S. Page-Dumroese; R. Kasten Dumroese; Connie M. Carpenter; David L. Wenny

    2002-01-01

    On two high-elevation sites (~3,000 m) in northeastern Utah, lodgepole pine (Pinus contorta var. latifolia) seeds germinated best (53 percent) on large mineral microsites (5 x 5 m), and percentage survival of germinating seeds was best on microsites covered with forest floor material. Seed predation was severe at both study sites;...

  4. Effect of adding wood vinegar on cucumber (Cucumis sativus L) seed germination

    Science.gov (United States)

    Lei, Ming; Liu, Bingjie; Wang, Xiao

    2018-03-01

    Wood vinegar, a liquid by-product that was obtained from the condensed vapor generated during the biomass pyrolysis, had been reported as plant growth promotor, but the impact on the plant seeds was still not clear. Thus, we investigated the effects of wood vinegar on the germination and seedling growth of cucumber seeds through the germination experiments. The results showed that the different diluted wood vinegar addition showed no significant difference in the germination rates of cucumber seeds compared to those of the CK treatment (P > 0.05). However, the added wood vinegar at the 10000-time dilution significantly increased the root length and dry biomass of cucumber by 20.9 % and 5.92 %, respectively (P germination, and further enhance crop yields.

  5. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions

    OpenAIRE

    Lee, Young Pyo; Baek, Kwang-Hyun; Lee, Haeng-Soon; Kwak, Sang-Soo; Bang, Jae-Woog; Kwon, Suk-Yoon

    2010-01-01

    Reactive oxygen species (ROS) are produced during seed desiccation, germination, and ageing, leading to cellular damage and seed deterioration and, therefore, decreased seed longevity. The effects of simultaneous over-expression of two antioxidant enzymes on seed longevity and seed germination under stressful conditions were investigated. Transgenic tobacco simultaneously over-expressing the Cu/Zn-superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes in plastids showed normal gr...

  7. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China

    Directory of Open Access Journals (Sweden)

    Shi-Cheng Shao

    2017-06-01

    Full Text Available Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum, in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44% with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35% at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  8. Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities.

    Science.gov (United States)

    Fernández-Pascual, Eduardo; Pérez-Arcoiza, Adrián; Prieto, José Alberto; Díaz, Tomás E

    2017-05-01

    A phylogenetic comparative analysis of the seed germination niche was conducted in coastal plant communities of western Europe. Two hypotheses were tested, that (1) the germination niche shape (i.e. the preference for a set of germination cues as opposed to another) would differ between beaches and cliffs to prevent seedling emergence in the less favourable season (winter and summer, respectively); and (2) the germination niche breadth (i.e. the amplitude of germination cues) would be narrower in the seawards communities, where environmental filtering is stronger. Seeds of 30 specialist species of coastal plant communities were collected in natural populations of northern Spain. Their germination was measured in six laboratory treatments based on field temperatures. Germination niche shape was estimated as the best germination temperature. Germination niche breadth was calculated using Pielou's evenness index. Differences between plant communities in their germination niche shape and breadth were tested using phylogenetic generalized least squares regression (PGLS). Germination niche shape differed between communities, being warm-cued in beaches (best germination temperature = 20 °C) and cold-cued in cliffs (14 °C). Germination niche was narrowest in seawards beaches (Pielou's index = 0·89) and broadest in landwards beaches (0·99). Cliffs had an intermediate germination niche breadth (0·95). The relationship between niche and plant community had a positive phylogenetic signal for shape (Pagel's λ = 0·64) and a negative one for breadth (Pagel's λ = -1·71). Environmental filters shape the germination niche to prevent emergence in the season of highest threat for seedling establishment. The germination niche breadth is narrower in the communities with stronger environmental filters, but only in beaches. This study provides empirical support to a community-level generalization of the hypotheses about the environmental drivers of the germination

  9. Influence of the testa on seed dormancy, germination and longevity in Arabidopsis

    NARCIS (Netherlands)

    Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M.

    2000-01-01

    The testa of higher plant seeds protects the embryo against adverse environmental conditions. Its role is assumed mainly by controlling germination through dormancy imposition and by limiting the detrimental activity of physical and biological agents during seed storage. To analyze the function of

  10. Effect of palm bunch ash on the seed germination, seedling growth ...

    African Journals Online (AJOL)

    The work was carried out to study the effects of Palm Bunch Ash (PBA) on seed germination, seedling growth and biochemical parameters of Soybean. Soybean seeds were raised in petri-dishes and irrigated with different concentrations of PBA (0-control, 10, 25,40,65,80 and 100%). At lower concentrations, PBA had ...

  11. Elucidating hormonal/ROS networks during seed germination: insights and perspectives

    DEFF Research Database (Denmark)

    Diaz-Vivancos, Pedro; Barba Espin, Gregorio; Hernández, José Antonio

    2013-01-01

    While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using “-omics...

  12. A functional analysis of cell cycle events in developing and germinating tomato seeds

    NARCIS (Netherlands)

    Castro, de R.D.

    1998-01-01

    Seeds are complex biological structures and the primary dispersal units of higher plants. They consist of nutrient reserve storage tissue(s), an embryo and encapsulating structures designated for protection and that may also regulate germination. Seeds have developed mechanisms of

  13. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight

    DEFF Research Database (Denmark)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-01-01

    Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first...... provides the first molecular insight into Fusarium seedling blight....

  14. Recovery and germination of Dichrostachys cinerea seeds fed to goats (Capra hircus)

    CSIR Research Space (South Africa)

    Tjelele, JT

    2012-01-01

    Full Text Available that of seeds that passed through the digestive system in the mixed (35.5%) or gavaged (31.2%) treatments or were untreated (19.0%; P < 0.001). Seeds that passed through the digestive tract (mixed and gavaged treatments) had a significantly higher germination...

  15. Effect of harvest stage and drying methods on germination and seed ...

    African Journals Online (AJOL)

    Germination of seed and infection by seed-borne fungi of two maize varieties DMRLSR-W and DMRLSRY as affected by stage of harvest and method of drying were studied in the growing seasons of year 2002 and 2003 at the Institute of Agricultural Research and Training, Moor Plantation, Ibadan, Nigeria. The experiment ...

  16. Effect of hormone on the seed germination of Garcinia kola Heckel ...

    African Journals Online (AJOL)

    Garcinia kola plays an important socioeconomic role in the Africa culture. Inspite of this, the plant only exists in the wild or as part of left over in the Agroforestry farms. Therefore, this research examined the phenology in seed germination for possible plantation establishment. G. kola seed dormancy and growth was ...

  17. Effects of Fungal Filtrates on Seed Germination and Leaf Anatomy of ...

    African Journals Online (AJOL)

    This study was carried out to investigate the effects of 7-day-old fungal filtrates of Aspergillus niger and Penicillium chrysogenum isolated from maize seeds on percentage germination, morphological and anatomical structures of maize seedlings. The seeds were soaked in culture filtrate of each fungus for 12hrs before ...

  18. Evolution of 'smoke' induced seed germination in pyroendemic plants

    Science.gov (United States)

    Keeley, J. E.; Pausas, J.G.

    2016-01-01

    Pyroendemics are plants in which seedling germination and successful seedling recruitment are restricted to immediate postfire environments. In many fire-prone ecosystems species cue their germination to immediate postfire conditions. Here we address how species have evolved one very specific mechanism, which is using the signal of combustion products from biomass. This is often termed ‘smoke’ stimulated germination although it was first discovered in studies of charred wood effects on germination of species strictly tied to postfire conditions (pyroendemics). Smoke stimulated germination has been reported from a huge diversity of plant species. The fact that the organic compound karrikin (a product of the degradation of cellulose) is a powerful germination cue in many species has led to the assumption that this compound is the only chemical responsible for smoke-stimulated germination. Here we show that smoke-stimulated germination is a complex trait with different compounds involved. We propose that convergent evolution is a more parsimonious model for smoke stimulated germination, suggesting that this trait evolved multiple times in response to a variety of organic and inorganic chemical triggers in smoke. The convergent model is congruent with the evolution of many other fire-related traits.

  19. [Seed germination of four tree species from the tropical dry forest of Valle del Cauca, Colombia].

    Science.gov (United States)

    Vargas Figueroa, Jhon Alexander; Duque Palacio, Olga Lucía; Torres González, Alba Marina

    2015-03-01

    The ecological restoration strategies for highly threatened ecosystems such as the tropical dry forest, depend on the knowledge of limiting factors of biological processes for the different species. Some of these include aspects such as germination and seed longevity of typical species present in those forests. In this study, we evaluated the effect of light and temperature on seed germination of two Fabaceae (Samanea saman and Jacaranda caucana) and two Bignoniaceae (Pithecellobium dulce and Tabebuia rosea) species having potential use in restoration, and we analyzed the seed storage behavior of these species for a three months period. To study the light effect, four levels of light quality on seeds were used (photoperiod of 12 hours of white light, darkness and light enriched in red and far-red, both for an hour each day), and we combined them with three levels of alternated temperatures (20/25, 20/30 and 25/30*C-16/8h). For the storage behavior, two levels of seed moisture content particular for each species were used (low: 3.5-6.1% and high: 8.3-13.8%), with three storage temperatures (20, 5 and -20 degrees C) and two storage times (one and three months). The criterion for germination was radicle emergence which was measured in four replicates per treatment, and was expressed as percentage of germination (PG). There were significant differences in germination of Samanea saman and Jacaranda caucana among light and temperature treatments, with the lowest value in darkness treatments, whereas germination of Pithecellobium dulce and Tabebuia rosea did not differ between treatments (PG>90%). The most suitable temperature regime to promote germination in all species was 25/30 degrees C. These four species showed an orthodox seed storage behavior. We concluded that seeds of R dulce, J. caucana and T. rosea did not have an apparent influence of all light conditions tested in their germination response, which might confer advantages in colonization and establishment

  20. How to analyze germination of species with empty seeds using contemporary statistical methods?

    Directory of Open Access Journals (Sweden)

    Denise Garcia de Santana

    2018-02-01

    Full Text Available ABSTRACT Statistical analysis is considered an important tool for scientific studies, including those on seeds. However, seed scientists and statisticians often disagree on the nature of variables addressed in germination experiments. Statisticians consider the number of germinated seeds to be a binomially distributed variable, whereas seed scientists convert it into a percentage and often analyze it as a normally distributed variable. The requirement for normal adjustment restricts the models of analysis of variance that can be used. Lack of fit requires nonparametric tests, but they are known by their inferential problems. Generalized Linear Models (GLM can provide better fit to germination variables for any species, including Lychnophora ericoides Mart., because they allow wider probability distributions with fewer requirements. Here we suggest the use of relative germination besides absolute germination for species with seed development problems, such for L. ericoides and others from the campos rupestres. This paper introduces the most current statistical advancements and increases the possibilities for their application in seed science research.

  1. Study of Different Priming Treatments on Germination Traits of Soybean Seed Lots

    Directory of Open Access Journals (Sweden)

    Hossein Reza ROUHI

    2011-03-01

    Full Text Available Oilseeds are more susceptible to deterioration due to membrane disruption, high free fatty acid level in seeds and free radical production. These factors are tended to less vigorous seed. Priming treatments have been used to accelerate the germination and seedling growth in most of the crops under normal and stress conditions. For susceptible and low vigor soybean seed, this technique would be a promising method. At first, in separate experiment, effects of hydropriming for (12, 24, 36 and 48 h with control (none prime were evaluated on germination traits of soybean seed lots cv. �Sari� (include 2 drying method and 3 harvest moisture. Then, next experiment was conducted to determination the best combination of osmopriming in soybean seed lots, hence 3 osmotic potential level (-8, -10 and -12 bar at 4 time (12, 24, 36 and 48 h were compared. Analysis of variance showed that, except for seedling dry weight, the other traits include standard germination, germination rate, seedling length and vigor index were influenced by osmopriming. Hydropriming had no effect on these traits and decreased rate of germination. Finally the best combination of osmopriming were osmotic potential -12 bar at 12 hours for time, that submitted acceptable result in all conditions and recommended for soybean seed lots cv. �Sari�.

  2. Study of Different Priming Treatments on Germination Traits of Soybean Seed Lots

    Directory of Open Access Journals (Sweden)

    Hossein Reza ROUHI

    2011-03-01

    Full Text Available Oilseeds are more susceptible to deterioration due to membrane disruption, high free fatty acid level in seeds and free radical production. These factors are tended to less vigorous seed. Priming treatments have been used to accelerate the germination and seedling growth in most of the crops under normal and stress conditions. For susceptible and low vigor soybean seed, this technique would be a promising method. At first, in separate experiment, effects of hydropriming for (12, 24, 36 and 48 h with control (none prime were evaluated on germination traits of soybean seed lots cv. Sari (include 2 drying method and 3 harvest moisture. Then, next experiment was conducted to determination the best combination of osmopriming in soybean seed lots, hence 3 osmotic potential level (-8, -10 and -12 bar at 4 time (12, 24, 36 and 48 h were compared. Analysis of variance showed that, except for seedling dry weight, the other traits include standard germination, germination rate, seedling length and vigor index were influenced by osmopriming. Hydropriming had no effect on these traits and decreased rate of germination. Finally the best combination of osmopriming were osmotic potential -12 bar at 12 hours for time, that submitted acceptable result in all conditions and recommended for soybean seed lots cv. Sari.

  3. Seed dispersal and germination patternsin a rare Mediterranean island endemic ( Anchusa crispa Viv., Boraginaceae)

    Science.gov (United States)

    Quilichini, Angélique; Debussche, Max

    2000-12-01

    We analyse and discuss patterns of seed dispersal and germination of a rare endemic plant species, Anchusa crispa Viv. (Boraginaceae) from Corsica and Sardinia. This coastal plant inhabits dunes and back-dunes, and currently numbers only a few thousand individuals which generally occur in isolated populations. This study included experiments conducted in the field in Corsica and also under controlled conditions in the laboratory. Short-distance dispersal of A. crispa is performed by ants, both by myrmecochory and dyszoochory. The invasion of an exotic species of ant, Linepithema humile, could locally modify the dispersal system and possibly the population dynamics of A. crispa. Long-distance dispersal may occur by water transport since seeds can germinate after at least 1 week of immersion in seawater and readily float on the surface. Burial of seeds is favourable for germination, percentage germination being maximised at a depth of 1-2 cm below the soil surface. A. crispa has a seed bank of about ten viable seeds per m 2, which may contribute to the survival of this species which exists in small populations with a short life span. Due to its seed dispersal and germination patterns, the conservation of this species will necessitate that human disturbance, which can destabilise the surface of the sand is prevented and that new populations are introduced to favourable sites.

  4. The Effect of Accelerated Aging on Germination Characteristics, Seed Reserve Utilization and Malondialdehyde Content of Two Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    Maryam Goodarzian Ghahfarokhi

    2014-05-01

    Full Text Available In this study experiment was conducted to evaluated the effect of accelerated aging on germination characteristics, seed reserve utilization and malondialdehyde of two wheat cultivars. The experiment was conducted in factorial with a randomized complete block design with 3 replications. Results of variance analysis showed that, seed aging had significant effects on germination percentage, germination index, normal seedling percentage, mean time to germination, malondialdehyde content, seedling dry weight, weight of utilized (mobilized seed reserve and electrical conductivity. The highest germination percentage, germination index, normal seedling percentage, seedling dry weight and weight of utilized (mobilized seed reserve and the minimum mean time to germination, electrical conductivity and malondialdehyde content were attained from Verinak cultivar under control conditions (0 day aging. Results indicates that germination percentage, germination index, normal seedling percentage, seedling dry weight, and weight of utilized (mobilized seed reserve decreased significantly as seed aging progressed. But, mean time to germination, electrical conductivity and malondialdehyde content increased significantly as seed aging progressed. Also, the decrease in seed reserve mobilization rate was the cause of decreased other traits.

  5. Specificity of germination of heteromorphic seeds in four annuals (Salsola L.) at different temperatures in the Junggar basin

    International Nuclear Information System (INIS)

    Ning, L.; Feng, L.H.; Chi, L.Z.; Xia, C.Z.

    2015-01-01

    Salsola L. is a large genus of arid desert plants that are primarily distributed in the Junggar Basin, China. We analysed their ability to adapt to arid habitats by comparing differences in germination characteristics of the species and populations of Salsola affinis C. A. Mey, Salsola korshinskyi Drob., Salsola brachiata Pall. and Salsola nitraria Pall. We classified the 4 species into four types (A, B, C and D) according to seed wing and seed size, and the heteromorphic seeds were incubatedunder different temperature regimes (0/10 degree C, 5/15 degree C, 10/25 degree C and 20/35 degree C). The 4 species had the highest germination rates and germination potential at 0/1 C. Germination rates and potential decreased with increasing temperature. However, the change range of the germination rate among the four species was different. Type A and B seeds of S. affinis, S. nitraria and S. korshinskyi were dominant at all temperatures and decreased with increasing temperature. The germination rate of type C seeds was between that of type A, B and D seeds. D-type seeds had the lowest germination rate and the lowest germination potential under the four temperature regimes among the four species but the differences were not significant. The germination rates of the four types of S. brachiata seeds did not significantly change with temperature. These results suggest that Salsola spp. can germinate continuously from spring to autumn to adapt to moisture fluctuations in the desert. (author)

  6. Effects of some phenolic compounds on soybean seed germination and on seed-borne fungi

    Directory of Open Access Journals (Sweden)

    Flávia Tavares Colpas

    2003-03-01

    Full Text Available Studies were carried out on the effects of coumarin, ferulic acid and naringenin on soybean seed germination and on the growth of seed-borne fungi at concentrations of 50 and 100 mg.L-1. The compounds showed good inhibition of seed germination, especially at 50 mg.L-1, but little fungistatic activity. Possible mechanisms of action are discussed.Os compostos fenólicos são metabólitos secundários importantes na ecologia vegetal, especialmente em relações alelopáticas e interações com microorganismos, sendo sintetizados principalmente através da via do ácido chiquímico. Neste trabalho, os efeitos de cumarina, ácido ferúlico e naringenina sobre a germinação de sementes de soja e sobre o crescimento de fungos contaminantes foram investigados, nas concentrações de 50 e 100 mg.L-1. A germinação das sementes e o crescimento dos fungos foram estudados através de método do rolo de papel e do método do papel de filtro, respectivamente. Os compostos mostraram alta inibição da germinação das sementes, principalmente a 50 mg.L-1, porém baixa atividade fungistática. Possíveis mecanismos de ação são discutidos.

  7. Effect of sequential dry heat and hydrogen peroxide treatment on inactivation of Salmonella Typhimurium on alfalfa seeds and seeds germination.

    Science.gov (United States)

    Hong, Eun-Jeong; Kang, Dong-Hyun

    2016-02-01

    The purpose of this study was to inactivate Salmonella Typhimurium on alfalfa seeds without having negative effect on seed germination. Inoculated alfalfa seeds were treated with dry heat at 60, 70 or 80 °C for 0, 12, 18 or 24 h followed by 2% hydrogen peroxide solution (10 min). Populations of Salmonella on alfalfa seeds treated with dry heat alone (60, 70 or 80 °C) for up to 24 h were reduced by 0.26-2.76 log CFU/g, and sequential treatment with dry heat and H2O2 reduced populations by 1.66-3.60 log CFU/g. The germination percentage of seeds subjected to sequential treatments was significantly enhanced to up to 97%, whereas that of untreated seeds was only 79.5%. This study suggests that sequential treatment with dry heat and hydrogen peroxide is applicable for reducing levels of Salmonella on seeds while simultaneously enhancing seeds germinability. Copyright © 2015. Published by Elsevier Ltd.

  8. Researches Regarding the Biostimulators Effect Upon the Germination Capacities Seeds of Alfalfa

    Directory of Open Access Journals (Sweden)

    Ioan Pet

    2010-10-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction. We present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on alfalfa seeds have led to the conclusion that the per cent of germinated seeds ranges from 95.66%. In the untreated control variant, to 99.33% in the variant treated with the product Stimupro and Mega grow.

  9. Cypripedium calceolus germination in situ: seed longevity, and dormancy breakage by long incubation and cold winters

    Directory of Open Access Journals (Sweden)

    Hanne N. Rasmussen

    2012-02-01

    Full Text Available A successful in situ germination experiment with Cypripedium calceolus, the European Lady’s slipper, is reported here for the first time. The seeds originated from controlled pollinations within and between two closely related Danish populations. The seeds were sown ripe in seed packets in proximity of mother plants. Germination was first observed after 4.5 y in the ground, following two successive cold and snowy winters, and only in one population. Seedlings expanded through the sides of the broken testa and were hair-less. A corresponding set of seeds, germinated in vitro as asymbiotic controls, responded positively to repeated cold stratifications after long incubation, suggesting that time (leaching? and chilling are dormancy breakage factors.

  10. 60Co γ-ray irradiation effect on germination and seedling growth of dry Buchloe dactyloides seeds

    International Nuclear Information System (INIS)

    Wang Wen'en; Zhang Junwei; Bao Manzhu

    2005-01-01

    The dry seeds of Buchloe dactyloides were irradiated by γ-ray at dose of 25-300 Gy. Seed germination and seedling characters were surveyed in laboratory and field. The results indicated that radiation could promote seed germination, and the optimum dose was 100 Gy. The dose of 150 Gy was the up limit to germination rate, root length and seedling height in field. When the radiation dose was bellow 100 Gy, the fresh weight of stems, leaves and roots of seedlings were increased. From this study, the recommended radiation does for Buchloe dactyloides dry seeds treatment was between 100-150 Gy for the purpose of promoting germination. (authors)

  11. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid.

    Science.gov (United States)

    Rhie, Y H; Lee, S Y; Kim, K S

    2015-03-01

    The genus Jeffersonia, which contains only two species, has a trans-Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3 ) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy-breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10-11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l(-1) GA3 , followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Full Length Research Paper Seed germination and in vitro plant ...

    African Journals Online (AJOL)

    Parkia biglobosa is an important leguminous forest species which is being threatened of going into extinction in Senegal. To preserve this genetic resource of great economic value, studies on germination were carried out and in vitro conservation option through tissue culture technique was adopted. 100% of germination ...

  13. Seed germination of medicinal sage is affected by gibberellic acid, magnetic field and laser irradiation.

    Science.gov (United States)

    Abdani Nasiri, A; Mortazaeinezhad, F; Taheri, R

    2018-01-01

    Proper priming techniques are among the most important methods for increasing seed germination and seedling growth. Three experiments were conducted to investigate the effects of plant hormone (500 and 1000 mg/L gibberellic acid (GA)), magnetic field (3, 15, 30 mili Tesla (mT)) and laser irradiation at 650 nm (200 mW) on the germination and the growth of Salvia officinalis. We examined the plumule and radical length, plumule and radical fresh weight, plumule and radical dry weight, germination percentage, germination rate and seed vigor. The two concentrations of GA significantly increased seed germination and seedling growth. The magnetic field at 15 mT significantly increased radical length. The effect of laser irradiation was also significant on plumule length, and fresh and dry weight, radicle fresh weight, germination percentage and rate and seed vigor. Such results may be of practical use in the field, especially in arid and semiarid areas, but more research must determine the response of medicinal sage, treated with the priming techniques tested in our experiments, under stress conditions.

  14. Germination of corn seeds with different levels of vigor in response to differents temperatures

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Gasparetto Sbrussi

    2014-02-01

    Full Text Available The objective of this study was to evaluate the performance of maize seeds with different levels of vigor at different germination temperature. To this was used six seed lots of hybrid corn Balu-580 with similar germination potential, but different level of vigor. After the initial characterization of the lots, the effects of temperature were determined by first counting and the germination test conducted on paper substrate germitest, at 16, 19, 22, 25, 28, 31, 34, 37 and 40 °C. The data obtained in the initial characterization of the lots were subjected to analysis of variance and means were compared by Tukey test (p < 0,05. In the study of the effect of adverse conditions of temperature on first counting and germination was carried out the analysis of variance following a completely randomized design, factorial scheme 6 X 9. Low temperatures slowed the germination of seeds, especially those of low vigor, and there was no germination at 16 ° C. Lots of smaller effect were also more susceptible to high temperatures, with higher percentages of abnormal seedlings and ungerminated seeds.

  15. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Directory of Open Access Journals (Sweden)

    Ming-Ming Zhao

    Full Text Available Dendrobiumofficinale (Orchidaceae is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs were clustered to 1074 Unigenes (including 902 singletons and 172 contigs, which were searched against the NCBI non-redundant (NR protein database (E-value cutoff, e(-5. Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO, Clusters of orthologous Groups of proteins (COGs and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS. The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs, which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS, were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  16. The influence of cadmium and lead on Ulmus pumila L. seed germination and early seedling growth

    Directory of Open Access Journals (Sweden)

    Đukić Matilda

    2014-01-01

    Full Text Available The aim of this paper was to examine how the heavy metals cadmium (Cd and lead (Pb influence the germination and early growth of seedlings of the fast-growing tree species Ulmus pumila L. Seeds were germinated and seedlings were hydroponically grown in a solution with Cd-nitrate and Pb-nitrate at concentrations of 20 μM, 50 μM and 90 μM. Our results show that seeds can germinate in the presence of these two heavy metals at all of the applied concentrations with no significant reduction in qualitative (germination capacity, germination energy or quantitative (germination intensity, mean germination period germination parameters as compared to the controls. Early seedling development was also possible at higher concentrations of both heavy metals. Cd reduced hypocotyl length, but not significantly the length of radicles. Pb did not influence hypocotyl length and stimulated radicle length significantly (95%. These results could mark a step forward in defining the tolerance of U. pumila to the presence of Cd and Pb, and to the possibility of using this fast-growing tree which is resistant to different abiotic and biotic stresses, for phytoremediation or soil reclamation purposes. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  17. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  18. Drying on the germination and vigor of Crataeva tapia L. seeds

    Directory of Open Access Journals (Sweden)

    Edna Ursulino Alves

    Full Text Available ABSTRACT: Crataeva tapia L. is a fruit native to the Brazilian savanna, the Caatinga, and is used in the production of soft drinks and other beverages. Given the importance of this species and the lack of knowledge about its seeds, this research aimed to evaluate the physiological quality of C. tapia L. seeds subjected to different environments and drying periods. Seeds were dried for the following time periods: 0 (no drying, 24, 48, 72, 96, and 120 hours, in the laboratory environment (25°C and 90% RH and in a greenhouse (30°C and 80% RH. After the drying period, seeds from each of the treatments were used for determining the water content, germination, and vigor (using tests for emergence, first count of germination and emergence, rate of germination and emergence, length, and seedling dry weight. The experimental design was completely randomized and a factorial 2×6 scheme (local environment × drying periods was used with four replicate sets of seeds. The data were subjected to analysis of variance and polynomial regression using quadratic models. The germination and seed vigor reduced as the drying periods increased. For optimum results, the seeds of C. tapia L. must be dried in the laboratory for a period of 48 hours. In addition, their desiccation resistance was classified as intermediate.

  19. Seed viability and functional properties of broccoli sprouts during germination and postharvest storage as affected by irradiation of seeds.

    Science.gov (United States)

    Waje, Catherine K; Jun, So-Yun; Lee, Yeon-Kyung; Moon, Kwang-Deog; Choi, Yong Hee; Kwon, Joong-Ho

    2009-06-01

    The viability of broccoli seeds and functional properties, such as ascorbic acid, carotenoid, chlorophyll, and total phenol contents, of broccoli sprouts grown from irradiated seeds were evaluated. The seeds were irradiated using electron beam and gamma ray at doses up to 8 kGy. High germination percentages (>90%) were observed in seeds irradiated at or =6 kGy resulted in curling of the sprout roots. Germinated seeds contained higher amounts of nutrients than raw seeds but the nutritional quality of sprouts decreased during postharvest storage. Radiation treatment hampered the growth of irradiated seeds resulting in underdeveloped sprouts with decreased ascorbic acid, carotenoid, and chlorophyll contents. In addition, the decrease in functional content of sprouts was more substantial in samples grown from high-dose (5 kGy) irradiated seeds than that of the low-dose (1 kGy) treated ones. Seed irradiation did not negatively affect the total phenol content of sprouts. In general, electron beam and gamma irradiation of broccoli seeds showed similar effects on the viability and functional properties of sprouts.

  20. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    Science.gov (United States)

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. © 2015 John Wiley & Sons Ltd.

  1. Mobilization of storage materials during light-induced germination of tomato (Solanum lycopersicum) seeds.

    Science.gov (United States)

    Eckstein, Aleksandra; Jagiełło-Flasińska, Dominika; Lewandowska, Aleksandra; Hermanowicz, Paweł; Appenroth, Klaus-J; Gabryś, Halina

    2016-08-01

    The aim of this study was to analyze the metabolism of storage materials in germinating tomato (Solanum lycopersicum) seeds and to determine whether it is regulated by light via phytochromes. Wild type, single and multiple phytochrome A, B1 and B2 mutants were investigated. Imbibed seeds were briefly irradiated with far-red or far-red followed by red light, and germinated in darkness. Triacylglycerols and starch were quantified using biochemical assays in germinating seeds and seedlings during the first 5 days of growth. To investigate the process of fat-carbohydrate transformation, the activity of the glyoxylate cycle was assessed. Our results confirm the role of phytochrome in the control of tomato seed germination. Phytochromes A and B2 were shown to play specific roles, acting antagonistically in far-red light. While the breakdown of triacylglycerols proceeded independently of light, phytochrome control was visible in the next stages of the lipid-carbohydrate transformation. The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were regulated by phytochrome(s). This was reflected in a greater increase of starch content during seedling growth in response to additional red light treatment. This study is the first attempt to build a comprehensive image of storage material metabolism regulation by light in germinating dicotyledonous seeds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Huang, Dejian

    2011-06-08

    The effects of food grade fungus Rhizopus oligosporus stress on phytochemicals and phytoalexins of germinating peanut seeds were investigated by comparing the metabolic profiles of ungerminated (UG), germinated (G), and germinated seeds under fungal stress (GS). Three types of peanut seeds with different skin color (red, reddish brown, and black) were compared in the process. The polyphenolic contents were analyzed and correlated with antioxidant capacity for specific free radicals including peroxyl radical ROO(•) (ORAC), hydroxyl radical HO(•) (HORAC), superoxide radical O(2)(•-) (SORAC), and DPPH radical. The polyphenolic fingerprints analyzed by HPLC and LC-MS(n) showed that phenolic acids (coumaric, sinapinic, and ferulic acids derivatives) were the major group of phenolic compounds in ungerminated seeds. G or GS increased the level of phenolic acids, phytoalexins, and antioxidant capacity values in reddish and red peanuts but not in black peanuts. From the LC-MS(n) spectral data, 45 compounds were identified tentatively in the germinated peanuts, including 14 coumaric acids, 3 ferulic acids, 4 sinapinic acids, 2 hydroxybenzoic acids, 1 caffeic acid, 2 flavonoids, and 19 stilbenoids derivatives. Reddish brown germinated peanuts produced the highest amount of phytoalexins after GS with 55 compounds detected. Forty-five of these compounds were suggested as stilbenoid phytoalexins derivatives. The high content of phytoalexins may enhance the bioactivity of peanut seeds as functional food ingredients.

  3. Sonication of seeds increase germination performance of sesame under low temperature stress

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-11-01

    Full Text Available A laboratory experiment was conducted to determine the effect of ultrasound (US exposure time on germination behavior of sesame seeds. All tests were carried out at 20 kHz in a water bath ultrasonic device varying two factors, treatment duration (10, 20 and 30 min and germination temperature (15, 20 and 25 ºC. Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. US treatments enhanced seeds water uptake. At mild exposure time it improved sesame seed germination performance and seedling growth at suboptimal temperatures as indicated by higher germination percentage and germination rate. US applying for 20 min had relatively high superoxide dismutase activity; however, had not significant differences with control and US duration for 10 min. The catalase activity was strongly increased by applying the US for a 10 and 20 min. Among the treatments, application of US vibration for 10 and 20 min reduced both of malondialdehyde and H2O2 contents, however high US duration (30 min increased both of the traits. In general, ultrasonic priming technique can be useful for early planting the sesame seeds, and lead to higher yields.

  4. Fire cue effects on seed germination of six species of northwestern Patagonian grasslands

    Science.gov (United States)

    Gonzalez, S. L.; Ghermandi, L.

    2012-09-01

    Postfire recruitment of seedlings has been attributed to a stimulation of germination by fire-related cues. The germination response to heat shock (80 °C - 5 min), smoke (60 min), the combination of both factors and no heat no smoke (control) was studied in six native species (two dominant grasses, two dominant shrubs and two annual fugitive herbs) of northwestern Patagonian grasslands. Seeds of the grasses Festuca pallescens and Stipa speciosa and the shrub Senecio bracteolatus (Asteraceae) germinated when they were exposed to heat shock, whereas seeds of the other shrub, Mulinum spinosum (Apiaceae), were killed by this fire cue. In grasses, probably the glume of caryopsis protected embryos from heat. Possibly, the seed size could explain the different responses of the two shrubs. Heat combined with smoke reduced seed germination for S. speciosa and S. bracteolatus. The heat could have scarified seeds and the longer exposure to smoke could have been toxic for embryos. The same treatment increased germination of the annual fugitive herb Boopis gracilis (Calyceraceae). We concluded that fire differentially affects the seedling recruitment of the studied species in the northwestern Patagonian grasslands.

  5. Seed ageing-induced inhibition of germination and post-germination root growth is related to lower activity of plasma membrane H(+)-ATPase in maize roots.

    Science.gov (United States)

    Sveinsdóttir, Hólmfrídur; Yan, Feng; Zhu, Yiyong; Peiter-Volk, Tina; Schubert, Sven

    2009-01-30

    Seeds of most crops can be severely damaged and lose vigor when stored under conditions of high humidity and temperature. The aged seeds are characterized by delayed germination and slow post-germination growth. To date, little is known about the physiological mechanisms responsible for slow root growth of seedlings derived from aged seeds. Plasma membrane H(+)-ATPase is a universal H(+) pump in plant cells and is involved in various physiological processes including the elongation growth of plant cells. In the present study, we investigated the effect of a mild seed ageing treatment on plasma membrane H(+)-ATPase activity of seedling roots. Maize (Zea mays L.) seeds with 17% water content were aged at 45 degrees C for 30h. The aged seeds showed a 20% reduction in germination. Seedlings from aged seeds grew slowly during an experimental period of 120h after imbibition. Plasma membranes of maize seedling roots were isolated for investigation in vitro. Plasma membrane H(+)-ATPase (EC 3.6.3.6) activity was 14% lower for seedling roots developed from aged seeds as compared to control seeds. Protein gel immunoblotting analysis demonstrated that the reduced activity of plasma membrane H(+)-ATPase was attributed to a decrease in steady-state protein concentration of this enzyme. In conclusion, seed ageing causes a lower steady-state enzyme concentration of the H(+)-ATPase in the plasma membrane, which is related to slow germination and post-germination growth of seedling roots.

  6. Changes in non-enzymatic antioxidant capacity and lipid peroxidation during germination of white, yellow and purple maize seeds

    International Nuclear Information System (INIS)

    Deng, B.; Zhang, Y.; Yang, K.

    2016-01-01

    In this study, the changes in non-enzymatic antioxidant capacity and lipid peroxidation during the germination process of purple, yellow and white maize seeds were compared, under favorable conditions. Results showed that germination can increase non-enzymatic antioxidant capacity (evaluated with ferric reducing power and 2, 2-diphenyl-1-picryl-hydrazyl-hydrate radical scavenging capacity) and lipid peroxidation levels for all these seeds. In addition, non-enzymatic antioxidant capacity observed in the germinating seeds were in the order of purple > yellow > white. However, the highest and lowest levels of lipid peroxidation could be seen during the germination processes of the white and purple seeds, respectively. In addition, the germination rates of the seeds followed the order of white > yellow > purple. Further studies showed that H/sub 2/O/sub 2/ treatment can significantly promote seed germination, especially for purple seeds. In addition, DMTU (dimethylthiourea), a specific scavenger for H/sub 2/O/sub 2/, could slightly but significantly arrest dormancy release. Data analysis showed that a high negative correlation (R/sup 2/ = -0.955) existed between non-enzymatic antioxidant capacity and germination rates. However, a high positive correlation (R/sup 2/ = 0.860) could be detected between lipid peroxidation and germination rates. Finally, lipid peroxidation as a possible novel signaling mechanism for seed germination has been discussed under stress-free conditions. (author)

  7. Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds.

    Science.gov (United States)

    Sano, Naoto; Permana, Hadian; Kumada, Ryota; Shinozaki, Yoshihito; Tanabata, Takanari; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2012-04-01

    Dry seeds contain translatable, long-lived mRNAs that are stored during seed maturation. Early studies using transcriptional inhibitors supported the view that protein synthesis during the initial phase of germination occurs on long-lived mRNA templates. Rice seeds were treated with the transcriptional inhibitor actinomycin D (Act D), and the embryonic proteins translated from long-lived mRNAs during germination were identified using a proteomic analysis. De novo transcription was not required for germination of rice seeds, since >80% of seeds germinated when transcription was prevented by treatment with Act D. In contrast, germination was completely inhibited in the presence of cycloheximide, an inhibitor of translation. Thus, de novo protein synthesis is necessary for germination of rice seeds. The proteomic analysis revealed that 20 proteins are up-regulated during germination, even after Act D treatment. Many of the up-regulated proteins are involved in carbohydrate metabolism and cytoskeleton formation. These results indicate that some of the germination-specific proteins involved in energy production and maintenance of cell structure in rice seeds are synthesized from long-lived mRNAs. The timing of translation of eight up-regulated proteins was clearly later than that of the other up-regulated proteins under conditions in which transcription was inhibited by Act D, suggesting that translation of long-lived mRNAs in rice seeds is regulated according to the germination phase.

  8. Changes in Activities of Three Enzymes Degrading Galactomannan During and Following Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Yan-fang REN

    2007-12-01

    Full Text Available To investigate the relationships among β-mannanase, β-mannosidase and α-galactosidase required for degrading galactomannan in cell wall during and following rice seed germination, the activities of the three enzymes and the effects of ABA and GA3 on them were surveyed. The activities of β-mannosidase and α-galactosidase presented in dry and pre-germinated rice seeds, and increased slowly during and following germination. However, the activity of β-mannanase was detected only after germination. GA3 could promote the activities of β-mannanase and α-galactosidase. ABA had little effect on the activities of β-mannosidase and α-galactosidase, but it could seriously inhibit the activity of β-mannanase.

  9. Temperature requirements for seed germination of Pereskia aculeata and Pereskia grandifolia.

    Science.gov (United States)

    Souza, Lucéia F; Gasparetto, Bruno F; Lopes, Rodrigo R; Barros, Ingrid B I

    2016-04-01

    Pereskia aculeata and Pereskia grandifolia have been studied widely due to their high nutritional and therapeutic values. However, little is known about the biological requirements of their seeds for the various germination factors. Thus, this experiment aimed to evaluate the thermal effects on the germination of these species at the temperatures of 24°C, 27°C, 30°C, 33°C and 36°C. After verification of the existence of differences in the performance of germination, a non-linear regression was carried out, relating the germination to temperature and identifying its point of maximum efficiency. We found that the lowest synchronization indexes of germination were observed close to 30°C. The best germination response of the P. aculeata and P. grandifolia was observed at 30°C and 33°C, respectively, with greater germination strength and fewer days to attain 63.21% of germinations. The results obtained from the germination of P. aculeata and P. grandifolia can be described by the Weindull distribution model with three parameters, as proposed by Carneiro and Guedes (1992). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of gut passage on the germination of seeds ingested by didelphid marsupials in a neotropical savanna

    Directory of Open Access Journals (Sweden)

    Leonardo Guimarães Lessa

    2013-09-01

    Full Text Available We analyzed the effects that passage through the guts of seven didelphid species had on the seed germination of 10 plant species. This study was conducted in an area of riparian woodland in a cerrado (savanna reserve in southeastern Brazil. We found seeds of 23 angiosperm species in 427 fecal samples obtained from seven didelphid species. The plant families most often represented by the seeds found in the fecal samples were Melastomataceae (5 species and Rubiaceae (4 species . Most gut-passed seeds showed no significant difference in germinability when compared with the hand-extracted seeds. Among the ingested seeds, only those of Clidemia urceolata DC. (Melastomataceae and Myrcia sp. (Myrtaceae showed an increase in germinability (final proportion of germinated seeds, indicating that didelphid gut passage does not always benefit seed germination. The average germination time of consumed seeds ranged from 12 days (Cipocereus minensis (Werderm. Ritter to 171 days (Cordiera sessilis (Vell. Kuntze. The small number of seeds destroyed after gut passage and the results obtained during the germination experiments underscore the importance of didelphid marsupials to the dynamics of plant reproduction, especially those of small-seeded cerrado species.

  11. The effect of fertilizer level and foliar-applied calcium on seed production and germination of Gerbera hybrida

    DEFF Research Database (Denmark)

    Andreasen, Christian; Kemezys, Andrius Hansen; Müller, Renate

    2014-01-01

    an additional foliar calcium application influenced the same parameters. Subsequently, the effect of the various treatments on the germination of the obtained seeds was explored. Two identical experiments (A and B) were carried out with five concentrations of nutrient solutions corresponding to an electrical...... and seed number, but seed weight and plant biomass were significantly reduced at the highest fertilizer concentration. In both experiments, the seeds germinated slower and less seeds germinated when plants had received the largest amount of fertilizer (6.25 mS·cm-1). In none of the experiments did applied...

  12. The Effect of Salinity on Seed Germination and Seedling Growth of Four Medicinal Plant Species

    Directory of Open Access Journals (Sweden)

    H Javadi

    2014-07-01

    Full Text Available To study the effect of salinity stress on seed germination and seedling growth of four medicinal plants, Nigella sativa L., Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus L. an experiment was conducted in the botany laboratory of Islamic Azad University, Birjand branch. A completely randomized design (CRD with 3 replications was used as separately for each species. Treatments were consisted of six salinity (NaCl concentrations (0, 4, 8, 12, 16 and 20 dS m-1. The measured traits were root, shoot and seedling length, dry and fresh weight of seedling, germination rate and percent, seed vigor index, seedling water content and root/ shoot ratio. Salinity stress reduced significantly shoot, root and seedling length of the species. Increasing of salinity stress declined dry and fresh weight of Trigonella foenum and Nigella sativa L. and dry weight of Cannabis sativa L.. Seedling water content and root/ shoot ratio of Nigella sativa L. increased in salinity treatments. Increasing of salinity stress declined germination rate and percent in Nigella sativa L., but in other species (Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus only germination rate decreased. Trigonella foenum graecum germinated completely (%100 in all salinity treatments. Increasing of salinity until 16 dS m-1 reduced seed germination of Nigella sativa. Seed germination of Nigella sativa did not occurred in the highest salinity stress (20 dS m-1. Totally the results showed that in the germination stage, Trigonella foenum graecum and Cannabis sativa were relatively tolerate to salinity stress but Nigella sativa L. was the most sensitive one

  13. Germination of Senna Occidentalis link: seed at different osmotic potential levels

    OpenAIRE

    Delachiave Maria Elena Aparecida; Pinho Sheila Zambello de

    2003-01-01

    The objective of this research was to study the effect of osmotic potential and salinity on the germination of seeds of Senna occidentalis, with and without a change of solutions. The percentage and rates of germination decreased according to decrease of potential, being more drastic when the substitutions of solutions were not made. The largest reductions were observed with the PEG solutions, with and without substitutions. O objetivo da pesquisa foi estudar o efeito de potenciais osmótic...

  14. Germination of Senna Occidentalis link: seed at different osmotic potential levels

    Directory of Open Access Journals (Sweden)

    Delachiave Maria Elena Aparecida

    2003-01-01

    Full Text Available The objective of this research was to study the effect of osmotic potential and salinity on the germination of seeds of Senna occidentalis, with and without a change of solutions. The percentage and rates of germination decreased according to decrease of potential, being more drastic when the substitutions of solutions were not made. The largest reductions were observed with the PEG solutions, with and without substitutions.

  15. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity.

    Science.gov (United States)

    Huang, Jiexue; Cai, Maohong; Long, Qizhang; Liu, Linglong; Lin, Qiuyun; Jiang, Ling; Chen, Saihua; Wan, Jianmin

    2014-08-01

    Rice production and seed storage are confronted with grain deterioration and loss of seed viability. Some members of the lipoxygenase (LOX) family function in degradation of storage lipids during the seed germination, but little is known about their influence on seed longevity during storage. We characterized the role of rice OsLOX2 gene in seed germination and longevity via over-expression and knock-down approaches. Abundant expression of OsLOX2 was detected in panicles, roots, and stems, but not in leaves. Moreover, OsLOX2 was highly induced during germination. OsLOX2 protein, located in the cytoplasm, showed a wide range of temperature adaptation (20-50 °C) and a substrate preference to linoleic acid. Lines over-expressing OsLOX2 showed accelerated seed germination under normal condition and lower seed viability after accelerated aging. RNA interference (RNAi) of OsLOX2 caused delayed germination and enhanced seed longevity. RNAi lines with strongly repressed OsLOX2 activity completely lost the capability of germination after accelerated aging. More lipid hydroperoxide were found in OE15 than the control, but less in RNAi lines than in the WT Nipponbare. Therefore, OsLOX2 acts in opposite directions during seed germination and longevity during storage. Appropriate repression of the OsLOX2 gene may delay the aging process during the storage without compromising germination under normal conditions.

  16. Effect of Salicylic Acid and Ethephon on Seed Germination and Seedling Growth of Wheat under Salt Stress

    Directory of Open Access Journals (Sweden)

    Soheyla Shakeri

    2016-10-01

    Full Text Available Water or soil salinities are the most important factors that reduce the seed germination of plants. Ethephon can break seed dormancy in a variety of plants, such as cereals and speeds up germination. In some plants pretreatment of seeds with salicylic acid has increased the germination percentage. To study effect of salicylic acid and ethephon on seed germination of wheat (Seivand cultivar under salinity condition a factorial experiment in a completely randomized design with three replications was conducted at the Plant Research Laboratory of Neyshabur Branch of Islamic Azad University in 2011. Four salinity levels (0, 50, 100, 150 mM, three salicylic acid levels (0, 0.5, 1 mM and four ethephon levels (0, 0.5, 1, 2 mM were used. The results showed that at salinity condition seed germination rate and percentage, shoot and root length, their dry weight and α-amylase activity decreased and proline content increased. Pretreatment of seeds by salicylic acid increased seed germination percentage, some growth parameters, α-amylase activity and proline content under salinity condition. Moreover, pretreatment of seeds by ethephon decreased some growth parameters and increased proline content but its effect on germination and α-amylase activity were not significant. It seems that Salicylic acid as a plant growth regulator under salinity condition and ethephon convertion to ethylene, activated plant tolerance mechanisms to salinity condition and decrease damaging effect of salinity on seed germination and seedling growth of wheat.

  17. Dormancy and Impotency of Cocklebur Seeds VIII. : Lack of Germination Responsiveness in Primarily Dormant Seeds to Cyanide, Azide, Anoxia and Chilling

    OpenAIRE

    Yohji, Esashi; Hiromitsu, Komatsu; Nobuyori, Ishihara; Kimiharu, Ishizawa; Department of Biological Science, Tohoku University; Department of Biological Science, Tohoku University; Department of Biological Science, Tohoku University; Department of Biological Science, Tohoku University

    1982-01-01

    Germination responsiveness to KCN, NaN_3, chilling or anoxia and respiration activity was compared between non-after-ripened and after-ripened upper cocklebur (Xanthium pennsylvanicum Wallr.) seeds. The latter, coat-imposed dormant seeds, could germinate in response to the above chemicals and conditions, whereas the former, primarily dormant seeds, could not respond. There was little difference in the respiratory properties of both types of seeds.

  18. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum.

    Science.gov (United States)

    Hay, F R; Smith, R D; Ellis, R H; Butler, L H

    2010-06-01

    Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Whilst population mass maturity was reached at 33-36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p(50)) at 60 % relative humidity and 45 degrees C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.

  19. Development of a Threshold Model to Predict Germination of Populus tomentosa Seeds after Harvest and Storage under Ambient Condition

    Science.gov (United States)

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654

  20. Pre-germination treatments for Hymenaea stigonocarpa Mart. ex Hayne seeds

    Directory of Open Access Journals (Sweden)

    Sergio Roberto Garcia dos Santos

    2016-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2016v29n4p1 Hymenaea stigonocarpa, known as Jatoba-do-cerrado, belongs to the family Fabaceae (Leguminosae and is included in the category "near threatened with extinction." It occurs in cerrado and cerradão areas, and its seeds have physical dormancy. Because of this characteristic, the aim of this study was to evaluate different pre-germination treatments and control in H. stigonocarpa seeds, namely: immersion in fire, sulfuric acid, hydrochloric acid, acetone, ether and hot water (100°C, and mechanical scarification of the seed coat by roughing with sandpaper or cutting with nail clippers and washing in running water for 2 hours. The parameters analyzed were percentage of germination, germination speed index (GSI and the percentage of hard and firm seeds and dead seeds. The results obtained were: a germination: boiling water and sulfuric acid were superior to the control; b GSI: boiling water, sulfuric acid, fire and sandpaper were superior to the control and c percentage of dead seeds was not statistically different between the different treatments and control. In conclusion, boiling water and sulfuric acid, were the best treatments, with regard to the parameters examined.

  1. Pre-germination treatments for Hymenaea stigonocarpa Mart. ex Hayne seeds

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto Garcia dos Santos

    2016-12-01

    Full Text Available Hymenaea stigonocarpa, known as Jatoba-do-cerrado, belongs to the family Fabaceae (Leguminosae and is included in the category "near threatened with extinction." It occurs in cerrado and cerradão areas, and its seeds have physical dormancy. Because of this characteristic, the aim of this study was to evaluate different pre-germination treatments and control in H. stigonocarpa seeds, namely: immersion in fire, sulfuric acid, hydrochloric acid, acetone, ether and hot water (100°C, and mechanical scarification of the seed coat by roughing with sandpaper or cutting with nail clippers and washing in running water for 2 hours. The parameters analyzed were percentage of germination, germination speed index (GSI and the percentage of hard and firm seeds and dead seeds. The final results were: a germination: boiling water and sulfuric acid were superior to the control; b GSI: boiling water, sulfuric acid, fire and sandpaper were superior to the control and c percentage of dead seeds was not statistically different between the different treatments and control. In conclusion, boiling water and sulfuric acid, were the best treatments, with regard to the parameters examined.

  2. Physiological, cellular and molecular aspects of the desiccation tolerance in Anadenanthera colubrina seeds during germination

    Directory of Open Access Journals (Sweden)

    L. E. Castro

    2017-05-01

    Full Text Available Abstract During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control, 2, 8, 12 (no germinated seeds, and 18 hours (germinated seeds with 1 mm protruded radicle; then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.

  3. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L.) Verdc. (Fabaceae)).

    Science.gov (United States)

    Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire

    2015-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA.

  4. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L. Verdc. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Mongomaké Koné

    2015-01-01

    Full Text Available Bambara groundnut (Vigna subterranea (L. Verdc. is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA followed by seeds without coat (SWtC germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA.

  5. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    Science.gov (United States)

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  6. Control Processes in the Induction and Relief of Thermoinhibition of Lettuce Seed Germination 1

    Science.gov (United States)

    Saini, Hargurdeep S.; Consolacion, Evangeline D.; Bassi, Pawan K.; Spencer, Mary S.

    1989-01-01

    Germination of lettuce seeds (Lactuca sativa L. cv Grand Rapids) in the dark was nearly 100% at 20°C but was inhibited at 27°C and higher temperatures (thermoinhibition). A single 5-minute exposure to red light completely overcame the inhibition at temperatures up to 28°C, above which the effectiveness of single light exposures gradually declined to reach a negligible level at 32°C. However, the promotive effect of light could be extended to 34°C by repeated irradiations. At any one temperature, increased frequency of irradiations increased germination percentage, and with each degree increase in temperature, increasingly frequent irradiations were necessary to elicit maximal germination. Loss of the effectiveness of single irradiations with increase in temperature may result either from acceleration of the thermal reversion of the far red-absorbing form of phytochrome or decrease in seed sensitivity toward a given percentage of the far red-absorbing form of phytochrome. Using continuous red light to induce germination, the role of endogenous C2H4 in germination at 32°C was studied. Ethylene evolution from irradiated seeds began to increase 2 hours prior to radicle protrusion, whereas the dark-incubated (nongerminating) seeds produced a low, constant amount of C2H4 throughout the 24 hour incubation period. Inhibition of C2H4 synthesis with 2-aminoethoxyvinyl glycine and/or inhibition of C2H4 action with 2,5-norbornadiene blocked the promotive effect of light. Exogenous C2H4 overcame these blockages. The results showed that participation by endogenous C2H4 was essential for the light-induced relief of thermoinhibition of lettuce seed germination. However, light did not act exclusively via C2H4 since exogenous C2H4 alone in darkness did not promote germination. Images Figure 4 Figure 5 PMID:16666755

  7. The Effect of Seed Priming and Accelerated Aging on Germination and Physiochemical Changes in Milk Thistle (Silybum marianum

    Directory of Open Access Journals (Sweden)

    Ghasem PARMOON

    2013-05-01

    Full Text Available Effects of seed priming and aging on some physiological characteristics of Milk thistle was studied in a factoral experiment based on Complete Randomized Design (CRD. Tratments were included hydro priming (using distilled water, halo priming (0, 1.5, 3, 4.5 and 6% KNO3 and accelerated aging (0, 2, 4 and 6 days under 45°C and 95% humidity in three replications. Determined parameters were germination charactristics including germination percentage, daily germination speed, mean time of germination, seed vigor index, hypocutile length and hypocutile dry weight. Activity of catalase, peroxidase and polyphenol oxidase were determined at 12 hours after imbibition and seedling stage. According to results of this experiment, germination percentage, seed vigor and seedling growth of seeds were increased under all priming treatments. Improving the catalase and peroxidase activity led to decrease the aging damages. Germination characteristics were improved under both priming treatments at the beginning of germination as well as seedling growth. Polyphenol oxidase activity was increased in the pre-treated seeds but decreased in seedling growth stage. Aging treatments led to reduce the germination percentage, daily germination speed, seed vigor and seedling growth while the germination time was increased. Accelerated aging caused to reduce the germination rate and seedling growth of milk thistle that is probably due to increasing the lipid peroxidation, free radical increment and decreasing the antioxidants activity. The greatest and lowest antioxidants activity, the germination percentage, germination speed and seed vigor were respectively observed under priming using 3% KNO3 concentration and control seeds.

  8. Behavior of Jatropha curcas L. seeds under osmotic stress: germination and cell cycle activity

    Directory of Open Access Journals (Sweden)

    Cristiane Dantas de Brito

    2015-08-01

    Full Text Available Jatropha curcas is an oil-rich Euphorbiaceae seed species renowned for its apparent tolerance to environmental stresses. It is considered a promising source of renewable feedstock for biodiesel production in the Brazilian semiarid region where crop establishment requires a better understanding of the mechanisms leading to proper seed and plant behavior under water restrictive conditions. This study describes physiological and cytological profiles of J. curcas seeds imbibed in water restriction conditions by means of osmotic stress or osmoconditioning. Seeds were characterized by size, weight, moisture content and dry mass, germinability, and cell cycle activation by means of tubulin and microtubule cytoskeleton accumulation. Osmoconditioning at -0.8 MPa did not induce priming effects as it did not improve the physiological quality of the seed lots. Western blotting and immunocytochemical analysis revealed an increasing accumulation of tubulin and microtubule cytoskeleton in seeds imbibed in water for 48h onwards, culminating in the onset of mitotic configurations after germination. Only cortical microtubules were observed during seed osmoconditioning, whereas mitotic microtubules only occurred after re-imbibition of osmoconditioned seeds in water and subsequent germination.

  9. Constant temperatures and the rate of seed germination in maize ...

    African Journals Online (AJOL)

    The rate of germination of the NEM cultivar was faster than that of the QPM cultivar at all temperatures. The thermal times for median germination were 46 for QPM and 40.7 oCd for the NEM cultivar. The cardinal temperatures (base, Tb, optimum, To and ceiling, Tc) for the NEM cultivar were Tb: 7, To: 30 and Tc: 48.2 oC.

  10. Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum.

    Science.gov (United States)

    Andolfi, Anna; Boari, Angela; Evidente, Antonio; Vurro, Maurizio

    2005-03-09

    Myrothecium verrucaria and Fusarium compactum were isolated from diseased Orobanche ramosa plants collected in southern Italy to find potential biocontrol agents of this parasitic weed. Both fungi grown in liquid culture produced metabolites that inhibited the germination of O. ramosa seeds at 1-10 muM. Eight metabolites were isolated from M. verrucaria culture extracts. The main metabolite was identified as verrucarin E, a disubstituted pyrrole not belonging to the trichothecene group. Seven compounds were identified by spectroscopic methods as macrocyclic trichothecenes, namely, verrucarins A, B, M, and L acetate, roridin A, isotrichoverrin B, and trichoverrol B. The main metabolite produced by F. compactum was neosoloaniol monoacetate, a trichothecene. All the trichothecenes proved to be potent inhibitors of O. ramosa seed germination and possess strong zootoxic activity when assayed on Artemia salina brine shrimps. Verrucarin E is inactive on both seed germination and zootoxic assay.

  11. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  12. Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems

    Science.gov (United States)

    Somova, L. A.; Pechurkin, N. S.; Sarangova, A. B.; Pisman, T. I.

    Effect of the size of rhizospheric bacterial populations on germination of seeds and development of simple terrestrial "wheat plants - rhizospheric microorganisms - artificial soil" and "wheat plants - artificial soil" systems has been studied. Experiments demonstrated that within specify ranges in the inoculate, the rhizospheric bacteria are capable of increasing the yield of germinated seeds and stimulate the growth of plantlets. Germination of seeds inoculated with bacteria was either stimulated, or inhibited or remained at control levels depending on the amount of bacteria. Plant biomass growth and total photoassimilation has been found to depend on the amount of bacteria on the plant roots: the higher the amount of bacteria on plant roots, the smaller is the biomass of plants but the total photoassimilation is, higher. Thus, depending on the amount of bacteria on the roots of plants the system either increases the biomass of plants or increases the total photoassimilation, i.e. "pumps" carbon through itself involving bacteria.

  13. Seed germination of three Ulmus species from Turkey as influenced by temperature and light.

    Science.gov (United States)

    Cicek, Emrah; Tilki, Fahrettin

    2007-04-01

    The effect of temperature and light on the germination performance of Ulmus minor, Ulmus glabra and Ulmus laevis were studied in this research. Seeds were germinated under constant temperatures of 20 and 25 degrees C and alternating temperatures of 25/15 and 30/20 degrees C. Within each temperature regime, seeds were subjected daily to the following photoperiods: total darkness and 8 hr photoperiod. Temperature and light affected seed germination percentage (GP) and germination rate expressed as peak value (PV) in Ulmus minor and 25 and 30/20 degrees C under light gave the highest GP (>95%) and PV (>23). The temperatures of 25/15 and 30/20 degrees C gave the highest GP (>89%) in Ulmus glabra and light did not significantly affect GP. But the highest PV in Ulmus glabra was found at these temperatures under light. Germination percentage of Ulmus laevis was not affected by temperature and light, but the alternating temperature of 30/20 degrees C produced the highest germination rate under darkness.

  14. Do fruit morphology and scarification affect germination and predation rates of Babassu seeds?

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Gonçalves Ferreira

    Full Text Available ABSTRACT Seed predation is a natural phenomenon that can occur either before or after dispersal and can significantly reduce the economic value and reproductive potential of plants. The babassu palm (Attalea vitrivir, Arecaceae is important to rural communities that extract oil from its fruits for a wide variety of uses. We evaluated the predation and germination of A. vitrivirseeds in Pandeiros River Environmental Protection Area (EPA-Pandeiros in Minas Gerais State, Brazil. Sixty individual plants were evaluated to determine their fruiting patterns. Seed predation and germination were evaluated in the natural environment for eight months for fruits divided into two treatments: scarified and intact. Germination of fruits submitted to these same treatments was also evaluated under greenhouse conditions. Our results indicated that fruiting is continuous in this species and that fruit morphology does not influence either germination or predation. Likewise, fruit scarification did not influence seed germination. Pachymerus cardo (Coleoptera: Chrysomelidae preferentially oviposited on scarified fruits, but only after their dispersal. The predation rate in the natural environment was 14.6%. Germination was not observed under natural conditions, but reached 33.05% under greenhouse conditions.

  15. Effect of microwave irradiation on germination and seedling growth physiological characteristics of alfalfa seeds after storage

    International Nuclear Information System (INIS)

    Chen Liyu; Zhang Shuqing; Li Jianfeng; Shi Shangli; Huo Pinghui

    2012-01-01

    In order to study the effect of microwave irradiation on germination and growth physiological characteristics of seeds that stored for years, the irradiated alfalfa seeds that stored at room temperature for 2 years were used to conduct the germination and pot culture tests, and the germination rate, radical elongation, growth height, individual nodule, nitrogenase activity, chlorophyll content and chlorophyll fluorescence parameters were measured. On the 15th day of germination, the germination rates of all the treatments are higher than that of the control, which decrease with the elongation of time. On the llst day of germination, the radical length of all the treatments is lower than that of the control. Growth height, individual nodule, fresh weight and dry weight for the 40 s irradiation treatment are higher than that of the control. Nitrogenase activity of all the treatments is lower than that of the control (P < O.05). The chlorophyll content reaches its maximum when being irradiated for 10 s, and the variation for F 0 and F v /F m of all treatments indicates that the light conversion efficiency of the leaves derived from the irradiated alfalfa seeds that stored for 2 a at room temperature is still relatively stressed. (authors)

  16. Identification of quantitative trait loci for ABA sensitivity at seed germination and seedling stages in rice.

    Science.gov (United States)

    You, Jun; Li, Qiang; Yue, Bing; Xue, Wei-Ya; Luo, Li-Jun; Xiong, Li-Zhong

    2006-06-01

    Abscisic acid (ABA) is one of the important plant hormones, which plays a critical role in seed development and adaptation to abiotic stresses. The sensitivity of rice (Oryza sativa L.) to exogenous ABA at seed germination and seedling stages was investigated in the recombinant inbred line (RIL) population derived from a cross between irrigated rice Zhenshan 97 and upland rice IRAT109, using relative germination vigor (RGV), relative germination rate (RGR) and leaf rolling scores of spraying (LRS) or culturing (LRC) with ABA as sensitivity indexes. The phenotypic correlation analysis revealed that only RGV at germination stage was positively correlated to ABA sensitivity at seedling stage. QTL detection using composite interval mapping (CIM) and mixed linear model was conducted to dissect the genetic basis of ABA sensitivity, and the single-locus QTLs detected by both methods are in good agreement with each other. Five single QTLs and six pairs of epistatic QTLs were detected for ABA sensitivity at germination stage. Eight single QTLs and five pairs of epistatic QTLs were detected for ABA sensitivity at seedling stage. Two QTLs were common between LRS and LRC; and one common QTL was detected for RGV, LRS and LRC simultaneously. These results indicated that both single and epistatic loci were involved in the ABA sensitivity in rice, and the genetic basis of ABA sensitivity at seed germination and seedling stage was largely different.

  17. Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.).

    Science.gov (United States)

    Xu, Lei; Chen, Long; Ali, Barkat; Yang, Na; Chen, Yisheng; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2017-08-15

    Adlay has garnered a great deal of research attentions in recent years as a highly nutritious food material and herbal medicine. This study characterized the changes of nutritional and physicochemical properties of adlay seeds during a 60-h germination. The results showed that the 60-h germination brought about a 3.4-fold increase in γ-aminobutyric acid (GABA) and 3.6-fold increase in coixol compared to ungerminated adlay seeds, while the triolein content slightly decreased. Some high molecular proteins were hydrolyzed into smaller proteins, peptides and amino acids after germination. Scanning electron micrographs (SEM) showed that the germination process destroyed the continuous matrix structure of adlay flour and created pits and holes on the surface of some starch granules. Germination resulted to changes in the pasting and gelatinization properties of adlay flour. The results of present study suggest that germination efficiently enhances the nutritional compounds while altering the physicochemical characteristics of adlay seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    Science.gov (United States)

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered.

  19. Seed Germination inhibition test for pregnancy detection in Malnad Gidda Cows

    Directory of Open Access Journals (Sweden)

    M. Narayana Swamy

    2010-06-01

    Full Text Available In the present study, the seed germination inhibition technique was applied to diagnose pregnancy in Malnad Gidda cattle breed, a dwarf breed found in coastal and neighboring heavy rainfall areas in Karnataka. The urine samples collected from six inseminated Malnad Gidda cows at two months of post insemination served as positive group and the urine from six non inseminated Malnad Gidda cows served as negative group. In both the cases, the urine was diluted at the ratio of 1:4 with distilled water. In each sterile Petri dish fifteen wheat seeds were taken on the blotting paper and 15 ml of diluted urine was added. For each cow the test was conducted with a replica of six tests in six Petri dishes. Control test was also carried out with the addition of water only to the wheat seeds. The Petri dishes were covered with the trays to avoid evaporation. After three days, the seeds were examined for germination inhibition percentage in positive, negative and control groups, wherein the mean germination inhibition percentage was 73.65 ± 2.81, 27.90 ± 2.56 and 21.48 ± 2.69, respectively. The mean shoot length of the germinated wheat seeds on fifth day was 0.95 ± 0.47, 3.62 ± 0.51 and 5.54 ± 0.68 cm in positive, negative and control groups, respectively. Mean germination inhibition percent and reduced shoot length in positive group of Malnad Gidda cattle was indicative of pregnancy state. It was concluded that the seed germination inhibition technique is useful to detect pregnancy in Malnad Gidda cattle as a simple, non-invasive and economical method. [Vet. World 2010; 3(3.000: 107-108

  20. GIBBERELLINS, FUNGICIDES AND STORAGE EFFECTS ON THE GERMINATION OF Genipa americana L. (RUBIACEAE SEEDS

    Directory of Open Access Journals (Sweden)

    Fábio de Almeida Vieira

    2006-06-01

    Full Text Available The aim of this paper was to verify the effect of different doses of gibberellic acid (GA3 (0, 250, 500, 750 and 1000 µg.L-1, of fungicides of the groups chemical benzimidazol (0, 25, 50 and 100 g.L-1 and ditiocarbamato (0, 1,25, 2,50 and 5,00 g.L-1 on seed germination. Viability of those seeds was evaluated through germination tests at 0, 15, 30 and 60 days. The experiment was carried out in greenhouse. The experimental design was fully randomized one, with five replicates per treatment. The traits evaluated were emergence and index of emergence speed. The treatment with GA3 didn't provide significant so much differences among the germination rates as well as for the emergence speed. It was verified that the use of the fungicides in smaller concentrations (25 g.L-1 of benzimidazol and 1,25 g.L-1 of ditiocarbamato promoted a better germination speed. The seeds of G. americana possess viability period relatively short, with germination absence 60 days period of storage, and it could be associated to the humidity tenors presented by the seeds in this period.

  1. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.

    Science.gov (United States)

    Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie

    2016-12-01

    Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.

  2. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Jun-yu HE

    2008-12-01

    Full Text Available Two rice varieties, Xiushui 110 with high cadmium (Cd tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.

  3. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of Salinity, Temperature, and Polyethylene Glycol on the Seed Germination of Sunflower (Helianthus annuus L.)

    OpenAIRE

    Luan, Zhihui; Xiao, Moxin; Zhou, Daowei; Zhang, Hongxiang; Tian, Yu; Wu, Yi; Guan, Bo; Song, Yantao

    2014-01-01

    Salinization has severe influences on agriculture in the whole world. The main aims of this work were to evaluate osmotic effect and ion effect of NaCl on seed germination of three sunflower (Helianthus annuus L.) cultivars interacting with three alternating temperature regimes and to select the most salt tolerant cultivars to plant in the saline region. Seeds were germinated in the isotonic NaCl and polyethylene glycol (PEG) solutions of −0.45, −0.90, −1.34, −1.79, and −2.24 MPa at 10 : 20, ...

  5. A new marine measure enhancing Zostera marina seed germination and seedling survival

    DEFF Research Database (Denmark)

    Sousa, Ana I.; Valdemarsen, Thomas; Lillebø, Ana I.

    2017-01-01

    (eelgrass) seed germination and seedling survival in sediments inhabited by lugworms (Arenicola marina) and its validation in mesocosm experiments. The technique consists of placing 3 cm thick biodegradable coconut fibre mats (membrane) in the surface sediment to exclude the negative effects of sediment...... on the reduction of the physical stress imposed by sediment reworking lugworms on Z. marina recovery, as a membrane keeps seeds at optimal depth for germination and protects seedlings from burial and erosion. In comparison to other measures, this new restoration technique is a low-tech nature-based solution...

  6. Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds

    Science.gov (United States)

    Porceddu, Marco; Mattana, Efisio; Pritchard, Hugh W.; Bacchetta, Gianluigi

    2013-01-01

    Background and Aims Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia. Methods Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures. Key Results Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations. Conclusions Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination. PMID:24201139

  7. Hydrology, shore morphology and species traits affect seed dispersal, germination and community assembly in shoreline plant communities

    NARCIS (Netherlands)

    van Leeuwen, Casper H. A.; Sarneel, Judith M.; van Paassen, Jose; Rip, Winnie J.; Bakker, Elisabeth S.

    1. Seed dispersal and germination are two primary processes influencing plant community assembly. On freshwater shores, water levels regulate both processes. However, it is still unclear how water levels, shore morphology and species traits interactively affect seed dispersal and germination, and

  8. Hydrology, shore morphology and species traits affect seed dispersal, germination and community assembly in shoreline plant communities

    NARCIS (Netherlands)

    Van Leeuwen, C.H.A.; Sarneel, J.M.; van Paassen, José; Rip, W.J.; Bakker, E.S.

    2014-01-01

    Summary 1.Seed dispersal and germination are two primary processes influencing plant community assembly. On freshwater shores, water levels regulate both processes. However, it is still unclear how water levels, shore morphology and species traits interactively affect seed dispersal and germination,

  9. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination

    Science.gov (United States)

    Li, Wen-Yan; Chen, Bing-Xian; Chen, Zhong-Jian; Gao, Yin-Tao; Chen, Zhuang; Liu, Jun

    2017-01-01

    Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS) regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs) are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI), a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the regulation of NOX

  10. Seed viability of five wild Saudi Arabian species by germination and X-ray tests

    Directory of Open Access Journals (Sweden)

    B.A. Al-Hammad

    2017-09-01

    Full Text Available Our objective was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of five wild species (Moringa peregrina, Abrus precatorius, Arthrocnemum macrostachyum, Acacia ehrenbergiana and Acacia tortilis from Saudi Arabia. Usually several days were required to determine the viability of all five species via germination tests. However, X-ray test will give immediate results on filled/viable seeds. Seeds of all species, except Acacia ehrenbergiana and Acacia tortilis showed high viability in both germination (96–72% at 25/15 °C, 94–70% at 35/25 °C and X-ray (100–80% test. Furthermore, there was a general agreement between the germination (19%, 14% at 25/15 °C and 17% and 12% at 35/25 °C and X-ray (8%, 4% tests in which seed viability of Acacia ehrenbergiana and Acacia tortilis was very low due to insect damaged embryo as shown in X-ray analysis. Seeds of Abruspreca torius have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min, and they exhibited high viability in both the germination (83% at 25/15 °C and 81% at 35/25 °C and X-ray (96% tests. Most of the nongerminated seeds of the five species except those of Acacia ehrenbergiana and Acacia tortilis, were alive as judged by the tetrazolium test (TZ. Thus, for the five species examined, the X-ray test was proved to be a good and rapid predictor of seed viability.

  11. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    Science.gov (United States)

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology.

  12. Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination.

    Science.gov (United States)

    Wei, Yanyan; Shohag, M J I; Wang, Yuyan; Lu, Lingli; Wu, Chunyong; Yang, Xiaoe

    2012-02-22

    Rice is the staple food for more than half of the world's population and, hence, the main source of a vital micronutrient, zinc (Zn). Unfortunately, the bioavailability of Zn from rice is very low not only due to low content but also due to the presence of some antinutrients such as phytic acid. We investigated the effect of germination and Zn fortification treatment on Zn bioavailability of brown rice from three widely grown cultivars using the Caco-2 cell model to find a suitable fortification level for producing germinated brown rice. The results of this study showed that Zn content in brown rice increased significantly (p 0.05) on germination percentage of rice was observed when the Zn supply was lower than 150 mg/L. Zn fortification during the germination process has a significant impact on the Zn content and finally Zn bioavailability. These findings may result from the lower molar ratio of phytic acid to Zn and higher Zn content in Zn fortified germinated brown rice, leading to more bioavailable Zn. Likewise, a significant difference (p germinated brown rice fortified with 100 mg/L ZnSO(4) as a suitable concentration to use in the germination process, which contains high Zn concentration and Zn bioavailability. In the current study, the cultivar Bing91185 fortified with Zn through the germination process contained a high amount as well as bioavailable Zn, which was identified as the most promising cultivar for further evaluation to determine its efficiency as an improved source of Zn for target populations.

  13. Successful disinfection protocol for orchid seeds and influence of gelling agent on germination and growth

    Directory of Open Access Journals (Sweden)

    Tomaž JEVŠNIK

    2015-11-01

    Full Text Available Artificial propagation of endangered orchid species is one of the most important actions of conservationists often jeopardized by low numbers of acquired seed, its contamination and viability. Disinfection and chemical composition of media are two of the most important factors contributing to better germination in temperate orchid species. The article deals with three world genera (Epidendrum nocturnum, Prosthechea garciana, Maxillaria rufescens and one commercial hybrid (Zygopetalum and describes an effective method of orchid seed disinfection carried out in a centrifuge. Germination percentages of all three genera and one hybrid were between 60 and 90 % from which we concluded that the risk of physical damage to the seeds by centrifugation is not significant. The time needed for disinfected seeds (E. nocturnum, P. garciana, M. rufescens to swell-form protocorms was 10 days shorter compared to undisinfected seeds (Zygopetalum hybrid - green capsule method and some other studies. Adequate wetting and stratification of the seed is very important for successful germination, which resembles processes in natural environment. Additionally, this method solves the problems of collecting and transferring the seeds after disinfection. It is also important that the time needed for disinfection is shorter, which is desirable for some sensitive species. Our study also focuses on importance of gelling agent, namely Gellan gum and agar, since we noticed an obvious superiority of the former in all phases of in vitro development.

  14. Swailing affects seed germination of plants of European bio-and agricenosis in a different way

    Directory of Open Access Journals (Sweden)

    Bączek-Kwinta Renata

    2017-03-01

    Full Text Available Swailing as a part of agricultural practice is an illegal habit in many European countries. The indirect effect of swailing is the emission of volatiles (SGV, hence the aim of the study was to identify their impact to seeds of different species occurring or grown Europe. It was carried out on seeds of 29 species of 10 botanical families within the angiosperms. The response to SGV was more or less differentiated within a family, and even within the species, e.g. in the case of tomato. The stimulation of germination and/or increased seedling vigour was established in celery, green- and red-leafed basil, white and red cabbage, white clover and wild thyme. The same effect was noticed for the seeds of stratified broadleaf plantain and the positively photoblastic seeds of German chamomile germinated in darkness. The inhibition of seed germination and/ or reduced seedling vigour was demonstrated in case of caraway, dill and forget-me-not. Similar results were obtained in the experiments carried out in vitro and in the soil, hence it can be assumed that the indirect impact of SGV on plant habitat composition is likely. The interaction of SGV compounds with seed testa and seed phytohormones is discussed.

  15. Seed morphology, germination phenology, and capacity to form a seed bank in six herbaceous layer apiaceae species of the eastern deciduous forest

    Science.gov (United States)

    Tracy S. Hawkins; Jerry M. Baskin; Carol C. Baskin

    2007-01-01

    We compared seed mass, seed morphology, and long-term germination phenology of three monocarpic (MI and three polycarpic (P) Apiaceae species of the herbaceous layer of the Eastern Deciduous Forest. Seeds (mericarps) of the six species differed considerably in mass, shape, and ornamentation. Mean seed masses were ranked Cryptotaenia canadensis (M)...

  16. Simplified strigolactams as potent analogues of strigolactones for the seed germination induction of Orobanche cumana Wallr.

    Science.gov (United States)

    Lumbroso, Alexandre; Villedieu-Percheron, Emmanuelle; Zurwerra, Didier; Screpanti, Claudio; Lachia, Mathilde; Dakas, Pierre-Yves; Castelli, Laure; Paul, Verity; Wolf, Hanno Christian; Sayer, Danielle; Beck, Andreas; Rendine, Stefano; Fonné-Pfister, Raymonde; De Mesmaeker, Alain

    2016-11-01

    Strigolactones play an important role in the rhizosphere as signalling molecules stimulating the seed germination of parasitic weed seeds and hyphal branching of arbuscular micorrhiza, and also act as hormones in plant roots and shoots. Strigolactone derivatives, e.g. strigolactams, could be used as suicidal germination inducers in the absence of a host crop for the decontamination of land infested with parasitic weed seeds. We report the stereoselective synthesis of novel strigolactams, together with some of their critical physicochemical properties, such as water solubility, hydrolytic stability, as well as their short soil persistence. In addition, we show that such strigolactams are potent germination stimulants of O. cumana parasitic weed seeds and do not affect the seed germination and the root growth of sunflower. The novel strigolactam derivatives described here compare favourably with the corresponding GR-28 strigolactones in terms of biological activity and physicochemical properties. However, we believe strigolactone and strigolactam derivatives require further structural optimisation to improve their soil persistence to demonstrate a potential for agronomical applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Impacts of vehicle exhaust black soot on germination of gram seed (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available An investigation was initiated to examine the effects of carbon soot collected from exhaust tube of 15 years old petrol and diesel operated vehicles on gram seed germination and biochemical changes of seedling. In view of the widespread cultivation of gram seed in India and long-term impact of black carbon is the warming of the atmosphere as per the recommendation of IPCC (2007. Black soot were separately treated with different doses and the effects of these treatment had on seed germination, seedling vigor, chlorophyll and carotenoid content, root and shoot growth, protein, sugar, phenol and proline estimation were studied. The treatment T6 significantly affected on seed germination (84% as well as seedling vigor and chlorophyll content. But other treatment promoted both seed germination and seedling vigor along with enhancement of other biochemical constituents. On the other hand micrograph study revealed that treatments T1 and T4 both showed negative effects on stomata rather than the ultra-structure of xylem and phloem.

  18. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of