WorldWideScience

Sample records for thalamic-anterior cingulate pathway

  1. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model.

    Science.gov (United States)

    Shao, Xiao-Mei; Sun, Jing; Jiang, Yong-Liang; Liu, Bo-Yi; Shen, Zui; Fang, Fang; Du, Jun-Ying; Wu, Yuan-Yuan; Wang, Jia-Ling; Fang, Jian-Qiao

    2016-01-01

    Pain memory is considered as endopathic factor underlying stubborn chronic pain. Our previous study demonstrated that electroacupuncture (EA) can alleviate retrieval of pain memory. This study was designed to observe the different effects between EA and indomethacin (a kind of nonsteroid anti-inflammatory drugs, NSAIDs) in a rat pain memory model. To explore the critical role of protein kinase A (PKA) in pain memory, a PKA inhibitor was microinjected into anterior cingulate cortex (ACC) in model rats. We further investigated the roles of the cyclic adenosine monophosphate (cAMP), PKA, cAMP response element-binding protein (CREB), and cAMP/PKA/CREB pathway in pain memory to explore the potential molecular mechanism. The results showed that EA alleviates the retrieval of pain memory while indomethacin failed. Intra-ACC microinjection of a PKA inhibitor blocked the occurrence of pain memory. EA reduced the activation of cAMP, PKA, and CREB and the coexpression levels of cAMP/PKA and PKA/CREB in the ACC of pain memory model rats, but indomethacin failed. The present findings identified a critical role of PKA in ACC in retrieval of pain memory. We propose that the proper mechanism of EA on pain memory is possibly due to the partial inhibition of cAMP/PKA/CREB signaling pathway by EA.

  2. Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve

    Directory of Open Access Journals (Sweden)

    Moon HC

    2017-10-01

    facial cold allodynia scores were significantly improved in the TN lesion group during optical stimulation compared to those in the control group. Thalamic neuronal activity, consisting of the firing rate (spikes/s and burst rate (bursts/s, was also decreased during optical stimulation.Conclusion: Reciprocal optical inhibition of the ACC can alleviate pain-associated behavior and decrease abnormal thalamic sensory neuron activity in the trigeminal neuropathic rat model. The descending pain pathway can modulate thalamic neurons from the ACC following optical stimulation. Keywords: optogenetics, trigeminal neuralgia, anterior cingulate cortex, neuropathic pain

  3. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    Science.gov (United States)

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  4. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  5. Decision salience signals in posterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Sarah eHeilbronner

    2011-04-01

    Full Text Available Despite its phylogenetic antiquity and clinical importance, the posterior cingulate cortex (CGp remains an enigmatic nexus of attention, memory, motivation, and decision making. Here we show that CGp neurons track decision salience—the degree to which an option differs from a standard—but not the subjective value of a decision. To do this, we recorded the spiking activity of CGp neurons in monkeys choosing between options varying in reward-related risk, delay to reward, and social outcomes, each of which varied in level of decision salience. Firing rates were higher when monkeys chose the risky option, consistent with their risk-seeking preferences, but were also higher when monkeys chose the delayed and social options, contradicting their preferences. Thus, across decision contexts, neuronal activity was uncorrelated with how much monkeys valued a given option, as inferred from choice. Instead, neuronal activity signaled the deviation of the chosen option from the standard, independently of how it differed. The observed decision salience signals suggest a role for CGp in the flexible allocation of neural resources to motivationally significant information, akin to the role of attention in selective processing of sensory inputs.

  6. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  7. Impaired cognitive control and reduced cingulate activity during mental fatigue

    NARCIS (Netherlands)

    Lorist, M.M.; Boksem, M.A.S.; Ridderinkhof, K.R.

    2005-01-01

    Neurocognitive mechanisms underlying the effects of mental fatigue are poorly understood. Here, we examined whether error-related brain activity, indexing performance monitoring by the anterior cingulate cortex (ACC), and strategic behavioural adjustments were modulated by mental fatigue, as induced

  8. Impaired cognitive control and reduced cingulate activity during mental fatigue

    NARCIS (Netherlands)

    Lorist, MM; Boksem, MAS; Ridderinkhof, KR

    Neurocognitive mechanisms underlying the effects of mental fatigue are poorly understood. Here, we examined whether error-related brain activity, indexing performance monitoring by the anterior cingulate cortex (ACC), and strategic behavioural adjustments were modulated by mental fatigue, as induced

  9. Unawareness of deficits in Alzheimer's disease: role of the cingulate cortex.

    Science.gov (United States)

    Amanzio, Martina; Torta, Diana M E; Sacco, Katiuscia; Cauda, Franco; D'Agata, Federico; Duca, Sergio; Leotta, Daniela; Palermo, Sara; Geminiani, Giuliano C

    2011-04-01

    Unawareness of deficits is a symptom of Alzheimer's disease that can be observed even in the early stages of the disease. The frontal hypoperfusion associated with reduced awareness of deficits has led to suggestions of the existence of a hypofunctioning prefrontal pathway involving the right dorsolateral prefrontal cortex, inferior parietal lobe, anterior cingulate gyri and limbic structures. Since this network plays an important role in response inhibition competence and patients with Alzheimer's disease who are unaware of their deficits exhibit impaired performance in response inhibition tasks, we predicted a relationship between unawareness of deficits and cingulate hypofunctionality. We tested this hypothesis in a sample of 29 patients with Alzheimer's disease (15 aware and 14 unaware of their disturbances), rating unawareness according to the Awareness of Deficit Questionnaire-Dementia scale. The cognitive domain was investigated by means of a wide battery including tests on executive functioning, memory and language. Neuropsychiatric aspects were investigated using batteries on behavioural mood changes, such as apathy and disinhibition. Cingulate functionality was assessed with functional magnetic resonance imaging, while patients performed a go/no-go task. In accordance with our hypotheses, unaware patients showed reduced task-sensitive activity in the right anterior cingulate area (Brodmann area 24) and in the rostral prefrontal cortex (Brodmann area 10). Unaware patients also showed reduced activity in the right post-central gyrus (Brodmann area 2), in the associative cortical areas such as the right parietotemporal-occipital junction (Brodmann area 39) and the left temporal gyrus (Brodmann areas 21 and 38), in the striatum and in the cerebellum. These findings suggest that the unawareness of deficits in early Alzheimer's disease is associated with reduced functional recruitment of the cingulofrontal and parietotemporal regions. Furthermore, in line with

  10. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  11. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  12. Value, search, persistence and model updating in anterior cingulate cortex

    NARCIS (Netherlands)

    Kolling, N.; Wittmann, M.K.; Behrens, T.E.J.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F.S.

    2016-01-01

    Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the

  13. Paroxysmal arousal in epilepsy associated with cingulate hyperperfusion.

    Science.gov (United States)

    Vetrugno, R; Mascalchi, M; Vella, A; Della Nave, R; Provini, F; Plazzi, G; Volterrani, D; Bertelli, P; Vattimo, A; Lugaresi, E; Montagna, P

    2005-01-25

    A patient with nocturnal frontal lobe epilepsy characterized by paroxysmal motor attacks during sleep had brief paroxysmal arousals (PAs), complex episodes of nocturnal paroxysmal dystonia, and epileptic nocturnal wandering since childhood. Ictal SPECT during an episode of PA demonstrated increased blood flow in the right anterior cingulate gyrus and cerebellar cortex with hypoperfusion in the right temporal and frontal associative cortices.

  14. Mining the posterior cingulate: Segregation between memory and pain components

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2005-01-01

    We present a general method for automatic meta-analyses in neuroscience and apply it on text data from published functional imaging studies to extract main functions associated with a brain area --- the posterior cingulate cortex. Abstracts from PubMed are downloaded, words extracted and converted...

  15. What role for the anterior cingulate in analogical reasoning?

    Science.gov (United States)

    O'Boyle, Michael W

    2010-06-01

    Abstract While prefrontal and frontal cortex of the brain are well documented to mediate many executive functions, including creativity, flexibility, and adaptability, the anterior cingulate cortex (ACC) is known to be involved in error detection and conflict resolution, and is crucial to reward-based learning. A case is made for the notion that any neural model of analogical reasoning must incorporate the critical (and specialized) contributions of the ACC.

  16. A functional dissociation of conflict processing within anterior cingulate cortex

    OpenAIRE

    Chobok Kim; James Kroger; Jeounghoon Kim

    2008-01-01

    Goal-directed behavior requires cognitive control to regulate neural processing when conflict is encountered. The dorsal anterior cingulate cortex (dACC) has been associated with detecting response conflict during conflict tasks. However, recent findings have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. We clarified a functional dissociation of the caudal dACC (cdACC) and t...

  17. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  18. Conflict processing in the anterior cingulate cortex constrains response priming.

    Science.gov (United States)

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  19. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Anterior Cingulate Cortex γ-Aminobutyric Acid in Depressed Adolescents

    Science.gov (United States)

    Gabbay, Vilma; Mao, Xiangling; Klein, Rachel G.; Ely, Benjamin A.; Babb, James S.; Panzer, Aviva M.; Alonso, Carmen M.; Shungu, Dikoma C.

    2013-01-01

    Context Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). Objective To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. Design Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. Setting Two clinical research divisions at 2 teaching hospitals. Participants Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12–19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. Main Outcome Measures Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. Results Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t= 3.2; PGABA/w levels compared with control subjects (t=4.08; PGABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = −0.50; P = .02), as well as for the entire participant sample including the control subjects (r=−0.54; PGABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in the present study, may permit greater specificity in evaluating this important clinical feature. PMID:21969419

  1. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    Science.gov (United States)

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  2. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms

    Science.gov (United States)

    2014-01-01

    Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded. PMID:24397347

  3. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex

    Science.gov (United States)

    Keidel, James L.; Ing, Leslie P.; Horner, Aidan J.

    2015-01-01

    It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or “schemas”). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. SIGNIFICANCE STATEMENT Memories are strengthened via consolidation. We investigated memory for lifelike events using video clips and showed that rehearsing their content dramatically boosts memory consolidation. Using MRI scanning, we measured patterns of brain activity while

  4. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    Science.gov (United States)

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  5. Kainate-induced network activity in the anterior cingulate cortex.

    Science.gov (United States)

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. A functional dissociation of conflict processing within anterior cingulate cortex.

    Science.gov (United States)

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  7. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L; Porreca, Frank

    2015-05-06

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. Copyright © 2015 the authors 0270-6474/15/357264-08$15.00/0.

  8. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex.

    Science.gov (United States)

    Bird, Chris M; Keidel, James L; Ing, Leslie P; Horner, Aidan J; Burgess, Neil

    2015-10-28

    It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. Copyright © 2015 Bird, Keidel et al.

  9. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  10. Glutamatergic activation of anterior cingulate cortex mediates the affective component of visceral pain memory in rats.

    Science.gov (United States)

    Yan, Ni; Cao, Bing; Xu, Jiahe; Hao, Chun; Zhang, Xu; Li, Ying

    2012-01-01

    Studies of both humans and animals suggest that anterior cingulate cortex (ACC) is important for processing pain perception. We identified that perigenul ACC (pACC) sensitization and enhanced visceral pain in a visceral hypersensitive rat in previous studies. Pain contains both sensory and affective dimensions. Teasing apart the mechanisms that control the neural pathways mediating pain affect and sensation in nociceptive behavioral response is a challenge. In this study, using a rodent visceral pain assay that combines the colorectal distension (CRD)-induced visceromotor response (VMR) with the conditioning place avoidance (CPA), we measured a learned behavior that directly reflects the affective component of visceral pain. When CRD was paired with a distinct environment context, the rats spent significantly less time in this compartment on the post-conditioning test days as compared with the pre-conditioning day. Effects were lasted for 14 days. Bilateral pACC lesion significantly reduced CPA scores without reducing acute visceral pain behaviors (CRD-induced VMR). Bilateral administration of non-NMDA receptor antagonist CNQX or NMDA receptor antagonist AP5 into the pACC decreased the CPA scores. AP5 or CNQX at dose of 400 mM produced about 70% inhibition of CRD-CPA in the day 1, 4 and 7, and completely abolished the CPA in the day 14 after conditioning. We concluded that neurons in the pACC are necessary for the "aversiveness" of visceral nociceptor stimulation. pACC activation is critical for the memory processing involved in long-term negative affective state and prediction of aversive stimuli by contextual cue. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  12. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  13. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    Science.gov (United States)

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    Science.gov (United States)

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  15. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    Science.gov (United States)

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  16. Decreased NOS1 expression in the anterior cingulate cortex in depression

    NARCIS (Netherlands)

    Gao, Shang-Feng; Qi, Xin-Rui; Zhao, Juan; Balesar, Rawien; Bao, Ai-Min; Swaab, Dick F.

    2013-01-01

    Decreased function of the anterior cingulate cortex (ACC) is crucially involved in the pathogenesis of depression. A key role of nitric oxide (NO) has also been proposed. We aimed to determine the NO content in the cerebrospinal fluid (CSF) and the expression of NO synthase (NOS) isoforms, that is,

  17. Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, P.J.; de Ruiter, M.B.; van Balkom, A.J.L.M.; Smit, J.H.; Veltman, D.J.

    2010-01-01

    Objective: Classic posttraumatic stress disorder (PTSD) is associated with smaller hippocampus, amygdala, and anterior cingulate cortex (ACC) volumes. We investigated whether child abuse-related complex PTSD - a severe form of PTSD with affect dysregulation and high comorbidity-showed similar brain

  18. Reduced Anterior Cingulate and Orbitofrontal Volumes in Child Abuse-Related Complex PTSD

    NARCIS (Netherlands)

    Thomaes, Kathleen; Dorrepaal, Ethy; Draijer, Nel; de Ruiter, Michiel B.; van Balkom, Anton J.; Smit, Johannes H.; Veltman, Dick J.

    2010-01-01

    Objective: Classic posttraumatic stress disorder (PTSD) is associated with smaller hippocampus, amygdala, and anterior cingulate cortex (ACC) volumes. We investigated whether child abuse-related complex PTSD a severe form of PTSD with affect dysregulation and high comorbidity-showed similar brain

  19. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer's disease by means of H215O positron emission tomography

    International Nuclear Information System (INIS)

    Ishii, Kazunari; Sasaki, Masahiro; Yamaji, Shigeru; Sakamoto, Setsu; Kitagaki, Hajime; Mori, Etsuro

    1997-01-01

    Although decreased posterior cingulate metabolism in Alzheimer's disease (AD) has been previously reported, there have been no reports on posterior cingulate perfusion. In this study we evaluated posterior cingulate perfusion as a relative value using statistical parametric maps (SPMs) and as an absolute value using conventional region of interest (ROI) settings. Twenty-eight subjects, including 14 patients with mild AD (mean age: 66.4±12.1 years) and 14 normal controls (65.9±7.3 years) were studied. Regional cerebral blood flow (CBF) was measured with H 2 15 O and positron emission tomography (PET). In the SPM analysis, the left posterior cingulate and left parietotemporal CBFs were significantly decreased in the patients with mild AD (P<0.001). At a lower statistical threshold (P<0.05), the right posterior cingulate and right parietotemporal CBFs were also significantly decreased in the AD patients. In the ROI studies, the left parietal and posterior cingulate CBFs in the patients with mild AD were significantly lower than those of the normal controls by analysis of variance and post-hoc Scheffe's test (P<0.001). We conclude that posterior cingulate perfusion is decreased in mild AD, reflecting the pathological changes and metabolic reduction in the posterior cingulate gyrus that have previously been reported to occur in mild AD. (orig.). With 1 fig., 2 tabs

  20. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    Science.gov (United States)

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis

  1. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  2. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    Science.gov (United States)

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (pchronic pain at T2 (p'schronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Cipolloni, P B; Stilwell-Morecraft, K S; Gedney, M T; Pandya, D N

    2004-01-26

    The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient

  4. The Integration of Negative Affect, Pain, and Cognitive Control in the Cingulate Cortex

    Science.gov (United States)

    Shackman, Alexander J.; Salomons, Tim V.; Slagter, Heleen A.; Fox, Andrew S.; Winter, Jameel J.; Davidson, Richard J.

    2011-01-01

    Preface It has been argued that emotion, pain, and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. But recent observations encourage a fundamentally different view. Imaging studies indicate that negative affect, pain, and cognitive control activate an overlapping region of dorsal cingulate, the anterior midcingulate cortex (aMCC). Anatomical studies reveal that aMCC constitutes a hub where information about reinforcers can be linked to motor centers responsible for expressing affect and executing goal-directed behavior. Computational modeling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of dorsal cingulate’s contribution to negative affect and pain. PMID:21331082

  5. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  6. Chemical shift magnetic resonance spectroscopy of cingulate grey matter in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Mechtcheriakov, Sergei; Kugener, Andre; Mattedi, Michael; Hinterhuber, Hartmann; Marksteiner, Josef; Schocke, Michael; Graziadei, Ivo W.; Vogel, Wolfgang

    2005-01-01

    Minimal hepatic encephalopathy (MHE) is frequently diagnosed in patients with liver cirrhosis who do not show overt clinical cirrhosis-associated neurological deficits. This condition manifests primarily with visuo-motor and attention deficits. We studied the association between visuo-motor deficits and magnetic resonance spectroscopic parameters in cingulate grey matter and white matter of centrum semiovale in patients with liver cirrhosis. The data revealed an increase in the glutamate-glutamine/creatine ratio and a decrease in choline/creatine and inositol/creatine ratios in patients with liver cirrhosis. The analysis of the data showed that cirrhosis-associated deterioration of the visuo-motor function significantly correlates with a decrease in the choline/creatine ratio and an increase in N-acetylaspartate/choline in cingulate grey matter but not in the neighbouring white matter. Furthermore, the increase in the glutamate-glutamine/creatine ratio correlated significantly with the increase in the N-acetylaspartate/creatine ratio. These data suggest an association between altered choline, glutamate-glutamine and NAA metabolism in cingulate grey matter and symptoms of MHE, and underline the importance of differentiation between grey and white matter in magnetic resonance spectroscopic studies on patients with cirrhosis-associated brain dysfunction. (orig.)

  7. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data.

    Science.gov (United States)

    Erickson, Kirk I; Milham, Michael P; Colcombe, Stanley J; Kramer, Arthur F; Banich, Marie T; Webb, Andrew; Cohen, Neal J

    2004-02-01

    We investigated the relationship between behavioral measures of conflict and the degree of activity in the anterior cingulate cortex (ACC). We reanalyzed an existing data set that employed the Stroop task using functional magnetic resonance imaging [Milham et al., Brain Cogn 2002;49:277-296]. Although we found no changes in the behavioral measures of conflict from the first to the second half of task performance, we found a reliable reduction in the activity of the anterior cingulate cortex. This result suggests the lack of a strong relationship between behavioral measurements of conflict and anterior cingulate activity. A concomitant increase in dorsolateral prefrontal cortex activity was also found, which may reflect a tradeoff in the neural substrates involved in supporting conflict resolution, detection, or monitoring processes. A second analysis of the data revealed that the duration of an experiment can dramatically affect interpretations of the results, including the roles in which particular regions are thought to play in cognition. These results are discussed in relation to current conceptions of ACC's role in attentional control. In addition, we discuss the implication of our results with current conceptions of conflict and of its instantiation in the brain. Hum. Brain Mapping 21:96-105, 2004. Copyright 2003 Wiley-Liss, Inc.

  8. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Inka Ristow

    Full Text Available A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC and in a control region, the pregenual anterior cingulate cortex (pgACC in pedophilic sex offenders (N = 13 and matched controls (N = 13 using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS. In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04. Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = −0.689. In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control. Keywords: Child sexual abuse, Dorsal anterior cingulate cortex, GABA, Magnetic resonance spectroscopy, Pedophilic sex offenders

  9. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    Science.gov (United States)

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Gelastic seizures as the presenting symptom of infarction of the cingulate gyrus].

    Science.gov (United States)

    Egea-Lucas, I; Martinez-Mondejar, E; Piqueres-Vidal, C F; Frutos-Alegria, M T

    2015-09-01

    Gelastic seizures are infrequent epileptic seizures in which the main manifestation is inappropriate laughter. They have a variety of causations. A search of the literature did not reveal any cases of pathological laughter that was clearly related with strokes, although there a numerous reports of non-epileptic pathological laughter as a prodromal symptom in stroke patients (fou rire prodromique). We report the case of a patient with infarcted cingulate gyrus who progressed with gelastic seizures at onset and during the course of the clinical process. An 81-year-old female who suddenly presented bouts of difficulties in verbal expression with disconnection from the milieu that were accompanied by fits of unmotivated and uncontrollable laughter that lasted less than five minutes. Following the attacks, her level of consciousness had dropped. In some of the attacks there were also involuntary movements of the upper limbs. Resonance imaging revealed the existence of an acute ischaemic lesion in the left territory of the cingulate gyrus and an electroencephalogram revealed the existence of epileptogenic activity in the left-hand anterior temporal and frontal regions. The clinical profile, the results of the complementary examinations and the response to the antiepileptic treatment allow us to state that in the episode reported in this patient we are dealing with gelastic seizures related to an acute ischaemic lesion in the left cingulate gyrus.

  11. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Directory of Open Access Journals (Sweden)

    Chen Tao

    2009-12-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i regular spiking (RS cells (24.7%, intrinsic bursting (IB cells (30.9%, and intermediate (IM cells (44.4%. In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5% and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.

  12. The functional integration of the anterior cingulate cortex during conflict processing.

    Science.gov (United States)

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  13. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    Science.gov (United States)

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  14. Cingulate Alpha-2A Adrenoceptors Mediate the Effects of Clonidine on Spontaneous Pain Induced by Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Yong-Jie Wang

    2017-09-01

    Full Text Available The anterior cingulate cortex (ACC is an important brain area for the regulation of neuropathic pain. The α2A adrenoceptor is a good target for pain management. However, the role of cingulate α2A adrenoceptors in the regulation of neuropathic pain has been less studied. In this study, we investigated the involvement of cingulate α2A adrenoceptors in the regulation of neuropathic pain at different time points after peripheral nerve injury in mice. The application of clonidine, either systemically (0.5 mg/kg intraperitoneally or specifically to the ACC, increased paw withdrawal thresholds (PWTs and induced conditioned place preference (CPP at day 7 after nerve injury, suggesting that cingulate α2 adrenoceptors are involved in the regulation of pain-like behaviors. Quantitative real-time PCR data showed that α2A adrenoceptors are the dominant α2 adrenoceptors in the ACC. Furthermore, the expression of cingulate α2A adrenoceptors was increased at day 3 and day 7 after nerve injury, but decreased at day 14, while no change was detected in the concentration of adrenaline or noradrenaline. BRL-44408 maleate, a selective antagonist of α2A adrenoceptors, was microinfused into the ACC. This blocking of cingulate α2A adrenoceptors activity abolished the CPP induced by clonidine (0.5 mg/kg intraperitoneally but not the effects on PWTs at day 7. However, clonidine applied systemically or specifically to the ACC at day 14 increased the PWTs but failed to induce CPP; this negative effect was reversed by the overexpression of cingulate α2A adrenoceptors. These results suggest that cingulate α2A adrenoceptors are necessary for the analgesic effects of clonidine on spontaneous pain.

  15. [Facilitation of the retention and acceleration of operant conditioning extinction after cingulate cortex lesions in BALB/c mice].

    Science.gov (United States)

    Destrade, C; Gauthier, M

    1981-12-21

    One week after receiving bilateral electrolytic lesions of the cingulate cortex, BALB/c Mice underwent acquisition, retention and extinction of an appetitive operant-conditioning task in a Skinner box. There was no significant difference between lesioned and control animals in acquisition; however, lesioned mice exhibited improved retention and faster extinction. These results suggest a possible involvement of the cingulate cortex in memory processes.

  16. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    Science.gov (United States)

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of

  17. Amygdala Reactivity and Anterior Cingulate Habituation Predict Posttraumatic Stress Disorder Symptom Maintenance After Acute Civilian Trauma.

    Science.gov (United States)

    Stevens, Jennifer S; Kim, Ye Ji; Galatzer-Levy, Isaac R; Reddy, Renuka; Ely, Timothy D; Nemeroff, Charles B; Hudak, Lauren A; Jovanovic, Tanja; Rothbaum, Barbara O; Ressler, Kerry J

    2017-06-15

    Studies suggest that exaggerated amygdala reactivity is a vulnerability factor for posttraumatic stress disorder (PTSD); however, our understanding is limited by a paucity of prospective, longitudinal studies. Recent studies in healthy samples indicate that, relative to reactivity, habituation is a more reliable biomarker of individual differences in amygdala function. We investigated reactivity of the amygdala and cortical areas to repeated threat presentations in a prospective study of PTSD. Participants were recruited from the emergency department of a large level I trauma center within 24 hours of trauma. PTSD symptoms were assessed at baseline and approximately 1, 3, 6, and 12 months after trauma. Growth curve modeling was used to estimate symptom recovery trajectories. Thirty-one individuals participated in functional magnetic resonance imaging around the 1-month assessment, passively viewing fearful and neutral face stimuli. Reactivity (fearful > neutral) and habituation to fearful faces was examined. Amygdala reactivity, but not habituation, 5 to 12 weeks after trauma was positively associated with the PTSD symptom intercept and predicted symptoms at 12 months after trauma. Habituation in the ventral anterior cingulate cortex was positively associated with the slope of PTSD symptoms, such that decreases in ventral anterior cingulate cortex activation over repeated presentations of fearful stimuli predicted increasing symptoms. Findings point to neural signatures of risk for maintaining PTSD symptoms after trauma exposure. Specifically, chronic symptoms were predicted by amygdala hyperreactivity, and poor recovery was predicted by a failure to maintain ventral anterior cingulate cortex activation in response to fearful stimuli. The importance of identifying patients at risk after trauma exposure is discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals

    Directory of Open Access Journals (Sweden)

    Yasmin Zakiniaeiz

    2017-01-01

    Full Text Available Alcohol dependence is a chronic relapsing illness. Alcohol and stress cues have consistently been shown to increase craving and relapse risk in recovering alcohol dependent (AUD patients. However, differences in functional connectivity in response to these cues have not been studied using data-driven approaches. Here, voxel-wise connectivity is used in a whole-brain investigation of functional connectivity differences associated with alcohol and stress cues and to examine whether these differences are related to subsequent relapse. In Study 1, 45, 4- to 8-week abstinent, recovering AUD patients underwent functional magnetic resonance imaging during individualized imagery of alcohol, stress, and neutral cues. Relapse measures were collected prospectively for 90 days post-discharge from inpatient treatment. AUD patients showed blunted anterior (ACC, mid (MCC and posterior cingulate cortex (PCC, voxel-wise connectivity responses to stress compared to neutral cues and blunted PCC response to alcohol compared to neutral cues. Using Cox proportional hazard regression, weaker connectivity in ACC and MCC during neutral exposure was associated with longer time to relapse (better recovery outcome. Similarly, greater connectivity in PCC during alcohol-cue compared to stress cue was associated with longer time to relapse. In Study 2, a sub-group of 30 AUD patients were demographically-matched to 30 healthy control (HC participants for group comparisons. AUD compared to HC participants showed reduced cingulate connectivity during alcohol and stress cues. Using novel data-driven approaches, the cingulate cortex emerged as a key region in the disruption of functional connectivity during alcohol and stress-cue processing in AUD patients and as a marker of subsequent alcohol relapse.

  19. HIV Distal Neuropathic Pain Is Associated with Smaller Ventral Posterior Cingulate Cortex.

    Science.gov (United States)

    Keltner, John R; Connolly, Colm G; Vaida, Florin; Jenkinson, Mark; Fennema-Notestine, Christine; Archibald, Sarah; Akkari, Cherine; Schlein, Alexandra; Lee, Jisu; Wang, Dongzhe; Kim, Sung; Li, Han; Rennels, Austin; Miller, David J; Kesidis, George; Franklin, Donald R; Sanders, Chelsea; Corkran, Stephanie; Grant, Igor; Brown, Gregory G; Atkinson, J Hampton; Ellis, Ronald J

    2017-03-01

    . Despite modern antiretroviral therapy, HIV-associated neuropathy is one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of distal neuropathic pain is not fully explained by the degree of peripheral nerve damage. A better understanding of brain structure in HIV distal neuropathic pain may help explain why some patients with HIV neuropathy report pain while the majority does not. Previously, we reported that more intense distal neuropathic pain was associated with smaller total cerebral cortical gray matter volumes. The objective of this study was to determine which parts of the cortex are smaller. . HIV positive individuals with and without distal neuropathic pain enrolled in the multisite (N = 233) CNS HIV Antiretroviral Treatment Effects (CHARTER) study underwent structural brain magnetic resonance imaging. Voxel-based morphometry was used to investigate regional brain volumes in these structural brain images. . Left ventral posterior cingulate cortex was smaller for HIV positive individuals with versus without distal neuropathic pain (peak P  = 0.017; peak t = 5.15; MNI coordinates x = -6, y = -54, z = 20). Regional brain volumes within cortical gray matter structures typically associated with pain processing were also smaller for HIV positive individuals having higher intensity ratings of distal neuropathic pain. . The posterior cingulate is thought to be involved in inhibiting the perception of painful stimuli. Mechanistically a smaller posterior cingulate cortex structure may be related to reduced anti-nociception contributing to increased distal neuropathic pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    Science.gov (United States)

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  1. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  2. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  3. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Science.gov (United States)

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  4. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  5. Measuring the volume of cingulate cortex in Chinese normal adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Zhang Chao; Chen Nan; Wang Xing; Li Kuncheng; Zhou Xin; Zhuo Yan; Chen Lin

    2010-01-01

    Objective: To explore the normal range of cingulate cortex volumes of Chinese adults of the Han nationality and its relationship with age, which provide morphological data for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. One thousand Chinese healthy volunteers (age range = 18 to 70) recruited from 15 hospitals were divided into 5 groups, i.e., Group A (age range = 18 to 30), B (age range =31 to 40), C (age range =41 to 50), D (age range =51 to 60), and E (age range =61 to 70). Each group contained 100 males and 100 females. All of the volunteers were scanned by MR using T 1 weighted three-dimensional magnetization prepared rapid acquisition gradient echo sequence. Cingulate cortex volume (including bulk volume and the left/right volume) was measured semi-manually using 3D volume analysis software. Cingulate cortex volumes among age groups were compared by one-way ANOVA. Right and left cingulate cortex volumes between sexualities were analyzed by paired samples t test. The relationship between cingulate cortex volume and age was analyzed by Pearson correlations and regression analysis. Results: Cingulate cortex volumes of male and female were (20 347 ± 2504) and (19 432 ± 2184) mm 3 respectively, and the male's was significantly larger than that of female's (two sample t'-test for independent samples, t'=6.156, P 3 respectively, and those of female's were (10 064 ± 1407) and (9368 ± 1441) mm 3 respectively. The volumes of cingulate cortex were significantly different between right and left in male or female (t=-12.960, -8.511, P 3 ; right: (11212±1442), (11 096±1602), (11 040±1403), (10633±1638), (9604±1522) mm 3 ] had statistical differences (F=16.738, 18.707, P 3 ; right: (10 558± 1325), (10 266 ±1463), (10 100 ± 1497), (9779 ± 1304), (9617 ± 1254) mm 3 ] also had significant differences (F=16.859,7.528,P<0.01). Bilateral cingulate cortex volume in both male and female were negatively

  6. Anterior cingulate activation is related to a positivity bias and emotional stability in successful aging.

    Science.gov (United States)

    Brassen, Stefanie; Gamer, Matthias; Büchel, Christian

    2011-07-15

    Behavioral studies consistently reported an increased preference for positive experiences in older adults. The socio-emotional selectivity theory explains this positivity effect with a motivated goal shift in emotion regulation, which probably depends on available cognitive resources. The present study investigates the neurobiological mechanism underlying this hypothesis. Functional magnetic resonance imaging data were acquired in 21 older and 22 young subjects while performing a spatial-cueing paradigm that manipulates attentional load on emotional face distracters. We focused our analyses on the anterior cingulate cortex as a key structure of cognitive control of emotion. Elderly subjects showed a specifically increased distractibility by happy faces when more attentional resources were available for face processing. This effect was paralleled by an increased engagement of the rostral anterior cingulate cortex, and this frontal engagement was significantly correlated with emotional stability. The current study highlights how the brain might mediate the tendency to preferentially engage in positive information processing in healthy aging. The finding of a resource-dependency of this positivity effect suggests demanding self-regulating processes that are related to emotional well-being. These findings are of particular relevance regarding implications for the understanding, treatment, and prevention of nonsuccessful aging like highly prevalent late-life depression. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    Science.gov (United States)

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  8. Pica in a Child with Anterior Cingulate Gyrus Oligodendroglioma: Case Report.

    Science.gov (United States)

    Rangwala, Shivani D; Tobin, Matthew K; Birk, Daniel M; Butts, Jonathan T; Nikas, Dimitrios C; Hahn, Yoon S

    2017-01-01

    The anterior cingulate gyrus (ACG) is a continued focus of research as its exact role in brain function and vast connections with other anatomical locations is not fully understood. A review of the literature illustrates the role the ACG likely plays in cognitive and emotional processing, as well as a modulating role in motor function and goal-oriented behaviors. While lesions of the cingulate gyrus are rare, each new case broadens our understanding of its role in cognitive neuroscience and higher order processing. The authors present the case of an 8-year-old boy with a 1-month history of staring spells, agitated personality, and hyperphagia notable for the consumption of paper, who was found to have a 3-cm tumor in the left ACG. Following surgical resection of the tumor, his aggressive behavior and pica were ameliorated and the patient made an uneventful recovery, with no evidence of recurrence over the last 6 years since surgical resection. Here we discuss a unique behavioral presentation of pica, along with a review of the current literature, to illustrate functions of the ACG relevant to the location of the lesion. © 2017 S. Karger AG, Basel.

  9. Decision ambiguity is mediated by a late positive potential originating from cingulate cortex.

    Science.gov (United States)

    Sun, Sai; Zhen, Shanshan; Fu, Zhongzheng; Wu, Daw-An; Shimojo, Shinsuke; Adolphs, Ralph; Yu, Rongjun; Wang, Shuo

    2017-08-15

    People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Recovery from Transient Global Amnesia Following Restoration of Hippocampal and Fronto–Cingulate Perfusion

    Directory of Open Access Journals (Sweden)

    Paolo Caffarra

    2010-01-01

    Full Text Available A patient who suffered a transient global amnesia (TGA attack underwent regional cerebral blood flow (rCBF SPECT imaging and neuropsychological testing in the acute phase, after one month and after one year. Neuropsychological testing in the acute phase showed a pattern of anterograde and retrograde amnesia, whereas memory was within age normal limits at follow up. SPECT data were analysed with a within subject comparison and also compared with those of a group of healthy controls. Within subject comparison between the one month follow up and the acute phase detected increases in rCBF in the hippocampus bilaterally; further rCBF increases in the right hippocampus were detected after one year. Compared to controls, significant hypoperfusion was found in the right precentral, cingulate and medial frontal gyri in the acute phase; after one month significant hypoperfusion was detected in the right precentral and cingulate gyri and the left postcentral gyrus; after one year no significant hypoperfusion appeared. The restoration of memory was paralleled by rCBF increases in the hippocampus and fronto-limbic-parietal cortex; after one year neither significant rCBF differences nor cognitive deficits were detectable. In conclusion, these data indicate that TGA had no long lasting cognitive and neural alterations in this patient.

  11. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  12. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    Science.gov (United States)

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  13. Lack of paternal care affects synaptic development in the anterior cingulate cortex.

    Science.gov (United States)

    Ovtscharoff, Wladimir; Helmeke, Carina; Braun, Katharina

    2006-10-20

    Exposure to enriched or impoverished environmental conditions, experience and learning are factors which influence brain development, and it has been shown that neonatal emotional experience significantly interferes with the synaptic development of higher associative forebrain areas. Here, we analyzed the impact of paternal care, i.e. the father's emotional contribution towards his offspring, on the synaptic development of the anterior cingulate cortex. Our light and electron microscopic comparison of biparentally raised control animals and animals which were raised in single-mother families revealed no significant differences in spine densities on the apical dendrites of layer II/III pyramidal neurons and of asymmetric and symmetric spine synapses. However, significantly reduced densities (-33%) of symmetric shaft synapses were found in layer II of the fatherless animals compared to controls. This finding indicates an imbalance between excitatory and inhibitory synapses in the anterior cingulate cortex of father-deprived animals. Our results query the general assumption that a father has less impact on the synaptic maturation of his offspring's brain than the mother.

  14. Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control

    Directory of Open Access Journals (Sweden)

    Michael G. White

    2018-01-01

    Full Text Available Summary: Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action. : White et al. show that anterior cingulate cortex (ACC input to the claustrum encodes a top-down preparatory signal on a 5-choice response assay that is critical for task performance. Claustrum microcircuitry amplifies top-down ACC input in a frequency-dependent manner for eventual propagation to the cortex for cognitive control of action. Keywords: 5CSRTT, optogenetics, fiber photometry, microcircuit, attention, bottom-up, sensory cortices, motor cortices

  15. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  16. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    International Nuclear Information System (INIS)

    Rowe, C.C.; Barnden, L.R.; Nicholas, C.; Nowakowski, K.; Boundy, K.

    2000-01-01

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Computational Models of Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort

    Directory of Open Access Journals (Sweden)

    Eliana Vassena

    2017-06-01

    Full Text Available In the last two decades the anterior cingulate cortex (ACC has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework.

  18. Disconnectivity between Dorsal Raphe Nucleus and Posterior Cingulate Cortex in Later Life Depression

    Directory of Open Access Journals (Sweden)

    Toshikazu Ikuta

    2017-08-01

    Full Text Available The dorsal raphe nucleus (DRN has been repeatedly implicated as having a significant relationship with depression, along with its serotoninergic innervation. However, functional connectivity of the DRN in depression is not well understood. The current study aimed to isolate functional connectivity of the DRN distinct in later life depression (LLD compared to a healthy age-matched population. Resting state functional magnetic resonance imaging (rsfMRI data from 95 participants (33 LLD and 62 healthy were collected to examine functional connectivity from the DRN to the whole brain in voxel-wise fashion. The posterior cingulate cortex (PCC bilaterally showed significantly smaller connectivity in the LLD group than the control group. The DRN to PCC connectivity did not show any association with the depressive status. The findings implicate that the LLD involves disruption of serotoninergic input to the PCC, which has been suggested to be a part of the reduced default mode network in depression.

  19. Distributed representations of action sequences in anterior cingulate cortex: A recurrent neural network approach.

    Science.gov (United States)

    Shahnazian, Danesh; Holroyd, Clay B

    2018-02-01

    Anterior cingulate cortex (ACC) has been the subject of intense debate over the past 2 decades, but its specific computational function remains controversial. Here we present a simple computational model of ACC that incorporates distributed representations across a network of interconnected processing units. Based on the proposal that ACC is concerned with the execution of extended, goal-directed action sequences, we trained a recurrent neural network to predict each successive step of several sequences associated with multiple tasks. In keeping with neurophysiological observations from nonhuman animals, the network yields distributed patterns of activity across ACC neurons that track the progression of each sequence, and in keeping with human neuroimaging data, the network produces discrepancy signals when any step of the sequence deviates from the predicted step. These simulations illustrate a novel approach for investigating ACC function.

  20. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  1. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    Science.gov (United States)

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  2. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder.

    Science.gov (United States)

    Ho, Tiffany C; Sacchet, Matthew D; Connolly, Colm G; Margulies, Daniel S; Tymofiyeva, Olga; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2017-11-01

    Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed 'inflexibility') between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53 well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially reflected by altered ACC maturation.

  3. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  4. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    Science.gov (United States)

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  5. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296 ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  6. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder

    NARCIS (Netherlands)

    Kennis, Mitzy; Rademaker, Arthur R.; van Rooij, Sanne J H; Kahn, René S.; Geuze, Elbert

    2015-01-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based

  7. T174. STRUCTURAL ABNORMALITIES IN THE CINGULATE CORTEX IN ADOLESCENTS AT ULTRA-HIGH RISK WHO LATER DEVELOP PSYCHOSIS

    Science.gov (United States)

    Fortea, Adriana; van Eindhjoven, Phillip; Pariente, Jose; Calvo, Anna; Batalla, Albert; de la Serna, Elena; Ilzarbe, Daniel; Tor, Jordina; Dolz, Montserrat; Baeza, Inmaculada; Sugranyes, Gisela

    2018-01-01

    Abstract Background Identification of biomarkers of transition to psychosis in individuals at ultra-high risk (UHR) has the potential to improve future outcomes (McGorry, 2008). Structural MRI studies with UHR samples have revealed steeper rates of cortical thinning in temporal, prefrontal and cingulate cortices in individuals who later develop psychosis in both baseline and longitudinal comparisons (Fusar-Poli, 2011; Cannon, 2014). However, little is known about how onset of prodromal symptoms during adolescence impacts on changes in cortical thickness (CTH) (Ziermans, 2012). Methods Multicentre cross-sectional case-control study, including youth aged 10–17 years, recruited from two child and adolescent mental health centres. UHR individuals were identified using the Structured Interview for Prodromal Syndromes criteria with some modifications. Healthy controls (HC) were recruited from the same geographical area. Exclusion criteria comprised personal history of psychotic symptoms, IQ.6) for CTH measures. Images were pre-processed employing automated procedures implemented in FreeSurfer 5.3.0, cortical parcellation employed the Desikan-Killiany brain atlas. Analyses: First, mean global and lobar (frontal, parietal, temporal, occipital, insula and cingulate) CTH measurements were computed. Then, within lobes showing group effects, CTH was measured for each parcellation. ANCOVA was performed to test differences between groups in SPSS 22.0, including gender, age, total intracranial volume and site as covariates. Significance was set at p<.05, corrected using the false discovery rate (FDR). Results 122 subjects were included (59 UHR-NP vs. 18 UHR-P vs. 45 HC, mean ages: 15.2 ± 1.5 vs. 15.0 ± 1.8 vs. 15.8 ± 1.5, F=1.9, p=.15; gender (%female): 61.0% vs 61.1% vs 68.9%, χ2=.76, p=.68). There were no significant differences in case-control proportion between centres: χ2=1.3, p=.25. No significant differences in global CTH in UHR-P (2.57 ± 0.13mm) relative to UHR

  8. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    Science.gov (United States)

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report.

    Directory of Open Access Journals (Sweden)

    Kathleen eGarrison

    2013-08-01

    Full Text Available Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network –the posterior cingulate cortex. We analyzed first-person data consisting of meditators’ accounts of their subjective experience during runs of a real-time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of posterior cingulate cortex activity during the same runs. We found that for meditators, the subjective experiences of ‘undistracted awareness’ such as ‘concentration’ and ‘observing sensory experience’, and ‘effortless doing’ such as ‘observing sensory experience’, ‘not efforting’, and ‘contentment’, correspond with posterior cingulate cortex deactivation. Further, the subjective experiences of ‘distracted awareness’ such as ‘distraction’ and ‘interpreting’, and ‘controlling’ such as ‘efforting’ and ‘discontentment’, correspond with posterior cingulate cortex activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to posterior cingulate cortex activity, such as the difference between meditation and ‘trying to meditate’. These findings offer novel insights into the relationship between meditation and self-related thinking and neural activity in the default mode network, driven by the first-person experience.

  10. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    Science.gov (United States)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  11. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Zhao Xiaohu; Wang Peijun; Dong Ningxin; Li Chunbo; Wu Wenyuan; Hu Zhenghui; Tang Xiaowei

    2007-01-01

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  12. Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.

    Science.gov (United States)

    Ma, Jingyi; Leung, L Stan

    2018-02-15

    The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  14. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    International Nuclear Information System (INIS)

    Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, D.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  15. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    Science.gov (United States)

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  16. Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate.

    Science.gov (United States)

    Haas, Brian W; Omura, Kazufumi; Constable, R Todd; Canli, Turhan

    2007-04-01

    The amygdala and subgenual anterior cingulate (AC) have been associated with anxiety and mood disorders, for which trait neuroticism is a risk factor. Prior work has not related individual differences in amygdala or subgenual AC activation with neuroticism. Functional magnetic resonance imaging was used to investigate changes in blood oxygen level-dependent signal within the amygdala and subgenual AC associated with trait neuroticism in a nonclinical sample of 36 volunteers during an emotional conflict task. Neuroticism correlated positively with amygdala and subgenual AC activation during trials of high emotional conflict, compared with trials of low emotional conflict. The subscale of neuroticism that reflected the anxious form of neuroticism (N1) explained a greater proportion of variance within the observed clusters than the subscale of neuroticism that reflected the depressive form of neuroticism (N3). Using a task that is sensitive to individual differences in the detection of emotional conflict, the authors have provided a neural correlate of the link between neuroticism and anxiety and mood disorders. This effect was driven to a greater extent by the anxious relative to the depressive characteristics of neuroticism and may constitute vulnerability markers for anxiety-related disorders. (c) 2007 APA, all rights reserved

  17. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  18. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  19. Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia.

    Science.gov (United States)

    Smith, Monique L; Walcott, Andre T; Heinricher, Mary M; Ryabinin, Andrey E

    2017-01-01

    Pain is often described as a "biopsychosocial" process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another's pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in "bystanders" exposed to "primary" conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.

  20. The role of the anterior cingulate cortex in women's sexual decision making.

    Science.gov (United States)

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Janssen, Erick; Heiman, Julia R

    2009-01-02

    Women's sexual decision making is a complex process balancing the potential rewards of conception and pleasure against the risks of possible low paternal care or sexually transmitted infection. Although neural processes underlying social decision making are suggested to overlap with those involved in economic decision making, the neural systems associated with women's sexual decision making are unknown. Using fMRI, we measured the brain activation of 12 women while they viewed photos of men's faces. Face stimuli were accompanied by information regarding each man's potential risk as a sexual partner, indicated by a written description of the man's number of previous sexual partners and frequency of condom use. Participants were asked to evaluate how likely they would be to have sex with the man depicted. Women reported that they would be more likely to have sex with low compared to high risk men. Stimuli depicting low risk men also elicited stronger activation in the anterior cingulate cortex (ACC), midbrain, and intraparietal sulcus, possibly reflecting an influence of sexual risk on women's attraction, arousal, and attention during their sexual decision making. Activation in the ACC was positively correlated with women's subjective evaluations of sex likelihood and response times during their evaluations of high, but not low risk men. These findings provide evidence that neural systems involved in sexual decision making in women overlap with those described previously to underlie nonsexual decision making.

  1. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    Science.gov (United States)

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia.

    Science.gov (United States)

    Krause, Martin; Theiss, Carsten; Brüne, Martin

    2017-11-01

    Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex.

    Science.gov (United States)

    Jiang, Yaoguang; Platt, Michael L

    2018-05-29

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence social functions in many mammals. In humans and rhesus macaques, OT delivered intranasally can promote prosocial behavior in certain contexts. Yet the precise neural mechanisms mediating these behavioral effects remain unclear. Here we show that treating a group of male macaque monkeys intranasally with aerosolized OT relaxes their spontaneous social interactions with other monkeys. OT reduces differences in social behavior between dominant and subordinate monkeys, thereby flattening the status hierarchy. OT also increases behavioral synchrony within a pair. Intranasal delivery of aerosolized AVP reproduces the effects of OT with greater efficacy. Remarkably, all behavioral effects are replicated when OT or AVP is injected focally into the anterior cingulate gyrus (ACCg), a brain area linked to empathy and other-regarding behavior. ACCg lacks OT receptors but is rich in AVP receptors, suggesting exogenous OT may shape social behavior, in part, via nonspecific binding. Notably, OT and AVP alter behaviors of both the treated monkey and his untreated partner, consistent with enhanced feedback through reciprocal social interactions. These findings bear important implications for use of OT in both basic research and as a therapy for social impairments in neurodevelopmental disorders.

  4. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  5. Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness

    Science.gov (United States)

    Ursu, Stefan; Clark, Kristi A.; Aizenstein, Howard J.; Stenger, V. Andrew; Carter, Cameron S.

    2009-01-01

    The caudal anterior cingulate cortex (cACC) is thought to be involved in performance monitoring, as conflict and error-related activity frequently co-localize in this area. Recent results suggest that these effects may be differentially modulated by awareness. To clarify the role of awareness in performance monitoring by the cACC, we used rapid event-related fMRI to examine the cACC activity while subjects performed a dual task: a delayed recognition task and a serial response task (SRT) with an implicit probabilistic learning rule (i.e. the stimulus location followed a probabilistic sequence of which the subjects were unaware). Task performance confirmed that the location sequence was learned implicitly. Even though we found no evidence of awareness for the presence of the sequence, imaging data revealed increased cACC activity during correct trials which violated the sequence (high conflict), relative to trials when stimuli followed the sequence (low conflict). Errors made with awareness also activated the same brain region. These results suggest that the performance monitoring function of the cACC extends beyond detection of errors made with or without awareness, and involves detection of multiple responses even when they are outside of awareness. PMID:19026710

  6. The political (and physiological) divide: Political orientation, performance monitoring, and the anterior cingulate response.

    Science.gov (United States)

    Weissflog, Meghan; Choma, Becky L; Dywan, Jane; van Noordt, Stefon J R; Segalowitz, Sidney J

    2013-01-01

    Our goal was to test a model of sociopolitical attitudes that posits a relationship between individual differences in liberal versus conservative political orientation and differential levels of anterior cingulate cortex (ACC) responsivity. We recorded event-related potentials (ERPs) while participants who varied along a unidimensional liberal-conservative continuum engaged in a standard Go/NoGo task. We also measured component attitudes of political orientation in the form of traditionalism (degree of openness to social change) and egalitarianism (a preference for social equality). Generally, participants who reported a more liberal political orientation made fewer errors and produced larger ACC-generated ERPs (the error-related negativity, or ERN and the NoGo N2). This ACC activation, especially as indicated by a larger NoGo N2, was most strongly associated with greater preference for social equality. Performance accuracy, however, was most strongly associated with greater openness to social change. These data are consistent with a social neuroscience view that sociopolitical attitudes are related to aspects of neurophysiological responsivity. They also indicate that a bidimensional model of political orientation can enhance our interpretation of the nature of these associations.

  7. Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Ruohe Zhao

    2018-04-01

    Full Text Available The anterior cingulate cortex (ACC is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5 pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.

  8. Changed hub and corresponding functional connectivity of subgenual anterior cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Huawang Wu

    2016-12-01

    Full Text Available Major depressive disorder (MDD is one of the most prevalent mental disorders. In the brain, the hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of MDD remains unclear. Using resting-state functional magnetic resonance imaging and graph theory methods, we investigated whether alterations of hubs can be detected in MDD. First, we constructed the whole-brain voxel-wise functional networks and calculated a functional connectivity strength (FCS map in each subject in 34 MDD patients and 34 gender-, age-, and education level-matched healthy controls (HC. Next, the two-sample t-test was applied to compare the FCS maps between HC and MDD patients and identified significant decreased FCS in subgenual anterior cingulate cortex (sgACC in MDD patients. Subsequent functional connectivity analyses of sgACC showed disruptions in functional connectivity with posterior insula, middle and inferior temporal gyrus, lingual gyrus, and cerebellum in MDD patients. Furthermore, the changed FCS of sgACC and functional connections to sgACC were significantly correlated with the Hamilton Depression Rating Scale (HDRS scores in MDD patients. The results of the present study revealed the abnormal hub of sgACC and its corresponding disrupted frontal-limbic-visual cognitive-cerebellum functional networks in MDD. These findings may provide a new insight for the diagnosis and treatment of MDD.

  9. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Directory of Open Access Journals (Sweden)

    Lauren A Demers

    Full Text Available Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD. The dorsal anterior cingulate cortex (dACC has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC completed the Toronto Alexithymia Scale 20 (TAS-20 and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  10. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Science.gov (United States)

    Demers, Lauren A; Olson, Elizabeth A; Crowley, David J; Rauch, Scott L; Rosso, Isabelle M

    2015-01-01

    Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD). The dorsal anterior cingulate cortex (dACC) has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC) completed the Toronto Alexithymia Scale 20 (TAS-20) and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  11. Helping behavior induced by empathic concern attenuates anterior cingulate activation in response to others' distress.

    Science.gov (United States)

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sugawara, Sho K; Matsunaga, Masahiro; Makita, Kai; Hamano, Yuki H; Tanabe, Hiroki C; Sadato, Norihiro

    2016-01-01

    Helping behavior is motivated by empathic concern for others in distress. Although empathic concern is pervasive in daily life, its neural mechanisms remain unclear. Empathic concern involves the suppression of the emotional response to others' distress, which occurs when individuals distance themselves emotionally from the distressed individual. We hypothesized that helping behavior induced by empathic concern, accompanied by perspective-taking, would attenuate the neural activation representing aversive feelings. We also predicted reward system activation due to the positive feeling resulting from helping behavior. Participant underwent functional magnetic resonance imaging while playing a virtual ball-toss game. In some blocks ("concern condition"), one player ("isolated player") did not receive ball-tosses from other players. In this condition, participants increased ball-tosses to the isolated player (helping behavior). Participants then evaluated the improved enjoyment of the isolated player resulting from their helping behavior. Anterior cingulate activation during the concern condition was attenuated by the evaluation of the effect of helping behavior. The right temporoparietal junction, which is involved in perspective-taking and the dorsal striatum, part of the reward system, were also activated during the concern condition. These results suggest that humans can attenuate affective arousal by anticipating the positive outcome of empathic concern through perspective-taking.

  12. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development

    Directory of Open Access Journals (Sweden)

    A. Cachia

    2016-06-01

    Full Text Available Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events – under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC – an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show – without exception–that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.

  14. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  15. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  16. Fish Oil Supplementation Increases Event-Related Posterior Cingulate Activation in Older Adults with Subjective Memory Impairment.

    Science.gov (United States)

    Boespflug, E L; McNamara, R K; Eliassen, J C; Schidler, M D; Krikorian, R

    2016-02-01

    To determine the effects of long-chain omega-3 (LCn-3) fatty acids found in fish oil, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on cortical blood oxygen level-dependent (BOLD) activity during a working memory task in older adults with subjective memory impairment. Randomized, double-blind, placebo-controlled study. Academic medical center. Healthy older adults (62-80 years) with subjective memory impairment, but not meeting criteria for mild cognitive impairment or dementia. Fish oil (EPA+DHA: 2.4 g/d, n=11) or placebo (corn oil, n=10) for 24 weeks. Cortical BOLD response patterns during performance of a sequential letter n-back working memory task were determined at baseline and week 24 by functional magnetic resonance imaging (fMRI). At 24 weeks erythrocyte membrane EPA+DHA composition increased significantly from baseline in participants receiving fish oil (+31%, p ≤ 0.0001) but not placebo (-17%, p=0.06). Multivariate modeling of fMRI data identified a significant interaction among treatment, visit, and memory loading in the right cingulate (BA 23/24), and in the right sensorimotor area (BA 3/4). In the fish oil group, BOLD increases at 24 weeks were observed in the right posterior cingulate and left superior frontal regions during memory loading. A region-of-interest analysis indicated that the baseline to endpoint change in posterior cingulate cortex BOLD activity signal was significantly greater in the fish oil group compared with the placebo group during the 1-back (p=0.0003) and 2-back (p=0.0005) conditions. Among all participants, the change in erythrocyte EPA+DHA during the intervention was associated with performance in the 2-back working memory task (p = 0.01), and with cingulate BOLD signal during the 1-back (p = 0.005) with a trend during the 2-back (p = 0.09). Further, cingulate BOLD activity was related to performance in the 2-back condition. Dietary fish oil supplementation increases red blood cell omega-3 content

  17. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    Science.gov (United States)

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  18. Occipital lobe and posterior cingulate perfusion in the prediction of dementia with Lewy body pathology in a clinical sample.

    Science.gov (United States)

    Prosser, Angus M J; Tossici-Bolt, Livia; Kipps, Christopher M

    2017-12-01

    The aim of this study was to investigate the diagnostic value of occipital lobe and posterior cingulate perfusion in predicting dopamine transporter imaging outcome using a quantitative measure of analysis. In total, 99 patients with cognitive complaints who had undergone both technetium-99m-hexamethylpropyleneamine oxime single-photon emission computed tomography (Tc-HMPAO SPECT) and I ioflupane (I-FP-CIT also called DaTSCAN) imaging in a dementia diagnostic center were analyzed. Measures of perfusion were calculated from HMPAO SPECT images for the medial and lateral occipital lobe, the posterior cingulate cortex, precuneus and cuneus regions of interest using statistical parametric mapping 8. DaTSCAN images were quantified and specific binding ratios were calculated independent from HMPAO SPECT results. Statistical parametric mapping and tests of associations between perfusion and I-FP-CIT imaging were completed. Regions of interest on HMPAO yielded poor predictive values when used independently to predict I-FP-CIT status; however, the combination of normal posterior cingulate perfusion with medial and lateral occipital hypoperfusion was associated significantly with I-FP-CIT status, χ (1, N=99)=9.72, P=0.002. This combination also yielded a high positive likelihood ratio and specificity (11.1, 98%). Sensitivity was, however, low (22%). No significant perfusion differences were found when abnormal and normal I-FP-CIT groups were compared directly using voxel-based morphometry (Poccipital hypoperfusion with preserved posterior cingulate gyrus perfusion is highly specific for individuals with a positive I-FP-CIT scan in a clinical sample where diagnostic doubt exists. This regional combination, however, lacks sensitivity; therefore, absence of the sign cannot be used to rule out dementia with Lewy bodies. A positive finding provides strong evidence to rule in dementia with Lewy bodies.

  19. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network.

    Science.gov (United States)

    Crone, Julia Sophia; Schurz, Matthias; Höller, Yvonne; Bergmann, Jürgen; Monti, Martin; Schmid, Elisabeth; Trinka, Eugen; Kronbichler, Martin

    2015-04-15

    The intrinsic connectivity of the default mode network has been associated with the level of consciousness in patients with severe brain injury. Especially medial parietal regions are considered to be highly involved in impaired consciousness. To better understand what aspect of this intrinsic architecture is linked to consciousness, we applied spectral dynamic causal modeling to assess effective connectivity within the default mode network in patients with disorders of consciousness. We included 12 controls, 12 patients in minimally conscious state and 13 in vegetative state in this study. For each subject, we first defined the four key regions of the default mode network employing a subject-specific independent component analysis approach. The resulting regions were then included as nodes in a spectral dynamic causal modeling analysis in order to assess how the causal interactions across these regions as well as the characteristics of neuronal fluctuations change with the level of consciousness. The resulting pattern of interaction in controls identified the posterior cingulate cortex as the main driven hub with positive afferent but negative efferent connections. In patients, this pattern appears to be disrupted. Moreover, the vegetative state patients exhibit significantly reduced self-inhibition and increased oscillations in the posterior cingulate cortex compared to minimally conscious state and controls. Finally, the degree of self-inhibition and strength of oscillation in this region is correlated with the level of consciousness. These findings indicate that the equilibrium between excitatory connectivity towards posterior cingulate cortex and its feedback projections is a key aspect of the relationship between alterations in consciousness after severe brain injury and the intrinsic functional architecture of the default mode network. This impairment might be principally due to the disruption of the mechanisms underlying self-inhibition and neuronal

  20. Combat Veterans with Comorbid PTSD and Mild TBI Exhibit a Greater Inhibitory Processing ERP from the Dorsal Anterior Cingulate Cortex

    Science.gov (United States)

    2014-08-08

    emotion processing biases in depressed undergraduates. Biological Psychology 81, 153–163. Krompinger, J.W., Simons, R.F., 2011. Cognitive inefficiency...in depressive under- graduates: stroop processing and ERPs. Biological Psychology 86, 239–246. Lanius, R.A., Vermetten, E., Loewenstein, R.J., Brand...prefrontal cortex and anterior cingulate during error processing. Psychosomatic Medicine 74, 471–475. I.-W. Shu et al. / Psychiatry Research: Neuroimaging 224

  1. Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma.

    Directory of Open Access Journals (Sweden)

    Shaojia Lu

    Full Text Available BACKGROUND: Preclinical studies have demonstrated the relationship between stress-induced increased cortisol levels and atrophy of specific brain regions, however, this association has been less revealed in clinical samples. The aim of the present study was to investigate the changes and associations of the hypothalamic-pituitary-adrenal (HPA axis activity and gray matter volumes in young healthy adults with self-reported childhood trauma exposures. METHODS: Twenty four healthy adults with childhood trauma and 24 age- and gender-matched individuals without childhood trauma were recruited. Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of cortisol awakening response (CAR. The 3D T1-weighted magnetic resonance imaging data were obtained on a Philips 3.0 Tesla scanner. Voxel-based morphometry analyses were conducted to compare the gray matter volume between two groups. Correlations of gray matter volume changes with severity of childhood trauma and CAR data were further analyzed. RESULTS: Adults with self-reported childhood trauma showed an enhanced CAR and decreased gray matter volume in the right middle cingulate gyrus. Moreover, a significant association was observed between salivary cortisol secretions after awaking and the right middle cingulate gyrus volume reduction in subjects with childhood trauma. CONCLUSIONS: The present research outcomes suggest that childhood trauma is associated with hyperactivity of the HPA axis and decreased gray matter volume in the right middle cingulate gyrus, which may represent the vulnerability for developing psychosis after childhood trauma experiences. In addition, this study demonstrates that gray matter loss in the cingulate gyrus is related to increased cortisol levels.

  2. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  4. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia.

    Science.gov (United States)

    Reid, Meredith A; Salibi, Nouha; White, David M; Gawne, Timothy J; Denney, Thomas S; Lahti, Adrienne C

    2018-01-29

    Recent magnetic resonance spectroscopy (MRS) studies suggest that abnormalities of the glutamatergic system in schizophrenia may be dependent on illness stage, medication status, and symptomatology. Glutamatergic metabolites appear to be elevated in the prodromal and early stages of schizophrenia but unchanged or reduced below normal in chronic, medicated patients. However, few of these studies have measured metabolites with high-field 7T MR scanners, which offer higher signal-to-noise ratio and better spectral resolution than 3T scanners and facilitate separation of glutamate and glutamine into distinct signals. In this study, we examined glutamate and other metabolites in the dorsal anterior cingulate cortex (ACC) of first-episode schizophrenia patients. Glutamate and N-acetylaspartate (NAA) were significantly lower in schizophrenia patients vs controls. No differences were observed in levels of glutamine, GABA, or other metabolites. In schizophrenia patients but not controls, GABA was negatively correlated with the total score on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) as well as the immediate memory and language subscales. Our findings suggest that glutamate and NAA reductions in the ACC may be present early in the illness, but additional large-scale studies are needed to confirm these results as well as longitudinal studies to determine the effect of illness progression and treatment. The correlation between GABA and cognitive function suggests that MRS may be an important technique for investigating the neurobiology underlying cognitive deficits in schizophrenia. © The Author(s) 2018. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.

    Science.gov (United States)

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2013-11-06

    Previous experience affects our behavior in terms of adjustments. It has been suggested that the conflict monitor-controller system implemented in the prefrontal cortex plays a critical role in such adjustments. Previous studies suggested that there exists multiple conflict monitor-controller systems associated with the level of information (i.e., stimulus and response levels). In this study, we sought to test whether different types of conflicts occur at the same information processing level (i.e., response level) are independently processed. For this purpose, we designed a task paradigm to measure two different types of response conflicts using color-based and location-based conflict stimuli and measured the conflict adaptation effects associated with the two types of conflicts either independently (i.e., single conflict conditions) or simultaneously (i.e., a double-conflict condition). The behavioral results demonstrated that performance on current incongruent trials was faster only when the preceding trial was the same type of response conflict regardless of whether they included a single- or double-conflict. Imaging data also showed that anterior cingulate and dorsolateral prefrontal cortices operate in a task-specific manner. These findings suggest that there may be multiple monitor-controller loops for color-based and location-based conflicts even at the same response level. Importantly, our results suggest that double-conflict processing is qualitatively different from single-conflict processing although double-conflict shares the same sources of conflict with two single-conflict conditions. © 2013 Published by Elsevier B.V.

  6. Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option.

    Science.gov (United States)

    Hart, Evan E; Gerson, Julian O; Zoken, Yael; Garcia, Marisella; Izquierdo, Alicia

    2017-07-01

    The anterior cingulate cortex (ACC) is known to be involved in effortful choice, yet its role in cost-benefit evaluation of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. Selecting between qualitatively different options is a decision type commonly faced by humans. Here, we assessed the role of ACC on a task that has primarily been used to probe striatal function in motivation. Rats were trained to stable performance on a progressive ratio schedule for sucrose pellets and were then given sham surgeries (control) or excitotoxic NMDA lesions of ACC. Subsequently, a choice was introduced: chow was concurrently available while animals could work for the preferred sucrose pellets. ACC lesions produced a significant decrease in lever presses for sucrose pellets compared to control, whereas chow consumption was unaffected. Lesions had no effect on sucrose pellet preference when both options were freely available. When laboratory chow was not concurrently available, ACC-lesioned rats exhibited similar lever pressing as controls. During a test under specific satiety for sucrose pellets, ACC-lesioned rats also showed intact devaluation effects. The effects of ACC lesions in our task are not mediated by decreased appetite, a change in food preference, a failure to update value or a learning deficit. Taken together, we found that ACC lesions decreased effort for a qualitatively preferred option. These results are discussed with reference to effects of striatal manipulations and our recent report of a role for basolateral amygdala in effortful choice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E.

    1991-01-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  8. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression.

    Science.gov (United States)

    Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong

    2018-07-16

    Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    Science.gov (United States)

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  10. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kazutaka Ohi

    Full Text Available BACKGROUND: The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls. METHODS: Genotype effects of rs12807809 were investigated on gray matter (GM and white matter (WM volumes using magnetic resonance imaging (MRI with a voxel-based morphometry (VBM technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls. RESULTS: Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC. Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32 than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls. CONCLUSIONS: Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.

  12. Cannabis use and brain structural alterations of the cingulate cortex in early psychosis.

    Science.gov (United States)

    Rapp, Charlotte; Walter, Anna; Studerus, Erich; Bugra, Hilal; Tamagni, Corinne; Röthlisberger, Michel; Borgwardt, Stefan; Aston, Jacqueline; Riecher-Rössler, Anita

    2013-11-30

    As cannabis use is more frequent in patients with psychosis than in the general population and is known to be a risk factor for psychosis, the question arises whether cannabis contributes to recently detected brain volume reductions in schizophrenic psychoses. This study is the first to investigate how cannabis use is related to the cingulum volume, a brain region involved in the pathogenesis of schizophrenia, in a sample of both at-risk mental state (ARMS) and first episode psychosis (FEP) subjects. A cross-sectional magnetic resonance imaging (MRI) study of manually traced cingulum in 23 FEP and 37 ARMS subjects was performed. Cannabis use was assessed with the Basel Interview for Psychosis. By using repeated measures analyses of covariance, we investigated whether current cannabis use is associated with the cingulum volume, correcting for age, gender, alcohol consumption, whole brain volume and antipsychotic medication. There was a significant three-way interaction between region (anterior/posterior cingulum), hemisphere (left/right cingulum) and cannabis use (yes/no). Post-hoc analyses revealed that this was due to a significant negative effect of cannabis use on the volume of the posterior cingulum which was independent of the hemisphere and diagnostic group and all other covariates we controlled for. In the anterior cingulum, we found a significant negative effect only for the left hemisphere, which was again independent of the diagnostic group. Overall, we found negative associations of current cannabis use with grey matter volume of the cingulate cortex, a region rich in cannabinoid CB1 receptors. As this finding has not been consistently found in healthy controls, it might suggest that both ARMS and FEP subjects are particularly sensitive to exogenous activation of these receptors. © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Anterior paracingulate and cingulate cortex mediates the effects of cognitive load on speech sound discrimination.

    Science.gov (United States)

    Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L

    2018-06-11

    Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018. Published by Elsevier Inc.

  14. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  15. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  16. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Zavitsanou, K.; Huang, X.-F.

    2002-01-01

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [ 3 H]MK801, [ 3 H]AMPA and [ 3 H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [ 3 H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [ 3 H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [ 3 H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [ 3 H]AMPA and [ 3 H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  17. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  18. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity.

    Science.gov (United States)

    Carey, Susan E; Nestor, Liam; Jones, Jennifer; Garavan, Hugh; Hester, Robert

    2015-10-01

    The chronic use of cannabis has been associated with error processing dysfunction, in particular, hypoactivity in the dorsal anterior cingulate cortex (dACC) during the processing of cognitive errors. Given the role of such activity in influencing post-error adaptive behaviour, we hypothesised that chronic cannabis users would have significantly poorer learning from errors. Fifteen chronic cannabis users (four females, mean age=22.40 years, SD=4.29) and 15 control participants (two females, mean age=23.27 years, SD=3.67) were administered a paired associate learning task that enabled participants to learn from their errors, during fMRI data collection. Compared with controls, chronic cannabis users showed (i) a lower recall error-correction rate and (ii) hypoactivity in the dACC and left hippocampus during the processing of error-related feedback and re-encoding of the correct response. The difference in error-related dACC activation between cannabis users and healthy controls varied as a function of error type, with the control group showing a significantly greater difference between corrected and repeated errors than the cannabis group. The present results suggest that chronic cannabis users have poorer learning from errors, with the failure to adapt performance associated with hypoactivity in error-related dACC and hippocampal regions. The findings highlight a consequence of performance monitoring dysfunction in drug abuse and the potential consequence this cognitive impairment has for the symptom of failing to learn from negative feedback seen in cannabis and other forms of dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.

    Science.gov (United States)

    Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro

    2010-04-01

    Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.

  20. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  1. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    Science.gov (United States)

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-03

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  3. Role for the Ventral Posterior Medial/Posterior Lateral Thalamus and Anterior Cingulate Cortex in Affective/Motivation Pain Induced by Varicella Zoster Virus

    Directory of Open Access Journals (Sweden)

    Phillip R. Kramer

    2017-10-01

    Full Text Available Varicella zoster virus (VZV infects the face and can result in chronic, debilitating pain. The mechanism for this pain is unknown and current treatment is often not effective, thus investigations into the pain pathway become vital. Pain itself is multidimensional, consisting of sensory and affective experiences. One of the primary brain substrates for transmitting sensory signals in the face is the ventral posterior medial/posterior lateral thalamus (VPM/VPL. In addition, the anterior cingulate cortex (ACC has been shown to be vital in the affective experience of pain, so investigating both of these areas in freely behaving animals was completed to address the role of the brain in VZV-induced pain. Our lab has developed a place escape avoidance paradigm (PEAP to measure VZV-induced affective pain in the orofacial region of the rat. Using this assay as a measure of the affective pain experience a significant response was observed after VZV injection into the whisker pad and after VZV infusion into the trigeminal ganglion. Local field potentials (LFPs are the summed electrical current from a group of neurons. LFP in both the VPM/VPL and ACC was attenuated in VZV injected rats after inhibition of neuronal activity. This inhibition of VPM/VPL neurons was accomplished using a designer receptor exclusively activated by a designer drug (DREADD. Immunostaining showed that cells within the VPM/VPL expressed thalamic glutamatergic vesicle transporter-2, NeuN and DREADD suggesting inhibition occurred primarily in excitable neurons. From these results we conclude: (1 that VZV associated pain does not involve a mechanism exclusive to the peripheral nerve terminals, and (2 can be controlled, in part, by excitatory neurons within the VPM/VPL that potentially modulate the affective experience by altering activity in the ACC.

  4. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    Science.gov (United States)

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  5. A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki; Osaka, Mariko; Morishita, Masanao; Kondo, Hirohito; Fukuyama, Hidenao

    2004-08-12

    We present an fMRI study demonstrating that an onomatopoeia word highly suggestive of subjective pain, heard by the ear, significantly activates the anterior cingulate cortex (ACC) while hearing non-sense words that did not imply affective pain under the same task does not activate this area in humans. We concluded that the ACC would be a pivotal locus for perceiving affective pain evoked by an onomatopoeia word that implied affective pain closely associated with the unpleasantness of pain. We suggest that the pain affect sustained by pain unpleasantness may depend on ACC-prefrontal cortical interactions that modify cognitive evaluation of emotions associated with word-induced pain.

  6. Comparison of diffusion tensor imaging and proton MR spectroscopy in the posterior cingulate of patients with Alzheimer disease

    International Nuclear Information System (INIS)

    Ding Bei; Ling Huawei; Zhang Hua; Chai Weimin; Chen Kemin; Li Xia; Wang Tao

    2009-01-01

    Objective To compare 1 HMRS and DTI findings of Alzheimer disease (AD) patients and normal elderly controls. Methods: Fifteen mild AD patients, 20 moderate to severe AD patients and 20 aging controlled normal subjects (CN) were recruited. MRS imaging and DTI were performed on a 1.5 T MRI scanner. A ROI was positioned in the posterior part of the cingulate. MRS data were processed and the metabolite ratios were estimated, including the ratios of NAA/Cr, Cho/Cr, mI/Cr. Comparing with the axial MRS location, we chose the same level to posit the ROIs on both sides of the posterior cingulated fibers on fractional anisotropy map (FA) and mean diffusivity map (MD). Mean spectroscopy data and DTI values for each groups were analysed with Mann-Whitney U non parametric test. Correlations between MRS and DTI values for AD groups were estimated using partial correlations test controlling for the age related bias. Results Compared to normal aging groups, mild AD group showed a significantly lower FA value in the left side of posterior cingulum bundle (0.549±0.056 vs 0.517±0.058, Z=2.014, P -3 mm 2 /s vs (0.761±0.057) x 10 -3 mm 2 /s, Z=1.970, P<0.05). Obvious increasing mI/Cr ratio was found in mild AD group(0.61±0.07 vs 0.68±0.12,Z=2.911, P<0.01). NAA/Cr ratio showed gradually decrease in AD groups. Partial correlations analysis revealed a positive correlation between mI/Cr ratio and left posterior cingulated FA value in mild AD group (r=0.586, P< 0.05) and negative correlation between NAA/Cr and MD value in the right side of posterior cingulated region (r=-0.505, P<0.05). Conclusions: These findings suggested that there were different regional and temporal pattern in different course of AD disease, resulting from axonal loss or gliosis. Combining MRS with DTI alternations could be a better potential indicator and could better explain the pathological changes in AD progression. (authors)

  7. Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage.

    Science.gov (United States)

    Lecce, Francesca; Rotondaro, Francesca; Bonnì, Sonia; Carlesimo, Augusto; Thiebaut de Schotten, Michel; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2015-01-01

    Motivational valence plays a key role in orienting spatial attention. Nonetheless, clinical documentation and understanding of motivationally based deficits of spatial orienting in the human is limited. Here in a series of one group-study and two single-case studies, we have examined right brain damaged patients (RBD) with and without left spatial neglect in a spatial reward-learning task, in which the motivational valence of the left contralesional and the right ipsilesional space was contrasted. In each trial two visual boxes were presented, one to the left and one to the right of central fixation. In one session monetary rewards were released more frequently in the box on the left side (75% of trials) whereas in another session they were released more frequently on the right side. In each trial patients were required to: 1) point to each one of the two boxes; 2) choose one of the boxes for obtaining monetary reward; 3) report explicitly the position of reward and whether this position matched or not the original choice. Despite defective spontaneous allocation of attention toward the contralesional space, RBD patients with left spatial neglect showed preserved contralesional reward learning, i.e., comparable to ipsilesional learning and to reward learning displayed by patients without neglect. A notable exception in the group of neglect patients was L.R., who showed no sign of contralesional reward learning in a series of 120 consecutive trials despite being able of reaching learning criterion in only 20 trials in the ipsilesional space. L.R. suffered a cortical-subcortical brain damage affecting the anterior components of the parietal-frontal attentional network and, compared with all other neglect and non-neglect patients, had additional lesion involvement of the medial anterior cingulate cortex (ACC) and of the adjacent sectors of the corpus callosum. In contrast to his lateralized motivational learning deficit, L.R. had no lateral bias in the early phases of

  8. Upper midbrain profile sign and cingulate sulcus sign. MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer's disease, and progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Adachi, Michito; Ohshima, Fumi; Kawanami, Toru; Kato, Takeo

    2006-01-01

    On magnetic resonance imaging (MRI) sagittal sections, we sometimes encounter abnormal aspects of the superior profile of the midbrain and the cingulate sulcus in patients with dementia. In this preliminary study, we refer to these findings as the ''upper midbrain profile sign'' and the cingulate sulcus sign.'' We prospectively evaluated the usefulness of these signs for the diagnosis of idiopathic normal-pressure hydrocephalus (iNPH), Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). We evaluated the upper midbrain profile sign and the cingulate sulcus sign on MRI sagittal images obtained from 21 people with headaches but no neurological deficit (controls), 10 iNPH patients, 11 AD patients, and 5 PSP patients. The upper midbrain profile sign indicated a concave shape to the superior profile of the midbrain on mid-sagittal images, and the cingulate sulcus sign indicated a narrow, tight aspect of the posterior part of the cingulate sulcus on paramedian-sagittal images. These signs were never seen in any images from the controls. The upper midbrain profile sign was seen in 7 of 10 patients with iNPH, 5 of 11 with AD, and 3 of 5 with PSP. The cingulate sulcus sign was seen in all 10 patients with iNPH but was never seen in any patient with AD or PSP. The upper midbrain profile sign could support a diagnosis of PSP but cannot discriminate among iNPH, AD, and PSP. In contrast, the cingulate sulcus sign has a very high sensitivity for iNPH and should facilitate the distinction of iNPH from other dementias. In the clinical setting, it is momentous to evaluate these signs easily by one simple MRI sequence. (author)

  9. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Science.gov (United States)

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder.

    Science.gov (United States)

    Rogers, Mark A; Yamasue, Hidenori; Abe, Osamu; Yamada, Haruyasu; Ohtani, Toshiyuki; Iwanami, Akira; Aoki, Shigeki; Kato, Nobumasa; Kasai, Kiyoto

    2009-12-30

    Although post-traumatic stress disorder (PTSD) may be seen to represent a failure to extinguish learned fear, significant aspects of the pathophysiology relevant to this hypothesis remain unknown. Both the amygdala and hippocampus are necessary for fear extinction occur, and thus both regions may be abnormal in PTSD. Twenty-five people who experienced the Tokyo subway sarin attack in 1995, nine who later developed PTSD and 16 who did not, underwent magnetic resonance imaging (MRI) with manual tracing to determine bilateral amygdala and hippocampus volumes. At the time of scanning, one had PTSD and eight had a history of PTSD. Results indicated that the group with a history of PTSD had significantly smaller mean bilateral amygdala volume than did the group that did not develop PTSD. Furthermore, left amygdala volume showed a significant negative correlation with severity of PTSD symptomatology as well as reduced gray matter density in the left anterior cingulate cortex. To our knowledge, this is the first observation of an association between PTSD and amygdala volume. Furthermore the apparent interplay between amygdala and anterior cingulate cortex represents support at the level of gross brain morphology for the theory of PTSD as a failure of fear extinction.

  11. From Thirst to Satiety: The Anterior Mid-Cingulate Cortex and Right Posterior Insula Indicate Dynamic Changes in Incentive Value

    Directory of Open Access Journals (Sweden)

    Christoph A. Becker

    2017-05-01

    Full Text Available The cingulate cortex and insula are among the neural structures whose activations have been modulated in functional imaging studies examining discrete states of thirst and drinking to satiation. Building upon these findings, the present study aimed to identify neural structures that change their pattern of activation elicited by water held in the mouth in relation to the internal body state, i.e., proportional to continuous water consumption. Accordingly, participants in a thirsty state were scanned while receiving increments of water until satiety was reached. As expected, fluid ingestion led to a clear decrease in self-reported thirst and the pleasantness ratings of the water ingested. Furthermore, linear decreases in the blood oxygenation level dependent (BOLD response to water ingestion were observed in the anterior mid-cingulate cortex (aMCC and right posterior insula as participants shifted towards the non-thirsty state. In addition, regions in the superior temporal gyrus (STG, supplementary motor area (SMA, superior parietal lobule (SPL, precuneus and calcarine sulcus also showed a linear decrease with increasing fluid consumption. Further analyses related single trial BOLD responses of associated regions to trial-by-trial ratings of thirst and pleasantness. Overall, the aMCC and posterior insula may be key sites of a neural network representing the motivation for drinking based on the dynamic integration of internal state and external stimuli.

  12. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Science.gov (United States)

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  13. Molecular Pathways

    Science.gov (United States)

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  14. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    Science.gov (United States)

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (pOccipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  15. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    Science.gov (United States)

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  16. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    Science.gov (United States)

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

    Directory of Open Access Journals (Sweden)

    Angela eVandenberg

    2015-02-01

    Full Text Available The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSC and mEPSCs in Layer 5 cell-types in the mouse anterior cingulate across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral cingulate and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25. YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50, which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs. Our data suggest that the maturation of inhibitory inputs onto layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.

  18. [Tractography of the uncinate fasciculus and the posterior cingulate fasciculus in patients with mild cognitive impairment and Alzheimer disease].

    Science.gov (United States)

    Larroza, A; Moratal, D; D'ocón Alcañiz, V; Arana, E

    2014-01-01

    Brain tractography is a non-invasive medical imaging technique which enables in vivo visualisation and various types of quantitative studies of white matter fibre tracts connecting different parts of the brain. We completed a quantitative study using brain tractography with diffusion tensor imaging in patients with mild cognitive impairment, patients with Alzheimer disease, and normal controls, in order to analyse the reproducibility and validity of the results. Fractional anisotropy (FA) and mean diffusivity (MD) were measured across the uncinate fasciculus and the posterior cingulate fasciculus in images, obtained from a database and a research centre, representing 52 subjects distributed among the 3 study groups. Two observers took the measurements twice in order to evaluate intra- and inter-observer reproducibility. Measurements of FA and MD of the uncinate fasciculus delivered an intraclass correlation coefficient above 0.9; ICC was above 0.68 for the posterior cingulate fasciculus. Patients with Alzheimer disease showed lower values of FA and higher MD values in the right uncinate fasciculus in images from the research centre. A comparison of the measurements from the 2 centres revealed significant differences. We established a reproducible methodology for performing tractography of the tracts in question. FA and MD indexes may serve as early indicators of Alzheimer disease. The type of equipment and the method used to acquire images must be considered because they may alter results as shown by comparing the 2 data sets in this study. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  19. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  20. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, P.J.; de Ruiter, M.B.; Elzinga, B.M.; van Balkom, A.J.L.M.; Smit, J.H.; Veltman, D.J.

    2012-01-01

    Background Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence

  1. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, N.; de Ruiter, M. B.; Elzinga, B. M.; van Balkom, A. J.; Smit, J. H.; Veltman, D. J.

    2012-01-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that

  2. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Yeung, N.; van den Wildenberg, W.; Ridderinkhof, K.R.

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a

  3. Errors Recruit both Cognitive and Emotional Monitoring Systems: Simultaneous Intracranial Recordings in the Dorsal Anterior Cingulate Gyrus and Amygdala Combined with fMRI

    Science.gov (United States)

    Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik

    2010-01-01

    We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…

  4. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    Science.gov (United States)

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  5. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    NARCIS (Netherlands)

    Papma, Janne M.; Smits, Marion; De Groot, Marius; Mattace-Raso, Francesco U. S.; van der Lugt, Aad; Vrooman, Henri A.; Niessen, W.J.; Koudstaal, Peter J.; van Swieten, John C.; van der Veen, Frederik M.; Prins, Niels D.

    2017-01-01

    Objectives: Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the

  6. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    NARCIS (Netherlands)

    J.M. Papma (Janne); M. Smits (Marion); M. de Groot (Mirthe); F.U.S. Mattace Raso (Francesco); A. van der Lugt (Aad); H.A. Vrooman (Henri); W.J. Niessen (Wiro); P.J. Koudstaal (Peter Jan); J.C. van Swieten (John); F.M. van der Veen (Frederik); N.D. Prins (Niels)

    2017-01-01

    textabstractObjectives: Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the

  7. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  8. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    International Nuclear Information System (INIS)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W.; Araujo, D.; Santos, A.C.

    2008-01-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  9. Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    2018-02-01

    Full Text Available Background: In this study we are using source localized neurofeedback to moderate tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network. Hypothesis: We hypothesize that up-training alpha and down-training beta and gamma activity in the posterior cingulate cortex has a moderating effect on tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network and other functionally connected brain areas. Methods: Fifty-eight patients with chronic tinnitus were included in the study. Twenty-three tinnitus patients received neurofeedback training of the posterior cingulate cortex with the aim of up-training alpha and down-training beta and gamma activity, while 17 patients underwent training of the lingual gyrus as a control situation. A second control group consisted of 18 tinnitus patients on a waiting list for future tinnitus treatment. Results: This study revealed that neurofeedback training of the posterior cingulate cortex results in a significant decrease of tinnitus related distress. No significant effect on neural activity of the target region could be obtained. However, functional and effectivity connectivity changes were demonstrated between remote brain regions or functional networks as well as by altering cross frequency coupling of the posterior cingulate cortex. Conclusion: This suggests that neurofeedback could remove the information, processed in beta and gamma, from the carrier wave, alpha, which transports the high frequency information and influences the salience attributed to the tinnitus sound. Based on the observation that much pathology is the result of an abnormal functional connectivity within and between neural networks various pathologies should be considered eligible candidates for the application of source localized EEG based neurofeedback training. Keywords: Posterior cingulate

  10. Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.

    Directory of Open Access Journals (Sweden)

    Huiran Zhang

    Full Text Available OBJECTIVE: The schizophrenic patients with high suicide risk are characterized by depression, better cognitive function, and prominent positive symptoms. However, the neurobiological basis of suicide attempts in schizophrenia is not clear. The suicide in schizophrenia is implicated in the defects in emotional process and decision-making, which are associated with prefrontal-cingulate circuit. In order to explore the possible neurobiological basis of suicide in schizophrenia, we investigated the correlation of prefrontal-cingulate circuit with suicide risk in schizophrenia via dynamic casual modelling. METHOD: Participants were 33 first-episode schizophrenic patients comprising of a high suicide risk group (N = 14 and a low suicide risk group (N = 19. A comparison group of healthy controls (N = 15 were matched for age, gender and education. N-back tasking functional magnetic resonance imaging data was collected. RESULTS: Compared with healthy controls group, the two patients groups showed decreased task-related suppression during 2-back task state versus baseline state in the left posterior cingulate and medial prefrontal cortex; the hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex existed in both schizophrenic patients groups, but hypo-connectivity in the opposite direction only existed in the schizophrenic patients group with high suicide risk. CONCLUSIONS: The hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex may suggest that the abnormal effective connectivity was associated with risk for schizophrenia. The hypo-connectivity in the opposite direction may represent a possible correlate of increased vulnerability to suicide attempt.

  11. Glutamate/glutamine concentrations in the dorsal anterior cingulate vary with Post-Traumatic Stress Disorder symptoms.

    Science.gov (United States)

    Harnett, Nathaniel G; Wood, Kimberly H; Ference, Edward W; Reid, Meredith A; Lahti, Adrienne C; Knight, Amy J; Knight, David C

    2017-08-01

    Trauma and stress-related disorders (e.g., Acute Stress Disorder; ASD and Post-Traumatic Stress Disorder; PTSD) that develop following a traumatic event are characterized by cognitive-affective dysfunction. The cognitive and affective functions disrupted by stress disorder are mediated, in part, by glutamatergic neural systems. However, it remains unclear whether neural glutamate concentrations, measured acutely following trauma, vary with ASD symptoms and/or future PTSD symptom expression. Therefore, the current study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to investigate glutamate/glutamine (Glx) concentrations within the dorsal anterior cingulate cortex (ACC) of recently (i.e., within one month) traumatized individuals and non-traumatized controls. Although Glx concentrations within dorsal ACC did not differ between recently traumatized and non-traumatized control groups, a positive linear relationship was observed between Glx concentrations and current stress disorder symptoms in traumatized individuals. Further, Glx concentrations showed a positive linear relationship with future stress disorder symptoms (i.e., assessed 3 months post-trauma). The present results suggest glutamate concentrations may play a role in both acute and future post-traumatic stress symptoms following a traumatic experience. The current results expand our understanding of the neurobiology of stress disorder and suggest glutamate within the dorsal ACC plays an important role in cognitive-affective dysfunction following a traumatic experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function.

    Science.gov (United States)

    Umemoto, A; Holroyd, C B

    2016-01-01

    Anterior cingulate cortex (ACC) is involved in cognitive control and decision-making but its precise function is still highly debated. Based on evidence from lesion, neurophysiological, and neuroimaging studies, we have recently proposed a critical role for ACC in motivating extended behaviors according to learned task values (Holroyd and Yeung, 2012). Computational simulations based on this theory suggest a hierarchical mechanism in which a caudal division of ACC selects and applies control over task execution, and a rostral division of ACC facilitates switches between tasks according to a higher task strategy (Holroyd and McClure, 2015). This theoretical framework suggests that ACC may contribute to personality traits related to persistence and reward sensitivity (Holroyd and Umemoto, 2016). To explore this possibility, we carried out a voluntary task switching experiment in which on each trial participants freely chose one of two tasks to perform, under the condition that they try to select the tasks "at random" and equally often. The participants also completed several questionnaires that assessed personality trait related to persistence, apathy, anhedonia, and rumination, in addition to the Big 5 personality inventory. Among other findings, we observed greater compliance with task instructions by persistent individuals, as manifested by a greater facility with switching between tasks, which is suggestive of increased engagement of rostral ACC. © 2016 Elsevier B.V. All rights reserved.

  13. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex.

    Science.gov (United States)

    Toledo-Rodriguez, Maria; Pitiot, Alain; Paus, Tomáš; Sandi, Carmen

    2012-07-01

    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. A Chan Dietary Intervention Enhances Executive Functions and Anterior Cingulate Activity in Autism Spectrum Disorders: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2012-01-01

    Full Text Available Executive dysfunctions have been found to be related to repetitive/disinhibited behaviors and social deficits in autism spectrum disorders (ASDs. This study aims to investigate the potential effect of a Shaolin-medicine-based dietary modification on improving executive functions and behavioral symptoms of ASD and exploring the possible underlying neurophysiological mechanisms. Twenty-four children with ASD were randomly assigned into the experimental (receiving dietary modification for one month and the control (no modification groups. Each child was assessed on his/her executive functions, behavioral problems based on parental ratings, and event-related electroencephalography (EEG activity during a response-monitoring task before and after the one month. The experimental group demonstrated significantly improved mental flexibility and inhibitory control after the diet modification, which continued to have a large effect size within the low-functioning subgroup. Such improvements coincided with positive evaluations by their parents on social communication abilities and flexible inhibitory control of daily behaviors and significantly enhanced event-related EEG activity at the rostral and subgenual anterior cingulate cortex. In contrast, the control group did not show any significant improvements. These positive outcomes of a one-month dietary modification on children with ASD have implicated its potential clinical applicability for patients with executive function deficits.

  16. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Francisco Velasquez

    2017-04-01

    Full Text Available Social deficits in autism spectrum disorder (ASD are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task.

  17. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  18. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  19. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    Science.gov (United States)

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    Directory of Open Access Journals (Sweden)

    Jonathan Smallwood

    Full Text Available When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN, it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  1. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment

    Science.gov (United States)

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-01-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with ‘psychoticism’, a trait associated with a lack of empathic concern and antisocial tendencies, and with ‘need for cognition’, a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149

  2. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals.

    Science.gov (United States)

    Fornito, Alex; Yung, Alison R; Wood, Stephen J; Phillips, Lisa J; Nelson, Barnaby; Cotton, Sue; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos; Yücel, Murat

    2008-11-01

    Abnormalities of the anterior cingulate cortex (ACC) are frequently implicated in the pathophysiology of psychotic disorders, but whether such changes are apparent before psychosis onset remains unclear. In this study, we characterized prepsychotic ACC abnormalities in a sample of individuals at ultra-high-risk (UHR) for psychosis. Participants underwent baseline magnetic resonance imaging and were followed-up over 12-24 months to ascertain diagnostic outcomes. Baseline ACC morphometry was then compared between UHR individuals who developed psychosis (UHR-P; n = 35), those who did not (UHR-NP; n = 35), and healthy control subjects (n = 33). Relative to control subjects, UHR-P individuals displayed bilateral thinning of a rostral paralimbic ACC region that was negatively correlated with negative symptoms, whereas UHR-NP individuals displayed a relative thickening of dorsal and rostral limbic areas that was correlated with anxiety ratings. Baseline ACC differences between the two UHR groups predicted time to psychosis onset, independently of symptomatology. Subdiagnostic comparisons revealed that changes in the UHR-P group were driven by individuals subsequently diagnosed with a schizophrenia spectrum psychosis. These findings indicate that anatomic abnormalities of the ACC precede psychosis onset and that baseline ACC differences distinguish between UHR individuals who do and do not subsequently develop frank psychosis. They also indicate that prepsychotic changes are relatively specific to individuals who develop a schizophrenia spectrum disorder, suggesting they may represent a diagnostically specific risk marker.

  3. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    Science.gov (United States)

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  4. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

  5. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    Science.gov (United States)

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  7. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  8. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    Science.gov (United States)

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  9. Regional Metabolic Changes in the Hippocampus and Posterior Cingulate Area Detected with 3-Tesla Magnetic Resonance Spectroscopy in Patients with Mild Cognitive Impairment and Alzheimer Disease

    International Nuclear Information System (INIS)

    Zhiqun Wang; Cheng Zhao; Kuncheng Li; Lei Yu; Weidong Zhou

    2009-01-01

    Background: Magnetic resonance spectroscopy (MRS) plays an important role in early diagnosis of Alzheimer disease (AD). There are many reports on MRS studies among individuals with AD and mild cognitive impairment (MCI). However, very few studies have compared spectroscopic data of different limbic regions among AD and MCI subjects. Purpose: To compare metabolite changes of different regions in the brain of AD and MCI patients by using 3.0T short-echo-time MRS. Material and Methods: Metabolite ratios in the hippocampus and posterior cingulate area were compared in a group of patients with AD (n=16), MCI (n=16), and normal subjects as a control group (n=16). Clinical neuropsychological tests were measured in all subjects. Results: In the hippocampus, there were significant differences in N-acetylaspartate (NAA)/creatine (Cr), myo-inositol (mI)/Cr, and mI/NAA ratios among the three groups. However, there were no significant differences in choline (Cho)/Cr ratio among the three groups. In the posterior cingulate area, there were no significant differences in the NAA/Cr, Cho/Cr, and mI/Cr ratios among the three groups. However, there were significant differences in mI/NAA ratio between patients with AD and the control group, and between the AD and MCI groups. In addition, there was significant correlation between mI/NAA ratio and Mini Mental Status Exam (MMSE) score in subjects with AD and MCI. Conclusion: The study reveals that the elevation of mI/NAA ratio in the hippocampus is more significant than that in the posterior cingulate area, which corresponds to the pathologic procession of AD. The ratios of mI/NAA in the hippocampus and in the posterior cingulate area together provide valuable discrimination among the three groups (AD, MCI, and controls). There is a significant correlation between mI/NAA ratio and cognitive decline

  10. Pathway Distiller - multisource biological pathway consolidation.

    Science.gov (United States)

    Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong

    2012-01-01

    One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow

  11. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    Science.gov (United States)

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia.

    Science.gov (United States)

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S

    2015-06-01

    Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.

  14. Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making.

    Science.gov (United States)

    Wang, Shuai; Shi, Yi; Li, Bao-Ming

    2017-03-01

    The anterior cingulate cortex (ACC) is crucial for decision making which involves the processing of cost-benefit information. Our previous study has shown that ACC is essential for self-paced decision making. However, it is unclear how ACC neurons represent cost-benefit selections during the decision-making process. In the present study, we trained rats on the same "Do More Get More" (DMGM) task as in our previous work. In each trial, the animals stand upright and perform a sustained nosepoke of their own will to earn a water reward, with the amount of reward positively correlated to the duration of the nosepoke (i.e., longer nosepokes earn larger rewards). We then recorded ACC neuronal activity on well-trained rats while they were performing the DMGM task. Our results show that (1) approximately 3/5 ACC neurons (296/496, 59.7%) exhibited changes in firing frequency that were temporally locked with the main events of the DMGM task; (2) about 1/5 ACC neurons (101/496, 20.4%) or 1/3 of the event-modulated neurons (101/296, 34.1%) showed differential firing rate changes for different cost-benefit selections; and (3) many ACC neurons exhibited linear encoding of the cost-benefit selections in the DMGM task events. These results suggest that ACC neurons are engaged in encoding cost-benefit information, thus represent the selections in self-paced decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  16. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  17. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    Science.gov (United States)

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  18. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  19. Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task

    Directory of Open Access Journals (Sweden)

    Alexander R. Weiss

    2018-05-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence—whether a result has positive (either expected or desirable or negative (either unexpected or undesirable value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed. We hypothesized that local field potentials (LFPs would reveal changes in the dACC related to prediction error and valence and used the unique opportunity offered by deep brain stimulation (DBS surgery in the dACC of three human subjects to test this hypothesis. We used a cognitive task that involved the presentation of object pairs, a motor response, and audiovisual feedback to guide future object selection choices. The dACC displayed distinctly lateralized theta frequency (3–8 Hz event-related potential responses—the left hemisphere dACC signaled outcome valence and prediction errors while the right hemisphere dACC was involved in prediction formation. Multivariate analyses provided evidence that the human dACC response to decision outcomes reflects two spatiotemporally distinct early and late systems that are consistent with both our lateralized electrophysiological results and the involvement of the theta frequency oscillatory activity in dACC cognitive processing. Further findings suggested that dACC does not respond to other phases of action-outcome-feedback tasks such as the motor response which supports the notion that dACC primarily signals information that is crucial for behavioral monitoring and not for motor control.

  20. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  1. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  2. Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the γ-Aminobutyric Acid-ergic System.

    Science.gov (United States)

    Nashawi, Houda; Masocha, Willias; Edafiogho, Ivan O; Kombian, Samuel B

    The aim of this study was to elucidate any electrophysiological changes that may contribute to the development of neuropathic pain during treatment with the anticancer drug paclitaxel, particularly in the γ-aminobutyric acid (GABA) system. One hundred and eight Sprague-Dawley rats were used (untreated control: 43; vehicle-treated: 21, and paclitaxel-treated: 44). Paclitaxel (8 mg/kg) was administered intraperitoneally on 2 alternate days to induce mechanical allodynia. The rats were sacrificed 7 days after treatment to obtain slices of the anterior cingulate cortex (ACC), a brain region involved in the central processing of pain. Field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II/III of ACC slices, and stimulus-response curves were constructed. The observed effects were pharmacologically characterized by bath application of GABA and appropriate drugs to the slices. The paclitaxel-treated rats developed mechanical allodynia (i.e. reduced withdrawal threshold to mechanical stimuli). Slices from paclitaxel-treated rats produced a significantly higher maximal response (Emax) than those from untreated rats (p GABA (0.4 µM) reversed this effect and returned the excitability to a level similar to control. Pretreatment of the slices with the GABAB receptor blocker CGP 55845 (50 µM) increased Emax in slices from untreated rats (p GABA deficit in paclitaxel-treated rats compared to untreated ones. Such a deficit could contribute to the pathophysiology of paclitaxel-induced neuropathic pain (PINP). Thus, the GABAergic system might be a potential therapeutic target for managing PINP. © 2016 S. Karger AG, Basel.

  3. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    Science.gov (United States)

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  4. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia.

    Science.gov (United States)

    Joo, Sung Woo; Chon, Myong-Wuk; Rathi, Yogesh; Shenton, Martha E; Kubicki, Marek; Lee, Jungsun

    2018-02-01

    Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    Science.gov (United States)

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-14

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2hours in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018. Published by Elsevier Ltd.

  6. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion.

    Science.gov (United States)

    Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu

    2014-08-15

    Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients.

    Science.gov (United States)

    Carmi, Lior; Alyagon, Uri; Barnea-Ygael, Noam; Zohar, Joseph; Dar, Reuven; Zangen, Abraham

    Obsessive Compulsive Disorder (OCD) is a chronic and disabling disorder with poor response to pharmacological treatments. Converging evidences suggest that OCD patients suffer from dysfunction of the cortico-striato-thalamo-cortical (CSTC) circuit, including in the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC). To examine whether modulation of mPFC-ACC activity by deep transcranial magnetic stimulation (DTMS) affects OCD symptoms. Treatment resistant OCD participants were treated with either high-frequency (HF; 20 Hz), low-frequency (LF; 1 Hz), or sham DTMS of the mPFC and ACC for five weeks, in a double-blinded manner. All treatments were administered following symptoms provocation, and EEG measurements during a Stroop task were acquired to examine changes in error-related activity. Clinical response to treatment was determined using the Yale-Brown-Obsessive-Compulsive Scale (YBOCS). Interim analysis revealed that YBOCS scores were significantly improved following HF (n = 7), but not LF stimulation (n = 8), compared to sham (n = 8), and thus recruitment for the LF group was terminated. Following completion of the study, the response rate in the HF group (n = 18) was significantly higher than that of the sham group (n = 15) for at least one month following the end of the treatment. Notably, the clinical response in the HF group correlated with increased Error Related Negativity (ERN) in the Stroop task, an electrophysiological component that is attributed to ACC activity. HF DTMS over the mPFC-ACC alleviates OCD symptoms and may be used as a novel therapeutic intervention. Notwithstanding alternative explanations, this may stem from DTMS ability to directly modify ACC activity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Pregenual Anterior Cingulate Dysfunction Associated with Depression in OCD: An Integrated Multimodal fMRI/1H MRS Study.

    Science.gov (United States)

    Tadayonnejad, Reza; Deshpande, Rangaprakash; Ajilore, Olusola; Moody, Teena; Morfini, Francesca; Ly, Ronald; O'Neill, Joseph; Feusner, Jamie D

    2018-04-01

    Depression is a commonly occurring symptom in obsessive-compulsive disorder (OCD), and is associated with worse functional impairment, poorer quality of life, and poorer treatment response. Understanding the underlying neurochemical and connectivity-based brain mechanisms of this important symptom domain in OCD is necessary for development of novel, more globally effective treatments. To investigate biopsychological mechanisms of comorbid depression in OCD, we examined effective connectivity and neurochemical signatures in the pregenual anterior cingulate cortex (pACC), a structure known to be involved in both OCD and depression. Resting-state functional magnetic resonance imaging (fMRI) and 1 H magnetic resonance spectroscopy (MRS) data were obtained from participants with OCD (n=49) and healthy individuals of equivalent age and sex (n=25). Granger causality-based effective (directed) connectivity was used to define causal networks involving the right and left pACC. The interplay between fMRI connectivity, 1 H MRS and clinical data was explored by applying moderation and mediation analyses. We found that the causal influence of the right dorsal anterior midcingulate cortex (daMCC) on the right pACC was significantly lower in the OCD group and showed significant correlation with depressive symptom severity in the OCD group. Lower and moderate levels of glutamate (Glu) in the right pACC significantly moderated the interaction between right daMCC-pACC connectivity and depression severity. Our results suggest a biochemical-connectivity-psychological model of pACC dysfunction contributing to depression in OCD, particularly involving intracingulate connectivity and glutamate levels in the pACC. These findings have implications for potential molecular and network targets for treatment of this multi-faceted psychiatric condition.

  9. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    Science.gov (United States)

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. [Pain information pathways from the periphery to the cerebral cortex].

    Science.gov (United States)

    Kuroda, Ryotaro; Kawabata, Atsufumi

    2003-07-01

    A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.

  11. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  12. Abnormal functional connectivity of the posterior cingulate cortex is associated with depressive symptoms in patients with Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Zhang J

    2017-10-01

    Full Text Available Jiangtao Zhang,1,2 Zhongwei Guo,2 Xiaozheng Liu,3 Xize Jia,4 Jiapeng Li,2 Yaoyao Li,1,5 Danmei Lv,1,5 Wei Chen1,5 1Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang, China; 2Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China; 3China-USA Neuroimaging Research Institute & Department of Radiology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; 4Center for Cognitive Brain Disorders & Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China; 5Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, Zhejiang, China Background: Depressive symptoms are significant and very common psychiatric complications in patients with Alzheimer’s disease (AD, which can aggravate the decline in social function. However, changes in the functional connectivity (FC of the brain in AD patients with depressive symptoms (D-AD remain unclear.Objective: To investigate whether any differences exist in the FC of the posterior cingulate cortex (PCC between D-AD patients and non-depressed AD patients (nD-AD.Materials and methods: We recruited 15 D-AD patients and 17 age-, sex-, educational level-, and Mini-Mental State Examination (MMSE-matched nD-AD patients to undergo tests using the Neuropsychiatric Inventory, Hamilton Depression Rating Scale, and 3.0T resting-state functional magnetic resonance imaging. Bilateral PCC were selected as the regions of interest and between-group differences in the PCC FC network were assessed using Student’s t-test.Results: Compared with the nD-AD group, D-AD patients showed increased PCC FC in the right amygdala, right parahippocampus, right superior temporal pole, right middle temporal lobe, right middle temporal pole, and right hippocampus (AlphaSim correction; P<0.05. In the nD-AD group, MMSE

  13. Transcranial Magnetic Stimulation of Medial Prefrontal and Cingulate Cortices Reduces Cocaine Self-Administration: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Diana Martinez

    2018-03-01

    Full Text Available BackgroundPrevious studies have shown that repetitive transcranial magnetic stimulation (rTMS to the dorsolateral prefrontal cortex may serve as a potential treatment for cocaine use disorder (CUD, which remains a public health problem that is refractory to treatment. The goal of this pilot study was to investigate the effect of rTMS on cocaine self-administration in the laboratory. In the self-administration sessions, CUD participants chose between cocaine and an alternative reinforcer (money in order to directly measure cocaine-seeking behavior. The rTMS was delivered with the H7 coil, which provides stimulation to the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC. These brain regions were targeted based on previous imaging studies demonstrating alterations in their activation and connectivity in CUD.MethodsVolunteers with CUD were admitted to an inpatient unit for the entire study and assigned to one of three rTMS groups: high frequency (10 Hz, low frequency (1 Hz, and sham. Six participants were included in each group and the rTMS was delivered on weekdays for 3 weeks. The cocaine self-administration sessions were performed at three time points: at baseline (pre-TMS, session 1, after 4 days of rTMS (session 2, and after 13 days of rTMS (session 3. During each self-administration session, the outcome measure was the number of choices for cocaine.ResultsThe results showed a significant group by time effect (p = 0.02, where the choices for cocaine decreased between sessions 2 and 3 in the high frequency group. There was no effect of rTMS on cocaine self-administration in the low frequency or sham groups.ConclusionTaken in the context of the existing literature, these results contribute to the data showing that high frequency rTMS to the prefrontal cortex may serve as a potential treatment for CUD.

  14. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  15. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    LENUS (Irish Health Repository)

    Barry, Sandra

    2009-05-01

    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  16. Amygdala and dorsal anterior cingulate connectivity during an emotional working memory task in borderline personality disorder patients with interpersonal trauma history

    Directory of Open Access Journals (Sweden)

    Annegret eKrause-Utz

    2014-10-01

    Full Text Available Emotion dysregulation and stress-related cognitive disturbances including dissociation are key features of Borderline Personality Disorder (BPD. Previous research suggests that amygdala hyperreactivity along with a failure to activate frontal brain areas implicated in inhibitory control (e.g., anterior cingulate cortex, ACC may underlie core symptoms of BPD. However, studies investigating interactions of fronto-limbic brain areas during cognitive inhibition of interfering emotional stimuli in BPD patients are still needed. Moreover, very little is known about how dissociation modulates fronto-limbic connectivity during emotional distraction in BPD. We used Psychophysiological Interaction (PPI to analyse amygdala and dorsal ACC (dACC connectivity in 22 un-medicated BPD patients with interpersonal trauma history and 22 healthy controls (HC, who performed a working memory task, while either no distractors or neutral vs. negative interpersonal pictures were presented. A measure of state dissociation was used to predict amygdala as well as dACC connectivity in the BPD group. During emotional distraction, both groups showed disrupted amygdala connectivity with dorsolateral prefrontal cortex, which was more pronounced in the BPD group. Patients further showed stronger amygdala-hippocampus and dACC-insula connectivity during emotional interference and demonstrated a stronger coupling of the dACC with nodes of the default mode network (e.g. posterior cingulate. Dissociation positively predicted amygdala-dACC connectivity and negatively predicted dACC connectivity with insula and posterior cingulate. Our results suggest aberrant connectivity patterns involving brain regions associated with emotion processing, salience detection, and self-referential processes, which may be modulated by dissociation, in BPD. Findings might be related to difficulties in shifting attention away from external (distracting emotional stimuli as well as internal emotional states

  17. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  18. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2011-08-01

    Full Text Available Abstract Background Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. Methods Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA glutamate receptor agonist quinolinic acid (QUIN in the subgenual anterior cingulate cortex (sACC, anterior midcingulate cortex (aMCC and pregenual anterior cingulate cortex (pACC of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5 was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. Results Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003 and the aMCC (P = 0.015 compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558. Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. Conclusions These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

  19. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls.

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-03-01

    There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14-17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD.

  20. Survival pathways under stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Survival pathways under stress. Bacteria survive by changing gene expression. pattern. Three important pathways will be discussed: Stringent response. Quorum sensing. Proteins performing function to control oxidative damage.

  1. Pathways Intern Report

    Science.gov (United States)

    Huggett, Daniel James

    2017-01-01

    The National Aeronautics and Space Administration (NASA) provides a formal training program for prospective employees titled, Pathways Intern Employment. The Pathways program targets graduate and undergraduate students who strive to become an active contributor to NASA's goal of space exploration. The report herein provides an account of Daniel Huggett's Pathways experience for the Spring and Summer 2017 semesters.

  2. Neurophysiology and itch pathways.

    Science.gov (United States)

    Schmelz, Martin

    2015-01-01

    As we all can easily differentiate the sensations of itch and pain, the most straightforward neurophysiologic concept would consist of two specific pathways that independently encode itch and pain. Indeed, a neuronal pathway for histamine-induced itch in the peripheral and central nervous system has been described in animals and humans, and recently several non-histaminergic pathways for itch have been discovered in rodents that support a dichotomous concept differentiated into a pain and an itch pathway, with both pathways being composed of different "flavors." Numerous markers and mediators have been found that are linked to itch processing pathways. Thus, the delineation of neuronal pathways for itch from pain pathways seemingly proves that all sensory aspects of itch are based on an itch-specific neuronal pathway. However, such a concept is incomplete as itch can also be induced by the activation of the pain pathway in particular when the stimulus is applied in a highly localized spatial pattern. These opposite views reflect the old dispute between specificity and pattern theories of itch. Rather than only being of theoretic interest, this conceptual problem has key implication for the strategy to treat chronic itch as key therapeutic targets would be either itch-specific pathways or unspecific nociceptive pathways.

  3. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  4. Pathways for smiling, disgust and fear recognition in blindsight patients.

    Science.gov (United States)

    Gerbella, Marzio; Caruana, Fausto; Rizzolatti, Giacomo

    2017-08-31

    The aim of the present review is to discuss the localization of circuits that allow recognition of emotional facial expressions in blindsight patients. Because recognition of facial expressions is function of different centers, and their localization is not always clear, we decided to discuss here three emotional facial expression - smiling, disgust, and fear - whose anatomical localization in the pregenual sector of the anterior cingulate cortex (pACC), anterior insula (AI), and amygdala, respectively, is well established. We examined, then, the possible pathways that may convey affective visual information to these centers following lesions of V1. We concluded that the pathway leading to pACC, AI, and amygdala involves the deep layers of the superior colliculus, the medial pulvinar, and the superior temporal sulcus region. We suggest that this visual pathway provides an image of the observed affective faces, which, although deteriorated, is sufficient to determine some overt behavior, but not to provide conscious experience of the presented stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects.

    Science.gov (United States)

    Yuferov, Vadim; Butelman, Eduardo R; Ho, Ann; Morgello, Susan; Kreek, Mary Jeanne

    2014-01-09

    Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte

  6. Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations.

    Science.gov (United States)

    Oliveira, Flavio T P; McDonald, John J; Goodman, David

    2007-12-01

    Several converging lines of evidence suggest that the anterior cingulate cortex (ACC) is selectively involved in error detection or evaluation of poor performance. Here we challenge this notion by presenting event-related potential (ERP) evidence that the feedback-elicited error-related negativity, an ERP component attributed to the ACC, can be elicited by positive feedback when a person is expecting negative feedback and vice versa. These results suggest that performance monitoring in the ACC is not limited to error processing. We propose that the ACC acts as part of a more general performance-monitoring system that is activated by violations in expectancy. Further, we propose that the common observation of increased ACC activity elicited by negative events could be explained by an overoptimistic bias in generating expectations of performance. These results could shed light into neurobehavioral disorders, such as depression and mania, associated with alterations in performance monitoring and also in judgments of self-related events.

  7. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: A 1H-MRS study

    International Nuclear Information System (INIS)

    Reyngoudt, Harmen; Claeys, Tom; Vlerick, Leslie; Verleden, Stijn; Acou, Marjan; Deblaere, Karel; De Deene, Yves; Audenaert, Kurt; Goethals, Ingeborg; Achten, Eric

    2012-01-01

    Objective: To study age-related metabolic changes in N-acetylaspartate (NAA), total creatine (tCr), choline (Cho) and myo-inositol (Ins). Materials and methods: Proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the posterior cingulate cortex (PCC) and the left hippocampus (HC) of 90 healthy subjects (42 women and 48 men aged 18–76 years, mean ± SD, 48.4 ± 16.8 years). Both metabolite ratios and absolute metabolite concentrations were evaluated. Analysis of covariance (ANCOVA) and linear regression were used for statistical analysis. Results: Metabolite ratios Ins/tCr and Ins/H 2 O were found significantly increased with age in the PCC (P 2 O was only observed in the PCC (P 1 H-MRS results in these specific brain regions can be important to differentiate normal ageing from age-related pathologies such as mild cognitive impairment (MCI) and Alzheimer's disease.

  8. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    Science.gov (United States)

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether ACC and IFG/AI regions correspond to loss-aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss-aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward-seeking. However, in the cingulate and mainly bilateral IFG regions, BOLD activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings consistent with a reduced loss-aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision-making, as well as the importance of distinguishing decision and feedback signals. PMID:22707378

  10. Decision making in the Balloon Analogue Risk Task (BART): anterior cingulate cortex signals loss aversion but not the infrequency of risky choices.

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W; Bogg, Tim

    2012-09-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., Journal of Experimental Psychology: Applied, 8, 75-84, 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether the ACC and IFG/AI regions correspond to loss aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward seeking. However, in the cingulate and in mainly bilateral IFG regions, blood-oxygenation-level-dependent activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings that are consistent with a reduced loss aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision making, as well as the importance of distinguishing between decision and feedback signals.

  11. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    Directory of Open Access Journals (Sweden)

    Ravi Rajmohan

    2017-05-01

    Full Text Available Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT through the use of the sex determination test (SDT. In the current study, four (1 female, 3 males CDDAT and nine (4 females, 5 males age-matched neurotypicals (NT completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA and anterior cingulate cortex (ACC. DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC, but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  12. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    Science.gov (United States)

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  13. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS

  14. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings

    Directory of Open Access Journals (Sweden)

    Muriah Dawn Wheelock

    2014-07-01

    Full Text Available Rationale: Varenicline, the most effective single agent for smoking cessation, is a partial agonist at α4β2 nicotinic acetylcholine receptors. Increasing evidence implicates glutamate in the pathophysiology of addiction and one of the benefits of treatment for smoking cessation is the ability to regain cognitive control. Objective: To evaluate the effects of 12 week varenicline administration on glutamate levels in the dorsal anterior cingulate cortex (dACC and functional changes within the cognitive control network.Methods: We used single-voxel proton magnetic resonance spectroscopy (1H-MRS in the dACC and functional MRI (fMRI during performance of a Stroop color-naming task before and after smoking cessation with varenicline in 11 healthy smokers (open label design. Using the dACC as a seed region, we evaluated functional connectivity changes using a psychophysiological interaction (PPI analysis. Results: We observed a significant decrease in dACC glutamate + glutamine (Glx/Cr levels as well as significant blood oxygen level-dependent signal (BOLD decreases in the rostral ACC/medial orbitofrontal cortex and precuneus/posterior cingulate cortex. These BOLD changes are suggestive of alterations in default mode network (DMN function and are further supported by the results of the PPI analysis that revealed changes in connectivity between the dACC and regions of the DMN. Baseline measures of nicotine dependence and craving positively correlated with baseline Glx/Cr levels.Conclusions: These results suggest possible mechanisms of action for varenicline such as reduction in Glx levels in dACC and shifts in BOLD activities between large scale brain networks. They also suggest a role for ACC Glx in the modulation of behavior. Due to the preliminary nature of this study (lack of control group and small sample size, future studies are needed to replicate these findings.

  15. Pathways from Poverty.

    Science.gov (United States)

    Baldwin, Barbara, Ed.

    1995-01-01

    Articles in this theme issue are based on presentations at the Pathways from Poverty Workshop held in Albuquerque, New Mexico, on May 18-25, 1995. The event aimed to foster development of a network to address rural poverty issues in the Western Rural Development Center (WRDC) region. Articles report on outcomes from the Pathways from Poverty…

  16. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  17. Migration pathways in soils

    International Nuclear Information System (INIS)

    Gronow, J.R.

    1986-01-01

    This study looked at diffusive migration through three types of deformation; the projectile pathways, hydraulic fractures of the sediments and faults, and was divided into three experimental areas: autoradiography, the determination of diffusion coefficients and electron microscopy of model projectile pathways in clay. For the autoradiography, unstressed samples were exposed to two separate isotopes, Pm-147 (a possible model for Am behaviour) and the poorly sorbed iodide-125. The results indicated that there was no enhanced migration through deformed kaolin samples nor through fractured Great Meteor East (GME) sediment, although some was evident through the projectile pathways in GME and possibly through the GME sheared samples. The scanning electron microscopy of projectile pathways in clay showed that emplacement of a projectile appeared to have no effect on the orientation of particles at distances greater than two projectile radii from the centre of a projectile pathway. It showed that the particles were not simply aligned with the direction of motion of the projectile but that, the closer to the surface of a particular pathway, the closer the particles lay to their original orientation. This finding was of interest from two points of view: i) the ease of migration of a pollutant along the pathway, and ii) possible mechanisms of hole closure. It was concluded that, provided that there is no advective migration, the transport of radionuclides through sediments containing these defects would not be significantly more rapid than in undeformed sediments. (author)

  18. DMPD: Regulatory pathways in inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17967718 Regulatory pathways in inflammation. Mantovani A, Garlanda C, Locati M, Ro....html) (.csml) Show Regulatory pathways in inflammation. PubmedID 17967718 Title Regulatory pathways in infl

  19. Quadrupolar transfer pathways

    Science.gov (United States)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  20. HDR-Pathways

    Data.gov (United States)

    Department of Veterans Affairs — Pathways is a SOAP/REST web service interface accessed via HTTPS that provides administrative data (Appointments, Exam Requests and Exams information) from VistA in...

  1. Updating the Wnt pathways

    Science.gov (United States)

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  2. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    International Nuclear Information System (INIS)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van; Smits, Marion; Lugt, Aad van der; Groot, Marius de; Vrooman, Henri A.; Mattace Raso, Francesco U.; Niessen, Wiro J.; Veen, Frederik M. van der; Prins, Niels D.

    2017-01-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  3. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents.

    Science.gov (United States)

    Cohen-Gilbert, Julia E; Sneider, Jennifer T; Crowley, David J; Rosso, Isabelle M; Jensen, J Eric; Silveri, Marisa M

    2015-12-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH-) peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12-14 yrs) and 31 emerging adults (16 male, 18-25 yrs), stratified into FH- and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH- but not FH+ groups. In FH- adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    Science.gov (United States)

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  5. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment.

    Science.gov (United States)

    Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D

    2017-09-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.

  6. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    Science.gov (United States)

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  7. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder.

    Science.gov (United States)

    Thomaes, K; Dorrepaal, E; Draijer, N; de Ruiter, M B; Elzinga, B M; van Balkom, A J; Smit, J H; Veltman, D J

    2012-11-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that treatment can normalize these activation patterns. At baseline, we compared classic and emotional Stroop performance and blood oxygenation level-dependent responses (functional magnetic resonance imaging) of 29 child abuse-related complex PTSD patients with 22 non-trauma-exposed healthy controls. In 16 of these patients, we studied treatment effects of psycho-educational and cognitive behavioural stabilizing group treatment (experimental treatment; EXP) added to treatment as usual (TAU) versus TAU only, and correlations with clinical improvement. At baseline, complex PTSD patients showed a trend for increased left anterior insula and dorsal ACC activation in the classic Stroop task. Only EXP patients showed decreased dorsal ACC and left anterior insula activation after treatment. In the emotional Stroop contrasts, clinical improvement was associated with decreased dorsal ACC activation and decreased left anterior insula activation. We found further evidence that successful treatment in child abuse-related complex PTSD is associated with functional changes in the ACC and insula, which may be due to improved selective attention and lower emotional arousal, indicating greater cognitive control over PTSD symptoms.

  8. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  9. The default modes of reading: Modulation of posterior cingulate and medial prefrontal cortex connectivity associated with subjective and objective differences in reading experience

    Directory of Open Access Journals (Sweden)

    Jonathan eSmallwood

    2013-11-01

    Full Text Available Reading is a fundamental human capacity and yet it can easily be derailed by the simple act of mind-wandering. A large-scale brain network, referred to as the default mode network (DMN, has been shown to be involved in both mind-wandering and reading, raising the question as to how the same neural system could be implicated in processes with both costs and benefits to narrative comprehension. Resting-state functional magnetic resonance imaging (rs-fMRI was used to explore whether the intrinsic functional connectivity of the two key midline hubs of the DMN — the posterior cingulate (PCC and medial prefrontal cortex (aMPFC — was predictive of individual differences in reading effectiveness (better comprehension, superior and task focus recorded outside of the scanner. Worse comprehension was associated with greater functional connectivity between the PCC and a region of the ventral striatum. By contrast reports of increasing task focus were associated with functional connectivity from the aMPFC to clusters in the PCC, the left parietal and temporal cortex, and the cerebellum. Our results suggest that the DMN has both costs (such as poor comprehension and benefits to reading (such as an on-task focus because its midline core can couple its activity with other regions to form distinct functional communities that allow seemingly opposing mental states to occur. This flexible coupling allows the DMN to participate in cognitive states that complement the act of reading as well as others that do not.

  10. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van [Erasmus MC - University Medical Center Rotterdam, Department of Neurology, Rotterdam (Netherlands); Smits, Marion; Lugt, Aad van der [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Groot, Marius de; Vrooman, Henri A. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Mattace Raso, Francesco U. [Erasmus MC - University Medical Center Rotterdam, Department of Geriatrics, Rotterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Veen, Frederik M. van der [Erasmus University Rotterdam, Institute of Psychology, Rotterdam (Netherlands); Prins, Niels D. [VU University Medical Center, Alzheimer Center, Department of Neurology, Amsterdam (Netherlands)

    2017-09-15

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  11. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders. © 2013 Published by Elsevier Ireland Ltd.

  12. Altered spontaneous activity of posterior cingulate cortex and superior temporal gyrus are associated with a smoking cessation treatment outcome using varenicline revealed by regional homogeneity.

    Science.gov (United States)

    Wang, Chao; Shen, Zhujing; Huang, Peiyu; Qian, Wei; Yu, Xinfeng; Sun, Jianzhong; Yu, Hualiang; Yang, Yihong; Zhang, Minming

    2017-06-01

    Compared to nonsmokers, smokers exhibit a number of potentially important differences in regional brain function. However, little is known about the associations between the local spontaneous brain activity and smoking cessation treatment outcomes. In the present analysis, we aimed to evaluate whether the local features of spontaneous brain activity prior to the target quit date was associated with the smoking cessation outcomes. All the participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 23 smokers succeeded in quitting smoking and 32 failed. Smokers underwent functional magnetic resonance imaging (fMRI) scanning prior to an open label smoking cessation treatment trial. Regional homogeneity (ReHo) was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between relapser and quitter groups. After controlling for potentially confounding factors including years of education, years smoked, cigarettes smoked per day and FTND score as covariates, compared to quitters, relapsers displayed significantly decreased ReHo in bilateral posterior cingulate cortex (PCC), as well as increased ReHo in left superior temporal gyrus (STG). These preliminary results suggest that regional brain function variables may be promising predictors of smoking relapse. This study provided novel insights into the neurobiological mechanisms underlying smoking relapse. A deeper understanding of the neurobiological mechanisms associated with relapse may result in novel pharmacological and behavioral interventions.

  13. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Stefan [University of Rostock, Department of Psychosomatic Medicine, Rostock (Germany); DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States); Grothe, Michel J. [DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States)

    2016-03-15

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  14. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    International Nuclear Information System (INIS)

    Teipel, Stefan; Grothe, Michel J.

    2016-01-01

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  15. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.

    Science.gov (United States)

    Zilverstand, Anna; Sorger, Bettina; Slaats-Willemse, Dorine; Kan, Cornelis C; Goebel, Rainer; Buitelaar, Jan K

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study's small sample size, potential clinical benefits need to be further investigated in future studies. ISRCTN12390961.

  16. Probabilistic pathway construction.

    Science.gov (United States)

    Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha

    2011-07-01

    Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Pathway-based analyses.

    Science.gov (United States)

    Kent, Jack W

    2016-02-03

    New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.

  18. Pathways to youth homelessness.

    Science.gov (United States)

    Martijn, Claudine; Sharpe, Louise

    2006-01-01

    Research documents high levels of psychopathology among homeless youth. Most research, however, has not distinguished between disorders that are present prior to homelessness and those that develop following homelessness. Hence whether psychological disorders are the cause or consequence of homelessness has not been established. The aim of this study is to investigate causal pathways to homelessness amongst currently homeless youth in Australia. The study uses a quasi-qualitative methodology to generate hypotheses for larger-scale research. High rates of psychological disorders were confirmed in the sample 35 homeless youth aged 14-25. The rates of psychological disorders at the point of homelessness were greater than in normative samples, but the rates of clinical disorder increased further once homeless. Further in-depth analyses were conducted to identify the temporal sequence for each individual with a view to establishing a set of causal pathways to homelessness and trajectories following homelessness that characterised the people in the sample. Five pathways to homelessness and five trajectories following homelessness were identified that accounted for the entire sample. Each pathway constituted a series of interactions between different factors similar to that described by Craig and Hodson (1998. Psychological Medicine, 28, 1379-1388) as "complex subsidiary pathways". The major findings were that (1) trauma is a common experience amongst homeless youth prior to homelessness and figured in the causal pathways to homelessness for over half of the sample; (2) once homeless, for the majority of youth there is an increase in the number of psychological diagnoses including drug and alcohol diagnoses; and (3) crime did not precede homelessness for all but one youth; however, following homelessness, involvement in criminal activity was common and became a distinguishing factor amongst youth. The implications of these findings for future research and service

  19. The man who feels two hearts: the different pathways of interoception.

    Science.gov (United States)

    Couto, Blas; Salles, Alejo; Sedeño, Lucas; Peradejordi, Margarita; Barttfeld, Pablo; Canales-Johnson, Andrés; Dos Santos, Yamil Vidal; Huepe, David; Bekinschtein, Tristán; Sigman, Mariano; Favaloro, Roberto; Manes, Facundo; Ibanez, Agustin

    2014-09-01

    Recent advances in neuroscience have provided new insights into the understanding of heart-brain interaction and communication. Cardiac information to the brain relies on two pathways, terminating in the insular cortex (IC) and anterior cingulate cortex (ACC), along with the somatosensory cortex (S1-S2). Interoception relying on these neuroanatomical pathways has been shown to modulate social cognition. We report the case study of C.S., a patient with an 'external heart' (an extracorporeal left-univentricular cardiac assist device, LVAD). The patient was assessed with neural/behavioral measures of cardiac interoception complemented by neuropsychological and social cognition measures. The patient's performance on the interoception task (heartbeat detection) seemed to be guided by signals from the artificial LVAD, which provides a somatosensory beat rather than by his endogenous heart. Cortical activity (HEP, heartbeat-evoked potential) was found decreased in comparison with normal volunteers, particularly during interoceptive states. The patient accurately performed several cognitive tasks, except for interoception-related social cognition domains (empathy, theory of mind and decision making). This evidence suggests an imbalance in the patient's cardiac interoceptive pathways that enhances sensation driven by the artificial pump over that from the cardiac vagal-IC/ACC pathway. A patient with two hearts, one endogenous and one artificial, presents a unique opportunity to explore models of interoception and heart-brain interaction. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  1. Policies built upon pathways

    NARCIS (Netherlands)

    Musterd, S.; Kovács, Z.; Musterd, S.; Kovács, Z.

    2013-01-01

    After the general introductions, the first substantive part of this volume (Part II) provides concise research-based discussions of policies developed in recognition of the important role played by the pathways along which city-regions have travelled. Our research has shown that it is highly

  2. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  3. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  4. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    Directory of Open Access Journals (Sweden)

    Gabriela Cruz

    Full Text Available Time-based prospective memory (PM, remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention plus target checking (intermittent time checks. The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks.24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis.Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC, showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se.The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task and anticipatory/decision making processing associated with clock-checks.

  5. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    Science.gov (United States)

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  6. Age-related changes in the functional network underlying specific and general autobiographical memory retrieval: a pivotal role for the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Pénélope Martinelli

    Full Text Available Age-related changes in autobiographical memory (AM recall are characterized by a decline in episodic details, while semantic aspects are spared. This deleterious effect is supposed to be mediated by an inefficient recruitment of executive processes during AM retrieval. To date, contrasting evidence has been reported on the neural underpinning of this decline, and none of the previous studies has directly compared the episodic and semantic aspects of AM in elderly. We asked 20 young and 17 older participants to recall specific and general autobiographical events (i.e., episodic and semantic AM elicited by personalized cues while recording their brain activity by means of fMRI. At the behavioral level, we confirmed that the richness of episodic AM retrieval is specifically impoverished in aging and that this decline is related to the reduction of executive functions. At the neural level, in both age groups, we showed the recruitment of a large network during episodic AM retrieval encompassing prefrontal, cortical midline and posterior regions, and medial temporal structures, including the hippocampus. This network was very similar, but less extended, during semantic AM retrieval. Nevertheless, a greater activity was evidenced in the dorsal anterior cingulate cortex (dACC during episodic, compared to semantic AM retrieval in young participants, and a reversed pattern in the elderly. Moreover, activity in dACC during episodic AM retrieval was correlated with inhibition and richness of memories in both groups. Our findings shed light on the direct link between episodic AM retrieval, executive control, and their decline in aging, proposing a possible neuronal signature. They also suggest that increased activity in dACC during semantic AM retrieval in the elderly could be seen as a compensatory mechanism underpinning successful AM performance observed in aging. These results are discussed in the framework of recently proposed models of neural

  7. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.

    Science.gov (United States)

    Wang, Shuai; Hu, Shan-Hu; Shi, Yi; Li, Bao-Ming

    2017-03-01

    It has been shown that the anterior cingulate cortex (ACC) and its dopamine system are crucial for decision making that requires physical/emotional effort, but not for all forms of cost-benefit decision making. Previous studies had mostly employed behavioral tasks with two competing cost-reward options that were preset by the experimenters. However, few studies have been conducted using scenarios in which the subjects have full control over the energy/time expenditure required to obtain a proportional reward. Here, we assessed the roles of the ACC and its dopamine system in cost-benefit decision making by utilizing a "do more get more" (DMGM) task and a time-reward trade-off (TRTO) task, wherein the animals were able to self-determine how much effort or time to expend at a nosepoke operandum for a proportional reward. Our results showed that (1) ACC inactivation severely impaired DMGM task performance, with a reduction in the rate of correct responses and a decrease in the effort expended, but did not affect the TRTO task; and (2) blocking ACC D2 receptors had no impact on DMGM task performance in the baseline cost-benefit scenario, but it significantly reduced the attempts to invest increased effort for a large reward when the benefit-cost ratio was reduced by half. In contrast, blocking ACC D1 receptors had no effect on DMGM task performance. These findings suggest that the ACC is required for self-paced effort-based but not for time-reward trade-off decision making. Furthermore, ACC dopamine D2 but not D1 receptors are involved in DMGM decision making.

  8. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  9. Altered Connectivity of the Anterior Cingulate and the Posterior Superior Temporal Gyrus in a Longitudinal Study of Later-life Depression

    Directory of Open Access Journals (Sweden)

    Kenichiro Harada

    2018-02-01

    Full Text Available Patients with later-life depression (LLD show abnormal gray matter (GM volume, white matter (WM integrity and functional connectivity in the anterior cingulate cortex (ACC and posterior superior temporal gyrus (pSTG, but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI and resting-state functional MRI were used to assess ACC–pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC–pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC–pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC–pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

  10. Task-related changes in degree centrality and local coherence of the posterior cingulate cortex after major cardiac surgery in older adults.

    Science.gov (United States)

    Browndyke, Jeffrey N; Berger, Miles; Smith, Patrick J; Harshbarger, Todd B; Monge, Zachary A; Panchal, Viral; Bisanar, Tiffany L; Glower, Donald D; Alexander, John H; Cabeza, Roberto; Welsh-Bohmer, Kathleen; Newman, Mark F; Mathew, Joseph P

    2018-02-01

    Older adults often display postoperative cognitive decline (POCD) after surgery, yet it is unclear to what extent functional connectivity (FC) alterations may underlie these deficits. We examined for postoperative voxel-wise FC changes in response to increased working memory load demands in cardiac surgery patients and nonsurgical controls. Older cardiac surgery patients (n = 25) completed a verbal N-back working memory task during MRI scanning and cognitive testing before and 6 weeks after surgery; nonsurgical controls with cardiac disease (n = 26) underwent these assessments at identical time intervals. We measured postoperative changes in degree centrality, the number of edges attached to a brain node, and local coherence, the temporal homogeneity of regional functional correlations, using voxel-wise graph theory-based FC metrics. Group × time differences were evaluated in these FC metrics associated with increased N-back working memory load (2-back > 1-back), using a two-stage partitioned variance, mixed ANCOVA. Cardiac surgery patients demonstrated postoperative working memory load-related degree centrality increases in the left dorsal posterior cingulate cortex (dPCC; p < .001, cluster p-FWE < .05). The dPCC also showed a postoperative increase in working memory load-associated local coherence (p < .001, cluster p-FWE < .05). dPCC degree centrality and local coherence increases were inversely associated with global cognitive change in surgery patients (p < .01), but not in controls. Cardiac surgery patients showed postoperative increases in working memory load-associated degree centrality and local coherence of the dPCC that were inversely associated with postoperative global cognitive outcomes and independent of perioperative cerebrovascular damage. © 2017 Wiley Periodicals, Inc.

  11. Abnormal Functional Connectivity of Anterior Cingulate Cortex in Patients With Primary Insomnia: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Chao-Qun Yan

    2018-06-01

    Full Text Available Background: Recently, there have been many reports about abnormalities regarding structural and functional brain connectivity of the patients with primary insomnia. However, the alterations in functional interaction between the left and right cerebral hemispheres have not been well understood. The resting-state fMRI approach, which reveals spontaneous neural fluctuations in blood-oxygen-level-dependent signals, offers a method to quantify functional interactions between the hemispheres directly.Methods: We compared interhemispheric functional connectivity (FC between 26 patients with primary insomnia (48.85 ± 12.02 years and 28 healthy controls (49.07 ± 11.81 years using a voxel-mirrored homotopic connectivity (VMHC method. The patients with primary insomnia and healthy controls were matched for age, gender, and education. Brain regions, which had significant differences in VMHC maps between the primary insomnia and healthy control groups, were defined as seed region of interests. A seed-based approach was further used to reveal significant differences of FC between the seeds and the whole contralateral hemisphere.Results: The patients with primary insomnia showed higher VMHC than healthy controls in the anterior cingulate cortex (ACC bilaterally. The seed-based analyses demonstrated increased FC between the left ACC and right thalamus (and the right ACC and left orbitofrontal cortex in patients with primary insomnia, revealing abnormal connectivity between the two cerebral hemispheres. The VMHC values in the ACC were positively correlated with the time to fall asleep and Self-Rating Depression Scale scores (SDS.Conclusions: The results demonstrate that there is abnormal interhemispheric resting-state FC in the brain regions of patients with primary insomnia, especially in the ACC. Our finding demonstrates valid evidence that the ACC is an area of interest in the neurobiology of primary insomnia.

  12. Amnestic mild cognitive impairment: functional MR imaging study of response in posterior cingulate cortex and adjacent precuneus during problem-solving tasks.

    Science.gov (United States)

    Jin, Guangwei; Li, Kuncheng; Hu, Yingying; Qin, Yulin; Wang, Xiangqing; Xiang, Jie; Yang, Yanhui; Lu, Jie; Zhong, Ning

    2011-11-01

    To compare the blood oxygen level-dependent (BOLD) response, measured with functional magnetic resonance (MR) imaging, in the posterior cingulate cortex (PCC) and adjacent precuneus regions between healthy control subjects and patients with amnestic mild cognitive impairment (MCI) during problem-solving tasks. This study was approved by the institutional review board. Each subject provided written informed consent. Thirteen patients with amnestic MCI and 13 age- and sex-matched healthy control subjects participated in the study. The functional magnetic resonance (MR) imaging tasks were simplified 4 × 4-grid number placement puzzles that were divided into a simple task (using the row rule or the column rule to solve the puzzle) and a complex task (using both the row and column rules to solve the puzzle). Behavioral results and functional imaging results between the healthy control group and the amnestic MCI group were analyzed. The accuracy for the complex task in the healthy control group was significantly higher than that in the amnestic MCI group (P < .05). The healthy control group exhibited a deactivated BOLD signal intensity (SI) change in the bilateral PCC and adjacent precuneus regions during the complex task, whereas the amnestic MCI group showed activation. The positive linear correlations between the BOLD SI change in bilateral PCC and adjacent precuneus regions and in bilateral hippocampi in the amnestic MCI group were significant (P < .001), while in the healthy control group, they were not (P ≥ .23). These findings suggest that an altered BOLD response in amnestic MCI patients during complex tasks might be related to a decline in problem-solving ability and to memory impairment and, thus, may indicate a compensatory response to memory impairment. RSNA, 2011

  13. Anterior cingulate cortex is crucial for contra- but not ipsi-lateral electro-acupuncture in the formalin-induced inflammatory pain model of rats

    Directory of Open Access Journals (Sweden)

    Xing Guo-Gang

    2011-08-01

    Full Text Available Abstract Acupuncture and electro-acupuncture (EA are now widely used to treat disorders like pain. We and others have shown previously that current frequency, intensity and treatment duration all significantly influence the anti-nociceptive effects of EA. There is evidence that stimulating sites also affect the antinociception, with EA applied ipsilaterally to the pain site being more effective under some pain states but contralateral EA under others. It was recently reported that local adenosine A1 receptors were responsible for ipsilateral acupuncture, but what mechanisms specifically mediate the anti-nociceptive effects of contralateral acupuncture or EA remains unclear. In the present study, we applied 100 Hz EA on the ipsi- or contra-lateral side of rats with inflammatory pain induced by intra-plantar injection of formalin, and reported distinct anti-nociceptive effects and mechanisms between them. Both ipsi- and contra-lateral EA reduced the paw lifting time in the second phase of the formalin test and attenuated formalin-induced conditioned place aversion. Contralateral EA had an additional effect of reducing paw licking time, suggesting a supraspinal mechanism. Lesions of rostral anterior cingulate cortex (ACC completely abolished the anti-nociceptive effects of contra- but not ipsi-lateral EA. These findings were not lateralized effects, since injection of formalin into the left or right hind paws produced similar results. Overall, these results demonstrated distinct anti-nociceptive effects and mechanisms between different stimulating sides and implied the necessity of finding the best stimulating protocols for different pain states.

  14. Altered Connectivity of the Anterior Cingulate and the Posterior Superior Temporal Gyrus in a Longitudinal Study of Later-life Depression.

    Science.gov (United States)

    Harada, Kenichiro; Ikuta, Toshikazu; Nakashima, Mami; Watanuki, Toshio; Hirotsu, Masako; Matsubara, Toshio; Yamagata, Hirotaka; Watanabe, Yoshifumi; Matsuo, Koji

    2018-01-01

    Patients with later-life depression (LLD) show abnormal gray matter (GM) volume, white matter (WM) integrity and functional connectivity in the anterior cingulate cortex (ACC) and posterior superior temporal gyrus (pSTG), but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI) system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI) and resting-state functional MRI were used to assess ACC-pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC-pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC-pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC-pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

  15. Association of a History of Child Abuse With Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence.

    Science.gov (United States)

    Lutz, Pierre-Eric; Tanti, Arnaud; Gasecka, Alicja; Barnett-Burns, Sarah; Kim, John J; Zhou, Yi; Chen, Gang G; Wakid, Marina; Shaw, Meghan; Almeida, Daniel; Chay, Marc-Aurele; Yang, Jennie; Larivière, Vanessa; M'Boutchou, Marie-Noël; van Kempen, Léon C; Yerko, Volodymyr; Prud'homme, Josée; Davoli, Maria Antonietta; Vaillancourt, Kathryn; Théroux, Jean-François; Bramoullé, Alexandre; Zhang, Tie-Yuan; Meaney, Michael J; Ernst, Carl; Côté, Daniel; Mechawar, Naguib; Turecki, Gustavo

    2017-12-01

    Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a

  16. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  17. Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A receptor binding potential in the anterior cingulate and amygdala.

    Directory of Open Access Journals (Sweden)

    Lena Hillert

    Full Text Available Multiple chemical sensitivity (MCS is a common condition, characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the underlying mechanisms are unknown. Contrary to the expectations it was recently found that persons with MCS activate the odor-processing brain regions less than controls, while their activation of the anterior cingulate cortex (ACC is increased. The present follow-up study was designed to test the hypotheses that MCS subjects have increased harm avoidance and deviations in the serotonin system, which could render them intolerant to environmental odors. Twelve MCS and 11 control subjects, age 22-44, all working or studying females, were included in a PET study where 5-HT(1A receptor binding potential (BP was assessed after bolus injection of [(11C]WAY100635. Psychological profiles were assessed by the Temperament and Character Inventory and the Swedish universities Scales of Personality. All MCS and 12 control subjects were also tested for emotional startle modulation in an acoustic startle test. MCS subjects exhibited significantly increased harm avoidance, and anxiety compared to controls. They also had a reduced 5-HT(1A receptor BP in amygdala (p = 0.029, ACC (p = 0.005 (planned comparisons, significance level 0.05, and insular cortex (p = 0.003; significance level p<0.005 with Bonferroni correction, and showed an inverse correlation between degree of anxiety and the BP in the amygdala (planned comparison. No group by emotional category difference was found in the startle test. Increased harm avoidance and the observed changes in the 5-HT(1A receptor BP in the regions processing harm avoidance provides a plausible pathophysiological ground for the symptoms described in MCS, and yields valuable information for our general understanding of idiopathic environmental intolerances.

  18. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.

    Science.gov (United States)

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.

  19. PathwayAccess: CellDesigner plugins for pathway databases.

    Science.gov (United States)

    Van Hemert, John L; Dickerson, Julie A

    2010-09-15

    CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.

  20. Pathway analysis of IMC

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya; Nielson, Flemming; Pilegaard, Henrik

    2009-01-01

    We present the ongoing work on the pathway analysis of a stochastic calculus. Firstly we present a particular stochastic calculus that we have chosen for our modeling - the Interactive Markov Chains calculus, IMC for short. After that we specify a few restrictions that we have introduced into the...... into the syntax of IMC in order to make our analysis feasible. Finally we describe the analysis itself together with several theoretical results that we have proved for it.......We present the ongoing work on the pathway analysis of a stochastic calculus. Firstly we present a particular stochastic calculus that we have chosen for our modeling - the Interactive Markov Chains calculus, IMC for short. After that we specify a few restrictions that we have introduced...

  1. Aquatic pathway 2

    International Nuclear Information System (INIS)

    1977-01-01

    This third part of the investigation discusses the preliminary results of sub-investigations concerning problems of the release of radioactive substances into the environment via the water pathway. On the basis of papers on the emission into the draining ditch and the exchange processes there, investigations of a possible incorporation via different exposure pathways are reported. Special regard is paid to drinking water supply aquatic foodstuffs, the river sediment, the utilisation of the agricultural surfaces and the draining ditch including its pre-pollution. The dynamics of contamination processes is reported on with regard to the problem of accidents. The colloquium will give an outline of the progress made so far and admit participants' suggestions for further work on the sub-investigations. The following colloquia will report further findings, in particular effects on aquatic ecosystems. (orig.) [de

  2. Pathways to diversification

    OpenAIRE

    Al Hashemi, Hamed

    2016-01-01

    A fundamental research question in regional economic development, is why some regions are able to diversify into new products and industries, while others continue to face challenges in diversification? This doctorate research explores the different pathways to diversification. It follows the three-stage modular structure of DBA for Cranfield School of Management. This thesis consists of a systematic literature review, a single qualitative case study on UAE, and a research synthesis of publis...

  3. The Glymphatic Pathway.

    Science.gov (United States)

    Benveniste, Helene; Lee, Hedok; Volkow, Nora D

    2017-01-01

    The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.

  4. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study.

    Science.gov (United States)

    Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping

    2018-01-01

    A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  6. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected p FDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in

  7. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity.

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Resting brain glucose metabolism (GM) was measured using [(18)F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = -0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = -8, y = 32, z = -8, k = 423, Z = 4.41, corrected p (FDR) = 0.030). The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having

  8. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  9. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  10. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  11. Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss?

    Science.gov (United States)

    Mosebach, Jennifer; Keilhoff, Gerburg; Gos, Tomasz; Schiltz, Kolja; Schoeneck, Linda; Dobrowolny, Henrik; Mawrin, Christian; Müller, Susan; Schroeter, Matthias L; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-08-01

    Structural and functional oligodendrocyte deficits as well as impaired myelin integrity have been described in affective disorders and schizophrenia, and may disturb the connectivity between disease-relevant brain regions. Olig1, an oligodendroglial transcription factor, might be important in this context, but has not been systematically studied so far. Nissl- and Olig1-stained oligodendrocytes were quantified in the pregenual anterior cingulate (pACC)/dorsolateral prefrontal cortex (DLPFC), and adjacent white matter of patients with major depressive disorder (MDD, n = 9), bipolar disorder (BD, n = 8), schizophrenia (SZ, n = 13), and matched controls (n = 16). Potential downstream effects of increased Olig1-expression were analyzed. Antidepressant drug effects on Olig1-expression were further explored in OLN-93 oligodendrocyte cultures. Nissl-stainings of both white matter regions showed a 19-27% reduction of total oligodendrocyte densities in MDD and BD, but not in SZ. In contrast, nuclear Olig1-immunoreactivity was elevated in MDD in the pACC-adjacent white matter (left: p = 0.008; right: p = 0.018); this effect tended to increase with antidepressant dosage (r = 0.631, p = 0.069). This reactive increase of Olig1 was confirmed by partly dose-dependent effects of imipramine and amitriptyline in oligodendrocyte cultures. Correspondingly, MBP expression in the pACC-adjacent white matter tended to increase with antidepressant dosage (r = 0.637, p = 0.065). Other tested brain regions showed no diagnosis-dependent differences regarding Olig1-immunoreactivity. Since nuclear Olig1-expression marks oligodendrocyte precursor cells, its increased expression along with reduced total oligodendrocyte densities (Nissl-stained) in the pACC-adjacent white matter of MDD patients might indicate a (putatively medication-boosted) regenerative attempt to compensate oligodendrocyte loss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Aquatic pathway 1

    International Nuclear Information System (INIS)

    1976-01-01

    This first part of the study discusses problems of exposure due to the emission of radioactive substances into the environment via the water pathway. Discussion is started with a paper on the fundamentals of calculation and another paper on the results of preliminary radiological model calculations. The colloquium will assess the present state of knowledge, helps to find an agreement between divergent opinions and determine open questions and possible solutions. Ten main problems have been raised, most of which pertain to site conditions. They are trated as sub-investigations by individual participants or working groups. The findings will be discussed in further colloquia. (orig.) [de

  13. The Reactome pathway knowledgebase.

    Science.gov (United States)

    Croft, David; Mundo, Antonio Fabregat; Haw, Robin; Milacic, Marija; Weiser, Joel; Wu, Guanming; Caudy, Michael; Garapati, Phani; Gillespie, Marc; Kamdar, Maulik R; Jassal, Bijay; Jupe, Steven; Matthews, Lisa; May, Bruce; Palatnik, Stanislav; Rothfels, Karen; Shamovsky, Veronica; Song, Heeyeon; Williams, Mark; Birney, Ewan; Hermjakob, Henning; Stein, Lincoln; D'Eustachio, Peter

    2014-01-01

    Reactome (http://www.reactome.org) is a manually curated open-source open-data resource of human pathways and reactions. The current version 46 describes 7088 human proteins (34% of the predicted human proteome), participating in 6744 reactions based on data extracted from 15 107 research publications with PubMed links. The Reactome Web site and analysis tool set have been completely redesigned to increase speed, flexibility and user friendliness. The data model has been extended to support annotation of disease processes due to infectious agents and to mutation.

  14. Cultural pathways through universal development.

    Science.gov (United States)

    Greenfield, Patricia M; Keller, Heidi; Fuligni, Andrew; Maynard, Ashley

    2003-01-01

    We focus our review on three universal tasks of human development: relationship formation, knowledge acquisition, and the balance between autonomy and relatedness at adolescence. We present evidence that each task can be addressed through two deeply different cultural pathways through development: the pathways of independence and interdependence. Whereas core theories in developmental psychology are universalistic in their intentions, they in fact presuppose the independent pathway of development. Because the independent pathway is therefore well-known in psychology, we focus a large part of our review on empirically documenting the alternative, interdependent pathway for each developmental task. We also present three theoretical approaches to culture and development: the ecocultural, the sociohistorical, and the cultural values approach. We argue that an understanding of cultural pathways through human development requires all three approaches. We review evidence linking values (cultural values approach), ecological conditions (ecocultural approach), and socialization practices (sociohistorical approach) to cultural pathways through universal developmental tasks.

  15. Columbia River pathway report

    International Nuclear Information System (INIS)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  16. Mapping Nursing Pathways

    Directory of Open Access Journals (Sweden)

    Melanie Birks

    2015-09-01

    Full Text Available Articulated education pathways between the vocational education training sector and universities provide opportunities for students wishing to progress to higher qualifications. Enrolled nurses seeking to advance their career in nursing can choose to enter baccalaureate degree programs through such alternative entry routes. Awarding of credit for prior studies is dependent on accurate assessment of the existing qualification against that which is sought. This study employed a modified Delphi method to inform the development of an evidence-based, structured approach to mapping the pathway from the nationally consistent training package of the Diploma of Nursing to the diversity of baccalaureate nursing programs across Australia. The findings of this study reflect the practical nature of the role of the enrolled nurse, particularly the greater emphasis placed on direct care activities as opposed to those related to professional development and the generation and use of evidence. These findings provide a valuable summative overview of the relationship between the Diploma of Nursing and the expectations of the registered nurse role.

  17. The photovoltaic pathway

    International Nuclear Information System (INIS)

    Jourde, P.; Guerin de Montgareuil, A.; Mattera, F.; Jaussaud, C.; Boulanger, P.; Veriat, G.; Firon, M.

    2004-01-01

    Photovoltaic conversion, the direct transformation of light into electricity, is, of the three pathways for solar energy, the one experiencing most rapid growth, and for which scientific and technological advances are most promising, as regards significant improvements in its economic balance. While the long-term trend, in Europe, is favorable, with annual growth set at 30%, the cost per photovoltaic kilowatt-hour remains some ten times higher than that achieved with natural gas or nuclear energy (after connection to the grid), this being a handicap, at first blush, for high power ratings. For remote locations, where its advantage is unquestionable, in spite of the added cost of storage between insolation periods (this more than compensating for savings in terms of connection costs), this pathway sets its future prospects on marked module cost reductions. Such reduction may only be achieved by way of technological breakthroughs, to which CEA, active as it has been, in this area, for some thirty years, intends making a contribution, as linchpin of French research and technology, and a key protagonist on the European scene. One of the avenues being pursued concerns fabrication of high-efficiency cells from mineral or organic thin films, with particularly strong expectations with respect to the all-polymer path, complementary of the silicon pathway. Concurrently, device reliability needs must be improved, this being another factor making for an improved overall balance. To achieve easier transfer to industry of laboratory outcomes, CEA is relying, in particular, on the new cell fabrication platform set up in Grenoble, this complementing its other R and D resources, including those installed at Cadarache, allowing testing of cells and entire photovoltaic systems in actual operating conditions. Another path for cost reductions being explored by CEA research workers consists in construction of systems integrated into the built environment: this affords new prospects

  18. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  19. Summer 2014 Pathways Report

    Science.gov (United States)

    Hand, Zachary

    2014-01-01

    Over the summer I had the exciting opportunity to work for NASA at the Kennedy Space Center as a Mission Assurance Engineering intern. When I was offered a position in mission assurance for the Safety and Mission Assurance directorate's Launch Services Division, I didn't really know what I would be doing, but I knew it would be an excellent opportunity to learn and grow professionally. In this report I will provide some background information on the Launch Services Division, as well as detail my duties and accomplishments during my time as an intern. Additionally, I will relate the significance of my work experience to my current academic work and future career goals. This report contains background information on Mission Assurance Engineering, a description of my duties and accomplishments over the summer of 2014, and relates the significance of my work experience to my school work and future career goals. It is a required document for the Pathways program.

  20. Exposures from aquatic pathways

    International Nuclear Information System (INIS)

    Berkovski, V.; Voitsekhovitch, O.; Nasvit, O.; Zhelezniak, M.; Sansone, U.

    1996-01-01

    Methods for estimation aquatic pathways contribution to the total population exposure are discussed. Aquatic pathways are the major factor for radionuclides spreading from the Chernobyl Exclusion zone. An annual outflow of 90 Sr and 137 Cs comprised 10-20 TBq and 2-4 TBq respectively and the population exposed by this effluence constitutes almost 30 million people. The dynamic of doses from 90 Sr and ' C s, which Dnieper water have to delivered, is calculated. The special software has been developed to simulate the process of dose formation in the of diverse Dnieper regions. Regional peculiarities of municipal tap, fishing and irrigation are considered. Seventy-year prediction of dose structure and function of dose forming is performed. The exposure is estimated for 12 regions of the Dnieper basin and the Crimea. The maximal individual annual committed effective doses due to the use of water by ordinary members of the population in Kiev region from 90 Sr and 137 Cs in 1986 are 1.7*10 -5 Sv and 2.7*10 -5 Sv respectively. A commercial fisherman on Kiev reservoir in 1986 received 4.7*10 -4 Sv and 5*10 -3 Sv from 90 Sr and 137 Cs, respectively. The contributions to the collective cumulative (over 70 years) committed effective dose (CCCED 70 ) of irrigation, municipal tap water and fish consumption for members of the population respectively are 18%, 43%, 39% in Kiev region, 8%, 25%, 67% in Poltava region, and 50%, 50%, 0% (consumption of Dnieper fish is absent) in the Crimea. The predicted contribution of the Strontium-90 to CCCED 70 resulting from the use of water is 80%. The CCCED 70 to the population of the Dnieper regions (32.5 million people) is 3000 person-Sv due to the use the Dnieper water

  1. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Tobias Bracht

    Full Text Available Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD. However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC, the rostral anterior cingulate cortex (rACC, the pre-supplementary motor area (pre-SMA, the SMA-proper, the primary motor cortex (M1, the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  2. Pathways to man

    International Nuclear Information System (INIS)

    Harley, J.H.

    1980-01-01

    The study of radionuclide pathways leading to man generally has the goal of allowing us to predict human exposure from measurements of the radionuclide concentration in some segment of the environment. This modelling process provides a valuable tool in both the regulatory and health protection fields. However, most of the models in the regulatory field and in the health physics profession were designed to maximize exposure estimates. It is preferable to have scientifically defensible estimates and to add suitable safety factors at the end. Thus we are still faced with the development and validation of suitable models for many of the radionuclides of interest. The most useful models will include means of assessing variability and uncertainty. In this case variability might be considered as the differences in behavior due to age, sex or other factors in animals or man and those differences among plant species or animal species that determine their uptake factors. The uncertainty, on the other hand, would be the estimate of possible error in the experimental measurements. Model parameters would always have some variability even for site-specific cases and broad averages for population groups would have to include a factor expressing the possible variabilty and uncertainity. Thus any exposure calculation would have to be expressed with some range and valid assessments of this range are required

  3. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evolution of the TOR Pathway.

    NARCIS (Netherlands)

    Dam, T.J.P. van; Zwartkruis, F.J.; Bos, J.L.; Snel, B.

    2011-01-01

    The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and

  5. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  6. Pathways Intern Report

    Science.gov (United States)

    Bell, Evan A.

    2015-01-01

    During my time at NASA, I worked with the Granular Mechanics and Regolith Organization (GMRO), better known as Swamp Works. The goal of the lab is to find ways to utilize resources found after the astronaut or robot has landed on another planet or asteroid. This concept is known as in-situ resource utilization and it is critical to long term missions such as those to Mars. During my time here I worked on the Asteroid and Lava Tube Free Flyer project (ALTFF). A lava tube, such as the one shown in figure 1, is a long tear drop shaped cavern that is produced when molten lava tunnels through the surrounding rock creating large unground pathways. Before mining for resources on Mars or on asteroids, a sampling mission must be done to scout out useful resource deposits. ALTFF's goal is to provide a low cost, autonomous scout robot that can sample the surface and return to the mother ship or lander for further processing of the samples. The vehicle will be looking for water ice in the regolith that can be processed into either potable water, hydrogen and oxygen fuel, or a binder material for 3D printing. By using a low cost craft to sample, there is much less risk to the more expensive mother ship or lander. While my main task was the construction of a simulation environment to test control code in and the construction of the asteroid free flyer prototype, there were other tasks that I performed relating to the ALTFF project.

  7. pathways in myogenesis

    Directory of Open Access Journals (Sweden)

    Marta Milewska

    2014-05-01

    Full Text Available The commitment of myogenic cells in skeletal muscle differentiation requires earlier irreversible interruption of the cell cycle. At the molecular level, several key regulators of the cell cycle have been identified: cyclin-dependent kinases and their cyclins stimulate the cell cycle progress and its arrest is determined by the activity of cdk inhibitors (Cip/Kip and INK protein families and pocket protein family: Rb, p107 and p130. The biological activity of cyclin/cdk complexes allows the successive phases of the cell cycle to occur. Myoblast specialization, differentiation and fusion require the activity of myogenic regulatory factors, which include MyoD, myogenin, Myf5 and MRF4. MyoD and Myf5 play a role in muscle cell specialization, myogenin controls the differentiation process, whereas MRF4 is involved in myotube maturation. The deregulation of the cell cycle leads to uncontrolled proliferation, which antagonizes the functions of myogenic factors and it explains the lack of differentiation-specific gene expression in dividing cells. Conversely, the myogenic factor MyoD seems to cooperate with cell cycle inhibitors leading to inhibition of cell cycle progress and commitment to the differentiation process. The hypophosphorylated form of Rb and cdk inhibitors play an important role in permanent arrest of the cell cycle in differentiated myotubes. Furthermore, cyclin/cdk complexes not only regulate cell division by phosphorylation of several substrates, but may also control other cellular processes such as signal transduction, differentiation and apoptosis. Beyond regulating the cell cycle, Cip/Kip proteins play an important role in cell death, transcription regulation, cell fate determination, cell migration and cytoskeletal dynamics. The article summarizes current knowledge concerning the interactions of intracellular signaling pathways controlling crucial stages of fetal and regenerative myogenesis.

  8. Non-Smad signaling pathways.

    Science.gov (United States)

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  9. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Pathway Design, Engineering, and Optimization.

    Science.gov (United States)

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  11. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2017-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  12. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2016-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  13. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  14. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites.

    Science.gov (United States)

    Meier, Timothy B; Lancaster, Melissa A; Mayer, Andrew R; Teague, T Kent; Savitz, Jonathan

    2017-02-15

    There is a great need to identify potential long-term consequences of contact sport exposure and to identify molecular pathways that may be associated with these changes. We tested the hypothesis that football players with (Ath-mTBI) (n = 25) and without a concussion history (Ath) (n = 24) have altered resting state functional connectivity in regions with previously documented structural changes relative to healthy controls without football or concussion history (HC) (n = 27). As a secondary aim, we tested the hypothesis that group differences in functional connectivity are moderated by the relative ratio of neuroprotective to neurotoxic metabolites of the kynurenine pathway. Ath-mTBI had significantly increased connectivity of motor cortex to the supplementary motor area relative to Ath and HC. In contrast, both Ath-mTBI and Ath had increased connectivity between the left orbital frontal cortex and the right lateral frontal cortex, and between the left cornu ammonis areas 2 and 3/dentate gyrus (CA2-3/DG) of the hippocampus and the middle and posterior cingulate cortices, relative to HC. The relationship between the ratio of plasma concentrations of kynurenic acid to quinolinic acid (KYNA/QUIN) and left pregenual anterior cingulate cortex connectivity to multiple regions as well as KYNA/QUIN and right CA2-3/DG connectivity to multiple regions differed significantly according to football and concussion history. The results suggest that football exposure with and without concussion history can have a significant effect on intrinsic brain connectivity and implicate the kynurenine metabolic pathway as one potential moderator of functional connectivity dependent on football exposure and concussion history.

  15. Attentional effects in the visual pathways

    DEFF Research Database (Denmark)

    Bundesen, Claus; Larsen, Axel; Kyllingsbæk, Søren

    2002-01-01

    nucleus. Frontal activations were found in a region that seems implicated in visual short-term memory (posterior parts of the superior sulcus and the middle gyrus). The reverse, color-shape comparison showed bilateral increases in rCBF in the anterior cingulate gyri, superior frontal gyri, and superior...... and middle temporal gyri. The attentional effects found by the shape-color comparison in the thalamus and the primary visual cortex may have been generated by feedback signals preserving visual representations of selected stimuli in short-term memory....

  16. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network.

    Science.gov (United States)

    Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu

    2018-03-01

    The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.

  17. PHOTOBIOMODULATION-MEDIATED PATHWAY DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    TIMON CHENG-YI LIU

    2013-01-01

    Full Text Available Cellular pathways are ordinarily diagnosed with pathway inhibitors, related gene regulation, or fluorescent protein markers. They are also suggested to be diagnosed with pathway activation modulation of photobiomodulation (PBM in this paper. A PBM on a biosystem function depends on whether the biosystem is in its function-specific homeostasis (FSH. An FSH, a negative feedback response for the function to be performed perfectly, is maintained by its FSH-essential subfunctions and its FSH-non-essential subfunctions (FNSs. A function in its FSH or far from its FSH is called a normal or dysfunctional function. A direct PBM may self-adaptatively modulate a dysfunctional function until it is normal so that it can be used to discover the optimum pathways for an FSH to be established. An indirect PBM may self-adaptatively modulate a dysfunctional FNS of a normal function until the FNS is normal, and the normal function is then upgraded so that it can be used to discover the redundant pathways for a normal function to be upgraded.

  18. New Pathways for Alimentary Mucositis

    Directory of Open Access Journals (Sweden)

    Joanne M. Bowen

    2008-01-01

    Full Text Available Alimentary mucositis is a major dose-limiting toxicity associated with anticancer treatment. It is responsible for reducing patient quality of life and represents a significant economic burden in oncology. The pathobiology of alimentary mucositis is extremely complex, and an increased understanding of mechanisms and pathway interactions is required to rationally design improved therapies. This review describes the latest advances in defining mechanisms of alimentary mucositis pathobiology in the context of pathway activation. It focuses particularly on the recent genome-wide analyses of regimen-related mucosal injury and the identification of specific regulatory pathways implicated in mucositis development. This review also discusses the currently known alimentary mucositis risk factors and the development of novel treatments. Suggestions for future research directions have been raised.

  19. Targeting Wnt Pathways in Disease

    Science.gov (United States)

    Zimmerman, Zachary F.; Moon, Randall T.

    2012-01-01

    Wnt-mediated signal transduction pathways have long been recognized for their roles in regulating embryonic development, and have more recently been linked to cancer, neurologic diseases, inflammatory diseases, and disorders of endocrine function and bone metabolism in adults. Although therapies targeting Wnt signaling are attractive in theory, in practice it has been difficult to obtain specific therapeutics because many components of Wnt signaling pathways are also involved in other cellular processes, thereby reducing the specificity of candidate therapeutics. New technologies, and advances in understanding the mechanisms of Wnt signaling, have improved our understanding of the nuances of Wnt signaling and are leading to promising new strategies to target Wnt signaling pathways. PMID:23001988

  20. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  1. Targeting the GPI biosynthetic pathway.

    Science.gov (United States)

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  2. Career Technical Education Pathways Initiative

    Science.gov (United States)

    California Community Colleges, Chancellor's Office, 2013

    2013-01-01

    California's education system--the largest in the United States--is an essential resource for ensuring strong economic growth in the state. The Career Technical Education Pathways Initiative (referred to as the Initiative in this report), which became law in 2005, brings together community colleges, K-12 school districts, employers, organized…

  3. Pentose pathway in human liver

    International Nuclear Information System (INIS)

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1988-01-01

    [1- 14 C]Ribose and [1- 14 C]glucose were given to normal subjects along with glucose loads (1 g per kg of body weight) after administration of diflunisal and acetaminophen, drugs that are excreted in urine as glucuronides. Distributions of 14 C were determined in the carbons of the excreted glucoronides and in the glucose from blood samples drawn from hepatic veins before and after glucagon administration. Eighty percent or more of the 14 C from [1- 14 C]ribose incorporated into the glucuronic acid moiety of the glucuronides was in carbons 1 and 3, with less than 8% in carbon 2. In glucuronic acid from glucuronide excreted when [2- 14 C]glucose was given, 3.5-8.1% of the 14 C was in carbon 1, 2.5-4.3% in carbon 3, and more than 70% in carbon 2. These distributions are in accord with the glucuronides sampling the glucose unit of the glucose 6-phosphate pool that is a component of the pentose pathway and is intermediate in glycogen formation. It is concluded that the glucuronic acid conjugates of the drugs can serve as a noninvasive means of sampling hepatic glucose 6-phosphate. In human liver, as in animal liver, the classical pentose pathway functions, not the L-type pathway, and only a small percentage of the glucose is metabolized via the pathway

  4. Diverse Pathways in Children's Learning.

    Science.gov (United States)

    Lambert, Beverley

    1996-01-01

    Used a Partially Ordered Scaling of Items method to analyze block construction play in a replication of Innes and King-Shaw's 1985 study. Found several developmental pathways for block play, illustrating the web-like nature of conceptual development. Results suggest a contextual developmental approach to better acknowledge individual diversity in…

  5. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...... using insulin signalling as a model system....

  6. The oxylipin pathway in Arabidopsis.

    Science.gov (United States)

    Creelman, Robert A; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.

  7. Two-Electron Transfer Pathways.

    Science.gov (United States)

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  8. Brain pathways for cognitive-emotional decision making in the human animal.

    Science.gov (United States)

    Levine, Daniel S

    2009-04-01

    As roles for different brain regions become clearer, a picture emerges of how primate prefrontal cortex executive circuitry influences subcortical decision making pathways inherited from other mammals. The human's basic needs or drives can be interpreted as residing in an on-center off-surround network in motivational regions of the hypothalamus and brain stem. Such a network has multiple attractors that, in this case, represent the amount of satisfaction of these needs, and we consider and interpret neurally a continuous-time simulated annealing algorithm for moving between attractors under the influence of noise that represents "discontent" combined with "initiative." For decision making on specific tasks, we employ a variety of rules whose neural circuitry appears to involve the amygdala and the orbital, cingulate, and dorsolateral regions of prefrontal cortex. These areas can be interpreted as connected in a three-layer adaptive resonance network. The vigilance of the network, which is influenced by the state of the hypothalamic needs network, determines the level of sophistication of the rule being utilized.

  9. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks.

    Science.gov (United States)

    Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua

    2017-09-01

    The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.

  10. Pathway Interaction Network Analysis Identifies Dysregulated Pathways in Human Monocytes Infected by Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Wufeng Fan

    2017-01-01

    Full Text Available In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM based on pathway interaction network (PIN which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs, and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.

  11. The alexithymic brain: the neural pathways linking alexithymia to physical disorders

    Directory of Open Access Journals (Sweden)

    Kano Michiko

    2013-01-01

    Full Text Available Abstract Alexithymia is a personality trait characterized by difficulties in identifying and describing feelings and is associated with psychiatric and psychosomatic disorders. The mechanisms underlying the link between emotional dysregulation and psychosomatic disorders are unclear. Recent progress in neuroimaging has provided important information regarding emotional experience in alexithymia. We have conducted three brain imaging studies on alexithymia, which we describe herein. This article considers the role of emotion in the development of physical symptoms and discusses a possible pathway that we have identified in our neuroimaging studies linking alexithymia with psychosomatic disorders. In terms of socio-affective processing, alexithymics demonstrate lower reactivity in brain regions associated with emotion. Many studies have reported reduced activation in limbic areas (e.g., cingulate cortex, anterior insula, amygdala and the prefrontal cortex when alexithymics attempt to feel other people’s feelings or retrieve their own emotional episodes, compared to nonalexithymics. With respect to primitive emotional reactions such as the response to pain, alexithymics show amplified activity in areas considered to be involved in physical sensation. In addition to greater hormonal arousal responses in alexithymics during visceral pain, increased activity has been reported in the insula, anterior cingulate cortex, and midbrain. Moreover, in complex social situations, alexithymics may not be able to use feelings to guide their behavior appropriately. The Iowa gambling task (IGT was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice. The

  12. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    the nociceptive response (visceral pain sensitivity and anterior cingulate cortex neuronal responses to CRD. Conclusion CCK activating vagal afferent C fibers enhances memory consolidation and retention involved in long-term visceral negative affective state. Thus, in a number of gastrointestinal disorders, such as irritable bowel syndrome, nutrient content may contribute to painful visceral perception by enhancing visceral aversive memory via acts on vagal afferent pathway.

  13. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    sensitivity) and anterior cingulate cortex neuronal responses to CRD. CCK activating vagal afferent C fibers enhances memory consolidation and retention involved in long-term visceral negative affective state. Thus, in a number of gastrointestinal disorders, such as irritable bowel syndrome, nutrient content may contribute to painful visceral perception by enhancing visceral aversive memory via acts on vagal afferent pathway.

  14. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2......-1, -2 and -3 and CL-11 could have similar functions in HIV infection as the ficolins have been shown to play a role in other viral infections, and CL-11 resembles MBL and the ficolins in structure and binding capacity.......The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  15. Alternative pathways to antimatter containment

    International Nuclear Information System (INIS)

    Rejcek, J.M.; Browder, M.K.; Fry, J.L.; Koymen, A.; Weiss, A.H.

    2003-01-01

    Antimatter containment is a gateway technology for future advancements in many areas. Immediate applications in propulsion, medicine, and instrumentation have already been envisioned and many others are yet to be considered. Key to this technological advance is identifying one or more pathways to achieve safe reliable containment of antimatter in sufficient quantities to be useful on an engineering and industrial scale. The goal of this paper is to review current approaches and discuss possible alternative pathways to antimatter containment. Specifically, this paper will address the possibility of designing a solid-state containment system that will safely hold antimatter in quantities dense enough to be of any engineering utility. A discussion of the current research, the needed engineering requirements, and a survey of current research is presented

  16. Molecular pathways towards psychiatric disorders

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1987-07-01

    The observed fibrillar-neuronal organization of the cerebral cortex suggests that in the aetiology of certain psychiatric disorders the genomic response of the neuron to the challenge presented by stress or insults at various stages of development, is to set off a programmed chain of molecular events (or ''pathways''), as demonstrated in previous genetic studies. The understanding of these pathways is important in order to enhance our ability to influence these illnesses, and are hypothesized to be initiated by a nucleolar mechanism for inducing abnormal synthesis of the nerve growth factor (NGF). The hypothesis is used to approach tentatively the still open question regarding the pathogenesis of mental retardation (MR) and senile dementia (SD). (author). 25 refs

  17. Vanillin biosynthetic pathways in plants.

    Science.gov (United States)

    Kundu, Anish

    2017-06-01

    The present review compiles the up-to-date knowledge on vanillin biosynthesis in plant systems to focus principally on the enzymatic reactions of in planta vanillin biosynthetic pathway and to find out its impact and prospect in future research in this field. Vanillin, a very popular flavouring compound, is widely used throughout the world. The principal natural resource of vanillin is the cured vanilla pods. Due to the high demand of vanillin as a flavouring agent, it is necessary to explore its biosynthetic enzymes and genes, so that improvement in its commercial production can be achieved through metabolic engineering. In spite of significant advancement in elucidating vanillin biosynthetic pathway in the last two decades, no conclusive demonstration had been reported yet for plant system. Several biosynthetic enzymes have been worked upon but divergences in published reports, particularly in characterizing the crucial biochemical steps of vanillin biosynthesis, such as side-chain shortening, methylation, and glucoside formation and have created a space for discussion. Recently, published reviews on vanillin biosynthesis have focused mainly on the biotechnological approaches and bioconversion in microbial systems. This review, however, aims to compile in brief the overall vanillin biosynthetic route and present a comparative as well as comprehensive description of enzymes involved in the pathway in Vanilla planifolia and other plants. Special emphasis has been given on the key enzymatic biochemical reactions that have been investigated extensively. Finally, the present standpoint and future prospects have been highlighted.

  18. Transuranic element pathways to man

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1976-01-01

    Transfer to man of transuranic element contamination may occur by the inhalation or ingestion pathways. The measurements of globally dispersed fall-out radioactivity have provided pertinent data on the environmental behaviour of plutonium. Additional data may eventually become available for americium. From the measured and inferred concentrations of fall-out plutonium, the inhalation intake has been determined and the ICRP Task Group lung model used to estimate deposition in the lung and transfer to other body organs. The computed body burden reached a maximum of 4pCi in 1964 and is currently about 2.5pCi. A complete diet sampling has been conducted to determine ingestion intake. Plutonium concentration in food ranged from 0.01pCi/kg in shellfish to undetected (less than 0.0003pCi/kg) in milk. Annual intake in total diet is estimated to have been 1.6pCi in 1972. Low uptake by the gastrointestinal tract makes contribution to organ burdens from ingestion negligible. Long-term pathway considerations include plant uptake from the cumulative deposit in soil and resuspension. Downward movement in soil may limit the significance of these long-term pathway components. (author)

  19. Dual Pathways to Prospective Remembering

    Directory of Open Access Journals (Sweden)

    Mark A Mcdaniel

    2015-07-01

    Full Text Available According to the multiprocess framework (McDaniel & Einstein, 2000, the cognitive system can support prospective memory (PM retrieval through two general pathways. One pathway depends on top-down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom-up spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically spontaneous retrieval is assumed to not require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom-up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM.

  20. Dual pathways to prospective remembering

    Science.gov (United States)

    McDaniel, Mark A.; Umanath, Sharda; Einstein, Gilles O.; Waldum, Emily R.

    2015-01-01

    According to the multiprocess framework (McDaniel and Einstein, 2000), the cognitive system can support prospective memory (PM) retrieval through two general pathways. One pathway depends on top–down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom–up) spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically, spontaneous retrieval is assumed not to require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom–up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM. PMID:26236213

  1. Imbalanced Kynurenine Pathway in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Magdalena E. Kegel

    2014-01-01

    Full Text Available Several studies suggest a role for kynurenic acid (KYNA in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN. Here we investigate the levels of QUIN in cerebrospinal fluid (CSF of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22 and those of controls (n = 26 were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36. CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls ( P = 0.027. In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia.

  2. Region-specific aging of the human brain as evidenced by neurochemical profiles measured noninvasively in the posterior cingulate cortex and the occipital lobe using 1H magnetic resonance spectroscopy at 7 T.

    Science.gov (United States)

    Marjańska, Małgorzata; McCarten, J Riley; Hodges, James; Hemmy, Laura S; Grant, Andrea; Deelchand, Dinesh K; Terpstra, Melissa

    2017-06-23

    The concentrations of fourteen neurochemicals associated with metabolism, neurotransmission, antioxidant capacity, and cellular structure were measured noninvasively from two distinct brain regions using 1 H magnetic resonance spectroscopy. Seventeen young adults (age 19-22years) and sixteen cognitively normal older adults (age 70-88years) were scanned. To increase sensitivity and specificity, 1 H magnetic resonance spectra were obtained at the ultra-high field of 7T and at ultra-short echo time. The concentrations of neurochemicals were determined using water as an internal reference and accounting for gray matter, white matter, and cerebrospinal fluid content of the volume of interest. In the posterior cingulate cortex (PCC), the concentrations of neurochemicals associated with energy (i.e., creatine plus phosphocreatine), membrane turnover (i.e., choline containing compounds), and gliosis (i.e., myo-inositol) were higher in the older adults while the concentrations of N-acetylaspartylglutamate (NAAG) and phosphorylethanolamine (PE) were lower. In the occipital cortex (OCC), the concentration of N-acetylaspartate (NAA), a marker of neuronal viability, concentrations of the neurotransmitters Glu and NAAG, antioxidant ascorbate (Asc), and PE were lower in the older adults while the concentration of choline containing compounds was higher. Altogether, these findings shed light on how the human brain ages differently depending on region. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study.

    Science.gov (United States)

    Freund, Wolfgang; Wunderlich, Arthur P; Stuber, Gregor; Mayer, Florian; Steffen, Peter; Mentzel, Martin; Weber, Frank; Schmitz, Bernd

    2010-05-01

    Although the etiology of complex regional pain syndrome type 1 (CRPS 1) is still debated, many arguments favor central maladaptive changes in pain processing as an important causative factor. To look for the suspected alterations, 10 patients with CRPS affecting the left hand were explored with functional magnetic resonance imaging during graded electrical painful stimulation of both hands subsequently and compared with healthy participants. Activation of the anterior insula, posterior cingulate cortex (PCC), and caudate nucleus was seen in patients during painful stimulation. Compared with controls, CRPS patients had stronger activation of the PCC during painful stimulation of the symptomatic hand. The comparison of insular/opercular activation between controls and patients with CRPS I during painful stimulation showed stronger (posterior) opercular activation in controls than in patients. Stronger PCC activation during painful stimulation may be interpreted as a correlate of motor inhibition during painful stimuli different from controls. Also, the decreased opercular activation in CRPS patients shows less sensory-discriminative processing of painful stimuli.These results show that changed cerebral pain processing in CRPS patients is less sensory-discriminative but more motor inhibition during painful stimuli. These changes are not limited to the diseased side but show generalized alterations of cerebral pain processing in chronic pain patients.

  4. 学龄前孤独症儿童扣带回MR波谱绝对定量研究%The absolute quantitative analysis of cingulate cortex metabolites in preschool children with autism spectrum disorder using proton MR spectroscopy

    Institute of Scientific and Technical Information of China (English)

    陈峰; 喻爱军; 姚乾坤; 潘梦洁; 陈惠娟; 赵应满; 邢增宝; 李建军

    2017-01-01

    Objective To investigate the metabolite changes in the preschool children with autism spectrum disorder (ASD) using MR spectroscopy (MRS) and explore the associations between image findings and clinical variables, which may provide a noninvasive brain biochemical method for the early diagnosis and prevention of autism. Methods Twenty one cases of preschool ASD children (3-6 years old) and age-and sex-matched 20 preschool healthy controls underwent single voxel short (SVS) short TE (TE=30 ms) MRS. The absolute metabolite concentrations in the anterior cingulate cortex (ACC) , anterior middle anterior cingulate cortex (aMCC) and posterior cingulate (PCC) were quantitatively analyzed using LCModel software. Two independent sample t tests were used for analysis. The relationships between metabolite concentrations and diagnostic and statistical manual of mental disorders (DSM-IV) , childhood autism rating scale (CARS) and autism behavior checklist (ABC) were analyzed by Pearson correlation analysis. Results Compared to control subjects, ASD patients had significantly lower N-acetylaspartate (NAA) values (4.35 ± 0.80, 6.34±0.82, 8.04±0.97 mmol/L respectively) in ACC, aMCC and PCC (t=2.640, P=0.012;t=2.182, P=0.035;t=3.343, P=0.002) , had significantly lower choline (Cho) 1.32±0.22 mmol/L (t=2.905, P=0.006) and glutamine and glutamate complex (Glx) 10.02 ± 0.88 mmol/L (t=2.090, P=0.043) in PCC. Cho, total creatine (tCr) , myo-Inositol (MI) and Glx levels did not differ between groups in other aforementioned regions (P>0.05). Negative correlations between the NAA ualues in the PCC and CARS (r=-0.504, P=0.020) were detected, and no significant correlation among DSM-IV, CARS, ABC and other metabolite values (P>0.05). Condnsions The biochemical changes in the preschool children with ASD in cingulate reflect the neuronal loss, structural or functional damage and cell membrane enzyme metabolic dysfunctions, may reveal the pathological basis of ASD. These results may

  5. Low episodic memory performance in cognitively normal elderly subjects is associated with increased posterior cingulate gray matter N-acetylaspartate: a 1H MRSI study at 7 Tesla.

    Science.gov (United States)

    Schreiner, Simon J; Kirchner, Thomas; Wyss, Michael; Van Bergen, Jiri M G; Quevenco, Frances C; Steininger, Stefanie C; Griffith, Erica Y; Meier, Irene; Michels, Lars; Gietl, Anton F; Leh, Sandra E; Brickman, Adam M; Hock, Christoph; Nitsch, Roger M; Pruessmann, Klaas P; Henning, Anke; Unschuld, Paul G

    2016-12-01

    Low episodic memory performance characterizes elderly subjects at increased risk for Alzheimer's disease (AD) and may reflect neuronal dysfunction within the posterior cingulate cortex and precuneus (PCP) region. To investigate a potential association between cerebral neurometabolism and low episodic memory in the absence of cognitive impairment, tissue-specific magnetic resonance spectroscopic imaging at ultrahigh field strength of 7 Tesla was used to investigate the PCP region in a healthy elderly study population (n = 30, age 70 ± 5.7 years, Mini-Mental State Examination 29.4 ± 4.1). The Verbal Learning and Memory Test (VLMT) was administered as part of a neuropsychological battery for assessment of episodic memory performance. Significant differences between PCP gray and white matter could be observed for glutamate-glutamine (p = 0.001), choline (p = 0.01), and myo-inositol (p = 0.02). Low Verbal Learning and Memory Test performance was associated with high N-acetylaspartate in PCP gray matter (p = 0.01) but not in PCP white matter. Our data suggest that subtle decreases in episodic memory performance in the elderly may be associated with increased levels of N-acetylaspartate as a reflection of increased mitochondrial energy capacity in PCP gray matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    Science.gov (United States)

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RPpathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RPpathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017

  7. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Q. Wang

    Full Text Available Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC based on the functional dependency among pathways. Protein-protein interaction (PPI information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN, where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  8. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin; Kuwahara, Hiroyuki; Alazmi, Meshari Saud; Cui, Xuefeng

    2017-01-01

    suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived

  9. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...... the reader who is primarily trained in the engineering sciences with atleast a preliminary introduction to biochemistry and also shows how carbon is drained off the catabolic pathways to provide precursors for cell mass building and sometimes for important industrial products. The primary pathways...... to be examined in the following are: glycolysis, primarily by the EMP pathway, but other glycolytic pathways is also mentioned; fermentative pathways in which the redox generated in the glycolytic reactions are consumed; reactions in the tricarboxylic acid (TCA) cycle, which produce biomass precursors and redox...

  10. CD137 pathway: immunology and diseases

    National Research Council Canada - National Science Library

    Chen, Lieping

    2006-01-01

    ... may work in either interconnected or linear fashion. Therefore, the combined understanding of each pathway, their interactions with other pathways, and the functional consequence, is a cornerstone for our interpretation of pathological basis of diseases and future treatments. It is important to stay abreast on the pace of progress, which I refer to as periodic summary of incremental and breakthrough discoveries in each pathway by the experts and the leader in the field. The CD137 Pathway: Immu...

  11. Certification Criteria for Linked Learning Pathways

    Science.gov (United States)

    ConnectEd: The California Center for College and Career, 2010

    2010-01-01

    Pathways offer a promising strategy for transforming high schools and improving student outcomes. However, to achieve these desired results, pathways must be of high quality. To guide sites in planning and implementing such pathways, a design team of experts developed the criteria outlined in this document. Sites can choose to go through a…

  12. A long slanted transseptal accessory pathway

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    2011-05-01

    Full Text Available A 63-year-old male with Wolff-Parkinson-White syndrome was admitted for ablation of accessory pathway. Intracardiac electrogram revealed a left-side accessory pathway during tachycardia, which was successfully ablated from the right posterior tricuspid annulus because of a long slanted transseptal accessory pathway (2.2 cm.

  13. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    Science.gov (United States)

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  14. Apoptotic engulfment pathway and schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Xiangning

    2009-01-01

    BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY\\/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS\\/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  15. Nutrition pathways in consequence modeling

    International Nuclear Information System (INIS)

    Tveten, U.

    1982-01-01

    During 1979-1980 calculations of risk from waste transportation by truck (fire following collision) and fire in temporary storage for waste were performed. A modified version of the consequence model of WASH-1400 (CRAC) was used. Two exposure pathways dominated the results: external exposure from material on the ground and exposure via nutrition. Many of the parameters entering into the nutrition calculations will depend upon local conditions, like soil composition, crop yield, etc. It was decided to collect detailed comments upon the CRAC nutritions model and parameter values from radioecologists in the four Nordic countries. Four alternate sets of parameter values were derived from these comments, and new risk calculations were performed

  16. Magnocellular pathway for rotation invariant Neocognitron.

    Science.gov (United States)

    Ting, C H

    1993-03-01

    In the mammalian visual system, magnocellular pathway and parvocellular pathway cooperatively process visual information in parallel. The magnocellular pathway is more global and less particular about the details while the parvocellular pathway recognizes objects based on the local features. In many aspects, Neocognitron may be regarded as the artificial analogue of the parvocellular pathway. It is interesting then to model the magnocellular pathway. In order to achieve "rotation invariance" for Neocognitron, we propose a neural network model after the magnocellular pathway and expand its roles to include surmising the orientation of the input pattern prior to recognition. With the incorporation of the magnocellular pathway, a basic shift in the original paradigm has taken place. A pattern is now said to be recognized when and only when one of the winners of the magnocellular pathway is validified by the parvocellular pathway. We have implemented the magnocellular pathway coupled with Neocognitron parallel on transputers; our simulation programme is now able to recognize numerals in arbitrary orientation.

  17. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ubiquitylation and the Fanconi Anemia Pathway

    Science.gov (United States)

    Garner, Elizabeth; Smogorzewska, Agata

    2012-01-01

    The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability. PMID:21605559

  19. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  20. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  1. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    Science.gov (United States)

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Analysis of the posterior cingulate cortex with [18F]FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods.

    Science.gov (United States)

    Coutinho, Artur M N; Porto, Fábio H G; Zampieri, Poliana F; Otaduy, Maria C; Perroco, Tíbor R; Oliveira, Maira O; Nunes, Rafael F; Pinheiro, Toulouse Leusin; Bottino, Cassio M C; Leite, Claudia C; Buchpiguel, Carlos A

    2015-01-01

    Reduction of regional brain glucose metabolism (rBGM) measured by [18F]FDG-PET in the posterior cingulate cortex (PCC) has been associated with a higher conversion rate from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Magnetic Resonance Spectroscopy (MRS) is a potential biomarker that has disclosed Naa/mI reductions within the PCC in both MCI and AD. Studies investigating the relationships between the two modalities are scarce. To evaluate differences and possible correlations between the findings of rBGM and NAA/mI in the PCC of individuals with AD, MCI and of cognitively normal volunteers. Patients diagnosed with AD (N=32) or MCI (N=27) and cognitively normal older adults (CG, N=28), were submitted to [18F]FDG-PET and MRS to analyze the PCC. The two methods were compared and possible correlations between the modalities were investigated. The AD group exhibited rBGM reduction in the PCC when compared to the CG but not in the MCI group. MRS revealed lower NAA/mI values in the AD group compared to the CG but not in the MCI group. A positive correlation between rBGM and NAA/mI in the PCC was found. NAA/mI reduction in the PCC differentiated AD patients from control subjects with an area under the ROC curve of 0.70, while [18F]FDG-PET yielded a value of 0.93. rBGM and Naa/mI in the PCC were positively correlated in patients with MCI and AD. [18F]FDG-PET had greater accuracy than MRS for discriminating AD patients from controls.

  3. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.

    Science.gov (United States)

    Imbe, Hiroki; Kimura, Akihisa

    2017-09-01

    The perception and response to pain are severely impacted by exposure to stressors. In some animal models, stress increases pain sensitivity, which is termed stress-induced hyperalgesia (SIH). The insular cortex (IC) and anterior cingulate cortex (ACC), which are typically activated by noxious stimuli, affect pain perception through the descending pain modulatory system. In the present study, we examined the expression of phospho-cAMP response element-binding protein (pCREB) and early growth response 1 (Egr1) in the IC and ACC at 3h (the acute phase of peripheral tissue inflammation) after complete Freund's adjuvant (CFA) injection in naïve rats and rats preconditioned with forced swim stress (FS) to clarify the effect of FS, a stressor, on cortical cell activities in the rats showing SIH induced by FS. The CFA injection into the hindpaw induced mechanical hypersensitivity and increased the expression of the pCREB and Egr1 in the IC and ACC at 3h after the injection. FS (day 1, 10min; days 2-3, 20min) prior to the CFA injection enhanced the CFA-induced mechanical hypersensitivity and attenuated the increase in the expression of pCREB and Egr1 in the IC and ACC. These findings suggested that FS modulates the CFA injection-induced neuroplasticity in the IC and ACC to enhance the mechanical hypersensitivity. These findings are thought to signify stressor-induced dysfunction of the descending pain modulatory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. HPV: Molecular pathways and targets.

    Science.gov (United States)

    Gupta, Shilpi; Kumar, Prabhat; Das, Bhudev C

    2018-04-05

    Infection of high-risk human papillomaviruses (HPVs) is a prerequisite for the development of cervical carcinoma. HPV infections are also implicated in the development of other types of carcinomas. Chronic or persistent infection of HPV is essential but HPV alone is inadequate, additional endogenous or exogenous cues are needed along with HPV to induce cervical carcinogenesis. The strategies that high-risk HPVs have developed in differentiating epithelial cells to reach a DNA-synthesis competent state leading to tumorigenic transformation are basically due to overexpression of the E6 and E7 oncoproteins and the activation of diverse cellular regulatory or signaling pathways that are targeted by them. Moreover, the Wnt/β-catenin/Notch and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathways are deregulated in various cancers, and have also been implicated in HPV-induced cancers. These are basically related to the "cancer hallmarks," and include sustaining proliferative signals, the evasion of growth suppression and immune destruction, replicative immortality, inflammation, invasion, metastasis and angiogenesis, as well as genome instability, resisting cell death, and deregulation of cellular energetics. These information could eventually aid in identifying or developing new diagnostic, prognostic biomarkers, and may contribute to design more effective targeted therapeutics and treatment strategies. Although surgery, chemotherapy and radiotherapy can cure more than 90% of women with early stage cervical cancer, the recurrent and metastatic disease remains a major cause of cancer mortality. Numerous efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent years, research on treatment strategies has proposed several options, including the role of HPV E5, E6, and E7 oncogenes, which are retained and overexpressed in most of the cervical cancers and whose respective oncoproteins are critical to the induction

  5. Rising utilization of inpatient pediatric asthma pathways.

    Science.gov (United States)

    Kaiser, Sunitha V; Rodean, Jonathan; Bekmezian, Arpi; Hall, Matt; Shah, Samir S; Mahant, Sanjay; Parikh, Kavita; Morse, Rustin; Puls, Henry; Cabana, Michael D

    2018-02-01

    Clinical pathways are detailed care plans that operationalize evidence-based guidelines into an accessible format for health providers. Their goal is to link evidence to practice to optimize patient outcomes and delivery efficiency. It is unknown to what extent inpatient pediatric asthma pathways are being utilized nationally. (1) Describe inpatient pediatric asthma pathway design and implementation across a large hospital network. (2) Compare characteristics of hospitals with and without pathways. We conducted a descriptive, cross-sectional, survey study of hospitals in the Pediatric Research in Inpatient Settings Network (75% children's hospitals, 25% community hospitals). Our survey determined if each hospital used a pathway and pathway characteristics (e.g. pathway elements, implementation methods). Hospitals with and without pathways were compared using Chi-square tests (categorical variables) and Student's t-tests (continuous variables). Surveys were distributed to 3-5 potential participants from each hospital and 302 (74%) participants responded, representing 86% (106/123) of surveyed hospitals. From 2005-2015, the proportion of hospitals utilizing inpatient asthma pathways increased from 27% to 86%. We found variation in pathway elements, implementation strategies, electronic medical record integration, and compliance monitoring across hospitals. Hospitals with pathways had larger inpatient pediatric programs [mean 12.1 versus 6.1 full-time equivalents, p = 0.04] and were more commonly free-standing children's hospitals (52% versus 23%, p = 0.05). From 2005-2015, there was a dramatic rise in implementation of inpatient pediatric asthma pathways. We found variation in many aspects of pathway design and implementation. Future studies should determine optimal implementation strategies to better support hospital-level efforts in improving pediatric asthma care and outcomes.

  6. Post-Communist Welfare Pathways

    DEFF Research Database (Denmark)

    Cerami, Alfio; Vanhuysse, Pieter

    . The authors' impressive analysis of causal factors, including political elites' strategic use of social policy, makes the book an original and important contribution to the comparative welfare state literature.'- Professor Linda J. Cook, Brown University“ 'This edited volume is extraordinarily good...... factors such as micro-causal mechanisms, ideas, discourses, path departures, power politics, and elite strategies. This book includes contributions from leading international Experts such as Claus Offe, Robert Kaufman, Stefan Haggard, Tomasz Inglot, and Mitchell Orenstein, to examine welfare in specific...... countries and across social policy domains. By providing a broad overview based on a theoretical foundation and drawing on recent empirical evidence, Post-Communist Welfare Pathways offers a comprehensive, state-of-the-art account of the progress that has been made since 1989, and the main challenges...

  7. The SUMO Pathway in Mitosis.

    Science.gov (United States)

    Mukhopadhyay, Debaditya; Dasso, Mary

    2017-01-01

    Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.

  8. Biosynthetic Pathways of Ergot Alkaloids

    Directory of Open Access Journals (Sweden)

    Nina Gerhards

    2014-12-01

    Full Text Available Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines. All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine. Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  9. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  10. Stochasticity in the yeast mating pathway

    International Nuclear Information System (INIS)

    Hong-Li, Wang; Zheng-Ping, Fu; Xin-Hang, Xu; Qi, Ouyang

    2009-01-01

    We report stochastic simulations of the yeast mating signal transduction pathway. The effects of intrinsic and external noise, the influence of cell-to-cell difference in the pathway capacity, and noise propagation in the pathway have been examined. The stochastic temporal behaviour of the pathway is found to be robust to the influence of inherent fluctuations, and intrinsic noise propagates in the pathway in a uniform pattern when the yeasts are treated with pheromones of different stimulus strengths and of varied fluctuations. In agreement with recent experimental findings, extrinsic noise is found to play a more prominent role than intrinsic noise in the variability of proteins. The occurrence frequency for the reactions in the pathway are also examined and a more compact network is obtained by dropping most of the reactions of least occurrence

  11. Degenerative Pathways of Lumbar Motion Segments

    DEFF Research Database (Denmark)

    Jensen, Rikke K.; Kjaer, Per; Jensen, Tue S.

    2016-01-01

    pathways of degeneration based on scientific knowledge of disco-vertebral degeneration, and (iii) compare these clusters and degenerative pathways between samples. METHODS: We performed a secondary cross-sectional analysis on two dissimilar MRI samples collected in a hospital department: (1) data from...... pathways of degeneration. RESULTS: Six clusters of MRI findings were identified in each of the two samples. The content of the clusters in the two samples displayed some differences but had the same overall pattern of MRI findings. Although the hypothetical degenerative pathways identified in the two...... samples were not identical, the overall pattern of increasing degeneration within the pathways was the same. CONCLUSIONS: It was expected that different clusters could emerge from different samples, however, when organised into hypothetical pathways of degeneration, the overall pattern of increasing...

  12. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone, E-mail: simone.fulda@kgu.de [Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt (Germany)

    2011-08-29

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  13. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  14. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  15. An optimization model for metabolic pathways.

    Science.gov (United States)

    Planes, F J; Beasley, J E

    2009-10-15

    Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.

  16. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.

    Science.gov (United States)

    Yang, Chen; Gao, Xiang; Jiang, Yu; Sun, Bingbing; Gao, Fang; Yang, Sheng

    2016-09-01

    Isoprene, a key building block of synthetic rubber, is currently produced entirely from petrochemical sources. In this work, we engineered both the methylerythritol phosphate (MEP) pathway and the mevalonate (MVA) pathway for isoprene production in E. coli. The synergy between the MEP pathway and the MVA pathway was demonstrated by the production experiment, in which overexpression of both pathways improved the isoprene yield about 20-fold and 3-fold, respectively, compared to overexpression of the MEP pathway or the MVA pathway alone. The (13)C metabolic flux analysis revealed that simultaneous utilization of the two pathways resulted in a 4.8-fold increase in the MEP pathway flux and a 1.5-fold increase in the MVA pathway flux. The synergy of the dual pathway was further verified by quantifying intracellular flux responses of the MEP pathway and the MVA pathway to fosmidomycin treatment and mevalonate supplementation. Our results strongly suggest that coupling of the complementary reducing equivalent demand and ATP requirement plays an important role in the synergy of the dual pathway. Fed-batch cultivation of the engineered strain overexpressing the dual pathway resulted in production of 24.0g/L isoprene with a yield of 0.267g/g of glucose. The synergy of the MEP pathway and the MVA pathway also successfully increased the lycopene productivity in E. coli, which demonstrates that it can be used to improve the production of a broad range of terpenoids in microorganisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Identification of altered pathways in breast cancer based on individualized pathway aberrance score.

    Science.gov (United States)

    Shi, Sheng-Hong; Zhang, Wei; Jiang, Jing; Sun, Long

    2017-08-01

    The objective of the present study was to identify altered pathways in breast cancer based on the individualized pathway aberrance score (iPAS) method combined with the normal reference (nRef). There were 4 steps to identify altered pathways using the iPAS method: Data preprocessing conducted by the robust multi-array average (RMA) algorithm; gene-level statistics based on average Z ; pathway-level statistics according to iPAS; and a significance test dependent on 1 sample Wilcoxon test. The altered pathways were validated by calculating the changed percentage of each pathway in tumor samples and comparing them with pathways from differentially expressed genes (DEGs). A total of 688 altered pathways with Ppathways were involved in the total 688 altered pathways, which may validate the present results. In addition, there were 324 DEGs and 155 common genes between DEGs and pathway genes. DEGs and common genes were enriched in the same 9 significant terms, which also were members of altered pathways. The iPAS method was suitable for identifying altered pathways in breast cancer. Altered pathways (such as KIF and PLK mediated events) were important for understanding breast cancer mechanisms and for the future application of customized therapeutic decisions.

  18. Computing Pathways for Urban Decarbonization.

    Science.gov (United States)

    Cremades, R.; Sommer, P.

    2016-12-01

    Urban areas emit roughly three quarters of global carbon emissions. Cities are crucial elements for a decarbonized society. Urban expansion and related transportation needs lead to increased energy use, and to carbon-intensive lock-ins that create barriers for climate change mitigation globally. The authors present the Integrated Urban Complexity (IUC) model, based on self-organizing Cellular Automata (CA), and use it to produce a new kind of spatially explicit Transformation Pathways for Urban Decarbonization (TPUD). IUC is based on statistical evidence relating the energy needed for transportation with the spatial distribution of population, specifically IUC incorporates variables from complexity science related to urban form, like the slope of the rank-size rule or spatial entropy, which brings IUC a step beyond existing models. The CA starts its evolution with real-world urban land use and population distribution data from the Global Human Settlement Layer. Thus, the IUC model runs over existing urban settlements, transforming the spatial distribution of population so the energy consumption for transportation is minimized. The statistical evidence that governs the evolution of the CA departs from the database of the International Association of Public Transport. A selected case is presented using Stuttgart (Germany) as an example. The results show how IUC varies urban density in those places where it improves the performance of crucial parameters related to urban form, producing a TPUD that shows where the spatial distribution of population should be modified with a degree of detail of 250 meters of cell size. The TPUD shows how the urban complex system evolves over time to minimize energy consumption for transportation. The resulting dynamics or urban decarbonization show decreased energy per capita, although total energy increases for increasing population. The results provide innovative insights: by checking current urban planning against a TPUD, urban

  19. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  20. White matter alterations related to attention-deficit hyperactivity disorder and COMT val158met polymorphism: children with valine homozygote attention-deficit hyperactivity disorder have altered white matter connectivity in the right cingulum (cingulate gyrus

    Directory of Open Access Journals (Sweden)

    Kabukcu Basay B

    2016-04-01

    Full Text Available Burge Kabukcu Basay,1 Ahmet Buber,1 Omer Basay,1 Huseyin Alacam,2 Onder Ozturk,1 Serkan Suren,3 Ozlem Izci Ay,4 Cengizhan Acikel,5 Kadir Agladioglu,6 Mehmet Emin Erdal,4 Eyup Sabri Ercan,7 Hasan Herken21Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, 2Psychiatry Department, Pamukkale University Medical Faculty, Denizli, 3Medical Park Samsun Hospital, Samsun, 4Medical Biology and Genetics Department, Mersin University Medical Faculty, Mersin, 5Biostatistics Department, GATA (GMMA, Ankara, 6Radiology Department, Pamukkale University Medical Faculty, Denizli, 7Child and Adolescent Psychiatry Department, Ege University Medical Faculty, Izmir, TurkeyIntroduction: In this article, the COMT gene val158met polymorphism and attention-deficit hyperactivity disorder (ADHD-related differences in diffusion-tensor-imaging-measured white matter (WM structure in children with ADHD and controls were investigated.Patients and methods: A total of 71 children diagnosed with ADHD and 24 controls aged 8–15 years were recruited. Using diffusion tensor imaging, COMT polymorphism and ADHD-related WM alterations were investigated, and any interaction effect between the COMT polymorphism and ADHD was also examined. The effects of age, sex, and estimated total IQ were controlled by multivariate analysis of covariance (MANCOVA.Results: First, an interaction between the COMT val158met polymorphism and ADHD in the right (R cingulum (cingulate gyrus (CGC was found. According to this, valine (val homozygote ADHD-diagnosed children had significantly lower fractional anisotropy (FA and higher radial diffusivity (RD in the R-CGC than ADHD-diagnosed methionine (met carriers, and val homozygote controls had higher FA and lower RD in the R-CGC than val homozygote ADHD patients. Second, met carriers had higher FA and axial diffusivity in the left (L-uncinate fasciculus and lower RD in the L-posterior corona radiata and L

  1. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  2. Machine learning methods for metabolic pathway prediction

    Science.gov (United States)

    2010-01-01

    Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations. PMID:20064214

  3. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José

    2012-04-01

    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  4. Isolating the Norepinephrine Pathway Comparing Lithium in Bipolar Patients to SSRIs in Depressive Patients

    Directory of Open Access Journals (Sweden)

    Andy R. Eugene

    2015-07-01

    Full Text Available Introduction: The purpose of this investigatory neuroimaging analysis was done to better understand the pharmacodynamics of Lithium by isolating the norepinephrine pathway in the brain. To accomplish this, we compared patients with Bipolar Disorder treated with Lithium to patients diagnosed with Major Depression or Depressive Disorder who are treated with Selective Serotonin Reuptake Inhibitors (SSRIs.Methodology: We used Standardized Low Resolution Brain Electrotomography to calculate the whole brain, voxel-by-voxel, unpaired t-tests Statistical non-Parametric Maps. For our first electrophysiological neuroimaging investigation, we compared 46 patients (average age = 34 ± 16.5 diagnosed with Bipolar Affective Disorder to three patient groups all diagnosed with Major Depression or Depressive Episode. The first is with 48 patients diagnosed with Major Depression or Depressive Episode (average age = 49 ± 12.9, the second to 16 male depressive patients (average age = 45 ± 15.1, and the final comparison to 32 depressive females (average age = 50 ± 11.7.Results: The results of sLORETA three-dimensional statistical non-parametric maps illustrated that Lithium influenced an increase in neurotransmission in the right Superior TemporalGyrus (t=1.403, p=0.00780, Fusiform Gyrus (t=1.26, and Parahippocampal Gyrus (t=1.29.Moreover, an increased in neuronal function was found was also identified at the Cingulate Gyrus(t=1.06, p=0.01200.Conclusion: We are proposing a translational clinical biological marker for patients diagnosed with Bipolar Disorder to guide physicians during the course of Lithium therapy and have identified neuroanatomical structures influenced by norepinephrine.

  5. Decoding resistant hypertension signalling pathways.

    Science.gov (United States)

    Parreira, Ricardo Cambraia; Lacerda, Leandro Heleno Guimarães; Vasconcellos, Rebecca; Lima, Swiany Silveira; Santos, Anderson Kenedy; Fontana, Vanessa; Sandrim, Valéria Cristina; Resende, Rodrigo Ribeiro

    2017-12-01

    Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Autophagic pathways and metabolic stress.

    Science.gov (United States)

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  7. Metabolic pathways for the whole community.

    Science.gov (United States)

    Hanson, Niels W; Konwar, Kishori M; Hawley, Alyse K; Altman, Tomer; Karp, Peter D; Hallam, Steven J

    2014-07-22

    A convergence of high-throughput sequencing and computational power is transforming biology into information science. Despite these technological advances, converting bits and bytes of sequence information into meaningful insights remains a challenging enterprise. Biological systems operate on multiple hierarchical levels from genomes to biomes. Holistic understanding of biological systems requires agile software tools that permit comparative analyses across multiple information levels (DNA, RNA, protein, and metabolites) to identify emergent properties, diagnose system states, or predict responses to environmental change. Here we adopt the MetaPathways annotation and analysis pipeline and Pathway Tools to construct environmental pathway/genome databases (ePGDBs) that describe microbial community metabolism using MetaCyc, a highly curated database of metabolic pathways and components covering all domains of life. We evaluate Pathway Tools' performance on three datasets with different complexity and coding potential, including simulated metagenomes, a symbiotic system, and the Hawaii Ocean Time-series. We define accuracy and sensitivity relationships between read length, coverage and pathway recovery and evaluate the impact of taxonomic pruning on ePGDB construction and interpretation. Resulting ePGDBs provide interactive metabolic maps, predict emergent metabolic pathways associated with biosynthesis and energy production and differentiate between genomic potential and phenotypic expression across defined environmental gradients. This multi-tiered analysis provides the user community with specific operating guidelines, performance metrics and prediction hazards for more reliable ePGDB construction and interpretation. Moreover, it demonstrates the power of Pathway Tools in predicting metabolic interactions in natural and engineered ecosystems.

  8. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...

  9. Pathways to Success for Michigan's Opportunity Youth

    Science.gov (United States)

    American Youth Policy Forum, 2015

    2015-01-01

    Each young person must navigate his/her own pathway into and through postsecondary education and the workforce to long-term success personalized to his/her own unique needs and desires. The pathway to long-term success is often articulated as a straight road through K-12 education into postsecondary education (either academic or technical…

  10. Implementing Guided Pathways: Tips and Tools

    Science.gov (United States)

    Bailey, Thomas; Jaggars, Shanna Smith; Jenkins, Davis

    2015-01-01

    A growing number of community colleges and four-year universities are seeking to improve student outcomes by redesigning academic programs and student support services following the guided pathways approach. These institutions are mapping out highly structured, educationally coherent program pathways for students to follow by starting with the end…

  11. The evolution of plant virus transmission pathways

    Science.gov (United States)

    Frédéric M. Hamelin; Linda J.S. Allen; Holly R. Prendeville; M. Reza Hajimorad; Michael J. Jeger

    2016-01-01

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, oravector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which...

  12. Women's Work Pathways Across the Life Course.

    Science.gov (United States)

    Damaske, Sarah; Frech, Adrianne

    2016-04-01

    Despite numerous changes in women's employment in the latter half of the twentieth century, women's employment continues to be uneven and stalled. Drawing from data on women's weekly work hours in the National Longitudinal Survey of Youth (NLSY79), we identify significant inequality in women's labor force experiences across adulthood. We find two pathways of stable full-time work for women, three pathways of part-time employment, and a pathway of unpaid labor. A majority of women follow one of the two full-time work pathways, while fewer than 10% follow a pathway of unpaid labor. Our findings provide evidence of the lasting influence of work-family conflict and early socioeconomic advantages and disadvantages on women's work pathways. Indeed, race, poverty, educational attainment, and early family characteristics significantly shaped women's work careers. Work-family opportunities and constraints also were related to women's work hours, as were a woman's gendered beliefs and expectations. We conclude that women's employment pathways are a product of both their resources and changing social environment as well as individual agency. Significantly, we point to social stratification, gender ideologies, and work-family constraints, all working in concert, as key explanations for how women are "tracked" onto work pathways from an early age.

  13. Investigating multiple dysregulated pathways in rheumatoid arthritis ...

    Indian Academy of Sciences (India)

    Xian-Dong Song

    2018-03-09

    Mar 9, 2018 ... 5Department of Kidney Internal Medicine, Hongqi Hospital of ... on the gene expression profile, pathway data, and PPI information. ... controls. These 10 dysregulated pathways might be potential ... a significant burden on the healthcare systems (Yamada ... The risk of adverse effects and expensive treat-.

  14. Investigating dysregulated pathways in cardiomyopathy from ...

    Indian Academy of Sciences (India)

    牛牛

    5 Department of Kidney Internal Medicine, Hongqi Hospital of Mudanjiang ... based on gene expression profile, pathway data, and PPI information. ... control samples was observed in the pathway of epigenetic regulation of gene ... significant burden on the health care systems (Yamada et al., 2016). ..... 2015 The effects.

  15. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  16. DMPD: Parallel pathways of virus recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16713969 Parallel pathways of virus recognition. Tenoever BR, Maniatis T. Immunity.... 2006 May;24(5):510-2. (.png) (.svg) (.html) (.csml) Show Parallel pathways of virus recognition. PubmedID 1...6713969 Title Parallel pathways of virus recognition. Authors Tenoever BR, Maniatis T. Publication Immunity.

  17. DMPD: All is not Toll: new pathways in DNA recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16446382 All is not Toll: new pathways in DNA recognition. Wagner H, Bauer S. J Exp... Med. 2006 Feb 20;203(2):265-8. Epub 2006 Jan 30. (.png) (.svg) (.html) (.csml) Show All is not Toll: new pathways in DNA recognition.... PubmedID 16446382 Title All is not Toll: new pathways in DNA recognition. Authors

  18. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    Science.gov (United States)

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal inte...gration between IFNgamma and TLR signalling pathways in

  20. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  1. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway.

    Science.gov (United States)

    Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei

    2017-08-16

    Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks tha...

  3. Modularized Smad-regulated TGFβ signaling pathway.

    Science.gov (United States)

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  4. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  5. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  6. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research.

    Science.gov (United States)

    Slenter, Denise N; Kutmon, Martina; Hanspers, Kristina; Riutta, Anders; Windsor, Jacob; Nunes, Nuno; Mélius, Jonathan; Cirillo, Elisa; Coort, Susan L; Digles, Daniela; Ehrhart, Friederike; Giesbertz, Pieter; Kalafati, Marianthi; Martens, Marvin; Miller, Ryan; Nishida, Kozo; Rieswijk, Linda; Waagmeester, Andra; Eijssen, Lars M T; Evelo, Chris T; Pico, Alexander R; Willighagen, Egon L

    2018-01-04

    WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Wound care clinical pathway: a conceptual model.

    Science.gov (United States)

    Barr, J E; Cuzzell, J

    1996-08-01

    A clinical pathway is a written sequence of clinical processes or events that guides a patient with a defined problem toward an expected outcome. Clinical pathways are tools to assist with the cost-effective management of clinical outcomes related to specific problems or disease processes. The primary obstacles to developing clinical pathways for wound care are the chronic natures of some wounds and the many variables that can delay healing. The pathway introduced in this article was modeled upon the three phases of tissue repair: inflammatory, proliferative, and maturation. This physiology-based model allows clinicians to identify and monitor outcomes based on observable and measurable clinical parameters. The pathway design, which also includes educational and behavioral outcomes, allows the clinician to individualize the expected timeframe for outcome achievement based on individual patient criteria and expert judgement. Integral to the pathway are the "4P's" which help standardize the clinical processes by wound type: Protocols, Policies, Procedures, and Patient education tools. Four categories into which variances are categorized based on the cause of the deviation from the norm are patient, process/system, practitioner, and planning/discharge. Additional research is warranted to support the value of this clinical pathway in the clinical arena.

  8. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways.

    Science.gov (United States)

    Gu, Xiang; Liu, Cong-Jian; Wei, Jian-Jie

    2017-11-13

    Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  9. Role of care pathways in interprofessional teamwork.

    Science.gov (United States)

    Scaria, Minimol Kulakkottu

    2016-08-24

    Cohesive interprofessional teamwork is essential to successful healthcare services. Interprofessional teamwork is the means by which different healthcare professionals - with diverse knowledge, skills and talents - collaborate to achieve a common goal. Several interventions are available to improve teamwork in the healthcare setting. This article explores the role of care pathways in improving interprofessional teamwork. Care pathways enhance teamwork by promoting coordination, collaboration, communication and decision making to achieve optimal healthcare outcomes. They result in improved staff knowledge, communication, documentation and interprofessional relations. Care pathways also contribute to patient-centred care and increase patient satisfaction.

  10. the Pathways to Resilience Project Advisory Panel

    African Journals Online (AJOL)

    the South African Pathways to Resilience Project, between 2008 and the present, in order to ... vice versa, and divergent objectives (e.g. building community infrastructure versus ... inadequate time and resources and associated risks. A review ...

  11. The creative pathways of everyday life

    DEFF Research Database (Denmark)

    Tanggaard, Lene

    2015-01-01

    interested in the simultaneous development of persons and social practices. Pathways are created in ordinary life; their formation may involve creativity and the improvisational co-creation of opportunities for action. Studying pathways may therefore direct creativity researchers toward the potentials...... in the mundane processes of everyday life is, however, seldom highlighted by researchers working explicitly on creativity. The premise of the present paper is that a focus on everyday life can help us understand creative processes in broader terms. I “creative pathways” may serve as a useful term for researchers...... of creativity in daily life and shed light of the processes of creativity. Creative pathways are present in existing ways of moving and doing things; they are also created in the here-and-now by persons acting in correspondence with the affordances in social practices. A focus on creative pathways is consistent...

  12. Modularized TGFbeta-Smad Signaling Pathway

    Science.gov (United States)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  13. Imaging the Visual Pathway in Neuromyelitis Optica

    Directory of Open Access Journals (Sweden)

    Caspar F. Pfueller

    2011-01-01

    Full Text Available The focus of this paper is to summarize the current knowledge on visual pathway damage in neuromyelitis optica (NMO assessed by magnetic resonance imaging (MRI and optical coherence tomography (OCT.

  14. Examination of tetrahydrobiopterin pathway genes in autism.

    Science.gov (United States)

    Schnetz-Boutaud, N C; Anderson, B M; Brown, K D; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2009-11-01

    Autism is a complex disorder with a high degree of heritability and significant phenotypic and genotypic heterogeneity. Although candidate gene studies and genome-wide screens have failed to identify major causal loci associated with autism, numerous studies have proposed association with several variations in genes in the dopaminergic and serotonergic pathways. Because tetrahydrobiopterin (BH4) is the essential cofactor in the synthesis of these two neurotransmitters, we genotyped 25 SNPs in nine genes of the BH4 pathway in a total of 403 families. Significant nominal association was detected in the gene for 6-pyruvoyl-tetrahydropterin synthase, PTS (chromosome 11), with P = 0.009; this result was not restricted to an affected male-only subset. Multilocus interaction was detected in the BH4 pathway alone, but not across the serotonin, dopamine and BH4 pathways.

  15. The Hippo Pathway: Immunity and Cancer.

    Science.gov (United States)

    Taha, Zaid; J Janse van Rensburg, Helena; Yang, Xiaolong

    2018-03-28

    Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.

  16. Imaging the Visual Pathway in Neuromyelitis Optica

    OpenAIRE

    Pfueller, Caspar F.; Paul, Friedemann

    2011-01-01

    The focus of this paper is to summarize the current knowledge on visual pathway damage in neuromyelitis optica (NMO) assessed by magnetic resonance imaging (MRI) and optical coherence tomography (OCT).

  17. Deciphering chemotaxis pathways using cross species comparisons

    Directory of Open Access Journals (Sweden)

    Armitage Judith P

    2010-01-01

    Full Text Available Abstract Background Chemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions. Escherichia coli utilises a single sensory pathway, but little is known about signalling pathways in species with more complex systems. Results To investigate whether chemotaxis pathways in other bacteria follow the E. coli paradigm, we analysed 206 species encoding at least 1 homologue of each of the 5 core chemotaxis proteins (CheA, CheB, CheR, CheW and CheY. 61 species encode more than one of all of these 5 proteins, suggesting they have multiple chemotaxis pathways. Operon information is not available for most bacteria, so we developed a novel statistical approach to cluster che genes into putative operons. Using operon-based models, we reconstructed putative chemotaxis pathways for all 206 species. We show that cheA-cheW and cheR-cheB have strong preferences to occur in the same operon as two-gene blocks, which may reflect a functional requirement for co-transcription. However, other che genes, most notably cheY, are more dispersed on the genome. Comparison of our operons with shuffled equivalents demonstrates that specific patterns of genomic location may be a determining factor for the observed in vivo chemotaxis pathways. We then examined the chemotaxis pathways of Rhodobacter sphaeroides. Here, the PpfA protein is known to be critical for correct partitioning of proteins in the cytoplasmically-localised pathway. We found ppfA in che operons of many species, suggesting that partitioning of cytoplasmic Che protein clusters is common. We also examined the apparently non-typical chemotaxis components, CheA3, CheA4 and CheY6. We found that though variants of CheA proteins are rare, the CheY6 variant may be a common type of CheY, with a significantly disordered C-terminal region which may be functionally significant. Conclusions We find that many bacterial species potentially have multiple

  18. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  19. Salicylic acid-independent plant defence pathways

    OpenAIRE

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicy...

  20. A More Flexible Lipoprotein Sorting Pathway

    Science.gov (United States)

    Chahales, Peter

    2015-01-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  1. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  2. A strategy for evaluating pathway analysis methods.

    Science.gov (United States)

    Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques

    2017-10-13

    Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth

  3. Genes and (Common) Pathways Underlying Drug Addiction

    Science.gov (United States)

    Li, Chuan-Yun; Mao, Xizeng; Wei, Liping

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280

  4. The methionine salvage pathway in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danchin Antoine

    2002-04-01

    Full Text Available Abstract Background Polyamine synthesis produces methylthioadenosine, which has to be disposed of. The cell recycles it into methionine through methylthioribose (MTR. Very little was known about MTR recycling for methionine salvage in Bacillus subtilis. Results Using in silico genome analysis and transposon mutagenesis in B. subtilis we have experimentally uncovered the major steps of the dioxygen-dependent methionine salvage pathway, which, although similar to that found in Klebsiella pneumoniae, recruited for its implementation some entirely different proteins. The promoters of the genes have been identified by primer extension, and gene expression was analyzed by Northern blotting and lacZ reporter gene expression. Among the most remarkable discoveries in this pathway is the role of an analog of ribulose diphosphate carboxylase (Rubisco, the plant enzyme used in the Calvin cycle which recovers carbon dioxide from the atmosphere as a major step in MTR recycling. Conclusions A complete methionine salvage pathway exists in B. subtilis. This pathway is chemically similar to that in K. pneumoniae, but recruited different proteins to this purpose. In particular, a paralogue or Rubisco, MtnW, is used at one of the steps in the pathway. A major observation is that in the absence of MtnW, MTR becomes extremely toxic to the cell, opening an unexpected target for new antimicrobial drugs. In addition to methionine salvage, this pathway protects B. subtilis against dioxygen produced by its natural biotope, the surface of leaves (phylloplane.

  5. Quantitative trait loci and metabolic pathways

    Science.gov (United States)

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  6. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  7. Non-Smad pathways in TGF-β signaling

    OpenAIRE

    Zhang, Ying E

    2009-01-01

    Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focu...

  8. Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis.

    Science.gov (United States)

    Dong, Zheng; Zhou, Jingru; Xu, Xia; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Zhang, Juan; Yuan, Ziyu; Yang, Yajun; Wang, Xiaofeng; Pang, Yafei; Jin, Li; Zou, Hejian; Wang, Jiucun

    2018-03-01

    The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with P FDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (P FDR  = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (P FDR  = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, P FDR  = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.

  9. Neural pathways for visual speech perception

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-12-01

    Full Text Available This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1 The visual perception of speech relies on visual pathway representations of speech qua speech. (2 A proposed site of these representations, the temporal visual speech area (TVSA has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS. (3 Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  10. Bacterial variations on the methionine salvage pathway

    Directory of Open Access Journals (Sweden)

    Haas Dieter

    2004-03-01

    Full Text Available Abstract Background The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism. Results This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa. Experiments performed with mutants of B. subtilis and Pseudomonas aeruginosa substantiate the hypotheses proposed. The enzymes that catalyze the reactions are recruited from a variety of origins. The first, ubiquitous, enzyme of the pathway, MtnA (methylthioribose-1-phosphate isomerase, belongs to a family of proteins related to eukaryotic intiation factor 2B alpha. mtnB codes for a methylthioribulose-1-phosphate dehydratase. Two reactions follow, that of an enolase and that of a phosphatase. While in B. subtilis this is performed by two distinct polypeptides, in the other organisms analyzed here an enolase-phosphatase yields 1,2-dihydroxy-3-keto-5-methylthiopentene. In the presence of dioxygen an aci-reductone dioxygenase yields the immediate precursor of methionine, ketomethylthiobutyrate. Under some conditions this enzyme produces carbon monoxide in B. subtilis, suggesting a route for a new gaseous mediator in bacteria. Ketomethylthiobutyrate is finally transaminated by an aminotransferase that exists usually as a broad specificity enzyme (often able to transaminate aromatic aminoacid keto-acid precursors or histidinol-phosphate. Conclusion A functional methionine salvage pathway was experimentally demonstrated, for the first time, in P. aeruginosa. Apparently, methionine salvage pathways are frequent in Bacteria (and in Eukarya, with recruitment of different polypeptides to perform the needed reactions (an ancestor of a translation initiation factor and Ru

  11. Signaling Pathways in Cardiac Myocyte Apoptosis

    Science.gov (United States)

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  12. Allorecognition pathways in transplant rejection and tolerance.

    Science.gov (United States)

    Ali, Jason M; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J

    2013-10-27

    With the advent of cellular therapies, it has become clear that the success of future therapies in prolonging allograft survival will require an intimate understanding of the allorecognition pathways and effector mechanisms that are responsible for chronic rejection and late graft loss.Here, we consider current understanding of T-cell allorecognition pathways and discuss the most likely mechanisms by which these pathways collaborate with other effector mechanisms to cause allograft rejection. We also consider how this knowledge may inform development of future strategies to prevent allograft rejection.Although both direct and indirect pathway CD4 T cells appear active immediately after transplantation, it has emerged that indirect pathway CD4 T cells are likely to be the dominant alloreactive T-cell population late after transplantation. Their ability to provide help for generating long-lived alloantibody is likely one of the main mechanisms responsible for the progression of allograft vasculopathy and chronic rejection.Recent work has suggested that regulatory T cells may be an effective cellular therapy in transplantation. Given the above, adoptive therapy with CD4 regulatory T cells with indirect allospecificity is a rational first choice in attempting to attenuate the development and progression of chronic rejection; those with additional properties that enable inhibition of germinal center alloantibody responses hold particular appeal.

  13. Infectious Entry Pathway of Enterovirus B Species

    Directory of Open Access Journals (Sweden)

    Varpu Marjomäki

    2015-12-01

    Full Text Available Enterovirus B species (EV-B are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1, actin, Na/H exchanger, phospholipace C (PLC and protein kinase Cα (PKCα. Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1 and coxsackievirus A9 (CVA9. These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication.

  14. Environmental pathways of radioactivity to man

    International Nuclear Information System (INIS)

    Johns, T.F.

    1983-01-01

    An attempt has been made to discuss environmental pathways and their significance in a way which will be understood by non-specialists. The role of these pathways in the general structure of radiological protection is explained and the more important pathways to man from releases into the air and the aquatic environment are discussed generally. The various mechanisms which lead to the dispersion or reconstruction of radioactive materials are discussed and their importance stressed. The more important pathways for particular groups of radionuclides from the nuclear power industry are dealt with in detail and information resulting from many theoretical and practical studies of the situations at particular locations summarized. There is detailed discussion about the doses to local population groups and about worldwide doses as a result of the release of certain long-lived radioactive species. The corresponding pathways and resulting doses from natural radiation are detailed to illustrate that the doses from the nuclear power industry are small in comparison, and brief consideration is given to animal and plant doses from the industry. (U.K.)

  15. Altered Leukocyte Sphingolipid Pathway in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Larissa P. Maia

    2017-11-01

    Full Text Available Sphingolipid metabolism pathway is essential in membrane homeostasis, and its dysfunction has been associated with favorable tumor microenvironment, disease progression, and chemotherapy resistance. Its major components have key functions on survival and proliferation, with opposing effects. We have profiled the components of the sphingolipid pathway on leukocytes of breast cancer (BC patients undergoing chemotherapy treatment and without, including the five sphingosine 1-phosphate (S1P receptors, the major functional genes, and cytokines, in order to better understand the S1P signaling in the immune cells of these patients. To the best of our knowledge, this is the first characterization of the sphingolipid pathway in whole blood of BC patients. Skewed gene profiles favoring high SPHK1 expression toward S1P production during BC development was observed, which was reversed by chemotherapy treatment, and reached similar levels to those found in healthy donors. Such levels were also correlated with high levels of TNF-α. Our data revealed an important role of the sphingolipid pathway in immune cells in BC with skewed signaling of S1P receptors, which favored cancer development even under chemotherapy, and may probably be a trigger of cancer resistance. Thus, these molecules must be considered as a target pathway for combined BC therapeutics.

  16. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  17. Pathways Post-Participation Outcomes: Preliminary Findings. Carnegie Math Pathways Research Brief

    Science.gov (United States)

    Norman, Jon

    2017-01-01

    The Carnegie Foundation for the Advancement of Teaching's Math Pathways seek to improve outcomes for community college students who take remedial math courses. The Pathways include two comprehensive instructional systems--Statway® and Quantaway® and are described in this report. They are designed to support students to achieve the necessary math…

  18. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  19. Pathways to deep decarbonization - 2015 report

    International Nuclear Information System (INIS)

    Ribera, Teresa; Colombier, Michel; Waisman, Henri; Bataille, Chris; Pierfederici, Roberta; Sachs, Jeffrey; Schmidt-Traub, Guido; Williams, Jim; Segafredo, Laura; Hamburg Coplan, Jill; Pharabod, Ivan; Oury, Christian

    2015-12-01

    In September 2015, the Deep Decarbonization Pathways Project published the Executive Summary of the Pathways to Deep Decarbonization: 2015 Synthesis Report. The full 2015 Synthesis Report was launched in Paris on December 3, 2015, at a technical workshop with the Mitigation Action Plans and Scenarios (MAPS) program. The Deep Decarbonization Pathways Project (DDPP) is a collaborative initiative to understand and show how individual countries can transition to a low-carbon economy and how the world can meet the internationally agreed target of limiting the increase in global mean surface temperature to less than 2 degrees Celsius (deg. C). Achieving the 2 deg. C limit will require that global net emissions of greenhouse gases (GHG) approach zero by the second half of the century. In turn, this will require a profound transformation of energy systems by mid-century through steep declines in carbon intensity in all sectors of the economy, a transition we call 'deep decarbonization'

  20. Modelling and Decision Support of Clinical Pathways

    Science.gov (United States)

    Gabriel, Roland; Lux, Thomas

    The German health care market is under a rapid rate of change, forcing especially hospitals to provide high-quality services at low costs. Appropriate measures for more effective and efficient service provision are process orientation and decision support by information technology of clinical pathway of a patient. The essential requirements are adequate modelling of clinical pathways as well as usage of adequate systems, which are capable of assisting the complete path of a patient within a hospital, and preferably also outside of it, in a digital way. To fulfil these specifications the authors present a suitable concept, which meets the challenges of well-structured clinical pathways as well as rather poorly structured diagnostic and therapeutic decisions, by interplay of process-oriented and knowledge-based hospital information systems.

  1. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  2. Storylines and Pathways for Adaptation in Europe,

    DEFF Research Database (Denmark)

    Hilden, Mikael; Jeuken, Ad; Zandersen, Marianne

    2018-01-01

    as a central concept that helps to understand the range of available actions and the sequence of actions that can be taken under different scenarios of climate change and societal development. The chapter stresses the need to broadly understand the factors that affect adaptation challenges and that determine......This chapter focuses on how one can place climate change and adaptation actions in a wider context of societal change. It examines ways of conceptualizing the societal context for adaptation actions and illustrates how it plays out in different regions and substance areas in Europe and how...... this information can be used in reflecting on possibilities for adaptation at different levels. It places adaptation to climate change in the frame of Representative Concentration Pathways and Shared Socioeconomic Pathways, taking into account regional differences within Europe. The adaptation pathways are used...

  3. Pathways to deep decarbonization - Interim 2014 Report

    International Nuclear Information System (INIS)

    2014-01-01

    The interim 2014 report by the Deep Decarbonization Pathways Project (DDPP), coordinated and published by IDDRI and the Sustainable Development Solutions Network (SDSN), presents preliminary findings of the pathways developed by the DDPP Country Research Teams with the objective of achieving emission reductions consistent with limiting global warming to less than 2 deg. C. The DDPP is a knowledge network comprising 15 Country Research Teams and several Partner Organizations who develop and share methods, assumptions, and findings related to deep decarbonization. Each DDPP Country Research Team has developed an illustrative road-map for the transition to a low-carbon economy, with the intent of taking into account national socio-economic conditions, development aspirations, infrastructure stocks, resource endowments, and other relevant factors. The interim 2014 report focuses on technically feasible pathways to deep decarbonization

  4. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  5. Understanding trade pathways to target biosecurity surveillance

    Directory of Open Access Journals (Sweden)

    Manuel Colunga-Garcia

    2013-09-01

    Full Text Available Increasing trends in global trade make it extremely difficult to prevent the entry of all potential invasive species (IS. Establishing early detection strategies thus becomes an important part of the continuum used to reduce the introduction of invasive species. One part necessary to ensure the success of these strategies is the determination of priority survey areas based on invasion pressure. We used a pathway-centred conceptual model of pest invasion to address these questions: what role does global trade play in invasion pressure of plant ecosystems and how could an understanding of this role be used to enhance early detection strategies? We concluded that the relative level of invasion pressure for destination ecosystems can be influenced by the intensity of pathway usage (import volume and frequency, the number and type of pathways with a similar destination, and the number of different ecological regions that serve as the source for imports to the same destination. As these factors increase, pressure typically intensifies because of increasing a propagule pressure, b likelihood of transporting pests with higher intrinsic invasion potential, and c likelihood of transporting pests into ecosystems with higher invasibility. We used maritime containerized imports of live plants into the contiguous U.S. as a case study to illustrate the practical implications of the model to determine hotspot areas of relative invasion pressure for agricultural and forest ecosystems (two ecosystems with high potential invasibility. Our results illustrated the importance of how a pathway-centred model could be used to highlight potential target areas for early detection strategies for IS. Many of the hotspots in agricultural and forest ecosystems were within major U.S. metropolitan areas. Invasion ecologists can utilize pathway-centred conceptual models to a better understand the role of human-mediated pathways in pest establishment, b enhance current

  6. Hedgehog signaling pathway in neuroblastoma differentiation.

    Science.gov (United States)

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer

    NARCIS (Netherlands)

    Wils, Leon J.; Bijlsma, Maarten F.

    2018-01-01

    The Hedgehog (Hh) and wingless-Int1 (Wnt) pathways are important for tissue patterning in the developing embryo. In adult tissue, both pathways are typically dormant but are activated under certain conditions such as tissue damage. Aberrant activation of these pathways by mutations in key pathway

  8. KeyPathwayMiner 4.0

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; Pauling, Josch; Batra, Richa

    2014-01-01

    release of KeyPathwayMiner (version 4.0) that is not limited to analyses of single omics data sets, e.g. gene expression, but is able to directly combine several different omics data types. Version 4.0 can further integrate existing knowledge by adding a search bias towards sub-networks that contain...... (avoid) genes provided in a positive (negative) list. Finally the new release now also provides a set of novel visualization features and has been implemented as an app for the standard bioinformatics network analysis tool: Cytoscape. CONCLUSION: With KeyPathwayMiner 4.0, we publish a Cytoscape app...

  9. Can we safely target the WNT pathway?

    Science.gov (United States)

    Kahn, Michael

    2015-01-01

    WNT–β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore associated with a variety of diseases, including cancer, fibrosis and neurodegeneration. Despite this knowledge, therapeutic agents specifically targeting the WNT pathway have only recently entered clinical trials and none has yet been approved. This Review examines the problems and potential solutions to this vexing situation and attempts to bring them into perspective. PMID:24981364

  10. Simplified analysis for liquid pathway studies

    International Nuclear Information System (INIS)

    Codell, R.B.

    1984-08-01

    The analysis of the potential contamination of surface water via groundwater contamination from severe nuclear accidents is routinely calculated during licensing reviews. This analysis is facilitated by the methods described in this report, which is codified into a BASIC language computer program, SCREENLP. This program performs simplified calculations for groundwater and surface water transport and calculates population doses to potential users for the contaminated water irrespective of possible mitigation methods. The results are then compared to similar analyses performed using data for the generic sites in NUREG-0440, Liquid Pathway Generic Study, to determine if the site being investigated would pose any unusual liquid pathway hazards

  11. A more flexible lipoprotein sorting pathway.

    Science.gov (United States)

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Career Pathways: Education with a Purpose

    Science.gov (United States)

    Hull, Dan M.

    2004-01-01

    Hot off the press comes the guide to the next generation of education reform. Dan Hull and some of the nation's leading practitioners and educational leaders show how to remake high schools to improve academic outcomes, prepare students for today's high-skills workplace, and motivate them to learn because they see a pathway to their future.…

  13. Seychelles Fisheries Connectivity and Transport Pathways

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Seychelles Fisheries Connectivity and Transport Pathways...overarching goal for the proposed work is to develop predictive capabilities for physical oceanography for the Seychelles region in support of locally...for ocean observations in the Seychelles region that will lead to long-term data collection efforts. In collaboration with local partnerships, we

  14. Final report on the Pathway Analysis Task

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University's Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere

  15. Pathway analysis: State of the art

    Directory of Open Access Journals (Sweden)

    Miguel Angel eGarcía-Campos

    2015-12-01

    Full Text Available Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis foundations and overall background may not be fully understood, leading to misinterpretation of analysis results. This review attempts to comprise the fundamental knowledge to take into consideration when using pathway analysis as a hypothesis generation tool. We discuss the key elements that are part of these methodologies, their capabilities and current deficiencies. We also present an overview of current and all-time popular methods, highlighting different classes across them. In doing so, we show the exploding diversity of methods that pathway analysis encompasses, point out commonly overlooked caveats, and direct attention to a potential new class of methods that attempt to zoom the analysis scope to the sample scale.

  16. Career Technical Education Pathways Initiative Annual Report

    Science.gov (United States)

    California Community Colleges, Chancellor's Office, 2014

    2014-01-01

    California's education system--the largest in the United States--is an essential resource for ensuring strong economic growth in the state. The Career Technical Education Pathways Initiative (the Initiative) became law in 2005 with Senate Bills 70 and 1133 and provided more than $380 million over eight years to improve career technical education…

  17. Identifying pathways of teachers’ PCK development

    NARCIS (Netherlands)

    Wongsopawiro, Dirk S.; Zwart, Rosanne C.; van Driel, Jan H.

    2017-01-01

    This paper describes a method of analysing teacher growth in the context of science education. It focuses on the identification of pathways in the development of secondary school teachers’ pedagogical content knowledge (PCK) by the use of the interconnected model of teachers’ professional growth

  18. MDRC Research on Career Pathways. Issue Brief

    Science.gov (United States)

    Kazis, Richard

    2016-01-01

    As postsecondary credentials have become increasingly important to accessing higher-quality employment, a growing number of education and workforce programs are implementing "career pathways" approaches to help both youth and adults prepare for further education and better jobs. In recent years, the Manpower Demonstration Research…

  19. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  20. Pathway of propionate formation in Desulfobulbus propionicus

    NARCIS (Netherlands)

    Stams, A.J.M.; Kremer, D.R.; Nicolaij, K.; Weenk, G.; Hansen, T.A.

    1984-01-01

    Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high

  1. Alternative Pathways to Apprenticeships. Good Practice Guide

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    Apprenticeships are changing. The increasing proportions of people entering apprenticeships at various levels of ability and backgrounds are stimulating demand for alternative pathways to completions. This good practice guide assembles the key findings for education practitioners and workplace supervisors from three related research reports on…

  2. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  3. Cleanup standards and pathways analysis methods

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1993-01-01

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. Release of a decontaminated site requires proof that the radiological data obtained from the site meet the regulatory criteria for such a release. Typically release criteria consist of a composite of acceptance limits that depend on the radionuclides, the media in which they are present, and federal and local regulations. In recent years, the US Department of Energy (DOE) has developed a pathways analysis model to determine site-specific soil activity concentration guidelines for radionuclides that do not have established generic acceptance limits. The DOE pathways analysis computer code (developed by Argonne National Laboratory for the DOE) is called RESRAD (Gilbert et al. 1989). Similar efforts have been initiated by the US Nuclear Regulatory Commission (NRC) to develop and use dose-related criteria based on genetic pathways analyses rather than simplistic numerical limits on residual radioactivity. The focus of this paper is radionuclide contaminated soil. Cleanup standards are reviewed, pathways analysis methods are described, and an example is presented in which RESRAD was used to derive cleanup guidelines

  4. .Network analytics for adverse outcome pathways

    Science.gov (United States)

    Adverse Outcome Pathways (AOPs) organize toxicological knowledge from the molecular level up to the population level, providing evidence-based causal linkages at each step. The AOPWiki serves as a repository of AOPs. With the international adoption of the AOP framework, the AOPw...

  5. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  6. Overlapping riboflavin supply pathways in bacteria.

    Science.gov (United States)

    García-Angulo, Víctor Antonio

    2017-03-01

    Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.

  7. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  8. Pappas and Tepe's Pathways to Knowledge Model.

    Science.gov (United States)

    Zimmerman, Nancy P.; Pappas, Marjorie L.; Tepe, Ann E.

    2002-01-01

    Describes the Pathways to Knowledge model for helping students achieve information literacy in library media programs. Discusses the searcher's thinking, information search or seeking, and instructional strategies; information skills; the six stages in the model, including appreciation, presearch, search, interpretation, communication, and…

  9. Final report on the Pathway Analysis Task

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, F.W.; Kirchner, T.B. [Colorado State Univ., Fort Collins, CO (United States)

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  10. Exploring genes and pathways involved in migraine

    NARCIS (Netherlands)

    Eising, E.

    2017-01-01

    The research in this thesis was aimed at identifying genes and molecular pathways involved in migraine. To this end, two gene expression analyses were performed in brain tissue obtained from transgenic mouse models for familial hemiplegic migraine (FHM), a monogenic subtype of migraine with aura.

  11. Pathways to deep decarbonization in India

    DEFF Research Database (Denmark)

    Shukla, P.; Dhar, Subash; Pathak, Minal

    This report is a part of the global Deep Decarbonisation Pathways (DDP) Project. The analysis consider two development scenarios for India and assess alternate roadmaps for transiting to a low carbon economy consistent with the globally agreed 2°C stabilization target. The report does not conside...

  12. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are

  13. Alternative Certification Pathways: Filling a Gap?

    Science.gov (United States)

    Ludlow, Carlyn

    2013-01-01

    The purpose of this article is to examine the proliferation of alternative certification pathways through an analysis of the role and history of teacher certification and supply followed by a synthesis of national, regional, and state research studies on alternative routes to certification programs and a review of studies conducted on well-known…

  14. Instructional Partnerships: A Pathway to Leadership

    Science.gov (United States)

    Moreillon, Judi, Ed.; Ballard, Susan, Ed.

    2013-01-01

    In this Best of "Knowledge Quest" monograph, the editors have collected seminal articles to support pre-service and in-service school librarians in developing and strengthening the instructional partner role. "Instructional Partnerships: A Pathway to Leadership" provides readers with background knowledge, research-based…

  15. New Mexico Math Pathways Taskforce Report

    Science.gov (United States)

    New Mexico Higher Education Department, 2016

    2016-01-01

    In April 2015 New Mexico faculty, Dana Center staff, and New Mexico Higher Education (NMHED) co-presented the need for better math pathways statewide. Faculty from 6 institutions (New Mexico State University, New Mexico Highlands University, Dine College, Eastern New Mexico University, El Paso Community College, and San Juan College) participated…

  16. the Pathways to Resilience Project Advisory Panel

    African Journals Online (AJOL)

    Its express focus is the exploration of how at-risk youths use formal services ... the South African Pathways to Resilience Project, between 2008 and the present, .... included daily, meaningful interaction with the local youth; and (iii) willingness to be ..... the theory of resilience that Khazimula advocated (see Theron, in press, ...

  17. Asian citrus psyllid RNAi pathway - RNAi evidence

    Science.gov (United States)

    In silico analyses of the draft genome of Diaphorina citri, the Asian citrus psyllid, for genes within the Ribonucleic acid interference(RNAi), pathway was successful. The psyllid is the vector of the plant-infecting bacterium, Candidatus Liberibacter asiaticus (CLas), which is linked to citrus gree...

  18. Working Together for Children: Strengthening Transition Pathways

    Science.gov (United States)

    Collie, Louise; Willis, Felicity; Paine, Crystal; Windsor, Corina

    2007-01-01

    The "Working Together for Children: Strengthening Transition Pathways" Team has identified that there is a gap between the Early Childhood settings and schools within the Dubbo area. Through meetings with early childhood professionals within Dubbo the authors have identified that the current landscape of care and education within their community…

  19. Pathway analyses implicate glial cells in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Laramie E Duncan

    Full Text Available The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge.Ten publically available gene sets (pathways related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls, and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls.The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance and also achieved nominal levels of significance with INRICH (p = 0.0057 and ALIGATOR (p = 0.022. For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002.Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle. While not the primary purpose of our study

  20. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  1. Evaluation of skin and ingestion exposure pathways

    International Nuclear Information System (INIS)

    Aaberg, Rosanne; Logsdon, Joe E.

    1989-06-01

    After a nuclear accident when there has been a release of radionuclides into the atmosphere with consequential deposition on the ground, decisions are necessary on whether protective action guides should be implemented. In order to do this, several pathways for radiation exposure must be evaluated to determine the projected dose to individuals. The objective of this study, conducted by Pacific Northwest Laboratories for the U.S. Environmental Protection Agency, is to provide background information on exposure pathways for use in the development of Protective Action Guides. The relative importance of three exposure pathways that are usually considered to be unimportant compared to other pathways expected to control relocation decisions following a nuclear power plant accident is evaluated. The three pathways are the skin dose from contact with radionuclides transferred from the ground, the skin dose from radionuclides on the ground surface, and ingestion of radionuclides transferred directly to the mouth from the hands or other contaminated surfaces. Ingestion of contaminated food is not included in this evaluation, except for situations where the food is contaminated as a result of actions by the person who consumes the food (e.g., transfer of contamination from hands to food). Estimates of skin and ingestion doses are based on a source term with a radionuclide mix predicted for an SST2-type nuclear accident in an area where the first year reference whole-body dose equivalent from whole body external exposure to gamma radiation plus the committed effective dose equivalent from inhalation of resuspended radionuclides is 1 rem. Appendixes have been included to allow the reader to examine dose factor calculations, source-term data, and quantification of contact and ingestion parameters in more detail

  2. Evaluation of skin and ingestion exposure pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, Rosanne [Pacific Northwest Laboratory, Richland, WA (United States); Logsdon, Joe E [United States Environmental Protection Agency, Office of Radiation Programs, Washington, DC (United States)

    1989-06-01

    After a nuclear accident when there has been a release of radionuclides into the atmosphere with consequential deposition on the ground, decisions are necessary on whether protective action guides should be implemented. In order to do this, several pathways for radiation exposure must be evaluated to determine the projected dose to individuals. The objective of this study, conducted by Pacific Northwest Laboratories for the U.S. Environmental Protection Agency, is to provide background information on exposure pathways for use in the development of Protective Action Guides. The relative importance of three exposure pathways that are usually considered to be unimportant compared to other pathways expected to control relocation decisions following a nuclear power plant accident is evaluated. The three pathways are the skin dose from contact with radionuclides transferred from the ground, the skin dose from radionuclides on the ground surface, and ingestion of radionuclides transferred directly to the mouth from the hands or other contaminated surfaces. Ingestion of contaminated food is not included in this evaluation, except for situations where the food is contaminated as a result of actions by the person who consumes the food (e.g., transfer of contamination from hands to food). Estimates of skin and ingestion doses are based on a source term with a radionuclide mix predicted for an SST2-type nuclear accident in an area where the first year reference whole-body dose equivalent from whole body external exposure to gamma radiation plus the committed effective dose equivalent from inhalation of resuspended radionuclides is 1 rem. Appendixes have been included to allow the reader to examine dose factor calculations, source-term data, and quantification of contact and ingestion parameters in more detail.

  3. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  4. Hierarchically organized layout for visualization of biochemical pathways.

    Science.gov (United States)

    Tsay, Jyh-Jong; Wu, Bo-Liang; Jeng, Yu-Sen

    2010-01-01

    Many complex pathways are described as hierarchical structures in which a pathway is recursively partitioned into several sub-pathways, and organized hierarchically as a tree. The hierarchical structure provides a natural way to visualize the global structure of a complex pathway. However, none of the previous research on pathway visualization explores the hierarchical structures provided by many complex pathways. In this paper, we aim to develop algorithms that can take advantages of hierarchical structures, and give layouts that explore the global structures as well as local structures of pathways. We present a new hierarchically organized layout algorithm to produce layouts for hierarchically organized pathways. Our algorithm first decomposes a complex pathway into sub-pathway groups along the hierarchical organization, and then partition each sub-pathway group into basic components. It then applies conventional layout algorithms, such as hierarchical layout and force-directed layout, to compute the layout of each basic component. Finally, component layouts are joined to form a final layout of the pathway. Our main contribution is the development of algorithms for decomposing pathways and joining layouts. Experiment shows that our algorithm is able to give comprehensible visualization for pathwa