Sample records for thalamic nuclei

  1. Language disturbances from mesencephalo-thalamic infarcts. Identification of thalamic nuclei by CT-reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarino, L.G.; Nicolai, A.; Valassi, F. (Ospedale Civile di Gorizia (Italy). Div. di Neurologia); Biasizzo, E. (Ospedale di Udine (Italy). Servizio di Neuroradiologia)


    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.).

  2. Transient Relay Function of Midline Thalamic Nuclei during Long-Term Memory Consolidation in Humans (United States)

    Thielen, Jan-Willem; Takashima, Atsuko; Rutters, Femke; Tendolkar, Indira; Fernández, Guillén


    To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a…

  3. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. (United States)

    Dumont, Julie R; Amin, Eman; Aggleton, John P


    To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites. © 2013 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Oscillatory synchrony between head direction cells recorded bilaterally in the anterodorsal thalamic nuclei. (United States)

    Butler, William N; Taube, Jeffrey S


    The head direction (HD) circuit is a complex interconnected network of brain regions ranging from the brain stem to the cortex. Recent work found that HD cells corecorded ipsilaterally in the anterodorsal nucleus (ADN) of the thalamus displayed coordinated firing patterns. A high-frequency oscillation pattern (130-160 Hz) was visible in the cross-correlograms of these HD cell pairs. Spectral analysis further found that the power of this oscillation was greatest at 0 ms and decreased at greater lags, and demonstrated that there was greater synchrony between HD cells with similar preferred firing directions. Here, we demonstrate that the same high-frequency synchrony exists in HD cell pairs recorded contralaterally from one another in the bilateral ADN. When we examined the cross-correlograms of HD cells that were corecorded bilaterally, we observed the same high-frequency (~150- to 200-Hz) oscillatory relationship. The strength of this synchrony was similar to the synchrony seen in ipsilateral HD cell pairs, and the degree of synchrony in each cross-correlogram was dependent on the difference in tuning between the two cells. Additionally, the frequency rate of this oscillation appeared to be independent of the firing rates of the two cross-correlated cells. Taken together, these results imply that the left and right thalamic HD network are functionally related despite an absence of direct anatomical projections. However, anatomical tracing has found that each of the lateral mammillary nuclei (LMN) project bilaterally to both of the ADN, suggesting the LMN may be responsible for the functional connectivity observed between the two ADN. NEW & NOTEWORTHY This study used bilateral recording electrodes to examine whether head direction cells recorded simultaneously in both the left and right thalamus show coordinated firing. Cross-correlations of the cells' spike trains revealed a high-frequency oscillatory pattern similar to that seen in cross-correlations between pairs

  5. Simultaneous Top-down Modulation of the Primary Somatosensory Cortex and Thalamic Nuclei during Active Tactile Discrimination (United States)

    Pais-Vieira, Miguel; Lebedev, Mikhail A.; Wiest, Michael C.; Nicolelis, Miguel A.L.


    The rat somatosensory system contains multiple thalamocortical loops (TCL) that altogether process, in fundamentally different ways, tactile stimuli delivered passively or actively sampled. To elucidate potential top-down mechanisms that govern TCL processing in awake, behaving animals, we simultaneously recorded neuronal ensemble activity across multiple cortical and thalamic areas while rats performed an active aperture discrimination task. Single neurons located in the primary somatosensory cortex (S1), the ventroposterior medial (VPM) and the posterior medial (POM) thalamic nuclei of the trigeminal somatosensory pathways exhibited prominent anticipatory firing modulations prior to the whiskers touching the aperture edges. This cortical and thalamic anticipatory firing could not be explained by whisker movements or whisker stimulation, because neither trigeminal ganglion sensory-evoked responses nor EMG activity were detected during the same period. Both thalamic and S1 anticipatory activity were predictive of the animal’s discrimination accuracy. Inactivation of the primary motor cortex (M1) with muscimol affected anticipatory patterns in S1 and the thalamus, and impaired the ability to predict the animal’s performance accuracy based on thalamocortical anticipatory activity. These findings suggest that neural processing in TCLs is launched in anticipation of whisker contact with objects, depends on top-down effects generated in part by M1 activity, and cannot be explained by the classical feedforward model of the rat trigeminal system. PMID:23447616

  6. High field fMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei

    Directory of Open Access Journals (Sweden)

    Coraline Danielle Metzger


    Full Text Available Thalamocortical loops, connecting functionally segregated, higher order cortical regions and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla.Using an event related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex (CM/PF. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behaviour such as sexual

  7. Higher order thalamic nuclei resting network connectivity in early schizophrenia and major depressive disorder. (United States)

    Penner, Jacob; Osuch, Elizabeth A; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W J; Menon, Ravi S; Rajakumar, Nagalingam; Bourne, James A; Williamson, Peter C


    The pulvinar and the mediodorsal (MDN) nuclei of the thalamus are higher order nuclei which have been implicated in directed effort and corollary discharge systems. We used seed-based resting fMRI to examine functional connectivity to bilateral pulvinar and MDN in 24 schizophrenic patients (SZ), 24 major depressive disorder patients (MDD), and 24 age-matched healthy controls. SZ had less connectivity than controls between the left pulvinar and precuneus, left ventral-lateral prefrontal cortex (vlPFC), and superior and medial-frontal regions, between the right pulvinar and right frontal pole, and greater connectivity between the right MDN and left dorsolateral prefrontal cortex (dlPFC). SZ had less connectivity than MDD between the left pulvinar and ventral anterior cingulate (vACC), left vlPFC, anterior insula, posterior cingulate cortex (PCC), and right hippocampus, between the right pulvinar and right PCC, and between the right MDN and right dorsal anterior cingulate (dACC). This is the first study to measure the functional connectivity to the higher order nuclei of the thalamus in both SZ and MDD. We observed less connectivity in SZ than MDD between pulvinar and emotional encoding regions, a directed effort region, and a region involved in representation and salience, and between MDN and a directed effort region. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: an fMRI study. (United States)

    Pergola, Giulio; Ranft, Alexander; Mathias, Klaus; Suchan, Boris


    The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects performed a cued recall test using the formerly recognized pictures as cues. This post-scanning test served to classify recognition trials according to subsequent recall performance. In general, single item recognition accompanied by successful recall of the associations elicited stronger activation in the mediodorsal nucleus of the thalamus and in the prefrontal cortices both during encoding and retrieval compared to recognition without recall. In contrast, the anterior nuclei of the thalamus were selectively active during the retrieval phase of recognition followed by recall. A correlational analysis showed that activation of the anterior thalamus during retrieval as assessed by measuring the percent signal changes predicted lower rates of recognition without recall. These findings show that the thalamus is critical for recognition accompanied by recall, and provide the first evidence of a functional segregation of the thalamic nuclei with respect to the memory retrieval phase. In particular, the mediodorsal thalamic-prefrontal cortical network is activated during successful encoding and retrieval of associations, which suggests a role of this system in recall and recollection. The activity of the anterior thalamic-temporal network selectively during retrieval predicts better memory performances across subjects and this confirms the paramount role of this network in recall and recollection. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Electrophysiology and Pharmacology of the Corticothalamic Input to Lateral Thalamic Nuclei: an Intracellular Study in the Cat. (United States)

    Deschêenes, Martin; Hu, Bin


    Though most experimental evidence indicates that the corticothalamic (CT) pathway would exert a direct excitatory action on thalamic relay neurons, the electrophysiological features of this excitation have never been clearly described. A methodological problem in previous electrophysiological studies was that direct corticofugal effects on relay cells could not be separated from those mediated by collateral activation of reticular thalamic neurons. In the present study, the reticular complex was lesioned by kainic acid and the CT response of relay neurons of the ventral lateral nucleus was recorded intracellularly in cats under pentobarbital or urethane anaesthesia. Following reticular thalamic lesions, a prominent depolarization was triggered in thalamic relay cells by stimulation of the CT pathway. This depolarization strongly drove spike discharges, and its amplitude augmented when the stimulation rate exceeded 2 Hz. Tetanizing the CT input with short trains (100 - 200 Hz for 200 - 300 ms) produced a similar augmentation to test volleys for 15 - 30 s after the tetanos. The CT excitation and its frequency-dependent augmentation were depressed by ketamine injection or by local application of N-methyl-D-aspartate (NMDA) antagonists. The augmenting phenomenon appeared strictly homosynaptic. For instance, it did not appear during repetitive stimulation of the cerebellar input, nor did the CT input potentiate subthreshold synaptic potentials of cerebellar origin during a conditioning procedure. Conversely, the cerebellar excitation was depressed when it occurred during the CT depolarization. It is concluded that the direct synaptic responses induced by CT fibres in relay neurons are mediated at least partly by the activation of NMDA receptors. Moreover, the marked non-linear additivity of cerebellar and CT synaptic potentials raises questions concerning the presumed improvement of thalamic transmission of peripheral informations ensured by the CT input. Instead, both

  10. Reversible and irreversible knockout of the ventroposterolateral thalamic nucleus measured by intracerebral SEP recordings in the rat brain--an aid to neuronavigation in small nuclei. (United States)

    Blunk, James A; Burke, Michael; Maarouf, Mohammad; Bührle, Christian P


    Centrally active drugs are often hard to administer because of the blood brain barrier, and frequently high systemic doses are required to reach sufficient brain parenchyma concentrations, since these drugs are, additionally, diluted in the total blood volume. Moreover, topical administration via the systemic route is not possible. We here propose a technique for the local, quantitative deposition of active substances at defined intracerebral targets, e.g. the thalamic nuclei. We used a long micropipette and stereotactically advanced it to the desired coordinates under electrophysiological control. The pipette acted as both an electrode for intracerebral recordings and as a transportation means for the drug. The amplitude of intracerebral evoked potentials relayed by the thalamic nucleus to the sensorimotor cortex indicated the distance between the pipette tip and the neurons of the targeted nucleus. Data were obtained from anesthetized rats, where the micropipette was advanced towards the nucleus ventralis posterolateralis (VPL) during contralateral electrical forepaw stimulation and intracerebral recording of somatosensory evoked potentials. Within the VPL we either injected lidocaine or kainic acid, both resulting in an attenuation of the intracerebral as well as the cortical evoked potentials. This proposed tool may be useful for functional investigations of deep brain structures.

  11. Delimitação dos núcleos talâmicos pela eletrofisiologia estereotáxica Delimitation of the thalamic nuclei by stereotaxic electrophysiology

    Directory of Open Access Journals (Sweden)

    Nilton Luís Latuf


    Full Text Available Os limites da área destruída durante a cirurgia estereotáxica são descritos levando em consideração as complicações decorrentes de lesões determinadas erroneamente. São comentados os métodos empregados com a finalidade de controlar a delimitação do alvo, sendo descrita a técnica usada em 23 talamotomias com derivação da atividade elétrica celular dos núcleos talâmicos atravessados e a pesquisa de potenciais evocados, graças à somatotopia da representação táctil no núcleo ventral posterior. Com este método reduz-se de mais ou menos 1 mm o erro radiológico, prescisando-se o alvo terapêutico talâmico nos três planos de espaço.The limits of the area to be destroyed during the stereotaxic surgery for the treatment of tremors are described taking into account the complications due to lesions erroneously performed. The method applied is commented in order to control the accuracy of the target delimitation, describing the technique employed in 23 thalamotomies, recording the electrical activity of the thalamic nuclei acrossed and researching evoked potentials thanks to the somatotopic tactil representation in the ventral posterior nuclei. The method permits to reduce radiologic errors giving more accuracy for the delimitation of thalamic target in the three planes of space.

  12. Altered local cerebral glucose utilization induced by electrical stimulations of the thalamic sensory and parafascicular nuclei in rats. (United States)

    Aiko, Y; Shima, F; Hosokawa, S; Kato, M; Kitamura, K


    Alterations in local cerebral glucose utilization (LCGU) induced by electrical stimulation of the sensory relay nucleus (VPL) or parafascicular nucleus (Pf) of the thalamus in conscious rats were measured by the [14C]2-deoxyglucose method, the objective being to assess the mechanism of analgesia induced by electrical stimulations of these structures. Stimulation of the VPL induced an ipsilateral increase in LCGU in the sensory thalamic nucleus itself, the sensory cortex and substantia nigra. Stimulation of the Pf induced bilateral increases in LCGU in the Pf and central medial nucleus of the thalamus, sensory cortex, ventral areas of the striatum and substantia nigra, and ipsilateral increase in LCGU in the periaqueductal gray, parabrachial pontine nucleus and deep layers of the superior colliculus. No significant change in LCGU was detected in the raphe dorsalis, raphe magnus and spinal dorsal horn, in both groups. Our observations coincide with clinical findings that unilateral electrical stimulation of the Pf leads to amelioration of intractable pain bilaterally, while that of the VPL induces an analgesia restricted to the contralateral side.

  13. REM sleep deprivation induces changes of down regulatory antagonist modulator (DREAM) expression in the ventrobasal thalamic nuclei of sprague-dawley rats. (United States)

    Siran, Rosfaiizah; Ahmad, Asma Hayati; Abdul Aziz, Che Badariah; Ismail, Zalina


    REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Down regulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague-Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.

  14. Thalamic alexia with agraphia

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto


    Full Text Available Alexia with agraphia is defined as an acquired impairment affecting reading and writing ability. It can be associated with aphasia, but can also occur as an isolated entity. This impairment has classically been associated with a left angular gyrus lesion In the present study, we describe a case involving a patient who developed alexia with agraphia and other cognitive deficits after a thalamic hemorrhage. In addition, we discuss potential mechanisms of this cortical dysfunction syndrome caused by subcortical injury. We examined a patient who presented with alexia with agraphia and other cognitive deficits due to a hemorrhage in the left thalamus. Neuropsychological evaluation showed attention, executive function, arithmetic and memory impairments. In addition, language tests revealed severe alexia with agraphia in the absence of aphasia. Imaging studies disclosed an old thalamic hemorrhage involving the anterior, dorsomedial and pulvinar nuclei. Tractography revealed asymmetric thalamocortical radiations in the parietal region (left - right, and single photon emission computed tomography demonstrated hypoperfusion in the left thalamus that extended to the frontal and parietal cortices. Cortical cognitive deficits, including alexia with agraphia, may occur as the result of thalamic lesions. The probable mechanism is a diaschisis phenomenon involving thalamic tract disconnections.

  15. Broca's area - thalamic connectivity. (United States)

    Bohsali, Anastasia A; Triplett, William; Sudhyadhom, Atchar; Gullett, Joseph M; McGregor, Keith; FitzGerald, David B; Mareci, Thomas; White, Keith; Crosson, Bruce


    Broca's area is crucially involved in language processing. The sub-regions of Broca's area (pars triangularis, pars opercularis) presumably are connected via corticocortical pathways. However, growing evidence suggests that the thalamus may also be involved in language and share some of the linguistic functions supported by Broca's area. Functional connectivity is thought to be achieved via corticothalamic/thalamocortical white matter pathways. Our study investigates structural connectivity between Broca's area and the thalamus, specifically ventral anterior nucleus and pulvinar. We demonstrate that Broca's area shares direct connections with these thalamic nuclei and suggest a local Broca's area-thalamus network potentially involved in linguistic processing. Thalamic connectivity with Broca's area may serve to selectively recruit cortical regions storing multimodal features of lexical items and to bind them together during lexical-semantic processing. In addition, Broca's area-thalamic circuitry may enable cortico-thalamo-cortical information transfer and modulation between BA 44 and 45 during language comprehension and production. Published by Elsevier Inc.

  16. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.


    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  17. Enlargement of thalamic nuclei in Tourette syndrome

    DEFF Research Database (Denmark)

    Miller, Ann M; Bansal, Ravi; Hao, Xuejun


    CONTEXT: The basal ganglia and thalamus together connect in parallel closed-loop circuits with the cortex. Previous imaging studies have shown modifications of the basal ganglia and cortical targets in individuals with Tourette syndrome (TS), but less is known regarding the role of the thalamus...... in motor circuits to attenuate the severity of tics....

  18. Enlargement of thalamic nuclei in Tourette syndrome

    DEFF Research Database (Denmark)

    Miller, Ann M; Bansal, Ravi; Hao, Xuejun


    CONTEXT: The basal ganglia and thalamus together connect in parallel closed-loop circuits with the cortex. Previous imaging studies have shown modifications of the basal ganglia and cortical targets in individuals with Tourette syndrome (TS), but less is known regarding the role of the thalamus...

  19. Thalamic semantic paralexia

    Directory of Open Access Journals (Sweden)

    Michael Hoffmann


    Full Text Available Alexia may be divided into different subtypes, with semantic paralexia being particularly rare. A 57 year old woman with a discreet left thalamic stroke and semantic paralexia is described. Language evalution with the Boston Diagnostic Aphasia Battery confirmed the semantic paralexia (deep alexia. Multimodality magnetic resonance imaging brain scanning excluded other cerebral lesions. A good recovery ensued.

  20. Thalamic Lesions: A Radiological Review

    Directory of Open Access Journals (Sweden)

    Dimitri Renard


    Full Text Available Background. Thalamic lesions are seen in a multitude of disorders including vascular diseases, metabolic disorders, inflammatory diseases, trauma, tumours, and infections. In some diseases, thalamic involvement is typical and sometimes isolated, while in other diseases thalamic lesions are observed only occasionally (often in the presence of other typical extrathalamic lesions. Summary. In this review, we will mainly discuss the MRI characteristics of thalamic lesions. Identification of the origin of the thalamic lesion depends on the exact localisation inside the thalamus, the presence of extrathalamic lesions, the signal changes on different MRI sequences, the evolution of the radiological abnormalities over time, the history and clinical state of the patient, and other radiological and nonradiological examinations.

  1. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.


    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  2. Accelerated forgetting of contextual details due to focal medio-dorsal thalamic lesion

    Directory of Open Access Journals (Sweden)

    Sicong eTu


    Full Text Available Effects of thalamic nuclei damage and related white matter tracts on memory performance are still debated. This is particularly evident for the medio-dorsal thalamus which has been less clear in predicting amnesia than anterior thalamus changes. The current study addresses this issue by assessing 7 thalamic stroke patients with consistent unilateral lesions focal to the left medio-dorsal nuclei for immediate and delayed memory performance on standard visual and verbal tests of anterograde memory, and over the long-term (> 24 hrs on an object-location associative memory task. Thalamic patients showed selective impairment to delayed recall, but intact recognition memory. Patients also showed accelerated forgetting of contextual information after a 24 hour delay, compared to controls. Importantly, the mammillothalamic tract was intact in all patients, which suggests a role for the medio-dorsal nuclei in recall and early consolidation memory processes.

  3. Bilateral thalamic infarction with psychiatric symptoms: case report

    Directory of Open Access Journals (Sweden)

    Betül Tekin Güveli


    Full Text Available Introduction: Thalamus is a mass of gray matter, which plays a role in the transmission of sensory and motor information to the primary sensory and motor centers of the cerebral cortex, cerebellum and basal ganglia. Vascular lesions of thalamus may occur in different syndromes depending on the affected nuclei. In this report, a case with acute evolving personality and behavior changes and detected bilateral thalamic infarction will be presented. Case: A 40-year-old male patient was brought to the psychiatric ER with complaints of acute excessive sleep and behavioral changing. His neurological examination was normal except for limited cooperation and dysarthria. There was hyperintensity in bilateral paramedian thalamic regions in diffusion MRI and hypointensity in the right side in the ADC. During clinical observation the patient occasionally had visual hallucinations and attempted suicide. The psychiatrist diagnosed the patient with psychotic disorder due to his general medical condition and olanzapine 10 mg / day was prescribed. Etiological tests were normal. The patient was discharged after clinical improvement on the tenth day of hospitalization. Conclusion: Bilateral thalamic infarcts are very rare in all ischemic cerebrovascular diseases and typically result in changing of consciousness, gaze palsy and memory. The most common etiological cause of bilateral thalamic infarct is cardioembolism and the prognosis is generally good. Thalamic infarcts have a clinical spectrum varying according to the location of the lesion and may even just be present with psychiatric symptoms. In acute or subacute personality and behavior changes in a patient with no history of psychiatric disorders, thalamic lesions should be considered.

  4. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons.

    Directory of Open Access Journals (Sweden)

    Miloslav eKolaj


    Full Text Available Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT, derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH that exhibit significant diurnal change. Their resting membrane potential is maintained by various ionic conductances that include inward rectifier (Kir, hyperpolarization-activated nonselective cation (HCN and TWIK-related acid sensitive (TASK K+ channels. Firing patterns are regulated by high voltage-activated (HVA and low voltage-activated (LVA Ca2+ conductances. Moreover, transient receptor potential (TRP-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa contribute to unique slow afterhyperpolarizing potentials (sAHPs that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. We also report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins. This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS physiology and in CNS disorders that involve the dorsomedial thalamus.

  5. Thalamic noradrenaline in Parkinson's disease: deficits suggest role in motor and non-motor symptoms. (United States)

    Pifl, Christian; Kish, Stephen J; Hornykiewicz, Oleh


    The thalamus occupies a pivotal position within the corticobasal ganglia-cortical circuits. In Parkinson's disease (PD), the thalamus exhibits pathological neuronal discharge patterns, foremost increased bursting and oscillatory activity, which are thought to perturb the faithful transfer of basal ganglia impulse flow to the cortex. Analogous abnormal thalamic discharge patterns develop in animals with experimentally reduced thalamic noradrenaline; conversely, added to thalamic neuronal preparations, noradrenaline exhibits marked antioscillatory and antibursting activity. Our study is based on this experimentally established link between noradrenaline and the quality of thalamic neuronal discharges. We analyzed 14 thalamic nuclei from all functionally relevant territories of 9 patients with PD and 8 controls, and measured noradrenaline with high-performance liquid chromatography with electrochemical detection. In PD, noradrenaline was profoundly reduced in all nuclei of the motor (pallidonigral and cerebellar) thalamus (ventroanterior: -86%, P = .0011; ventrolateral oral: -87%, P = .0010; ventrolateral caudal: -89%, P = .0014): Also, marked noradrenaline losses, ranging from 68% to 91% of controls, were found in other thalamic territories, including associative, limbic and intralaminar regions; the primary sensory regions were only mildly affected. The marked noradrenergic deafferentiation of the thalamus discloses a strategically located noradrenergic component in the overall pathophysiology of PD, suggesting a role in the complex mechanisms involved with the genesis of the motor and non-motor symptoms. Our study thus significantly contributes to the knowledge of the extrastriatal nondopaminergic mechanisms of PD with direct relevance to treatment of this disorder. Copyright © 2012 Movement Disorder Society.

  6. Communication skills and thalamic lesion: Strategies of rehabilitation. (United States)

    Amaddii, Luisa; Centorrino, Santi; Cambi, Jacopo; Passali, Desiderio


    To describe the speech rehabilitation history of patients with thalamic lesions. Thalamic lesions can affect speech and language according to diverse thalamic nuclei involved. Because of the strategic functional position of the thalamus within the cognitive networks, its lesion can also interfere with other cognitive processes, such as attention, memory and executive functions. Alterations of these cognitive domains contribute significantly to language deficits, leading to communicative inefficacy. This fact must be considered in the rehabilitation efforts. Whereas evaluation of cognitive functions and communicative efficiency is different from that of aphasic disorder, treatment should also be different. The treatment must be focused on specific cognitive deficits with belief in the regaining of communicative ability, as well as it occurs in therapy of pragmatic disorder in traumatic brain injury: attention process training, mnemotechnics and prospective memory training. According to our experience: (a) there is a close correlation between cognitive processes and communication skills; (b) alterations of attention, memory and executive functions cause a loss of efficiency in the language use; and (c) appropriate cognitive treatment improves pragmatic competence and therefore the linguistic disorder. For planning a speech-therapy it is important to consider the relationship between cognitive functions and communication. The cognitive/behavioral treatment confirms its therapeutic efficiency for thalamic lesions. Copyright © 2014 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  7. Prenatal thalamic waves regulate cortical area size prior to sensory processing (United States)

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina


    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  8. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.


    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  9. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)


    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  10. Isolated thalamic agraphia with impaired grapheme formation and micrographia. (United States)

    Sakurai, Yasuhisa; Yoshida, Yukinaga; Sato, Koki; Sugimoto, Izumi; Mannen, Toru


    Two patients with isolated thalamic agraphia are described. Both showed kanji (Japanese morphograms) agraphia due to impaired character recall, grapheme deformity and micrographia (progressive reduction in character size during writing) after a lesion that involved the ventral lateral and ventroposterolateral nuclei. Single photon emission computed tomography with a (99m)Tc-ethylcysteinate dimer revealed hypoperfusion in the left precentral gyrus (Brodmann Area 6) and anterior supramarginal gyrus in both. Six months later, the extent of blood flow reduction decreased in the supramarginal gyrus in both patients and the precentral gyrus in patient 1. By this time, the writing impairment improved to nearly the normal range. Our study suggests that kanji agraphia (corresponding to lexical agraphia in Western countries) with poor grapheme formation and micrographia arises from a lesion in the ventral lateral and ventroposterolateral nuclei in the left thalamus. The accompaniment of poor grapheme formation and micrographia may reflect disruption of the cortico-subcortical motor circuit involving the putamen, thalamus, premotor cortex and sensorimotor cortex. It is also suggested that multiple cortical sites can be a target for secondary dysfunction that yields agraphia in a thalamic lesion, and that the recovery of reduced cortical blood flow does not always proceed in parallel with that of agraphia.

  11. Thalamocortical projections of the anteroventral thalamic nucleus in the rabbit. (United States)

    Shibata, Hideshi; Yoshiko, Honda


    The anterior thalamic nuclei are one of the regions that play critical roles in behavioral learning and memory functions. A part of the anterior thalamic nuclei, the anteroventral nucleus (AV) is well developed and differentiated into the parvocellular (AVp) and magnocellular (AVm) division in the rabbit. The AV is crucial for learning discriminative avoidance conditioning. Although communication between the AV and cortex is considered important in learning, little is known about the neural connections of the AV in the rabbit. Thus, this study used anterograde tracer biotinylated dextran amine and the retrograde tracer cholera toxin B subunit to examine the organization of the thalamocortical projections of the AV. Our data show that each division of the AV provides a unique set of projections to restricted regions and layers of the retrosplenial cortex and presubiculum. In addition, the AVp projects to layers I and IV of retrosplenial areas 29 and 30 and to layers I and VI of the presubiculum. The dorsolateral AVm projects to layers I and IV of area 29 and to layers I, III, and V of the presubiculum. However, the ventromedial AVm only projects to layer I of area 29. These projections are generally organized such that the rostral-to-caudal axis of the AV corresponds to the caudal-to-rostral axis of the retrosplenial cortex and to the temporal-to-septal axis of the presubiculum. These findings suggest distinct functional roles played by each division of the AV in the learning and memory functions. © 2014 Wiley Periodicals, Inc.

  12. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)


    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  13. Functional characterization and expression of thalamic GABAB receptors in a rodent model of Parkinson’s disease

    NARCIS (Netherlands)

    Groote, C. de; Wüllner, U.; Löschmann, P.-A.; Luiten, P.G.M.; Klockgether, T.


    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson’s disease. We investigated the functional role of thalamic GABAB receptors in a rodent model of Parkinson’s disease. First, we

  14. Functional characterization and expression of thalamic GABA(B) receptors in a rodent model of Parkinson's disease

    NARCIS (Netherlands)

    de Groote, C; Wullner, U; Loschmann, PA; Luiten, PGM; Klockgether, T


    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson's disease. We investigated the functional role of thalamic GABA(B) receptors in a rodent model of Parkinson's disease. First, we

  15. [Functional significance of the round nuclei of the thalamus in formation of the sleep--wakefulness cycle]. (United States)

    Karmanova, I G; Khomutetskaia, O E; Obshchina, N V


    In chicken with bilaterally lesioned thalamic rotundus nuclei, cholinomimetic effect of arecolin upon duration of each stage of the wakefulness--sleep cycle, was studied. No prolongation of the paradoxical sleep characteristic of the animals with intact thalamic nuclei, was observed in experimental chicken. The latter developed mainly a king of cataleptic immobilization duration of which was enhanced by arecolin administration. The thalamic rotundus nucleus was concluded to play an essential role in the mechanisms for regulation of the wakefulness--sleep cycle in birds.

  16. State-dependent architecture of thalamic reticular subnetworks. (United States)

    Halassa, Michael M; Chen, Zhe; Wimmer, Ralf D; Brunetti, Philip M; Zhao, Shengli; Zikopoulos, Basilis; Wang, Fan; Brown, Emery N; Wilson, Matthew A


    Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function. PAPERFLICK: Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus. (United States)

    Pergola, Giulio; Güntürkün, Onur; Koch, Benno; Schwarz, Michael; Daum, Irene; Suchan, Boris


    The functional role of the mediodorsal thalamic nucleus (MD) and its cortical network in memory processes is discussed controversially. While Aggleton and Brown (1999) suggested a role for recognition and not recall, Van der Werf et al. (2003) suggested that this nucleus is functionally related to executive function and strategic retrieval, based on its connections to the prefrontal cortices (PFC). The present study used a lesion approach including patients with focal thalamic lesions to examine the functions of the MD, the intralaminar nuclei and the midline nuclei in memory processing. A newly designed pair association task was used, which allowed the assessment of recognition and cued recall performance. Volume loss in thalamic nuclei was estimated as a predictor for alterations in memory performance. Patients performed poorer than healthy controls on recognition accuracy and cued recall. Furthermore, patients responded slower than controls specifically on recognition trials followed by successful cued recall of the paired associate. Reduced recall of picture pairs and increased response times during recognition followed by cued recall covaried with the volume loss in the parvocellular MD. This pattern suggests a role of this thalamic region in recall and thus recollection, which does not fit the framework proposed by Aggleton and Brown (1999). The functional specialization of the parvocellular MD accords with its connectivity to the dorsolateral PFC, highlighting the role of this thalamocortical network in explicit memory (Van der Werf et al., 2003). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination. (United States)

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M


    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Control of Absence Seizures by the Thalamic Feed-Forward Inhibition. (United States)

    Chen, Mingming; Guo, Daqing; Xia, Yang; Yao, Dezhong


    As a subtype of idiopathic generalized epilepsies, absence epilepsy is believed to be caused by pathological interactions within the corticothalamic (CT) system. Using a biophysical mean-field model of the CT system, we demonstrate here that the feed-forward inhibition (FFI) in thalamus, i.e., the pathway from the cerebral cortex (Ctx) to the thalamic reticular nucleus (TRN) and then to the specific relay nuclei (SRN) of thalamus that are also directly driven by the Ctx, may participate in controlling absence seizures. In particular, we show that increasing the excitatory Ctx-TRN coupling strength can significantly suppress typical electrical activities during absence seizures. Further, investigation demonstrates that the GABAA- and GABAB-mediated inhibitions in the TRN-SRN pathway perform combination roles in the regulation of absence seizures. Overall, these results may provide an insightful mechanistic understanding of how the thalamic FFI serves as an intrinsic regulator contributing to the control of absence seizures.

  20. Thalamocortical projections of the anterodorsal thalamic nucleus in the rabbit. (United States)

    Shibata, Hideshi; Honda, Yoshiko


    The anterior thalamic nuclei consist of the anterodorsal (AD), anteroventral, and anteromedial nuclei, each of which are highly differentiated and may contribute to different aspects of various cognitive and memory functions. In particular, the AD is unique in that it is implicated in learning at the earliest stage of discriminative avoidance conditioning in the rabbit. To better understand the functional roles played by the AD in memory and learning processes, we analyzed the organization of thalamocortical projections of the AD in the rabbit, using the anterograde tracer biotinylated dextran amine and the retrograde tracer cholera toxin subunit B. The data show that the AD provides strong projections to layers I and IV of area 30 and to layers I, III, IV, and VI of area 29 in the retrosplenial cortex, and to layers I and III-VI of the presubiculum. The projections to the retrosplenial cortex are organized such that the rostral and caudal AD, respectively, project to the caudal and rostral retrosplenial cortex. In contrast, the projections to the presubiculum are not organized topographically. Other minor projections were also observed in the parasubiculum and part of the medial entorhinal area. These results indicate that the AD provides strong projections to the retrosplenial cortex and presubiculum, suggesting that these projections constitute essential pathways to these cortical regions for transmitting mnemonic information, such as a novel conditioning stimulus during the initial stage of avoidance learning. Copyright © 2012 Wiley Periodicals, Inc.

  1. Bilateral paramedian thalamic syndrome after infection. (United States)

    Kamaşak, Tülay; Sahin, Sevim; Eyüboğlu, İlker; Reis, Gökce Pinar; Cansu, Ali


    Although bilateral paramedian thalamic infarctions occur more frequently in adults than in children, they are rare entities at any age. The syndrome is thought to result from occlusion of the artery of Percheron, which arises as a common trunk from one of the posterior cerebral arteries to supply both paramedian thalamic regions. We describe two children with acute ischemic infarction involving both paramedian thalami developing after infection. The first patient developed mutism with ataxia after chicken pox infection. The second child developed headache, somnolence, agitation, and speech dysfunction following an upper respiratory tract infection. Bilateral thalamic lesions were documented on magnetic resonance imaging of both children. Bilateral infarctions of the paramedian thalamus may result in severe illness and impairment. Common clinical manifestations include disorientation, confusion, hypersomnolence, deep coma and "coma vigil," or akinetic mutism (awake unresponsiveness), as well as severe memory impairment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Thalamic morphology in schizophrenia and schizoaffective disorder. (United States)

    Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G


    Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Left Dorsomedial Thalamic Damage Impairs Verbal Recall More Than Recognition: A Case Report. (United States)

    Ruggeri, Massimiliano


    Damage to the dorsomedial thalamus usually leads to impaired episodic memory, attention, and executive function, but the role of the dorsomedial thalamus in memory processing is still not fully understood. Clinical evidence is inconclusive about whether dorsomedial thalamic damage impairs recall or whether it impairs recognition. I report a unique patient who suffered a cardioembolic stroke in the paramedian artery territory, caused by a patent foramen ovale. He was left with a chronic ischemic lesion centered in the parvocellular and, to a lesser extent, the magnocellular portions of the left dorsomedial thalamic nucleus, and marginally involving the midline and intralaminar nuclei. A year after the stroke, the patient's neuropsychological assessment showed a selective verbal memory deficit with greater loss of recall than recognition. His memory was normal when he was given semantically encoded material. His test results showed that damage to the left dorsomedial thalamic nucleus might affect both his recall and recognition because of the involvement of the parvocellular and magnocellular portions, respectively. The results also suggest that the left dorsomedial thalamus is involved in the encoding of verbal material. This case report highlights the role that the left dorsomedial thalamus plays in processing memory specific to verbal material. The findings point to the differential contribution of the dorsomedial parvocellular nucleus to recall, and support the theory that prefrontal strategic memory is enabled by adequate encoding of information through thalamocortical connectivity with the dorsolateral prefrontal cortex.

  4. Morphological Abnormalities of Thalamic Subnuclei in Migraine

    DEFF Research Database (Denmark)

    Magon, Stefano; May, Arne; Stankewitz, Anne


    . SIGNIFICANCE STATEMENT: This multicenter imaging study shows morphological thalamic abnormalities in a large cohort of patients with episodic migraine compared with healthy subjects using state-of-the-art MRI and advanced, fully automated multiatlas segmentation techniques. The results stress that migraine...... is a disorder of the CNS in which not only is brain function abnormal, but also brain structure is undergoing significant remodeling....... techniques in substantial patient populations are lacking. In the present study, we investigated changes of thalamic volume and shape in a large multicenter cohort of patients with migraine. High-resolution T1-weighted MRI data acquired at 3 tesla in 131 patients with migraine (38 with aura; 30.8 ± 9 years...

  5. Two Case Report With Bilateral Thalamic Infarct

    Directory of Open Access Journals (Sweden)

    Utku Cenikli


    Full Text Available Bilateral thalamic infarction is a rare clinical condition. Thalamo-perforan arteries are arise from the same vascular territory in nearly one third of the cases and oclussion of it causes bilateral infacts. Clinical presentation can be altered mental status, decrease alertness, memory problems, mood disorders, cognitive problems and vertical gaze palsy. In this report we present two cases with different clinical status.

  6. Thalamic hemorrhage. A prospective study of 100 patients. (United States)

    Kumral, E; Kocaer, T; Ertübey, N O; Kumral, K


    The clinical features of thalamic hemorrhage in terms of localization are of great interest in many studies. To better understand the relationship between the localization of thalamic hemorrhage and clinical features. we evaluated the characteristics of patients with four different topographic types of thalamic hemorrhage. We prospectively studied 100 patients with thalamic hemorrhage who were admitted consecutively to our primary care unit. We divided them into two groups according to large (> 2 cm in diameter and/or > 4 mL in volume) and small thalamic hemorrhage. Four topographic subgroups (large and small) were compared to identify clinical syndromes associated with distinct lesion locations. All patients with posterolateral thalamic hemorrhage had severe sensorimotor deficit. Neuropsychological disturbances in patients with posterolateral thalamic hemorrhage were prominent, with primarily transcortical aphasia in those with left-sided lesions and hemineglect and anosognosia in those with right-sided lesions. Several variants of vertical gaze dysfunction, skew ocular deviation, gaze preference toward the site of the lesion, and miotic pupils were frequent in posterolateral thalamic hemorrhage, particularly in the large type. Patients with small and large anterolateral thalamic hemorrhage were characterized by severe motor and sensory deficits; language and oculomotor disturbances were also observed, although less frequently than in posterolateral hemorrhage. Sensorimotor deficits were observed in patients with medial thalamic hemorrhage (moderate in small hemorrhages and severe in large hemorrhages because of involvement of the adjacent internal capsule). Language disturbances in patients with left-sided lesions and neglect in patients with right-sided lesions were seen only in large medial thalamic hemorrhage. Dorsal thalamic hemorrhage was rare and characterized by mild and transient sensorimotor disturbances. Among patients with dorsal thalamic hemorrhages

  7. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway. (United States)

    Shyu, Bai-Chuang; Vogt, Brent A


    Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC) in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes. A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN) suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity. The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to noxious events. Moreover, these modifications of cingulate

  8. Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study (United States)

    Sinjab, Barah; Martinian, Lillian; Sisodiya, Sanjay M; Thom, Maria


    Purpose Clinical, experimental, and neuroimaging data all indicate that the thalamus is involved in the network of changes associated with temporal lobe epilepsy (TLE), particularly in association with hippocampal sclerosis (HS), with potential roles in seizure initiation and propagation. Pathologic changes in the thalamus may be a result of an initial insult, ongoing seizures, or retrograde degeneration through reciprocal connections between thalamic and limbic regions. Our aim was to carry out a neuropathologic analysis of the thalamus in a postmortem (PM) epilepsy series, to assess the distribution, severity, and nature of pathologic changes and its association with HS. Methods Twenty-four epilepsy PM cases (age range 25–87 years) and eight controls (age range 38–85 years) were studied. HS was classified as unilateral (UHS, 11 cases), bilateral (BHS, 4 cases) or absent (No-HS, 9 cases). Samples from the left and right sides of the thalamus were stained with cresyl violet (CV), and for glial firbillary acidic protein (GFAP) and synaptophysin. Using image analysis, neuronal densities (NDs) or field fraction staining values (GFAP, synaptophysin) were measured in four thalamic nuclei: anteroventral nucleus (AV), lateral dorsal nucleus (LD), mediodorsal nucleus (MD), and ventrolateral nucleus (VL). The results were compared within and between cases. Key Findings The severity, nature, and distribution of thalamic pathology varied between cases. A pattern that emerged was a preferential involvement of the MD in UHS cases with a reduction in mean ND ipsilateral to the side of HS (p = 0.05). In UHS cases, greater field fraction values for GFAP and lower values for synaptophysin and ND were seen in the majority of cases in the MD ipsilateral to the side of sclerosis compared to other thalamic nuclei. In addition, differences in the mean ND between classical HS, atypical HS, and No-HS cases were noted in the ipsilateral MD (p < 0.05), with lower values observed in

  9. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy. (United States)

    Aravamuthan, Bhooma R; Waugh, Jeff L


    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  10. Sleep-potentiated epileptiform activity in early thalamic injuries: Study in a large series (60 cases). (United States)

    Losito, Emma; Battaglia, Domenica; Chieffo, Daniela; Raponi, Matteo; Ranalli, Domiziana; Contaldo, Ilaria; Giansanti, Cristina; De Clemente, Valentina; Quintiliani, Michela; Antichi, Eleonora; Verdolotti, Tommaso; de Waure, Chiara; Tartaglione, Tommaso; Mercuri, Eugenio; Guzzetta, Francesco


    The study aims at a better definition of continuous spike-waves during sleep (CSWS) with an early thalamic lesion, focusing on various grades of sleep-potentiated epileptiform activity (SPEA). Their possible relationship with different clinical features was studied to try to define prognostic factors of the epileptic disorder, especially relating to behavior/cognitive outcome, in order to improve prevention and treatment strategies. Sixty patients with early thalamic injury were followed since the first registration of SPEA with serial neurological, long term EEG monitoring and neuropsychological examinations, as well as neuroimaging and a detailed clinical history. They were classified in three different groups according to the sleep spike-waves (SW) quantification: electrical status epilepticus during sleep (ESES), more than 85% of slow sleep; overactivation between 50% and 85% and simple activation between 10 and 50%). Results were then examined also with a statistical analysis. In our series of CSWS occurring in early brain injured children with unilateral thalamic involvement there is a common neuropathologic origin but with various grades of SPEA severity. Statistical analysis showed that patients evolving toward ESES presented more commonly the involvement of the mediodorsal part of thalamus nuclei and a bilateral cortico-subcortical brain injury, epilepsy was more severe with a delayed onset; moreover, in the acute stage .ESES patients presented the worst behavior/cognitive performances. As to cognitive and behavior outcome, longer SPEA duration as well as bilateral brain injury and cognitive/behavior impairment in acute phase appear linked to a poor outcome; some particular neuropathology (ischemic stroke and haemorrhagic infarction) as well as hydrocephalus shunting are associated with behavior disorders. Discrete features seem to support different underlying mechanisms in ESES patients in comparison with less severe SPEA; they represent negative

  11. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. (United States)

    Rubio-Garrido, Pablo; Pérez-de-Manzo, Flor; Porrero, César; Galazo, Maria J; Clascá, Francisco


    Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.

  12. Bilateral thalamic stimulation induces insomnia in patients treated for intractable tremor. (United States)

    Bridoux, Agathe; Drouot, Xavier; Sangare, Aude; Al-Ani, Tarik; Brignol, Arnaud; Charles-Nelson, Anais; Brugières, Pierre; Gouello, Gaëtane; Hosomi, Koichi; Lepetit, Hélène; Palfi, Stéphane


    To explore the influence of acute bilateral ventral intermediate thalamic nucleus (VIM) stimulation on sleep. Three consecutive full-night polysomnography recordings were made in the laboratory. After the habituation night, a random order for night ON-stim and OFF-stim was applied for the second and third nights. Sleep disorders unit of a university hospital. Eleven patients with bilateral stimulation of the ventral intermediate nucleus of the thalamus (VIM) for drug-resistant tremor. Sleep measures on polysomnography. Total sleep time was reduced during night ON-stim compared to OFF- stim, as well as rapid eye movement sleep percentage while the percentage of N2 increased. Wakefulness after sleep onset time was increased. Our results show that bilateral stimulation of the VIM nuclei reduces sleep and could be associated with insomnia. © 2015 Associated Professional Sleep Societies, LLC.

  13. Lateralization of observational fear learning at the cortical but not thalamic level in mice. (United States)

    Kim, Sangwoo; Mátyás, Ferenc; Lee, Sukchan; Acsády, László; Shin, Hee-Sup


    Major cognitive and emotional faculties are dominantly lateralized in the human cerebral cortex. The mechanism of this lateralization has remained elusive owing to the inaccessibility of human brains to many experimental manipulations. In this study we demonstrate the hemispheric lateralization of observational fear learning in mice. Using unilateral inactivation as well as electrical stimulation of the anterior cingulate cortex (ACC), we show that observational fear learning is controlled by the right but not the left ACC. In contrast to the cortex, inactivation of either left or right thalamic nuclei, both of which are in reciprocal connection to ACC, induced similar impairment of this behavior. The data suggest that lateralization of negative emotions is an evolutionarily conserved trait and mainly involves cortical operations. Lateralization of the observational fear learning behavior in a rodent model will allow detailed analysis of cortical asymmetry in cognitive functions.

  14. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila


    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  15. Bilateral paramedian thalamic artery infarcts: report of 10 cases. (United States)

    Jiménez Caballero, Pedro Enrique


    The paramedian thalamic arteries can arise as a pair from each P1 of the posterior cerebral artery, but they may also arise equally from a common trunk off one P1, thus supplying thalamus bilaterally. Such a common trunk is called the artery of Percheron and supplies the mesial aspects of both thalami and the rostral midbrain. This is a retrospective review of 1,253 consecutive patients with ischemic stroke enrolled in a stroke registry within an 8-year period (January 2001-December 2008). All were evaluated with detailed clinical and neuropsychological evaluation, magnetic resonance imaging (MRI), blood studies, electrocardiogram, and transthoracic echocardiography. All standard risk factors were recorded in these patients. Ten patients (0.7%) in this series presented with a first-ever thalamic stroke demonstrating bilateral paramedian thalamic lesions on MRI. The main cause of bilateral paramedian thalamic infarctions was small artery disease (60%), followed by cardioembolism (40%). A well-defined clinical picture is shown in bilateral paramedian thalamic artery infarcts. These patients had disorder's consisting of consciousness, memory dysfunctions, various types of vertical gaze paresis, and psychological changes. Although neurologic deficits and hypersomnia recovered to large extent in patients with paramedian thalamic infarcts, cognitive deficits that were mainly linked with bilateral and left-sided lesions often persisted. Vertical gaze paresis tended to improve and never seriously disturbed the patient's activities. We believe that these kinds of strokes have been commonly overlooked, especially without widespread use of MRI. Copyright (c) 2010 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Orthostatic tremor responds to bilateral thalamic deep brain stimulation. (United States)

    Lyons, Mark K; Behbahani, Mandana; Boucher, Orland K; Caviness, John N; Evidente, Virgilio Gerald H


    Orthostatic tremor (OT) is a disabling movement disorder manifested by postural and gait disturbance. Primarily a condition of elderly people, it can be progressive in up to 15% of patients. The primary treatments are medications that are often ineffective. A 75-year-old male presented with a 10-year history of progressive and disabling OT. He had tried various medications without significant benefits. He underwent bilateral thalamic Vim deep brain stimulation (DBS). At 30-month follow-up, he has had continued significant improvement of his OT. Bilateral thalamic DBS may be a viable option for medically refractory OT.

  17. Thalamic syndrome as the heralding manifestation of atlantoaxial dislocation (United States)

    Verma, Rajesh; Sahu, Ritesh; Ojha, B K; Junewar, Vivek


    In India, Atlantoaxial dislocation (AAD) is the commonest skeletal craniovertebral junction (CVJ) anomaly, followed by occipitalisation of atlas and basilar invagination. The usual presentation is progressive neurological deficit (76–95% cases) involving the high cervical cord, lower brainstem and cranial nerves. The association between vertebro-basilar insufficiency and skeletal CVJ anomalies is well recognised and angiographic abnormalities of the vertebrobasilar arteries and their branches have been reported; however, initial presentation of CVJ anomaly as thalamic syndrome due to posterior circulation stroke is extremely rare. Here, we report one such rare case of thalamic syndrome as the initial presentation of CVJ anomaly with AAD. PMID:23314448

  18. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling. (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan


    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

  19. Abnormal medial thalamic metabolism in patients with idiopathic restless legs syndrome. (United States)

    Rizzo, Giovanni; Tonon, Caterina; Testa, Claudia; Manners, David; Vetrugno, Roberto; Pizza, Fabio; Marconi, Sara; Malucelli, Emil; Provini, Federica; Plazzi, Giuseppe; Montagna, Pasquale; Lodi, Raffaele


    Pathophysiology of restless legs syndrome is poorly understood. A role of the thalamus, specifically of its medial portion which is a part of the limbic system, was suggested by functional magnetic resonance imaging and positron emission tomography studies. The aim of this study was to evaluate medial thalamus metabolism and structural integrity in patients with idiopathic restless legs syndrome using a multimodal magnetic resonance approach, including proton magnetic resonance spectroscopy, diffusion tensor imaging, voxel-based morphometry and volumetric and shape analysis. Twenty-three patients and 19 healthy controls were studied in a 1.5 T system. Single voxel proton magnetic resonance spectra were acquired in the medial region of the thalamus. In diffusion tensor examination, mean diffusivity and fractional anisotropy were determined at the level of medial thalamus using regions of interest delineated to outline the same parenchyma studied by spectroscopy. Voxel-based morphometry was performed focusing the analysis on the thalamus. Thalamic volumes were obtained using FMRIB's Integrated Registration and Segmentation Tool software, and shape analysis was performed using the FMRIB Software Library tools. Proton magnetic resonance spectroscopy study disclosed a significantly reduced N-acetylaspartate:creatine ratio and N-acetylaspartate concentrations in the medial thalamus of patients with restless legs syndrome compared with healthy controls (P history of restless legs syndrome (β = -0.49; P = 0.018). On the contrary, diffusion tensor imaging, voxel-based morphometry and volumetric and shape analysis of the thalami did not show differences between the two groups. Proton magnetic resonance spectroscopic findings in patients with restless legs syndrome indicate an involvement of medial thalamic nuclei of a functional nature; however, the other structural techniques of the same region did not show any changes. These findings support the hypothesis

  20. Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain. (United States)

    Troyano-Rodriguez, Eva; Lladó-Pelfort, Laia; Santana, Noemi; Teruel-Martí, Vicent; Celada, Pau; Artigas, Francesc


    The neurobiological basis of action of noncompetitive N-methyl-D-aspartate acid receptor (NMDA-R) antagonists is poorly understood. Electrophysiological studies indicate that phencyclidine (PCP) markedly disrupts neuronal activity with an overall excitatory effect and reduces the power of low-frequency oscillations (LFO; <4 Hz) in thalamocortical networks. Because the reticular nucleus of the thalamus (RtN) provides tonic feed-forward inhibition to the rest of the thalamic nuclei, we examined the effect of PCP on RtN activity, under the working hypothesis that NMDA-R blockade in RtN would disinhibit thalamocortical networks. Drug effects (PCP followed by clozapine) on the activity of RtN (single unit and local field potential recordings) and prefrontal cortex (PFC; electrocorticogram) in anesthetized rats were assessed. PCP (.25-.5 mg/kg, intravenous) reduced the discharge rate of 19 of 21 RtN neurons to 37% of baseline (p < .000001) and the power of LFO in RtN and PFC to ~20% of baseline (p < .001). PCP also reduced the coherence between PFC and RtN in the LFO range. A low clozapine dose (1 mg/kg intravenous) significantly countered the effect of PCP on LFO in PFC but not in RtN and further reduced the discharge rate of RtN neurons. However, clozapine administration partly antagonized the fall in coherence and phase-locking values produced by PCP. PCP activates thalamocortical circuits in a bottom-up manner by reducing the activity of RtN neurons, which tonically inhibit thalamic relay neurons. However, clozapine reversal of PCP effects is not driven by restoring RtN activity and may involve a cortical action. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. CT classification of small thalamic hemorrhages. Topographic localization and clinical manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Nobutaka; Kaneko, Mitsuo; Tanaka, Keisei; Muraki, Masaaki; Sato, Kengo (Hamamatsu Medical Center Hospital, Shizuoka (Japan))


    The thalamus is located deep in the cerebral hemispheres, and most of its nuclei have reciprocal fiber connections with specific areas over the cerebral cortex. Localized lesions in the thalamus, therefore, can cause specific neurological deficits, depending on their locations. From this point of view, we reviewed 110 cases, admitted over the past 7 years, with thalamic hemorrhages 37 (34%) of which were small hematomas less than 2 cm in diameter. These small hematomas could be divided into 4 types depending on their locations as follows: antero-lateral type, postero-lateral type, medial type, and dorsal type. Each type had the peculiar clinical features described below: 1) Postero-lateral Type (PL type, 28 cases, 76%): The original symptom was a sudden onset of moderate to severe sensori-motor deficits in most cases. The patients were mostly alert or only slightly confused. 2) Antero-lateral Type (AL type, 4 cases, 11%): The patients of this type first presented with sensori-motor disturbance and prefrontal signs. Both were generally mild and often disappeared early. 3) Medial Type (M type, 3 cases, 8%): The main symptom at onset was either a disturbance of consciousness or dementia. 4) Dorsal Type (D type, 2 cases, 5%): One patient with a right thalamic hematoma of this type showed geographical agnosia and visuo-constructive apraxia. The other patient, with a left-sided hematoma, exhibited transient clumsiness of the right hand and mild dysphasia. In our experience, the above classification of small hematomas clearly delineated the clinical symptoms and neurological signs of the different types; therefore, the symptoms and signs in larger hematoma could be explained by a combination of those of each type.

  2. Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Mario Torso

    Full Text Available Behavioural disorders and psychological symptoms of Dementia (BPSD are commonly observed in Alzheimer's disease (AD, and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM, we investigated the impact of white matter lesions (WMLs on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI.Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up and 26 healthy controls underwent magnetic resonance imaging (MRI examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD.Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs and the severity of apathy. Regional grey matter atrophy did not account for any BPSD.This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.

  3. Calcium-binding proteins in the laterodorsal thalamic nucleus during development of the guinea pig. (United States)

    Zakowski, Witold; Bogus-Nowakowska, Krystyna; Wasilewska, Barbara; Hermanowicz, Beata; Robak, Anna


    The laterodorsal thalamic nucleus (LD) is often treated as a part of the anterior thalamic nuclei (ATN) because of its location and similar connectivity. Our previous studies have shown that distribution of three calcium-binding proteins, i.e. calbindin D28k (CB), calretinin (CR) and parvalbumin (PV), changes within the ATN during development of the guinea pig. The aim of this study is to examine the immunoreactivity pattern of these proteins in the LD in the guinea pig ontogeny. Brains from animals ranging from 40th embryonic day to 80th postnatal day were used in the study. Two methods were applied: a single-labelling immunoenzymatic method and double-labelling immunofluorescence. No changes of the distribution pattern of the substances were observed throughout the examined developmental stages. CB and CR were the most abundantly expressed proteins in perikarya of the LD. Numerous CB- and CR-immunoreactive cell bodies were found throughout the whole extent of the nucleus. In most of these cell bodies both proteins colocalized vastly. The highest immunoreactivity of the perikarya containing CB and CR was observed in the mediodorsal part of the LD and in its rostral portion. In regard to PV, single cell bodies were observed mostly in the dorsal part of the nucleus. PV did not colocalize with the other proteins. In summary, all the studied calcium-binding proteins were already present in the LD at prenatal developmental stages and the pattern of distribution remained virtually constant until adulthood. Thus, the LD differs considerably from the ATN in an aspect of neurochemical cell differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease. (United States)

    Torso, Mario; Serra, Laura; Giulietti, Giovanni; Spanò, Barbara; Tuzzi, Elisa; Koch, Giacomo; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco


    Behavioural disorders and psychological symptoms of Dementia (BPSD) are commonly observed in Alzheimer's disease (AD), and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM), we investigated the impact of white matter lesions (WMLs) on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI). Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up) and 26 healthy controls underwent magnetic resonance imaging (MRI) examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD. Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs) and the severity of apathy. Regional grey matter atrophy did not account for any BPSD. This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.

  5. Thalamic abscess caused by a rare pathogen: streptococcus ...

    African Journals Online (AJOL)

    Streptococcus constellatus is a microorganism that lives commensally in the oropharyngeal region, urogenital region, and intestinal tract. However, it can cause infection in patients with certain predisposing factors. Rarely, this microorganism can cause a brain abscess. Thalamic localization of brain abscesses is much rarer ...

  6. Neuroanatomical considerations of isolated hearing loss in thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Nitin Agarwal, M.D.


    Conclusion: Presumably, this neurological deficit was caused by a hypertensive hemorrhage in the posterior right thalamus. The following case and discussion will review the potential neuroanatomical pathways that we suggest could make isolated hearing loss be part of a “thalamic syndrome.”

  7. Effects of Intralaminar Thalamic Stimulation on Language Functions (United States)

    Bhatnagar, Subhash C.; Mandybur, George T.


    Fifteen neurosurgical subjects, who were undergoing thalamic chronic electrode implants as a treatment for dyskinesia and chronic pain, were evaluated on a series of neurolinguistic functions to determine if the stimulation of the centromedianum nucleus of the thalamus affected language and cognitive processing. Analysis of the data revealed that…

  8. Hypertensive thalamic hemorrhage. Clinical symptoms and outcomes in 40 cases

    Energy Technology Data Exchange (ETDEWEB)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime


    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis.

  9. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct.

    Directory of Open Access Journals (Sweden)

    Laura Serra

    Full Text Available A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F. had a pervasive deficit in episodic memory, but only one of them (R.F. suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P. implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC. Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal

  10. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct. (United States)

    Serra, Laura; Cercignani, Mara; Carlesimo, Giovanni A; Fadda, Lucia; Tini, Nadia; Giulietti, Giovanni; Caltagirone, Carlo; Bozzali, Marco


    A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on

  11. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy

    Directory of Open Access Journals (Sweden)

    Andrew P. Bagshaw


    Full Text Available The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE, and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN, the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE.

  12. [Persistent psychotic disorder following bilateral mesencephalo-thalamic ischaemia: case report]. (United States)

    Predescu, A; Damsa, C; Riegert, M; Bumb, A; Pull, C


    predominant after few months. One year after the first hospitalization the patient presented a second psychotic decompensation, with delusions of persecution, jealousy and behavioural disorders with heteroaggressivity, that required an emergency psychiatric hospitalization. The wife of the patient decided to divorce, because she was "frightened by the threats of death" from her husband. A neurological assessment during the second hospitalization in psychiatry did not find new ischaemic lesions after the cardiac surgery for the permeable foramen ovale, nor relevant changes in cerebral perfusion. The final diagnosis after the psychiatric follow-up of 14 months was: psychotic disorder with delusional ideas, due to cerebral ischaemia (DSM IV). There are relatively few data in the literature regarding persistent psychotic disorders in the context of ischaemic mesencephalo-thalamic lesions. However, several authors support the hypothesis of a possible disconnection of the thalamic nuclei, the frontal lobes and limbic system as a risk factor or a triggering factor for psychotic disorders in cerebral ischaemia. Observations concerning the occurrence of psychotic disorders following cerebral--especially localised--ischaemia may help to better understand the neuro-physiological mechanisms triggering or accompanying the psychiatric symptomatology. The role of functional cerebral imagery in the detection of possible structural lesions related to clinical observations must be emphasised. The slow progression (over a year) to psychotic disorder with predominantly negative symptoms emphasized the importance for long-term prospective studies. Isolated clinical observations arouse the interest for a specific scale for psychotic disorders occurring after cerebral ischaemia, similar to existing specific scale for post-ischaemic depressive disorders. The necessity of systematic psychiatric examination and re-evaluations in thalamic cerebral ischaemia is to be highlighted, both for the

  13. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Serafim [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Terry, John R. [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)]. E-mail:; Breakspear, Michael [Black Dog Institute, Randwick, NSW 2031 (Australia); School of Psychiatry, UNSW, NSW 2030 (Australia)


    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling.

  14. Abnormal Ocular Movement With Executive Dysfunction and Personality Change in Subject With Thalamic Infarction: A Case Report. (United States)

    Kim, Ee Jin; Kim, Myeong Ok; Kim, Chang Hwan; Joa, Kyung Lim; Jung, Han Young


    The thalamus, located between the cerebrum and midbrain, is a nuclear complex connected to the cerebral cortex that influences motor skills, cognition, and mood. The thalamus is composed of 50-60 nuclei and can be divided into four areas according to vascular supply. In addition, it can be divided into five areas according to function. Many studies have reported on a thalamic infarction causing motor or sensory changes, but few have reported on behavioral and executive aspects of the ophthalmoplegia of the thalamus. This study reports a rare case of a paramedian thalamus infarction affecting the dorsomedial area of the thalamus, manifesting as oculomotor nerve palsy, an abnormal behavioral change, and executive dysfunction. This special case is presented with a review of the anatomical basis and function of the thalamus.

  15. Altered thalamic connectivity during spontaneous attacks of migraine without aura

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano


    Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine and cereb......Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine...... and cerebellar network connectivity during spontaneous migraine attacks. Methods Seventeen patients with episodic migraine without aura underwent resting-state fMRI scan during and outside of a spontaneous migraine attack. Primary endpoint was a difference in functional connectivity between the attack...

  16. Pseudocortical and dissociate discriminative sensory dysfunction in a thalamic stroke. (United States)

    Notturno, Francesca; Sepe, Rosamaria; Caulo, Massimo; Uncini, Antonino; Committeri, Giorgia


    In thalamic lesions a pseudocortical syndrome has been occasionally described but the effect of the lesion on the cortical network of tactile recognition has never been studied. We report a patient who developed tactile agnosia in the left hand after right thalamic stroke, configuring a pseudocortical sensory syndrome. The discriminative sensory dysfunction was dissociate because only tactile agnosia and mild pseudoathetosis were present. A functional magnetic resonance imaging (fMRI) study showed that tactile recognition with the unaffected hand recruited a bilateral fronto-parietal network. During recognition with the left hand the activation was restricted and lateralized to the ipsilateral hemisphere. In this patient with pseudocortical discriminative sensory dysfunction the lack of activation of the whole cortical network, implicated in tactile recognition, demonstrates that pseudocortical is functionally equivalent to cortical tactile agnosia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Differential diagnosis of bilateral thalamic lesions; Differenzialdiagnose bilateral Thalamuslaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Linn, J.; Brueckmann, H. [Universitaetsklinikum Muenchen (Germany). Abt. fuer Neuroradiologie; Hoffmann, L.A. [Universitaetsklinikum Muenchen (Germany). Inst. fuer Klinische Neuroimmunologie; Danek, A. [Universitaetsklinikum Muenchen (Germany). Klinik und Poliklinik fuer Neurologie


    A multitude of different diseases can result in bilateral thalamic lesions. These include vascular pathologies requiring prompt therapeutic intervention, such as basilar thrombosis or thrombosis of the internal cerebral veins, as well as tumors, infectious or demyelinating diseases, and toxic-metabolic lesions. Therefore, detailed knowledge of the typical radiological findings for the various diseases is essential for determining the correct diagnosis. This review provides a synopsis of the radiological findings for the most important bithalamic lesions and an overview of the literature.

  18. Thalamic volume as a biomarker for disorders of consciousness (United States)

    Rubeaux, Mathieu; Mahalingam, Jamuna Jayashri; Gomez, Francisco; Nelson, Marvin; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Laureys, Steven; Soddu, Andrea; Lepore, Natasha


    Disorders of consciousness (DOC) may be characterized by the degree at which consciousness is impaired, and include for example vegetative state (VS) and minimally conscious state (MCS) patients. Using a reliable marker as a measure of the level of consciousness in such patients is of utmost necessity and importance for their appropriate diagnosis and prognosis. Identification of VS and MCS states based on their behaviors sometimes leads to incorrect inferences due to the influence of a range of factors like motor impairment, fluctuating arousal levels and rapidly habituating responses to name a few.1 The extent of damage in the thalamus, a structure known for its role in arousal regulation, may provide an imaging biomarker to better differentiate between VS and MCS. In this study, we manually segmented the thalamus from T1-weighted brain MRI images in a large cohort of 19 VS and 23 MCS subjects that were examined using the French version of the Coma Recovery Scale Revised (CRS-R).2 This scale is the most trustworthy behavioural diagnosis tool3 for patients with DOC available. The aim was to determine whether a relationship between thalamus volume and consciousness level exists. Results show that total thalamic volume tends to decrease over time after a severe brain injury. Moreover, for subjects in chronic state, the thalamic volume seems to differ with respect to the degree of consciousness that was diagnosed. Finally, for these same chronic patients, the total thalamic volume is varying linearly as a function of the CRS-R score obtained, indicating that thalamic volume may be used as a biomarker to measure the level of consciousness.

  19. Injury of the mammillothalamic tract in patients with thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Hyeok Gyu eKwon


    Full Text Available Objective:Injury of the mammillothalamic tract(MTT has been suggested as one of the plausible pathogenic mechanisms of memory impairment in patients with thalamic hemorrhage; however, it has not been clearly demonstrated so far. We attempted to investigate whether injury of the MTT documented by diffusion tensor tractography(DTT following thalamic hemorrhage correlates with cognitive impairment. Methods:We recruited 22 patients with a thalamic hemorrhage and 20 control subjects. MTTs were reconstructed using the probabilistic tractography method. Patients were classified into two subgroups: Reconstructed group-patients whose MTT was reconstructed in the affected hemisphere and Non-reconstructed group-patients whose MTT was not reconstructed.Results:MTT was reconstructed in five(22.7%,Reconstructed group patients in the affected hemisphere and was not reconstructed in the remaining 17 patients(77.3%,Non-reconstructed group. In addition, the MTT was not reconstructed even in the unaffected hemisphere in four patients(23.5% in Non-reconstructed group. Fractional anisotropy and mean diffusivity values of the affected hemisphere in Reconstructed group also did not show significant differences from those in the unaffected hemisphere of Reconstructed group and the control group(p>0.05. However, the tract volume of the affected hemisphere in Reconstructed group was significantly lower than that of the unaffected hemisphere in Reconstructed group and the control group(pConclusion:A large portion of patients with thalamic hemorrhage appeared to suffer severe injury of the ipsi-lesional MTT(77.3% and 18.2% of these patients appeared to suffer severe injury even in the contra-lesional MTT. In addition, the remaining 22.7% of patients who had preserved integrity of the ipsi-lesional MTT appeared to suffer partial injury of the ipsi-lesional MTT.

  20. Comorbid Asperger and Tourette syndromes with localized mesencephalic, infrathalamic, thalamic, and striatal damage. (United States)

    Berthier, Marcelo L; Kulisevsky, Jaime; Asenjo, Beatriz; Aparicio, Jesús; Lara, Diego


    We describe the coexistence of Asperger and Tourette syndromes (AS and TS) caused by discrete hypoxic-ischaemic necrosis of the midbrain, infrathalamic and thalamic nuclei, and striatum in an adolescent male with positive family history for tics and obsessive-compulsive disorder. Behavioural ratings, cognitive tests, and volumetric measurements of the basal ganglia were performed in the patient and five other individuals with AS-TS unassociated with MRI lesions. Cognitive deficits in attentional, executive, and visual-spatial domains were found both in the patient and control AS-TS group, though deficits were more severe in the former. MRI showed reduction of the left basal ganglia volume compared with the right in the patient, whereas the control group showed reduction of right basal ganglia volume compared with the left. It is suggested that individuals with a genetic predisposition to TS may develop AS and TS after involvement of midbrain and related components of basal ganglia-thalamocortical circuits normally implicated in the integration of emotional, cognitive, and motor functions.

  1. Impaired spatial working memory after anterior thalamic lesions: recovery with cerebrolysin and enrichment. (United States)

    Loukavenko, Elena A; Wolff, Mathieu; Poirier, Guillaume L; Dalrymple-Alford, John C


    Lesions to the anterior thalamic nuclei (ATN) in rats produce robust spatial memory deficits that reflect their influence as part of an extended hippocampal system. Recovery of spatial working memory after ATN lesions was examined using a 30-day administration of the neurotrophin cerebrolysin and/or an enriched housing environment. As expected, ATN lesions in standard-housed rats given saline produced severely impaired reinforced spatial alternation when compared to standard-housed rats with sham lesions. Both cerebrolysin and enrichment substantially improved this working memory deficit, including accuracy on trials that required attention to distal cues for successful performance. The combination of cerebrolysin and enrichment was more effective than either treatment alone when the delay between successive runs in a trial was increased to 40 s. Compared to the intact rats, ATN lesions in standard-housed groups produced substantial reduction in c-Fos expression in the retrosplenial cortex, which remained low after cerebrolysin and enrichment treatments. Evidence that multiple treatment strategies restore some memory functions in the current lesion model reinforces the prospect for treatments in human diencephalic amnesia.

  2. Decrease of thalamic gray matter following limb amputation. (United States)

    Draganski, B; Moser, T; Lummel, N; Gänssbauer, S; Bogdahn, U; Haas, F; May, A


    Modern neuroscience has elucidated general mechanisms underlying the functional plasticity of the adult mammalian brain after limb deafferentation. However, little is known about possible structural alterations following amputation and chronic loss of afferent input in humans. Using voxel-based morphometry (VBM), based on high-resolution magnetic resonance images, we investigated the brain structure of 28 volunteers with unilateral limb amputation and compared them to healthy controls. Subjects with limb amputation exhibited a decrease in gray matter of the posterolateral thalamus contralateral to the side of the amputation. The thalamic gray matter differences were positively correlated with the time span after the amputation but not with the frequency or magnitude of coexisting phantom pain. Phantom limb pain was unrelated to thalamic structural variations, but was positively correlated to a decrease in brain areas related to the processing of pain. No gray matter increase was detected. The unilateral thalamic differences may reflect a structural correlate of the loss of afferent input as a secondary change following deafferentation.

  3. 'Nomadic' nuclei of galaxies (United States)

    Silchenko, O. K.; Lipunov, V. M.


    In this paper the authors discuss observational and theoretical arguments in favour of hypothesis on "nomad life" of active nuclei inside and outside galaxies as well as its consequences. It may be the anisotropic collapse of a supermassive star, or the disruption of a supermassive binary system after the collapse of one companion that would give birth to such nuclei. The authors predict the existence of veritable quasi-stellar active objects without any ghost galaxies.

  4. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. (United States)

    Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup


    While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Thalamic activity and biochemical changes in individuals with neuropathic pain following spinal cord injury (United States)

    Gustin, S.M.; Wrigley, P.J.; Youssef, A.M.; McIndoe, L.; Wilcox, S.L.; Rae, C.D.; Edden, R; Siddall, P.J.; Henderson, L.A.


    There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury to 11 people with similar injuries and no neuropathic pain and 21 age and gender matched healthy controls. Quantitative arterial spinal labelling was used to measure thalamic activity and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain following spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain. PMID:24530612

  6. Clinical analysis of electrolyte imbalance in thalamic hemorrhage patients within 24 h after admission. (United States)

    Guo, Zhenwei; Wang, Tianzhu; Zhang, John H; Qin, Xinyue


    We have observed that patients with thalamic hemorrhage are more likely to have electrolyte disturbances than those with non-thalamic hemorrhage. Here, we are attempting to provide some comprehensive information on electrolyte disturbances in patients with thalamic hemorrhage. Retrospectively, 67 patients with thalamic hemorrhage (TH group) and 256 with non-thalamic hemorrhage (N-TH group) were found from computer tomography images. Electrolytes of these patients were tested within 24 h after hospitalization. Chi-square test was used to compare the incidence of electrolyte imbalance. Serum K+ levels were found to be abnormal in 37.31% of the patients in the TH group and 24.21% in the N-TH group, and the difference was significant (pelectrolyte disturbances (42.50%) was higher than that of patients with normal electrolyte levels (14.81%, pelectrolyte imbalance is higher in patients with thalamic hemorrhage than in those with non-thalamic hemorrhage. The reason may be partly related to the location of the hemorrhage. Electrolyte disturbance may contribute to the higher mortality of patients with thalamic hemorrhage.

  7. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor

    NARCIS (Netherlands)

    Limousin, P.; Speelman, J. D.; Gielen, F.; Janssens, M.


    Thalamic stimulation has been proposed to treat disabling tremor. The aims of this multicentre study were to evaluate the efficacy and the morbidity of thalamic stimulation in a large number of patients with parkinsonian or essential tremor. One hundred and eleven patients were included in the study

  8. Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. (United States)

    Crosson, Bruce


    Recent literature on thalamic aphasia and thalamic activity during neuroimaging is selectively reviewed followed by a consideration of recent anatomic and physiological findings regarding thalamic structure and functions. It is concluded that four related corticothalamic and/or thalamocortical mechanisms impact language processing: (1) selective engagement of task-relevant cortical areas in a heightened state of responsiveness in part through the nucleus reticularis (NR), (2) passing information from one cortical area to another through corticothalamo-cortical mechanisms, (3) sharpening the focus on task-relevant information through corticothalamo-cortical feedback mechanisms, and (4) selection of one language unit over another in the expression of a concept, accomplished in concert with basal ganglia loops. The relationship and interaction of these mechanisms is discussed and integrated with thalamic aphasia and neuroimaging data into a theory of thalamic functions in language. Published by Elsevier Inc.

  9. Electromagnetic structure of nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.G.


    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs. (LEW)

  10. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  11. The decay of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Wozniak, G.J.


    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  12. Comparison of Midbrain and Thalamic Space-Specific Neurons in Barn Owls (United States)

    Pérez, María Lucía; Peña, José Luis


    Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl’s tectal representation of auditory space is different from those found in the owl’s forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels. PMID:16424454

  13. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)


    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  14. Nuclei in Astrophysics (United States)

    Penionzhkevich, Yu. E.


    This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclearphysics methods for studying cosmic objects and properties of the Universe. The results of investigations in nuclear reactions, induced by radioactive nuclear beams, make it possible to analyze the nucleosynthesis scenario in the region of light elements in a new manner.

  15. Anatomical Variations in the Posterior Circle of Willis and Vascular Pathologies in Isolated Unilateral Thalamic Infarction. (United States)

    Goerlitz, Johannes; Wenz, Holger; Al-Zghloul, Mansour; Kerl, Hans U; Groden, Christoph; Förster, Alex


    To characterize relations between configurations of the posterior part of the Circle of Willis (CoW) and the occurrence of unilateral thalamic infarction. From a magnetic resonance imaging report database, we identified and analyzed 111 patients with acute isolated unilateral thalamic infarction on diffusion-weighted imaging (DWI). Vascular pathologies were noted on magnetic resonance angiography (MRA) and the diameter of the posterior communicating artery (PComA) and the P1 and P2 segments of the posterior cerebral artery determined. Most infarctions were observed in the territory of the inferolateral arteries (70.2%), followed by the paramedian (16.3%), tuberothalamic (8.7%), and posterior choroidal arteries (4.8%). Relevant vascular pathologies included stenosis of the basilar artery (4.5%), P1 segment stenosis (4.5%)/occlusion (.9%), and P2 segment stenosis (14.4%)/occlusion (4.5%). Paramedian thalamic infarction was associated with ipsilateral P1 segment hypoplasia/absence (P < .001); tuberothalamic infarction with ipsilateral PComA hypoplasia/absence (P = .08). Furthermore, the diameter of the relevant CoW segment was smaller in patients with ipsilateral thalamic infarction. Assessment of CoW configuration on MRA may be helpful to understand the appearance of unilateral thalamic stroke independent from stroke etiology. A smaller diameter of the relevant CoW segment might be a risk factor for ipsilateral thalamic stroke in the corresponding thalamic vascular territory. Copyright © 2015 by the American Society of Neuroimaging.

  16. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation. (United States)

    Li, Guoshi; Henriquez, Craig S; Fröhlich, Flavio


    The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  17. Effects of donepezil on behavioural manifestations of thalamic infarction: a single case observation

    Directory of Open Access Journals (Sweden)

    Rodrigo eRiveros


    Full Text Available Objective: To examine the effect of donepezil for the treatment of cognitive and behavioural disorders associated with thalamic lesions in a 45 years old male who suffered an infarct in the left thalamus. Background: Recent studies suggest that donepezil may improve executive functions impairments due to subcortical ischemic lesionsMethod: The crossover effects of donepezil were analyzed in a single case of thalamic infarction with cognitive and behavioural alterations. Results: Significant behavioural modifications related to improved performances in executive functions were observed with the treatment. Conclusions: The results suggest that donepezil may have significant effect on executive functions that can alter behavioural outcomes after thalamic infarctions

  18. Severe personality changes after unilateral left paramedian thalamic infarct. (United States)

    Fukutake, Toshio; Akada, Koichi; Ito, Shoichi; Okuda, Tomoko; Ueki, Yoshihiro


    Personality changes are not uncommon after paramedian thalamic infarction, but usually bilateral or relatively large lesions, often complicated by other neurological or neuropsychological deficits, are present. 'Pure' cases of unilateral lesions are extremely rare. We report that a right-handed, 48-year-old man, who was hypertensive and diabetic but had no prior psychiatric history, developed severe personality changes and a frontal-like syndrome after recovery from acute-onset impairment of consciousness at the age of 43. Other neurological and neuropsychological disturbances, especially verbal and visual amnesia, were unremarkable. MRI showed a very small infarct in the left paramedian area of the thalamus, mainly involving the dorsomedial nucleus. Copyright 2002 S. Karger AG, Basel

  19. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Alexander C. Lehn


    Full Text Available Background: Orthostatic tremor (OT was first described in 1977. It is characterized by rapid tremor of 13–18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS.Case Report: We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation.Discussion: Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data. 

  20. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. (United States)

    Pinault, D


    We describe a novel and very effective single-cell labeling method with unique advantages for revealing the axonal and dendritic fields of any extracellularly recorded neuron. This procedure involves the use of fine glass micro-pipettes (tip diameter: approximately 1 micron), which contain biocytin or Neurobiotin dissolved in a salt solution, for the simultaneous juxtacellular recording and tracer iontophoresis. Once a neuron is well-isolated and identified, low intensity ( 86%) far exceeds that obtained by direct intracellular injections of tracers as shown by the labeling of a large sample of 100 individual cells (from 115 attempts) in the thalamic reticular (Rt) nucleus of 33 rats. We thereby demonstrate that Rt cells project to restricted regions of a single thalamic nucleus, including anterior thalamic nuclei, and that the thalamus and Rt complex have reciprocal connections. The juxtacellular procedure thus represents an ideal directed single-cell labeling tool for determination of functional properties, for subsequent identification, for delineation of overall neuronal architecture and for tracing neuronal pathways, provided care is taken to avoid the possible drawbacks and pitfalls that are illustrated and discussed in the present paper.

  1. The continuum in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Liotta, R.J. [Royal Inst. of Tech. Stockholm (Sweden). Dept. of Solid State Electronics


    The Green function formalism is used to extend the standard (shell-model) treatment of bound states to processes that occur in the continuum part of nuclear spectra. The Berggren and Mittag-Leffler expansions are introduced and analysed. Applications to single-particle and particle-hole resonances are performed. Giant resonances are studied within the framework of the continuum RPA. In all cases it is found that the expansions agree well with the exact calculation. The mechanisms that induce the clustering of nucleons in nuclei are analysed and the corresponding decay processes are discussed in detail. (orig.)

  2. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L


    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  3. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker


    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  4. Saturation in nuclei

    CERN Document Server

    Lappi, T


    This talk discusses some recent studies of gluon saturation in nuclei. We stress the connection between the initial condition in heavy ion collisions and observables in deep inelastic scattering (DIS). The dominant degree of freedom in the small x nuclear wavefunction is a nonperturbatively strong classical gluon field, which determines the initial condition for the glasma fields in the initial stages of a heavy ion collision. A correlator of Wilson lines from the same classical fields, known as the dipole cross section, can be used to compute many inclusive and exclusive observables in DIS.

  5. Thalamic Stroke and Associated Behavior Disorders. Possibilities for Integral Management: Case Report

    National Research Council Canada - National Science Library

    Camargo, Loida Camargo; Sánchez, Katherine Parra


    .... Case report of a 56-year male patient with thalamic ischemia. The intervention with integral strategies involving pharmacological management and cognitive interventions was decisive for the satisfactory evolution of the patient...

  6. Characteristics of thalamic local field potentials in patients with disorders of consciousness. (United States)

    Huang, Yongzhi; He, Jianghong; Green, Alexander L; Aziz, Tipu Z; Stein, John F; Wang, Shouyan


    A functioning thalamus is essential for treatment of patients with disorders of consciousness (DOC) using deep brain stimulation (DBS). This work aims to identify the potential biomarkers related to consciousness from the thalamic deep brain local field potentials (LFPs) in DOC patients. The frequency features of central thalamic LFPs were characterized with spectral analysis. The features were further compared to those of LFPs from the ventroposterior lateral nucleus of the thalamus (VPL) in patients with pain. There are several distinct characteristics of thalamic LFPs found in patients with DOC. The most important feature is the oscillation around 10Hz which could be relevant to the existence of residual consciousness, whereas high power below 8Hz seemed to be associated with loss of consciousness. The invasive deep brain recording tool opens a unique way to explore the brain function in consciousness, awareness and alertness and clarify the potential mechanisms of thalamic stimulation in DOC.

  7. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor


    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z


    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  8. Changes in Activity of the Same Thalamic Neurons to Repeated Nociception in Behaving Mice. (United States)

    Huh, Yeowool; Cho, Jeiwon


    The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals.

  9. [Hypersomnia and thalamic and brain stem stroke: a study of seven patients]. (United States)

    Blanco, M; Espinosa, M; Arpa, J; Barreiro, P; Rodríguez-Albariño, A


    Thalamic and brainstem strokes are a cause of organic hypersomnia. In thalamic lesions it has been attributed to disruption of ascending activating impulses from the brainstem reticular formation and to insufficient spindling and slow-wave production, which depends upon activities of reticular thalamic nucleus and thalamocortical neurons, respectively. Reported sleep disorders in brainstem lesions have occasionally been contradictory and that is because of the presence of nearby structures in the brainstem with different functions in sleep-waking cycle. The aim of the study is to present the results of polysomnographic records in patients with thalamic and/or brainstem vascular lesions, and to correlate them with the anatomical structures affected. We have performed a polysomnographic study, (8-channel system), in patients with thalamic and/or brainstem strokes. All of them showed alterations of sleep-wake cycle. Neuroimaging studies were carried out in all patients. We report seven patients, 4 males and 3 females. Two cases presented thalamic strokes, in 3 the lesion was located in the brainstem and 2 patients had thalamo-mesencephalic lesions. All of them developed hypersomnia with an increase of NREM sleep. In patients with bilateral mesencephalic lesions we found that REM sleep was diminished as well. We have confirmed that lesions affecting thalamus and mesencephalic or pontine tegmental reticular formation are a cause of hypersomnia. The observation that this sleepiness is transient, supports the evidence of an extrathalamic alternative activating route.

  10. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)


    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  11. Age at First Exposure to Repetitive Head Impacts Is Associated with Smaller Thalamic Volumes in Former Professional American Football Players. (United States)

    Schultz, Vivian; Stern, Robert A; Tripodis, Yorghos; Stamm, Julie; Wrobel, Pawel; Lepage, Christian; Weir, Isabelle; Guenette, Jeffrey P; Chua, Alicia; Alosco, Michael L; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine E; Coleman, Michael J; Lin, Alexander P; Pasternak, Ofer; Shenton, Martha E; Koerte, Inga K


    Thalamic atrophy has been associated with exposure to repetitive head impacts (RHI) in professional fighters. The aim of this study is to investigate whether or not age at first exposure (AFE) to RHI is associated with thalamic volume in symptomatic former National Football League (NFL) players at risk for chronic traumatic encephalopathy (CTE). Eighty-six symptomatic former NFL players (mean age = 54.9 ± 7.9 years) were included. T1-weighted data were acquired on a 3T magnetic resonance imager, and thalamic volumes were derived using FreeSurfer. Mood and behavior, psychomotor speed, and visual and verbal memory were assessed. The association between thalamic volume and AFE to playing football and to number of years playing was calculated. Decreased thalamic volume was associated with more years of play (left: p = 0.03; right: p = 0.03). Younger AFE was associated with decreased right thalamic volume (p = 0.014). This association remained significant after adjusting for total years of play. Decreased left thalamic volume was associated with worse visual memory (p = 0.014), whereas increased right thalamic volume was associated with fewer mood and behavior symptoms (p = 0.003). In our sample of symptomatic former NFL players at risk for CTE, total years of play and AFE were associated with decreased thalamic volume. The effect of AFE on right thalamic volume was almost twice as strong as the effect of total years of play. Our findings confirm previous reports of an association between thalamic volume and exposure to RHI. They suggest further that younger AFE may result in smaller thalamic volume later in life.

  12. Rotational alignment in soft nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Yadrena Fizika i Yadrena Energetika)


    It is shown that in transitional odd-A nuclei, where the rotation-aligned coupling scheme usually takes place, the low collective angular momentum states of the decoupled band are not completely aligned due to core softness. This is illustrated on the example of La-nuclei.

  13. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)


    Aug 5, 2015 ... Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of ...

  14. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)


    Nov 4, 2014 ... determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision ... Electron scattering of highly unstable nuclei is not easy because it is difficult to produce ... both ends form a mirror potential to keep the ions longitudinally inside the SCRIT device, and the ...

  15. Reduced thalamic and pontine connectivity in Kleine-Levin syndrome

    Directory of Open Access Journals (Sweden)

    Maria eEngström


    Full Text Available The Kleine-Levin syndrome is a rare sleep disorder, characterized by exceptionally long sleep episodes. The neuropathology of the syndrome is unknown and treatment is often inadequate. The aim of the study was to improve understanding of the underlying neuropathology, related to cerebral networks, in Kleine-Levin syndrome during sleep episodes. One patient with Kleine-Levin syndrome and congenital nystagmus, was investigated by resting state functional Magnetic Resonance Imaging during both asymptomatic and hypersomnic periods. Fourteen healthy subjects were also investigated as control samples. Functional connectivity was assessed from seed regions of interest in the thalamus and the dorsal pons. Thalamic connectivity was normal in the asymptomatic patient whereas the connectivity between the brain stem, including dorsal pons, and the thalamus was diminished during hypersomnia. These results suggest that the patient’s nystagmus and hypersomnia might have their pathological origin in adjacent dorsal pontine regions. This finding provides additional knowledge of the cerebral networks involved in the neuropathology of this disabling disorder. Furthermore, these findings regarding a rare syndrome have broad implications and results could be of interest to researchers and clinicians in the whole field of sleep medicine.

  16. The thalamic reticular nucleus: structure, function and concept. (United States)

    Pinault, Didier


    On the basis of theoretical, anatomical, psychological and physiological considerations, Francis Crick (1984) proposed that, during selective attention, the thalamic reticular nucleus (TRN) controls the internal attentional searchlight that simultaneously highlights all the neural circuits called on by the object of attention. In other words, he submitted that during either perception, or the preparation and execution of any cognitive and/or motor task, the TRN sets all the corresponding thalamocortical (TC) circuits in motion. Over the last two decades, behavioural, electrophysiological, anatomical and neurochemical findings have been accumulating, supporting the complex nature of the TRN and raising questions about the validity of this speculative hypothesis. Indeed, our knowledge of the actual functioning of the TRN is still sprinkled with unresolved questions. Therefore, the time has come to join forces and discuss some recent cellular and network findings concerning this diencephalic GABAergic structure, which plays important roles during various states of consciousness. On the whole, the present critical survey emphasizes the TRN's complexity, and provides arguments combining anatomy, physiology and cognitive psychology.

  17. Getting signals into the brain: visual prosthetics through thalamic microstimulation (United States)

    Pezaris, John S.; Eskandar, Emad N.


    Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface. PMID:19569894

  18. A case of thalamic syndrome: somatosensory influences on visual orientation (United States)

    Anastasopoulos, D; Bronstein, A


    The ability to set a straight line to the perceived gravitational vertical (subjective visual vertical, SVV) was investigated in a 21 year old woman with long standing left hemihypaesthesia due to a posterior thalamic infarct. The putative structures involved were the somatosensory and vestibular thalamus (VPL, VPM) and associative (pulvinar) thalamus. The SVV was normal when seated upright. When lying on her right side, line settings deviated about 17° to the right, which is the normal A-effect. When lying on the hypaesthetic side the mean SVV remained close to true vertical—that is, the A-effect was absent, and there was a large increase in variability of the SVV settings. The findings support the view that the body tilt-induced bias of the SVV (A-effect) is largely mediated by somatosensory afferents. The finding that the A-effect was absent only when lying on the hypaesthetic side suggests that, during body tilt, the somatosensory system participates in visuogravitational orientation.


  19. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage


    . The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model......The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid...

  20. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.


    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  1. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D


    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  2. Parity violation in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.G.H.


    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector ..pi..-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in /sup 21/Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in /sup 21/Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four = 1 experiments will be pushed still further, and that improved calculations will be made for the /sup 6/Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis.

  3. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)


    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  4. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph


    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  5. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)


    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  6. [Thalamic dementia due to infarct of the left thalamus and genum of the right internal capsule]. (United States)

    Porta-Etessam, J; Martínez-Salio, A; Berbel, A; Benito-León, J; García-Muñoz, A; Kesler, P; Mateo, S

    Thalamic dementia is the clinical consequence of a disorder of both thalami. It is generally secondary to bilateral paramedial thalamic infarcts due to disorders of small blood vessels or cardioembolism. We report a case of dementia of acute onset involving the left thalamus and the genum of the right internal capsule. A 33 year old man, HIV positive, category B2, admitted to hospital for tuberculous meningitis presented with the acute onset of somnolence, followed by marked bradypsychism, personality changes, marked disorder of executive explicit memory without associated praxic, gnosic or language disorders. Ocular motility remained normal. There was left central facial paralysis with inverse emotive voluntary dissociation. The other cranial nerves were normal. There was left hemiparesia with extensor plantar reflex. No other alterations. Cerebral MR imaging was compatible with paramedial infarcts of the left thalamus and genum of the right internal capsule. Thalamic dementia generally occurs in bilateral paramedian thalamic disorders. There are cases of disorders of executive memory secondary to infarcts of the genum of the internal capsule due to interruption of the thalamotemporal pathways and a contralateral paramedial thalamic lesion.

  7. Altered resting-state functional connectivity of striatal-thalamic circuit in bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Shin Teng

    Full Text Available Bipolar disorder is characterized by internally affective fluctuations. The abnormality of inherently mental state can be assessed using resting-state fMRI data without producing task-induced biases. In this study, we hypothesized that the resting-state connectivity related to the frontal, striatal, and thalamic regions, which were associated with mood regulations and cognitive functions, can be altered for bipolar disorder. We used the Pearson's correlation coefficients to estimate functional connectivity followed by the hierarchical modular analysis to categorize the resting-state functional regions of interest (ROIs. The selected functional connectivities associated with the striatal-thalamic circuit and default mode network (DMN were compared between bipolar patients and healthy controls. Significantly decreased connectivity in the striatal-thalamic circuit and between the striatal regions and the middle and posterior cingulate cortex was observed in the bipolar patients. We also observed that the bipolar patients exhibited significantly increased connectivity between the thalamic regions and the parahippocampus. No significant changes of connectivity related to the frontal regions in the DMN were observed. The changed resting-state connectivity related to the striatal-thalamic circuit might be an inherent basis for the altered emotional and cognitive processing in the bipolar patients.

  8. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing. (United States)

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian


    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Frontotemporal dementia with severe thalamic involvement : a clinical and neuropathological study

    Directory of Open Access Journals (Sweden)

    Radanovic Márcia


    Full Text Available Frontotemporal dementia (FTD is the third-leading cause of cortical dementia after Alzheimer's disease and Lewy body dementia, and is characterized by a dementia where behavioral disturbances are prominent and appear early in the course of the disease. We report the case of a 58 year-old man affected by dementia with behavioral disturbances, in addition to rigid-hypokinetic and a lower motor neuron syndrome that were present at later stages of the illness. Neuroimaging studies showed frontotemporal atrophy. Neuropathological studies revealed intense thalamic neuronal loss and astrocytic gliosis, as well as moderate frontotemporal neuronal loss, astrocytosis and spongiform degeneration. Thalamic degeneration has previously been described among the wide group of neuropathological features of FTD. The aim of the present study is to show the clinical and neuropathological aspects of thalamic degeneration in FTD, along with its role in behavioral disturbances, a common finding in this condition.

  10. Partonic Structure of Light Nuclei


    Armstrong, Whitney; Arrington, John; Cloet, Ian; Hafidi, Kawtar; Hattawy, Mohammad; Potteveld, David; Reimer, Paul; Riordan, Seamus; Yi, Z.; Ball, Jacques; Defurne, Maxime; Garcon, Michel; Moutarde, Herve; Procureur, Sebastien; Sabatie, Franck


    We propose to study the partonic structure of $^4$He by measuring the Beam Spin Asymmetry (BSA) in coherent Deeply Virtual Compton Scattering (DVCS) and the differential cross-section of the Deeply Virtual Meson Production (DVMP) of the $\\phi$. Despite its simple structure, a light nucleus such as $^4$He has a density and a binding energy comparable to that of heavier nuclei. Therefore, by studying $^4$He nucleus, one can learn typical features of the partonic structure of atomic nuclei. The ...

  11. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)


    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  12. Lucid dreams, an atypical sleep disturbance in anterior and mediodorsal thalamic strokes. (United States)

    Sagnier, S; Coulon, P; Chaufton, C; Poli, M; Debruxelles, S; Renou, P; Rouanet, F; Olindo, S; Sibon, I


    Cognitive, affective, and behavioural disturbances are commonly reported following thalamic strokes. Conversely, sleep disorders are rarely reported in this context. Herein, we report the cases of two young patients admitted for an ischemic stroke located in the territories of the left pre-mammillary and paramedian arteries. Together with aphasia, memory complaint, impaired attention and executive functions, they reported lucid dreams with catastrophic content or conflicting situations. Lucid dreams are an atypical presentation in thalamic strokes. These cases enlarge the clinical spectrum of sleep-wake disturbances potentially observed after an acute cerebrovascular event. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Cavitation inception from bubble nuclei (United States)

    Mørch, K. A.


    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  14. Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity

    Directory of Open Access Journals (Sweden)

    Tamás eKiss


    Full Text Available NMDA receptor (NMDAR antagonists, such as phencyclidine, ketamine or dizocilpine (MK-801 are commonly used in psychiatric drug discovery in order to model several symptoms of schizophrenia, including psychosis and impairments in working memory. In spite of the widespread use of NMDAR antagonists in preclinical and clinical studies, our understanding of the mode of action of these drugs on brain circuits and neuronal networks is still limited. In the present study spontaneous local field potential (LFP, multi- (MUA and single unit activity, and evoked potential, including paired-pulse facilitation (PPF in response to electrical stimulation of the ipsilateral subiculum were carried out in the medial prefrontal cortex (mPFC in urethane anesthetized rats. Systemic administration of MK-801 (0.05~mg/kg, i.v. decreased overall MUA, with a diverse effect on single unit activity, including increased, decreased or unchanged firing, and in line with our previous findings shifted delta frequency power of the LFP and disrupted PPF (Kiss et al., Int J Neuropsychopharmacol. 2010. In order to provide further insight to the mechanisms of action of NMDAR antagonists, MK-801 was administered intracranially into the mPFC and mediodorsal nucleus of the thalamus (MD. Microinjections of MK-801, but not physiological saline, localized into the MD evoked changes in both LFP parameters and PPF similar to the effects of systemically administered MK-801. Local microinjection of MK-801 into the mPFC was without effect on these parameters. Our findings indicate that the primary site of the action of systemic administration of NMDA receptor antagonists is unlikely to be the cortex. We presume that multiple neuronal networks, involving thalamic nuclei contribute to disrupted behavior and cognition following NMDA receptor blockade.

  15. Functional disconnection of thalamic and cerebellar dentate nucleus networks in progressive supranuclear palsy and corticobasal syndrome. (United States)

    Upadhyay, Neeraj; Suppa, Antonio; Piattella, Maria Cristina; Giannì, Costanza; Bologna, Matteo; Di Stasio, Flavio; Petsas, Nikolaos; Tona, Francesca; Fabbrini, Giovanni; Berardelli, Alfredo; Pantano, Patrizia


    To assess functional rearrangement following neurodegeneration in the thalamus and dentate nucleus in patients with progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). We recruited 19 patients with PSP, 11 with CBS and 14 healthy subjects. All the subjects underwent resting-state (rs) fMRI using a 3T system. Whole brain functional connectivity of the thalamus and dentate nucleus were calculated by means of a seed-based approach with FEAT script in FSL toolbox. Thalamic volume was calculated by means of FIRST, and the dentate area by means of Jim software. Both thalamic volume and dentate area were significantly smaller in PSP and CBS patients than in healthy subjects. No significant difference emerged in thalamic volume between PSP and CBS patients, whereas dentate area was significantly smaller in PSP than in CBS. Thalamic functional connectivity was significantly reduced in both patient groups in various cortical, subcortical and cerebellar areas. By contrast, changes in dentate nucleus functional connectivity differed in PSP and CBS: it decreased in subcortical and prefrontal cortical areas in PSP, but increased asymmetrically in the frontal cortex in CBS. Evaluating the dentate nucleus size and its functional connectivity may help to differentiate patients with PSP from those with CBS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Complex neurological symptoms in bilateral thalamic stroke due to Percheron artery occlusion

    Directory of Open Access Journals (Sweden)

    Caruso P


    Full Text Available Paola Caruso, Paolo Manganotti, Rita Moretti Department of Clinical Neurology, University of Trieste, Trieste, Italy Abstract: The artery of Percheron is a rare anatomical variant where a single thalamic perforating artery arises from the proximal posterior cerebral artery (P1 segment between the basilar artery and the posterior communicating artery and supplies the rostral mesencephalon and both paramedian territories of the thalami. Almost one-third of human brains present this variant. Occlusion of the artery of Percheron mostly results in a bilateral medial thalamic infarction, which usually manifests with altered consciousness (including coma, vertical gaze paresis, and cognitive disturbance. The presentation is similar to the “top of the basilar syndrome”, and early recognition should be prompted. We describe the case of a young female with this vessel variant who experienced a bilateral thalamic stroke. Magnetic resonance angiography demonstrated bilateral thalamic infarcts and a truncated artery of Percheron. Occlusion of the vessel was presumably due to embolism from a patent foramen ovale. Thrombolysis was performed, with incomplete symptom remission, cognitive impairment, and persistence of speech disorders. Early recognition and treatment of posterior circulation strokes is mandatory, and further investigation for underlying stroke etiologies is needed. Keywords: thalamus vascularization, cognitive impairment, paramedian thalamus territory, speech disorder, vertical gaze palsy

  17. Silent diabetes mellitus, periodontitis and a new case of thalamic abscess. (United States)

    Karageorgiou, Ioannis; Chandler, Christopher; Whyte, Martin Brunel


    Brain abscess is an unusual complication of uncontrolled diabetes. A solitary thalamic abscess is an uncommon type of brain abscess. We report a case of thalamic abscess, whereupon diabetes mellitus and periodontitis were diagnosed. The diagnosis and management of thalamic abscess, and the interplay of type 2 diabetes and periodontitis are discussed. A 56-year-old, Caucasian, man with no medical or travel history, presented with 5-day symptoms of meningeal irritation. Body mass index 30.6 kg/m(2). CT demonstrated a solitary midline lesion with neoplasia as a differential diagnosis. It was biopsied and cultures grew Streptococcus milleri. He was treated by stereotactic puncture, external drainage and targeted intrathecal and systemic antibiotic therapy. HIV negative but glycated haemoglobin (HbA1c) 10.7% (93 mmol/mol). Dental examination revealed a small molar abscess. Radiological resolution of the thalamic abscess occurred within 2 months. Diabetes improved with 7 weeks of insulin, and maintained on metformin, HbA1c 6.9% (51 mmol/mol). There was no residual neurological disability. 2014 BMJ Publishing Group Ltd.

  18. Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression

    NARCIS (Netherlands)

    Schuurman, P. Richard; Bosch, D. Andries; Merkus, Maruschka P.; Speelman, Johannes D.


    Thalamic stimulation and thalamotomy for treatment of tremor due to Parkinson's disease, essential tremor, and multiple sclerosis were compared in a randomized trial. The symptomatic and functional outcome was studied after 5 years of follow-up. Sixty-eight patients were treated (45 Parkinson's

  19. Impairment of Syntax and Lexical Semantics in a Patient with Bilateral Paramedian Thalamic Infarction (United States)

    De Witte, Lieve; Wilssens, Ineke; Engelborghs, Sebastian; De Deyn, Peter P.; Marien, Peter


    Bilateral vascular thalamic lesions are rare. Although a variety of neurobehavioral manifestations have been described, the literature is less documented with regard to accompanying linguistic disturbances. This article presents an in-depth neurolinguistic analysis of the language symptoms of a patient who incurred bilateral paramedian ischemic…

  20. Direct reactions with exotic nuclei

    Directory of Open Access Journals (Sweden)

    Obertelli A.


    Full Text Available Direct reactions have been a unique tool to address the nuclear many-body problem from the experimental side. They are now routinely used in inverse kinematics with radioactive ion beams (RIB. However, weakly bound nuclei have recently raised questions on the applicability of reaction formalisms benchmarked on stable nuclei to the study of single-particle properties and correlations in these unstable systems. The study of the most exotic species produced at low intensity have triggered new technical developments to increase the sensitivity of the setup, with a focused attention to direct reactions such as transfer at low incident energy or knockout at intermediate energies.

  1. Shell Structure of Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dobaczewski, J. [Warsaw University; Michel, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Nazarewicz, Witold [ORNL; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL); Rotureau, J. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)


    Theoretical predictions and experimental discoveries for neutron-rich, short-lived nuclei far from stability indicate that the familiar concept of nucleonic shell structure should be considered as less robust than previously thought. The notion of single-particle motion in exotic nuclei is reviewed with a particular focus on three aspects: (i) variations of nuclear mean field with neutron excess due to tensor interactions; (ii) importance of many-body correlations; and (iii) influence of open channels on properties of weakly bound and unbound nuclear states.

  2. International Symposium on Exotic Nuclei

    CERN Document Server

    Sobolev, Yu G; EXON-2014


    The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).

  3. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah


    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  4. Thalamic neuron models encode stimulus information by burst-size modulation. (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A


    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  5. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)


    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  6. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage


    us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  7. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    The pion production processes from nucleons and nuclei at intermediate energies are important tools to study the hadronic structure. The dynamic models of the hadronic structure are used to calculate the various nucleon and transition form factors which are tested by using the experimental data on photo, electro and.

  8. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare ...

  9. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the ...

  10. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall


    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  11. Effective connectivity of ascending and descending frontal-thalamic pathways during sustained attention: Complex brain network interactions in adolescence


    Jagtap, Pranav; Diwadkar, Vaibhav A.


    Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectu...

  12. Cooper pairs in atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)


    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  13. Superheavy nuclei and fission barriers (United States)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  14. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Janet Lee


    Full Text Available Purpose. Arteriovenous malformations (AVMs in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS with intensity modulated radiotherapy (IMRT. Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30 Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended.

  15. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin


    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  16. Memory Profiles after Unilateral Paramedian Thalamic Stroke Infarction: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Antonio Carota


    Full Text Available We performed extensive neuropsychological assessment of two male patients (matched for age and educational level with similar (localization and size unilateral paramedian ischemic thalamic lesions (AB on the left and SD on the right. Both patients showed severe memory impairments as well as other cognitive deficits. In comparison to SD, AB showed severe impairment of executive functions and a more severe deficit of episodic/anterograde memory, especially in the verbal modality. The findings of this single case study suggest the possibility that the profile and severity of the executive dysfunction are determinant for the memory deficits and depend on from the side of the lesion. In addition to a material-side-specific (verbal versus visual deficit hypothesis, the differential diencephalo-prefrontal contributions in mnestic-processing, in case of paramedian thalamic stroke, might also be explained in terms of their stage-specificity (encoding versus retrieval.

  17. Surgical resection of unilateral thalamic tumors in adults: approaches and outcomes. (United States)

    Cao, Lei; Li, Chuzhong; Zhang, Yazhuo; Gui, Songbai


    The thalamic tumors were less common in adults and this study aimed to determine the clinical features, surgical approaches, and outcomes of adult thalamic tumors, which have not been well-described in the literature. We reviewed the clinical presentation, surgical approach, perioperative mortality and morbidity, and outcomes of 111 operated patients (71 males, 40 females; mean age at presentation, 33.4 ± 13.2 years) with unilateral thalamic tumor. The most common clinical presentations were increased intracranial pressure (65%) and motor deficits (40%). Five surgical approaches were used depending on tumor location; the most common was the transparieto-occipital approach (47.7%). According to peri- and post-operative magnetic resonance imaging findings, the tumors were totally resected in 29 cases (26.1%), subtotally resected in 54 cases (48.6%), and partially resected in 21 cases (18.9%). Five patients died during the perioperative period (4.5%, 5/111). The most common morbidity was motor deficits (21.7%, 23/106). According to histological findings, there were 50 high-grade and 61 low-grade tumors. Median survival of patients with low- and high-grade tumors were 40 and 12 months, respectively (mean follow-up, 37.3 months). Survival was significantly longer in cases of total or subtotal resection (median, 28 months) compared to partial resection or biopsy (median, 12 months). Survival was poorer in adults than in previous reported pediatrics. Surgical treatment of adult thalamic tumors must be individualized according to tumor location. Low-grade tumors and total/subtotal resection seem to be predictors of better surgical outcomes. Nevertheless, the outcome of adult patients were still worse than pediatric patients.

  18. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. (United States)

    Gold, Gabriel; Kövari, Enikö; Herrmann, François R; Canuto, Alessandra; Hof, Patrick R; Michel, Jean-Pierre; Bouras, Constantin; Giannakopoulos, Panteleimon


    Most previous studies addressed the cognitive impact of lacunar infarcts using radiologic correlations that are known to correlate poorly with neuropathological data. Moreover, absence of systematic bilateral assessment of vascular lesions and masking effects of Alzheimer disease pathology and macrovascular lesions may explain discrepancies among previous reports. To define the relative contribution of silent lacunes to cognitive decline, we performed a detailed analysis of lacunar and microvascular pathology in both cortical and subcortical areas of 72 elderly individuals without significant neurofibrillary tangle pathology or macrovascular lesions. Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale; neuropathological evaluation included Abeta-protein deposition staging and bilateral assessment of microvascular ischemic pathology and lacunes; statistical analysis included multivariate models controlling for age, amyloid deposits, and microvascular pathology. Thalamic and basal ganglia lacunes were negatively associated with CDR scores; cortical microinfarcts, periventricular and diffuse white matter demyelination also significantly affected cognition. In a multivariate model, cortical microinfarcts and thalamic and basal ganglia lacunes explained 22% of CDR variability; amyloid deposits and microvascular pathology explained 12%, and the assessment of thalamic and basal ganglia lacunes added an extra 17%. Deep white matter lacunes were not related to cognitive status in univariate and multivariate models. In agreement with the recently proposed concept of subcortical ischemic vascular dementia, our autopsy series provides important evidence that gray matter lacunes are independent predictors of cognitive decline in elderly individuals without concomitant dementing processes such as Alzheimer disease.

  19. Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia. (United States)

    Welch, Killian A; Stanfield, Andrew C; McIntosh, Andrew M; Whalley, Heather C; Job, Dominic E; Moorhead, Thomas W; Owens, David G C; Lawrie, Stephen M; Johnstone, Eve C


    No longitudinal study has yet examined the association between substance use and brain volume changes in a population at high risk of schizophrenia. To examine the effects of cannabis on longitudinal thalamus and amygdala-hippocampal complex volumes within a population at high risk of schizophrenia. Magnetic resonance imaging scans were obtained from individuals at high genetic risk of schizophrenia at the point of entry to the Edinburgh High-Risk Study (EHRS) and approximately 2 years later. Differential thalamic and amygdala-hippocampal complex volume change in high-risk individuals exposed (n = 25) and not exposed (n = 32) to cannabis in the intervening period was investigated using repeated-measures analysis of variance. Cannabis exposure was associated with bilateral thalamic volume loss. This effect was significant on the left (F = 4.47, P = 0.04) and highly significant on the right (F= 7.66, P= 0.008). These results remained significant when individuals using other illicit drugs were removed from the analysis. These are the first longitudinal data to demonstrate an association between thalamic volume loss and exposure to cannabis in currently unaffected people at familial high risk of developing schizophrenia. This observation may be important in understanding the link between cannabis exposure and the subsequent development of schizophrenia.

  20. Interactive Responses of a Thalamic Neuron to Formalin Induced Lasting Pain in Behaving Mice (United States)

    Huh, Yeowool; Bhatt, Rushi; Jung, DaeHyun; Shin, Hee-sup; Cho, Jeiwon


    Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, since previous studies were done under either neuropathic pain conditions or often under anesthesia, the mechanism of thalamic pain modulation under awake conditions is not well understood. We therefore characterized the thalamic firing patterns of behaving mice in response to nociceptive pain induced by inflammation. Our results demonstrated that nociceptive pain responses were positively correlated with tonic firing and negatively correlated with burst firing of individual TC neurons. Furthermore, burst properties such as intra-burst-interval (IntraBI) also turned out to be reliably correlated with the changes of nociceptive pain responses. In addition, brain stimulation experiments revealed that only bursts with specific bursting patterns could significantly abolish behavioral nociceptive responses. The results indicate that specific patterns of bursting activity in thalamocortical relay neurons play a critical role in controlling long-lasting inflammatory pain in awake and behaving mice. PMID:22292022

  1. Disrupted Auto-Activation, Dysexecutive and Confabulating Syndrome Following Bilateral Thalamic and Right Putaminal Stroke

    Directory of Open Access Journals (Sweden)

    Lieve De Witte


    Full Text Available Objective: Clinical, neuropsychological, structural and functional neuroimaging results are reported in a patient who developed a unique combination of symptoms after a bi-thalamic and right putaminal stroke. The symptoms consisted of dysexecutive disturbances associated with confabulating behavior and auto-activation deficits. Background: Basal ganglia and thalamic lesions may result in a variety of motor, sensory, neuropsychological and behavioral syndromes. However, the combination of a dysexecutive syndrome complicated at the behavioral level with an auto-activation and confabulatory syndrome has never been reported. Methods: Besides clinical and neuroradiological investigations, an extensive set of standardized neuropsychological tests was carried out. Results: In the post-acute phase of the stroke, a dysexecutive syndrome was found in association with confabulating behavior and auto-activation deficits. MRI showed focal destruction of both thalami and the right putamen. Quantified ECD SPECT revealed bilateral hypoperfusions in the basal ganglia and thalamus but no perfusion deficits were found at the cortical level. Conclusion: The combination of disrupted auto-activation, dysexecutive and confabulating syndrome in a single patient following isolated subcortical damage renders this case exceptional. Although these findings do not reveal a functional disruption of the striato-ventral pallidal-thalamic-frontomesial limbic circuitry, they add to the understanding of the functional role of the basal ganglia in cognitive and behavioral syndromes.

  2. Bilateral thalamic deep brain stimulation for the treatment of head tremor. Report of two cases. (United States)

    Berk, Caglar; Honey, Christopher R


    Isolated head tremor is rare, but can be disabling. The authors' experience with the treatment of limb tremor due to essential tremor led them to consider using bilateral thalamic deep brain stimulation (DBS) in two patients presenting only with disabling head tremor. One patient exhibited no peripheral tremor and the other displayed only a slight upper-limb tremor. Both patients underwent placement of units that apply simultaneous bilateral thalamic DBS. Surgical targets were verified by using intraoperative macrostimulation, and the stimulators were implanted during the same surgery. Patients were videotaped preoperatively and at 2, 4, 6, and 9 months postoperatively during periods in which the stimulators were turned on and off. Videotapes were randomized and rated for resting, postural, and action tremors according to the Fahn clinical rating scale for tremor. Because this scale is not designed for head tremor, the patients were also evaluated on the basis of a functional scale that reflected their quality of life and the amount of disability caused by head tremor. Both patients experienced no tremor after their stimulators were turned on and properly adjusted at the 6th postoperative week. The patients were followed for a total of 9 months and results remained stable throughout this period. No complications were encountered. Bilateral thalamic DBS appears to be an effective and safe treatment for isolated head tremor in patients with essential tremor. The authors present a scale for the functional assessment of head tremor.

  3. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. (United States)

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S


    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.


    Directory of Open Access Journals (Sweden)

    Mane Makarand, Mane Priyanka, Mohite Rajsinh , Bhattad Prashant, Bangar Kushal, Mahajani Anup


    Full Text Available The Artery of Percheron, a rare anatomical variant of brain vascularisation, arises from the posterior cerebral artery. Occlusion of this artery leads to bilateral paramedian thalamic infarct leads to dysfunction of central nervous system. Incidence of bilateral thalamic infarct secondary to occlusion of artery of Percheron is unknown because of its rarity. Here we report a case of 35 year old female presented with altered state of consciousness and the underlying cause was occlusion of Artery of Percheron which leads to bilateral thalamic infarct detected on MRI scanning. It showed hyperintensities on T2W1 and FLAIR, and hypointensity on T1W1, restricted to bilateral ventromedial thalami showing corresponding area of high signal intensity on diffusion weighted images and hypointensity on apparent diffusion coefficient images indicating diffusion restriction, suggestive of infarct. On further investigation magnetic resonance arteriogram (MRA of the brain demonstrated a single common artery arising from the left P1 segment which divided into two branches distally supplying bilateral thalami. Patient became alright after 2 weeks of medical line of treatment.

  5. Reduced thalamic volume in Parkinson disease with REM sleep behavior disorder: volumetric study. (United States)

    Salsone, M; Cerasa, A; Arabia, G; Morelli, M; Gambardella, A; Mumoli, L; Nisticò, R; Vescio, B; Quattrone, A


    REM sleep behavior disorder (RBD) is a common non motor feature of Parkinson's Disease (PD) affecting about half the patients with this disease. Distinct structural brain tissue abnormalities have been reported in several regions modulating REM sleep of the patients with idiopathic RBD. At the present time, there are no conventional MRI studies investigating patients with PD associated with RBD. Herein, we used voxel-based morphometry (VBM) to detect the neuroanatomical profile of PD patients with and without RBD. Optimized VBM was applied to the MRI brain images in 11 PD patients with RBD (PD-RBD), 11 PD patients without RBD (PD) and 18 age-and sex-matched controls. To corroborate VBM findings we used automated volumetric method (FreeSurfer) to quantify subcortical brain regions volumes. Patients and controls also underwent DAT-SPECT and cardiac MIBG scintigraphies. The VBM analysis showed markedly reduced gray matter volume in the right thalamus of PD-RBD patients in comparison with PD patients and controls. Automatic thalamic segmentation in PD-RBD patients showed a bilaterally reduced thalamic volume as compared with PD patients or controls. All PD patients (with and without RBD) showed a reduced tracer uptake on DAT-SPECT and cardiac MIBG scintigraphies as compared to controls. Our findings suggest that the presence of RBD symptoms in PD patients is associated with a reduced thalamic volume suggesting a pathophysiologic role of the thalamus in the complex circuit causing RBD. Copyright © 2014. Published by Elsevier Ltd.

  6. Thalamic haemorrhage vs internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality

    Directory of Open Access Journals (Sweden)

    García-Eroles Luis


    Full Text Available Abstract Background There is a paucity of clinical studies focused specifically on intracerebral haemorrhages of subcortical topography, a subject matter of interest to clinicians involved in stroke management. This single centre, retrospective study was conducted with the following objectives: a to describe the aetiological, clinical and prognostic characteristics of patients with thalamic haemorrhage as compared with that of patients with internal capsule-basal ganglia haemorrhage, and b to identify predictors of in-hospital mortality in patients with thalamic haemorrhage. Methods Forty-seven patients with thalamic haemorrhage were included in the "Sagrat Cor Hospital of Barcelona Stroke Registry" during a period of 17 years. Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The region of the intracranial haemorrhage was identified on computerized tomographic (CT scans and/or magnetic resonance imaging (MRI of the brain. Results Thalamic haemorrhage accounted for 1.4% of all cases of stroke (n = 3420 and 13% of intracerebral haemorrhage (n = 364. Hypertension (53.2%, vascular malformations (6.4%, haematological conditions (4.3% and anticoagulation (2.1% were the main causes of thalamic haemorrhage. In-hospital mortality was 19% (n = 9. Sensory deficit, speech disturbances and lacunar syndrome were significantly associated with thalamic haemorrhage, whereas altered consciousness (odds ratio [OR] = 39.56, intraventricular involvement (OR = 24.74 and age (OR = 1.23, were independent predictors of in-hospital mortality. Conclusion One in 8 patients with acute intracerebral haemorrhage had a thalamic hematoma. Altered consciousness, intraventricular extension of the hematoma and advanced age were determinants of a poor early outcome.

  7. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway.

    Directory of Open Access Journals (Sweden)

    Sébastien Béhuret

    Full Text Available The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii the statistics of the corticothalamic synaptic bombardment and iii the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending

  8. Morphology and electrophysiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker. (United States)

    Mulle, C; Madariaga, A; Deschênes, M


    Reticularis thalami neurons (RE neurons) were identified morphologically, and their electrophysiological properties were studied in cat under barbiturate anesthesia. Intracellular HRP injections showed that RE neurons possessed very long dendrites bearing numerous filopodia-like appendages and that their axons were directed toward main thalamic nuclei. As a rule, small axonal branches were also emitted within the RE nucleus itself. At rest, the membrane potential of RE neurons displayed 2 types of oscillations: a slow 0.1-0.2 Hz oscillation and fast 7-12 Hz oscillations occurring on the positive phase of the former. Episodes of spindle (7-12 Hz) waves lasted for 2-3 sec and were characterized by rhythmic depolarizations and burst discharges. Intracellular injections of QX314 and current pulse analyses revealed the presence in RE cells of 2 distinct inward currents: a persistent current that promoted tonic firing and a low-threshold current deinactivated by hyperpolarization that generated burst discharges. The low-threshold current deinactivated with large somatic hyperpolarizations (up to 30 mV) and produced depolarizing responses that lasted for about 70 msec. In addition, low-threshold responses appeared rhythmically at intervals of about 150 msec after recovery of the membrane potential from hyperpolarization. Because of their duration, voltage dependence, and persistence after intracellular injections of QX314, it is suggested that these responses resulted from activation of a low-threshold Ca2+ current at the dendritic level. In QX314-injected cells, selective components of spontaneous oscillations were abolished, among them the positive phase of the slow oscillation and late depolarizing humps that followed burst discharges within spindle sequences. However, the rhythmic occurrence of spindle episodes at 0.1-0.2 Hz was never affected by DC currents or by QX314 or Cl- injections, suggesting that oscillations within a particular RE neuron partly reflected the

  9. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning. (United States)

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of


    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.


    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  11. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)


    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  12. An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. (United States)

    Bopp, Rita; Holler-Rickauer, Simone; Martin, Kevan A C; Schuhknecht, Gregor F P


    The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs. We discovered that the thalamus contributed proportionately only half as many synapses to the local circuitry of L4 in M1 compared with S1. Furthermore, thalamic boutons in M1 targeted spiny dendrites exclusively, whereas ∼9% of synapses were formed with dendrites of smooth neurons in S1. VGluT2 + boutons in M1 were smaller and formed fewer synapses per bouton on average (1.3 vs 2.1) than those in S1, but VGluT2 + synapses in M1 were larger than in S1 (median postsynaptic density areas of 0.064 μm 2 vs 0.042 μm 2 ). In M1 and S1, thalamic synapses formed only a small fraction (12.1% and 17.2%, respectively) of all of the asymmetric synapses in L4. The functional role of the thalamic input to L4 in M1 has largely been neglected, but our data suggest that, as in S1, the thalamic input is amplified by the recurrent excitatory connections of the L4 circuits. The lack of direct thalamic input to inhibitory neurons in M1 may indicate temporal differences in the inhibitory gating in L4 of M1 versus S1. SIGNIFICANCE STATEMENT Classical interpretations of the function of primary motor cortex (M1) emphasize its lack of the granular layer 4 (L4) typical of sensory cortices. However, we show here that, like sensory cortex (S1), mouse M1 also has the canonical circuit motif of a core thalamic input to the middle cortical layer and that thalamocortical synapses form a small fraction (M1: 12%; S1: 17%) of all asymmetric synapses in L4 of both areas

  13. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device (United States)

    Kanagasabapathi, Thirukumaran T.; Massobrio, Paolo; Barone, Rocco Andrea; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.


    Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.

  14. Impairment in material-specific long-term memory following unilateral mediodorsal thalamic damage and presumed partial disconnection of the mammillo-thalamic tract. (United States)

    Edelstyn, Nicola M J; Mayes, Andrew R; Denby, Christine; Ellis, Simon J


    Neuropsychological findings suggest material-specific lateralization of the medial temporal lobe's role in long-term memory, with greater left-sided involvement in verbal memory, and greater right-sided involvement in visual memory. Whether material-specific lateralization of long-term memory also extends to the anteromedial thalamus remains uncertain. We report two patients with unilateral right (OG) and left (SM) mediodorsal thalamic pathology plus probable correspondingly lateralized damage of the mammillo-thalamic tract. The lesions were mapped using high-resolution structural magnetic resonance imaging and schematically reconstructed. Mean absolute volume estimates for the mammillary bodies, hippocampus, perirhinal cortex, and ventricles are also presented. Estimates of visual and verbal recall and item recognition memory were obtained using the Doors and People, the Rey Complex Figure Test, and the Logical Memory subtests of the Wechsler Memory Scales. Each patient's performance was compared to a group of healthy volunteers matched for demographic characteristics, premorbid IQ, and current levels of functioning. A striking double dissociation was evident in material-specific long-term memory, with OG showing significant impairments in visual memory but not verbal memory, and SM showing the opposite profile of preserved visual memory and significantly impaired verbal memory. These impairments affected both recall and item recognition. The reported double dissociation provides the strongest evidence yet that material-specific lateralization of long-term memory also extends to the anteromedial thalamus. The findings are also discussed in relation to proposals that distinct anatomical regions within the medial temporal lobe, anteromedial thalamus, and associated tracts make qualitatively different contributions to recall and item recognition. ©2011 The British Psychological Society.

  15. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Bao, Faxiu; Ma, Shaohui; Guo, Chenguang; Jin, Chenwang; Zhang, Ming [First Affiliated Hospital of Xi' an Jiaotong University, Department of Medical Imaging, Xi' an, Shaanxi (China); Li, Dan [First Affiliated Hospital of Xi' an Jiaotong University, Department of Respiratory and Critical Care Medicine, Xi' an, Shaanxi (China)


    Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy ({sup 1}H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN. (orig.)

  16. Thalamic GABA predicts fine motor performance in manganese-exposed smelter workers.

    Directory of Open Access Journals (Sweden)

    Zaiyang Long

    Full Text Available Overexposure to manganese (Mn may lead to parkinsonian symptoms including motor deficits. The main inhibitory neurotransmitter gamma-aminobutyric acid (GABA is known to play a pivotal role in the regulation and performance of movement. Therefore this study was aimed at testing the hypothesis that an alteration of GABA following Mn exposure may be associated with fine motor performance in occupationally exposed workers and may underlie the mechanism of Mn-induced motor deficits. A cohort of nine Mn-exposed male smelter workers from an Mn-iron alloy factory and 23 gender- and age-matched controls were recruited and underwent neurological exams, magnetic resonance spectroscopy (MRS measurements, and Purdue pegboard motor testing. Short-echo-time MRS was used to measure N-Acetyl-aspartate (NAA and myo-inositol (mI. GABA was detected with a MEGA-PRESS J-editing MRS sequence. The mean thalamic GABA level was significantly increased in smelter workers compared to controls (p = 0.009. Multiple linear regression analysis reveals (1 a significant association between the increase in GABA level and the duration of exposure (R(2 = 0.660, p = 0.039, and (2 significant inverse associations between GABA levels and all Purdue pegboard test scores (for summation of all scores R(2 = 0.902, p = 0.001 in the smelter workers. In addition, levels of mI were reduced significantly in the thalamus and PCC of smelter workers compared to controls (p = 0.030 and p = 0.009, respectively. In conclusion, our results show clear associations between thalamic GABA levels and fine motor performance. Thus in Mn-exposed subjects, increased thalamic GABA levels may serve as a biomarker for subtle deficits in motor control and may become valuable for early diagnosis of Mn poisoning.

  17. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens (United States)

    Varela, C.; Kumar, S.; Yang, J. Y.; Wilson, M. A.


    The reuniens nucleus in the midline thalamus projects to the medial prefrontal cortex (mPFC) and the hippocampus, and has been suggested to modulate interactions between these regions, such as spindle–ripple correlations during sleep and theta band coherence during exploratory behavior. Feedback from the hippocampus to the nucleus reuniens has received less attention but has the potential to influence thalamocortical networks as a function of hippocampal activation. We used the retrograde tracer cholera toxin B conjugated to two fluorophores to study thalamic projections to the dorsal and ventral hippocampus and to the prelimbic and infralimbic subregions of mPFC. We also examined the feedback connections from the hippocampus to reuniens. The goal was to evaluate the anatomical basis for direct coordination between reuniens, mPFC, and hippocampus by looking for double-labeled cells in reuniens and hippocampus. In confirmation of previous reports, the nucleus reuniens was the origin of most thalamic afferents to the dorsal hippocampus, whereas both reuniens and the lateral dorsal nucleus projected to ventral hippocampus. Feedback from hippocampus to reuniens originated primarily in the dorsal and ventral subiculum. Thalamic cells with collaterals to mPFC and hippocampus were found in reuniens, across its anteroposterior axis, and represented, on average, about 8 % of the labeled cells in reuniens. Hippocampal cells with collaterals to mPFC and reuniens were less common (~1 % of the labeled subicular cells), and located in the molecular layer of the subiculum. The results indicate that a subset of reuniens cells can directly coordinate activity in mPFC and hippocampus. Cells with collaterals in the hippocampus–reuniens–mPFC network may be important for the systems consolidation of memory traces and for theta synchronization during exploratory behavior. PMID:23571778

  18. Magnetic excitations in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik


    Cross sections for inelastic electron scattering and energy distributions of M1 and E2 strengths of K{sup {pi}} - 1{sup +} excitations in titanium, rare-earth, and actinide nuclei are studied microscopically within QRPA. The spin M1 strength has two peaks, isoscalar and isovector, residing between the low-and high-energy orbital M1 strength. The latter is strongly fragmented and lies in the region of the IVGQR, where the (e,e`) cross sections are almost one order of magnitude larger for E2 than for M1 excitations. Comparison with the quantized isovector rotor allows the interpretation of all the orbital M1 excitations at both low and high energies as manifestation of the collective scissors mode. (author).

  19. Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. (United States)

    Pinault, D; Bourassa, J; Deschênes, M


    This study describes the axonal projections of single thalamic reticular (TR) neurons within the visual thalamus in rats. Experiments were performed under urethane anesthesia and reticular cells were labeled by extracellular or juxtacellular microiontophoretic applications of biocytin. The axonal arborizations of 19 TR cells projecting to the dorsal lateral geniculate nucleus (DLG) or to the lateral dorsal/lateral posterior complex (LD/LP) were reconstructed from serial horizontal sections. It was found that single TR cells projected within the limits of a single thalamic nucleus, either the DLG or the LD/LP complex, where their terminal fields formed rostrocaudally oriented rods (length: approximately 800 microns; diameter: approximately 100 microns) densely packed with grape-like boutons and varicosities. In addition, none of the labeled TR cells possessed recurrent axonal collaterals that ramified within the reticular complex itself. The functional implications of these morphological data for the synchronization of thalamic oscillations are discussed.

  20. A stereological study of the mediodorsal thalamic nucleus in Down syndrome

    DEFF Research Database (Denmark)

    Karlsen, A S; Korbo, S; Uylings, H B M


    The total number of neurons and glial cells in the mediodorsal thalamic (MDT) nucleus of four aged females with Down syndrome (DS; mean age 69years) was estimated and compared to six age- and sex-matched controls. The MDT nucleus was delineated on coronal sections, and cell numbers (large and small...... neurons, oligodendrocytes, and astrocytes) were estimated using the optical fractionator technique. The DS brains had an average of 3.41×10(6) total neurons in the MDT nucleus in contrast to 5.97×10(6) in the controls, with no overlap (2p=0.004), affecting large (projecting) and small (local inhibitory...

  1. Thalamic hemorrhage in a 4-year-old child induced by nephro-vascular hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, E.; Savasta, S.; Torcetta, F.; Solmi, M.; Beluffi, G.; Gajno, T.M.


    A child affected by cardiomyopathy from the age of 12 months suddenly manifested right hemiparesis and dysarthria at the age of 48/12 years. Emergency brain CT showed a hemorrhage in progress in the left thalamic area. A serve from of hypertension was concomitant and resisted all pharmacological treatment. Retrograde transfemural aortography pointed out an atrophy of the right renal artery. This finding, together with the high renin and aldosterone values, indicated a nephrogenic hypertension causing both the cardiomyopathy found at 12 months of age and the endocranial hermorrhage. Right nephrectomy led to the normalization of blood pressure. (orig.).

  2. Combined thalamic and subthalamic deep brain stimulation for tremor-dominant Parkinson's disease. (United States)

    Oertel, Markus F; Schüpbach, W Michael M; Ghika, Joseph-André; Stieglitz, Lennart H; Fiechter, Michael; Kaelin-Lang, Alain; Raabe, Andreas; Pollo, Claudio


    Deep brain stimulation (DBS) in the thalamic ventral intermediate (Vim) or the subthalamic nucleus (STN) reportedly improves medication-refractory Parkinson's disease (PD) tremor. However, little is known about the potential synergic effects of combined Vim and STN DBS. We describe a 79-year-old man with medication-refractory tremor-dominant PD. Bilateral Vim DBS electrode implantation produced insufficient improvement. Therefore, the patient underwent additional unilateral left-sided STN DBS. Whereas Vim or STN stimulation alone led to partial improvement, persisting tremor resolution occurred after simultaneous stimulation. The combination of both targets may have a synergic effect and is an alternative option in suitable cases.

  3. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)


    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  4. RFP for the Comet Nuclei Tour (CONTOUR)

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio


    This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....

  5. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    Hence, considerable attention has been given by the experimentalists to the investigation of the existence of superheavy nuclei (SHN) beyond the valley of ... But the advances in technology have made it experi- mentally possible to identify the nuclei in exited states having relatively large life span. Pramana – J. Phys., Vol.

  6. Thalamic abnormalities in children with continuous spike-wave during slow-wave sleep: An F-18-fluorodeoxyglucose positron emission tomography perspective. (United States)

    Agarwal, Rajkumar; Kumar, Ajay; Tiwari, Vijay N; Chugani, Harry


    Thalamic injury has been implicated in the development of continuous spike-wave during slow-wave sleep (CSWS) in children with epilepsy. We studied thalamic abnormalities in children with CSWS using F-18-fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging. Twenty-three patients (12 male; mean age 9 years) with CSWS and normal thalami on brain magnetic resonance imaging (MRI) underwent FDG-PET. Thalamic glucose metabolism, represented by standardized uptake value normalized to whole brain (nSUV, RT for right thalamus and LT for left thalamus), and its asymmetry--absolute asymmetry index (AAI): ¦(RT-LT)¦*100/[(RT+LT)/2]--was calculated. These values were compared with those from 10 normal healthy controls (five female; mean age 11.1 years). Thalamic glucose metabolism was abnormal in 18 patients (78.3%). Thalamic nSUV was decreased (n = 6) or increased (n = 1) bilaterally in seven children without any asymmetry. Abnormal thalamic symmetry [AAI = 3.7-31.5% (0.8-3.3% in controls)] was seen in 11 children. Of these, six children had a unilateral thalamic metabolic abnormality (increased metabolism, n = 3 and decreased metabolism, n = 3), whereas 5 of 14 children had abnormal asymmetry index with bilaterally normal (n = 4) or increased (n = 1) thalamic metabolism. No clear association of thalamic metabolic abnormalities was seen with the stage of evolution of CSWS (prodromal, acute, or residual) or with the cortical FDG abnormalities. Functional thalamic abnormalities, both unilateral and bilateral, are frequently seen in patients with CSWS. FDG-PET is a sensitive and quantifiable modality to detect these changes. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state. (United States)

    Schiff, Nicholas D


    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed. © 2013 Elsevier B.V. All rights reserved.

  8. Reduced heat pain thresholds after sad-mood induction are associated with changes in thalamic activity. (United States)

    Wagner, Gerd; Koschke, Mandy; Leuf, Tanja; Schlösser, Ralf; Bär, Karl-Jürgen


    Negative affective states influence pain processing in healthy subjects in terms of augmented pain experience. Furthermore, our previous studies revealed that patients with major depressive disorder showed increased heat pain thresholds on the skin. Potential neurofunctional correlates of this finding were located within the fronto-thalamic network. The aim of the present study was to investigate the neurofunctional underpinnings of the influence of sad mood upon heat pain processing in healthy subjects. For this purpose, we used a combination of the Velten Mood Induction procedure and a piece of music to induce sad affect. Initially we assessed heat pain threshold after successful induction of sad mood outside the MR scanner in Experiment 1. We found a highly significant reduction in heat pain threshold on the left hand and a trend for the right. In Experiment 2, we applied thermal pain stimuli on the left hand (37, 42, and 45 degrees C) in an MRI scanner. Subjects were scanned twice, one group before and after sad-mood induction and another group before and after neutral-mood induction, respectively. Our main finding was a significant group x mood-induction interaction bilaterally in the ventrolateral nucleus of the thalamus indicating a BOLD signal increase after sad-mood induction and a BOLD signal decrease in the control group. We present evidence that induced sad affect leads to reduced heat pain thresholds in healthy subjects. This is probably due to altered lateral thalamic activity, which is potentially associated with changed attentional processes.

  9. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo (United States)

    Muñoz, Fabián; Fuentealba, Pablo


    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567

  10. Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. (United States)

    Crandall, Shane R; Govindaiah, G; Cox, Charles L


    The low-threshold transient calcium current (I(T)) plays a critical role in modulating the firing behavior of thalamic neurons; however, the role of I(T) in the integration of afferent information within the thalamus is virtually unknown. We have used two-photon laser scanning microscopy coupled with whole-cell recordings to examine calcium dynamics in the neurons of the strategically located thalamic reticular nucleus (TRN). We now report that a single somatic burst discharge evokes large-magnitude calcium responses, via I(T), in distal TRN dendrites. The magnitude of the burst-evoked calcium response was larger than those observed in thalamocortical projection neurons under the same conditions. We also demonstrate that direct stimulation of distal TRN dendrites, via focal glutamate application and synaptic activation, can locally activate distal I(T), producing a large distal calcium response independent of the soma/proximal dendrites. These findings strongly suggest that distally located I(T) may function to amplify afferent inputs. Boosting the magnitude ensures integration at the somatic level by compensating for attenuation that would normally occur attributable to passive cable properties. Considering the functional architecture of the TRN, elongated nature of their dendrites, and robust dendritic signaling, these distal dendrites could serve as sites of intense intra-modal/cross-modal integration and/or top-down modulation, leading to focused thalamocortical communication.

  11. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed


    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  12. Case of herpes simplex encephalitis(HSE) with a thalamic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, K.; Koike, R.; Yuasa, T.; Miyatake, T.; Ito, J.


    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus.

  13. Contributions of the Paraventricular Thalamic Nucleus in the Regulation of Stress, Motivation, and Mood

    Directory of Open Access Journals (Sweden)

    David Tai Hsu


    Full Text Available The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine, corticotropin-releasing hormone, and orexins, and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis, nucleus accumbens, and infralimbic/subgenual anterior cingulate cortex. These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders. Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.

  14. Ice Nuclei from Birch Trees (United States)

    Felgitsch, Laura; Seifried, Teresa; Winkler, Philipp; Schmale, David, III; Grothe, Hinrich


    While the importance of heterogeneous ice nucleation in the atmosphere is known, we still know very little about the substances triggering these freezing events. Recent findings support the theory that biological ice nuclei (IN) exhibit the ability to play an important role in these processes. Huffman et al. (2013) showed a burst of biological IN over woodlands triggered by rain events. Birch pollen are known to release a high number of efficient IN if incubated in water (Pummer et al. 2012). Therefore birches are of interest in our research on this topic. Plants native to the timberline, such as birch trees, have to cope with very cold climatic conditions, rendering freezing avoidance impossible. These plants trigger freezing in their extracellular spaces to control the freezing process and avoid intracellular freezing, which would have lethal consequences. The plants hereby try to freeze at a temperature well above homogeneous freezing temperatures but still at temperatures low enough to not be effected by brief night frosts. To achieve this, IN are an important tool. The specific objective of our work was to study the potential sources and distribution of IN in birch trees. We collected leaves, fruit, bark, and trunk cores from a series of mature birch trees in Tyrol, Austria at different altitudes and sampling sites. We also collected samples from a birch tree in an urban park in Vienna, Austria. Our data show a sampling site dependence and the distribution of IN throughout the tree. Our data suggest that leaves, bark, and wood of birch can function as a source of IN, which are easily extracted with water. The IN are therefore not restricted to pollen. Hence, the amount of IN, which can be released from birch trees, is tremendous and has been underrated so far. Future work aims to elucidate the nature, contribution, and potential ecological roles of IN from birch trees in different habitats. Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R

  15. Molecular outflows in starburst nuclei (United States)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri


    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disc with mid-plane density n0 ˜ 200-1000 cm-3 and scaleheight z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that an SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  16. The morphology of cometary nuclei (United States)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  17. Systematic study of properties of Hs nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Zhou, X.H.; Gan, Z.G. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Zhang, H.F. [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Li, J.Q. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Scheid, W. [Physik der Universitaet, Institut fuer Theoretische, Giessen (Germany)


    The ground-state properties of Hs nuclei are studied in the framework of the relativistic mean-field theory. We find that the more relatively stable isotopes are located on the proton abundant side of the isotopic chain. The last stable nucleus near the proton drip line is probably the {sup 255}Hs nucleus. The {alpha} -decay half-lives of Hs nuclei are predicted, and together with the evaluation of the spontaneous-fission half-lives it is shown that the nuclei, which are possibly stable against spontaneous fission are {sup 263-274}Hs. This is in coincidence with the larger binding energies per nucleon. If {sup 271-274}Hs can be synthesized and identified, only those nuclei from the upper Z=118 isotopic chain, which are lighter than the nucleus {sup 294}118, and those nuclei in the corresponding {alpha} -decay chain lead to Hs nuclei. The most stable unknown Hs nucleus is {sup 268}Hs. The density-dependent delta interaction pairing is used to improve the BCS pairing correction, which results in more reasonable single-particle energy level distributions and nucleon occupation probabilities. It is shown that the properties of nuclei in the superheavy region can be described with this interaction. (orig.)

  18. MRI atlas of the human cerebellar nuclei. (United States)

    Dimitrova, A; Weber, J; Redies, C; Kindsvater, K; Maschke, M; Kolb, F P; Forsting, M; Diener, H C; Timmann, D


    The differential role of the cerebellar cortex and nuclei has rarely been addressed in human lesion and functional brain imaging studies. One important reason is the difficulty of defining the localization of the cerebellar nuclei and extent of possible lesions based on CT or MR scans. The present MRI investigation was specifically designed to study the anatomy of the deep cerebellar nuclei. In both basal ganglia and cerebellar nuclei of healthy human subjects the amount of iron is high compared to the rest of the brain. Clusters of iron are paramagnetic and, therefore, tend to cause local inhomogenities in a magnetic field. The iron-induced susceptibility artefacts were used to visualize the cerebellar nuclei as hypointensities on MR images. A three-dimensional atlas of the dentate (D), interposed (I), and fastigial (F) nuclei is presented in standard proportional stereotaxic space coordinates based on findings in a healthy 26-year-old female. A three-dimensional axial volume of the cerebellum was acquired using a T1-weighted fast low-angle shot (FLASH) sequence on a Siemens Sonata 1.5 Tesla MR. To increase the signal to noise ratio the sequence was acquired 5 times and averaged. Each volume was registered, resampled to 1.00 x 1.00 x 1.00-mm3 voxel size and spatially normalized into a standard proportional stereotaxic space (the MNI-space) using SPM99. Localization of cerebellar nuclei were confirmed by comparison with postmortem MRI and histological microsections of another brain.

  19. Proton bombarded reactions of Calcium target nuclei

    Directory of Open Access Journals (Sweden)

    Tel Eyyup


    Full Text Available In this study, proton bombarded nuclear reactions calculations of Calcium target nuclei have been investigated in the incident proton energy range of 1–50 MeV. The excitation functions for 40Ca target nuclei reactions have been calculated by using PCROSS nuclear reaction calculation code. Weisskopf-Ewing and the full exciton models were used for equilibrium and for pre-equilibrium calculations, respectively. The excitation functions for 40Ca target nuclei reactions (p,α, (p,n, (p,p have been calculated using the semi-empirical formula Tel et al. [5].

  20. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    isotopes of Pb, Kr, Ca (or neighbouring nuclei) and the light nuclei, like C, N, O and Ne, as. 481 ... ¾ ¾102 isotope in its reaction with different Pb target nuclei. The ..... 0.455. Zn. ѕјPb. 0.356. Sr. ѕјPb. 0.427. ¾Ge. ѕјHg. 0.093. ЅїXe. ½ Dy. 0.062. ЅїTe. ½ ¾Nd. 490. Pramana – J. Phys., Vol. 57, Nos 2 & 3, Aug. & Sept. 2001 ...


    Directory of Open Access Journals (Sweden)

    Alberto Nettel-Aguirre


    Full Text Available The method presented in our paper suggests the use of Functional Data Analysis (FDA techniques in an attempt to characterise the nuclei of two types of cells: Cancer and non-cancer, based on their 2 dimensional profiles. The characteristics of the profile itself, as traced by its X and Y coordinates, their first and second derivatives, their variability and use in characterization are the main focus of this approach which is not constrained to star shaped nuclei. Findings: Principal components created from the coordinates relate to shape with significant differences between nuclei type. Characterisations for each type of profile were found.

  2. Effective connectivity of ascending and descending frontal-thalamic pathways during sustained attention: Complex brain network interactions in adolescence (United States)

    Jagtap, Pranav; Diwadkar, Vaibhav A.


    Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian Model Selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: While positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. PMID:27145923

  3. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain. (United States)

    Moda, Fabio; Suardi, Silvia; Di Fede, Giuseppe; Indaco, Antonio; Limido, Lucia; Vimercati, Chiara; Ruggerone, Margherita; Campagnani, Ilaria; Langeveld, Jan; Terruzzi, Alessandro; Brambilla, Antonio; Zerbi, Pietro; Fociani, Paolo; Bishop, Matthew T; Will, Robert G; Manson, Jean C; Giaccone, Giorgio; Tagliavini, Fabrizio


    In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  4. Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET)

    NARCIS (Netherlands)

    Khan, N; Leenders, KL; Hajek, M; Maguire, P; Missimer, J; Wieser, HG


    Thalamic glucose metabolism has been studied in 24 patients suffering from temporal lobe epilepsy (TLE) using interictal F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET). A total of 17 patients had a unilateral TL seizure onset, 11 of these patients had a mesial temporal lobe

  5. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione,M.M.; Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.


    The learned helplessness paradigm has been repeatedly shown to correlate with neurobiological aspects of depression in humans. In this model, rodents are exposed inescapable foot-shock in order to reveal susceptibility to escape deficit, defined as 'learned helplessness' (LH). Few methods are available to probe the neurobiological aspects underlying the differences in susceptibility in the living animal, thus far being limited to studies examining regional neurochemical changes with microdialysis. With the widespread implementation of small animal neuroimaging methods, including positron emission tomography (PET), it is now possible to explore the living brain on a systems level to define regional changes that may correlate with vulnerability to stress. In this study, 12 wild type Sprague-Dawley rats were exposed to 40 minutes of inescapable foot-shock followed by metabolic imaging using 2-deoxy-2[{sup 18}F]fluoro-D-glucose (18-FDG) 1 hour later. The escape test was performed on these rats 48 hours later (to accommodate radiotracer decay), where they were given the opportunity to press a lever to shut off the shock. A region of interest (ROI) analysis was used to investigate potential correlations (Pearson Regression Coefficients) between regional 18-FDG uptake following inescapable shock and subsequent learned helpless behavior (time to finish the test; number of successful lever presses within 20 seconds of shock onset). ROI analysis revealed a significant positive correlation between time to finish and 18-FDG uptake, and a negative correlation between lever presses and uptake, in the medial thalamic area (p=0.033, p=0.036). This ROI included the paraventricular thalamus, mediodorsal thalamus, and the habenula. In an effort to account for possible spillover artifact, the posterior thalamic area (including ventral medial and lateral portions) was also evaluated but did not reveal significant correlations (p=0.870, p=0.897). No other significant

  6. Crossed cerebellar diaschisis in acute isolated thalamic infarction detected by dynamic susceptibility contrast perfusion MRI.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available PURPOSE: Crossed cerebellar diaschisis (CCD is a state of neural depression caused by loss of connections to injured neural structures remote from the cerebellum usually evaluated by positron emission tomography. Recently it has been shown that dynamic susceptibility contrast perfusion weighted MRI (PWI may also be feasible to detect the phenomenon. In this study we aimed to assess the frequency of CCD on PWI in patients with acute thalamic infarction. METHODS: From a MRI report database we identified patients with acute isolated thalamic infarction. Contralateral cerebellar hypoperfusion was identified by inspection of time to peak (TTP maps and evaluated quantitatively on TTP, mean transit time (MTT, cerebral blood flow and volume (CBF, CBV maps. A competing cerebellar pathology or an underlying vascular pathology were excluded. RESULTS: A total of 39 patients was included. Common symptoms were hemiparesis (53.8%, hemihypaesthesia (38.5%, dysarthria (30.8%, aphasia (17.9%, and ataxia (15.4%. In 9 patients (23.1% PWI showed hypoperfusion in the contralateral cerebellar hemisphere. All of these had lesions in the territory of the tuberothalamic, paramedian, or inferolateral arteries. Dysarthria was observed more frequently in patients with CCD (6/9 vs. 6/30; OR 8.00; 95%CI 1.54-41.64, p = 0.01. In patients with CCD, the median ischemic lesion volume on DWI (0.91 cm³, IQR 0.49-1.54 cm³ was larger compared to patients with unremarkable PWI (0.51 cm³, IQR 0.32-0.74, p = 0.05. The most pronounced changes were found in CBF (0.94±0.11 and MTT (1.06±0.13 signal ratios, followed by TTP (1.05±0.02. CONCLUSIONS: Multimodal MRI demonstrates CCD in about 20% of acute isolated thalamic infarction patients. Lesion size seems to be a relevant factor in its pathophysiology.

  7. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills


    Full Text Available Introduction: Attention deficit hyperactivity disorder (ADHD captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting state functional connectivity (rs-fcMRI studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical-striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD.Methods: We correlated the rs-fcMRI of five thalamic regions of interest with spatial span working memory scores in a sample of 67 children aged 7-11 years (ADHD and typically developing children; TDC. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7-11 years from the ADHD-200 dataset. Thalamic regions of interest were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus.Results/Conclusions: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype.

  8. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)


    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  9. Electron scattering sum rules in polarized nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.


    Sum rules for the inelastic scattering of polarized electrons frompolarized nuclei are derived and discussed. The role of the nucleon formfactors is investigated with special emphasis to the case of deuteron and/sup 3/He.

  10. Parton distributions in nuclei: Quagma or quagmire

    Energy Technology Data Exchange (ETDEWEB)

    Close, F.E.


    The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.

  11. From Nucleons To Nuclei To Fusion Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W


    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  12. Relativistic symmetry breaking in light kaonic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong-Yao; Jiang, Wei-Zhou; Zhang, Dong-Rui; Wei, Si-Na [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)


    As the experimental data from kaonic atoms and K{sup -}N scatterings imply that the K{sup -} -nucleon intenraction is strongly attractive at saturation density, there is a possibility to form K{sup -} -nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean-field theory. It is found that the strong attraction between K{sup -} and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei. (orig.)

  13. Cluster dynamics and symmetries in light nuclei

    Directory of Open Access Journals (Sweden)

    Freer Martin


    Full Text Available Many light nuclei display behaviour that indicates that, rather than behaving as an A-body system of individual nucleons, the degrees of freedom are those of clusters. The appearance of α-particle clustering is most widespread. In the present proceedings the symmetries and dynamics of the nuclei 8Be, 12C and 16O are examined together with some recent experimental measurements.

  14. Synthesis of superheavy nuclei: Obstacles and opportunities

    Directory of Open Access Journals (Sweden)

    Zagrebaev V.I.


    Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

  15. MR anatomy of deep brain nuclei with special reference to specific diseases and deep brain stimulation localization. (United States)

    Telford, Ryan; Vattoth, Surjith


    Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures.

  16. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)


    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  17. [Thalamic Stroke and Associated Behavior Disorders. Possibilities for Integral Management: Case Report]. (United States)

    Camargo, Loida Camargo; Sánchez, Katherine Parra


    Since ancient Greece, cerebrovascular accidents have been described with no variation. Even today, they are still a catastrophic event in the lives of patients with a high risk of disabling sequelae. Case report of a 56-year male patient with thalamic ischemia. The intervention with integral strategies involving pharmacological management and cognitive interventions was decisive for the satisfactory evolution of the patient. The management of patients with cerebrovascular accidents cannot be limited to the emergency room. Pharmacological advances in programs and cognitive intervention methods provide intervention tools from the very beginning of the stroke thus reducing the impact of long-term sequelae, and consequently enabling a better reintegration of the patient to his family. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  18. 3-D tracing of biocytin-labelled pallido-thalamic axons in the monkey. (United States)

    Arecchi-Bouchhioua, P; Yelnik, J; François, C; Percheron, G; Tandé, D


    This study presents three-dimensional tracings of axons and axonal endings of associative pallido-thalamic axons in the monkey (Macaca mulatta, M. irus). Injections of the anterograde tracer biocytin were made in the dorsal, associative region of the medial pallidum. Numerous axonal endings were observed throughout the pallidal territory of the thalamus. Four individual axons were reconstructed from serial sections and traced in three dimensions. The initial branch of each axon subdivided successively, each new branch ending in a different part of the pallidal territory. Each of the latter branches ended in a characteristic, extremely dense terminal arborization, that we called a bunch. Associative medial pallidal information may therefore be distributed throughout the pallidal territory by means of numerous branches and bunches.

  19. Detection of secondary thalamic degeneration after cortical infarction using cis-4-18F-fluoro-D-proline. (United States)

    Langen, Karl-Josef; Salber, Dagmar; Hamacher, Kurt; Stoffels, Gabriele; Reifenberger, Guido; Pauleit, Dirk; Coenen, Heinz H; Zilles, Karl


    The amino acid cis-4-(18)F-fluoro-D-proline (D-cis-(18)F-FPro) exhibits preferential uptake in the brain compared with its L-isomer, but the clinical potential of the tracer is as yet unknown. In this study we explored the cerebral uptake of D-cis-(18)F-FPro in rats with focal cortical infarctions. Focal cortical infarctions were induced in different areas of the cortex of 20 Fisher CDF rats by photothrombosis (PT). At variable time points after PT (1 d to 4 wk), the rats were injected intravenously with D-cis-(18)F-FPro. For comparison, 12 rats were injected simultaneously with (3)H-deoxyglucose ((3)H-DG), 3 rats were injected with (3)H-methyl-L-methionine ((3)H-MET), and 2 rats were injected with (3)H-PK11195. Within 2 h after injection of the tracers, coronal cryosections of the brains were produced and evaluated by dual-tracer autoradiography. Lesion-to-brain ratios (L/B ratios) were calculated by dividing the maximal uptake in areas with increased tracer uptake by the mean uptake in normal brain tissue. Histologic slices were stained by toluidine blue and by immunostainings for glial fibrillary acidic protein (GFAP), CD68 for macrophages, and CD11b for microglia. Prominent uptake of D-cis-(18)F-FPro was found in ipsilateral thalamic nuclei (TN) and partially in the corpus striatum starting at 3 d after infarction with increasing L/B ratios up to 4 wk (mean L/B ratio +/- SD, 6.7 +/- 3.5). The involved TN varied with the site of the cortical lesion corresponding to their thalamocortical projections connecting them with their specific target region in the cerebral cortex. The TN were positive for CD11b and GFAP from day 7 onward, whereas uptake of (3)H-DG, (3)H-MET, and (3)H-PK11195 and immunostaining for CD68 were similar to that of normal brain. Furthermore, increased uptake of D-cis-(18)F-FPro was found in the area of the cortical infarctions (mean L/B ratio +/- SD, 12.1 +/- 8.1). From day 5 onward, the pattern of uptake was congruent with that of

  20. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)


    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  1. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation (United States)

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu


    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency

  2. Modulation of sensitivity to alcohol by cortical and thalamic brain regions. (United States)

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Besheer, Joyce


    The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. [The thalamic syndrome of Déjérine-Roussy. Prolegomenon]. (United States)

    De Smet, Y


    Predicted by Dejerine and Long in 1898 and formally described by Dejerine and Roussy in 1906, the "thalamic syndrome" corrected the wrong hypothesis of a capsular "sensory cross roads" suggested by Charcot after 1873 and supported in France during 25 years. Both established the "persistent frank organic hemianesthesia" (sensory-sensitive for Charcot, pure sensitive for Dejerine), namely that a sensory deficit, still severe after regression of the early hemiplegia, could be due to focal brain damage. At that time such a clinical concept was hardly acceptable because it opposed the classic greek philosophical idea that sensation and movement should not be separated. Moreover, intelligence was at that time looked as a four-stage process including sensation, imagination, intellect and memory. The very first step began with the "sensus communis", an anteroom-like where all the sensations simultaneously perceived were coordinated to ensure mind unity. This "sensus communis" was given many subcortical seats during the following centuries, such as the trigone (Herophilus), the ventricles (Founders of the Church, Soemmering), the pineal body (Descartes), the striate bodies (Willis) and, finally, the thalamus (Todd and Carpenter's "English theory"). The description by Meynert in 1871 of a transcapsular direct "sensory bundle" and the cases reported by Türck in 1859 of a sensory-sensitive hemianesthesia after a posterior capsular lesion (in fact, thalamo-capsulostriate) led Charcot to develop his theory after 1873. Owing to the new staining methods of Weigert and Marchi introduced around 1885, Dejerine showed in 1895 the route of the medial lemniscus and his arrival in the thalamus, which led him to postulate in 1898 a "thalamic syndrome" and later to demonstrate it.

  4. Adipocyte nuclei captured from VAT and SAT. (United States)

    Ambati, Suresh; Yu, Ping; McKinney, Elizabeth C; Kandasamy, Muthugapatti K; Hartzell, Diane; Baile, Clifton A; Meagher, Richard B


    Obesity-related comorbidities are thought to result from the reprogramming of the epigenome in numerous tissues and cell types, and in particular, mature adipocytes within visceral and subcutaneous adipose tissue, VAT and SAT. The cell-type specific chromatin remodeling of mature adipocytes within VAT and SAT is poorly understood, in part, because of the difficulties of isolating and manipulating large fragile mature adipocyte cells from adipose tissues. We constructed MA-INTACT (Mature Adipocyte-Isolation of Nuclei TAgged in specific Cell Types) mice using the adiponectin (ADIPOQ) promoter (ADNp) to tag the surface of mature adipocyte nuclei with a reporter protein. The SUN1mRFP1Flag reporter is comprised of a fragment of the nuclear transmembrane protein SUN1, the fluorescent protein mRFP1, and three copies of the Flag epitope tag. Mature adipocyte nuclei were rapidly and efficiently immuno-captured from VAT and SAT (MVA and MSA nuclei, respectively), of MA-INTACT mice. MVA and MSA nuclei contained 1,000 to 10,000-fold higher levels of adipocyte-specific transcripts, ADIPOQ, PPARg2, EDNRB, and LEP, relative to uncaptured nuclei, while the latter expressed higher levels of leukocyte and endothelial cell markers IKZF1, RETN, SERPINF1, SERPINE1, ILF3, and TNFA. MVA and MSA nuclei differentially expressed several factors linked to adipogenesis or obesity-related health risks including CEBPA, KLF2, RETN, SERPINE1, and TNFA. The various nuclear populations dramatically differentially expressed transcripts encoding chromatin remodeler proteins regulating DNA cytosine methylation and hydroxymethylation (TETs, DNMTs, TDG, GADD45s) and nucleosomal histone modification (ARID1A, KAT2B, KDM4A, PRMT1, PRMT5, PAXIP1). Remarkably, MSA and MVA nuclei expressed 200 to 1000-fold higher levels of thermogenic marker transcripts PRDM16 and UCP1. The MA-INTACT mouse enables a simple way to perform cell-type specific analysis of highly purified mature adipocyte nuclei from VAT and SAT

  5. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)


    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  6. Magnesium and Calcium in Isolated Cell Nuclei (United States)

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.


    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  7. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J


    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  8. Statistical ensembles and fragmentation of finite nuclei (United States)

    Das, P.; Mallik, S.; Chaudhuri, G.


    Statistical models based on different ensembles are very commonly used to describe the nuclear multifragmentation reaction in heavy ion collisions at intermediate energies. Canonical model results are more appropriate for finite nuclei calculations while those obtained from the grand canonical ones are more easily calculable. A transformation relation has been worked out for converting results of finite nuclei from grand canonical to canonical and vice versa. The formula shows that, irrespective of the particle number fluctuation in the grand canonical ensemble, exact canonical results can be recovered for observables varying linearly or quadratically with the number of particles. This result is of great significance since the baryon and charge conservation constraints can make the exact canonical calculations extremely difficult in general. This concept developed in this work can be extended in future for transformation to ensembles where analytical solutions do not exist. The applicability of certain equations (isoscaling, etc.) in the regime of finite nuclei can also be tested using this transformation relation.

  9. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın


    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  10. Distonia virtual por infarto talâmico posterolateral ventral: relato de caso Virtual dystonia due to a posteroventrolateral thalamic infarct: case report

    Directory of Open Access Journals (Sweden)

    Ricardo De Oliveira-Souza


    dystonia not outwardly expressed through the motor system. There was severe proprioceptive loss in the same toes that harbored the cramp. MRI showed the appropriate lesion in the posteroventrolateral thalamus (VPL and wallerian degeneration of thalamo-cortical projections. SPECT showed hypoperfusion of the overlying ipsilateral parietal cortex as well as of the basal nuclei bilaterally, besides the expected image of thalamic exclusion. We hypothesize that the infarct disconnected the somatic sensory cortex (S-I from critical proprioceptive input with relative sparing of superficial sensibility. Lifting the foot deprived S-I of tonic inputs conveyed by undamaged contact-pressure pathways, a functional effect promptly reversed by placing the foot back against the ground. The case illustrates how a capricious deafferentation of S-I by a discrete VPL thalamic infarct might facilitate the emergence of autochthonous activity in the primary somesthetic cortex and give rise to a purely mental abnormal involuntary movement akin to the unimodal hallucinoses of which the syndrome of Bonnet is the best-known example. Virtual abnormal involuntary movements may be concealed more often than appreciated by complaints such as pains or cramps in patients with nervous system lesions.

  11. Band coupling and crossing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Sofia Univ. (Bulgaria). Fizicheski Fakultet); Nadjakov, E. (Joint Inst. for Nuclear Research, Dubna (USSR))


    A model of coupled rotational bands, including three types of phonons, ..beta.., ..gamma.. and S(Ksup(..pi..) = 1/sup +/ or O/sup +/), is proposed and applied to a number of even-even rare earth back-bending nuclei. It reproduces the most complicated experimentally known multiple-band crossings in /sup 154/Gd, /sup 156/Dy, /sup 164/Er and the clockwise circling of the yrast B(E2) values (versus 2/) in back-bending nuclei. The direct coupling strengths, derived from a fit to experimental data, are discussed in detail.

  12. Reflections on cavitation nuclei in water

    DEFF Research Database (Denmark)

    Mørch, Knud Aage


    The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... pressure, the possibility of stabilization of free gas bubbles by a skin has been documented, but only within a range of bubble sizes that makes them responsible for tensile strengths up to about 1.5 bar, and values reaching almost 300 bar have been measured. However, cavitation nuclei can also be harbored...

  13. Computer Model Of Fragmentation Of Atomic Nuclei (United States)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.


    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  14. Thalamic superoxide and peroxide handling capacity (SPHC): An experimental study with aluminum, ethanol and tocopherol in rats. (United States)

    Nayak, Prasunpriya; Sharma, S B; Chowdary, N V S


    Superoxide and peroxide handling capacity (SPHC) is an important determinant of oxidative stress. Neurotoxic impacts of aluminum are associated with oxidant imbalance. Here, we studied the influence of aluminum on oxidative stress parameters, antioxidative enzymes and SPHC of thalamic area on pro-oxidant (ethanol) and antioxidant (α-tocopherol) exposure. Two sets of male Wistar rats were divided into 8 groups (6 each) and exposed to aluminum (10 mg/Kg body wt.), ethanol (0.6 g/Kg body wt.) and α-tocopherol (5 IU/day) for 4 wk, each having respective control group. Levels of reduced glutathione (GSH), lipid peroxidation (TBARS) along with activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) of thalamic area were estimated for each group. Glutathione-independent superoxide peroxide handling capacity (GI-SPHC) and glutathione-dependent superoxide peroxide handling capacity (GD-SPHC) were calculated from the GPx, CAT and SOD values. Concomitant exposure to aluminum and ethanol demonstrated significant increase in SOD activity and significant decrease in GPx activity compared to the control group, while lone aluminum-exposed rats showed raised GR activity, without alterations in GPx and SOD activities. However, significant reduction of both GI- and GD- SPHC were found in ethanol-exposed groups. α-Tocopherol supplementation could resist most of the alterations. In addition, current antioxidant exposure reduced the inherent GD-SPHC, and thus, made thalamic area more vulnerable to oxidant threat. The present study corroborates the thalamic susceptibility to aluminum-augmented oxidant imbalance and suggests cautious use of antioxidant supplementation against neurodegenerative disorders.

  15. Shape-based nuclei area of digitized pap smear images (United States)

    Muhimmah, Izzati; Kurniawan, Rahadian


    Nuclei of the epithelial of Pap smear cells are important risk indicator of cervical cancers. Pathologist uses the changing of the area of the nuclei to determine whether cells are normal or abnormal. It means that having correct measurement of the area of nuclei is important on the pap smears assessment. Our paper present a novel approach to analyze the shape of nuclei in pap smear images and measuring the area of nuclei. We conducted a study to measure the area of nuclei automatically by calculating the number of pixels contained in each of the segmented nuclei. For comparison, we performed measurements of nuclei area using the ellipse area approximation. The result of the t-test confirmed that there were similarity between elliptical area approximation and automatic segmented nuclei-area at 0.5% level of significance.

  16. Pure Hemi-Chorea Resulting from an Acute Phase of Contralateral Thalamic Lacunar Infarction: A Case Report

    Directory of Open Access Journals (Sweden)

    Teruyuki Takahashi


    Full Text Available Background: Thalamic lesions give rise to a variety of clinical syndromes such as pure sensory stroke, ataxic hemiparesis, and rarely involuntary movements including chorea. Generally and classically, lacunar infarction in the subthalamic nucleus has been regarded as the lesion mainly responsible for hemi-chorea and hemi-ballismus, on the basis of previous anatomical studies. Case Presentation: This report describes the case of an 81-year-old man who developed sudden-onset pure hemi-chorea in the right limbs resulting from an acute phase of left thalamic lacunar infarction detected on a diffusion-weighted image (DWI in an MRI study. The patient had no other neurological symptoms such as ataxic hemiparesis and sensory disturbance. A single-photon emission computed tomography (SPECT study using the 99mTc-ECD Patlak plot method demonstrated significant perfusional asymmetry between the right and left thalami (p = 0.0035, consistent with the left thalamic lesion on DWI. Conclusion: It is speculated that this perfusional asymmetry, in particular the hypoperfusion in the left thalamus, detected by SPECT might play the most important role in the contralateral pure hemi-chorea as a rare neurological manifestation in this case.

  17. Development of involuntary movements after ventriculoperitoneal shunting for normal pressure hydrocephalus in a patient with chronic-phase thalamic haemorrhage. (United States)

    Shindo, Keiichiro; Kondo, Takeo; Sugiyama, Ken; Nishijima, Kazunori; Furusawa, Yoshihito; Mori, Takayuki; Izumi, Shin-Ichi


    Delayed-onset involuntary movements have been described after thalamic stroke. We treated a patient with involuntary movements that increased after ventriculoperitoneal shunting (VPS) for normal pressure hydrocephalus (NPH) following thalamic haemorrage. One and one-half years after right thalamic and intraventricular haemorrhage, NPH suggested clinical evaluation and neuroimaging studies in a 56-year-old man. Hemidystonia and pseudochoreoathetosis were evident in the left arm, leg and trunk. Proprioceptive impairment and mild cerebellar dysfunction affected the left upper and lower extremity. Yet the patient could walk unassisted and carry out activities of daily living (ADL) rated as 90 points according to the Barthel Index (BI). Lumbar puncture lessened both gait disturbance and cognitive impairment. After VPS, cognition and urinary continence improved, but involuntary movements worsened, precluding unaided ambulation and decreasing the BI score to 65 points. Computed tomography after VPS showed resolution of NPH, while single-photon emission computed tomography showed increased cerebral blood flow after VPS. Increased cerebral blood flow after VPS is suspected to have promoted development of abnormal neuronal circuitry.

  18. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder.

    Directory of Open Access Journals (Sweden)

    Mei Liao

    Full Text Available BACKGROUND: Generalized anxiety disorder (GAD is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition. METHODS: Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM was used to investigate gray matter alterations. RESULTS: Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients. CONCLUSIONS: These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD.

  19. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep (United States)

    Anderson, Matthew P.; Mochizuki, Takatoshi; Xie, Jinghui; Fischler, Walter; Manger, Jules P.; Talley, Edmund M.; Scammell, Thomas E.; Tonegawa, Susumu


    It has long been suspected that sensory signal transmission is inhibited in the mammalian brain during sleep. We hypothesized that Cav3.1 T-type Ca2+ channel currents inhibit thalamic sensory transmission to promote sleep. We found that T-type Ca2+ channel activation caused prolonged inhibition (>9 s) of action-potential firing in thalamic projection neurons of WT but not Cav3.1 knockout mice. Inhibition occurred with synaptic transmission blocked and required an increase of intracellular Ca2+. Furthermore, focal deletion of the gene encoding Cav3.1 from the rostral–midline thalamus by using Cre/loxP recombination led to frequent and prolonged arousal, which fragmented and reduced sleep. Interestingly, sleep was not disturbed when Cav3.1 was deleted from cortical pyramidal neurons. These findings support the hypothesis that thalamic T-type Ca2+ channels are required to block transmission of arousal signals through the thalamus and to stabilize sleep. PMID:15677322

  20. Crying spells triggered by thumb-index rubbing after thalamic stroke: a case report. (United States)

    Bassani, R; Rosazza, C; Ghirardin, L; Caldiera, V; Banco, E; Casati, C; Tesio, L


    Pathologic crying, devoid of any emotional counterpart, is known to occur as a consequence of various brain stem, cortical hemispheric and cerebellar lesions or, quite exceptionally, of "dacrystic" epilepsy. The case reported here suggests that thalamic lesions may also cause crying spells, under the special circumstances described below. After a mild left thalamic stroke a caucasian 77 years old man presented with crying spells with no emotional counterpart, triggered by thumb-index rubbing of his right hand. Only a modest sensation loss on right infra-orbital and nose-labial areas and the first three right fingers could be detected at clinical examination. The circumstances and processes leading to the crying spells were investigated, together with their neural substrate. Brain computerized tomography (CT), magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) were conducted. Neurophysiologic studies included Video-Electroencephalography, Electromyography, motor and sensory Evoked potentials. Active thumb-index rubbing, passive fingertips stimulation and interaction of sensory-motor stimulation with cognitive/speech activities were tested under different paradigms. A treatment with pregabalin (75 mg twice a day) was attempted. CT and MRI showed a small ischemic infarct in the left ventral postero-lateral thalamus, while fMRI led to the expected findings, i.e. a bilateral activation of the hand motor representation during the crying-triggering right-hand finger rubbing activity. Sensory potentials evoked from stimulation of the right upper limb were the only abnormal neurophysiologic test. Crying spells could be invariably evoked by both real and imagined active finger rubbing, in either the left of right hemi-space. Rubbing by an examiner was ineffective. Immersion in water (18 °C) but not oiling of the fingertips prevented the symptom. Administration and discontinuation of pregabalin 75 mg daily could be associated with

  1. Right Forceps Minor and Anterior Thalamic Radiation Predict Executive Function Skills in Young Bilingual Adults

    Directory of Open Access Journals (Sweden)

    Ping C. Mamiya


    Full Text Available Executive function (EF skills enhance learning across domains, and are particularly linked to the acquisition of a second language. Previous studies have shown that bilingual individuals show enhanced EF skills in cognitive tasks where they attended a targeted dimension of a stimulus while inhibiting other competing cues. Brain imaging revealed that bilingual young adults’ performances in the Stroop color-naming task were related to the volume of anterior cingulate cortex (ACC and inferior frontal lobe. Subjects who had greater white-matter in the frontal cortex showed enhanced performances in the same task, suggesting that brain fiber pathways connecting ACC to the frontal region may be related to the Stroop color-naming task. No studies to date have examined the tissue properties of brain fiber pathways connecting these brain regions and their association with subjects’ EF performances. Importantly, there are no data establishing whether bilingual subjects exhibit different reaction times when words are presented in their first versus second language. To study these questions, we used behavioral and unbiased whole-brain analyses, recruiting 21 Chinese students. Using the Stroop color-naming task, we measured subjects’ reaction times (RTs in which color names were displayed using fonts that matched the named color (congruent task or mismatched the color (incongruent task. Students performed the task twice, first in English, the subjects’ second language, then in Chinese, the subjects’ primary language. Results from whole-brain analysis showed that students’ RTs in both the English and Chinese tasks were significantly correlated with the mode of anisotropy (MO in a brain cluster containing the forceps minor and anterior thalamic radiation in the right hemisphere. We also found that fractional anisotropy (FA significantly predicted students’ RTs, with higher FA predicting shorter RT. Taken together, our findings demonstrate that

  2. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)


    Mar 27, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 4. Decay of heavy and superheavy nuclei. K P Santhosh. Volume 82 Issue 4 April 2014 ... Author Affiliations. K P Santhosh1. School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670 327, India ...

  3. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J.S.; Rogde, T. [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B.V. [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S.N. [JINR, Dubna, Moscow (Russian Federation); Thompson, I.J. [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M.V. [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration


    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  4. Borromean structures in medium-heavy nuclei

    DEFF Research Database (Denmark)

    Hove, Dennis; Fedorov, Dmitri Vladimir; Fynbo, Hans Otto Uldall


    heavy nuclei. We find in all cases that the alpha-particles are located at the surface of the core-nucleus as dictated by Coulomb and centrifugal barriers. The two lowest three-body bound states resemble a slightly contracted 8Be nucleus outside the core. The next two excited states have more complex...

  5. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia


    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  6. Test of Pseudospin Symmetry in Deformed Nuclei


    Ginocchio, J. N.; Leviatan, A.; Meng, J.; Zhou, Shan-Gui


    Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.

  7. Fisica degli atomi e dei nuclei

    CERN Document Server

    Bernardini, Carlo


    Evidenza della struttura atomica della materia ; le proprietà degli atomi e la meccanica atomica ; gli atomi e le radiazioni elettromagnetiche ; struttura microscopica dello stato gassoso ; struttura microscopica dello stato liquido ; struttura microscopica della stato solido ; proprietà elettriche e magnetiche delle sostanze ; proprietà dei nuclei degli atomi ; le particelle elementari.

  8. Tcf7l2 plays crucial roles in forebrain development through regulation of thalamic and habenular neuron identity and connectivity. (United States)

    Lee, Myungsin; Yoon, Jiyeon; Song, Hobeom; Lee, Bumwhee; Lam, Duc Tri; Yoon, Jaeseung; Baek, Kwanghee; Clevers, Hans; Jeong, Yongsu


    The thalamus acts as a central integrator for processing and relaying sensory and motor information to and from the cerebral cortex, and the habenula plays pivotal roles in emotive decision making by modulating dopaminergic and serotonergic circuits. These neural compartments are derived from a common developmental progenitor domain, called prosomere 2, in the caudal forebrain. Thalamic and habenular neurons exhibit distinct molecular profile, neurochemical identity, and axonal circuitry. However, the mechanisms of how their progenitors in prosomere 2 give rise to these two populations of neurons and contribute to the forebrain circuitry remains unclear. In this study, we discovered a previously unrecognized role for Tcf7l2, a transcription factor known as the canonical Wnt nuclear effector and diabetes risk-conferring gene, in establishing neuronal identity and circuits of the caudal forebrain. Using genetic and chemical axon tracers, we showed that efferent axons of the thalamus, known as the thalamocortical axons (TCAs), failed to elongate normally and strayed from their normal course to inappropriate locations in the absence of Tcf7l2. Further experiments with thalamic explants revealed that the pathfinding defects of Tcf7l2-deficient TCAs were associated at least in part with downregulation of guidance receptors Robo1 and Robo2 expression. Moreover, the fasciculus retroflexus, the main habenular output tract, was missing in embryos lacking Tcf7l2. These axonal defects may result from dysregulation of Nrp2 guidance receptor. Strikingly, loss of Tcf7l2 caused a post-mitotic identity switch between thalamic and habenular neurons. Despite normal acquisition of progenitor identity in prosomere 2, Tcf7l2-deficient thalamic neurons adopted a molecular profile of a neighboring forebrain derivative, the habenula. Conversely, habenular neurons failed to maintain their normal post-mitotic neuronal identity and acquired a subset of thalamic neuronal features in the

  9. Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: A computational study (United States)

    Liu, Suyu; Wang, Qingyun


    Presently, we improve a computational framework of thalamocortical circuits related to the Taylor's model to investigate the relationship between thalamic reticular nucleus (RE) excitability and epilepsy. By using bifurcation analysis, we explore the RE's excitability dynamics mechanism in the processes of seizure generation, development and transition. Results show that the seizure-free state, absence seizures, clonic seizures and tonic seizures can be formed as the RE excitability is changed in this established model. Importantly, it is verified that physiological changing GABAA inhibition in RE can elicit absence seizures and clonic seizures and the pathological transitions between these two seizures. Furthermore, when the level of AMPA connection is decreased or increased, this proposed model embraces absence seizures and clonic seizures, and tonic seizures, respectively. Except that, bifurcation mechanisms of dynamical transition of different seizures are analyzed in detail. In addition, hybrid regulations of the reticular nucleus excitability for epileptic seizures are proven to be valid within the suitable levels of AMPA and GABAA connection. Hopefully, the obtained results could be helpful for effective control of epileptic activities with additional pharmacological interference.

  10. Gait balance disorder by thalamic infarction with the disorder of interstitial nucleus of cajal. (United States)

    Kurosu, A; Hayashi, Y; Wada, K; Nagaoka, M


    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients.

  11. Aphasia following left thalamic hemorrhage. A study by Western Aphasia Battery and single photon emission CT

    Energy Technology Data Exchange (ETDEWEB)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro


    A report is given of 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months) in which language disorders were examined by Western Aphasia Battery (WAB) and cerebral blood flow was measured by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in the left temporooccipital region and low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, emission CT showed slight low flow area at the temporo-occipital region similar to the case with transcortical sensory aphasia. In another case with anomic aphasia there was a wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. In all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus.

  12. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor. (United States)

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars


    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  13. Evaluation of Quantitative Measurement Techniques for Head Tremor With Thalamic Deep Brain Stimulation. (United States)

    Chockalingam, Arun; Boggs, Hans; Prusik, Julia; Ramirez-Zamora, Adolfo; Feustel, Paul; Belasen, Abigail; Youn, Youngwon; Fama, Chris; Haller, Jessica; Pilitsis, Julie


    Ventralis intermedius thalamic deep brain stimulation (VIM DBS) has shown to be safe and effective for medically refractory essential tremor (ET). We evaluate the use of quantitative tremor measurement methods for head tremor in ET using a "smart" hat and a smartphone application. We enrolled 13 ET patients who previously underwent VIM DBS. Head and arm tremor was measured ON and OFF stimulation using the clinical gold standard Fahn-Tolosa-Marin Tremor Rating Scale (TRS). Results were then compared to two quantitative measurement techniques: Lift Pulse (smartphone application) and modified Nizet (adapted laser point measurement from Nizet et al.). Spearman's rank correlation was used to compare tremor severity and improvement on stimulation using TRS and quantitative methods to measure tremor. Lift Pulse tremor severity measurement significantly correlated with TRS for head (ρ = 0.53, p measurement significantly correlated with TRS for head (ρ = 0.83, p measurement significantly correlated with TRS for arm tremor (ρ = 0.56, p measurement significantly correlated with TRS for head tremor (ρ = 0.53, p measure head and arm tremor severity. We also show the utility of a "smart" hat to measure head tremor. Modified Nizet technique is more effective for measuring head tremor, while Lift Pulse is an effective measure of tremor severity, especially arm tremor improvement. © 2017 International Neuromodulation Society.

  14. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske


    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  15. Gait Balance Disorder by Thalamic Infarction with the Disorder of Interstitial Nucleus of Cajal (United States)

    Kurosu, A.; Hayashi, Y.; Wada, K.; Nagaoka, M.


    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients. PMID:21769260

  16. Bilateral thalamic infarction that is secondary thrombosis to the deep venous structures: report of two cases

    Directory of Open Access Journals (Sweden)

    Serdar Oruc


    Full Text Available Deep cerebral venous thrombosis cases are the %6 of the cerebral venous thrombosis (CVT cases. The recognition of these patients is difficult since this disease is rarely observed and its clinical presentation is nonspecific and variable. In its etiology, the most frequently observed reasons are hypercoagulopathy, oral contraceptive use, pregnancy, puerperium, dehydration, and head trauma. Less frequently observed reasons are vasculitis, inflammatory bowel disease, malignancies, anemia, and tumor invasion through venous sinuses. In this report, were presented two cases who were admitted to the hospital with headache complaint and cognitive changes.According to the advanced magnetic resonance imaging, acute infarction was detected in bilateral thalamus. We observed CVT with adversely affected deep cerebral venous system structures. CVT development was associated with the use of oral contraceptives in the first case and it was associated with anemia in the second case. Both patients were discharged from the hospital upon healing with anticoagulant therapy. In this study, it has been emphasized by representing these two patients that CVT should be thought in the etiology of bilateral thalamic ischemia. Furthermore, it is also crucial to known that these patients can be fully improved clinically and radiologically in case appropriate medical treatment is applied.

  17. mGluR-mediated calcium signalling in the thalamic reticular nucleus. (United States)

    Neyer, Christina; Herr, David; Kohmann, Denise; Budde, Thomas; Pape, Hans-Christian; Coulon, Philippe


    The thalamic reticular nucleus (TRN) plays a major role in modulating the transfer of information from the thalamus to the cortex. GABAergic inhibition via the TRN is differentially regulated by metabotropic glutamate receptors (mGluRs) and the effect of mGluRs on the membrane potential, on ion channels, and on the plasticity of electrical coupling of TRN neurons has been studied previously. Although mGluRs are generally known to trigger Ca(2+) transients, mGluR-mediated Ca(2+)-transients in TRN neurons have not yet been investigated. In this study, we show that mGluRs can trigger Ca(2+)-transients in TRN neurons, that these transients depend on intracellular Ca(2+)-stores, and are mediated by IP3 receptors. Ca(2+) transients caused by the group I mGluR agonist DHPG elicit a current that is sensitive to flufenamic acid and has a reversal potential around -40mV. Our results add mGluR-mediated Ca(2+)-signalling in the TRN to the state-dependent modulators of the thalamocortical system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons

    Directory of Open Access Journals (Sweden)

    Sébastien eBéhuret


    Full Text Available A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.

  19. Differential Responses of Thalamic Reticular Neurons to Nociception in Freely Behaving Mice (United States)

    Huh, Yeowool; Cho, Jeiwon


    Pain serves an important protective role. However, it can also have debilitating adverse effects if dysfunctional, such as in pathological pain conditions. As part of the thalamocortical circuit, the thalamic reticular nucleus (TRN) has been implicated to have important roles in controlling nociceptive signal transmission. However studies on how TRN neurons, especially how TRN neuronal subtypes categorized by temporal bursting firing patterns—typical bursting, atypical bursting and non-bursting TRN neurons—contribute to nociceptive signal modulation is not known. To reveal the relationship between TRN neuronal subtypes and modulation of nociception, we simultaneously recorded behavioral responses and TRN neuronal activity to formalin induced nociception in freely moving mice. We found that typical bursting TRN neurons had the most robust response to nociception; changes in tonic firing rate of typical TRN neurons exactly matched changes in behavioral nociceptive responses, and burst firing rate of these neurons increased significantly when behavioral nociceptive responses were reduced. This implies that typical TRN neurons could critically modulate ascending nociceptive signals. The role of other TRN neuronal subtypes was less clear; atypical bursting TRN neurons decreased tonic firing rate after the second peak of behavioral nociception and the firing rate of non-bursting TRN neurons mostly remained at baseline level. Overall, our results suggest that different TRN neuronal subtypes contribute differentially to processing formalin induced sustained nociception in freely moving mice. PMID:27917114

  20. Ophthalmoplegic migraine with reversible thalamic ischemia by Tc-99m ethylcysteinate dimer brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Dong Jin; Kang, Sung Soo [Gachon Medical School, Gil Medical Center, Inchon (Korea, Republic of)


    Two patients presented with ophthalmoplegic migraine (OM) underwent EEG, Brain-MRI, cerebral angiography, and Tc-99m ECD SPECT during an attack. Follow-up SPECT was performed after neurologic symptoms resolved. In both cases, SPECT during an attack of ophthalmoplegia and headache demonstrated a significantly decreased regional cerebral blood flow in the thalamus to the side of ophthalmoplegia, which was normalized on the follow-up SPECT during a symptom free recovery phase (Lesion to Non-lesion thalamic ratio=1.19 to 0.96 and 1.16 to 0.98, respectively). The other roentgenographic and laboratory findings were normal. These findings are suggestive the ischemia in the perforators of PCA results in third nerve palsy because the portion of oculomotor nerve behind the cavernous sinus derives its blood supply from small perforating branches of the basilar and PCA. Matched ictal hypoperfusion of the thalamus to the site of ophthalmoplegic migraine is suggestive of the ischemic neuropathy as an etiology of OM.

  1. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei (United States)

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.


    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  2. Probing the density tail of radioactive nuclei with antiprotons

    CERN Document Server

    Obertelli, Alexandre; Uesaka, Tomohiro; Corsi, Anna; Pollacco, Emmanuel; Flavigny, Freddy


    We propose an experiment to determine the proton and neutron content of the radial density tail in short-lived nuclei. The objectives are to (i) to evidence new proton and neutron halos, (ii) to understand the development of neutron skins in medium-mass nuclei, (iii) to provide a new observable that characterises the density tail of short-lived nuclei.

  3. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia


    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  4. [Bilateral infarction of the caudate nuclei]. (United States)

    Mrabet, A; Mrad-Ben Hammouda, I; Abroug, Z; Smiri, W; Haddad, A


    We report the case of a 57-year-old right-handed woman, with a history of hypertension, who, in February 1990, suddenly developed behavioral and cognitive abnormalities. Prior to the onset of her illness she had been normal. On examination, neuropsychological testing (Wechsler Mental Test, Wechsler Adult Intelligence Scale Revised, Knox Cube Test) elicited attention abnormalities, decreased recent memory, apathy, reduced spontaneity and initiative and left hemiparesia. CT scan showed small low density areas in the head of both caudate nuclei and right internal capsule, indicating infarction. Two years later, the deficit had partially resolved. Apathy persisted; psychometry showed an IQ of 57. Bilateral damage to the head of the caudate nuclei disrupt cortical-subcortical connections. The caudate nucleus is an essential component of basal ganglia-thalamo-cortical circuitry and its contribution to cognitive functions and behavior appears to be important.

  5. Isospin Mixing In N $\\approx$ Z Nuclei

    CERN Multimedia

    Srnka, D; Versyck, S; Zakoucky, D


    Isospin mixing in N $\\approx$ Z nuclei region of the nuclear chart is an important phenomenon in nuclear physics which has recently gained theoretical and experimental interest. It also forms an important nuclear physics correction in the precise determination of the $ft$-values of superallowed 0$^+ \\rightarrow 0^+ \\beta$- transitions. The latter are used in precision tests of the weak interaction from nuclear $\\beta$- decay. We propose to experimentally measure isospin mixing into nuclear ground states in the N $\\approx$ Z region by determining the isospin forbidden Fermi-component in the Gamow-Teller dominated $J^{\\pi} \\rightarrow J^{\\pi} \\beta$- transitions through the observation of anisotropic positron emission from oriented nuclei. First measurements were carried out with $^{71}$As and are being analyzed now.

  6. Weighing the evidence for clustering in nuclei (United States)

    Jenkins, David; Courtin, Sandrine


    Clustering in nuclei is a long-standing topic in nuclear physics. While it has attracted much experimental and theoretical attention over the years, it is a model which is still controversial in terms of whether such clustering can be clearly delineated and separated from the complexity of nuclear structure described within more conventional nuclear models. In this sense, there is still ambiguity in terms of the uniqueness and relevance of the clustering description. What is often not clearly articulated is what would provide the most compelling evidence for clustering in different contexts. As a means of illustrating these issues, two strands of this topic will be discussed: alpha clustering in light nuclei and clustering in the 12C+12C system. Recent work in these areas will be reviewed and scope for future work will be highlighted.

  7. Monopole Strength Function of Deformed Superfluid Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Kortelainen, E. M. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Nakatsukasa, T. [RIKEN, Japan; Losa, C. [International School for Advanced Studies (SISSA), Trieste, Italy; Nazarewicz, Witold [ORNL


    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in ^{240}Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.

  8. Heavy Nuclei Photofission at Intermediate Energies

    CERN Document Server

    Deppman, A; Guimaraes, V; Demekhina, N A; Karapetyan, G S


    In the present work the yields of fission fragments, from Bremsstrahlung induced fission of 232Th, 238U targets, were reproduced by CRISP model calculations, to which a multimodal fission option had been added. An extension of the calculation to the properties of the fission products is presented. Dividing the fissioning nuclei according to their fissionability, an approach which accounts for the contribution of symmetric and asymmetric fission is introduced. It allows to calculate the main parameters of the fission fragment charge distribution: the most probable charge for a given fission product mass chain and the width parameter. Furthermore, it reproduces the features of fragment mass distribution, and evaluates the fissility of fissioning nuclei in photon-induced fission. A comparison between the results of this calculation and experimental data is accomplished.

  9. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others


    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  10. Collective properties of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, I. [Univ. of Lund (Sweden); Sagawa, H. [Univ. of Aizu, Fukushima (Japan)


    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  11. Mesic nuclei with a heavy antiquark (United States)

    Yamaguchi, Yasuhiro; Yasui, Shigehiro


    The binding of a hadron and a nucleus is a topic of great interest for investigating hadron properties. In the heavy-flavor region, attraction between a P(=\\bar{D},B) meson and a nucleon N can appear, where PN-P^\\ast N mixing plays an important role in relation to the heavy-quark spin symmetry. The attraction can produce exotic heavy mesic nuclei that are stable against strong decay. We study an exotic system where the \\bar{D} (B) meson and nucleus are bound. The meson-nucleus interaction is given by a folding potential with single-channel PN interaction and the nucleon number distribution function. By solving the Schrödinger equations of the heavy meson and the nucleus, we obtain several bound and resonant states for nucleon number A=16,\\ldots,208. The results indicate the possible existence of exotic mesic nuclei with a heavy antiquark.

  12. Deeply virtual Compton scattering off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, Eric


    Deeply virtual Compton scattering (DVCS) is the golden exclusive channel for the study of the partonic structure of hadrons, within the universal framework of generalized parton distributions (GPDs). This paper presents the aim and general ideas of the DVCS experimental program off nuclei at the Jefferson Laboratory. The benefits of the study of the coherent and incoherent channels to the understanding of the EMC (European Muon Collaboration) effect are discussed, along with the case of nuclear targets to access neutron GPDs.

  13. S-wave pion absorption by nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hachenberg, F.; Huefner, J.; Pirner, H.J.


    The absorption of pions by nuclei leads to an imaginary part in the optical potential for pionic atoms. The imaginary part is calculated by assuming the rescattering mechanism to dominate. The pion scatters off-shell by one nucleon and is absorbed by a second one. The ..pi..N scattering amplitude is constructed from a field theoretical model. Its off-mass shell properties prove important to reproduce the data.

  14. Tagged EMC Measurements on Light Nuclei


    Armstrong, Whitney; Arrington, John; Cloet, Ian; Hafidi, Kawtar; Hattawy, Mohammad; Potteveld, David; Reimer, Paul; Riordan, Seamus; Yi, Z.; Ball, Jacques; Defurne, Maxime; Garcon, Michel; Moutarde, Herve; Procureur, Sebastien; Sabatie, Franck


    We propose to measure tagged deep inelastic scattering from light nuclei (deuterium and $^4$He) by detecting the low energy nuclear spectator recoil (p, $^3$H and $^3$He) in addition to the scattered electron. The proposed experiment will provide stringent tests leading to clear differentiation between the many models describing the EMC effect, by accessing the bound nucleon virtuality through its initial momentum at the point of interaction. Indeed, conventional nuclear physics explanations ...

  15. AMS with light nuclei at small accelerators (United States)

    Stan-Sion, C.; Enachescu, M.


    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  16. Synthesis of Magnetized Nuclei at Supernova Explosion (United States)

    Kondratyev, V. N.; Nurtayeva, U. M.; Zhomartova, A. Zh.; Mishenina, T. V.

    Influence of magnetorotational instabilities in astrophysical plasma at supernova explosion on synthesis of chemical elements is investigated. At field strength less than 10 teratesla nuclear magnetic susceptibility exhibits linear regime with enhanced nuclear binding energy for open shell nuclei. Effects of ultra-strong nuclear magnetization are demonstrated to enhance the portion of titanium product. The relation to an excess of titanium isotopes revealed from the Integral mission data and galactic chemical evolution is discussed.

  17. Interaction of nuclei at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, H.


    A review is given of recent theoretical and experimental developments in the study of collisions between energetic nuclei. Single particle inclusive spectra is first discussed, citing results of selected experiments and reviewing briefly some of the models involved in explaining the data. Problems in the study of multiparticle final states are then examined. Finally, some other experiments are mentioned whose methods or physics objectives are slightly different from those discussed previously. (SDF)

  18. Light nuclei production in heavy ion collisions

    CERN Document Server

    Khan, K H; Wazir, Z; Khan, E U; Haseeb, Mahnaz Q; Ajaz, M


    Light nuclei production as a result of nuclear coalescence effect can give some signals on final state of Quark Gluon Plasma formation. We are studying the behavior of nuclear modification factor as a function of different variables using the simulated data coming from the FASTMC generator. This data is necessary to extract information on coalescence mechanism from experimental data on high energy nuclear-nuclear interactions.

  19. Quantitative Methods for Evaluating the Efficacy of Thalamic Deep Brain Stimulation in Patients with Essential Tremor (United States)

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars


    Background Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. Methods We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. Results The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Discussion Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life. PMID:24255800

  20. Active action potential propagation but not initiation in thalamic interneuron dendrites (United States)

    Casale, Amanda E.; McCormick, David A.


    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  1. Open-loop organization of thalamic reticular nucleus and dorsal thalamus: a computational model. (United States)

    Willis, Adam M; Slater, Bernard J; Gribkova, Ekaterina D; Llano, Daniel A


    The thalamic reticular nucleus (TRN) is a shell of GABAergic neurons that surrounds the dorsal thalamus. Previous work has shown that TRN neurons send GABAergic projections to thalamocortical (TC) cells to form reciprocal, closed-loop circuits. This has led to the hypothesis that the TRN is responsible for oscillatory phenomena, such as sleep spindles and absence seizures. However, there is emerging evidence that open-loop circuits are also found between TRN and TC cells. The implications of open-loop configurations are not yet known, particularly when they include time-dependent nonlinearities in TC cells such as low-threshold bursting. We hypothesized that low-threshold bursting in an open-loop circuit could be a mechanism by which the TRN could paradoxically enhance TC activation, and that enhancement would depend on the relative timing of TRN vs. TC cell stimulation. To test this, we modeled small circuits containing TC neurons, TRN neurons, and layer 4 thalamorecipient cells in both open- and closed-loop configurations. We found that open-loop TRN stimulation, rather than universally depressing TC activation, increased cortical output across a broad parameter space, modified the filter properties of TC neurons, and altered the mutual information between input and output in a frequency-dependent and T-type calcium channel-dependent manner. Therefore, an open-loop model of TRN-TC interactions, rather than suppressing transmission through the thalamus, creates a tunable filter whose properties may be modified by outside influences onto the TRN. These simulations make experimentally testable predictions about the potential role for the TRN for flexible enhancement of cortical activation. Copyright © 2015 the American Physiological Society.

  2. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. (United States)

    Lehtimäki, K; Möttönen, T; Järventausta, K; Katisko, J; Tähtinen, T; Haapasalo, J; Niskakangas, T; Kiekara, T; Öhman, J; Peltola, J


    Deep brain stimulation of the anterior nucleus of the thalamus (ANT) is an emerging therapy for refractory focal epilepsy. However, the most optimal target for stimulation has not been unambiguously described. In the present study, we investigated the correlation between the stimulation site and outcome in order to define the optimal target for deep brain stimulation in refractory epilepsy. The locations of 62 contacts used in 30 treatment attempts in 15 prospectively followed patients during a 5 year period were assessed. Treatment attempts were classified into responding and non-responding trials using seizure reduction and side effect profile as criteria. The locations of active contacts were calculated with respect to mid-commissural point and visible borders of ANT in 3T MRI (ANT-normalized coordinate system) aiming to minimize the confounding effect of individual variation in the location and size of the ANT. Contacts in successful treatment trials were located significantly more anterior and superior both in AC-PC and ANT-normalized coordinate systems. Favourable outcome was observed at 3T MRI based location of ANT but not at location predicted by Schaltenbrandt atlas sagittal data. Contacts used in successful trials were at anterior aspect of the ANT complex evidenced by the ANT-normalized coordinate system. The anti-epileptic effect of anterior thalamic DBS may be dependent on stimulation site especially in the anterior to posterior axis. Extensive anatomical variation confounds severely the targeting of ANT. Therefore, direct visualization of the desired target for stimulation is essential for favourable outcome in refractory epilepsy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Thalamic mediodorsal nucleus and its participation in spatial working memory processes: comparison with the prefrontal cortex (United States)

    Funahashi, Shintaro


    Working memory is a dynamic neural system that includes processes for temporarily maintaining and processing information. Working memory plays a significant role in a variety of cognitive functions, such as thinking, reasoning, decision-making, and language comprehension. Although the prefrontal cortex (PFC) is known to play an important role in working memory, several lines of evidence indicate that the thalamic mediodorsal nucleus (MD) also participates in this process. While monkeys perform spatial working memory tasks, MD neurons exhibit directionally selective delay-period activity, which is considered to be a neural correlate for the temporary maintenance of information in PFC neurons. Studies have also shown that, while most MD neurons maintain prospective motor information, some maintain retrospective sensory information. Thus, the MD plays a greater role in prospective motor aspects of working memory processes than the PFC, which participates more in retrospective aspects. For the performance of spatial working memory tasks, the information provided by a sensory cue needs to be transformed into motor information to give an appropriate response. A population vector analysis using neural activities revealed that, although the transformation of sensory-to-motor information occurred during the delay period in both the PFC and the MD, PFC activities maintained sensory information until the late phase of the delay period, while MD activities initially represented sensory information but then started to represent motor information in the earlier phase of the delay period. These results indicate that long-range neural interactions supported by reciprocal connections between the MD and the PFC could play an important role in the transformation of maintained information in working memory processes. PMID:23914160

  4. Decreased striatal and enhanced thalamic dopaminergic responsivity in detoxified cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. [Brookhaven National Lab., Stony Brook, NY (United States)] [and others


    It has been hypothesized that cocaine addiction could result from decreased brain dopamine (DA) function. However, little is known about changes in (DA) neurotransmission in human cocaine addiction. We used PET and [C-11]raclopride, a DA D2 receptor ligand sensitive to competition with endogenous DA, to measure relative changes in extracellular DA induced by methylphenidate (MP) in 20 cocaine abusers (3-6 weeks after cocaine discontinuation) and 23 controls. MP did not affect the transport of [C-11]raclopride from blood to brain (K1); however it induced a significant reduction in DA D2 receptor availability (Bmax/Kd) in striatum. The magnitude of ND-induced changes in striatal [C-11]raclopride binding were significantly larger in controls (21 + 13% change from baseline) than in cocaine abusers (9 {+-} 13 %) (ANOVA p < 0.005). In cocaine abusers, but not in controls, MP also decreased Bmax/Kd values in thalamus (29 {+-} 35 %) (ANOVA p < 0.005). There were no differences in plasma MP concentration between the groups. In striatum MP-induced changes in Bmax/Kd were significantly correlated with MP-induced changes in self reports of restlessness (r = 0.49, df 42, p < 0.002). In thalamus MP-induced changes in Bmax/Kd were significantly correlated with ND-induced changes in self reports of cocaine craving (r = 0.57, df 42, p < 0.0001). These results are compatible with a decrease in striatal DA brain function in cocaine abusers. They also suggest a participation of thalamic DA pathways in cocaine addiction.

  5. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. (United States)

    Ruiz-Reig, Nuria; Andrés, Belén; Huilgol, Dhananjay; Grove, Elizabeth A; Tissir, Fadel; Tole, Shubha; Theil, Thomas; Herrera, Eloisa; Fairén, Alfonso


    A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  6. Resting state functional thalamic connectivity abnormalities in patients with post-stroke sleep apnoea: a pilot case-control study. (United States)

    Sacchetti, M L; Di Mascio, M T; Tinelli, E; Mainero, C; Russo, G; Fiorelli, M; Calistri, V; de Lena, C; Minni, A; Caramia, F


    Sleep apnoea is common after stroke, and has adverse effects on the clinical outcome of affected cases. Its pathophysiological mechanisms are only partially known. Increases in brain connectivity after stroke might influence networks involved in arousal modulation and breathing control. The aim of this study was to investigate the resting state functional MRI thalamic hyper-connectivity of stroke patients affected by sleep apnoea (SA) with respect to cases not affected, and to healthy controls (HC). A series of stabilized strokes were submitted to 3T resting state functional MRI imaging and full polysomnography. The ventral-posterior-lateral thalamic nucleus was used as seed. At the between groups comparison analysis, in SA cases versus HC, the regions significantly hyper-connected with the seed were those encoding noxious threats (frontal eye field, somatosensory association, secondary visual cortices). Comparisons between SA cases versus those without SA revealed in the former group significantly increased connectivity with regions modulating the response to stimuli independently to their potentiality of threat (prefrontal, primary and somatosensory association, superolateral and medial-inferior temporal, associative and secondary occipital ones). Further significantly functionally hyper-connections were documented with regions involved also in the modulation of breathing during sleep (pons, midbrain, cerebellum, posterior cingulate cortices), and in the modulation of breathing response to chemical variations (anterior, posterior and para-hippocampal cingulate cortices). Our preliminary data support the presence of functional hyper connectivity in thalamic circuits modulating sensorial stimuli, in patients with post-stroke sleep apnoea, possibly influencing both their arousal ability and breathing modulation during sleep.

  7. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. (United States)

    Kolodziejczyk, Karolina; Raymond, Lynn A


    Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling (United States)

    Mak-McCully, Rachel A.; Deiss, Stephen R.; Rosen, Burke Q.; Jung, Ki-Young; Sejnowski, Terrence J.; Bastuji, Hélène; Rey, Marc


    Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model

  9. Flow cytometry of DNA in mouse sperm and testis nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meistrich, M.L. (Univ. of Texas, Houston); Lake, S.; Steinmetz, L.L.; Gledhill, B.L.


    Mutations that occur in spermatogenic cells may be expressed as changes in DNA content, but developmentally-dependent alteration of its staining properties complicates the quantitation of DNA in individual germ cells. These alterations have been studied with flow cytometric techniques. Nuclei from mouse testis cells and sperm were stained by the acriflavine--Feulgen method. The fluorescence intensity frequency distribution of nuclei of testis cells was characterized by 2 major and 5 minor peaks. Nuclei sorted from the various peaks with a fluorescence-activated cell sorter were identified microscopically. These data were confirmed by generation of peaks with nuclei prepared from cell suspensions enriched in specific cell types. One of the major peaks corresponded to round spermatid nuclei. The other major peak, located at 0.6 of the fluorescence intensity of the round nuclei, corresponded to elongated spermatid nuclei. Purified nuclei of epididymal and vas deferens spermatozoa displayed asymmetric fluorescence distributions. A minor peak at 0.8 the intensity of the round spermatid nuclei was tentatively assigned to elongating spermatids. 2 of the minor peaks, located at 1.7 and 2.0 times the fluorescence intensity of the round nuclei, corresponded to clumps of 2 haploid and diploid nuclei.

  10. Unilateral asterixis, thalamic astasia and vertical one and half syndrome in a unilateral posterior thalamo-subthalamic paramedian infarct: An interesting case report

    Directory of Open Access Journals (Sweden)

    Subasree Ramakrishnan


    Full Text Available A 42-year-old young lady presented with acute onset of dizziness, drooping of left eye with binocular diplopia and inability to walk unassisted. She had past history of uncontrolled diabetes mellitus and hypertension. On examination, she had left fascicular type of third nerve palsy, vertical one and half syndrome (VOHS, left internuclear ophthalmoplegia and skew deviation with ipsilesional hypertropia. She also had thalamic astasia and right unilateral asterixis. Her MRI revealed T2 and Flair hyper intense signal changes with restricted diffusion in the left thalamus, subthalamus and left midbrain. MR Angiography was normal. Thalamic-subthalamic paramedian territory infarct is relatively uncommon. It can present with oculomotor abnormalities including vertical one and half syndrome, skew deviation, thalamic astasia and asterixis. This case is reported for the rarity of the presenting clinical findings in unilateral thalamo-mesencephalic infarcts.

  11. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G


    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  12. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in guinea pigs

    Directory of Open Access Journals (Sweden)

    Susan D Motts


    Full Text Available The midbrain tegmentum is the source of cholinergic innervation of the thalamus and has been associated with arousal and control of the sleep/wake cycle. In general, the innervation arises bilaterally from the pedunculopontine tegmental nucleus (PPT and the laterodorsal tegmental nucleus (LDT. While this pattern has been observed for many thalamic nuclei, a projection from the LDT to the medial geniculate body (MG has been questioned in some species. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase (ChAT to identify cholinergic projections from the brainstem to the MG in guinea pigs. Double-labeled cells (retrograde and immunoreactive for ChAT were found in both the PPT (74% and the LDT (26%. In both nuclei, double-labeled cells were more numerous on the ipsilateral side. About half of the retrogradely labeled cells were immunonegative, suggesting they are non-cholinergic. The distribution of these immunonegative cells was similar to that of the immunopositive ones: more were in the PPT than the LDT and more were on the ipsilateral than the contralateral side. The results indicate that both the PPT and the LDT project to the MG, and suggest that both cholinergic and non-cholinergic cells contribute substantially to these projections.

  13. Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei

    Directory of Open Access Journals (Sweden)

    Claire E Warner


    Full Text Available Considerable debate continues regarding thalamic inputs to the middle temporal area (MT of the visual cortex that bypass the primary visual cortex (V1 and the role they might have in the residual visual capability following a lesion of V1. Two specific retinothalamic projections to area MT have been speculated to relay through the medial portion of the inferior pulvinar nucleus (PIm and the koniocellular layers of the dorsal lateral geniculate nucleus (LGN. Although a number of studies have demonstrated retinal inputs to regions of the thalamus where relays to area MT have been observed, the relationship between the retinal terminals and area MT relay cells has not been established. Here we examined direct retino-recipient regions of the marmoset monkey (Callithrix jacchus pulvinar nucleus and the LGN following binocular injections of anterograde tracer, as well as area MT relay cells in these nuclei by injection of retrograde tracer into area MT. Retinal afferents were shown to synapse with area MT relay cells as demonstrated by colocalization with the presynaptic vesicle membrane protein synaptophysin. We also established the presence of direct synapes of retinal afferents on area MT relay cells within the PIm, as well as the koniocellular K1 and K3 layers of the LGN, thereby corroborating the existence of two disynaptic pathways from the retina to area MT that bypass V1.

  14. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch


    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  15. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. (United States)

    Menegaux, Aurore; Meng, Chun; Neitzel, Julia; Bäuml, Josef G; Müller, Hermann J; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra M; Finke, Kathrin; Sorg, Christian


    Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery

  16. Nuclei at extreme conditions. A relativistic study

    Energy Technology Data Exchange (ETDEWEB)

    Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)


    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  17. Effective field theory description of halo nuclei (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.


    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  18. The superdeformation phenomenon in atomic nuclei (United States)

    Meyer, M.; Vivien, J. P.

    After the discovery of discrete rotational bands corresponding to superdeformed nuclei with spin around 60h, the study of the structure of these nuclei over the last five years has witnessed a significant expansion in physical understanding with the emergence of new phenomena and in a technical development with the construction of sophisticated apparatus to examine these nuclei. On the eve of the approaching operation of news detectors such as EUROGAM resulting from a French-British collaboration,or the American GAMMASPHERE, this article discusses the present state of knowledge on superdeformation and exposes the theoretical basis as well as recent experimental results in the field. Avec la découverte de bandes de rotations discrètes correspondant à des noyaux superdéformés ayant des moments angulaires avoisinant 60h, l'étude de la structure de ces noyaux connait depuis les cinq dernières années un essor important tant sur le plan de la physique avec l'apparition de phénomènes nouveaux que sur le plan de la technique avec le développement d'appareillages sophistiqués pour scruter ces noyaux. A la veille de l'entrée en fonction de nouveaux détecteurs comme EUROGAM issu d'une collaboration Franco-Britannique ou GAMMASPHERE résultant des efforts des laboratoires Americains, cet article fait le point des connaissances actuelles sur la superdéformation et relate les acquis théoriques ainsi que les resultats expérimentaux accumulés récemment dans ce domaine.

  19. Sum rules and giant resonances in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.


    The formalism of sum rules is developed and employed to investigate various giant resonances in nuclei. Particular emphasis is given to the role of surface effects which are shown to play a crucial role in the propagation of isoscalar as well as isovector collective modes. Sum rules for non-Hermitian operators, in particular for charge exchange reactions, are derived using the formalism of the dynamic polarizability. Several sum rules for investigating magnetic excitations, the structure of the transition density and the role of the nuclear deformation and of temperature on giant resonances are also presented and discussed.

  20. The Structure of Nuclei Far from Stability

    Energy Technology Data Exchange (ETDEWEB)

    Zganjar, E.F.


    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  1. Probing Chiral Interactions in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P


    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  2. Onset of chaos in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, S. (Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN (USA) Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund (Sweden))


    The onset of chaos is investigated for excited, rapidly rotating nuclei, utilizing a schematic two-body residual interaction added to the cranked Nilsson Hamiltonian. Dynamical effects at various degrees of mixing between regularity and chaos are studied in terms of fragmentation of the collective rotational strength. It is found that the onset of chaos is connected to a saturation of the average standard deviation of the rotational strength function. Still, the rotational-damping width may exhibit motional narrowing in the chaotic regime.

  3. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)


    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  4. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations. (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung


    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness. (United States)

    Bhattacharya, Basabdatta S; Patterson, Cameron; Galluppi, Francesco; Durrant, Simon J; Furber, Steve


    We present a preliminary study of a thalamo-cortico-thalamic (TCT) implementation on SpiNNaker (Spiking Neural Network architecture), a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behavior similar to Electroencephalogram (EEG) time and power-spectra signatures in sleep-wake transition. The scale of the model is minimized for simplicity in this proof-of-concept study; thus the total number of spiking neurons is ≈1000 and represents a "mini-column" of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG power spectra characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity-the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.

  6. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study towards modelling sleep and wakefulness

    Directory of Open Access Journals (Sweden)

    Basabdatta Sen Bhattacharya


    Full Text Available We present a preliminary study of a thalamo-cortico-thalamic (TCT implementation on SpiNNaker (Spiking Neural Network architecture, a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behaviour similar to Electroencephalogram (EEG time and power-spectra signatures in sleep-wake transition. The scale of the model is minimised for simplicity in this proof-of-concept study; thus the total number of spiking neurons is approximately 1000 and represents a `mini-column' of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG time series characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity---the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.

  7. Altered functional network architecture in orbitofronto-striato-thalamic circuit of unmedicated patients with obsessive-compulsive disorder. (United States)

    Jung, Wi Hoon; Yücel, Murat; Yun, Je-Yeon; Yoon, Youngwoo B; Cho, Kang Ik K; Parkes, Linden; Kim, Sung Nyun; Kwon, Jun Soo


    Dysfunction of corticostriatal loops has been proposed to underlie certain cognitive and behavioral problems associated with various neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) characterized by repetitive, unwanted thoughts, and behaviors. Although functional abnormalities in the loops involving the orbitofronto-striato-thalamic (OFST) circuitry in patients with OCD have been reported, our understanding of a link between disruptions in the architecture of the intrinsic functional network of the OFST circuit and their symptoms remain incomplete. Using resting-state functional MRI in conjunction with unsupervised clustering and multilevel functional connectivity (FC) techniques, FC of the OFST network and its topological organization in 61 OCD patients versus 61 matched controls were characterized. Patients exhibited disruptions in small-world properties of the OFST circuit, which indicates an imbalance between functional integration and segregation. Patients also showed decreased FC between the central orbitofrontal cortex and dorsomedial striatum but increased FC between the medial thalamus and striatal areas. Using one of the largest samples of unmedicated OCD patients to date, our findings provide evidence supporting the OFST dysconnection hypothesis in OCD as a basic pathophysiological mechanism underlying the disorder, showing the disruption of FC between specific cortical, striatal, and thalamic clusters and aberrant topological patterns of the OFST circuit. Hum Brain Mapp 38:109-119, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. (United States)

    Fu, Bao; Yu, Tian; Yuan, Jie; Gong, Xingrui; Zhang, Mazhong


    At present, the mechanisms by which general anesthetics causing loss of consciousness remain unclear. The central medial thalamic nucleus (CMT) is a rarely studied component of the midline thalamic complex, which is deemed to be a part of the nonspecific arousal system. Although the CMT participates in modulating arousal and receives excitatory noradrenergic projections from locus coeruleus, it remains unknown whether the noradrenergic pathway in the CMT takes part in modulating the arousal system. Therefore, we hypothesized that noradrenergic transmission in the CMT is involved in modulating induction and emergence of propofol anesthesia. First, we infused norepinephrine (NE) into the CMT to observe the role of CMT noradrenergic pathway in modulating the anesthetic state induced by propofol. The results showed that microinjection of NE into the CMT accelerated emergence from propofol anesthesia, but had no impact on the induction of or sensitivity to propofol anesthesia in rats. In addition, infusion of NE into the CMT caused electroencephalography changes in the prefrontal cortex and the anterior cingulate cortex. Finally, we used a whole-cell patch clamp to examine the effects of NE on neuronal excitability and GABAergic transmission in the CMT. In the CMT slices, propofol suppressed neuronal excitability and enhanced GABAergic transmission, while application of NE partly reversed these effects. These findings support the hypothesis that the CMT noradrenergic pathway plays an important role in modulating the emergence from general anesthesia. © 2017 International Society for Neurochemistry.

  9. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. (United States)

    Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril


    -frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  10. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun


    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2

  11. Social cognitive and neurocognitive deficits in inpatients with unilateral thalamic lesions — pilot study

    Directory of Open Access Journals (Sweden)

    Wilkos E


    Full Text Available Ewelina Wilkos,2 Timothy JB Brown,3 Ksenia Slawinska,1 Katarzyna A Kucharska2,3 1Department of Neurology, 2Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland; 3Department of Medical Education, Hull York Medical School, Hull, UK Background: The essential role of the thalamus in neurocognitive processes has been well documented. In contrast, relatively little is known about its involvement in social cognitive processes such as recognition of emotion, mentalizing, or empathy. The aim of the study: This study was designed to compare the performance of eight patients (five males, three females, mean age ± SD: 63.7±7.9 years at early stage of unilateral thalamic lesions and eleven healthy controls (six males, five females, 49.6±12.2 years in neurocognitive tests (CogState Battery: Groton Maze Learning Test, GML; Groton Maze Learning Test-Delayed Recall, GML-DR; Detection Task, DT; Identification Task, IT; One Card Learning Task, OCLT; One Back Task, OBT; Two Back Task, TBT; Set-Shifting Task, S-ST and other well-known tests (Benton Visual Retention Test, BVRT; California Verbal Learning Test, CVLT; The Rey-Osterrieth Complex Figure Test, ROCF; Trail Making Test, TMT part A and B; Color – Word Stroop Task, CWST; Verbal Fluency Test, VFT, and social cognitive tasks (The Penn Emotion Recognition Test, ER40; Penn Emotion Discrimination Task, EmoDiff40; The Penn Emotional Acuity Test, PEAT40; Reading the Mind in the Eyes Test, revised version II; Toronto Alexithymia Scale, TAS-20. Methods: Thalamic-damaged subjects were included if they experienced a single-episode ischemic stroke localized in right or left thalamus. The patients were examined at 3 weeks after the stroke onset. All were right handed. In addition, the following clinical scales were used: the Mini-Mental State Examination (MMSE, Spielberger State-Trait Anxiety Inventory (STAI, Beck Depression Inventory (BDI II. An inclusion

  12. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym


    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...


    NARCIS (Netherlands)


    We discuss various relativistic models describing ground-state properties of spherical nuclei. Relativistic mean-field and Hartree-Fock theories, which serve as a starting point for subsequent models, are reviewed. Using a density-dependent parametrization of the Dirac-Brueckner G matrix in nuclear

  14. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, M.L.; Denes-Jones, P. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy; dabrowska, A. [Institute of Nuclear Physics, Cracow (Poland)] [and others; KLMM


    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab.

  15. Interactions of 10. 6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, M.L. (Dept. of Physics and Astronomy, Louisiana State Univ., Baton Rouge, LA (United States)); Dabrowska, A. (Inst. of Nuclear Physics, Krakow (Poland)); Deines-Jones, P. (Dept. of Physics and Astronomy, Louisiana State Univ., Baton Rouge, LA (United States)); Dubinina, A.J. (Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)); Holynski, R. (Inst. of Nuclear Physics, Krakow (Poland)); Jones, W.V. (Dept. of Physics and Astronomy, Louisiana State Univ., Baton Rouge, LA (United States)); Kolganova, E.D. (Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)); Olszewski, A. (Inst. of Nuclear Physics, Krakow (Poland)); Pozharova, E.A. (Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)); Sengupta, K. (Dept. of Physics and Astronomy, Louisiana State Univ., Baton Rouge, LA (United States)); Skorodko, T.Yu. (Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)); Smirnitski, V.A. (Inst.; KLMM Collaboration


    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criterion has been found to distinguish between the interactions of these gold nuclei with the light (H,C,N,O) and heavy (Ag,Br) target nuclei in the emulsion. This has allowed separate analyses of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H,C,N,O) and Au-(Ag,Br) interactions, as well as of the modes of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (orig.)

  16. Nuclear obscuration in active galactic nuclei (United States)

    Ramos Almeida, Cristina; Ricci, Claudio


    The material surrounding accreting supermassive black holes connects the active galactic nucleus with its host galaxy and, besides being responsible for feeding the black hole, provides important information on the feedback that nuclear activity produces on the galaxy. In this Review, we summarize our current understanding of the close environment of accreting supermassive black holes obtained from studies of local active galactic nuclei carried out in the infrared and X-ray regimes. The structure of this circumnuclear material is complex, clumpy and dynamic, and its covering factor depends on the accretion properties of the active galactic nucleus. In the infrared, this obscuring material is a transition zone between the broad- and narrow-line regions, and, at least in some galaxies, it consists of two structures: an equatorial disk/torus and a polar component. In the X-ray regime, the obscuration is produced by multiple absorbers across various spatial scales, mostly associated with the torus and the broad-line region. In the coming decade, the new generation of infrared and X-ray facilities will greatly contribute to our understanding of the structure and physical properties of nuclear obscuration in active galactic nuclei.

  17. Experiments with stored relativistic exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H.; Radon, T.; Attallah, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)] [and others


    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: (1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10{sup -6}. The achieved mass resolving power of m/{Delta}m = 6.5 . 10{sup 5} (FWHM) in recent measurements represents an improvement by a factor of two compared to our previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54 {<=} Z {<=} 84. The results are compared with mass models and estimated values based on extrapolations of experimental values. (2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/{Delta}m = 1.5 . 10{sup 5} (FWHM) was achieved in this mode of operation. (3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability. (orig.)

  18. New spin excitation modes in nuclei (United States)

    Castel, B.; Zamick, L.


    Recent pion inelastic scattering experiments at LAMPF have revealed the existence of strong spin-flip E1 resonances in the vicinity of the GDR in several light nuclei. We present here a general review of shell model and RPA calculations of S = 0 and S = 1 E1 and E2 strength distributions which offer a broad theoretical context for the discussion of electric spin excitations. We discuss in particular the sensitivity of the spin-flip states to the non-central part of the nuclear interaction. Sum rules techniques are also employed to demonstrate the lack of overlap between S = 0 and S = 1 states. This review suggests that spin excited states respond differently to hadronic, electromagnetic and pionic probes and that the region of up to 10 MeV above the GDR is the most promising for future experimental investigations. Chapter 2 of this review is then devoted to the study of the recently discovered M1 collective (the “scissor” mode) in light nuclei. In particular the study concentrates on model predictions in the f{7}/{2} shell and the subsequent observation of strong M1 excitations in 46Ti performed by Richter's group with the electron accelerator at Darmstadt, as well as inelastic proton scattering performed by an Orsay-Michigan State Collaboration. Rotational model and configuration mixing predictions of the spin and orbital components are also discussed in the context of a comparison between (p,p‧) and (e,e‧) M1 spectra.

  19. Theoretical studies of hadrons and nuclei

    Energy Technology Data Exchange (ETDEWEB)



    This report details final research results obtained during the 9 year period from June 1, 1997 through July 15, 2006. The research project, entitled Theoretical Studies of Hadrons and Nuclei , was supported by grant DE-FG02-97ER41048 between North Carolina State University [NCSU] and the U. S. Department of Energy [DOE]. In compliance with grant requirements the Principal Investigator [PI], Professor Stephen R. Cotanch, conducted a theoretical research program investigating hadrons and nuclei and devoted to this program 50% of his time during the academic year and 100% of his time in the summer. Highlights of new, significant research results are briefly summarized in the following three sections corresponding to the respective sub-programs of this project (hadron structure, probing hadrons and hadron systems electromagnetically, and many-body studies). Recent progress is also discussed in a recent renewal/supplemental grant proposal submitted to DOE. Finally, full detailed descriptions of completed work can be found in the publications listed at the end of this report.

  20. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)


    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  1. Spherical nuclei near the stability line and far from it

    Energy Technology Data Exchange (ETDEWEB)

    Isakov, V. I., E-mail: [National Research Centre Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)


    Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin–orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.

  2. Exotic nuclei and radioactive beams; Noyaux exotiques et faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.


    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs.

  3. Investigating the radial distributions of medium-mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Dragosavac, D.; Perez-Loureiro, D.; Alvarez-Pol, H. [Universidad de Santiago de Compostela, 15782 Santiago de Compostela Spain (Spain); Blank, B. [Centre d' Etudes Nucleaires Bordeaux-Gradignan, F-33175 Gradignan (France); Casarejos, E. [Universidad de Santiago de Compostela, 15782 Santiago de Compostela Spain (Spain); Fohr, V. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Gascon, M. [Universidad de Santiago de Compostela, 15782 Santiago de Compostela Spain (Spain); Gawlikowicz, W. [Heavy Ion Laboratory, University of Warsaw, PL-02-093 (Poland); Heinz, A. [WNSL, Yale University, New Haven, Connecticut 06511 (United States); Helariutta, K. [Laboratory of Radiochemistry, P. O. Box 55, FI-00014 Helsinki (Finland); Lukic, S.; Montes, F. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Pienkowski, L. [Heavy Ion Laboratory, University of Warsaw, PL-02-093 (Poland); Staniou, M. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Subotic, K. [Institute of Nuclear Sciences, VINCA, Belgrade 11001 (Serbia); Suemmerer, K. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Taieb, J. [CEA/DAM, Bruyeres-le-Chatel, 91290 Aapajon Cedex (France); Trzcinska, A. [Heavy Ion Laboratory, University of Warsaw, PL-02-093 (Poland); Veselsky, M. [Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia)


    The radial evolution of the matter distributions with neutron excess has been investigated at GSI measuring total interaction cross sections for long isotopic chains of medium-mass nuclei. Comparisons with different model calculations show a clear increase of the total interaction cross sections for the most neutron-rich nuclei that we interpret as a signature for a larger matter radius of those nuclei.

  4. Observation of inception of sheet cavitation from free nuclei (United States)

    Tsuru, Wakana; Konishi, Takafumi; Watanabe, Satoshi; Tsuda, Shin-ichi


    Prediction of inception of sheet cavitation on solid walls has been recognized to be very difficult, since it is significantly affected by the boundary layer flow characteristics, the population of free nuclei, the nuclei held in the wall roughness, the amount of dissolved air in liquid and so on. It has not sufficiently been made clear how the inception is affected by the conditions of water qualities and background flow characteristics. In this study, high speed observation of inception of sheet cavity from free nuclei is conducted for a two-dimensional convergent- divergent nozzle flow, where the sheet cavity forms just downstream of the nozzle throat. The effects of the amount of dissolved air and the free stream velocity on the inception process of sheet cavitation is examined. In addition, the bubble nuclei density, which is well known to be important factor for cavitation inception, is passively controlled by the filter installed in the tunnel. From the observations, it is confirmed that the nuclei number density significantly affects the formation of sheet cavity rather than the other two parameters. In conditions with large nuclei number density, the sheet cavity does not form, and bubbly cavitation appears instead. In the case with small nuclei number density, the sheet cavity forms from a single flowing nucleus and develops streamwisely and spanwisely. In the conditions with medium nuclei number density, the sheet cavity also forms but is shorter/ narrower streamwisely/spanwisely, due to interaction of other nuclei flowing near the formed sheet cavity.

  5. Search for η' Mesic Nuclei in GSI/FAIR (United States)

    Itahashi, K.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Fujioka, H.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    Origin of an exceptionally large mass of an η' meson has been attracting many theoretical and experimental studies. A large mass reduction was predicted for η' mesons accommodated in a nuclear medium, which leads to possible existence of η'-mesic nuclei, η' mesons bound to nuclei. We conducted a direct experimental search for the η'-mesic nuclei in GSI by measuring excitation spectra of 11C nuclei near the η' emission threshold. The present status of the experimental data analysis and future perspectives are discussed.

  6. Measurement of frontal lobe volume and thalamic volume in fetuses with congenital heart disease at different gestational weeks using three dimensional ultra sonography and its clinical value. (United States)

    Li-Fei, Zhu; Hong-Xiong, Liu; Ying, H E


    Our study aimed to investigate the measurement of frontal lobe volume and thalamic volume in fetuses with congenital heart disease (CHD) at different gestational weeks using three dimensional (3-D) ultrasonography and its clinical value. Then, 238 pregnant women who received obstetric ultrasonography in ultrasound department of Internal Medicine of our hospital were enrolled between March 2013 to April 2014. In this study, 85 fetuses were diagnosed to develop CHD by prenatal fetal echocardiography, and the other 153 fetuses were normal. Frontal lobe volume, thalamic volume and cerebral blood flow was determined by color Doppler ultrasonic diagnostic apparatus (type: GE Voluson E8). The level of MCA-PI and CPR in CHD fetus group performed significantly lower than that in normal fetus group (Pfrontal lobe volume between the two groups (Pfrontal lobe volume than that in normal fetus group (Pfrontal lobe volume and thalamic volume; if gestational age frontal lobe volume and thalamic volume in fetuses with CHD performed significantly lower than that in normal fetuses.

  7. Deep brain stimulation of the mediodorsal thalamic nucleus yields increases in the expression of zif-268 but not c-fos in the frontal cortex. (United States)

    Ewing, Samuel G; Porr, Bernd; Pratt, Judith A


    This study explores the regions activated by deep brain stimulation of the mediodorsal thalamic nucleus through examination of immediate early genes as markers of neuronal activation. Stimulation was delivered unilaterally with constant current 100 μs duration pulses at a frequency of 130 Hz delivered at an amplitude of 200 μA for 3h. Brains were removed, sectioned and radio-labelled for the IEGs zif-268 and c-fos. In anaesthetised rats, deep brain stimulation of mediodorsal thalamic nucleus produced robust increases in the expression of zif-268 but not c-fos localised to regions that are reciprocally connected with the mediodorsal thalamic nucleus, including the prelimbic and orbitofrontal cortices, and the premotor cortex indicating an increase in synaptic activity in these regions. These findings map those brain regions that are persistently, rather than transiently, activated by high frequency electrical stimulation of the mediodorsal thalamic nucleus by a putatively antidromic mechanism which may be relevant to neuropsychiatric disorders such as schizophrenia in which thalamocortical systems are disrupted and in which DBS protocols are being considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Medial Dorsal Thalamic Nucleus and the Medial Prefrontal Cortex of the Rat Function Together to Support Associative Recognition and Recency but Not Item Recognition (United States)

    Cross, Laura; Brown, Malcolm W.; Aggleton, John P.; Warburton, E. Clea


    In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In…

  9. Are cometary nuclei primordial rubble piles? (United States)

    Weissman, P. R.


    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  10. Quarks and gluons in hadrons and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Close, F.E. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA))


    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.

  11. Spectroscopy of Exotic Nuclei via Proton Removal (United States)

    Bazin, Daniel


    Inverse kinematics proton removal reactions using light targets are now well established as a powerful tool for spectroscopy of neutron-rich nuclei. The peripheral nature of these so-called knockout reactions enables the use of simple eikonal models to calculate single-particle cross sections and deduce spectroscopic factors. Exclusive experiments have shown these models to predict the relative proportions of the different components of the cross sections very accurately. However, these models have limitations such as the absence of core excitations for instance, and benchmarking the deduction of spectroscopic factors remains a challenging task. In particular, differences with respect to other reactions tools such as transfer reactions or quasi-free proton and electron scattering, are still unexplained. This talk will concentrate on establishing the current status of knockout reaction mechanism studies and benchmarking efforts.

  12. Effective field theory for triaxially deformed nuclei (United States)

    Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.


    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

  13. Coexistence in even-mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.L. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Physics); Heyde, K. (Inst. for Theoretical Physics and Inst. for Nuclear Physics, Ghent (Belgium)); Nazarewicz, W. (Joint Inst. for Heavy-Ion Research, Oak Ridge, TN (United States). Holifield Heavy-Ion Research Facility Warsaw Univ. (Poland). Inst. of Theoretical Physics); Huyse, M.; Duppen, P. van (Katholieke Univ., Leuven (Belgium). Inst. voor Kern- en Stralingsfysika)


    Shape coexistence in doubly even nuclei is reviewed. Two main theoretical approaches are presented. The first is essentially the shell model with the excitation of pairs of protons and/or neutrons across closed shells or subshells together with a residual proton-neutron interaction. The second is the deformed mean-field approach. The first is broadly defined so that it includes various truncation schemes to the shell model including generalized seniority and the interacting boson model. The presentation of the theory has two main aims: to provide a framework into which the majority of theoretical studies of shape coexistence can be placed and to provide a framework within which a unified view can be discussed. Selected experimental data are shown from {sup 16}O to {sup 238}U. Our criteria for selection emphasize detailed spectroscopic evidence ('fingerprints') for coexisting shapes. (orig.).

  14. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)


    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  15. The resonance neutron fission on heavy nuclei

    CERN Document Server

    Kopach, Yu N; Furman, V I; Alfimenkov, V P; Lason', L; Pikelner, L B; Gonin, N N; Kozlovskij, L K; Tambovtsev, D I; Gagarskij, A M; Petrov, G A; Sokolov, V E


    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned sup 2 sup 3 sup 5 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances

  16. Shell model calculations for exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.A. (Michigan State Univ., East Lansing, MI (USA)); Warburton, E.K. (Brookhaven National Lab., Upton, NY (USA)); Wildenthal, B.H. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Physics and Astronomy)


    In this paper we review the progress of the shell-model approach to understanding the properties of light exotic nuclei (A < 40). By shell-model'' we mean the consistent and large-scale application of the classic methods discussed, for example, in the book of de-Shalit and Talmi. Modern calculations incorporate as many of the important configurations as possible and make use of realistic effective interactions for the valence nucleons. Properties such as the nuclear densities depend on the mean-field potential, which is usually separately from the valence interaction. We will discuss results for radii which are based on a standard Hartree-Fock approach with Skyrme-type interactions.

  17. Galactic Nuclei through the ``Lens" of HST (United States)

    Faber, S. M.


    HST has now imaged upwards of 50 galactic nuclei. The sample divides into two broad categories: early-type bulges/ellipticals, and spirals. Early-type nuclei tend to follow broad trends foreshadowed by earlier ground-based data, but with some important differences. Large early-type galaxies show ``break radii" that are analogous to classical core radii. However, inside these cores, most light profiles do not level out but continue to increase in shallow power laws inwards to the resolution limit (0.1\\arcsec). We call such nuclei ``soft cores." Small early-type galaxies are completely unresolved and show steep power-laws at all radii. We call these ``hard cores." Early-type galaxies of intermediate brightness seem to be divided into hard cores or soft cores according to rotation and isophote shape: rotating, disky E's have hard, steep cores, while non-rotating, boxy E's have soft cores and breaks. Thus, core properties seem to reinforce the division of ellipticals into two fundamentally different families that has been emerging for some time now based on other data. Core phase-space density shows an enormous range in early-type galaxies, decreasing by a factor of 100 million from the smallest ellipticals to the largest. Since phase-space density is believed to either remain constant or increase during mergers, this trend casts doubt on whether large E's could have formed by merging from progenitors that looked like present-day small E's. The smallest and closest elliptical, M32, is so dense that stellar collisions have likely been important over the age of the Universe. M32's relatively high stellar velocity dispersion ( ~ 100 km s(-1) ) favors runaway merging in collisions to form a black hole. Evidence for such a BH has been found from ground-based spectroscopy. Compared to early-type galaxies, spiral nuclei show a wider range of morphologies and physical phenomena, some quite exotic. Nuclear star clusters are common in spirals. The density is so high in the

  18. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia


    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  19. 4th International Conference on Exotic Nuclei and Atomic Masses

    CERN Document Server

    Gross, Carl J; Rykaczewski, Krzysztof P; The European Physical Journal A : Volume 25, Supplement 1, 2005


    The International Conference on Exotic Nuclei and Atomic Masses (ENAM) has gained the status of the premier meeting for the physics of nuclei far from stability. The selected and refereed papers presenting the main results constitute valuable proceedings that offer everyone working in this field an authoritative and comprehensive source of reference.

  20. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte


    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed sta...

  1. Kaonic nuclei excited by the (K{sup -}, N) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Tadafumi [Dept. of Phys., Osaka Univ., Toyonaka, Osaka (Japan)


    We show that kaonic nuclei can be produced by the (K{sup -}, p) and (K{sup -}, n) reactions. The reactions are shown to have cross sections experimentally measurable. The observation of the kaonic nuclei gives a kaon-nucleus potential which answers the question on the existence of kaon condensation in dense nuclear matter especially neutron stars. (author)

  2. Spectroscopic factors for two-proton radioactive nuclei

    Indian Academy of Sciences (India)

    Spectroscopic factors for two-proton emitting nuclei are discussed in the framework of the BCS (Bardeen–Cooper–Schriefer) model. Calculations carried out for the two-proton unstable 45Fe, 48Ni and 54Zn nuclei are presented. Author Affiliations. Chinmay Basu1. Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, ...

  3. Two Topics in the Physics of Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rocco Schiavilla


    I review how tensor forces affect the ground-state structure of nuclei, and how isospin-symmetry-breaking corrections at the nucleon and nuclear level contaminate the asymmetry measured in parity-violating electron scattering from nuclei, complicating the extraction of the strange-quark form factors from these measurements.

  4. Impaired macromolecular protein pools in fronto-striato-thalamic circuits in type 2 diabetes revealed by magnetization transfer imaging. (United States)

    Yang, Shaolin; Ajilore, Olusola; Wu, Minjie; Lamar, Melissa; Kumar, Anand


    Previous research has shown that type 2 diabetes mellitus (T2DM) is associated with white matter microstructural changes, cognitive impairment, and decreased resting-state functional connectivity and spontaneous brain activity. This study used magnetization transfer imaging to examine, for the first time, the integrity of macromolecular protein pools in fronto-striato-thalamic circuits and its clinical and cognitive correlates in patients with T2DM. T2DM patients without mood disorders (n = 20, aged 65.05 ± 11.95 years) and healthy control subjects (HCs; n = 26, aged 62.92 ± 12.71 years) were recruited. Nodes of fronto-striato-thalamic circuits-head of the caudate nucleus (hCaud), putamen, globus pallidus, thalamus-and four cortical regions-rostral and dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, and lateral orbitofrontal cortex-were examined. Compared with HCs, patients with T2DM had significantly lower magnetization transfer ratio (MTR) in bilateral anterior cingulate and hCaud. Reduced MTRs in the above regions showed correlations with T2DM-related clinical measures, including hemoglobin A1c level and vascular risk factors, and neuropsychological task performance in the domains of learning and memory, executive function, and attention and information processing. The impaired biophysical integrity of brain macromolecular protein pools and their local microenvironments in T2DM patients may provide insights into the neurological pathophysiology underlying diabetes-associated clinical and cognitive deficits. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates (United States)

    Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.


    The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298

  6. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. (United States)

    Jiménez, Fiacro; Nicolini, Humberto; Lozano, Andres M; Piedimonte, Fabián; Salín, Rafael; Velasco, Francisco


    Stimulation of the inferior thalamic peduncle (ITP) is emerging as a promising new therapeutic target in certain psychiatric disorders. The circuitry that includes the nonspecific thalamic system (NSTS), which projects via the ITP to the orbitofrontal cortex (OFC), is involved in the physiopathology of major depression disorder (MDD) and obsessive compulsive disorder (OCD). The safety and efficacy of chronic ITP stimulation in cases of MDD and OCD refractory to medical treatment is presented. Six patients with OCD and one with MDD were implanted with tetrapolar deep brain stimulation electrodes in the ITP (x = 3.5 mm lateral to the ventricular wall, y = 5 mm behind the anterior commissure, and z = at the intercommissural plane, i.e., anterior commissure-posterior commissure [AC-PC] level). The effect of chronic stimulation at 130 Hz, 450 μs, and 5.0 V on OCD was evaluated before and 3, 6, and 12 months after initiation of electrical stimulation through the Yale-Brown Obsessive Compulsive Scale, Hamilton Depression Rating Scale, and Global Assessment of Function scale. Chronic ITP electrical stimulation in OCD patients decreased the mean Yale-Brown Obsessive Compulsive Scale score to around 51% for the group at the 12-month follow-up, and increased the mean Global Assessment of Function scale score to 68% for a significant improvement (P = 0.026). Three of 6 patients returned to work. The Hamilton Depression Rating Scale score of the only patient with MDD treated to date went from 42 to 6. This condition of the patient, who had been incapacitated for 5 years prior to surgery, has not relapsed for 9 years. Three OCD patients with drug addiction continued to consume drugs in spite of their improvement in OCD. Deep brain stimulation in the ITP is safe and may be effective in the treatment of OCD. A multicenter evaluation of the safety and efficacy of ITP in OCD is currently in process. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Effects of intravenous metamizole on ongoing and evoked activity of dura-sensitive thalamic neurons in rats. (United States)

    Sokolov, Alexey Y; Lyubashina, Olga A; Sivachenko, Ivan B; Panteleev, Sergey S


    Migraine and tension-type headache (TTH) are the most common forms of primary headaches. A general key mechanism underlying development of both the diseases is the trigeminal system activation associated with the ascending nociceptive transmission via the trigemino-thalamo-cortical pathway. The ventroposteromedial (VPM) nucleus is a key thalamic structure, receiving afferent inflow from the craniofacial region; it holds the third-order neurons responsible for conveying sensory information from the extra- and intracranial nociceptors to the cortex. The VPM is currently seen as a therapeutic target for various antimigraine medications, which is shown to reduce the VPM neuronal excitability. A non-opioid analgesic metamizole is widely used in some countries for acute treatment of migraine or TTH. However, the precise mechanisms underlying anticephalgic action of metamizole remain unclear. The objective of our study performed in the rat model of trigemino-durovascular nociception was to evaluate the effects of intravenously administered metamizole on ongoing and evoked firing of the dura-sensitive VPM neurons. The experiments were carried out on rats under urethane-chloralose anesthesia. Cumulative administration of metamizole (thrice-repeated intravenous infusion of 150 mg/kg performed 30 min apart) in 56% of cases produced a suppression of both the ongoing activity of the thalamic VPM neurons and their responses to dural electrical stimulation. Although the inhibitory effect was prevailing, a number of VPM neurons were indifferent to the administration of metamizole. These data suggest that one of the main components of neural mechanism underlying anticephalgic action of metamizole is suppression of the thalamo-cortical nociceptive transmission associated with trigemino-vascular activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala. (United States)

    Katz, Ira K; Lamprecht, Raphael


    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  9. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.


    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  10. Mid-infrared spectra of comet nuclei (United States)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.


    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  11. Could life have evolved in cometary nuclei? (United States)

    Bar-Nun, A.; Lazcano-Araujo, A.; Oró, J.


    Hoyle and Wickramasinghe have recently suggested that life may have originated in cometary nuclei rather than directly on Earth. Even though comets are known to contain substantial amounts of organic compounds which may have contributed to the formation of biochemical molecules on the primitive Earth, it is doubtful that the process of chemical evolution has proceeded in comets beyond the stage that has occurred in carbonaceous chondrites. Some of the arguments which do not favor the occurrence of biopoesis in comets are: 1. A large layer of cometary ices is ablated from the nucleus' surface each time the comet passes through perihelion, so that essentially most of the organic products on the surface would be sublimed, blown off or polymerized. 2. Because of the low temperatures of the cometary ices, polymers formed on one perihelion passage would not migrate deep enough into the nucleus to be preserved before they would be ablated away by the next perihelion passage. 3. In the absence of atmosphere, and discrete liquid and solid surfaces, it is difficult to visualize the synthesis of key life molecules, such as oligopeptides, oligonucleotides and phospholipids by condensation and dehydration reactions as is presumed to have occurred in the evaporating ponds of the primitive Earth. 4. Observations suggest that cometary nuclei have a rather weak structure. Hence, the low central pressures in comets combined with the high vapor pressures of cometary ices at the melting point of water ice, suggest that a liquid core is not a tenable structure. Yet, even if a cometary nucleus is compact enough to hold a liquid core and a transient liquid water environment was provided by the decay of26Al, the continuous irradiation in water of most of the biologically relevant polymers would have hydrolyzed and degraded them. 5. Needless to say that the effects of radiation on self-replicating systems would also have caused the demise of any life forms which may have appeared under any

  12. Cloud Condensation Nuclei in Fire-3 (United States)


    The centerpiece of this research was the cloud condensation nuclei (CCN) measurements of the Desert Research Institute (DRI) CCN spectrometers on board the NCAR C-130 aircraft during the Arctic Cloud Experiment (ACE) in May, 1998. These instruments operated successfully throughout all eight 10-hour research flights based in Fairbanks and the two ferry flights between Colorado and Fairbanks. Within a few months of completion of ACE the CCN data was edited and put into the archives. A paper was completed and published on the CCN climatology during the previous two FIRE field projects-FIRE 1 based in San Diego in June and July, 1987 and ASTEX based in the Azores Islands in June, 1992. This showed distinct contrasts in concentrations and spectra between continental and maritime CCN concentrations, which depended on air mass trajectories. Pollution episodes from Europe had distinct influences on particle concentrations at low altitudes especially within the boundary layer. At higher altitudes concentrations were similar in the two air mass regimes. Cloudier atmospheres showed lower concentrations especially below the clouds, which were a result mostly of coalescence scavenging.

  13. Photodisintegration of Light Nuclei with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Yordanka Yordanova [University of South Carolina; Zachariou, Nicholas [University of South Carolina


    We report preliminary results of photodisintegration of deuteron and {sup 3}He measured with CLAS at Jefferson Lab. We have extracted the beam-spin asymmetry for the {vector {gamma}}d {yields} pn reaction at photon energies from 1.1 GeV to 2.3 GeV and proton center-of-mass (c.m.) angles between 35{degrees} and 135{degrees} . Our data show interesting evolution of the angular dependence of the observable as the photon energy increases. The energy dependence of the beam-spin asymmetry at 90 shows a change of slope at photon energy of 1.6 GeV. A comparison of our data with model calculations suggests that a fully non-perturbative treatment of the underlying dynamics may be able to describe the data better than a model based on hard scattering. We have observed onset of dimensional scaling in the cross section of two-body photodisintegration of {sup 3}He at remarkably low energy and momentum transfer, which suggests that partonic degrees of freedom may be relevant for the description of nuclei at energies lower than previously considered.

  14. A New Thermodynamics from Nuclei to Stars

    Directory of Open Access Journals (Sweden)

    Dieter H.E. Gross


    Full Text Available Abstract: Equilibrium statistics of Hamiltonian systems is correctly described by the microcanonical ensemble. Classically this is the manifold of all points in the N-body phase space with the given total energy. Due to Boltzmann's principle, eS=tr(δ(E-H, its geometrical size is related to the entropy S(E,N,.... This definition does not invoke any information theory, no thermodynamic limit, no extensivity, and no homogeneity assumption, as are needed in conventional (canonical thermo-statistics. Therefore, it describes the equilibrium statistics of extensive as well of non-extensive systems. Due to this fact it is the fundamental definition of any classical equilibrium statistics. It can address nuclei and astrophysical objects as well. All kind of phase transitions can be distinguished sharply and uniquely for even small systems. It is further shown that the second law is a natural consequence of the statistical nature of thermodynamics which describes all systems with the same -- redundant -- set of few control parameters simultaneously. It has nothing to do with the thermodynamic limit. It even works in systems which are by far than any thermodynamic "limit".

  15. Broadband properties of active galactic nuclei (United States)

    Edelson, Richard Allen

    The broadband radio-infrared-optical-ultraviolet properties of active galactic nuclei are used to investigate the nature of the central engine and the surrounding environment. Optically selected quasars and Seyfert 1 galaxies tend to have relatively flat infrared spectra and low reddenings, while most Seyfert 2 galaxies and other dusty objects have steep infrared spectra and larger reddenings. The infrared spectra of most luminous radio-quiet active galaxies turn over near approx. 80 micron. It appears that the infrared spectra of most quasars and luminous Seyfert 1 galaxies are dominated by unreprocessed radiation from a synchrotron self-absorbed source of order a light day across, about the size of the hypothesized accretion disk. Seyfert 2 galaxies and other reddened objects have infrared spectra which appear to be dominated by thermal emission from warm dust, probably in the disk of the underlying galaxy. A broad emission feature, centered near 5 micron, is present in many luminous quasars and Seyfert 1 galaxies. Highly polarized objects (blazars) can be strongly variable at far infrared wavelengths over time scales of months. Seyfert galaxies tend to have steep radio spectra.

  16. Active galactic nuclei: what's in a name? (United States)

    Padovani, P.; Alexander, D. M.; Assef, R. J.; De Marco, B.; Giommi, P.; Hickox, R. C.; Richards, G. T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; Salvato, M.


    Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different "flavours" in the literature that now comprise a complex and confusing AGN "zoo". It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to γ -rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.

  17. Active Galactic Nuclei outflows in galaxy discs (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar


    Galactic outflows, driven by active galactic nuclei (AGN), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes. AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the freefall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the black hole mass with the halo velocity dispersion of MBH∝σ4.8.

  18. Nuclei far from stability using exotic targets

    CERN Document Server

    Wilhelmy, J B; Brown, R E; Flynn, E R; Thomas, K E; Van der Plicht, J


    The meson factories have made possible high fluence medium energy proton beams that can be used for spallation reactions to produce macro quantities of unstable isotopes. Targets of over 10 g/cm/sup 2/ can be exposed to total fluence approaching 1 A-hour resulting in spallation yields in the 0.01-10 mg range for many isotopes of potential interest for nuclear structure studies. With the use of hot cell facilities, chemical processing can isolate the desired material and this coupled with subsequent isotope separation can result in usable quantities of material for nuclear target application. With offstable isotopes as target materials, conventional nuclear spectroscopy techniques can be employed to study nuclei far from stability. The irradiation and processing requirements for such an operation, along with the isotope production possibilities, are discussed. Also presented are initial experiments using a /sup 148/Gd (t/sub 1/2/=75a) target to perform the (p, t) reaction to establish levels in the proposed do...

  19. High spins in gamma-soft nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leander, G.A.; Frauendorf, S.; May, F.R.


    Nuclei which are soft with respect to the ..gamma.. shape degree of freedom are expected to have many different structures coexisting in the near-yrast regime. In particular, the lowest rotational quasi-particle in a high-j shell exerts a strong polarizing effect on ..gamma... The ..gamma.. to which it drives is found to vary smoothly over a 180/sup 0/ range as the position of the Fermi level varies. This simple rule is seen to have a direct connection with the energy staggering of alternate spin states in rotational bands. A diagram is presented which provides a general theoretical reference for experimental tests of the relation between ..gamma.., spin staggering, configuration, and nucleon number. In a quasicontinuum spectrum, the coexistence of different structures are expected to make several unrelated features appear within any one slice of sum energy and multiplicity. However, it is also seen that the in-band moment of inertia may be similar for many bands of different ..gamma...

  20. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K.


    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  1. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)


    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  2. Synthesis of Neutron Enriched Heavy and Superheavy Nuclei (United States)

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter


    Applicability of different nuclear reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and neutron capture) for the production of new neutron enriched heavy nuclei is discussed in the paper. For the first time, a narrow pathway is found to the middle of the island of stability owing to possible β+-decay of SH isotopes which can be formed in ordinary fusion reactions of stable nuclei. Neutron capture reactions can be also used for the production of the long-living neutron rich SH nuclei. Strong neutron fluxes might be provided by pulsed nuclear reactors and by multiple nuclear explosions in laboratory conditions and by supernova explosions in nature. Low-energy multinucleon transfer reactions with actinide beams and targets are of special interest for synthesis of new neutron enriched transfermium nuclei and not-yet-known nuclei around the closed neutron shell N = 126 having largest impact on astrophysical r process. The estimated cross sections for the production of these nuclei look very promising to plan such experiments at available accelerators. Several new test experiments of such kind are proposed to perform including those in which a role of the shell effects in low-energy reaction dynamics could be clarify much better.

  3. Incidence of centrally positioned nuclei in mouse masticatory muscle fibers

    DEFF Research Database (Denmark)

    Vilmann, A; Vilmann, H; Kirkeby, S


    Cross-sections of normal digastric, temporalis and masseter muscles from 7- and 30-week-old mice were studied for centrally positioned nuclei. Such nuclei were inhomogeneously distributed throughout each muscle and varied markedly between specimens. The incidence of centrally positioned nuclei in......, the frequency in a given muscle was apparently age-independent. A connection between fiber type and centrally positioned nuclei is suggested.......Cross-sections of normal digastric, temporalis and masseter muscles from 7- and 30-week-old mice were studied for centrally positioned nuclei. Such nuclei were inhomogeneously distributed throughout each muscle and varied markedly between specimens. The incidence of centrally positioned nuclei...... in the digastric muscle (mean +/- SD: 0.029 +/- 0.015, n = 25) was significantly higher (p less than 0.001) than that in the temporalis (mean +/- SD: 0.011 +/- 0.010, n = 25) and masseter muscles (mean +/- SD: 0.005 +/- 0.007, n = 9), but did not differ between the two latter muscles (p = 0.41). Furthermore...

  4. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.


    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  5. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)


    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  6. Increased hippocampal, thalamic, and prefrontal hemodynamic response to an urban noise stimulus in schizophrenia. (United States)

    Tregellas, Jason R; Ellis, Jamey; Shatti, Shireen; Du, Yiping P; Rojas, Donald C


    People with schizophrenia often have difficulty ignoring unimportant noises in the environment. While experimental measures of sensory gating have yielded insight into neurobiological mechanisms related to this deficit, the degree to which these measures reflect the real-world experience of people with schizophrenia is unknown. The goal of this study was to develop a clinically relevant sensory gating paradigm and to assess differences in brain hemodynamic responses during the task in schizophrenia. Thirty-five participants, including 18 outpatients with schizophrenia and 17 healthy comparison subjects, underwent scanning on a 3-T MR system while passively listening to an "urban white noise" stimulus, a mixture of common sounds simulating a busy urban setting, including multiple conversations and events recorded from a neighborhood gathering, music, and talk radio. P50 evoked responses from a typical paired-click sensory gating task also were measured. Listening to the urban white noise stimulus produced robust activation of the auditory pathway in all participants. Activation was observed in the bilateral primary and secondary auditory cortices, medial geniculate nuclei, and inferior colliculus. Greater activation was observed in the schizophrenia patients relative to the comparison subjects in the hippocampus, thalamus, and prefrontal cortex. Higher P50 test/conditioning ratios also were observed in the schizophrenia patients. These evoked responses correlated with hemodynamic responses in the hippocampus and the prefrontal cortex. The finding of greater activation of the hippocampus, thalamus, and prefrontal cortex during a sensory gating task with high face validity further supports the involvement of these brain regions in gating deficits in schizophrenia. This link is strengthened by the observed correlation between evoked responses in the paired-click paradigm and hemodynamic responses in a functional MRI sensory gating paradigm.

  7. Correlated basis functions theory of light nuclei. Pt. 2. Spectra of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Bosca, M.C.


    This work is a continuation of a previous one devoted to the study of ground-state energies of p-shell nuclei using the correlated basis functions theory. Here, the low-lying excited levels are computed and compared with experiment. This study has no free parameters, and everything is directly obtained from a realistic Reid V8 nucleon-nucleon interaction. As expected, we do not obtain quantitative agreement with the experimental levels. However, many of the qualitative characteristics of the spectrum emerge naturally.

  8. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. (United States)

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert


    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  9. Impaired prefronto-thalamic functional connectivity as a key feature of treatment-resistant depression: a combined MEG, PET and rTMS study.

    Directory of Open Access Journals (Sweden)

    Cheng-Ta Li

    Full Text Available Prefrontal left-right functional imbalance and disrupted prefronto-thalamic circuitry are plausible mechanisms for treatment-resistant depression (TRD. Add-on repetitive transcranial magnetic stimulation (rTMS, effective in treating antidepressant-refractory TRD, was administered to verify the core mechanisms underlying the refractoriness to antidepressants. Thirty TRD patients received a 2-week course of 10-Hz rTMS to the left dorsolateral prefrontal cortex (DLPFC. Depression scores were evaluated at baseline (W0, and the ends of weeks 1, 2, and 14 (W14. Responders were defined as those who showed an objective improvement in depression scores ≥50% after rTMS. Left-right frontal alpha asymmetry (FAA was measured by magnetoencephalography at each time point as a proxy for left-right functional imbalance. Prefronto-thalamic connections at W0 and W14 were assessed by studying couplings between prefrontal alpha waves and thalamic glucose metabolism (PWTMC, reflecting intact thalamo-prefrontal connectivity. A group of healthy control subjects received magnetoencephalography at W0 (N = 50 to study whether FAA could have a diagnostic value for TRD, or received both magnetoencephalography and positron-emission-tomography at W0 (N = 10 to confirm the existence of PWTMC in the depression-free state. We found that FAA changes cannot differentiate between TRD and healthy subjects or between responders and non-responders. No PWTMC were found in the TRD group at W0, whereas restitution of the PWTMC was demonstrated only in the sustained responders at W14 and euthymic healthy controls. In conclusion, we affirmed impaired prefronto-thalamic functional connections, but not frontal functional imbalance, as a core deficit in TRD.

  10. The parton distributions in nuclei and in polarized nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Close, F.E.


    The emerging information was reviewed on the way quark and anti-quark, and gluon distributions are modified in nuclei relative to free nucleons. Some implications of the recent data on polarized leptoproduction are discussed. 27 refs., 6 figs.

  11. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M


    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  12. Structure of proton-rich nuclei of astrophysical interest

    Energy Technology Data Exchange (ETDEWEB)

    Roeckl, E. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)


    Recent experimental data concerning proton-rich nuclei between A=20 and A=100 are presented and discussed with respect to their relevance to the astrophysical rp process and to the calibration of solar neutrino detectors. (orig.)

  13. Modeling level structures of odd-odd deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.


    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs.

  14. Population of Nuclei Via 7Li-Induced Binary Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha,Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis


    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.

  15. Light element production by low energy nuclei from massive stars (United States)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.


    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  16. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof


    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  17. Introduction to the study of collisions between heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bayman, B.F.


    Current investigations concerning the collisions of nuclei governed by small de Broglie wavelengths are reviewed. The wave packets localize nuclei in regions small compared to their diameters. Cross sections are examined for potential scattering, elastic scattering, quasi-molecular states, peripheral particle-transfer reactions, fusion, and deep inelastic collisions. Theories of fusion and deep inelastic collisions are summarized. This paper is in the nature of a review-tutorial. 45 references, 51 figures, 2 tables. (RWR)

  18. Theoretical Study of Structure and Synthesis Mechanism of Superheavy Nuclei (United States)

    Zhou, Shan-Gui

    The study of superheavy nuclei (SHN) is on the frontier of modern nuclear physics. In recent years, we have carried out theoretical investigations of both the structure properties and the synthesis mechanism of SHN. In this contribution, we briefly review these progresses and focus on the study of potential energy surfaces and fission barriers of actinide nuclei by using the MDC-RMF model and that of the fusion mechanism by using the ImQMD model.

  19. Energy systematics of heavy nuclei -- mean field models in comparison


    Reinhard, P. -G.; Agrawal, B. K.


    We compare the systematics of binding energies computed within the standard and extended versions of the relativistic mean-field (RMF) model and the Skyrme Hartree-Fock (SHF) model. The general trends for the binding energies for super-heavy nuclei are significantly different for these models. The SHF models tend to underbind the superheavy nuclei, while, RMF models show just the opposite trend. The extended RMF model seems to provide remarkable improvements over the results obtained for the ...

  20. Central vestibular system: vestibular nuclei and posterior cerebellum. (United States)

    Barmack, Neal H


    The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a

  1. Active Galactic Nuclei Feedback and Galactic Outflows (United States)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  2. The Structure of Active Galactic Nuclei (United States)

    Kriss, Gerard A.


    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  3. Global variability of cloud condensation nuclei concentrations (United States)

    Makkonen, Risto; Krüger, Olaf


    Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to <50% a few hundred kilometers away from the coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still

  4. Efficacy of T2*-Weighted Gradient-Echo MRI in Early Diagnosis of Cerebral Venous Thrombosis with Unilateral Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Shingo Mitaki


    Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.

  5. Crossed Aphasia and Visuo-Spatial Neglect Following a Right Thalamic Stroke: A Case Study and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Lieve De Witte


    Full Text Available Crossed aphasia in dextrals (CAD following pure subcortical lesions is rare. This study describes a right-handed patient with an ischemic lesion in the right thalamus. In the post-acute phase of the stroke, a unique combination of ‘crossed thalamic aphasia’ was found with left visuo-spatial neglect and constructional apraxia. On the basis of the criteria used in Mariën et al. [67], this case-report is the first reliable representative of vascular CAD following an isolated lesion in the right thalamus. Furthermore, this paper presents a detailed analysis of linguistic and cognitive impairments of ‘possible’ and 'reliable' subcortical CAD-cases published since 1975. Out of 25 patients with a pure subcortical lesion, nine cases were considered as ‘possibly reliable or reliable’. A review of these cases reveals that: (1 demographic data are consistent with the general findings for the entire group of vascular CAD, (2 the neurolinguistic findings do not support the data in the general CAD-population with regard to (a the high prevalence of transcortical aphasia and (b the tendency towards a copresence of an oral versus written language dissociation and a ‘mirror-image’ lesion-aphasia profile, (3 subcortical CAD is not a transient phenomenon, (4 the lesion-aphasia correlations are not congruent with the high incidence of anomalous cases in the general CAD-population, (5 neuropsychological impairments may accompany subcortical CAD.

  6. The correlation of the thalamic lesions on MRI with cerebral cortical blood flow in patients with lacunar infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nabatame, Hidehiko; Nakamura, Kazuo; Matsuda, Minoru; Fujimoto, Naoki [Shiga Medical Center, Moriyama (Japan); Fukuyama, Hidenao


    We performed MRI and measured cerebral blood flow (CBF) using {sup 123}I-IMP SPECT microsphere model in twenty three right-handed patients with lacunar infarction. Twelve of 23 patients showed chronic deterioration of dysarthria and gait disturbance. The mental function of the patients was evaluated by the Mini-Mental State (MMS) examination. The area of high intensity on T2-weighted images was quantitatively analyzed in the cerebral white matter (WM), lenticular nucleus (LN) and thalamus (THA). The score of MMS was positively correlated with the local CBF in the bilateral frontal, parietal, temporal and occipital cortices (p<0.05). Also, the area of high intensity in the left THA showed a significant negative correlation with local CBF of the bilateral frontal, parietal, temporal and occipital cortices (p<0.001). The high intensity areas of the bilateral LN, right WM and right THA had a significant but weaker negative correlation with local CBF of some cortices. These findings suggest that thalamic lesions on the dominant side play an important role in the reduction of cortical blood flow and the deterioration of mental functions in patients with lacunar infarction. (author).

  7. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available Biotinylated dextran amine (BDA has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a using 3,000 or 10,000 MW BDA; (b injecting different volumes of BDA; (c co-injecting BDA with NMDA; and (d employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.


    Directory of Open Access Journals (Sweden)

    M. M. Lukashevich


    Full Text Available In the paper a method of automatical counting the number of cell nuclei in histological images is studied. This operation is commonly used in the diagnostics of various diseases and morphological analysis of cells. In this connection, the procedure of automatical count the number of cell nuclei is a key step in the systems of medical imaging microscopic analysis of histological preparations. The main aim of our work was to develop an efficient scheme of automatic counting cell nuclei based on advanced image processing methods: directional filtering, adaptive image binarization and mathematical morphology. Unlike prior research, the presented approach does not provide segmentation of cell nuclei in the image, but only requires to detect them and count their number. This avoids complex algorithmic calculations and provides good accuracy of counting cell nuclei.The paper describes a series of experiments conducted to assess the effectiveness of the proposed method using the available online database of medical test histological images. Critical parameters defined algorithms, configurable at each stage of image analysis. For each parameter we have defined value ranges, and then realized a selection of optimal values for every parameter and a mutual combination of them. It is based on generally accepted quantitative measures of precision and recall. The results were compared with the state-of-art investigations in this field and demonstrated an acceptable level of accuracy of the proposed method. The software prototype developed during the study can be regarded as an automatic tool for analysis of cell nuclei. The presented approach can be adapted to various problems of analysis of cell nuclei of various organs.

  9. On liquid phases in cometary nuclei (United States)

    Miles, Richard; Faillace, George A.


    In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles

  10. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia


    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  11. Science of rare isotopes: connecting nuclei with the universe. (United States)

    Nazarewicz, Witold


    Understanding nuclei is a quantum many-body problem of incredible richness and diversity and studies of nuclei address some of the great challenges that are common throughout modern science. Nuclear physicists strive to build a unified and comprehensive microscopic framework in which bulk nuclear properties, nuclear excitations, and nuclear reactions can all be described. A new and exciting focus in this endeavor lies in the description of short-lived nuclei. The extreme isospin of these nuclei, relative to those near stability, and their weak binding bring new phenomena to the fore which isolates and amplifies important features of nuclear many-body open quantum systems. The fields of nuclear physics and astrophysics provide the link between our understanding of the fundamental constituents of nature and explaining the matter of which we and stars are made. Studies of rare isotopes elucidate fundamental questions in this area. In this talk, experimental and theoretical advances in rare isotope research will be reviewed in the context of the main scientific questions. Particular attention will bo given to the worldwide radioactive beams initiatives and to the progress in theoretical studies of nuclei due to the advent of terascale computing platforms. Reference: Rare-Isotope Science Assessment Committee Report, The National Academies Press

  12. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R. B.


    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.

  13. Cold fission from isomeric states of superheavy nuclei (United States)

    Sandulescu, A.; Mirea, M.


    Correlations between the potential energy surface structure and the mass distributions observed in the production of superheavy nuclei are evidenced. The isomeric states are identified by spanning the multidimensional configuration space from the contact point of the colliding nuclei up to the formation of the compound nucleus. The available degrees of freedom are the elongation, the necking, the mass asymmetry, and the deformations of the two colliding nuclei. Using the macroscopic-microscopic model based on the Woods-Saxon two-center shell model, several minima in the potential energy landscape were revealed. The fission process from these isomeric states was investigated and the probabilities of realization of possible partitions were calculated in the WKB approximation. The inertia was computed in the framework of the cranking model. The identified correlations indicate that the mass distribution attributed to quasifission in previous studies can be alternatively explained as a cold-fission process from excited states.

  14. Study of fp States in Nuclei with High Neutron Excess

    CERN Multimedia


    Previous results obtained at ISOLDE on GT transitions in n-rich Na and Mg nuclei have shown the sharp decrease of excitation energy for fp states when A$>$29. \\\\ \\\\ Independently, shell model calculations have revealed that the onset of a deformation region near N=20 for Ne, Na and Mg nuclei was related to a sudden transition in the ground state properties with the appearance of a major (sd)$^{-2}$(fp)$^2$ component. \\\\ \\\\ We propose to use the new possibilities of producing and detecting n-rich nuclei to study by $\\gamma$ and n spectroscopy the properties of fp states with different cores: around N=20 (Na, Mg and Al) and N=28 (Ar, K and Ca). In particular, the cases of $^3

  15. Generation of Transgenic Xenopus laevis: II. Sperm Nuclei Preparation. (United States)

    Ishibashi, Shoko; Kroll, Kristin L; Amaya, Enrique


    INTRODUCTIONManipulating genes specifically during later stages of amphibian embryonic development requires fine control over the time and place of expression. These protocols describe an efficient nuclear-transplantation-based method of transgenesis developed for Xenopus laevis. The approach enables stable expression of cloned gene products in Xenopus embryos. Because the transgene integrates into the genome prior to fertilization, the resulting embryos are not chimeric, eliminating the need to breed to the next generation to obtain nonmosaic transgenic animals. The procedure is based on restriction-enzyme-mediated integration (REMI) and can be divided into three parts: (I) high-speed preparation of egg extracts, (II) sperm nuclei preparation, and (III) nuclear transplantation. This protocol describes a method for the preparation of sperm nuclei from Xenopus laevis. Sperm suspensions are prepared by filtration and centrifugation, and then treated with lysolecithin to disrupt the plasma membrane of the cells. Sperm nuclei can be stored frozen in small aliquots at -80°C.

  16. Analyzing the spatial positioning of nuclei in polynuclear giant cells (United States)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Valleriani, Angelo; Beta, Carsten


    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.

  17. Automatic Nuclei Detection Based on Generalized Laplacian of Gaussian Filters. (United States)

    Hongming Xu; Cheng Lu; Berendt, Richard; Jha, Naresh; Mandal, Mrinal


    Efficient and accurate detection of cell nuclei is an important step toward automatic analysis in histopathology. In this work, we present an automatic technique based on generalized Laplacian of Gaussian (gLoG) filter for nuclei detection in digitized histological images. The proposed technique first generates a bank of gLoG kernels with different scales and orientations and then performs convolution between directional gLoG kernels and the candidate image to obtain a set of response maps. The local maxima of response maps are detected and clustered into different groups by mean-shift algorithm based on their geometrical closeness. The point which has the maximum response in each group is finally selected as the nucleus seed. Experimental results on two datasets show that the proposed technique provides a superior performance in nuclei detection compared to existing techniques.

  18. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David


    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  19. From light nuclei to nuclear matter the role of relativity?

    Energy Technology Data Exchange (ETDEWEB)

    Coester, F.; Physics


    The success of non-relativistic quantum dynamics in accounting for the binding energies and spectra of light nuclei with masses up to A=10 raises the question whether the same dynamics applied to infinite nuclear matter agrees with the empirical saturation properties of large nuclei. The simple unambiguous relation between few-nucleon and many-nucleon Hamiltonians is directly related to the Galilean covariance of nonrelativistic dynamics. Relations between the irreducible unitary representations of the Galilei and Poincare groups indicate that the 'nonrelativistic' nuclear Hamiltonians may provide sufficiently accurate approximations to Poincare invariant mass operators. In relativistic nuclear dynamics based on suitable Lagrangeans the intrinsic nucleon parity is an explicit, dynamically relevant, degree of freedom and the emphasis is on properties of nuclear matter. The success of this approach suggests the question how it might account for the spectral properties of light nuclei.

  20. Fission lifetimes of Th nuclei measured by crystal blocking

    CERN Document Server

    Karamian, S A; Assmann, R W; Broude, C; Chevallier, J; Forster, J S; Geiger, J S; Gruener, F; Khodyrev, V A; Malaguti, F; Uguzzoni, A


    Crystal blocking lifetime measurements have been made for highly excited Th nuclei with neutron number well removed from the stability line. Thin W crystals were bombarded with sup 3 sup 2 S ions in the energy range 170-180 MeV and the yield of fission fragments was measured for emission close to a left angle 111 right angle axis. The fission blocking dips are compared to the appropriately scaled ones for elastic scattering of the sup 3 sup 2 S beam ions and no significant difference is seen between the dips. This implies that the fraction of nuclei fissioning with lifetimes longer than 10 as is less than 2%. Fission lifetimes are increased by viscosity in the nuclear mass flow and comparison with a statistical model calculation indicates that the viscosity parameter, eta, must be lower than for Th and U nuclei near beta-stability. The effect of the N=126 magic number is discussed. (orig.)

  1. Particle induced nuclear reaction calculations of Boron target nuclei

    Directory of Open Access Journals (Sweden)

    Tel Eyyup


    Full Text Available Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5–50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  2. Particle induced nuclear reaction calculations of Boron target nuclei (United States)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem


    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  3. Clumpy Dust Tori in Active Galactic Nuclei (United States)

    Hönig, Sebastian F.


    Active Galactic Nuclei (AGN) are amongst the most luminous objects in the universe. The source of their activity is accretion onto a supermassive black hole in the center of the galactic nucleus. The various phenomena observed in AGN are explained in a common unification scheme. The cornerstone of this unification scheme of AGN is the presence of an optically and geometrically thick dust torus which surrounds the central accretion disk and broad-line region (BLR). This parsec-scaled torus is responsible for the apparent difference between type 1 and type 2 AGN. If the line-of-sight intersects with the torus, the accretion disk and BLR are not visible and the AGN is classified as a type 2 object. On the other hand, if the torus is seen nearly face-on, the accretion disk and BLR are directly exposed to the observer, so that the galaxy appears as a type 1 AGN. Near- (NIR) and mid-infrared (MIR) interferometry has resolved, for the first time, the dust torus around the nearby prototypical Seyfert 2 AGN NGC 1068. These observations provided an insight into the structure of the torus: Apparently, the dust is not smoothly distributed in the torus but arranged in clumps -- contrary to what has been commonly used in models. We developed a new radiative transfer model of clumpy dust tori which is a key tool to interpret NIR and MIR observations of AGN. The model accounts for the 3-dimensional arrangement of dust clouds. Model SEDs and images can be obtained for a number of different physical parameters (e.g., radial and vertical dust density distribution, cloud radii, optical depths, etc.). It was shown that the model SEDs are in agreement with observed spectral properties. Moreover, we applied our new model to the data of NGC 1068. It was possible, for the first time, to simultaneously reproduce NIR and MIR interferometry and photometry of the nucleus of NGC 1068. In particular, the model follows the trend of the deeper 9.7 micron silicate absorption features in the

  4. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)


    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  5. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics


    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  6. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. (United States)

    Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D


    Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI:  CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS:  We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012

  7. Thalamic volume deficit contributes to procedural and explicit memory impairment in HIV infection with primary alcoholism comorbidity. (United States)

    Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V


    Component cognitive and motor processes contributing to diminished visuomotor procedural learning in HIV infection with comorbid chronic alcoholism (HIV+ALC) include problems with attention and explicit memory processes. The neural correlates associated with this constellation of cognitive and motor processes in HIV infection and alcoholism have yet to be delineated. Frontostriatal regions are affected in HIV infection, frontothalamocerebellar regions are affected in chronic alcoholism, and frontolimbic regions are likely affected in both; all three of these systems have the potential of contributing to both visuomotor procedural learning and explicit memory processes. Here, we examined the neural correlates of implicit memory, explicit memory, attention, and motor tests in 26 HIV+ALC (5 with comorbidity for nonalcohol drug abuse/dependence) and 19 age-range matched healthy control men. Parcellated brain volumes, including cortical, subcortical, and allocortical regions, as well as cortical sulci and ventricles, were derived using the SRI24 brain atlas. Results indicated that smaller thalamic volumes were associated with poorer performance on tests of explicit (immediate and delayed) and implicit (visuomotor procedural) memory in HIV+ALC. By contrast, smaller hippocampal volumes were associated with lower scores on explicit, but not implicit memory. Multiple regression analyses revealed that volumes of both the thalamus and the hippocampus were each unique independent predictors of explicit memory scores. This study provides evidence of a dissociation between implicit and explicit memory tasks in HIV+ALC, with selective relationships observed between hippocampal volume and explicit but not implicit memory, and highlights the relevance of the thalamus to mnemonic processes.

  8. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation. (United States)

    Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen


    Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.

  9. Divergent Structural Responses to Pharmacological Interventions in Orbitofronto-Striato-Thalamic and Premotor Circuits in Obsessive-Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Qiming Lv


    Full Text Available Prior efforts to dissect etiological and pharmacological modulations in brain morphology in obsessive-compulsive disorder (OCD are often undermined by methodological and sampling constraints, yielding conflicting conclusions and no reliable neuromarkers. Here we evaluated alteration of regional gray matter volume including effect size (Cohen's d value in 95 drug-naïve patients (age range: 18–55 compared to 95 healthy subjects (age: 18–63, then examined pharmacological effects in 65 medicated (age: 18–57 and 73 medication-free patients (age: 18–61. Robustness of statistical outcomes and effect sizes was rigorously tested with Monte Carlo cross-validation. Relative to controls, both drug-naïve and medication-free patients exhibited comparable volumetric increases mainly in the left thalamus (d = 0.90, 0.82, respectively, left ventral striatum (d = 0.88, 0.67, bilateral medial orbitofrontal cortex (d = 0.86, 0.71; 0.90, 0.73, and left inferior temporal gyrus (d = 0.83, 0.66, and decreased volumes in left premotor/presupplementary motor areas (d = −0.83, −0.71. Interestingly, abnormalities in the thalamus and medial orbitofrontal cortex were present in medicated patients whereas entirely absent in premotor and ventral striatum. It suggests that pharmacotherapy elicited divergent responses in orbitofronto-striato-thalamic and premotor circuits, which warrants the design of longitudinal studies investigating the potential of these neuromarkers in stratified treatments of OCD.

  10. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses

    Directory of Open Access Journals (Sweden)

    Fivos ePanetsos


    Full Text Available Most work on visual prostheses has centred on developing retinal or cortical devices. However, when retinal implants are not feasible, neuroprostheses could be implanted in the lateral geniculate nucleus of the thalamus (LGN, the intermediate relay station of visual information from the retina to the visual cortex (V1. The objective of the present study was to determine the types of artificial stimuli that when delivered to the visual thalamus can generate reliable responses of the cortical neurons similar to those obtained when the eye perceives a visual image. Visual stimuli {Si} were presented to one eye of an experimental animal and both, the thalamic {RThi} and cortical responses {RV1i} to such stimuli were recorded. Electrical patterns {RThi*} resembling {RThi} were then injected into the visual thalamus to obtain cortical responses {RV1i*} similar to {RV1i}. Visually- and electrically-generated V1 responses were compared.Results: During the course of this work we: (i characterised the response of V1 neurons to visual stimuli according to response magnitude, duration, spiking rate and the distribution of interspike intervals; (ii experimentally tested the dependence of V1 responses on stimulation parameters such as intensity, frequency, duration, etc. and determined the ranges of these parameters generating the desired cortical activity; (iii identified similarities between responses of V1 useful to compare the naturally and artificially generated neuronal activity of V1; and (iv by modifying the stimulation parameters, we generated artificial V1 responses similar to those elicited by visual stimuli.Generation of predictable and consistent phosphenes by means of artificial stimulation of the LGN is important for the feasibility of visual prostheses. Here we proved that electrical stimuli to the LGN can generate V1 neural responses that resemble those elicited by natural visual stimuli.

  11. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory

    Directory of Open Access Journals (Sweden)

    Amy L Griffin


    Full Text Available Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC. Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.

  12. Decreased thalamic glutamate level in unmedicated adult obsessive-compulsive disorder patients detected by proton magnetic resonance spectroscopy. (United States)

    Zhu, Yajing; Fan, Qing; Han, Xu; Zhang, Haiyin; Chen, Jue; Wang, Zhen; Zhang, Zongfeng; Tan, Ling; Xiao, Zeping; Tong, Shanbao; Maletic-Savatic, Mirjana; Li, Yao


    Previous neuroimaging studies implied that the dysfunction of cortico-striato-thalamo-cortical (CSTC) circuit served as the neural basis for the pathophysiology of obsessive-compulsive disorder (OCD). The imbalances in neuronal metabolite and neurotransmitter within CSTC circuit have been shown as the leading reasons of the OCD onset. The aim of this study is to investigate the metabolic alterations, especially the glutamatergic signal dysfunction within CSTC circuit, and the relationships between neural metabolites and the symptom severity of OCD patients. Single voxel magnetic resonance spectroscopy (MRS) was conducted in medial prefrontal cortex (mPFC) and bilateral thalamus areas for thirteen unmedicated adult OCD patients with age-, gender-, and education-matched healthy controls. Quantification and multivariate analysis were performed to identify vital metabolic biomarkers for patients and healthy controls group differentiation. Moreover, we performed Spearman׳s rank correlation analysis for OCD patients to examine the relationship between the metabolite concentration level and OCD symptomatology. Patients with OCD showed significantly decreased glutamate level in mPFC (p=0.021) and right thalamus (p=0.039), and significantly increased choline compounds in left thalamus (p=0.044).The glutamate in right thalamus was shown as the most important metabolite for group separation from multivariate analysis (Q(2)=0.134) and was significantly correlated with the patients׳ compulsion scores (Spearman r=-0.674, p=0.016). Limited sample size, the use of creatine and phosphocreatine (Cr) ratios rather than absolute concentrations and unresolved glutamine (Gln) are limitations of the present study. Our study results consolidated the hypothesis about glutamatergic signaling dysfunction in OCD. To our knowledge, it is the first finding about a reduced thalamic glutamate level in adult unmedicated OCD patients. The dysregulation of glutamate serves as a potential target

  13. Charge determination of nuclei with the AMS-02 silicon tracker

    CERN Document Server

    Alpat, B; Azzarello, P; Battiston, R; Bene, P; Bertucci, B; Bizzaglia, S; Bizzarri, M; Blasko, S; Bourquin, M; Bouvier, P; Burger, W J; Capell, M; Cecchi, C; Chang, Y H; Cortina, E; Dinu, N; Esposito, G; Fiandrini, E; Haas, D; Hakobyan, H; Ionica, M; Ionica, R; Kounine, A; Koutsenko, V F; Lebedev, A; Lechanoine-Leluc, C; Lin, C H; Masciocchi, F; Menichelli, M; Natale, S; Paniccia, M; Papi, A; Pauluzzi, M; Perrin, E; Pohl, M; Rapin, D; Richeux, J P; Wallraff, W; Willenbrock, M; Zuccon, P


    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron group. The longest ladder, 72 multiplied by 496mm2, verified in the tests contains 12 sensors. Good charge resolution is observed up to iron.

  14. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki


    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  15. Cavitation nuclei in water exposed to transient pressures

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage


    A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure...... and room temperature. These results are obtained by recording the initial growth of cavities generated by a short tensile pulse applied to the bottom of the container. It is found that the cavitation nuclei shift their tensile strength depending on their pressure history. Static pressurization...

  16. Relativistic mean field theory with the pion for finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S.; Toki, H.; Ikeda, K.; Minkov, N


    We study the possible occurrence of finite pion mean field in finite nuclei in the relativistic mean field (RMF) theory. We calculate explicitly various N = Z closed-shell nuclei with finite pion mean field in the RMF theory with the standard parameter set and the pion-nucleon coupling in free space. The finite pion mean field is introduced by breaking the parity symmetry of intrinsic single-particle states. We demonstrate the actual occurrence and the property of the finite pion mean field.

  17. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki


    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  18. Modification of meson properties in the vicinty of nuclei

    Directory of Open Access Journals (Sweden)

    Filip Peter


    Full Text Available We suggest that modification of meson properties (lifetimes and branching ratios can occur due to the interaction of constituent quark magnetic moments with strong magnetic fields present in the close vicinity of nuclei. A superposition of (J =0 and (J =1, mz =0 particle-antiparticle quantum states (as observed for ortho-Positronium may occur also in the case of quarkonium states J/Ψ, ηc ϒ, ηb in heavy ion collisions. We speculate on possible modification of η(548 meson properties (related to C parity and CP violation in strong magnetic fields which are present in the vicinity of nuclei.

  19. JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Papenbrock, Thomas


    The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE-FG02-06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.-based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.

  20. Constrained caloric curves and phase transition for hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Borderie, B., E-mail: [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Piantelli, S. [INFN Sezione di Firenze, 50019 Sesto Fiorentino (Italy); Rivet, M.F. [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Raduta, Ad.R. [National Institute for Physics and Nuclear Engineering, RO-76900 Bucharest-Magurele (Romania); Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Bonnet, E. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Université de Caen, CNRS-IN2P3, F-14050 Caen Cedex (France); Chbihi, A.; Frankland, J.D. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); Galichet, E. [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Conservatoire National des Arts et Métiers, F-75141 Paris Cedex 03 (France); Gruyer, D. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); Guinet, D.; Lautesse, P. [Université Claude Bernard Lyon 1, Institut de Physique Nucléaire, CNRS-IN2P3, F-69622 Villeurbanne Cedex (France); Le Neindre, N.; Lopez, O. [LPC Caen, ENSICAEN, Université de Caen, CNRS-IN2P3, F-14050 Caen Cedex (France); Marini, P. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); and others


    Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central {sup 129}Xe+{sup nat}Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4–12 AMeV [S. Piantelli, et al., INDRA Collaboration, Nucl. Phys. A 809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.

  1. Dissociation of relativistic 10B nuclei in nuclear track emulsion (United States)

    Zaitsev, A. A.; Artemenkov, D. A.; Bradnova, V.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Kornegrutsa, N. K.; Mamatkulov, K. Z.; Mitsova, E. K.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Sarkisyan, V. R.; Stanoeva, R.; Haiduc, M.; Firu, E.


    The structural features of 10B are studied by analyzing the dissociation of nuclei of this isotope at an energy of 1 A GeV in nuclear track emulsion. The fraction of the 10B → 2He + H channel in the charge state distribution of fragments is 78%. It was determined based on the measurements of fragment emission angles that unstable 8Beg.s. nuclei appear with a probability of (26 ± 4)%, and (14 ± 3)% of them are produced in decays of an unstable 9Bg.s. nucleus. The Be + H channel was suppressed to approximately 1%.

  2. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging- From animal anatomy to in vivo imaging in humans

    Directory of Open Access Journals (Sweden)

    Coraline D. Metzger


    Full Text Available The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning.With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem.We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of high-resolution imaging.

  3. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland (United States)

    Nishino, H.


    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  4. Precision measurement of the mass difference between light nuclei and anti-nuclei with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva


    is produced in the central pseudorapidity region allowing for a precise investigation of their properties. Mass and binding energy are expected to be the same in nuclei and anti-nuclei as long as the CPT invariance holds for the nuclear force, a remnant of the underlying strong interaction between quarks and gluons. The measurements of the difference in mass-to-charge ratio between deuteron and anti-deuteron, and 3He and 3\\bar{He} nuclei performed with the ALICE detector at the LHC is presented. The ALICE measurements improve by one to two orders of magnitude previous analogous direct measurements. Given the equivalence between mass and energy, the results improve by a factor two the constraints on CPT invariance inferred from measurements in the (anti-)deuteron system. The binding energy difference has been determined for the first time in the case of (anti-)3He, with a precision comparable to the one obtained in the...

  5. Cytoreductive Surgery Followed by Hyperthermic Intraperitoneal Chemotherapy for Recurrent Ovarian Cancer with Incidental Bochdalek Hernia and Postoperative Bilateral Thalamic Infarct: A Case Report

    Directory of Open Access Journals (Sweden)

    Ilker Kahramanoglu


    Full Text Available Congenital Bochdalek hernia is a defect of the diaphragm and very rare in adults. Only around 100 cases have been reported in the literature. Herein, we present a case with a recurrent ovarian cancer who underwent secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. An oval defect with dimensions of 3 × 4 cm was seen in the left posterolateral site of the diaphragm during surgical exploration. In addition, a 6 × 3 cm iatrogenic right-sided diaphragmatic defect was found and repaired. In the early postoperative period, a bilateral thalamic infarction occurred.

  6. Cytoreductive Surgery Followed by Hyperthermic Intraperitoneal Chemotherapy for Recurrent Ovarian Cancer with Incidental Bochdalek Hernia and Postoperative Bilateral Thalamic Infarct: A Case Report. (United States)

    Kahramanoglu, Ilker; Turan, Hasan; Yamak Altinpulluk, Ece; Mammadov, Zahid; Bese, Tugan; Arvas, Macit; Demirkiran, Fuat


    Congenital Bochdalek hernia is a defect of the diaphragm and very rare in adults. Only around 100 cases have been reported in the literature. Herein, we present a case with a recurrent ovarian cancer who underwent secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. An oval defect with dimensions of 3 × 4 cm was seen in the left posterolateral site of the diaphragm during surgical exploration. In addition, a 6 × 3 cm iatrogenic right-sided diaphragmatic defect was found and repaired. In the early postoperative period, a bilateral thalamic infarction occurred.

  7. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes (United States)

    Nuclei isolated from spermatozoa of various species (golden hamster, mouse, human, rooster, and the fish tilapia) were heated at 60 degrees-125 degrees C for 20-120 min and then microinjected into hamster oocytes to determine whether they could decondense and develop into pronucl...

  8. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    pp. 535–544. Structure of light neutron-rich nuclei through Coulomb dissociation. U DATTA PRAMANIK, T AUMANN, D CORTINA, H EMLING, H GEISSEL, M HELL-. STR ¨OM, R HOLZMANN, N IWASA, Y LEIFELS, G M ¨UNZENBERG, M REJMUND,. C SCHEIDENBERGER, K S ¨UMMERER, A LEISTENSCHNEIDER. ½.

  9. A microscopic multiphonon approach to even and odd nuclei

    Czech Academy of Sciences Publication Activity Database

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, Petr


    Roč. 92, č. 7 (2017), č. článku 074003. ISSN 0031-8949 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : E1 response in nuclei * nuclear many- body theory * nuclear structure Subject RIV: BE - Theoretical Physics Impact factor: 1.280, year: 2016

  10. On the Formation Mechanism of the Atomcule of Light Nuclei

    CERN Document Server

    Dineykhan, M D; Sakhyev, S K


    In the framework of the oscillator representation method the interaction potential between the antiproton and the nucleus is analytically derived. This potential is antisymmetrical with respect to the charge and masses of the constituent particles. It is shown that the antisymmetry of the potential determines the stability of the atomcule of light nuclei.

  11. Low lying collective 2/sup +/ states of spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Khodel, V.A.


    The nature of low-lying collective 2/sup +/ states of superfluid spherical nuclei is investigated. It is shown that the dominating role in formation of these excitations is played by effective attraction between the quasiparticles of the last unfilled shell, arising from exchange by quantal capillar waves--capons.

  12. Quantitative 3-D texture analysis of interphase cell nuclei

    NARCIS (Netherlands)

    Strasters, K.C.; Smeulders, A.W.M.; van der Voort, H.T.M.; Young, I.T.; Nanninga, N.; Young, I.T.


    In order to investigate the spatio-temporal structure of chromatin in interphase nuclei the authors present two 3-D texture parameters based on the grey-weighted distance transform that quantify the accessibility and the homogeneity of a nucleus. Results of experiments on computer generated textures

  13. The dipole response of nuclei with large neutron excess

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Boretzky, K.; Cortina, D.; Datta Pramanik, U.; Elze, T.W.; Emling, H.; Geissel, H.; Gruenschloss, A.; Hellstroem, M.; Ilievski, S.; Iwasa, N.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Muenzenberg, G.; Reiter, P.; Scheidenberger, C.; Schlegel, C.; Simon, H.; Suemmerer, K.; Wajda, E.; Walus, W.


    The dipole response of neutron-rich nuclei in the mass range from A=10 to A=22 and with mass to charge ratios of 2.5 to 2.8 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies around 600 MeV/u. (orig.)

  14. Nuclear pore ion channel activity in live syncytial nuclei. (United States)

    Bustamante, Jose Omar


    Nuclear pore complexes (NPCs) are important nanochannels for the control of gene activity and expression. Most of our knowledge of NPC function has been derived from isolated nuclei and permeabilized cells in cell lysates/extracts. Since recent patch-clamp work has challenged the dogma that NPCs are freely permeable to small particles, a preparation of isolated living nuclei in their native liquid environment was sought and found: the syncytial nuclei in the water of the coconut Cocos nucifera. These nuclei have all properties of NPC-mediated macromolecular transport (MMT) and express foreign green fluorescent protein (GFP) plasmids. They display chromatin movement, are created by particle aggregation or by division, can grow by throwing filaments to catch material, etc. This study shows, for the first time, that living NPCs engaged in MMT do not transport physiological ions - a phenomenon that explains observations of nucleocytoplasmic ion gradients. Since coconuts are inexpensive (less than US$1/nut per litre), this robust preparation may contribute to our understanding of NPCs and cell nucleus and to the development of biotechnologies for the production of DNA, RNA and proteins.

  15. Multiple quantum spin counting techniques with quadrupolar nuclei

    NARCIS (Netherlands)

    Dodd, A.J.; Eck, E.R.H. van


    Phase incremented and continuous irradiation multiple spin correlation methods are applied to spin 3/2 nuclei with small quadrupole couplings such as Li-7 in LiCl and are shown to successfully produce a coherently coupled dipolar spin network. Application to the analogous Na salt shows successful


    NARCIS (Netherlands)

    Sakamoto, Kazushi; Aalto, Susanne; Wilner, David J.; Black, John H.; Conway, John E.; Costagliola, Francesco; Peck, Alison B.; Spaans, Marco; Wang, Junzhi; Wiedner, Martina C.


    We report similar to 100 pc (0 ''.3) resolution observations of (sub) millimeter HCO(+) and CO lines in the ultraluminous infrared galaxy Arp 220. The lines peak at two merger nuclei, with HCO(+) being more spatially concentrated than CO. Asymmetric line profiles with blueshifted absorption and

  17. Time Delay Evolution of Five Active Galactic Nuclei

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 36; Issue 4. Time Delay Evolution of Five ... Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and ...

  18. Haloes and clustering in light, neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A


    Clustering is a relatively widespread phenomenon which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain. (author)

  19. Level density and shape changes in excited sd shell nuclei

    Indian Academy of Sciences (India)

    Its applications in the study of fast rotating nuclei [7,8] are .... The particles, neutrons/protons are allowed to fill up the states in a random fashion. Suppose in the Kth configuration if niK is the single particle occupation probability ... due to the availability of fast computers, we were able to present the usefulness of our method ...

  20. Cerebellar Deep Nuclei Involvement in Cognitive Adaptation and Automaticity (United States)

    Callu, Delphine; Lopez, Joelle; El Massioui, Nicole


    To determine the role of the interpositus nuclei of cerebellum in rule-based learning and optimization processes, we studied (1) successive transfers of an initially acquired response rule in a cross maze and (2) behavioral strategies in learning a simple response rule in a T maze in interpositus lesioned rats (neurotoxic or electrolytic lesions).…

  1. Color molecular dynamics for dense matter and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Toshiki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hatsuda, T. [Kyoto Univ. (Japan). Faculty of Science


    We propose a microscopic simulation for quark many-body system based on a molecular dynamics. Using confinement potential, one-gluon exchange potential and meson exchange potentials, we can construct color-singlet nucleons, nuclei and also an infinite nuclear/quark matter. Statistical feature and the dynamical change between confinement and deconfinement phases are studied with this molecular dynamics simulation. (author)

  2. Borromean halo, Tango halo, and halo isomers in atomic nuclei (United States)

    Izosimov, Igor


    Structure of the ground and excited states in halo-like nuclei is discussed. Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei.Structure of the halo may be different for the different levels and resonances in atomic nuclei. Isobar analog, double isobar analog, configuration, and double configuration states can simultaneously have n-n, n-p, and p-p halo components in their wave functions. When the halo structure of the excited state differs from that of the ground state, or the ground state has non-halo structure, the γ-transition from the excited state to the ground state can be essentially hindered, i.e. the formation of a specific type of isomers (halo isomers) becomes possible. B(Mγ) and B(Eγ) values for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei which ground state does not exhibit halo structure but the excited state (halo isomer) may have one.

  3. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)


    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  4. Three-particle decays of light-nuclei resonances

    DEFF Research Database (Denmark)

    Álvarez-Rodríguez, R.; Jensen, A.S.; Garrido, E.


    We have studied the three-particle decay of 12C, 9Be and 6Be resonances. These nuclei have been described as three-body systems by means of the complex scaled hyperspherical adiabatic expansion method. The short-distance part of the wave function is responsible for the energies, whereas the infor...


    NARCIS (Netherlands)



    Using the relativistic Hartree approximation in the sigma-omega model we study the isoscalar giant monopole resonance. It is shown that the ISGMR of lighter nuclei has non-negligible anharmonic terms. The compressibility of nuclear matter is determined using a leptodermous expansion.

  6. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.


    We have obtained high resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGN) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure th...

  7. Gamma-ray bursts, galactic nuclei and cosmic evolution (United States)

    Rees, Martin J.


    This lecture summarises some aspects of gamma-ray bursts, a topic to which Bohdan Paczyński made crucial contributions. It then, more briefly, comments on quasars and active galactic nuclei, where the accretion processes studied by Paczyński and his Polish colleagues play a key role. The lecture concludes with some remarks on cosmology and cosmic evolution.

  8. The symmetry energy in nuclei and in nuclear matter

    NARCIS (Netherlands)

    Dieperink, A. E. L.; Van Isacker, P.

    We discuss to what extent information on ground-state properties of finite nuclei ( energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In

  9. The symmetry energy in nuclei and in nuclear matter

    NARCIS (Netherlands)

    Van Isacker, P.; Dieperink, A. E. L.


    We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In

  10. Connections of the vestibular nuclei in the rabbit

    NARCIS (Netherlands)

    A.H. Epema


    textabstractThis thesis descnbes the afferent, efferent and intrinsic connections of the vestibular nuclei in the Dutch belted rabbit. Different anatomical tracing techniques were used to study these projections. A description of the vestibular complex was added, since recent data for the rabbit

  11. Studies of pear-shaped nuclei using accelerated radioactive beams. (United States)

    Gaffney, L P; Butler, P A; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bönig, S; Bree, N; Cederkäll, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; De Witte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kröll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M


    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on (220)Rn and (224)Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model.

  12. The interaction between feedback from active galactic nuclei and supernovae

    NARCIS (Netherlands)

    Booth, C.M.; Schaye, J.


    Energetic feedback from supernovae (SNe) and from active galactic nuclei (AGN) are both important processes that are thought to control how much gas is able to condense into galaxies and form stars. We show that although both AGN and SNe suppress star formation, they mutually weaken one another's

  13. Symmetry remnants in the face of competing interactions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A., E-mail: [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Macek, M., E-mail: [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States)


    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  14. Recent studies of heavy nuclei far from stability at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Julin, R.; Enqvist, T.; Helariutta, K. [Univ. of Jyvaeskylae (Finland)] [and others


    The new K=130 Cyclotron + ECR facility of the Physics Department of the University of Jyvaskyla (JYFL) provides stable beams from protons up to krypton ions for nuclear structure studies. Two instruments designed especially for in-beam spectroscopic studies of heavy nuclei at JYFL are introduced in this contribution. Some results from recent measurements with them are reported.

  15. Nuclear shell effect and collinear tripartition of nuclei

    Indian Academy of Sciences (India)


    Aug 4, 2015 ... The potential energy surface (PES) for the ternary system forming a collinear nuclear chain is calculated for a wide range of masses and charge num- bers of the constituent nuclei. The results of the PES for the tripartition of 252Cf(sf, fff) allows us to establish dynamical conditions leading to the formation of ...

  16. Rare βp decays in light nuclei

    DEFF Research Database (Denmark)

    Borge, M.J.G.; Fraile, L.M.; Fynbo, Hans Otto Uldall


    Beta-delayed proton emission may occur at very low rates in the decays of the light nuclei 11Be and 8B. This paper explores the potential physical significance of such decays, estimates their rates and reports on first attempts to detect them: an experiment at ISOLDE/CERN gives a branching ratio ...

  17. The structure of the dusty cores of active galactic nuclei

    NARCIS (Netherlands)

    López Gonzaga, Noel


    Active galactic nuclei (AGN) have been extensively studied to understand the possible link between the growth of super-massive black holes (SMBHs) and the evolution of galaxies. Circumnuclear dust present in AGNs plays a major role in the unification theory of AGNs. The X-ray/Optical/UV light from

  18. Proxy-SU(3) symmetry in heavy deformed nuclei (United States)

    Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.


    Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.

  19. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.


    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  20. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)


    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  1. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images. (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong


    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  2. Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: A 11-year, single center experience. (United States)

    Kim, Seong Hoon; Lim, Sung Chul; Kim, Jiyeon; Son, Byung-Chul; Lee, Kyung Jin; Shon, Young-Min


    Anterior thalamic deep brain stimulation (ATN DBS) is an emerging, effective treatment for patients with drug-resistant epilepsy, but long-term results on its efficacy and safety are lacking. To evaluate the long-term efficacy and safety of ATN DBS treatment, as well as predictors of its success, in patients with drug-refractory epilepsy (DRE). We retrospectively studied clinical outcomes in 29 consecutive refractory epilepsy patients treated by a single DBS team (two neurosurgeons, four neurologists) over an 11-year period, for whom follow-up was performed for up to 137 months (mean, 74.9 months). The average participant was 30.7 (±10.4) years old and had epilepsy for 19.3 (±9.0) years. The mean preoperative frequency of disabling partial or generalized tonic-clonic seizures was 27.5 (±8.6, SE) seizures a month. The median percent seizure reduction was 71.3% at 1year, 73.9% at 2 years, and ranged from 61.8% to 80.0% over post-implant years 3 through 11 in the long-term study (overall 70% median reduction). In the 11-year study period, 13.8% (4/29) of subjects were seizure-free for at least 12 months during this time. There was only one symptomatic intracranial hemorrhage that happened during follow-up (3.4%). Infection requiring removal and later re-implantation of hardware occurred in only 1 of 30 patients (3.3%), who was subsequently excluded from our follow-up assessment. Hardware malfunction including lead disconnection occurred in 2 of 29 cases (6.9%). Revision of lead position to redeem poor clinical response was performed in 3 of 58 implanted leads (5.2%). ATN DBS can be an effective therapy in a variety of patients with DRE. Importantly, we provide evidence that significant therapeutic efficacy can be sustained for up to 11 years. Neurological complications were rather rare, but long-term hardware-related complications should be followed arrectis auribus. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. (United States)

    Albéri, Lavinia; Lintas, Alessandra; Kretz, Robert; Schwaller, Beat; Villa, Alessandro E P


    The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

  4. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)


    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  5. Systematization of α-decaying nuclei based on shell structures: The case of even-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yarman, Tolga [Okan University, Istanbul (Turkey); Zaim, Nimet [Trakya University, Edirne (Turkey); Yarman, O. [Istanbul University, Istanbul (Turkey); Kholmetskii, Alexander [Belarusian State University, Minsk (Belarus); Arik, Metin [Bogazici University, Istanbul (Turkey)


    Previously, we provided a novel systematization of α-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an α-decaying nucleus was framed so that i) the α-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the α-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any α-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd α-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of ''pairing'' (e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that ''pairing'', as expected, definitely increases the stability of the given nucleus. (orig.)

  6. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Biscocho, N


    Skeletal muscle fibers contain hundreds to thousands of nuclei which lie immediately under the plasmalemma and are spaced out along the fiber, except for a small cluster of specialized nuclei at the neuromuscular junction. How the nuclei attain their positions along the fiber is not understood...

  7. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.


    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... addition to the growth caused by condensation of neutral molecules. Under atmospheric conditions the growth from ions can constitute several percent of the neutral growth. We performed experimental studies which quantify the effect of ions on the growth of aerosols between nucleation and sizes >20 nm...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  8. Increased ionization supports growth of aerosols into cloud condensation nuclei. (United States)

    Svensmark, H; Enghoff, M B; Shaviv, N J; Svensmark, J


    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important addition to the growth caused by condensation of neutral molecules. Under atmospheric conditions the growth from ions can constitute several percent of the neutral growth. We performed experimental studies which quantify the effect of ions on the growth of aerosols between nucleation and sizes >20 nm and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth's present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity.

  9. Vaporization of comet nuclei - Light curves and life times (United States)

    Cowan, J. J.; Ahearn, M. F.


    The effects of vaporization from the nucleus of a comet are examined and it is shown that a latitude dependence of vaporization can explain the asymmetries in cometary light curves. An attempt is made to explain the observed variation in molecular production rates with heliocentric distance when employing CO2 and clathrate hydrate ice as cometary nuclei substances. The energy balance equation and the vapor pressure equations of water and CO2 are used in calculating the vaporization from a surface. Calculations were carried out from both dry-ice and water-ice nuclei, using a variety of different effective visual albedos, but primarily for a thermal infrared of 0 (emission). Attention is given to cometary lifetimes and light curves and it was determined that the asymmetry in light curves occurs (occasionally) as a 'seasonal' effect due to a variation in the angle between the comet's rotation axis and the sun-comet line.

  10. Collective and single particle states in medium mass vibrational nuclei

    CERN Document Server

    Suliman, G


    The particle-core coupling model has been employed to describe the low lying nuclear excitations in the vibrational odd-A nuclei. In the frame of this model the following observables were calculated: excitation energies, spin and parity quantum numbers, electric quadrupole moments, magnetic dipole moments and reduced transition probabilities. Two computer codes were employed. The first one, PCOREC, diagonalized the Hamiltonian providing the eigenvectors and eigenvalues. The second one, PCORECTR, starts from the eigenvector computer by the first program and computes the observables which are compared we results of experiments. A good description of the experimental data has been obtained for the sup 1 sup 3 sup 3 Sb, sup 1 sup 2 sup 3 Sb and sup 1 sup 2 sup 5 Sb nuclei. (authors)

  11. POLAREX. Study of polarized exotic nuclei at millikelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Risegari, L.; Astier, A.; Audi, G.; Cabaret, S.; Gaulard, C.; Georgiev, G. [CSNSM, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay (France); Stone, N.J. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Stone, J.R. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); University of Maryland, Department of Chemistry and Biochemistry, College Park, MD (United States)


    POLAREX (POLARization of EXotic nuclei) is a new facility for the study of nuclear magnetic moments and decay modes of exotic nuclei using the established On-Line Nuclear Orientation (OLNO) method. A radioactive beam of interest is implanted into a ferromagnetic host foil held at a temperature of order 10mK in a {sup 3}He-{sup 4}He dilution refrigerator. The foil is magnetized by an applied magnetic field and the nuclear spins become polarized through the internal hyperfine field. The angular distribution of decay products from the polarized sample is measured. Accurate values of nuclear moment are obtained by NMR. The new facility will have access to neutron-rich nuclides produced at the ALTO facility (Linear Accelerator at Orsay Tandem) by fission induced by electrons from the linear electron accelerator. Basic concepts and initial tests are outlined. (orig.)

  12. Communication: Thermodynamics of stacking disorder in ice nuclei (United States)

    Quigley, D.


    A simple Ising-like model for the stacking thermodynamics of ice 1 is constructed for nuclei in supercooled water, and combined with classical nucleation theory. For relative stabilities of cubic and hexagonal ice I within the range of experimental estimates, this predicts critical nuclei are stacking disordered at strong sub-cooling, consistent with recent experiments. At higher temperatures nucleation of pure hexagonal ice is recovered. Lattice-switching Monte-Carlo is applied to accurately compute the relative stability of cubic and hexagonal ice for the popular mW model of water. Results demonstrate that this model fails to adequately capture the relative energetics of the two polytypes, leading to stacking disorder at all temperatures.

  13. Enhancement of octupole strength in near spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)


    The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)

  14. Lattice effective field theory for medium-mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lähde, Timo A., E-mail: [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany); Rupak, Gautam [Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762 (United States)


    We extend Nuclear Lattice Effective Field Theory (NLEFT) to medium-mass nuclei, and present results for the ground states of alpha nuclei from {sup 4}He to {sup 28}Si, calculated up to next-to-next-to-leading order (NNLO) in the EFT expansion. This computational advance is made possible by extrapolations of lattice data using multiple initial and final states. For our soft two-nucleon interaction, we find that the overall contribution from multi-nucleon forces must change sign from attractive to repulsive with increasing nucleon number. This effect is not produced by three-nucleon forces at NNLO, but it can be approximated by an effective four-nucleon interaction. We discuss the convergence of the EFT expansion and the broad significance of our findings for future ab initio calculations.

  15. Shape transition in odd-odd A [approx] 130 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A. (Lab. Pelletron, Dept. de Fisica Nuclear, Inst. de Fisica, Univ. de Sao Paulo, Sao Paolo, SP (Brazil)); Cybulska, E.W. (Lab. Pelletron, Dept. de Fisica Nuclear, Inst. de Fisica, Univ. de Sao Paulo, Sao Paolo, SP (Brazil)); Emediato, L.G.R. (Lab. Pelletron, Dept. de Fisica Nuclear, Inst. de Fisica, Univ. de Sao Paulo, Sao Paolo, SP (Brazil)); Medina, N.H. (Lab. Pelletron, Dept. de Fisica Nuclear, Inst. de Fisica, Univ. de Sao Paulo, Sao Paolo, SP (Brazil)); Ribas, R.V. (Lab. Pelletron, Dept. de Fisica Nuclear, Inst. de Fisica, Univ. de Sao Paulo, Sao Paolo, SP (Brazil)); Hara, K. (Lab. Pelletron, Dept. de Fisica Nuclear, Inst. de Fisica, Univ. de Sao Paulo, Sao Paolo, SP (Brazil)); Lima, C.L. (Nuclear Theory and Elementary Particle Phenomenology Group, Inst. de Fisica, Univ. de Sao Paulo, Sao Paulo, SP (Brazil))


    A systematic analysis of rotational bands in doubly odd nuclei in the mass region A = 130-140 is carried out using a shell model configuration mixing approach. The shell model (many-body) basis is constructed by projecting out deformed quasiparticle (Nilsson + BCS) states onto good angular momenta. The hamiltonian is assumed to be a sum of (spherical) single-particle hamiltonian and a schematic two-body interaction, which consists of Q.Q + (monopole) pairing + quadrupole-pairing forces. The analysis indicates a shape transition from prolate (N = 73) to oblate (N = 79) shape as a function of neutron number. Agreement between theoretical results and experimental data is quite satisfactory except for [gamma]-deformed nuclei (N = 75 and 77). (orig.)

  16. Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Universidad de Granada (Spain). Dept. de Fisica Moderna]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Caballero, J.A. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia]|[Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Moya de Guerra, E. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia


    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to {sup 39}K. Results are presented using two models for the ejected nucleon - when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon`s momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed. (orig.).

  17. Multiple parton scattering in nuclei: Parton energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian; Guo, Xiao-feng


    Multiple parton scattering and induced parton energy loss are studied in deeply inelastic scattering (DIS) off nuclei. The effect of multiple scattering of a highly off-shell quark and the induced parton energy loss is expressed in terms of the modification to the quark fragmentation functions. The authors derive such modified quark fragmentation functions and their QCD evolution equations in DIS using the generalized factorization of higher twist parton distributions. They consider double-hard and hard-soft parton scattering as well as their interferences in the same framework. The final result, which depends on both the diagonal and off-diagonal twist-four parton distributions in nuclei, demonstrates clearly the Landau-Pomeranchuk-Migdal interference features and predicts a unique nuclear modification of the quark fragmentation functions.

  18. HAMLET interacts with histones and chromatin in tumor cell nuclei. (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina


    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  19. Neutron skin studies of medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Thiel M.


    Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.

  20. Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)


    The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only in the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.

  1. Particles and nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank; Rodejohann, Werner


    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view.   The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions.   The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modem astrophysics and cosmology.   The seventh revised and e...

  2. Mutual boosting of the saturation scales in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kopeliovich, B.Z., E-mail: bzk@mpi-hd.mpg.d [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, 69120 Heidelberg (Germany); Pirner, H.J. [Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, 69120 Heidelberg (Germany); Potashnikova, I.K.; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile)


    Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. The DGLAP driven gluon distribution turns out to be suppressed at large x, but significantly enhanced at x<<1. This is a high twist effect. In the case of nucleus-nucleus collisions all participating nucleons on both sides get enriched in gluon density at small x, which leads to a further boosting of the saturation scale. We derive reciprocity equations for the saturation scales corresponding to a collision of two nuclei. The solution of these equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  3. Reactions of Proton Halo Nuclei in a Relativistic Optical Potential

    CERN Document Server

    Rashdan, M


    The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei

  4. α-cluster structure in light N≠Z nuclei (United States)

    Goldberg, V. Z.; Rogachev, G. V.; Johnson, E. D.; Brown, S.; Miller, L. E.; Al-Abdullah, T.; Cherubini, S.; Chubarian, G. G.; Fu, C.; Gulino, M.; Green, B.; Hardy, J.; Kemper, K.; La Cognata, M.; Lattuada, M.; Mukhamedzhanov, A.; Mitchell, J.; Momotyuk, O.; McCleskey, M.; Pizzone, R. G.; Romano, S.; Roeder, B.; Skorodumov, B.; Spitaleri, C.; Tabacaru, G.; Trache, L.; Tribble, R. E.; Trzaska, W. H.; Tumino, A.; Zhai, Y.


    The clustering phenomena in light N≠Z nuclei are discussed. Measurements of resonance elastic scattering of 14C on 4He, and the excitation functions for the 9Be(p,α)6Li(T = 1) reaction has been performed. All measurements were made in inverse kinematics. The excitation functions were analyzed in the framework of the R-matrix approach. Many new states with large α reduced widths were identified in 18O. Strong cluster T = 1 states in 10B have been identified in 9Be. The results show that extra (in comparison with the self-conjugate nuclei) nucleons make evident changes in the properties of the α-cluster bands.

  5. Rescattering effects in proton interaction with light neutron rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ibraeva, E.T., E-mail: [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); Dzhazairov-Kahramanov, A.V., E-mail: [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); V.G. Fessenkov Astrophysical Institute “NCSRT” NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty (Kazakhstan); Imambekov, O. [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan)


    Within the framework of the Glauber diffraction theory the differential cross sections of the elastic p{sup 6}He, p{sup 8}Li, p{sup 9}Li scattering were calculated at intermediate energies from 70 to 1000 MeV/nucleon. The use of realistic three-body wave functions α–n–n ({sup 6}He), α–t–n ({sup 8}Li), α–t–2n ({sup 9}Li), obtained in the framework of modern nuclear models, and expansion of the Glauber operator into a series of multiple scattering in a form which is well adapted to the three-body nuclei configuration, allows the calculation of the matrix elements by taking account the rescattering from all structure components of designated nuclei.

  6. Investigation of astrophysically relevant neutron-rich argon nuclei

    CERN Multimedia


    We propose to measure $\\beta$-decay properties especially the half-lives and P$_{n}$-values of the neutron-rich $^{47,48,49}$Ar nuclei. The acquired information will be important for a better understanding of the origin of the $^{48}$Ca/$^{46}$Ca isotopic "FUN" anomalies discovered in several refractory inclusions (in particular EK-1-4-1)of the Allende meteorite.

  7. Structure of A∼130 nuclei in La–Ce region

    Indian Academy of Sciences (India)

    of a pair of h11/2 proton particles has been conjectured at hω ∼ 0.3 MeV, from the single- ... triaxial shapes. Experimental data on the odd–odd and odd-A nuclei of this mass region have also displayed a varied amount of signature splitting in the yrast se- ... A systematic analysis of the MR bands in A ∼ 130 region has been.

  8. On the spectrum of stable secondary nuclei in cosmic rays (United States)

    Blasi, P.


    The ratio of the fluxes of secondary and primary nuclei in cosmic rays has long been used as an indicator of the grammage traversed in the journey of cosmic ray particles throughout the Galaxy. The basic idea is that primary particles are accelerated in astrophysical sources, such as supernova remnant shocks and eventually propagate in the Galactic volume, occasionally interacting with gas, mainly in the disc of the Galaxy, and there they produce secondary nuclei through spallation. At sufficiently high energy, typically ≳100 GeV/n, the ratio of fluxes of the secondary nucleus to that of the main primary nucleus is found to scale as Ek^{-δ }, where Ek is the energy per nucleon (a conserved quantity in spallation reactions) and δ identifies the energy dependence of the diffusion coefficient. The same shock waves that may be responsible for cosmic ray acceleration in the first place also pick up any other charged particle in the upstream, provided being above threshold for injection. The secondary nuclei produced by spallation in the interstellar medium are no exception, hence they also get accelerated. This effect is unavoidable, only its strength may be subject of debate. We compute the spectrum of secondary elements such as boron and lithium taking into account shock reacceleration and compare our predictions with the recent observations of the B/C ratio and preliminary measurements of the boron and lithium flux. Both these sets of data seem to confirm that reacceleration of secondary nuclei indeed plays an important role, thereby affecting the validity of those scaling rules that are often used in cosmic ray physics.

  9. The Giant Dipole Resonance in hot nuclei. Experimental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Alamanos, N.; Auger, F.


    Some of the most recent experimental results on the GDR in hot nuclei are presented. All data on the {gamma}-decay of the GDR show a saturation of the apparent width and a saturation of the yield. However, it is not clear until now, if these effects are related to a GDR width which either saturates or increases continuously with the excitation energy. Very new data associated to selected exit channels could help to clarify the situation. (author). 14 refs., 7 figs.

  10. Effective interactions for light nuclei: an effective (field theory) approach


    Stetcu, I.; Rotureau, J.; Barrett, B.R.; van Kolck, U.


    One of the central open problems in nuclear physics is the construction of effective interactions suitable for many-body calculations. We discuss a recently developed approach to this problem, where one starts with an effective field theory containing only fermion fields and formulated directly in a no-core shell-model space. We present applications to light nuclei and to systems of a few atoms in a harmonic-oscillator trap. Future applications and extensions, as well as challenges, are also ...

  11. Charge exchange reactions as tests for structures of exotic nuclei

    CERN Document Server

    Karataglidis, S


    Charge exchange reactions serve as alternative tests of the structures of exotic nuclei. Of particular relevance is the (p, n) reaction, which is related to the Gamow-Teller matrix element. The (p, n) reaction is also related to (p, p′) in the case of transitions to the isobaric analogue state (IAS). There are few measurements of (p, n) reactions using exotic beams. We revisit the case of 6He(p, n)6Li and discuss apparent discrepancies with other available data.

  12. Prospects for electron scattering on unstable, exotic nuclei (United States)

    Suda, Toshimi; Simon, Haik


    Electron scattering off radioactive ions becomes feasible for the first time due to advances in storage ring and trapping techniques in conjunction with intense secondary beams from novel beam facilities. Using a point-like purely leptonic probe enables the investigation of charge distributions and electromagnetic excitations in β-unstable exotic nuclei with an enhanced overshoot in proton and neutron numbers and the use of QED, one of the most precisely studied theories, for describing the scattering process.

  13. Exotic nuclei explored at in-flight separators (United States)

    Nakamura, T.; Sakurai, H.; Watanabe, H.


    In-flight separators have played a significant role in the physics of exotic nuclei. In the last decade, in particular, this field has expanded rapidly with the advent of the new-generation (3rd-generation) in-flight-separator facility, the RI-beam Factory (RIBF) at RIKEN that was commissioned in 2007. In addition, new experimental methods, techniques and state-of-the-art detectors at in-flight separators have developed rapidly, which has contributed considerably to this progress. One can now reach very far from the stable nuclei towards the drip lines, and even beyond in some cases. Hundreds of new isotopes have been identified, and new exotic isomers have been observed. β decays and relevant γ decays, including isomeric states, have clarified many new aspects of nuclear structures. A variety of direct reactions, making the best use of in-flight rare isotope (RI) beams at intermediate/high energies, have been applied for a wide range of rare isotopes. New experimental results using these methods have shown that one needs a new framework to understand structures and dynamics of exotic nuclei, such as new or lost magic numbers, novel neutron halo/skin structures and relevant reactions/excitations. A wide range of reactions associated with nucleo-synthesis in the Universe and the equation of state (EoS) of neutron-rich nuclear matter have also been studied through experiments using rare isotopes available at in-flight separators. This review article focuses its attention on how recent experimental techniques have been developed and applied to exotic nuclei at in-flight separators. We also make remarks on prospects for the near future: in the era when the 3rd-generation RI-beam facilities based on in-flight separators are being completed world-wide.

  14. Relativistic Quasiparticle Random Phase Approximation in Deformed Nuclei


    Pena Arteaga, Daniel


    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogoliubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of th...

  15. Otolith-Canal Convergence in Vestibular Nuclei Neurons (United States)

    Dickman, J. David


    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  16. Excitation Spectra of Carbon Nuclei near η ' Emission Threshold (United States)

    Itahashi, Kenta; Ayyad, Yassid; Benlliure, Jose; Brinkmann, Kai-Thomas; Friedrich, Stefan; Fujioka, Hiroyuki; Geissel, Hans; Gellanki, Jnaneswari; Guo, Chenlei; Gutz, Eric; Haettner, Emma; Harakeh, Muhsin N.; Hayano, Ryugo S.; Higashi, Yuko; Hirenzaki, Satoru; Hornung, Christine; Igarashi, Yoichi; Ikeno, Natsumi; Iwasaki, Masahiko; Jido, Daisuke; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Knoebel, Ronja; Kurz, Nikolaus; Metag, Volker; Mukha, Ivan; Nagae, Tomofumi; Nagahiro, Hideko; Nanova, Mariana; Nishi, Takahiro; Ong, Hooi Jin; Pietri, Stephane; Prochazka, Andrej; Rappold, Christophe; Reiter, Moritz P.; Rodríguez-Sánchez, José L.; Scheidenberger, Christoph; Simon, Haik; Sitar, Branislav; Strmen, Peter; Sun, Baohua; Suzuki, Ken; Szarka, Imrich; Takechi, Maya; Tanaka, Yoshiki K.; Tanihata, Isao; Terashima, Satoru; Watanabe, Yuni N.; Weick, Helmut; Widmann, Eberhard; Winfield, John S.; Xu, Xiaodong; Yamakami, Hiroki; Zhao, Jianwei

    We measured an excitation spectrum of 12C(p, d) reaction near the η' emission threshold using a 2.5 GeV proton beam. The measured spectrum shows no peak structures which are associated to formation of η'-mesic nuclei. Further analysis is ongoing to deduce upper limits of the formation cross section and to set constraints in the η'-nucleus interaction.

  17. From the stable to the exotic: clustering in light nuclei


    Beck, C.


    A great deal of research work has been undertaken in alpha-clustering study since the pioneering discovery of 12C+12C molecular resonances half a century ago. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of ...

  18. Relativistic extended Thomas-Fermi calculations of finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Vinas, X.; Barranco, M. (Barcelona Univ. (Spain). Facultat de Fisica); Ohtsuka, N.; Faessler, Amand; Khoa, D.T.; Muether, H. (Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik)


    We have used for the first time a relativistic extended Thomas-Fermi method which includes up to (h/2{pi}){sup 2}-corrective terms to study the structure of finite nuclei. The potential part has been obtained from a local density approximation to Dirac-Brueckner calculations carried out with a realistic nucleon-nucleon potential. Some applications to fission barriers and optical potentials for heavy ion scattering are presented. (author).

  19. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.


    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  20. Study of omega-, eta-, eta'- and D sup - mesic nuclei

    CERN Document Server

    Tsushima, K


    Using the quark-meson coupling (QMC) model, we investigate whether omega, eta, eta' and D sup - mesons form meson-nucleus bound states. Our results suggest that one should expect to find eta- and omega-nucleus bound states in all the nuclei considered. Furthermore, it is shown that the D sup - meson will form quite narrow bound states with sup 2 sup 0 sup 8 Pb.