WorldWideScience

Sample records for tgf-beta1 mrna expression

  1. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  2. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    Science.gov (United States)

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  3. The change of transforming growth factor {beta} 1 (TGF- {beta} 1) expression by melatonin in irradiated lung

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seong Soon; Choi, Ihl Bohng [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-09-15

    The changed expressions of TGF- {beta} 1, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of TGF-{beta} 1 in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of TGF- {beta} 1 protein were identified using immunohistochemical staining. The relative mRNA expression levels in the irradiation-only and melatonin pretreatment group 2 and 4 weeks after irradiation were 1.92- and 1.80-fold ({rho} = 0.064) and 2.38- and 1.94-fold ({rho} = 0.004) increased, respectively compared to those in the control group. Increased expressions of TGF- {beta} 1 protein were prominently detected in regions of histopathological radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of TGF- {beta} 1 expression. At 2 and 4 weeks after irradiation, the expression levels of protein were 15.8% vs. 16.9% ({rho} = 0.565) and 36.1% vs. 25.7% ({rho} = 0.009), respectively. The mRNA and protein expressions of TGF- {beta} 1 in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

  4. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1996-01-01

    Three small cell lung cancer cell lines established from a single patient during longitudinal follow-up were examined for in vitro expression of TGF beta and TGF beta receptors, i.e. the components of an autocrine loop. GLC 14 was established prior to treatment, GLC 16 on relapse after chemotherapy...... was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...... II receptor gene, as examined by Southern blotting. Also, the type I receptor could not be detected by ligand binding assay in this cell line, despite expression of mRNA for this receptor. This agrees with previous findings that type I receptor cannot bind TGF beta 1 without co-expression of the type...

  5. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Parra Edwin R

    2010-01-01

    Full Text Available Abstract Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12 were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM. After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day (IM-TOL daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p p p = 0.026. The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002 and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009 collagen, in addition to decreased TGF-beta expression (p Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

  6. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  7. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  8. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  9. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan); Yamaguchi, Takahiro, E-mail: ty1010@bios.tohoku.ac.jp [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan)

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  10. Aberrant Expression of TNF-α and TGF1 mRNA in Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    Ji-fen HU; Hong-chu BAO; Feng-chuan ZHU; Cai-ling YOU

    2004-01-01

    Objective To investigate the aberrant expressions of TNF-α and TGF1 in peripheral blood mononuclear cells (PBMCs) and placental tissues in patients with early spontaneous abortionMethods Using the technique of semi-quantitative reverse transcript-polymerase chain reaction (RT-PCR), TNF-α mRNA and TGF1 mRNA in PBMCs were measured in spontaneous abortion group (30 cases), normal pregnancy group (25 cases) and nonpregnant group (25 cases). The expressive intension of TNF-α protein and TGF1 protein in placental tissues was also identified by immunohistochemistry.Results Both levels of TNF-α mRNA and TGF1 mRNA expressed in PBMCs were significantly different between the three groups respectively (P<0. 05). Levels of TNF-α in syncytiotrophoblastic and cytotrophoblastic cells of the two aborted groups were substantially higher than those of the non-pregnant group (P<0. 01), but the levels of TGF1 in syncytiotrophoblastic cells of the two aborted groups were markedly lower than those of the non-pregnant group (P<0. 01).Conclusion There is potential relation between TGF1 at the fetomaternal interface and spontaneous abortion. TGF1 may contribute to the maintenance of pregnancy,and low-level expression of TGF1 may be associated with pregnancy failure.

  11. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Qing; Liu, Qi [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xu, Ning [The Second Hospital of YuLin, Shanxi Province (China); Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Shi, Xiao-Feng, E-mail: sxff2003@yahoo.com.cn [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA

  12. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    Science.gov (United States)

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  13. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    Science.gov (United States)

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  14. TGF-beta1 inhibits Cx43 expression and formation of functional syncytia in cultured smooth muscle cells from human detrusor.

    Science.gov (United States)

    Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2009-02-01

    Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.

  15. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jun [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Liu, Xu, E-mail: xkliuxu@yahoo.cn [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Wang, Quan-xing, E-mail: shmywqx@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Tan, Hong-wei [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Guo, Meng [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China)

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  16. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    Science.gov (United States)

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  17. Elucidation of IL-1/TGF-beta interactions in mouse chondrocyte cell line by genome-wide gene expression

    DEFF Research Database (Denmark)

    Takahashi, N; Rieneck, K; van der Kraan, P M

    2005-01-01

    To elucidate the antagonism between interleukin-1 (IL-1) and transforming growth factor-beta (TGF-beta) at the gene expression level, as IL-1 and TGF-beta are postulated to be critical mediators of cartilage degeneration/protection in rheumatic diseases....

  18. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    Science.gov (United States)

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  19. The Effect of 5 FU on the Expression of Transforming Growth Factor Beta-1 (Tgf-1 in Cultured Tendon Cells

    Directory of Open Access Journals (Sweden)

    Zeynep Karacor Altuntas

    2014-10-01

    Full Text Available This study investigated the effect of the treatment with 1 min exposures to 5-fluorouracil (5-FU  on the expression of TGF-beta 1 in cultured tendon cells. Fibroblasts cultured from the flexor tendons of dog paws were treated with 3 different doses of 5-FU ( control, 5-15-25 mgr /ml for 1 minute.  After 5-FU exposure  the expression of TGFbeta 1 were tested by real time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR at 3rd and 7th days. There were no statistically significant differences in the expression levels of the TGF-b1 gene between the control group and all other groups on day 3 and 7 (p>0.05.However, when the percentage changes in the TGF-BETA1 gene expression on days 3–7 were compared, there were statistically significant differences and this was maximally observed with 89% +12 (p<0.05 in the group treated with 25-mg/ml 5-FU.  We conclude that 1min. 5-FU application may be  sufficient to prevent adhesions in tendon healing by limiting the expression of TGF-BETA1

  20. Evaluation of TGF beta1 expression and comparison the thickness of different aorta layers in experimental diabetes.

    Science.gov (United States)

    Cuce, G; Kalkan, S S; Esen, H H

    2011-01-01

    It was aimed to investigate the effects of experimental diabetes on TGF beta1 expression and tunica intima and media thickness in abdominal and thoracic aorta. Fourteen three months old female rats were divided into two groups, non-diabetic and streptozotocin (STZ) induced diabetic group. Hematoxylin-Eosin and Verhoeff's Van Gieson elastic staining and TGF beta1 immunohistochemistry staining were performed. Abdominal and thoracic intima and media thickness of aortas were measured with the oculometer. Evaluation of intima and media thickness measurements showed no significant statistical differences between non-diabetic and diabetic groups. TGF beta1 expression increased significantly in thoracic diabetic (TD) group. The 60 day duration of diabetes is not sufficiently enough time for the development of pathological changes that could lead to thickening in aortic intima-media layers. TGF beta1 expression was negative in the abdominal aorta that can predispose to the development of atherosclerosis, which could develop overtime. This finding may be interpreted as an appropriate basis for the development of atherosclerosis. In the thoracic aorta TGF beta1 may coordinate cellular events such as tissue repair (Fig. 5, Ref. 23).

  1. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  2. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF1 mRNA in the rat bone

    International Nuclear Information System (INIS)

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF1 and COLI in the rat bone. The mRNA levels of TGF1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF1 mRNA in bone probably in a similar way which is related to estrogen decrease

  3. TGF-beta1 immunohistochemistry and promoter methylation in chronic renal failure rats treated with Uremic Clearance Granules.

    Directory of Open Access Journals (Sweden)

    Cheng-Bin Chen

    2010-08-01

    Full Text Available The aim of the study was the explain the mechanism related to therapeutic effects of Uremic Clearance Granules (Niaoduqing Keli in Chinese on adenine-induced Chronic Renal Failure in rats. Thirty 8-week-old male Wistar rats were selected and randomly divided in to 3 groups: Normal Control Group (NCGconsisted of 10 rats, Chronic Renal Failure Pathological Control Group (PCG 10 rats, and Uremic Clearance Granules Treatment Group (UCG 10 rats. Each rat in PCG and UCG was fed with adenine-enriched diets, containing 10 g adenine per kg food for 6 weeks. After fed with adenine, each rat in UCG was administered orally with 2 ml solution of Uremic Clearance Granules for 6 weeks. The concentration of Uremic Clearance Granules solution was 0.42 g/ml which was 10 times of human. On days 42 and 84, the serum levels of creatinine, Blood Urea Nitrogen and homocysteine were determined. The methylation of TGFbeta1 promoter was tested by methylation-specific PCR. TGF-beta1 mRNA and protein expression in rat renal cortex were analyzed by real-time RT-PCR and Immunohistochemistry. (1 Experimented on model of Chronic Renal Failure in rats, the preparation was proved to be able to reduce serum creatinine, Blood Urea Nitrogen, and homocysteine (p<0.05, improve renal function. (2 The expression of TGF-beta1 in mRNA and protein level were down-regulated. (3 TGF-beta1 promoter was demethylated at some loci in PCG, and was recovered in UCG. After treatment with Uremic Clearance Granules, the Chronic Renal Failure Wistar rat's kidney function was recovered. The recovery may be result of the remethylation of TGF-beta1 promoter and then lead to TGF-beta1 be transcripted and translated normally. The experimental study explain the molecular mechanism by which Uremic Clearance Granules treat Chronic Renal Failure.

  4. Transforming growth factor beta stimulation of biglycan gene expression is potentially mediated by sp1 binding factors

    DEFF Research Database (Denmark)

    Heegaard, Anne-Marie; Xie, Zhongjian; Young, Marian Frances

    2004-01-01

    . In this study, we have investigated the mechanism by which TGF-beta(1), TGF-beta(2) and TGF-beta(3) stimulate biglycan mRNA expression in the osteoblastic cell line MG-63. The cells were transfected with a series of deletional human biglycan promoter constructs and a region in the biglycan 5' DNA was found...... to respond to TGF-beta(1) with increased transcriptional activity in a dose-dependent manner. Also TGF-beta(2) and TGF-beta(3), two structurally highly related TGF-beta isoforms stimulated biglycan transcription. A TGF-beta responsive region was identified within the first 218 bp of the human biglycan...... was abrogated by mithramycin, an inhibitor of Sp1 binding to GC-rich DNA sequences. A mutation in the Sp1 site at -216 to -208 within the -218 biglycan promoter construct substantially diminished the transcriptional up-regulation by TGF-beta(1). Taken together this data shows for the first time that TGF-beta(1...

  5. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study

    International Nuclear Information System (INIS)

    Bacman, David; Merkel, Susanne; Croner, Roland; Papadopoulos, Thomas; Brueckl, Wolfgang; Dimmler, Arno

    2007-01-01

    Histological phenotype and clinical behaviour of malignant tumours are not only dependent on alterations in the epithelial cell compartment, but are affected by their interaction with inflammatory cells and tumour-associated stroma. Studies in animal models have shown influence of tumour-associated macrophages (TAM) on histological grade of differentiation in colon carcinoma. Disruption of transforming growth factor beta (TGF-beta) signalling in tumour cells is related to more aggressive clinical behaviour. Expression data of components of this pathway in tumour-associated stroma is limited. Tissue micro arrays of 310 colon carcinomas from curatively resected patients in UICC stage II and III were established. In a first step we quantified amount of CD68 positive TAMs and expression of components of TGF-beta signalling (TGF-beta1, TGF-beta receptors type 1 and 2, Smad 3 and 4) in tumour and associated stroma. Further we analyzed correlation to histological and clinical parameters (histological grade of differentiation (low-grade (i.e. grade 1 and 2) vs. high-grade (i.e. grade 3 and 4)), lymph node metastasis, distant metastasis, 5 year cancer related survival) using Chi-square or Fisher's exact test, when appropriate, to compare frequencies, Kaplan-Meier method to calculate 5-year rates of distant metastases and cancer-related survival and log rank test to compare the rates of distant metastases and survival. To identify independent prognostic factors Cox regression analysis including lymph node status and grading was performed. High-grade tumours and those with lymph node metastases showed higher rates of TAMs and lower expression of TGF-beta1. Loss of nuclear Smad4 expression in tumor was associated with presence of lymph node metastasis, but no influence on prognosis could be demonstrated. Decrease of both TGF-beta receptors in tumour-associated stroma was associated with increased lymph node metastasis and shorter survival. Stromal TGF-beta receptor 2

  6. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.

    Science.gov (United States)

    Pei, Ming; Chen, Demeng; Li, Jingting; Wei, Lei

    2009-12-01

    The transforming growth factor-beta (TGF-beta) superfamily members play diverse roles in cartilage development and maintenance. TGF-beta up-regulates chondrogenic gene expression by enhancing transcription factor SRY (sex determining region Y)-box 9 (Sox9) and inhibits osteoblast differentiation by repressing runt-related transcription factor 2 (Runx2). Recently, histone deacetylases (HDACs) were reported to act as negative regulators of chondrocyte hypertrophy. It was speculated that HDAC4 may promote TGF-beta1-induced MSC chondrogenesis. In this study, the adenovirus-mediated HDAC4 gene (Ad.HDAC4) was utilized to infect synovium-derived stem cells (SDSCs). Adenovirus-mediated LacZ (Ad.LacZ) served as a control. The infected cells were centrifuged to form SDSC pellets followed by incubation in a serum-free chondrogenic medium for 15 days with or without 10ng/mL TGF-beta1. Transfection efficiency was determined in SDSCs using Ad.LacZ. Cytotoxicity was measured using lactate dehydrogenase assay. Histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction were performed to assess chondrogenesis at protein and mRNA levels in infected SDSCs. Our data demonstrated that supplementation with TGF-beta1 could initiate and promote SDSC chondrogenesis; however, TGF-beta1 alone was insufficient to fully differentiate SDSCs into chondrocytes. Ad.HDAC4 could be efficiently transfected into SDSCs. Without TGF-beta1 treatment, HDAC4 had no effect on SDSC chondrogenesis; however, in the presence of TGF-beta1, HDAC4 could speed up and maintain a high level of chondrogenesis while down-regulating the hypertrophic marker - type X collagen expression. This study is the first report showing that HDAC4 overexpression promotes TGF-beta1-induced SDSC chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. The mechanism underlying this process needs further investigation.

  7. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaschte, K

    2007-01-01

    transcriptional regulation of Dlx-5, Msx-2 and Runx-2. MATERIALS AND METHODS: Encapsulated ASC were cultured for 14 days in medium containing TGF-beta1 and/or BMP-2. mRNA expression of the extracellular matrix molecules col2a1, cartilage oligomeric matrix protein, col10a1, alkaline phosphatase (AP......) and transcription factors Msx-2, Dlx-5 and Runx-2 was analysed. Release of glycosaminoglycans, collagen types II and X into the extracellular matrix was demonstrated. RESULTS: BMP-2 and TGF-beta1 induced a chondrogenic phenotype in ASC. Combined growth factor treatment had a synergistic effect on col10a1...

  8. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study

    Directory of Open Access Journals (Sweden)

    Papadopoulos Thomas

    2007-08-01

    Full Text Available Abstract Background Histological phenotype and clinical behaviour of malignant tumours are not only dependent on alterations in the epithelial cell compartment, but are affected by their interaction with inflammatory cells and tumour-associated stroma. Studies in animal models have shown influence of tumour-associated macrophages (TAM on histological grade of differentiation in colon carcinoma. Disruption of transforming growth factor beta (TGF-beta signalling in tumour cells is related to more aggressive clinical behaviour. Expression data of components of this pathway in tumour-associated stroma is limited. Methods Tissue micro arrays of 310 colon carcinomas from curatively resected patients in UICC stage II and III were established. In a first step we quantified amount of CD68 positive TAMs and expression of components of TGF-beta signalling (TGF-beta1, TGF-beta receptors type 1 and 2, Smad 3 and 4 in tumour and associated stroma. Further we analyzed correlation to histological and clinical parameters (histological grade of differentiation (low-grade (i.e. grade 1 and 2 vs. high-grade (i.e. grade 3 and 4, lymph node metastasis, distant metastasis, 5 year cancer related survival using Chi-square or Fisher's exact test, when appropriate, to compare frequencies, Kaplan-Meier method to calculate 5-year rates of distant metastases and cancer-related survival and log rank test to compare the rates of distant metastases and survival. To identify independent prognostic factors Cox regression analysis including lymph node status and grading was performed. Results High-grade tumours and those with lymph node metastases showed higher rates of TAMs and lower expression of TGF-beta1. Loss of nuclear Smad4 expression in tumor was associated with presence of lymph node metastasis, but no influence on prognosis could be demonstrated. Decrease of both TGF-beta receptors in tumour-associated stroma was associated with increased lymph node metastasis and

  9. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  10. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    Science.gov (United States)

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  11. Temporal and spatial expression of TGF-beta1 in an Achilles tendon section model after application of platelet-rich plasma.

    Science.gov (United States)

    Lyras, Dimitrios N; Kazakos, Konstantinos; Tryfonidis, Marios; Agrogiannis, George; Botaitis, Sotirios; Kokka, Anna; Drosos, George; Tilkeridis, Konstantinos; Verettas, Dionysios

    2010-09-01

    To investigate the effect of platelet-rich plasma (PRP) on TGF-beta1 expression during tendon healing. We used 48 skeletally mature New Zealand White rabbits. 24 rabbits received the PRP, and 24 rabbits served as an untreated control group. Equal numbers of animals were sacrificed at 1st, 2nd, 3rd, and 4th week. The surgical procedure involved a transverse incision to transect the Achilles tendon. A volume of 1ml of PRP was then injected into the tendon mass in the PRP group. Histological and immunohistochemical evaluations with an anti-TGF-beta primary antibody were performed. The pattern of expression of TGF-beta1 in the PRP group was characterized by a significant upregulation during the first 2 weeks and subsequently significant downregulation in the 3rd and 4th week in comparison with the controls. Our results suggest that PRP may affect the tendon healing process by altering the expression of TGF-beta1. Copyright (c) 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  12. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  13. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    Science.gov (United States)

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  14. Effects of irradiation on TGF1 mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line

    International Nuclear Information System (INIS)

    Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon

    2008-01-01

    To investigate the effects of irradiation on transforming growth factor β1 (TGF1 ) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Cells were cultured in alpha-minimum essential medium (α-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with α-MEM supplemented with 10% FBS, 5 mM β-glycerol phosphate, and 50 μg/mL ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF1 mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. The amount of TGF1 mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy, and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P 1 mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line

  15. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    Science.gov (United States)

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  16. Modulation role of angelica sinensis on transforming growth factor beta 1 (TGF1) expression induced by radiation in the lung tissue

    International Nuclear Information System (INIS)

    Xie Conghua; Zhou Yunfeng; Peng Gang; Zhou Fuxiang; Zhang Gong; Liang Chen; Liu Hui; Chen Ji; Xia Mingtong

    2005-01-01

    Objective: To investigate the ability of Angelica Sinensis to affect the radiation- induced TGF1 release in the animal model, so as to find an effective method to reduce the lung toxicity after thoracic irradiation. Methods: The thoraces of C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy. Four study groups were defined: those that received neither irradiation nor Angelica Sinensis (NT group), those that received Angelica Sinensis but no irradiation (AS group), those that underwent irradiation without Angelica Sinensis (XRT group) and those that received both Angelica Sinensis and irradiation (AS/XRT group). Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 24, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation) . The TGF1 mRNA expressions in the lung tissue were quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemical Streptavidin-Peroxidase method and positive cell counting were used for objective quantification of TGF1 protein expression. Results: NT and AS groups exhibited low levels of TGF1 protein expression with positive cell counts between 9 and 31. And there is an significantly elevated level of TGF1 positive inflammatory cells in XRT group (P 1 in XRT group was significantly higher than the nonirradiated groups (P 1 response on mRNA level, but the statistical comparison of the TNF-αmRNA expression between the XRT and AS/XRT treatment-group was not significant (P=0.054). Conclusion: This study demonstrates a significant radiation-induced increase of TGF1 (on mRNA and protein level) in the lung tissue, and the predominant localisation of TGF1 in areas of inflammatory cell infiltrates suggests involvement of this cytokine in the pathogenesis of radiation-induced lung injury

  17. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  18. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. (Washington Univ., St. Louis, MO (United States)); Colby, T.V. (Mayo Clinic, Rochester, MN (United States))

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  19. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    Science.gov (United States)

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  20. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  1. Equine endometrial fibrosis correlates with 11beta-HSD2, TGF-beta1 and ACE activities.

    Science.gov (United States)

    Ganjam, V K; Evans, T J

    2006-03-27

    Endometrial periglandular fibrosis (EPF) contributes to embryonic and fetal loss in mares. Equine EPF correlates inversely with conception and successful gestation. In the modified Kenney endometrial biopsy classification system, EPF categories I, IIA, IIB, and III correspond to minimal, mild, moderate, and severe fibrosis (+/-inflammation), respectively. Paraffin sections of biopsy specimens were stained with H&E, and picrosirius red (specific for fibrillar collagens types I and III), to determine %EPCVF. Endometrial ACE-binding activity, TGF-beta1 and 11beta-HSD2 activities were also measured. Ultrastructural changes in EPF categories IIB and III endometria strongly suggested myofibroblastic transformation. ACE-binding activity was highest in EPF category IIB; however, endometrial TGF-beta1 and 11beta-HSD2 activities were significantly correlated to the severity of EPF (P<0.05). We conclude that, locally generated angiotensin II initiates the expression of TGF-beta1 resulting in myofibroblastic transformation. 11Beta-HSD2 in concert appears to modulate the severity of endometrial fibrosis.

  2. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  3. Suppressed Gastric Mucosal TGF-beta1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response.

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin; Hahm, Ki-Baik

    2010-03-01

    Loss of transforming growth factor beta1 (TGF-beta1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-beta1 levels could be used to determine the outcome after H. pylori infection. Northern blot for the TGF-beta1 transcript, staining of TGF-beta1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-beta1 levels were performed at different times after H. pylori infection. The TGF-beta1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-beta1 levels. SNU-16 cells showing intact TGF-beta signaling exhibited a marked decrease in TGF-beta1 expression, whereas SNU-638 cells defective in TGF-beta signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-beta1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-beta1 is a host defense mechanism to avoid attachment of H. pylori. H. pylori infection was associated with depressed gastric mucosal TGF-beta1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation.

  4. Combined effects of moderately elevated blood glucose and locally produced TGF-beta1 on glomerular morphology and renal collagen production

    DEFF Research Database (Denmark)

    Krag, Søren; Nyengaard, Jens R; Wogensen, Lise

    2007-01-01

    BACKGROUND: There is a correlation between renal graft rejection and blood glucose (BG) levels. Furthermore, diabetic patients may develop non-diabetic renal diseases, which in some circumstances progress rapidly. Since transforming growth factor-beta1 (TGF-beta) levels are elevated in many renal...... diseases, the accelerated progression may be due to interactions between glucose and locally produced TGF-beta1. Therefore, we investigated the effect of mild hyperglycaemia on glomerular morphology and collagen production in TGF-beta1 transgenic mice. METHODS: To achieve BG concentrations of approximately...... 15 mmol/l in TGF-beta1 transgenic and non-transgenic mice, we used multiple streptozotocin (STZ) injections, and after 8 weeks, we measured the changes in glomerular morphology and total collagen content. We also analysed extracellular matrix (ECM) and protease mRNA levels using real-time polymerase...

  5. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg

    2001-01-01

    Using a CD4+ T-cell-transplanted SCID mouse model of colitis, we have analyzed TGF-beta transcription and translation in advanced disease. By in situ hybridization, the epithelium of both control and inflamed tissues transcribed TGF-beta1 and TGF-beta3 mRNAs, but both were expressed significantly...... farther along the crypt axis in disease. Control lamina propria cells transcribed little TGF-beta1 or TGF-beta3 mRNA, but in inflamed tissues many cells expressed mRNA for both isoforms. No TGF-beta2 message was detected in either control or inflamed tissues. Immunohistochemistry for latent and active TGF...

  6. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  7. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    Science.gov (United States)

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  8. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish

    Directory of Open Access Journals (Sweden)

    Clelland Eric

    2005-09-01

    follicles. On the other hand, TGF-beta1 had no effect on mPR-alpha mRNA expression and increased FSHR mRNA levels. Furthermore, hCG upregulated 20beta-HSD, LHR and mPR-beta mRNA levels, but this stimulatory effect was blocked by TGF-beta1. Conclusion These findings suggest that TGF-beta1 acts at multiple sites, including LHR, 20beta-HSD and mPR-beta, to inhibit zebrafish oocyte maturation.

  9. Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning.

    Directory of Open Access Journals (Sweden)

    Maja Adamska

    2007-10-01

    Full Text Available The origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion, communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been identified in a range of sponges (phylum Porifera, their roles in development have not been investigated and remain largely unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-beta signalling ligands during the embryonic development of a sponge.Using resources generated in the recent sponge Amphimedon queenslandica (Demospongiae genome project, we have recovered genes encoding Wnt and TGF-beta signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until the swimming larva stage. In contrast, TGF-beta expression is highest at the anterior pole. As in complex animals, sponge Wnt and TGF-beta expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-beta are expressed radially along the anterior-posterior axis.We infer from the expression of Wnt and TGF-beta in Amphimedon that the ancestor that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-beta along the anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways

  10. Regulation of the friction coefficient of articular cartilage by TGF-beta1 and IL-1beta.

    Science.gov (United States)

    DuRaine, Grayson; Neu, Corey P; Chan, Stephanie M T; Komvopoulos, Kyriakos; June, Ronald K; Reddi, A Hari

    2009-02-01

    Articular cartilage functions to provide a low-friction surface for joint movement for many decades of life. Superficial zone protein (SZP) is a glycoprotein secreted by chondrocytes in the superficial layer of articular cartilage that contributes to effective boundary lubrication. In both cell and explant cultures, TGF-beta1 and IL-1beta have been demonstrated to, respectively, upregulate and downregulate SZP protein levels. It was hypothesized that the friction coefficient of articular cartilage could also be modulated by these cytokines through SZP regulation. The friction coefficient between cartilage explants (both untreated and treated with TGF-beta1 or IL-1beta) and a smooth glass surface due to sliding in the boundary lubrication regime was measured with a pin-on-disk tribometer. SZP was quantified using an enzyme-linked immunosorbant assay and localized by immunohistochemistry. Both TGF-beta1 and IL-1beta treatments resulted in the decrease of the friction coefficient of articular cartilage in a location- and time-dependent manner. Changes in the friction coefficient due to the TGF-beta1 treatment corresponded to increased depth of SZP staining within the superficial zone, while friction coefficient changes due to the IL-1beta treatment were independent of SZP depth of staining. However, the changes induced by the IL-1beta treatment corresponded to changes in surface roughness, determined from the analysis of surface images obtained with an atomic force microscope. These findings demonstrate that the low friction of articular cartilage can be modified by TGF-beta1 and IL-1beta treatment and that the friction coefficient depends on multiple factors, including SZP localization and surface roughness.

  11. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    Science.gov (United States)

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  12. Role of TGF-beta1-independent changes in protein neosynthesis, p38alphaMAPK, and cdc42 in hydrogen peroxide-induced senescence-like morphogenesis

    DEFF Research Database (Denmark)

    Chrétien, Aline; Dierick, Jean-François; Delaive, Edouard

    2008-01-01

    for p38(MAPK) activation, in turn triggering phosphorylation of L-caldesmon and HSP27. Cdc42 was also shown to be mainly responsible for the increase in TGF-beta1 mRNA level observed at 24 h after treatment with H(2)O(2) and onward. This study further clarified the mechanisms of senescence......The role of TGF-beta1 in hydrogen peroxide-induced senescence-like morphogenesis has been described. The aim of this work was to investigate whether TGF-beta1-independent changes in protein synthesis are involved in this morphogenesis and to study possible mechanisms occurring earlier than TGF-beta......1 overexpression. Among the multiple TGF-beta1-independent changes in protein neosynthesis, followed or not by posttranslational modifications, identified by proteomic analysis herein, those of ezrin, L-caldesmon, and HSP27 were particularly studied. Rho-GTPase cdc42 was shown to be responsible...

  13. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements.

    Science.gov (United States)

    Walsh, Mary F; Ampasala, Dinakar R; Rishi, Arun K; Basson, Marc D

    2009-02-01

    TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.

  14. TGF1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF1/Smad pathway

    International Nuclear Information System (INIS)

    Fang, Ling; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian; Zhan, Shuxiang; Li, Jun

    2014-01-01

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF1 elicited Smad signaling in HSC-T6 cells

  15. TGF1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF1/Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF1 elicited Smad signaling in HSC-T6 cells

  16. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Schmal, H; Kaiser, S

    2006-01-01

    cultured in osteogenic medium after TGF-beta-mediated chondroinduction. Gene expression of col2a1, aggrecan, COMP, alkaline phosphatase (AP), and correlating protein synthesis was analyzed. After short-term stimulation with TGF-beta, MSCs maintained a chondrogenic phenotype. Chondrogenic gene expression...

  17. TGF beta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGF beta-receptor I signalling

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Blaese, Marcet A.; Loeffler, Heidi; Coppes, Rob P.; Rodemann, H. Peter

    Background and purpose: It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGF beta-1 and that this may be due to TGF beta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGF

  18. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Directory of Open Access Journals (Sweden)

    Georg Kern

    Full Text Available Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506 induced TGF-β-like effects, manifested by increased expression of NAD(PH-oxidase 4 (Nox4, transgelin, tropomyosin 1, and procollagen α1(V mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V mRNA in tacrolimus-treated cells, but induced procollagen α1(V expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  19. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  20. Expression of podoplanin and TGF-beta in glandular odontogenic cyst and its comparison with developmental and inflammatory odontogenic cystic lesions.

    Science.gov (United States)

    Alaeddini, Mojgan; Eshghyar, Nosratollah; Etemad-Moghadam, Shahroo

    2017-01-01

    The number of studies investigating the immunohistochemical characteristics of glandular odontogenic cysts (GOCs) is limited, due to its rarity. TGF-beta has been suggested to induce podoplanin expression in some lesions. We aimed to evaluate and compare podoplanin and TGF-beta expression in GOC and other odontogenic cystic lesions. A total of 43 samples including five GOCs, 10 dentigerous cysts (DCs), eight unicystic ameloblastoma (UAs), and 20 radicular cysts (RCs) were selected and subjected to immunohistochemical staining using monoclonal antibodies against podoplanin and TGF-beta. Kruskal-Wallis test and Mann-Whitney U-test were used for statistical analysis along with Bonferroni for adjusting P-values (P < 0.05). Podoplanin immunoreactivity was observed in 80%, 70%, and 100% of DCs, RCs, and UAs, respectively, while none of the GOCs were positive for this marker (P = 0.004). Significant differences were only found in the GOC specimens. TGF-beta positivity occurred in the capsule and epithelium of all GOCs and DCs, while RCs and UAs demonstrated different expression percentages in the capsular and epithelial tissues. Epithelial TGF-beta showed significant differences among the studied lesions (P = 0.007) with the main difference found between DCs with RCs and DCs with UAs. Lack of podoplanin expression might be involved in the characteristic histologic and behavioral features of GOC, which seems to be unrelated to TGF-beta expression. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. THE EFFECTS OF Jatropha curcas L SEED EXTRACT IN REGULATION EXPRESSION TUMOR MARKER OF TGF- β1 GENE

    Directory of Open Access Journals (Sweden)

    Endah Wulandari

    2017-04-01

    Full Text Available The role of TGF1 is known as the main immunosuppresor associated with tumor, but on the other opinion, it is associated with proliferation and tumor invasion. The increase and decrease of the secretion of TGF-β is to regulate the proliferation, differentiation, and death of various cell types. Now we all know the extract of Jatropha curcas L seed serves as antitumor. Allegedly, it can regulate the expression of TGF1 in control of cell number. The purpose of this study is to determine the effects of Jatropha seeds to the regulation of gene expression of TGF1 as a tumor marker. The method is performed by giving a dose groups the extract of jatropha seed (0, 5, 25, 50, 250 mg/BB in mice. Then measurement of mRNA expression (RT-PCR, the protein of TGF1 levels (ELISA, and qualitative observations of liver histology were done. The expression of TGF1 mRNA is significantly 4.39 to 7.34 times higher than (ANOVA, p 0.05 than the control. Histological observation of liver showed the extract of jatropha seed induces damage nucleus of hepatocytes cell and sinusoidal. The effects extract of jatropha seed increased the level of TGF1 mRNA but not followed by increasing protein of TGF1 levels, and it was stimulated necrosis and apoptosis of hepatocytes cell.

  2. Age-Dependent Decrease in Serum Transforming Growth Factor (TGF-Beta 1 in Healthy Japanese Individuals; Population Study of Serum TGF-Beta 1 Level in Japanese

    Directory of Open Access Journals (Sweden)

    Yoshihiro Okamoto

    2005-01-01

    Full Text Available Transforming growth factor-beta1 (TGF1, a multi-functional cytokine, is involved in regulating a variety of cellular activities and the serum/plasma TGF1 level is altered with various diseases. However, most published reports have described adult patients, and so we investigated the clinical significance of serum TGF1 level in pediatric patients. The diagnostic application of the measurement of serum TGF1 level depends critically on the control value, however, there is no information on the control value of serum TGF1 for children.

  3. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway.

    Science.gov (United States)

    Li, J; Zhao, Z; Liu, J; Huang, N; Long, D; Wang, J; Li, X; Liu, Y

    2010-08-01

    This study was carried out to reveal functions and mechanisms of MEK/ERK and p38 pathways in chondrogenesis of rat bone marrow mesenchymal stem cells (BMSCs), and to investigate further any interactions between the mitogen-activated protein kinase (MAPK) and transforming growth factor-beta1 (TGF-beta1)/Smads pathway in the process. Chondrogenic differentiation of rat BMSCs was initiated in micromass culture, in the presence of TGF-beta1, for 2 weeks. ERK1/2 and p38 kinase activities were investigated by Western Blot analysis. Specific MAPK inhibitors PD98059 and SB20350 were employed to investigate regulatory effects of MEK/ERK and p38 signals on gene expression of chondrocyte-specific markers, and TGF-beta1 downstream pathways of Smad2/3. ERK1/2 was phosphorylated in a rapid but transient manner, whereas p38 was activated in a slow and sustained way. The two MAPK subtypes played opposing roles in mediating transcription of cartilage-specific genes for Col2alpha and aggrecan. TGF-beta1-stimulated gene expression of chondrogenic regulators, Sox9, Runx2 and Ihh, was also affected by activity of PD98059 and SB203580, to different degrees. However, influences of MAPK inhibitors on gene expression were relatively minor when not treated with TGF-beta1. In addition, gene transcription of Smad2/3 was significantly upregulated by TGF-beta1, but was regulated more subtly by treatment with MAPK inhibitors. MAPK subtypes seemed to regulate chondrogenesis with a delicate balance, interacting with the TGF-beta1/Smads signalling pathway.

  4. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  5. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  6. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  7. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    Directory of Open Access Journals (Sweden)

    Xiaofeng CHEN

    2010-01-01

    Full Text Available Background and objective It has been proven that epithelial-mesenchymal transition (EMT not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF1 has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF1 for 48 h. The morphological changes were observed under phase-contrast microscopy; EMT relative marker protein changes were assessed by Western blot and immunoflurescence staining. In addition, the expression of AKT and P-AKT were also measured by Western blot. Results The data showed that TGF1 could induce PC9 morphological alteration from epithelial to mesenchymal and upregulate the expression of mesenchymal maker protein Fibronectin. Obviously, the expression of P-AKT was downregulated by TGF1 treatment for 48 h. Conclusion TGF1 might induce EMT of PC9 cells , accompanied by the changes of PI3K/AKT signaling pathway.

  8. The dynamics of TGF-β in dental pulp, odontoblasts and dentin.

    Science.gov (United States)

    Niwa, Takahiko; Yamakoshi, Yasuo; Yamazaki, Hajime; Karakida, Takeo; Chiba, Risako; Hu, Jan C-C; Nagano, Takatoshi; Yamamoto, Ryuji; Simmer, James P; Margolis, Henry C; Gomi, Kazuhiro

    2018-03-13

    Transforming growth factor-beta (TGF-β) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-β in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF1 and TGF-β3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-β2 is high in dental pulp. TGF1 is a major isoform of TGF-β, and latent TGF1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF1 expression did not change between wild-type and MMP20 null mice. TGF1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.

  9. Peritoneal VEGF-A expression is regulated by TGF1 through an ID1 pathway in women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Ahmad, Syed F; Brown, Jeremy K; Duncan, W Colin; Horne, Andrew W

    2015-11-18

    VEGF-A, an angiogenic factor, is increased in the peritoneal fluid of women with endometriosis. The cytokine TGF1 is thought to play a role in the establishment of endometriosis lesions. Inhibitor of DNA binding (ID) proteins are transcriptional targets of TGF1 and ID1 has been implicated in VEGF-A regulation during tumor angiogenesis. Herein, we determined whether peritoneal expression of VEGF-A is regulated by TGF1 through the ID1 pathway in women with endometriosis. VEGF-A was measured in peritoneal fluid by ELISA (n = 16). VEGF-A and ID1 expression was examined in peritoneal biopsies (n = 13), and primary peritoneal and immortalized mesothelial cells (MeT5A) by immunohistochemistry, qRT-PCR and ELISA. VEGF-A was increased in peritoneal fluid from women with endometriosis and levels correlated with TGF1 concentrations (P peritoneal mesothelium and TGF1 increased VEGFA mRNA (P endometriosis and TGF1 increased concentrations of ID1 mRNA (P endometriosis, as an effector of TGFβ1 dependent upregulation of VEGF-A, and highlights a novel potential therapeutic target.

  10. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    Directory of Open Access Journals (Sweden)

    Yun Xiao

    Full Text Available Tubular epithelial-mesenchymal transition (EMT has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF. The production of reactive oxygen species (ROS plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3 in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO. Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  11. [Effects of exogenous TGF-β3 on the expression of endogenous TGF-β3 in hepatic stellate cell-T6 (HSC-T6)].

    Science.gov (United States)

    Li, Ying; Deng, Liang; Qian, Wei; Zhou, Jian-ning; Xu, Ke-shu

    2011-11-01

    To investigate the effects of exogenous TGF-β3 on the expression of endogenous TGF-b3 in hepatic stellate cell (HSC). HSCs were cultured and divided into two groups: TGF-β3 group and blank control group, the cells of TGF-β3 group were exposed to TGF-b3 (10 ng/ml), whereas the blank control group was not treated. The cells were incubated in the presence of exogenous TGF-β3 and then (1) were harvested at 0h, 1h, 2h, 4h, 12h, 24h, and real time PCR was performed to detect the mRNA expression of endogenous TGF-β3. (2) The cells were collected at 0h, 1h, 6h, 12h, and western-blot was used to detect the protein synthesis of endogenous TGF-β3 in HSC; (3) The cell culture supernatant was harvested at 0h, 1h, 2h, 4h, 8h, 14h, 24h, and ELISA was performed to measure the total protein of extracellular TGF-β3; HSCs were treated with TGF-β3 (10 ng/ml) for 2h. The cells were then incubated in serum-free medium and the cell culture supernatant was harvested at 2.25h, 2.5h, 3h, 4h, 6h, 10h and 14h. ELISA was used to detect the extracellular secret ion of endogenous TGF-β3 by HSCs. (1) Exogenous TGF-β3 treatment induced a marked increase in TGF-β3 mRNA expression. By 2h of exogenous TGF-β3 treatment, maximal TGF-β3 mRNA expression levels (2.796 ± 0.518) of 2.74 fold above control values (1.022 ± 0.038) was reached (P endogenous TGF-β3 was found between two groups. (P > 0.05); (3) The total expression level of TGF-β3 reached a peak [(18.931 ± 2.904) ng/ml] at 4h after TGF-β3 treatment (1.89-fold higher than basic TGF-β3 (10 ng/ml). After that, it slowly declined. The expression peak [(0.835 ± 0.027) ng/ml] induction of extracellular secreted TGF-β3 was at 3h (32.12-fold higher than control [(0.026 ± 0.022) ng/ml], (P Exogenous TGF-β3 could increase the expression of endogenous TGF-β3 mRNA and extracellular secreted TGF-β3 protein obviously.

  12. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  13. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Mustafa, M; Ljungdahl, A

    1995-01-01

    , the target organ in EAE, cells expressing mRNA for IFN-gamma, first appeared at the onset of clinical signs, i.e., day 10 postimmunization (p.i.), peaked at the height of disease (day 13 p.i.) and then gradually decreased concomitant with recovery. Very few IL-4 mRNA-expressing cells appeared in the spinal...... to limit central nervous system (CNS) inflammation. In lymphoid organs, primed MBP 63-88 reactive T cells showed an interesting time-dependent evolution of their cytokine production in vitro. Thus, early after immunization there was a conspicuous MBP 63-88-induced production of both IFN-gamma and IL-4...... cord with no clear relation to clinical signs or histopathology. In contrast, expression of mRNA for TGF-beta did not increase until day 13 p.i., at height of the disease, shortly preceding recovery. These data are consistent with a disease upregulating role of IFN-gamma, while TGF-beta may act...

  14. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  15. FOXP3 expression is modulated by TGF1/NOTCH1 pathway in human melanoma

    Science.gov (United States)

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  16. Downregulation of TGF-β Receptor-2 Expression and Signaling through Inhibition of Na/K-ATPase.

    Directory of Open Access Journals (Sweden)

    Jennifer La

    Full Text Available Transforming growth factor-beta (TGF-β is a multi-functional cytokine implicated in the control of cell growth and differentiation. TGF-β signals through a complex of TGF-β receptors 1 and 2 (TGFβR1 and TGFβR2 that phosphorylate and activate Smad2/3 transcription factors driving transcription of the Smad-target genes. The Na+/K+-ATPase is an integral plasma membrane protein critical for maintaining the electro-chemical gradient of Na+ and K+ in the cell. We found that inhibition of the Na+/K+ ATPase by ouabain results in a dramatic decrease in the expression of TGFβR2 in human lung fibrobalsts (HLF at the mRNA and protein levels. This was accompanied by inhibition of TGF-β-induced Smad phosphorylation and the expression of TGF-β target genes, such as fibronectin and smooth muscle alpha-actin. Inhibition of Na+/K+ ATPase by an alternative approach (removal of extracellular potassium had a similar effect in HLF. Finally, treatment of lung alveolar epithelial cells (A549 with ouabain also resulted in the downregulation of TGFβR2, the inhibition of TGF-β-induced Smad phosphorylation and of the expression of mesenchymal markers, vimentin and fibronectin. Together, these data demonstrate a critical role of Na+/K+-ATPase in the control of TGFβR2 expression, TGF-β signaling and cell responses to TGF-β.

  17. TGF-{beta}1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-{kappa}B/IL-6/MMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Binker, Marcelo G. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina); Binker-Cosen, Andres A. [CBRHC Research Center, Buenos Aires (Argentina); Gaisano, Herbert Y. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); Cosen, Rodica H. de [CBRHC Research Center, Buenos Aires (Argentina); Cosen-Binker, Laura I., E-mail: laura.cosen.binker@utoronto.ca [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina)

    2011-02-04

    Research highlights: {yields} Rac1 mediates TGF-{beta}1-induced SW1990 invasion through MMP-2 secretion and activation. {yields} NADPH-generated ROS act downstream of Rac1 in TGF-{beta}1-challenged SW1990 cells. {yields} TGF-{beta}1-stimulated ROS activate NF-{kappa}B in SW1990 cells. {yields} NF{kappa}B-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-{beta}1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-{beta}1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-{beta}1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-{beta}1-stimulated invasion. Our results also indicate that signaling events involved in TGF-{beta}1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  18. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yan [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Nguyen, Hong T. [Graduate Program in Biomedical Sciences, Tulane School of Medicine, New Orleans, LA 70112 (United States); Lasky, Joseph A. [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Cao, Subing [Graduate Program in Biomedical Sciences, Tulane School of Medicine, New Orleans, LA 70112 (United States); Li, Cui [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Xiangya Hospital, Central South University, Hunan 41008 (China); Hu, Jiyao; Guo, Xinyue; Burow, Matthew E. [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Shan, Bin, E-mail: bshan@tulane.edu [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States)

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  19. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brandan, Enrique, E-mail: ebrandan@bio.puc.cl [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  20. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBing; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, ChangLong

    2009-05-29

    Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits. Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining. Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles. Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.

  1. Celastrol inhibits TGF1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF1-induced EMT in epithelial cells. •Celastrol regulates TGF1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF1-induced Snail expression. •Celastrol strongly suppresses TGF1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF1-induced EMT.

  2. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11.

    Science.gov (United States)

    Paduch, Roman; Jakubowicz-Gil, Joanna; Kandefer-Szerszen, Martyna

    2009-12-01

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).

  3. Immunohistochemical expression of TGF1 and MMP-9 in periapical lesions

    Directory of Open Access Journals (Sweden)

    Pâmella Recco ÁLVARES

    2017-07-01

    Full Text Available Abstract The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9 and transforming growth factor beta (TGF1 in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher’s exact test and Spearman’s correlation test (P<0.05. Analysis of inflammatory infiltrate revealed that 78% of periapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (P<0.001. Morphological evaluation of the epithelial thickness in radicular cysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF1. Significant differences were confirmed between the expression scores of TGF1 and MMP-9 in periapical granulomas (p = 0.004 and in radicular cysts (p < 0.001. Expression of TGF1 was different for periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  4. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    Science.gov (United States)

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  5. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    Science.gov (United States)

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  6. Local expression of vaginal Th1 and Th2 cytokines in murine vaginal candidiasis under different immunity conditions.

    Science.gov (United States)

    Chen, Shanjuan; Li, Shaohua; Wu, Yan; Liu, Zhixiang; Li, Jiawen

    2008-08-01

    To investigate the expression of vaginal Th1 and Th2 cytokines in rats with experimental vaginal candidiasis under different immune conditions, ICR murine vaginal candidiasis model was established and immno-suppressed murine models of vaginal cadidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls. The mRNA level of Th1 (IL-2)/Th2 (IL-4, IL-10, TGF-beta1) cytokines in murine vaginal tissues was determined by RT-PCR. The cykotine in local tissues was increased to different extent under normal immune condition. IL-2 mRNA was increased during early stage of infection, while IL-10 was increased transiently during late stage of infection. TGF-beta1 production was found to be increased persistently. At same time, the expression of IL-2 mRNA was suppressed in immno-suppressed group, and the level of IL-4, IL-10, and TGF-beta1 were higher than the normal immunity group to different degree during infection. The high level of IL-2 mRNA during early stage of infection was associated with clearance of mucosal Candidia albicans (C. albicans), and its expression suppressed leading to decreased clearance of mucosal C. albican in immuno-suppression. The over-expression of IL-4 and IL-10 could significantly enhance the susceptibility to C. albicans infection in mice.

  7. ALK and TGF-Beta Resistance in Breast Cancer

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH‐15‐1‐0650 TITLE: ALK and TGF-Beta Resistance in Breast Cancer PRINCIPAL INVESTIGATOR: Xin-Hua Feng CONTRACTING...and TGF-Beta Resistance in Breast Cancer 5b. GRANT NUMBER W81XWH‐15‐1‐0650 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xin-Hua Feng...response is a hallmark in human cancer . However, the mechanisms underlying TGF- resistance in breast cancer have not been elucidated. Anaplastic

  8. Immunohistochemical expression of TGF1 and MMP-9 in periapical lesions.

    Science.gov (United States)

    Álvares, Pâmella Recco; Arruda, José Alcides Almeida de; Silva, Leorik Pereira da; Nascimento, George João Ferreira do; Silveira, Maria Fonseca da; Sobral, Ana Paula Veras

    2017-07-03

    The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9) and transforming growth factor beta (TGF1) in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts) were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher's exact test and Spearman's correlation test (Pperiapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (Pcysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF1. Significant differences were confirmed between the expression scores of TGF1 and MMP-9 in periapical granulomas (p = 0.004) and in radicular cysts (p periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  9. IL-2 induction of IL-1 beta mRNA expression in monocytes. Regulation by agents that block second messenger pathways

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Varesio, L

    1989-01-01

    We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 ...

  10. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  11. Mutual regulation of TGF1, TβRII and ErbB receptors expression in human thyroid carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Mincione, Gabriella, E-mail: g.mincione@unich.it [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Center of Excellence on Aging, Ce.S.I., ‘G. d' Annunzio’ University Foundation, Chieti (Italy); Tarantelli, Chiara [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Vianale, Giovina [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Center of Excellence on Aging, Ce.S.I., ‘G. d' Annunzio’ University Foundation, Chieti (Italy); Di Marcantonio, Maria Carmela [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Cotellese, Roberto [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Unit of General and Laparoscopic Surgery, SS Annunziata Hospital, Chieti (Italy); Francomano, Franco [Unit of General and Laparoscopic Surgery, SS Annunziata Hospital, Chieti (Italy); Di Nicola, Marta; Costantini, Erica [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Cichella, Annadomenica [Unit of General and Laparoscopic Surgery, SS Annunziata Hospital, Chieti (Italy); Muraro, Raffaella [Department of Experimental and Clinical Sciences, University ‘G. d' Annunzio of Chieti-Pescara, Chieti (Italy); Center of Excellence on Aging, Ce.S.I., ‘G. d' Annunzio’ University Foundation, Chieti (Italy)

    2014-09-10

    The role of EGF and TGF1 in thyroid cancer is still not clearly defined. TGF1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC and FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF1 treatment in follicular thyroid carcinoma cells. • EGF and TGF1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.

  12. Mutual regulation of TGF1, TβRII and ErbB receptors expression in human thyroid carcinomas

    International Nuclear Information System (INIS)

    Mincione, Gabriella; Tarantelli, Chiara; Vianale, Giovina; Di Marcantonio, Maria Carmela; Cotellese, Roberto; Francomano, Franco; Di Nicola, Marta; Costantini, Erica; Cichella, Annadomenica; Muraro, Raffaella

    2014-01-01

    The role of EGF and TGF1 in thyroid cancer is still not clearly defined. TGF1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC and FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF1 treatment in follicular thyroid carcinoma cells. • EGF and TGF1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma

  13. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.

    Science.gov (United States)

    Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana

    2009-01-01

    Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.

  14. Serum TGF-beta2 and TGF-beta3 are increased and positively correlated to pain, functionality, and radiographic staging in osteoarthritis.

    Science.gov (United States)

    Kapetanakis, Stilianos; Drygiannakis, Ioannis; Kazakos, Kostantinos; Papanas, Nikolaos; Kolios, George; Kouroumalis, Elias; Verettas, Dionysios-Alexandros

    2010-08-11

    The goal of this study was to verify or reject the hypothesis that systematic differences exist in various profibrotic or antifibrotic factors between osteoarthritic patients and controls, as well as between different stages of osteoarthritis. The study group comprised 63 patients with knee osteoarthritis and 18 controls. Transforming growth factor-beta (TGF-beta)1, -2, -3; tissue inhibitor of metalloproteinase (TIMP)-1 protein levels; and gelatinolytic activity of matrix metalloproteinase (MMP)-1, -2, -3, -9 activities were measured by enzyme-linked immunosorbent assay and gelatin zymography, respectively. Visual analog scale scores, Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores, Lequesne clinical osteoarthritis scales, and Kellgren-Lawrence radiographic grading were recorded for each patient.Transforming growth factor-beta2 and -3 (in contrast to TGF-beta1 and TIMP-1) serum protein levels were significantly higher in osteoarthritic patients compared to controls (210%+/-14% [P<.001] and 232%+/-7% [P<10(-7)], respectively). Additionally, TGF-beta2 and -3 were strongly positively correlated to Kellgren-Lawrence radiographic grading of the disease (P<10(-5) and P<10(-7), respectively). Moreover, TGF-beta2 correlated positively with the WOMAC scale (P=.007). However, TIMP-1 decreased as osteoarthritis progressed clinically, but remained irrelevant to radiographic staging. Furthermore, activities of MMP-2 and -9, but not MMP-1+/-3, were lower in patients with osteoarthritis. Copyright 2010, SLACK Incorporated.

  15. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    International Nuclear Information System (INIS)

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC

  16. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  17. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  18. Sequential changes in luminal microflora and mucosal cytokine expression during developing of colitis in HLA-B27/beta2-microglobulin transgenic rats.

    Science.gov (United States)

    Hata, K; Andoh, A; Sato, H; Araki, Y; Tanaka, M; Tsujikawa, T; Fujiyama, Y; Bamba, T

    2001-11-01

    Transgenic rats expressing HLA-B27 and human beta2-microglobulin (HLA-B27 rats) spontaneously develop chronic colitis resembling human inflammatory bowel disease. We investigated the sequential changes in the luminal bacterial flora and mucosal cytokine mRNA expression in this model. HLA-B27 rats were maintained in a specific pathogen-free environment, and luminal microflora was evaluated by standard bacterial culture technique. The expression of mucosal cytokine mRNA was analysed by RT-PCR methods. Clinical symptoms of colitis appeared at 8 weeks of age. The total number of obligate anaerobes was higher than those of facultative anaerobes during the experimental period. At 6 weeks of age, the colonization of Bacteroides spp., Bifidobacterium spp. and Lactobacillus spp. was already detectable at high concentrations, whereas Clostridium spp. and Eubacterium spp. were not detected. The expression of proinflammatory cytokines (IL-Ibeta, IL-8 and TNF-alpha) appeared at 8 weeks of age, and these were detectable until 17 weeks. A similar pattern was observed in the expression of Th1 cytokines (IL-2, IL-12 and IFN-gamma). On the other hand, the expression of Th2 cytokines (IL-4, IL-10 and TGF-beta) was weak. IL-4 mRNA expression was weakly detectable only at 6 and 8 weeks of age. The expression of IL-10 and TGF-beta mRNA was scarcely detectable throughout the experimental period. The development of colitis may be mediated by both the predominant expression of Th1 cytokines and the weakness of Th2 cytokine expression in the mucosa. The colonization of anaerobic bacteria, especially Bacteroides spp., may be initiating and promoting these cytokine responses.

  19. TGF1 downregulates StAR expression and decreases progesterone production through Smad3 and ERK1/2 signaling pathways in human granulosa cells.

    Science.gov (United States)

    Fang, Lanlan; Chang, Hsun-Ming; Cheng, Jung-Chien; Leung, Peter C K; Sun, Ying-Pu

    2014-11-01

    Regulation of progesterone production in granulosa cells is important for normal reproductive functions. Steroidogenic acute regulatory protein (StAR) is recognized as the key regulatory protein involved in the rate-limiting step of steroidogenesis. TGF1 protein is detected in human follicular fluid, and TGF1 and its receptors are expressed in human granulosa cells. However, the functional role of TGF1 in the regulation of StAR expression and progesterone production in human granulosa cells remains unknown. Our objective was to investigate the effects of TGF1 on StAR expression and progesterone production in human granulosa cells. SVOG cells are human granulosa cells that were obtained from women undergoing in vitro fertilization and immortalized with SV40 large T antigen. SVOG cells were used to investigate the effects of TGF1 on StAR expression and progesterone production at an academic research center. Levels of mRNA and protein were examined by RT-qPCR and western blotting, respectively. The accumulation levels of progesterone were measured by enzyme-linked immunosorbent assay (ELISA). TGF1 treatment downregulated StAR expression and decreased progesterone production. The suppressive effects of TGF1 on StAR expression and progesterone production were abolished by the inhibition of TGF-β type I receptor. In addition, treatment with TGF1 activated the Smad2/3 and ERK1/2 signaling pathways. The inhibition of the Smad3 and ERK1/2 signaling pathways attenuated the TGF1-induced downregulation of StAR expression and progesterone production. TGF1 downregulated StAR expression and decreased progesterone production by activating the Smad3 and ERK1/2 signaling pathways in human granulosa cells.

  20. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    Science.gov (United States)

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  1. Effects of Cordyceps sinensis on the Expressions of NF-κB and TGF1 in Myocardium of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    You-you Gu

    2015-01-01

    Full Text Available Objective. To investigate the effect of Cordyceps sinensis (CS on the expressions of NF-κB and TGF1 in myocardium of streptozotocin-induced diabetic rats. Methods. A total of 53 healthy male SD rats, mice age of 8 weeks and weight of 220 ± 20 g, were randomly divided into five groups by randomized block design: normal control group (n=10, diabetic group (n=10, low dose of CS group (n=12; CS 0.6 g·kg−1·d−1, middle dose of CS group (n=11; CS 2.5 g·kg−1·d−1, and high dose of CS group (n=10; CS 5 g·kg−1·d−1. The diabetic models with tail intravenous injection by streptozotocin (45 mg·kg−1. Diabetic rats were sacrificed after 8 weeks; the expressions of NF-κB and TGF1 proteins and mRNA in the cardiac muscle were determined by using immunohistochemistry staining and reverse transcription polymerase chain reaction (RT-PCR method. The data were analyzed using one factor analysis of variance. Result. The expressions of NF-κB and TGF1 proteins and mRNA in the cardiac muscle of diabetic rats were significantly raised (P<0.05, which could be decreased by CS (P<0.05. Conclusions. The changes on the expressions of NF-κB and TGF1 in myocardium may be involved in the occurrence of diabetic cardiomyopathy (DC. CS may play its role on myocardial protection by regulating the expressions of NF-κB and TGF1 in myocardium.

  2. Berberine Suppresses Cell Motility Through Downregulation of TGF1 in Triple Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangmin Kim

    2018-01-01

    Full Text Available Background/Aims: Transforming growth factor-beta proteins (TGF-βs are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR on tumor growth and metastasis of triple negative breast cancer (TNBC cells via suppression of TGF1 expression. Methods: The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. Results: In a clinical data set, aberrant TGF1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP-2 and MMP-9 and the capacity for cell migration were increased by TGF1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF1–induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. Conclusion: BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC.

  3. Endometrial IL-1beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis. Effects of estrous cycle, artificial insemination and immunomodulation.

    Science.gov (United States)

    Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A

    2003-11-15

    Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression

  4. Expression of TGF-β3 in Isolated Fibroblasts from Foreskin

    Directory of Open Access Journals (Sweden)

    Mahnaz Mahmoudi Rad

    2015-05-01

    Full Text Available Background: The multifunctional transforming growth factor beta (TGF-β is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3 in human foreskin fibroblasts (HFF’s. Methods: We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA. Results: The highest TGF-β3 expression (8.3-fold greater than control was obtained by lipofection after 72 hours using 3 μl of transfection reagent. Expression was 1.4-fold greater than control by electroporation. Conclusions: In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring.

  5. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF1 improves cardiac function in heart failure rats

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China); Liu, B. [Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei (China); Wang, H.P. [Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei (China); Zhang, L. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-05-31

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF1 improved cardiac function in heart failure rats.

  6. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF1 improves cardiac function in heart failure rats

    International Nuclear Information System (INIS)

    Lv, Y.; Liu, B.; Wang, H.P.; Zhang, L.

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF1 improved cardiac function in heart failure rats

  7. Differential Influence of Inositol Hexaphosphate on the Expression of Genes Encoding TGF-β Isoforms and Their Receptors in Intestinal Epithelial Cells Stimulated with Proinflammatory Agents

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2013-01-01

    Full Text Available Transforming growth factor β (TGF-β is a multifunctional cytokine recognized as an important regulator of inflammatory responses. The effect of inositol hexaphosphate (IP6, a naturally occurring phytochemical, on the mRNA expression of TGF1, TGF-β2, TGF-β3 and TβRI, TβRII, and TβRIII receptors stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium and IL-1β in intestinal cells Caco-2 for 3 and 12 h was investigated. Real-time qRT-PCR was used to validate mRNAs level of examined genes. Bacterial endotoxin promoted differential expression of TGF-βs and their receptors in a time-dependent manner. IL-1β upregulated mRNA levels of all TGF-βs and receptors at both 3 h and 12 h. IP6 elicited the opposed to LPS effect by increasing downregulated transcription of the examined genes and suppressing the expression of TGF1 at 12 h. IP6 counteracted the stimulatory effect of IL-1β on TGF1 and receptors expression by decreasing their mRNA levels. IP6 enhanced LPS- and IL-1β-stimulated mRNA expression of TGF-β2 and -β3. Based on these studies it may be concluded that IP6 present in the intestinal milieu may exert immunoregulatory effects and chemopreventive activity on colonic epithelium under inflammatory conditions or during microbe-induced infection/inflammation by modulating the expression of genes encoding TGF-βs and their receptors at transcriptional level.

  8. [The administration of interleukin-1beta during early postnatal develop ment impairs FGF2, but not TIMP1, mRNA expression in brain structures of adult rats].

    Science.gov (United States)

    Trofimov, A N; Zubareva, O E; Shvarts, A P; Ishchenko, A M; Klimenko, V M

    2014-09-01

    According to the Neurodevelopmental hypothesis, the long-lasting cognitive deficit in schizophrenia and other types of neuropathology may occur by injurious factors, such as hypoxia, traumas, infections that take place during pre- and postnatal development, at least at early stages. These pathological conditions are often associated with the high production of pro-inflammatory cytokine interleukin-1B (IL-1B) by the cells of immune and nervous systems. We investigated the expression of genes involved in the neuroplastic regulation (Fgf2 and Timp2) in medial prefrontal cortex and dorsal and ventral regions of hippocampus of adult rats that were treated with IL-1beta between P15 and P21. The learning impairment in IL-1beta-treated rats is accompanied by lower FGF-2 mRNA levels in medial prefrontal cortex and ventral (not dorsal) hippocampus, but TIMP-1 was not affected. No differences in TIMP-1 and FGF-2 mRNA expressions were observed in untrained IL-1beta-treated when compared to control rats.

  9. XIAP gene expression and function is regulated by autocrine and paracrine TGF-β signaling

    Directory of Open Access Journals (Sweden)

    Van Themsche Céline

    2010-08-01

    Full Text Available Abstract Background X-linked inhibitor of apoptosis protein (XIAP is often overexpressed in cancer cells, where it plays a key role in survival and also promotes invasiveness. To date however, the extracellular signals and intracellular pathways regulating its expression and activity remain incompletely understood. We have previously showed that exposure to each of the three TGF-β (transforming growth factor beta isoforms upregulates XIAP protein content in endometrial carcinoma cells in vitro. In the present study, we have investigated the clinical relevance of TGF-β isoforms in endometrial tumours and the mechanisms through which TGF-β isoforms regulate XIAP content in uterine cancer cells. Methods TGF-β isoforms immunoreactivity in clinical samples from endometrial tumours was assessed using immunofluorescence. Two model cancer cell lines (KLE endometrial carcinoma cells and HeLa cervical cancer cells and pharmacological inhibitors were used to investigate the signalling pathways regulating XIAP expression and activity in response to autocrine and paracrine TGF-β in cancer cell. Results We have found immunoreactivity for each TGF-β isoform in clinical samples from endometrial tumours, localizing to both stromal and epithelial/cancer cells. Blockade of autocrine TGF-β signaling in KLE endometrial carcinoma cells and HeLa cervical cancer cells reduced endogenous XIAP mRNA and protein levels. In addition, each TGF-β isoform upregulated XIAP gene expression when given exogenously, in a Smad/NF-κB dependent manner. This resulted in increased polyubiquitination of PTEN (phosphatase and tensin homolog on chromosome ten, a newly identified substrate for XIAP E3 ligase activity, and in a XIAP-dependent decrease of PTEN protein levels. Although each TGF-β isoform decreased PTEN content in a XIAP- and a Smad-dependent manner, decrease of PTEN levels in response to only one isoform, TGF-β3, was blocked by PI3-K inhibitor LY294002. Conclusions

  10. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-β in myoblasts

    International Nuclear Information System (INIS)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-01-01

    Myostatin and TGF-β negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-β signaling remains unclear. TGF-β inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-β signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-β signaling using C2C12 myoblasts. Myostatin and TGF-β induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-β enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-β in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-β. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-β that prevents excess action in myoblasts.

  11. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    Science.gov (United States)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  12. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  13. DMPD: TGF-beta signaling from receptors to the nucleus. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10611754 TGF-beta signaling from receptors to the nucleus. Roberts AB. Microbes Inf...ect. 1999 Dec;1(15):1265-73. (.png) (.svg) (.html) (.csml) Show TGF-beta signaling from receptors to the nucleus.... PubmedID 10611754 Title TGF-beta signaling from receptors to the nucleus. Authors Roberts AB. Publicat

  14. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Minoru [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  15. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Olesen, Jens L

    2003-01-01

    synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH...... exercise (P insertion was markedly delayed by exercise compared with the decay seen in resting subjects...

  16. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  17. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF1 for 48 h. TGF1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF1-induced COL1A1 gene expression.

  18. Ghrelin Attenuates Liver Fibrosis through Regulation of TGF1 Expression and Autophagy

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Ghrelin is a stomach-derived growth hormone secretagogue that promotes various physiological effects, including energy metabolism and amelioration of inflammation. The purpose of this study was to investigate the protective mechanism of ghrelin against liver fibrosis. Liver fibrosis was induced in C57BL/6 mice by intraperitoneal injection of CCl4 (2.0 mL/kg of 10% CCl4 v/v solution in peanut oil two times per week for eight weeks. Ghrelin (10 μg/kg was intraperitoneally injected two times per week for eight weeks. A second murine liver fibrosis model was induced by bile duct ligation (BDL and concurrent ghrelin administration for four weeks. Hematoxylin eosin (H&E, and Masson’s trichrome were used to detect pathological changes to liver tissue. Western blotting was used to detect protein levels of transforming growth factor (TGF1, phosphorylated Smad3 (p-Smad3, I-collage, α-smooth muscle actin (α-SMA, matrix metalloproteinases (MMPs 2, tissue inhibitor of matrix metalloproteinases (TIMPs 1, phosphorylated NF-κB (p-NF-κB, and microtubule-associated protein light chain 3 (LC3. In addition, qRT-PCR was used to detect mRNA levels of TGF1, I-collage, α-SMA, MMP2, TIMP1 and LC3, while levels of TGF1, p-Smad3, I-collage, α-SMA, and LC3 were detected immunohistochemically. Levels of aspartate aminotransferase and alanine aminotransferase were significantly decreased by ghrelin treatment. Ghrelin administration also significantly reduced the extent of pathological changes in both murine liver fibrosis models. Expression levels of I-collage and α-SMA in both models were clearly reduced by ghrelin administration. Furthermore, ghrelin treatment decreased protein expression of TGF1 and p-Smad3. The protein levels of NF-κB and LC3 were increased in the CCl4- and BDL-treatment groups but were significantly reduced following ghrelin treatment. In addition, ghrelin inhibited extracellular matrix formation by decreasing NF-κB expression

  19. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  20. Plasma TGF beta level in rats after hemithoracic irradiation

    NARCIS (Netherlands)

    Vujaskovic, Z; Down, JD; vanWaarde, MAWH; vanAssen, AJ; Szabo, BG; Konings, AWT

    Changes in TGF-beta plasma levels were observed 18 weeks after hemithoracic irradiation in rats. This coincides with an increase in the breathing frequency, being most pronounced between 22 and 28 weeks after irradiation. The correlation suggests a potential role of the circulating TGF-beta in the

  1. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF1-induced kidney injury in a mouse model of diabetes.

    Science.gov (United States)

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF1 signalling, TGF1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF1 signalling and TGF1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  2. Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts

    Czech Academy of Sciences Publication Activity Database

    Kosla, Jan; Dvořák, Michal; Čermák, Vladimír

    2013-01-01

    Roč. 513, č. 1 (2013), s. 90-100 ISSN 0378-1119 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : microarray * myofibroblastic phenotype * inhibition of TGF-beta signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.082, year: 2013

  3. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Serena Battaglia

    Full Text Available BACKGROUND: Chronic hepatitis C virus (HCV infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT, a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development.

  4. Transforming growth factor beta-1 expression in macrophages of human chronic periapical diseases.

    Science.gov (United States)

    Liang, Z-Z; Li, J; Huang, S-G

    2017-03-30

    The objective of this study was to observe the distribution of macrophages (MPs) expressing transforming growth factor beta-1 (TGF1) in tissue samples from patients with different human chronic periapical diseases. In this study, samples were collected from 75 volunteers, who were divided into three groups according to classified standards, namely, healthy control (N = 25), periapical granuloma (N = 25), and periapical cyst (N = 25). The samples were fixed in 10% buffered formalin for more than 48 h, dehydrated, embedded, and stained with hematoxylin and eosin for histopathology. Double immunofluorescence was conducted to analyze the expression of TGF-β-CD14 double-positive MPs in periapical tissues. The number of double-positive cells (cells/mm 2 ) were significantly higher in the chronic periapical disease tissues (P periapical cyst group than in the periapical granuloma group (P periapical diseases. The TGF1-CD14 double-positive cells might play an important role in the pathology of human chronic periapical diseases.

  5. The antifibrotic effects of TGF1 siRNA on hepatic fibrosis in rats

    International Nuclear Information System (INIS)

    Lang, Qing; Liu, Qi; Xu, Ning; Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang; Shi, Xiao-Feng

    2011-01-01

    Highlights: → We constructed CCL4 induced liver fibrosis model successfully. → We proofed that the TGF1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. → The therapy effect of TGF1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF1 siRNA 0.125 mg/kg treatment group, TGF1 siRNA 0.25 mg/kg treatment group and TGF1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF1 siRNA 0.25 mg/kg treatment group to the model group, the TGF1 siRNA negative control group and the TGF1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF1, type I collagen and type III collagen (P < 0

  6. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Andersen, Kasper; Clement, Christian Alexandro

    2014-01-01

    In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling m...... growth. Moreover, the presence of multiple TGF-β/BMP antagonists imply that certain growth factors are subjected to local regulation on different levels which address another important level of intraovarian regulation of follicle development in humans.......In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling...... molecules and TGF- β/BMP antagonists during early human folliculogenesis.Human preantral follicles were enzymatically isolated from surplus ovarian tissue obtained from women having ovarian cortical tissue frozen for fertility preservation. A total of 348 human preantral follicles, ranging from 40 to 200 µm...

  7. Expression of interleukin-1 beta in rat dorsal root ganglia

    NARCIS (Netherlands)

    Copray, JCVM; Mantingh, [No Value; Brouwer, N; Biber, K; Kust, BM; Liem, RSB; Huitinga, [No Value; Tilders, FJH; Van Dam, AM; Boddeke, HWGM

    2001-01-01

    The expression of interleukin-lp was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in Situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1 beta mRNA: about 80% of these DRG neurons

  8. High value of the radiobiological parameter Dq correlates to expression of the transforming growth factor beta type II receptor in a panel of small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Krarup, M; Nørgaard, P

    1998-01-01

    Our panel of SCLC cell lines have previously been examined for their radiobiological characteristics and sensitivity to treatment with TGF beta 1. In this study we examined the possible correlations between radiobiological parameters and the expression of the TGF beta type II receptor (TGF beta......-rII). We have, in other studies, shown that the presence of TGF beta-rII was mandatory for transmitting the growth inhibitory effect of TGF beta. The results showed a statistically significant difference in Dq, i.e. the shoulder width of the survival curve, between cell lines expressing TGF beta......-rII and cell lines which did not express the receptor (P = 0.01). Cell lines expressing TGF beta-rII had a high Dq-value. TGF beta-rII expression did not correlate with any other radiobiological parameters. We suggest that an intact growth inhibitory pathway mediated by the TGF beta-rII may have a significant...

  9. Role for transforming growth factor-beta1 in alport renal disease progression.

    Science.gov (United States)

    Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D

    1999-11-01

    Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.

  10. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels

    Energy Technology Data Exchange (ETDEWEB)

    Preidl, Raimund H.M.; Moebius, Patrick; Weber, Manuel; Neukam, Friedrich W.; Schlegel, Andreas; Wehrhan, Falk [University of Erlangen- Nuernberg, Department of Oral and Maxillofacial Surgery, Erlangen (Germany); University of Erlangen- Nuernberg, Erlangen (Germany); Amann, Kerstin [University of Erlangen- Nuernberg, Erlangen (Germany)

    2014-12-09

    Microvascular free tissue transfer is a standard method in head and neck reconstructive surgery. However, previous radiotherapy of the operative region is associated with an increased incidence in postoperative flap-related complications and complete flap loss. As transforming growth factor beta (TGF-β) 1 and galectin-3 are well known markers in the context of fibrosis and lectin-like oxidized low-density lipoprotein 1 (LOX-1) supports vascular atherosclerosis, the aim of this study was to evaluate the expression of TGF1 and related markers as well as LOX-1 in irradiated vessels. To evaluate the expression of galectin-3, Smad 2/3, TGF1, and LOX-1, 20 irradiated and 20 nonirradiated arterial vessels were used for immunohistochemical staining. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index). Expression of galectin-3, Smad 2/3, and TGF1 was significantly increased in previously irradiated vessels compared with nonirradiated controls. Furthermore, LOX-1 was expressed significantly higher in irradiated compared with nonirradiated vessels. Fibrosis-related proteins like galectin-3, Smad 2/3, and TGF1 are upregulated after radiotherapy and support histopathological changes leading to vasculopathy of the irradiated vessels. Furthermore, postoperative complications in irradiated patients can be explained by increased endothelial dysfunction caused by LOX-1 in previously irradiated patients. Consequently, not only TGF1 but also galectin-3inhibitors may decrease complications after microsurgical tissue transfer. (orig.) [German] Der freie mikrovaskulaere Gewebetransfer gilt heute als fester Standard in der rekonstruktiven Kopf-Hals-Chirurgie. Es zeigte sich jedoch, dass im Falle einer stattgehabten Bestrahlung im Operationsgebiet mit einer erhoehten Rate an transplantatbezogenen Komplikationen gerechnet werden muss. Sowohl TGF1 als auch Galektin-3 sind bekannte Mediatoren in Bezug auf die Fibroseentstehung

  11. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer Transforming growth factor beta-1: structure, function and regulation mechanisms in cancer

    Directory of Open Access Journals (Sweden)

    Oscar Peralta-Zaragoza

    2001-08-01

    Full Text Available El factor de crecimiento transformante beta-1 (TGF-beta1 es sintetizado por muchas estirpes celulares como linfocitos, macrófagos y células dendríticas, y su expresión regula de manera autócrina o parácrina la diferenciación, proliferación y el estado de activación de éstas y muchas otras células. En general, el TGF-beta1 tiene propiedades pleiotrópicas en el contexto de la respuesta inmune durante el desarrollo de infecciones y procesos neoplásicos; sin embargo, los mecanismos de acción y regulación de la expresión de esta citocina aún no se comprenden del todo. En la presente revisión se describen las propiedades biológicas y los procesos moleculares que regulan la expresión del TGF-beta1, para entender los efectos de esta citocina durante la proliferación y la diferenciación celular. El conocimiento de los mecanismos moleculares de la regulación del TGF-beta1 puede representar una importante estrategia de tratamiento del cáncer. El texto completo en inglés de este artículo está disponible en: http://www.insp.mx/salud/index.htmlTransforming growth factor beta-1 (TGF-beta1 is produced by several cell lineages such as lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these and other cells. In general, TGF-beta1 has pleiotropic properties on the immune response during the development of infection diseases and cancer; however, the mechanisms of action and regulation of gene expression of this cytokine are poorly understood, In this review, the biological properties and the molecular mechanisms that regulate TGF-beta1 gene expression are described, to understand the role of this cytokine in growth and cell differentiation. The knowledge of molecular mechanisms of gene expression of TGF-beta1 may serve to develop new cancer therapies. The English version of this paper is available at: http://www.insp.mx/salud/index.html

  12. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    International Nuclear Information System (INIS)

    András, Ibolya E.; Toborek, Michal

    2014-01-01

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ

  13. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  14. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3.

    Science.gov (United States)

    Remy, Ingrid; Montmarquette, Annie; Michnick, Stephen W

    2004-04-01

    Transforming growth factor beta (TGF-beta) has a major role in cell proliferation, differentiation and apoptosis in many cell types. Integration of the TGF-beta pathway with other signalling cascades that control the same cellular processes may modulate TGF-beta responses. Here we report the discovery of a new functional link between TGF-beta and growth factor signalling pathways, mediated by a physical interaction between the serine-threonine kinase PKB (protein kinase B)/Akt and the transcriptional activator Smad3. Formation of the complex is induced by insulin, but inhibited by TGF-beta stimulation, placing PKB-Smad3 at a point of convergence between these two pathways. PKB inhibits Smad3 by preventing its phosphorylation, binding to Smad4 and nuclear translocation. In contrast, Smad3 does not inhibit PKB. Inhibition of Smad3 by PKB occurs through a kinase-activity-independent mechanism, resulting in a decrease in Smad3-mediated transcription and protection of cells against TGF-beta-induced apoptosis. Consistently, knockdown of the endogenous PKB gene with small-interfering RNA (siRNA) has the opposite effect. Our results suggest a very simple mechanism for the integration of signals arising from growth-factor- and TGF-beta-mediated pathways.

  15. TGF1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells

    International Nuclear Information System (INIS)

    Gomes, Luciana R; Terra, Letícia F; Wailemann, Rosângela AM; Labriola, Leticia; Sogayar, Mari C

    2012-01-01

    Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. The mRNA expression levels of TGF-β isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. In general, TGF-β2, TβRI and TβRII are over-expressed in more aggressive cells, except for TβRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF1 induction of pro-MMP-9 and TIMP-2 proteins. TGF1-enhanced migration and invasion capacities were blocked by p

  16. TGF1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.

    Science.gov (United States)

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF1-induced regulator of CX 3 CR1 expression.

  17. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    Science.gov (United States)

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus

  18. TGF1 Induces EMT in Bovine Mammary Epithelial Cells Through the TGFβ1/Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-08-01

    Full Text Available Background/Aims: Transforming growth factor-β1 (TGF1 plays a crucial role in chronic inflammation in various tissues, and is related to inflammation-caused organ fibrogenesis associated with the epithelial-mesenchymal transition (EMT and the deposition of the extracellular matrix (ECM. However, the effect of TGF1 on bovine mammary epithelial cells (BMECs with mastitis, and its mechanism, remain unknown. Methods: We analyzed the level of TGF1 in inflamed mammary tissues and cells using western blotting. BMECs were treated with TGF1, and EMT-related gene and protein expression changes were evaluated using quantitative real-time polymerase chain reaction (qPCR, western blotting, and immunofluorescence. We also inhibited the TGF/Smad signaling pathway using a receptor inhibitor, and analyzed EMT-related protein expression by western blotting. In addition, we injected TGF1 into mice mammary glands to investigate whether it can cause mammary fibrosis in vivo. Results: The TGF1 level was up-regulated in mammary tissues with mastitis and in inducible inflammatory BMECs. TGF1 treatment activated the TGF/ Smad signaling pathway in BMECs during their transition to the EMT phenotype, as indicated by morphological changes from a cobblestone-like shape to a spindle-like one. TGF1 treatment also up-regulated the expression of α-smooth muscle actin, vimentin, and collagen I, albumin, and down-regulated the expression of E-cadherin both in mRNA level and protein level. Furthermore, TGF1 enhanced the gene expressions of MMP2, MMP7, and fibronectin in BMECs. TGF1 injection induced mice mammary infection and fibrosis. Conclusion: These findings suggested that aberrant up-regulation of TGF1 in bovine mastitic mammary glands might play an important role in bovine mammary fibrosis caused by unresolved inflammation.

  19. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  20. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes.

    Science.gov (United States)

    Khakipoor, Shokoufeh; Ophoven, Christian; Schrödl-Häußel, Magdalena; Feuerstein, Melanie; Heimrich, Bernd; Deitmer, Joachim W; Roussa, Eleni

    2017-08-01

    The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H( + ) recording using the H( + ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H + changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  1. The I kappa B kinase inhibitor ACHP strongly attenuates TGF beta 1-induced myofibroblast formation and collagen synthesis

    NARCIS (Netherlands)

    Mia, Masum M.; Bank, Ruud A.

    2015-01-01

    Excessive accumulation of a collagen-rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGF beta 1) is a strong inducer of myofibroblast formation and subsequent

  2. Bone morphogenetic protein-2 (BMP-2 and transforming growth factor-β1 (TGF1 alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Rudkin George H

    2001-07-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs and transforming growth factor-βs (TGF-βs are important regulators of bone repair and regeneration. BMP-2 and TGF1 have been shown to inhibit gap junctional intercellular communication (GJIC in MC3T3-E1 cells. Connexin 43 (Cx43 has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF1 to investigate a possible mechanism for the inhibition of GJIC. Results Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. Conclusions BMP-2 and TGF1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

  3. TGF1 resulting in differential microRNA expression in bovine granulosa cells.

    Science.gov (United States)

    Xu, Yefen; Niu, Jiaqiang; Xi, Guangying; Niu, Xuezhi; Wang, Yuheng; Guo, Ming; Yangzong, Qiangba; Yao, Yilong; Sizhu, Suo Lang; Tian, Jianhui

    2018-07-15

    To explore the expression profile of the cellular miRNAs in bovine ovarian granulosa cells responding to transforming growth factor-β1 (TGF1), the effect of TGF1 on cell proliferation was firstly investigated by CCK-8 method and the results showed that there was a significant inhibitory effect on bovine granulosa cell proliferation treated with 5/10 ng/mL human recombinant TGF1 for 24 h compared to the control (P cells stimulated with or without 10 ng/mL human recombinant TGF1. A total of 13,257,248 and 138,726,391 clean reads per library were obtained from TGF1 and control groups, respectively. There were 498 and 499 bovine-specific exist miRNAs (exist miRNAs), 627 and 570 conserved known miRNAs (known miRNAs), and 593 and 585 predicted novel miRNAs in TGF1 and control groups, respectively. A total of 78 miRNAs with significant differential expression, including 39 up-regulated miRNAs and 39 down-regulated miRNAs were identified in the TGF1 group compared with the control. Real-time quantitative PCR analyses of bta-miR-106a and bta-miR-1434-5p showed that their up-expressions were interrupted by SB431542, an inhibitor that blocks TGFβ1/Smad signaling, which supported the sequencing data. GO analysis showed involvement of the predicted genes of the differentially expressed miRNAs in a broad spectrum of cell biological processes, cell components, and molecular functions. KEGG pathway analysis of the predicted miRNA targets further indicated that these differentially expressed miRNAs are involved in various signaling pathways, such as Wnt, MAPK, and TGF-β signaling, which might be involved in follicular development. These results provide valuable information on the composition, expression, and function of miRNAs in bovine granulosa cells responding to TGF1, and will aid in understanding the molecular mechanisms of TGF1 in granulosa cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  5. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi; Sekine, Yoshimoto [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Nakamura, Kazuhiko; Anitha, Ayyappan; Suda, Shiro [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Yamada, Kazuo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Tsujii, Masatsugu [Faculty of Sociology, Chukyo University, Toyota, Aichi (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Yoshikawa, Takeo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Miyachi, Taishi; Tsuchiya, Kenji; Sugihara, Gen-ichi; Matsuzaki, Hideo [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwata, Yasuhide; Suzuki, Katsuaki [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Mori, Norio [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University (Japan); Ouchi, Yasuomi [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); [The Positron Medical Center, Hamamatsu Medical Center, Hamamatsu (Japan); Sugiyama, Toshiro [Aichi Children' s Health and Medical Center, Obu, Aichi (Japan); Takei, Nori [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan)

    2007-09-07

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.

  6. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    Science.gov (United States)

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  7. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    Science.gov (United States)

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  8. RhoC is essential for TGF1-induced invasive capacity of rat ascites hepatoma cells

    International Nuclear Information System (INIS)

    Mukai, M.; Endo, H.; Iwasaki, T.; Tatsuta, M.; Togawa, A.; Nakamura, H.; Inoue, M.

    2006-01-01

    Transforming growth factor-β1 (TGF1) is a multifunctional growth factor that plays a role in cell proliferation, differentiation, extracellular matrix production, apoptosis, and cell motility. We show here that TGF1 increased the invasiveness of MM1 cells, which are a highly invasive clone of rat ascites hepatoma cells. Both mRNA and protein levels of RhoC but not RhoA in TGF1-treated MM1 cells increased. In parallel with this increase in expression, RhoC activity was induced by TGF1 treatment. When RhoC was overexpressed in MM1 cells, the invasive capacity increased. The RhoC-overexpressing cells formed more nodules than did mock cells when injected into rat peritoneum. Furthermore, when RhoC expression was reduced by transfection with shRNA/RhoC, the invasiveness of MM1 cells decreased with concomitant suppression of RhoC expression. Thus, the induced expression of RhoC by TGF1 in MM1 cells plays a critical role in TGF1-induced cell migration

  9. Effects of excimer laser irradiation on the expression of Th17, Treg, TGF-beta1, and IL-6 in patients with psoriasis vulgaris

    Science.gov (United States)

    Xiong, Guo-Xin; Li, Xin-Zhong

    2017-11-01

    The effects of laser irradiation on the expression of T helper 17 (Th17) and regulatory T (Treg) cells and their related cytokines, transforming growth factor beta 1 (TGF1) and interleukin-6 (IL-6), respectively, in the peripheral blood of patients with psoriasis vulgaris were investigated. 38 patients with psoriasis vulgaris in the stable state were selected as the treatment group that was treated twice a week for eight weeks. Another 38 healthy persons were chosen as the control group. Before and after treatment, the percentages of Th17 cells and Treg cells in the patients’ peripheral blood were detected using flow cytometry, the content of TGF1 and IL-6 in the patients’ sera were detected using enzyme-linked immunosorbent assay, and the extent and severity of lesions were determined by weighing the psoriasis area and severity index (PASI). After laser treatment, the percentage of Th17 cells, the Th17/Treg cell ratio and the level of IL-6 in the peripheral blood of patients with psoriasis in the treatment group were significantly lower than those of the same patients before the treatment (P  psoriasis vulgaris was 84.21%, and the PASI score was significantly lower (P  psoriasis vulgaris.

  10. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization

    DEFF Research Database (Denmark)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Fisker, Sanne

    2007-01-01

    of the metabolic syndrome. Our objective was to compare 11beta-HSD1 gene expression in different fat depots (visceral, subcutaneous abdominal, and subcutaneous gluteal) in lean and obese men and women. RESEARCH METHODS AND PROCEDURES: A cross-sectional study design was used for healthy patients undergoing minor...... women had lower 11beta-HSD1 gene expression in subcutaneous adipose tissue compared with men (62% lower, p difference was found between obese men and women. 11Beta-HSD1 mRNA in human adipose tissue was higher in obese subjects compared with lean subjects in both women...... and men and in both subcutaneous and visceral adipose tissue. No difference in mRNA expression of 11beta-HSD1 between visceral and subcutaneous adipose tissue or between subcutaneous adipose tissue from different depots was found. CONCLUSIONS: 11Beta-HSD1 in adipose tissue is increased in obesity in both...

  11. Low BMI is correlated with increased TGF-β and IL-10 mRNA levels in the peripheral blood of breast cancer patients.

    Science.gov (United States)

    Liu, Chao; Wang, Qian; Sun, Bing; Meng, Xiangying; Li, Lan; Yang, Liuchun; Cong, Yang; Liu, Jiannan; Xuan, Liang; Huang, Yan; Wu, Shikai

    2018-03-01

    Transforming growth factor-β (TGF-β), interleukin-10 (IL-10), and forkhead box P3 (Foxp3) have important roles in breast cancer development. Previous studies confirmed a correlation between these immune molecules and tumor characteristics, but their association with nutritional status in breast cancer is largely unknown. We aimed to investigate the association between body mass index (BMI), hemoglobin, total protein, albumin, globulin (GLB), albumin/GLB ratio (AGR), pre-albumin, prognostic nutritional index, and TGF-β, IL-10, and Foxp3 mRNA expression in patients with breast cancer. Quantitative real-time PCR was used to detect the mRNA expression of TGF-β, IL-10, and Foxp3 in the peripheral blood of 107 patients with breast cancer and 21 healthy controls. We found that TGFmRNA levels were 2.6-fold, 3.2-fold, and 2.3-fold higher in patients with low BMI (BMI (BMI BMI ≥ 25), respectively (P BMI, may strongly affect systematic immune function in patients with breast cancer. © 2018 IUBMB Life, 70(3):237-245, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  12. Yi Qi Qing Re Gao-containing serum inhibits lipopolysaccharide-induced rat mesangial cell proliferation by suppressing the Wnt pathway and TGF1 expression.

    Science.gov (United States)

    Yang, Liping; Sun, Xueyan; Zhan, Yongli; Liu, Huijie; Wen, Yumin; Mao, Huimin; Dong, X I; Li, Ping

    2016-04-01

    The aim of the present study was to investigate the effect of Yi Qi Qing Re Gao-containing serum (YQ-S) on rat mesangial cell (MC) proliferation and to investigate the underlying mechanism. MCs were divided into the control, lipopolysaccharide (LPS)-stimulated, YQ-S and fosinopril-containing serum (For-S) groups, and cultured for 48 h. An MTT assay was used to evaluate the proliferation of MCs. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were conducted to detect the expression levels of Wnt4, β-catenin and transforming growth factor (TGF)-β1 in MCs. The results indicated that YQ-S inhibited LPS-induced MC proliferation. The Wnt4 and TGF1 mRNA expression levels were reduced in the YQ-S group (P<0.01 or P<0.05). Furthermore, the Wnt4, β-catenin and TGF1 protein expression levels were suppressed in the YQ-S group (P<0.01 or P<0.05). Therefore, YQ-S appears to inhibit MC proliferation, and its mechanism may involve the inhibition of the Wnt signaling pathway and downregulation of TGF1 expression.

  13. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  14. Role of the MAPKs/TGF1/TRAF6 signaling pathway in postoperative atrial fibrillation.

    Directory of Open Access Journals (Sweden)

    Daoliang Zhang

    Full Text Available To explore the relationship between the MAPKs/TGF1/TRAF6 signaling pathway and atrial fibrosis in patients with rheumatic heart disease (RHD and its role in atrial fibrillation (AF after cardiac surgery on the basis of our previous animal study of the MAPKs/TGF1/TRAF6 signaling pathway in atrial fibrosis.A total of 57 patients with RHD without a history of AF consented to left atrial biopsy. Histopathology quantified the percentage of fibrosis, and real-time PCR and western blot assessed the mRNA and protein expression of TGF1, TRAF6, and connective tissue growth factor (CTGF, respectively. Western blot was also used to measure the protein expression of phosphorylated MAPKs and TGF-β-activated kinase 1 (TAK1. Serum angiotensin II (Ang II levels were assayed using enzyme-linked immunosorbent assay (ELISA.Eighteen patients developed AF, whereas 39 remained in sinus rhythm (SR. The severity of atrial fibrosis was significantly higher in patients who developed AF versus those who remained in SR; the mRNA and protein expression of TGF1, TRAF6 and CTGF were significantly higher in patients with AF. The protein expression of phosphorylated MAPKs and TAK1 was significantly increased in patients who developed AF compared with the patients who remained in SR. Serum Ang II levels were significantly higher in patients who developed AF versus those who remained in SR.The MAPKs/TGF1/TRAF6 signaling pathway is involved in atrial fibrosis in patients with RHD, which results in the occurrence of AF after cardiac surgery.

  15. TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging.

    Directory of Open Access Journals (Sweden)

    Shijing Luo

    2009-12-01

    Full Text Available Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15-20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-beta signaling pathways. We recently found that the TGF-beta Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-beta Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-beta Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways.

  16. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  17. Pirfenidone inhibits TGF1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Directory of Open Access Journals (Sweden)

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  18. Stellate Cell Activation and Imbalanced Expression of TGF1/TGF-β3 in Acute Autoimmune Liver Lesions Induced by ConA in Mice

    Directory of Open Access Journals (Sweden)

    Liyun Wang

    2017-01-01

    Full Text Available Objective. To study the pathogenic feature of liver injury, activation of hepatic stellate cells, and dynamic expression of TGF1/TGF-β3 to reveal their role in liver injury induced by ConA. Methods. Mice were randomly divided into control group and ConA treatment group. ConA (20 mg/kg was injected through vena caudalis in ConA treatment group; the controls received the same volume of saline injection. After injection for 2 h, 8 h, 24 h, and 48 h, animals were terminated. Blood, liver, and spleen were harvested. Liver function and histopathology were studied. α-SMA, vimentin, TGF1, and TGF-β3 were detected. Results. After ConA injection, liver damage started to increase. Expression of α-SMA, vimentin, TGF1, and TGF-β3 was significantly enhanced; all above indicators reached peak at 8 h; but from 24 h after ConA injection, TGF-β3 expression began to decline, while the TGF1/TGF-β3 ratio at 48 h was significantly lower than control. Conclusion. (1 Autoimmune liver injury induced by ConA showed time-based features, in which the most serious liver lesions happened at 8 h after ConA injection. (2 Early activation of HSC and imbalance expression of TGF1 and TGF-β3 existed in ConA-induced acute autoimmune liver injury, which may be associated with liver dysfunction and the mechanisms of progression to fibrosis.

  19. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  20. TGF1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways.

    Science.gov (United States)

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C K

    2016-09-20

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF1-stimulated cell migration. TGF1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF1 on PTEN mRNA and protein. Interestingly, TGF1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF1. This study provides important insights into the molecular mechanisms mediating TGF1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.

  1. Prolonged peritoneal gene expression using a helper-dependent adenovirus.

    Science.gov (United States)

    Liu, Limin; Shi, Chang-Xin; Ghayur, Ayesha; Zhang, Claire; Su, Je Yen; Hoff, Catherine M; Margetts, Peter J

    2009-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis. The causes of EPS are not well defined and are likely multifactorial. A suitable animal model would facilitate research into the pathophysiology and treatment of EPS. We developed a helper-dependent adenovirus that expresses both green fluorescent protein (GFP) and active transforming growth factor-beta (TGF-beta1; HDAdTGF-beta1). Mice were administered HDAdTGF-beta1 via intraperitoneal injection and the response was compared with mice administered either first-generation adenovirus expressing TGF-beta1 (AdTGF-beta1) or control adenovirus (AdGFP). HDAdTGF-beta1-treated mice continued to express the GFP reporter transgene to day 74, the end of the observation period. Transgene expression lasted less than 28 days in the animals treated with first-generation adenoviruses. Animals treated with first-generation AdTGF-beta1 demonstrated submesothelial thickening and angiogenesis at day 7, with almost complete resolution by day 28. The HDAdTGF-beta1-treated mice demonstrated progressive peritoneal fibrosis with adhesion formation and encapsulation of bowels. Weight gain was significantly reduced in animals treated with HDAdTGF-beta1 compared to both the control-treated animals and the AdTGF-beta1-treated animals. Inflammation was not a major component of the fibroproliferative response. Peritoneal administration of a first-generation AdTGF-beta1 leads to transient gene expression, resulting in a resolving fibrotic response and histology similar to that seen in simple peritoneal sclerosis. Prolonged TGF-beta1 expression induced by the helper-dependent HDAdTGF-beta1 led to changes in peritoneal morphology resembling EPS. This suggests that TGF-beta1 may be a contributing factor in both simple peritoneal sclerosis and EPS. This model will be useful for elucidation of the mechanism of EPS and evaluation of potential treatment.

  2. Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis.

    Science.gov (United States)

    Merwin, J R; Anderson, J M; Kocher, O; Van Itallie, C M; Madri, J A

    1990-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is angiogenic in vivo. In two-dimensional (2-D) culture systems microvascular endothelial cell proliferation is inhibited up to 80% by TGF-beta 1; however, in three-dimensional (3-D) collagen gels TGF-beta 1 is found to have no effect on proliferation while eliciting the formation of calcium and magnesium dependent tube-like structures mimicking angiogenesis. DNA analyses performed on 3-D cell cultures reveal no significant difference in the amount of DNA or cell number in control versus TGF-beta 1 treated cultures. In 2-D cultures TGF-beta 1 is known to increase cellular fibronectin accumulation; however, in 3-D cultures no difference is seen between control and TGF-beta 1 treated cells as established by ELISA testing for type IV collagen, fibronectin, and laminin. In 3-D cultures there is increased synthesis and secretion of type V collagen in both control and TGF-beta 1 treated cultures over 2-D cultures. Even though an equal amount of type V collagen is seen in both 3-D conditions, there is a reorganization of the protein with concentration along an organizing basal lamina in TGF-beta 1 treated cultures. EM morphological analyses on 3-D cultures illustrate quiescent, control cells lacking cell contacts. In contrast, TGF-beta 1 treated cells show increased pseudopod formation, cell-cell contact, and organized basal lamina-like material closely apposed to the "abluminal" plasma membranes. TGF-beta 1 treated cells also appear to form junctional complexes between adjoining cells. Immunofluorescence using specific antibodies to the tight junction protein ZO-1 results in staining at apparent cell-cell junctions in the 3-D cultures. Northern blots of freshly isolated microvascular endothelium, 2-D and 3-D cultures, using cDNA and cRNA probes specific for the ZO-1 tight junction protein, reveal the presence of the 7.8 kb mRNA. Western blots of rat epididymal fat pad endothelial cells (RFC) monolayer lysates probed with

  3. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Hiroyuki [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Hamanaka, Ryoji; Nakamura, Miki [Cell Biology, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Sumiyoshi, Hideaki; Matsuo, Noritaka [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Yoshioka, Hidekatsu, E-mail: hidey@oita-u.ac.jp [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  4. Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    Han Soo

    2012-10-01

    Full Text Available Abstract Background The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP, calcitonin gene related peptide (CGRP and of cytokines (interleukin (IL-1α, tumor growth factor (TGF-β after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated whether corticosteroid influenced tenocyte viability. Methods The corticosteroid triamcinolone acetonide (TAA was applied to cultured tenocytes of lateral epicondylitis, and the changes in the mRNA expressions of neuropeptides and cytokines and tenocyte viabilities were analyzed at seven time points. Quantitative real-time polymerase chain reaction and an MTT assay were used. Results The expression of SP mRNA was maximally inhibited by TAA at 24 hours but recovered at 72 hours, and the expressions of CGRP mRNA and IL-1α mRNA were inhibited at 24 and 3 hours, respectively. The expression of TGFmRNA was not significant. Tenocyte viability was significantly reduced by TAA at 24 hours. Conclusions We postulate that the reaction mechanism predominantly responsible for symptomatic relief after a corticosteroid injection involves the inhibitions of neuropeptides and cytokines, such as, CGRP and IL-1α. However the tenocyte viability was compromised by a corticosteroid.

  5. Over, and Underexpression of Endothelin 1 and TGF-Beta Family Ligands and Receptors in Lung Tissue of Broilers with Pulmonary Hypertension

    Science.gov (United States)

    Dominguez-Avila, Norma; Ruiz-Castañeda, Gabriel; González-Ramírez, Javier; Fernandez-Jaramillo, Nora; Escoto, Jorge; Sánchez-Muñoz, Fausto; Marquez-Velasco, Ricardo; Bojalil, Rafael; Espinosa-Cervantes, Román; Sánchez, Fausto

    2013-01-01

    Transforming growth factor beta (TGFβ) is a family of genes that play a key role in mediating tissue remodeling in various forms of acute and chronic lung disease. In order to assess their role on pulmonary hypertension in broilers, we determined mRNA expression of genes of the TGFβ family and endothelin 1 in lung samples from 4-week-old chickens raised either under normal or cold temperature conditions. Both in control and cold-treated groups of broilers, endothelin 1 mRNA expression levels in lungs from ascitic chickens were higher than levels from healthy birds (P 0.05). BAMBI mRNA gene expression was lowest in birds with ascites only in the control group as compared with the values from healthy birds (P < 0.05). PMID:24286074

  6. Blockade of TGF1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco

    2012-01-01

    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF1.

  7. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    Science.gov (United States)

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  8. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-01

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy

  9. DMAV in Drinking Water Activated NF-κB Signal Pathway and Increased TGF-β and IL-1β Expressions in Bladder Epithelial Cells of Rats

    Directory of Open Access Journals (Sweden)

    Siqi Cao

    2015-01-01

    Full Text Available Dimethylarsinic acid (DMAV is the main product of arsenic methylation metabolism in vivo and is rat bladder carcinogen and tumor promoting agent. In this study, we measured the expressions of mRNA and proteins of NF-κB pathway members, IKKα, IKKβ, p65, and p50 in rat bladder epithelium by qRT-PCR and immunohistochemical analysis after rats received drinking water containing 100 and 200 ppm DMAV for 10 weeks. Transforming growth factor-β (TGF-β immunoexpression in rat bladder epithelium and urine level of IL-1β also were determined. We found that DMAV dramatically increased the mRNA levels of NF-κB p50 and IKKα in the bladder epithelium of rats compared to the control group. Immunohistochemical examinations showed that DMAV increased immunoreactivities of IKKα, IKKβ, and phospho-NF-κB p50 in the cytoplasm and phospho-NF-κB p50 and p65 in nucleus of rat urothelial cells. In addition, DMAV treated rats exhibited significantly increased inflammatory factor TGF-β immunoreactivity in bladder epithelium and IL-1β secretion in urine. These data suggest that DMAV could activate NF-κB signal pathway and increase TGF-β and IL-1β expressions in bladder epithelial cells of rats.

  10. MicroRNA-130a-mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF1 stimulation in granulocytic precursors

    DEFF Research Database (Denmark)

    Häger, Mattias; Pedersen, Corinna Cavan; Larsen, Maria Torp

    2011-01-01

    Smad4 is important in the TGF-ß pathway and required for transcriptional activation and inhibition of cell growth after TGF1 stimulation. We demonstrate that miR-130a is differentially expressed during granulopoiesis and targets Smad4 mRNA. The transcript for Smad4 is present throughout...... neutrophil maturation, but Smad4 protein is undetectable in the most immature cells, where miR-130a is highly expressed. Two miR-130a binding sites were identified in the 3'-untranslated region of the Smad4 mRNA. Overexpression of miR-130a in HEK293, A549, and 32Dcl3 cells repressed synthesis of Smad4...... protein without affecting Smad4 mRNA level. Repression of Smad4 synthesis in a granulocytic cell line by miR-130a reduced its sensitivity to TGF1-induced growth inhibition. This effect was reversed by inhibiting the activity of miR-130a with an antisense probe or by expressing a Smad4 mRNA lacking mi...

  11. MicroRNA-130a–mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF1 stimulation in granulocytic precursors

    DEFF Research Database (Denmark)

    Häger, Mattias; Pedersen, Corinna Cavan; Larsen, Maria Torp

    2011-01-01

    Smad4 is important in the TGF-β pathway and required for transcriptional activation and inhibition of cell growth after TGF1 stimulation. We demonstrate that miR-130a is differentially expressed during granulopoiesis and targets Smad4 mRNA. The transcript for Smad4 is present throughout...... neutrophil maturation, but Smad4 protein is undetectable in the most immature cells, where miR-130a is highly expressed. Two miR-130a binding sites were identified in the 3'-untranslated region of the Smad4 mRNA. Overexpression of miR-130a in HEK293, A549, and 32Dcl3 cells repressed synthesis of Smad4...... protein without affecting Smad4 mRNA level. Repression of Smad4 synthesis in a granulocytic cell line by miR-130a reduced its sensitivity to TGF1–induced growth inhibition. This effect was reversed by inhibiting the activity of miR-130a with an antisense probe or by expressing a Smad4 mRNA lacking mi...

  12. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF1. We found that ELE (40 µg/ml blocked the TGF1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  13. Klotho down-regulates Egr-1 by inhibiting TGF1/Smad3 signaling in high glucose treated human mesangial cells

    International Nuclear Information System (INIS)

    Li, Yang; Hu, Fang; Xue, Meng; Jia, Yi-Jie; Zheng, Zong-Ji; Wang, Ling; Guan, Mei-Ping; Xue, Yao-Ming

    2017-01-01

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions to mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting

  14. Inhibitory Effect of NH4Cl Treatment on Renal Tgfß1 Signaling Following Unilateral Ureteral Obstruction

    Directory of Open Access Journals (Sweden)

    Martina Feger

    2015-09-01

    Full Text Available Background/Aims: Consequences of obstructive nephropathy include tissue fibrosis, a major pathophysiological mechanism contributing to development of end-stage renal disease. Transforming growth factor β 1 (Tgfβ1 is involved in the progression of renal fibrosis. According to recent observations, ammonium chloride (NH4Cl prevented phosphate-induced vascular remodeling, effects involving decrease of Tgfβ1 expression and inhibition of Tgfβ1-dependent signaling. The present study, thus, explored whether NH4Cl influences renal Tgfβ1-induced pro-fibrotic signaling in obstructive nephropathy induced by unilateral ureteral obstruction (UUO. Methods: UUO was induced for seven days in C57Bl6 mice with or without additional treatment with NH4Cl (0.28 M in drinking water. Transcript levels were determined by RT-PCR as well as protein abundance by Western blotting, blood pH was determined utilizing a blood gas and chemistry analyser. Results: UUO increased renal mRNA expression of Tgfb1, Tgfβ-activated kinase 1 (Tak1 protein abundance and Smad2 phosphorylation in the nuclear fraction of the obstructed kidney tissues, effects blunted in NH4Cl treated mice as compared to control treated mice. The mRNA levels of the transcription factors nuclear factor of activated T cells 5 (Nfat5 and SRY (sex determining region Y-box 9 (Sox9 as well as of tumor necrosis factor α (Tnfα, interleukin 6 (Il6, plasminogen activator inhibitor 1 (Pai1 and Snai1 were up-regulated in the obstructed kidney tissues following UUO, effects again significantly ameliorated following NH4Cl treatment. Furthermore, the increased protein and mRNA expression of α-smooth muscle actin (α-Sma, fibronectin and collagen type I in the obstructed kidney tissues following UUO were significantly attenuated following NH4Cl treatment. Conclusion: NH4Cl treatment ameliorates Tgfβ1-dependent pro-fibrotic signaling and renal tissue fibrosis markers following obstructive nephropathy.

  15. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    Nagarajan Selvamurugan

    2017-01-01

    Full Text Available Pulsed electromagnetic fields (PEMFs have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs’ cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β signaling pathway and microRNA 21 (miR21 were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p’s putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  16. Radioinduced intestinal fibrosis: from molecular mechanisms to therapy applications. Contribution of the TGF--{beta}1, of the CTGF and of the transduction pathway of the Rho/ROCK signal; La fibrose intestinale radio-induite: des mecanismes moleculaires aux applications therapeutiques. Roles du TGF-{beta}1, du CTGF et de la voie de transduction du signal Rho/ROCK

    Energy Technology Data Exchange (ETDEWEB)

    Haydont, V

    2006-12-15

    Delayed radiation enteritis is an intestinal fibrosis induced by accidental or therapeutic radiation for pelvic and abdominal cancer treatments. Studies of molecular mechanisms involved in the development and maintenance of fibrosis have showed the respective contribution of CTGF, low TGF-{beta}1 concentrations and Rho/ROCK pathway. Thus, based on the relationship between CTGF, TGF-{beta}1 and Rho pathway, 2 therapeutics strategies have been develop. First, a pravastatin curative gift leads to a fibro-lysis involving an inhibition of Rho and in cascade a reduction of CTGF expression and extracellular matrix deposition. The data suggest that reversal of established radiation fibrosis in the gut is possible. Second, a pravastatin prophylactic gift prevents the installation of a chronic fibrosis but does not protect the tumor. On the base of these results, the radiation therapy department of the Institut Gustave Roussy will soon initiate 2 clinical trials. (author)

  17. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    Science.gov (United States)

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  18. Cloning and primary immunological study of TGF1 and its receptors TβR I /TβR II in tilapia(Oreochromis niloticus).

    Science.gov (United States)

    Zhan, Xu-liang; Ma, Tai-yang; Wu, Jin-ying; Yi, Li-yuan; Wang, Jing-yuan; Gao, Xiao-ke; Li, Wen-sheng

    2015-07-01

    The transforming growth factor β (TGF-β) superfamily plays critical roles in tumor suppression, cell proliferation and differentiation, tissue morphogenesis, lineage determination, cell migration and apoptosis. Recently, TGF1, one important member of TGF-β superfamily, is suggested as an immune regulator in the teleost. In this study, we cloned the cDNAs of TGF1 and its receptors, TβR I and TβR II (including three isoforms) from tilapia (Genbank accession numbers: KP754231- KP754235). A tissue distribution profile analysis indicated that TGF1 was highly expressed in the head kidney, gill, spleen, kidney and PBLs (peripheral blood leukocytes); TβR I only showed considerable expression in the liver; and TβR II-2 was highly expressed in the kidney, gill, liver, head kidney and heart. We determined that the mRNA expressions of TGF-β and TβR I /TβR II-2 were significantly increased in tilapia head kidney and spleen leukocytes by the stimulation of Lipopolysaccharide (LPS) or Poly I: C. We also examined their expressions in the spleen and head kidney of tilapia after IP injection of streptococcus agalactiae. The results showed that the mRNA expressions of these three genes all increased in the head kidney as early as 6 h post infection, and in the spleen 3 d post infection. In addition, the protein level of TGF1 was also up-regulated in the head kidney and the spleen after infection. Taken together, our data indicate that the TGF1-TβR I /TβR II-2 system functions potentially in tilapia immune system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Increased Expression of TGF1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice.

    Science.gov (United States)

    Liu, Yumei; Abudounnasier, Gulizhaer; Zhang, Taochun; Liu, Xuelei; Wang, Qian; Yan, Yi; Ding, Jianbing; Wen, Hao; Yimiti, Delixiati; Ma, Xiumin

    2016-08-01

    To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF1 at the middle and late stages of infection (Pgranulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

  20. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors

    Directory of Open Access Journals (Sweden)

    Laurent-Olivier Roy

    2018-04-01

    Full Text Available Glioblastoma (GBM represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β. We hypothesized that TGF-β gene expression could correlate with overall survival (OS and serve as a prognostic biomarker. TGF1 and -β2 expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan–Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS. In GBM, TGF1 and -β2 levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan–Meier and multivariate analyses revealed that high to moderate expressions of TGF1 significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF1 is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β2. We believe our study is the first to unveil a significant relationship between TGF1 expression and OS or PFS in newly diagnosed GBM. TGF1 could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.

  1. The shunt from the cyclooxygenase to lipoxygenase pathway in human osteoarthritic subchondral osteoblasts is linked with a variable expression of the 5-lipoxygenase-activating protein.

    Science.gov (United States)

    Maxis, Kelitha; Delalandre, Aline; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Duval, Nicolas; Lajeunesse, Daniel

    2006-01-01

    Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone changes with osteophyte formation and abnormal bone remodeling. Two groups of OA patients were identified via the production of variable and opposite levels of prostaglandin E2 (PGE2) or leukotriene B4 (LTB4) by subchondral osteoblasts, PGE2 levels discriminating between low and high subgroups. We studied whether the expression of 5-lipoxygenase (5-LO) or 5-LO-activating protein (FLAP) is responsible for the shunt from prostaglandins to leukotrienes. FLAP mRNA levels varied in low and high OA groups compared with normal, whereas mRNA levels of 5-LO were similar in all osteoblasts. Selective inhibition of cyclooxygenase-2 (COX-2) with NS-398-stimulated FLAP expression in the high OA osteoblasts subgroup, whereas it was without effect in the low OA osteoblasts subgroup. The addition of PGE2 to the low OA osteoblasts subgroup decreased FLAP expression but failed to affect it in the high OA osteoblasts subgroup. LTB4 levels in OA osteoblasts were stimulated about twofold by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plus transforming growth factor-beta (TGF-beta), a situation corresponding to their effect on FLAP mRNA levels. Treatments with 1,25(OH)2D3 and TGF-beta also modulated PGE2 production. TGF-beta stimulated PGE2 production in both OA osteoblast groups, whereas 1,25(OH)2D3 alone had a limited effect but decreased the effect of TGF-beta in the low OA osteoblasts subgroup. This modulation of PGE2 production was mirrored by the synthesis of COX-2. IL-18 levels were only slightly increased in a subgroup of OA osteoblasts compared with normal; however, no relationship was observed overall between IL-18 and PGE2 levels in normal and OA osteoblasts. These results suggest that the shunt from the production of PGE2 to LTB4 is through regulation of the expression of FLAP, not 5-LO, in OA osteoblasts. The expression of FLAP in OA osteoblasts is also modulated differently by 1,25(OH

  2. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    Science.gov (United States)

    Tsung, H C; Yao, Z

    1996-09-01

    their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.

  3. TGF1 exerts opposing effects on grass carp leukocytes: implication in teleost immunity, receptor signaling and potential self-regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mu Yang

    Full Text Available In fish immunity, the regulatory role of transforming growth factor-β1 (TGF1 has not been fully characterized. Here we examined the immunoregulatory effects of TGF1 in grass carp peripheral blood leukocytes (PBL and head kidney leukocytes (HKL. It is interesting that TGF1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ and T/B cell markers [Cd4-like (Cd4l, Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF1 type I receptor, activin receptor-like kinase 5 (ALK5, was indispensable for the immunoregulatory effects of TGF1 in PBL and HKL. Notably, TGF1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF1 decreased the number of ALK5(+ leukocytes in PBL and HKL, revealing a negative regulation of TGF1 signaling at the receptor level. Moreover, transient treatment with TGF1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF1. Accordingly, our data revealed a dual role of TGF1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF1 controls its signaling in vertebrate leukocytes.

  4. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  5. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Schmid, Kurt W.; Richter, Klaus D.; Wessel, Jan; Schuck, Andreas; Willich, Norman; Ruebe, Christian

    2000-01-01

    Purpose: The lung is the major dose-limiting organ for radiotherapy of cancer in the thoracic region. The pathogenesis of radiation-induced lung injury at the molecular level is still unclear. Immediate cellular damage after irradiation is supposed to result in cytokine-mediated multicellular interactions with induction and progression of fibrotic tissue reactions. The purpose of this investigation was to evaluate the acute and long-term effects of radiation on the gene expression of transforming growth factor beta (TGF-β) in a model of lung injury using fibrosis-sensitive C57BL/6 mice. Methods and Materials: The thoraces of C57BL/6 mice were irradiated with 6 and 12 Gy, respectively. Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 3, 6, 12, 24, 48, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation). The lung tissue from three different mice per dosage and time point was analyzed by a combination of polymerase chain reaction (PCR), immunohistochemistry, and light microscopy. The mRNA expression of TGF-β was quantified by competitive reverse transcriptase/polymerase chain reaction (RT-PCR); the cellular origin of the TGF-β protein was identified by immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase [APAAP]). The cytokine expression on mRNA and protein level was correlated with the histopathological alterations. Results: Following thoracic irradiation with a single dose of 12 Gy, radiation-induced TGF-β release in lung tissue was appreciable already within the first hours (1, 3, and 6 hours postirradiation) and reached a significant increase after 12 hours; subsequently (48 hours, 72 hours, and 1 week postirradiation) the TGFexpression declined to basal levels. At the beginning of the pneumonic phase, irradiation-mediated stimulation of TGF-β release reached

  6. CDK2 phosphorylation of Smad2 disrupts TGF-beta transcriptional regulation in resistant primary bone marrow myeloma cells.

    Science.gov (United States)

    Baughn, Linda B; Di Liberto, Maurizio; Niesvizky, Ruben; Cho, Hearn J; Jayabalan, David; Lane, Joseph; Liu, Fang; Chen-Kiang, Selina

    2009-02-15

    Resistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr(8) (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-beta resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-beta resistance in multiple myeloma.

  7. The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor

    DEFF Research Database (Denmark)

    Atfi, Azeddine; Dumont, Emmanuelle; Colland, Frédéric

    2007-01-01

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological processes through two types of Ser/Thr transmembrane receptors: the TGF-beta type I receptor and the TGF-beta type II receptor (TbetaRII). Upon ligand binding, TGF-beta type I receptor activated by TbetaRII propagat......RII protein presumably by suppressing the association of TbetaRII with Smad7. These results define ADAM12 as a new partner of TbetaRII that facilitates its trafficking to early endosomes in which activation of the Smad pathway is initiated....

  8. TGF1 accelerates the DNA damage response in epithelial cells via Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF1 pretreatment. However, they soon thereafter exhibited downregulation in TGF1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. -- Highlights: •TGF1 pretreatment accelerates γ-radiation-induced DNA damage response. •TGF1-accelerated DNA damage response is dependent on Smad signaling and DNA Ligase IV. •TGF1 pretreatment protects epithelial cells from γ-radiation in vivo.

  9. Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhike Zi

    Full Text Available BACKGROUND: Investigation of dynamics and regulation of the TGF-beta signaling pathway is central to the understanding of complex cellular processes such as growth, apoptosis, and differentiation. In this study, we aim at using systems biology approach to provide dynamic analysis on this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We proposed a constraint-based modeling method to build a comprehensive mathematical model for the Smad dependent TGF-beta signaling pathway by fitting the experimental data and incorporating the qualitative constraints from the experimental analysis. The performance of the model generated by constraint-based modeling method is significantly improved compared to the model obtained by only fitting the quantitative data. The model agrees well with the experimental analysis of TGF-beta pathway, such as the time course of nuclear phosphorylated Smad, the subcellular location of Smad and signal response of Smad phosphorylation to different doses of TGF-beta. CONCLUSIONS/SIGNIFICANCE: The simulation results indicate that the signal response to TGF-beta is regulated by the balance between clathrin dependent endocytosis and non-clathrin mediated endocytosis. This model is useful to be built upon as new precise experimental data are emerging. The constraint-based modeling method can also be applied to quantitative modeling of other signaling pathways.

  10. A novel nonsteroidal antifibrotic oligo decoy containing the TGF-beta element found in the COL1A1 gene which regulates murine schistosomiasis liver fibrosis.

    Science.gov (United States)

    Boros, D L; Singh, K P; Gerard, H C; Hudson, A P; White, S L; Cutroneo, K R

    2005-08-01

    Schistosomiasis mansoni disseminated worm eggs in mice and humans induce granulomatous inflammations and cumulative fibrosis causing morbidity and possibly mortality. In this study, intrahepatic and I.V. injections of a double-stranded oligodeoxynucleotide decoy containing the TGF-beta regulatory element found in the distal promoter of the COL1A1 gene into worm-infected mice suppressed TGF-beta1, COL1A1, tissue inhibitor of metalloproteinase-1, and decreased COL3A1 mRNAs to a lesser extent. Sequence comparisons within the mouse genome found homologous sequences within the COL3A1, TGF-beta1, and TIMP-1 5' flanking regions. Cold competition gel mobility shift assays using these homologous sequences with 5' and 3' flanking regions found in the natural COL1A1 gene showed competition. Competitive gel mobility assays in a separate experiment showed no competition using a 5-base mutated or scrambled sequence. Explanted liver granulomas from saline-injected mice incorporated 10.45 +/- 1.7% (3)H-proline into newly synthesized collagen, whereas decoy-treated mice showed no collagen synthesis. Compared with the saline control schistosomiasis mice phosphorothioate double-stranded oligodeoxynucleotide treatment decreased total liver collagen content (i.e. hydroxy-4-proline) by 34%. This novel molecular approach has the potential to be employed as a novel antifibrotic treatment modality. (c) 2005 Wiley-Liss, Inc.

  11. Interleukin-1 beta Attenuates Myofibroblast Formation and Extracellular Matrix Production in Dermal and Lung Fibroblasts Exposed to Transforming Growth Factor-beta 1

    NARCIS (Netherlands)

    Mia, Masum M.; Boersema, Miriam; Bank, Ruud A.

    2014-01-01

    One of the most potent pro-fibrotic cytokines is transforming growth factor (TGF beta). TGF beta is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1 beta (IL1 beta) can influence the

  12. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract.

    Directory of Open Access Journals (Sweden)

    Brian Becknell

    Full Text Available Beta defensins (BDs are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1 expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1(-/- mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1(-/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.

  13. Expression and Antimicrobial Function of Beta-Defensin 1 in the Lower Urinary Tract

    Science.gov (United States)

    Becknell, Brian; Spencer, John David; Carpenter, Ashley R.; Chen, Xi; Singh, Aspinder; Ploeger, Suzanne; Kline, Jennifer; Ellsworth, Patrick; Li, Birong; Proksch, Ehrhardt; Schwaderer, Andrew L.; Hains, David S.; Justice, Sheryl S.; McHugh, Kirk M.

    2013-01-01

    Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1 -/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1 -/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract. PMID:24204930

  14. Clinical significance of determination of serum collagen type IV (IV-C) and transforming growth factor beta1(TGF1) levels in patients with diabetic nephropathy

    International Nuclear Information System (INIS)

    Xie Hongfang; Peng Liang

    2006-01-01

    Objective: To investigate the clinical significance of determination of serum collagen type IV (IV-C) and transforming growth factor beta 1 (TGF1 ) levels in patients with diabetic nephropathy. Methods: Serum IV-C levels ( with RIA) and TGF1 levels (with ELISA) were determined in 30 controls and 105 patients with type II diabetis mellitus (45 with diabetic nephropathy and 60 without nephropathy). Results: The serum levels of IV-C and TGF1 in diabetic patients with nephropathy were significantly higher than those in controls (P 0.05). Conclusion: Serum IV-C and TGF1 , levels increased gradually as the diabetic nephropathy got more severe, they could be used as sensitive markers for early diagnosis of development of diabetic nephropathy. (authors)

  15. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-beta (= lymphotoxin-alpha) and cytolysin appeared early and before onset of clinical...... signs of EAE; (ii) TNF-alpha peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-gamma (IFN-gamma) mRNA shown previously is consistent with a role of IL-12 in promoting...... proliferation and activation of T helper 1 (Th1) type cells producing IFN-gamma. The TNF-beta mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-alpha was suggested from these observations that TNF-alpha mRNA expression...

  16. IL-6 inhibits upregulation of membrane-bound TGF-beta 1 on CD4+ T cells and blocking IL-6 enhances oral tolerance

    Science.gov (United States)

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L.

    2016-01-01

    Oral administration of antigen induces regulatory T cells that express latent membrane-bound TGF-beta (LAP) and that have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP+ on CD4+ T cells. The combination of anti-CD3 mAb, anti-CD28 mAb and recombinant IL-2 induced expression of LAP on naïve CD4+ T cells, independent of FoxP3 or exogenous TGF-β. In vitro generated CD4+LAP+FoxP3− T cells were suppressive in vitro, inhibiting proliferation of naïve CD4+ T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing antibodies against cytokines we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNFα. IL-6 abrogated the in vitro induction of CD4+LAP+ T cells by STAT3 dependent inhibition of Lrrc32 (GARP), the adapter protein that tethers TGF-beta to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4+ T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that pro-inflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. PMID:28039301

  17. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    Science.gov (United States)

    Huminiecki, Lukasz; Goldovsky, Leon; Freilich, Shiri; Moustakas, Aristidis; Ouzounis, Christos; Heldin, Carl-Henrik

    2009-02-03

    The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-beta (TGF-beta) pathway -- one of the fundamental and versatile metazoan signal transduction engines. After an investigation of 33 genomes, we show that the emergence of the TGF-beta pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-beta pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-beta pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Our results challenge the view of well-conserved developmental pathways. The TGF-beta signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.

  18. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    Science.gov (United States)

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  19. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  20. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice.

    Science.gov (United States)

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-06-24

    Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an

  1. Transforming growth factor beta 1 expression and inflammatory cells in tooth extraction socket after X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Ramadhan Hardani Putra

    2016-06-01

    Full Text Available Background: Radiographic examination is often used in dentistry to evaluate tooth extraction complications. X-ray used in radiographic examination, however, has negative effects, including damage to DNA and inflammatory response during wound healing process. Purpose: This study aimed to analyze the effects of X-ray irradiation on transforming growth factor beta 1 (TGF1 expression and number of inflammatory cells in tooth extraction sockets. Method: Thirty rats were divided into three groups, which consist of control group (with a radiation of 0 mSv, treatment group 1 (with a radiation of 0.08 mSv, and treatment group 2 (with a radiation of 0.16 mSv. These rats in each group were sacrificed on days 3 and 5 after treatment. Inflammatory cells which were observed in this research were PMN, macrophages, and lymphocytes. Histopathological and immunohistochemical examinations were used to calculate the number of inflammatory cells and TGF1 expression. Obtained data were analyzed using SPSS 16.0 software with one way ANOVA and Tukey’s HSD tests. Result: There was no significant decrease in the number of PMN. On the other hand, there were significant decreases in the number of macrophages and lymphocytes in the sacrificed group on day-5 with the radiation of 0.16 mSv. Similarly, the most significant decreased expression of TGF1 was found in the group sacrificed on day 5 with the radiation of 0.16 mSv. Conclusion: X-ray irradiation with 0.08 mSv and 0.16 mSv doses can decrease TGF1 expression and number of inflammatory cells in tooth extraction sockets on day 3 and 5 post extraction.

  2. Skip Regulates TGF1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF1. The ectopic expression of SKIP inhibited both TGF1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  3. Evodiamine attenuates TGF1-induced fibroblast activation and endothelial to mesenchymal transition.

    Science.gov (United States)

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF1. HUVECs stimulated with TGF1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  4. Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF1 and IL-6

    Directory of Open Access Journals (Sweden)

    Levy Laura S

    2007-02-01

    Full Text Available Abstract Background AIDS-related non-Hodgkin's lymphoma (AIDS-NHL is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta. The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6 may represent a counteracting positive influence in their growth regulation. Methods Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. Results Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines

  5. Comparative immunoexpression of ICAM-1, TGF1 and ki-67 in periapical and residual cysts.

    Science.gov (United States)

    Martins, R; Armada, L; Dos Santos, T-C; Pires, F-R

    2017-01-01

    This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when pcysts compared to periapical cysts (p=0.017). Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair.

  6. Co-ordinate expression of activin A and its type I receptor mRNAs during phorbol ester-induced differentiation of human K562 erythroleukemia cells.

    Science.gov (United States)

    Hildén, K; Tuuri, T; Erämaa, M; Ritvos, O

    1999-07-20

    Activins were originally isolated based on their ability to stimulate follicle-stimulating hormone secretion but later they have been shown to regulate a number of different cellular functions such as nerve cell survival, mesoderm induction during early embryogenesis as well as hematopoiesis. We studied the regulation of activin A, a homodimer of betaA-subunits, mRNA and protein in K562 erythroleukemia cells, which are known to be induced toward the erythroid lineage in response to activin or TGF-beta or toward the megakaryocytic lineage by the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). Here we show by Northern blot analysis as well as by Western and ligand blotting that TPA strongly promotes activin betaA-subunit mRNA and activin A protein expression in K562 cells in time- and concentration dependent manner. In contrast, neither activin A nor TGF-beta induced betaA-subunit mRNA expression during erythroid differentiation in K562 cells. Interestingly, whereas activin type II receptors are not regulated during K562 cell differentiation (Hilden et al. (1994) Blood 83, 2163-2170), we now show that the activin type I and IB receptor mRNAs are clearly induced by TPA but not by activin or TGF-beta. We also show that the inducing effect of TPA on expression of activin betaA-subunit mRNA is potentiated by the protein kinase A activator 8-bromo-cAMP. We conclude that activin A and its type I receptors appear to be co-ordinately up-regulated during megakaryocytic differentiation of K562 cells.

  7. Activation of PPARs α, β/δ, and γ Impairs TGF1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Paul-Emile Poleni

    2010-01-01

    Full Text Available Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF1- induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP- 1/Matrix Metalloproteinase (MMP balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9 or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.

  8. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells

    Science.gov (United States)

    Tran, Dat Q.; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M.

    2009-01-01

    TGF-β family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-β is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFβ-binding protein (LTBP) to produce a large latent form. Latent TGF-β is also found on the surface of activated FOXP3+ regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-β to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-β and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGFexpression on activated Tregs and recombinant latent TGF1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-β on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism. PMID:19651619

  9. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization

    DEFF Research Database (Denmark)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Fisker, Sanne

    2007-01-01

    of the metabolic syndrome. Our objective was to compare 11beta-HSD1 gene expression in different fat depots (visceral, subcutaneous abdominal, and subcutaneous gluteal) in lean and obese men and women. RESEARCH METHODS AND PROCEDURES: A cross-sectional study design was used for healthy patients undergoing minor...... abdominal surgery (lean men, 10), minor gynecological surgery (lean woman, 10), or gastric banding operations (obese men, 10; and obese women, 10). Gene expressions of 11beta-HSD1 in adipose tissue samples were determined by real-time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: Lean...... women had lower 11beta-HSD1 gene expression in subcutaneous adipose tissue compared with men (62% lower, p women. 11Beta-HSD1 mRNA in human adipose tissue was higher in obese subjects compared with lean subjects in both women...

  10. Effects of transforming growth factor-beta on long-term human cord blood monocyte cultures

    International Nuclear Information System (INIS)

    Orcel, P.; Bielakoff, J.; De Vernejoul, M.C.

    1990-01-01

    Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes

  11. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  12. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Svendsen, P F; Madsbad, S; Nilas, L

    2009-01-01

    OBJECTIVE: To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate...... assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. RESULTS: Polycystic ovary syndrome (P... distribution (PPolycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol...

  13. Overexpression of TGF1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of); Ko, Kinarm [Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701 (Korea, Republic of); Koh, Yong-Gon, E-mail: yonseranglab@daum.net [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of)

    2014-08-08

    Highlights: • Continuous TGF1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF1. The results revealed that continuous overexpression of TGF1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  14. Overexpression of TGF1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    International Nuclear Information System (INIS)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-01-01

    Highlights: • Continuous TGF1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF1. The results revealed that continuous overexpression of TGF1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs

  15. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    Science.gov (United States)

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Increased transforming growth factor beta (TGF-β) and pSMAD3 signaling in a Murine Model for Contrast Induced Kidney Injury.

    Science.gov (United States)

    Kilari, Sreenivasulu; Yang, Binxia; Sharma, Amit; McCall, Deborah L; Misra, Sanjay

    2018-04-26

    We tested the hypothesis that post-contrast acute kidney injury (PC-AKI) occurs due to increase in transforming growth factor beta (Tgf-β) and pSMAD3 signaling in a murine model of PC-AKI. Mice had nephrectomy performed and twenty-eight days later, 100-μL of radio-contrast (Vispaque 320) or saline was administered via the jugular vein. Animals were sacrificed at 2, 7, and 28 days later and the serum BUN, creatinine, urine protein levels, and kidney weights were assessed. In human kidney-2 (HK-2) cells, gene and protein expression with cellular function was assessed following inhibition of TGFβR-1 plus contrast exposure. After contrast administration, the average serum creatinine is significantly elevated at all time points. The average gene expression of connective tissue growth factor (Ctgf), Tgfβ-1, matrix metalloproteinase-9 (Mmp-9), and collagen IVa (Col IVa) are significantly increased at 2 days after contrast administration (P < 0.05). Cellular proliferation is decreased and there is increased apoptosis with tubulointerstitial fibrosis. Contrast administered to HK-2 cells results in increased pSMAD3 levels and gene expression of Ctgf, Tgfβ-1, Tgfβ-2, Col IVa, Mmp-9, and caspase/7 activity with a decrease in proliferation (all, P < 0.05). TGFβR-1 inhibition decreased the expression of contrast mediated pro-fibrotic genes in HK-2 cells with no change in the proliferation and apoptosis.

  17. Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes.

    Science.gov (United States)

    Creek, K E; Geslani, G; Batova, A; Pirisi, L

    1995-01-01

    Retinoids (vitamin A and its natural and synthetic derivatives) have shown potential as chemopreventive agents, and diets poor in vitamin A and/or its precursor beta-carotene have been linked to an increased risk of cancer at several sites including the cervix. Human papillomavirus (HPV) plays an important role in the etiology of cervical cancer. We have developed an in vitro model of cancer progression using human keratinocytes (HKc) immortalized by HPV16 DNA (HKc/HPV16). Although immortal, early passage HKc/HPV16, like normal HKc, require epidermal growth factor (EGF) and bovine pituitary extract (BPE) for proliferation and undergo terminal differentiation in response to serum and calcium. However, following prolonged culture, growth factor independent HKc/HPV16 lines that no longer require EGF and BPE can be selected (HKc/GFI). Further selection of HKc/GFI produces lines that are resistant to serum- and calcium- induced terminal differentiation (HKc/DR). HKc/DR, but not early passage HKc/HPV16, are susceptible to malignant conversion following transfection with viral Harvey ras or Herpes simplex virus type II DNA. We have investigated the sensitivity of low to high passage HKc/HPV16 and HKc/GFI to growth control by all-trans-retinoic acid (RA, an active metabolite of vitamin A). Early passage HKc/HPV16 are very sensitive to growth inhibition by RA, and in these cells RA decreases the expression of the HPV16 oncogenes E6 and E7. However, as the cells progress in culture they lose their sensitivity to RA. Growth inhibition by RA may be mediated through the cytokine transforming growth factor-beta (TGF-beta), a potent inhibitor of epithelial cell proliferation. RA treatment of HKc/HPV16 and HKc/GFI results in a dose-and time-dependent induction (maximal of 3-fold) in secreted levels of TGF-beta. Also, Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced TGF-beta 1 and TGF-beta 2 expression about 3- and 50-fold, respectively

  18. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  19. CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network.

    Directory of Open Access Journals (Sweden)

    Sashidhar S Nakerakanti

    Full Text Available Connective tissue growth factor (CCN2 is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3 integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(vβ(3 integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(vβ(3 integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.

  20. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    Science.gov (United States)

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (PPCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  1. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.

    Science.gov (United States)

    Guo, Xing; Ramirez, Alejandro; Waddell, David S; Li, Zhizhong; Liu, Xuedong; Wang, Xiao-Fan

    2008-01-01

    The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.

  2. Regulation of the expression of GARP/latent-TGF1 complexes on mouse T cells and their role in Regulatory T Cell and Th17 differentiation1

    Science.gov (United States)

    Edwards, Justin P.; Fujii, Hodaka; Zhou, Angela X.; Creemers, John; Unutmaz, Derya; Shevach, Ethan M.

    2013-01-01

    GARP/LRRC32 has previously been defined as a marker of activated human regulatory T-cells (Tregs) that is responsible for surface localization of latent TGF1. We find that GARP and latent TGF1 are also found on mouse Tregs activated via TCR stimulation, but in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF1 and TGF1 loading into GARP and is independent of furin-mediated processing of pro-TGF1 to latent TGF1. Specific deletion of GARP in CD4+ T cells results in lack of expression of latent-TGF1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of T conventional cells in vitro. Activated Tregs expressing GARP/latent-TGF1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17 producing cells and Treg is preferentially induced by Tregs expressing the latent-TGF1/GARP complex on their cell surface rather than by secreted latent-TGF1. PMID:23645881

  3. Effects of PPARγ ligands on TGF1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  4. The flinders sensitive line rats, a genetic model of depression, show abnormal serotonin receptor mRNA expression in the brain that is reversed by 17beta-estradiol.

    Science.gov (United States)

    Osterlund, M K; Overstreet, D H; Hurd, Y L

    1999-12-10

    The possible link between estrogen and serotonin (5-HT) in depression was investigated using a genetic animal model of depression, the Flinders Sensitive Line (FSL) rats, in comparison to control Flinders Resistant Line rats. The mRNA levels of the estrogen receptor (ER) alpha and beta subtypes and the 5-HT(1A) and 5-HT(2A) receptors were analyzed in several limbic-related areas of ovariectomized FSL and FRL rats treated with 17beta-estradiol (0.15 microg/g) or vehicle. The FSL animals were shown to express significantly lower levels of the 5-HT(2A) receptor transcripts in the perirhinal cortex, piriform cortex, and medial anterodorsal amygdala and higher levels in the CA 2-3 region of the hippocampus. The only significant difference between the rat lines in ER mRNA expression was found in the medial posterodorsal amygdala, where the FSL rats showed lower ERalpha expression levels. Overall, estradiol treatment increased 5-HT(2A) and decreased 5-HT(1A) receptor mRNA levels in several of the examined regions of both lines. Thus, in many areas, estradiol was found to regulate the 5-HT receptor mRNA expression in the opposite direction to the alterations found in the FSL rats. These findings further support the implication of 5-HT receptors, in particular the 5-HT(2A) subtype, in the etiology of affective disorders. Moreover, the ability of estradiol to regulate the expression of the 5-HT(1A) and 5-HT(2A) receptor genes might account for the reported influence of gonadal hormones in mood and depression.

  5. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved in the transformat......The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved...... in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL......) and TNF-related apoptosis-inducing ligand (TRAIL) in HVSMC. All three growth factors decreased OPG protein production significantly; these results were paralleled by reduced OPG mRNA expression. TRAIL mRNA levels were also decreased. RANKL mRNA expression declined when treated with TGF-beta1 but were...

  6. The effect of TGF-beta2 on MMP-2 production and activity in highly metastatic human bladder carcinoma cell line 5637.

    Science.gov (United States)

    Dehnavi, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ataei, Zahra; Aryan, Hajar

    2009-06-01

    Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.

  7. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Plummer, Howard K III; Yu, Qiang; Cakir, Yavuz; Schuller, Hildegard M

    2004-01-01

    Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta 2 -adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K + flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  8. Peripheral mononuclear cell resistin mRNA expression is increased in type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, Panayoula C; Tsigos, Constantine; Anastasiou, Eleni; Yfanti, Eleni; Boutati, Eleni; Souvatzoglou, Emmanouil; Kyrou, Ioannis; Raptis, Sotirios A

    2008-01-01

    Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs) and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P = .05). Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6 were all significantly higher in DM2 compared to control women (P DM2 women (P = .051), and overall, they correlated significantly with BMI (r = 0.406, P = .010) and waist circumference (r = 0.516, P = .003), but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1beta, TNF-alpha, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  9. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    Science.gov (United States)

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  10. Absence of transforming growth factor-beta type II receptor is associated with poorer prognosis in HER2-negative breast tumours

    DEFF Research Database (Denmark)

    Paiva, C E; Drigo, S A; Rosa, F E

    2010-01-01

    BACKGROUND: The clinical relevance of transforming growth factor-beta (TGF-beta)-signalling pathway in breast carcinomas (BCs) remained elusive. This study aimed to evaluate the prognostic value of TGF-beta1 and transforming growth factor-beta type II receptor (TGF-betaRII) expression levels in t...

  11. Curcumin inhibits TGF1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    Science.gov (United States)

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF1). TGF1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF1 signaling pathways including TGF1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  12. Immunohistochemical expression of Insulin-like growth factor-1, Transforming growth factor-beta1, and Vascular endothelial growth factor in parathyroid adenoma and hyperplasia

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2014-01-01

    Full Text Available Background: Insulin-like growth factor (IGF, transforming growth factor-beta1 (TGF1, and vascular endothelial growth factor (VEGF are commonly studied growth factors, but little data are available on the immunohistochemical expression of these factors in parathyroid lesions. Materials and Methods: Tissue specimens from 36 patients with primary hyperparathyroidism (P-HPT (26 adenomas and 10 primary hyperplasias were examined. Normal parathyroid tissue adjacent to the adenoma or area of hyperplasia was used as control tissue. Preoperative laboratory testing [serum Ca and P, creatinine and parathormone levels (PTH] which led to the diagnosis of P-HPT had been performed, the size and weight of the parathyroid glands measured, and postoperative serum PTH levels determined. Paraffin-embedded parathyroid tissue specimens were stained with antibodies to IGF-1, VEGF, and TGF1 using standard immunohistochemical procedures. Results: IGF-1 immunoreactivity was seen in 50% of hyperplasia and in 46% of adenoma samples, but in 87% of normal parathyroid tissue in the vicinity of the adenomas (P = 0.005. TGF1 immunoreactivity was observed in 90% of hyperplasia, in 92% of adenoma samples, and in 95% of normal tissues around adenomas. VEGF immunoreactivity was observed in 70% of hyperplastic and 65% of adenomatous tissues, as well as in 54% of normal tissues in the vicinity of the adenoma. No significant differences in the expression of IGF-1, TGF1, and VEGF were observed between primary adenomas compared to hyperplasia samples (P > 0.05. Conclusions: Parathyroid tissue is clearly a site for production of IGF-1, TGF1, and VEGF. IGF-1 receptor activity was higher in normal parathyroid tissue compared to hyperplastic and adenomatous tissue.

  13. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.

    Science.gov (United States)

    Mody, Avani A; Wordinger, Robert J; Clark, Abbot F

    2017-02-01

    Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.

  14. YB-1 overexpression promotes a TGF1-induced epithelial–mesenchymal transition via Akt activation

    International Nuclear Information System (INIS)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-01-01

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF1 induced YB-1 expression, and TGF1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  15. Exogenous modulation of TGF1 influences TGF-βR-III-associated vascularization during wound healing in irradiated tissue

    International Nuclear Information System (INIS)

    Wehrhan, F.; Schultze-Mosgau, S.; Grabenbauer, G.G.; Roedel, F.; Amann, K.

    2004-01-01

    Background and purpose: Following preoperative radiotherapy prior to ablative surgery of squamous epithelial cell carcinomas of the head and neck region, wound-healing disorders occur. Previous experimental studies showed altered expression of transforming growth factor-(TGF-)β isoforms following surgery in irradiated graft beds. Altered levels of TGF1 are reported to promote fibrosis and to suppress vascularization during wound healing, whereas expression of TGF-β receptor-III (TGF-βR-III) is associated with vascularization. The aim of the study was to analyze the influence of anti-TGF1 treatment on TGF-βR-III-associated vascularization in the transition area between irradiated graft bed and graft. Material and methods: Wistar rats (male, weight 300-500 g) underwent preoperative irradiation of the head and neck region with 40 Gy (four fractions of 10 Gy each; n=16 animals). A free myocutaneous gracilis flap taken from the groin was then transplanted to the neck in all rats. The time interval between operation and transplantation was 4 weeks. Eight animals received 1 μg anti-TGF1 into the graft bed by intradermal injection on days 1-7 after surgery. On days 3, 7, 14, 28, 56, and 120, skin samples were taken from the transition area between transplant and graft bed and from the graft bed itself. Immunohistochemistry was performed using the ABC-POX method to analyze the TGF-βR-III and E-selection expression. Histomorphometry was performed to analyze the percentage and the area of positively stained vessels. Results: A significantly higher expression of TGF-βR-III was seen in the irradiated and anti-TGF1 -treated graft bed in comparison to the group receiving preoperative irradiation followed by transplantation alone. The percentage of TGF-βR-III positively staining capillaries from the total amount of capillaries in the anti-TGF1 -treated graft bed was higher than in the group irradiated only. The total area of capillaries was also higher

  16. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  17. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication.

    Science.gov (United States)

    Tapella, Laura; Cerruti, Matteo; Biocotino, Isabella; Stevano, Alessio; Rocchio, Francesca; Canonico, Pier Luigi; Grilli, Mariagrazia; Genazzani, Armando A; Lim, Dmitry

    2018-02-01

    Astrocytes participate in the development and resolution of neuroinflammation in numerous ways, including the release of cytokines and growth factors. Among many, astrocytes release transforming growth factors beta (TGF-β) TGF1, TGF-β2 and TGF-β3. TGF1 is the most studied isoform, while production and release of TGF-β2 and TGF-β3 by astrocytes have been poorly characterized. Here, we report that purified cultures of hippocampal astrocytes produce mainly TGF-β3 followed by TGF-β2 and TGF1. Furthermore, astrocytes release principally the active form of TGF-β3 over the other two. Changes in release of TGF-β were sensitive to the calcineurin (CaN) inhibitor FK506. Starvation had no effect on TGF1 and TGF-β3 while TGF-β2 mRNA was significantly up-regulated in a CaN-dependent manner. We further investigated production and release of astroglial TGF-β in Alzheimer's disease-related conditions. Oligomeric β-amyloid (Aβ) down-regulated TGF1, while up-regulating TGF-β2 and TGF-β3, in a CaN-dependent manner. In cultured hippocampal astrocytes from 3xTg-AD mice, TGF-β2 and TGF-β3, but not TGF1, were up-regulated, and this was CaN-independent. In hippocampal tissues from symptomatic 3xTg-AD mice, TGF-β2 was up-regulated with respect to control mice. Finally, treatment with recombinant TGF-βs showed that TGF-β2 and TGF-β3 significantly reduced PSD95 protein in cultured hippocampal neurons, and this effect was paralleled by conditioned media from Aβ-treated astrocytes or from astrocytes from 3xTg-AD mice. Taken together, our data suggest that TGF-β2 and TGF-β3 are produced by astrocytes in a CaN-dependent manner and should be investigated further in the context of astrocyte-mediated neurodegeneration. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Role of IGFBP7 in Diabetic Nephropathy: TGF1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun Watanabe

    Full Text Available Tubular injury is one of the important determinants of progressive renal failure in diabetic nephropathy (DN, and TGF1 has been implicated in the pathogenesis of tubulointerstitial disease that characterizes proteinuric renal disease. The aim of this study was to identify novel therapeutic target molecules that play a role in the tubule damage of DN. We used an LC-MS/MS-based proteomic technique and human renal proximal epithelial cells (HRPTECs. Urine samples from Japanese patients with type 2 diabetes (n = 46 were used to quantify the candidate protein. Several proteins in HRPTECs in cultured media were observed to be driven by TGF1, one of which was 33-kDa IGFBP7, which is a member of IGFBP family. TGF1 up-regulated the expressions of IGFBP7 mRNA and protein in a dose- and time-dependent fashion via Smad2 and 4, but not MAPK pathways in HRPTECs. In addition, the knockdown of IGFBP7 restored the TGF1-induced epithelial to mesenchymal transition (EMT. In the immunohistochemical analysis, IGFBP7 was localized to the cytoplasm of tubular cells but not that of glomerular cells in diabetic kidney. Urinary IGFBP7 levels were significantly higher in the patients with macroalbuminuria and were correlated with age (r = 0.308, p = 0.037, eGFR (r = -0.376, p = 0.01, urinary β2-microglobulin (r = 0.385, p = 0.008, and urinary N-acetyl-beta-D-glucosaminidase (NAG (r = 0.502, p = 0.000. A multivariate regression analysis identified urinary NAG and age as determinants associated with urinary IGFBP7 levels. In conclusion, our data suggest that TGF1 enhances IGFBP7 via Smad2/4 pathways, and that IGFBP7 might be involved in the TGF1-induced tubular injury in DN.

  19. Nitric oxide and TGF1 inhibit HNF-4α function in HEPG2 cells

    International Nuclear Information System (INIS)

    Lucas, Susana de; Lopez-Alcorocho, Juan Manuel; Bartolome, Javier; Carreno, Vicente

    2004-01-01

    This study analyzes if the profibrogenic factors nitric oxide and transforming growth factor-β1 (TGF1) affect hepatocyte nuclear factor-4α (HNF-4α) function. For this purpose, HepG2 cells were treated with TGF1 or with a nitric oxide donor to determine mRNA levels of coagulation factor VII and HNF-4α. Treatment effect on factor VII gene promoter was assessed by chloramphenicol acetyl-transferase assays in cells transfected with the pFVII-CAT plasmid. HNF-4α binding and protein levels were determined by gel shift assays and Western blot. TGF1 and nitric oxide downregulated factor VII mRNA levels by inhibiting its gene promoter activity. This inhibition is caused by a decrease in the DNA binding of HNF-4α. TGF1 induces degradation of HNF-4α in the proteasome while nitric oxide provokes nitrosylation of cysteine residues in this factor. TGF1 and nitric oxide inhibit HNF-4α activity. These findings may explain the loss of liver functions that occurs during fibrosis progression

  20. A Novel Human TGF1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  1. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors.

    Science.gov (United States)

    Roy, Laurent-Olivier; Poirier, Marie-Belle; Fortin, David

    2018-04-08

    Glioblastoma (GBM) represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β). We hypothesized that TGF-β gene expression could correlate with overall survival (OS) and serve as a prognostic biomarker. TGF-β₁ and -β₂ expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan-Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS). In GBM, TGF-β₁ and -β₂ levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan-Meier and multivariate analyses revealed that high to moderate expressions of TGF-β₁ significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF-β₁ is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β₂. We believe our study is the first to unveil a significant relationship between TGF-β₁ expression and OS or PFS in newly diagnosed GBM. TGF-β₁ could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.

  2. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    Science.gov (United States)

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  4. Androgen receptor-beta mRNA levels in different tissues in breeding and post-breeding male and female sticklebacks, Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Hoffmann Erik

    2012-03-01

    Full Text Available Abstract Background Androgens induce male characters by activating androgen receptors (AR. Previous quantitative studies on AR in fishes have been limited to few tissues and/or a single season/reproductive state. The aim of this investigation was to study the possible role of AR-beta expression levels in the control of male traits in the three-spined stickleback. To that end, AR-beta expression levels in major tissues in breeding and post-breeding male and female sticklebacks were examined. Methods AR-beta mRNA levels were quantified in ten tissues; eye, liver, axial muscle, heart, brain, intestine, ovary, testis, kidney and pectoral muscle in six breeding and post-breeding males and females using reverse transcription quantitative PCR. Results Breeding in contrast to post-breeding males built nests and showed secondary sexual characters (e.g. kidney hypertrophy and elevated androgen levels. Post-breeding females had lower ovarian weights and testosterone levels than breeding females. AR-beta was expressed in all studied tissues in both sexes and reproductive states with the highest expression in the gonads and in the kidneys. The kidney is an androgen target organ in sticklebacks, from which breeding males produce the protein spiggin, which is used in nest-building. There was also high AR-beta expression in the intestine, an organ that appears to take over hyperosmo-regulation in fresh water when the kidney hypertrophies in mature males and largely loses this function. The only tissue that showed effects of sex or reproductive state on AR-beta mRNA levels was the kidneys, where post-breeding males displayed higher AR-beta mRNA levels than breeding males. Conclusion The results indicate that changes in AR-beta mRNA levels play no or little role in changes in androgen dependent traits in the male stickleback.

  5. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Benoît Gore

    Full Text Available Mutations affecting transforming growth factor-beta (TGF-β superfamily receptors, activin receptor-like kinase (ALK-1, and endoglin (ENG occur in patients with pulmonary arterial hypertension (PAH. To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs and pulmonary endothelial cells (PECs from 14 patients with idiopathic PAH (iPAH and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV systolic pressure (RVSP, RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/- and wild-type (Eng+/+ mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/- mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH.

  6. Increased expression of NF-AT3 and NF-AT4 in the atria correlates with procollagen I carboxyl terminal peptide and TGF1 levels in serum of patients with atrial fibrillation.

    Science.gov (United States)

    Zhao, Fei; Zhang, ShiJiang; Chen, YiJiang; Gu, WeiDong; Ni, BuQing; Shao, YongFeng; Wu, YanHu; Qin, JianWei

    2014-11-25

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Unfortunately, the precise mechanisms and sensitive serum biomarkers of atrial remodeling in AF remain unclear. The aim of this study was to determine whether the expression of the transcription factors NF-AT3 and NF-AT4 correlate with atrial structural remodeling of atrial fibrillation and serum markers for collagen I and III synthesis. Right and left atrial specimens were obtained from 90 patients undergoing valve replacement surgery. The patients were divided into sinus rhythm (n = 30), paroxysmal atrial fibrillation (n = 30), and persistent atrial fibrillation (n = 30) groups. NF-AT3, NF-AT4, and collagen I and III mRNA and protein expression in atria were measured. We also tested the levels of the carboxyl-terminal peptide from pro-collagen I, the N-terminal type I procollagen propeptides, the N-terminal type III procollagen propeptides, and TGF1 in serum using an enzyme immunosorbent assay. NF-AT3 and NF-AT4 mRNA and protein expression were increased in the AF groups, especially in the left atrium. NF-AT3 and NF-AT4 expression in the right atrium was increased in the persistent atrial fibrillation group compared the sinus rhythm group with similar valvular disease. In patients with AF, the expression levels of nuclear NF-AT3 and NF-AT4 correlated with those of collagens I and III in the atria and with PICP and TGF1 in blood. These data support the hypothesis that nuclear NF-AT3 and NF-AT4 participates in atrial structural remodeling, and that PICP and TGF1 levels may be sensitive serum biomarkers to estimate atrial structural remodeling with atrial fibrillation.

  7. TGF1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF1.

    Directory of Open Access Journals (Sweden)

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  8. TIMP-1 expression in human colorectal cancer is associated with TGF-B1, LOXL2, INHBA1, TNF-AIP6 and TIMP-2 transcript profiles

    DEFF Research Database (Denmark)

    Offenberg, Hanne Kjær; Brunner, Nils; Mansilla, Francisco

    2008-01-01

    colorectal cancer (CRC) and the other TIMPs 2-4, which have also been associated with the progression of colorectal cancer. Genome-wide expression profiling of 172 CRC and normal mucosa samples was used to identify transcript changes for the genes under investigation. We found that TIMP-1 was up...... with the synthesis of extracellullar matrix, genes involved in the TGF-beta signalling pathway, and genes that are likely transcribed by the tumour cells. These insights add to the complex picture emerging about the regulation of TIMPs in colorectal cancer....... that colorectal cancer patients have increased plasma levels of the tissue inhibitor of metalloproteinases-1 (TIMP-1), and that high plasma TIMP-1 levels are associated with short colorectal cancer patient survival. However, although TIMP-1 has been extensively studied in cancer, very little is known about how...

  9. Regulation of the expression of GARP/latent TGF1 complexes on mouse T cells and their role in regulatory T cell and Th17 differentiation.

    Science.gov (United States)

    Edwards, Justin P; Fujii, Hodaka; Zhou, Angela X; Creemers, John; Unutmaz, Derya; Shevach, Ethan M

    2013-06-01

    GARP/LRRC32 was defined as a marker of activated human regulatory T cells (Tregs) that is responsible for surface localization of latent TGF1. We find that GARP and latent TGF1 are also found on mouse Tregs activated via TCR stimulation; however, in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus, and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF1 and TGF1 loading into GARP and is independent of furin-mediated processing of pro-TGF1 to latent TGF1. Specific deletion of GARP in CD4(+) T cells results in lack of expression of latent TGF1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of conventional T cells in vitro. Activated Tregs expressing GARP/latent TGF1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17-producing cells and Tregs is caused preferentially by Tregs expressing the latent TGF1/GARP complex on their cell surface rather than by secreted latent TGF1.

  10. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  11. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    Science.gov (United States)

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta

  12. Immunohistochemical Expression of TGF1, SMAD4, SMAD7, TGFβRII and CD68-Positive TAM Densities in Papillary Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Koni Ivanova

    2018-03-01

    Full Text Available BACKGROUND: Papillary thyroid carcinoma (PTC accounts for 80% of the thyroid malignancies that are characterised by slow growth and an excellent prognosis. Over-expression of SMAD4 protein restores TGF-β signalling, determines a strong increase in anti-proliferative effect and reduces invasive potential of tumour cells expressing it. AIM: The study aimed to analyse the immunohistochemical expression of TGF1 and its downstream phosphorylated SMAD4, element and of the inhibitory SMAD7 PTC variants and their association with the localisation of TAMs within the tumour microenvironment. METHODS: For this retrospective study we investigated 69 patients immunohistochemistry with antibodies against TGF-β, TGF – β-RII, SMAD4, SMAD7, CD68+ macrophages. RESULTS: Patients with low infiltration with CD68+ cells in tumour stroma has significantly shorter survival (median of 129.267 months compared to those with high CD68+ cells infiltration (p = 0.034. From the analysis of CD68+ cells in tumour border and tumour stroma correlated with expression of TGF1 / SMAD proteins, we observed that the positive expression of TGF1 in tumour cytoplasm, significantly correlated with increased number of CD68+ cells in tumour border (X2 = 5,945; р = 0.015. CONCLUSION: TGF-β enhances motility and stimulates recruitment of monocytes, macrophages and other immune cells while directly inhibiting their anti-tumour effector functions.

  13. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...... were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response....... Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti...

  14. MicroRNA-29b regulates TGF1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min; Li, Hui; Liu, Xiaoqiang; Xu, Ding; Wang, Fang, E-mail: milwang_122@msn.com

    2016-07-15

    The role of microRNA (miRNA) in proliferative vitreoretinopathy (PVR) progression has not been studied extensively, especially in retinal pigment epithelial–mesenchymal transition (EMT) which is the main reason for formation of PVR. In this study, we first investigated the miRNA expression profile in transforming growth factor beta 1 (TGF1) mediated EMT of ARPE-19 cells. Among the five changed miRNAs, miR-29b showed the most significant downregulation. Enhanced expression of miR-29b could reverse TGF1 induced EMT through targeting Akt2. Akt2 downregulation could inhibit TGF1-induced EMT. Furthermore, inhibition of miR-29b in ARPE-19 cells directly triggered EMT process, which characterized by the phenotypic transition and the upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin and zona occludin-1 (ZO-1) with increased cell migration. Akt2-shRNA also inhibited miR-29 inhibitor-induced EMT process. These data indicate that miR-29b plays an important role in TGF1-mediated EMT in ARPE-19 cells by targeting Akt2. - Highlights: • MiR-29b expression is decreased in TGF1-induced EMT of ARPE-19 cells. • MiR-29b inhibits TGF1-induced EMT in ARPE-19 cells. • MiR-29b inhibitor induces EMT in ARPE-19 cells. • Akt2 is the target for miR-29b. • Downregulation of Akt2 prevents TGF1-induced EMT of ARPE-19 cells.

  15. The peritoneum is both a source and target of TGF-β in women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Brown, Jeremy K; Saunders, Philippa T K; Duncan, W Colin; Horne, Andrew W

    2014-01-01

    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGFexpression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGFexpression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (Pperitoneal mesothelial cells secrete TGF1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (Pendometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.

  16. Both ERK/MAPK and TGF-Beta/Smad Signaling Pathways Play a Role in the Kidney Fibrosis of Diabetic Mice Accelerated by Blood Glucose Fluctuation

    Directory of Open Access Journals (Sweden)

    Xiaoyun Cheng

    2013-01-01

    Full Text Available Background. The notion that diabetic nephropathy is the leading cause of renal fibrosis prompted us to investigate the effects of blood glucose fluctuation (BGF under high glucose condition on kidney in the mice. Methods. The diabetic and BGF animal models were established in this study. Immunohistochemistry, Western blot, and RT-PCR analysis were applied to detect the expression of type I collagen, matrix metalloproteinase-1 (MMP1, metalloproteinase inhibitor 1 (TIMP1, transforming growth factor beta 1 (TGF1, phosphorylated-ERK, p38, smad2/3, and Akt. Results. BGF treatment increased type I collagen synthesis by two times compared with the control. The expression of MMP1 was reduced markedly while TIMP1 synthesis was enhanced after BGF treatment. ERK phosphorylation exhibits a significant increase in the mice treated with BGF. Furthermore, BGF can markedly upregulate TGF1 expression. The p-smad2 showed 2-fold increases compared with the only diabetic mice. However, p-AKT levels were unchanged after BGF treatment. Conclusions. These data demonstrate that BGF can accelerate the trend of kidney fibrosis in diabetic mice by increasing collagen production and inhibiting collagen degradation. Both ERK/MAPK and TGF-β/smad signaling pathways seem to play a role in the development of kidney fibrosis accelerated by blood glucose fluctuation.

  17. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    Science.gov (United States)

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  18. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    Directory of Open Access Journals (Sweden)

    Mathieu Lévesque

    2007-11-01

    Full Text Available Axolotls (urodele amphibians have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta. In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta

  19. [Effects of Tangshenling Mixture and benazepril on rats with diabetic nephropathy and its mechanism].

    Science.gov (United States)

    He, Xue-Lin; Li, Jian-Ping; Chen, Yi-Ping; Zhang, Zhi-Gang; Lin, Wei-Qin; Chen, Jiang-Hua

    2006-01-01

    To investigate the effects of Tangshenling Mixture (TSLM) and benazepril on rats with diabetic nephropathy (DN) and its mechanism. Diabetic nephropathy was induced in rats by intraperitoneal injection of streptozotocin. Fifty-eight rats with DN were randomly divided into four groups: untreated group, TSLM-treated group, TSLM plus benazepril-treated group and benazepril-treated group. Another seven normal rats were included in normal control group. Then, rats in each group were accordingly given normal saline, TSLM, TSLM plus benazepril and benazepril orally for six weeks respectively. Blood and urine biochemical indexes, plasma atrial natriuretic factor (ANF), pathomorphology of renal tissue, transforming growth factor beta1 (TGF-beta1) and glucose transporter 1 (GLUT1) mRNAs in renal tissue were observed. Both TSLM and benazepril could decrease urinary albumin excretion rates, creatinine clearance and ratio of kidney weight to body weight of the rats with DN as well as reduce the pathological damages of the renal tissues. TSLM could reduce the level of plasma ANF and the expression of GLUT1 mRNA, but had no significant effect on the expression of TGF-beta1 mRNA. Benazepril could reduce the expression of TGF-beta1 mRNA, but had no significant effect on plasma ANF and the expression of GLUT1 mRNA. TSLM can reduce the pathological damages of renal tissues in rats with early-stage DN, and its mechanism may relate to decreasing the level of plasma ANF and the expression of GLUT1 mRNA which is different from that of benazepril. It seems that TSLM has synergetic effect with benazepril.

  20. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    Science.gov (United States)

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  1. TGF-Beta Gene Polymorphisms in Food Allergic versus Non-Food Allergic Eosinophilic Esophagitis

    Science.gov (United States)

    2013-10-01

    esophageal dysfunction (i.e. dysphagia, anorexia, early satiety, failure to thrive) in whom gastro - esophageal reflux disease has been ruled out by...W81XWH-11-1-0741 TITLE: TGF-Beta Gene Polymorphisms in Food Allergic versus Non-Food Allergic Eosinophilic Esophagitis PRINCIPAL INVESTIGATOR...versus Non-Food Allergic Eosinophilic Esophagitis 5b. GRANT NUMBER W81XWH-11-1-0741 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Broide MB

  2. Study of collagen metabolism and regulation after {beta} radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Yinghui, Zhou; Lan, Xu; Shiliang, Wu; Hao, Qiu; Zhi, Jiang; Youbin, Tu; Xueguang, Zhang [Suzhou Medical College (China)

    2001-04-01

    The animal model of {beta} radiation injury was established by the {beta} radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-{beta}{sub 1}, IL-6 were also detected. The results showed that after exposure to {beta} radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-{beta}{sub 1}, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-{beta}{sub 1}, IL-6 may be essential in the regulation of the collagen metabolism.

  3. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    inserted bilaterally into the femoral condyles of 10 skeletally mature mongrel dogs. The implants were initially surrounded by a 2 mm gap. Implants with 0.3 microg rhTGF-beta1 were compared with implants without growth factor. The dogs were sacrificed after six weeks. Bone remodeling was evaluated...... by histomorphometry on Goldner-stained undecalcified sections. The bone volume in the gap was increased significantly from 17.6% in the control group to 25.6% in the rhTGF-beta1 group (p = 0.03). Also bone surface was increased in the rhTGF-beta1 group. The osteoclast covered surfaces were increased from 3.......6% in the control group to 5.9% in the rhTGF-beta1 group (p = 0.02). In the surrounding trabecular bone no significant changes in bone remodeling parameters was demonstrated. This study suggests that rhTGF-beta1 adsorbed onto TCP-ceramic coated implants accelerates repair activity in the newly formed bone close...

  4. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    Science.gov (United States)

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  5. MSX-1 gene expression and regulation in embryonic palatal tissue.

    Science.gov (United States)

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  6. The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis

    Science.gov (United States)

    Young, Vicky J.; Brown, Jeremy K.; Saunders, Philippa T. K.; Duncan, W. Colin; Horne, Andrew W.

    2014-01-01

    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGFexpression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGFexpression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (Pendometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (Pendometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation. PMID:25207642

  7. Interleukin-1 inhibits renin gene expression in As4.1 cells but not in native juxtaglomerular cells

    DEFF Research Database (Denmark)

    Jensen, B L; Lehle, U; Müller, Maja

    1998-01-01

    ) cells and in the mouse tumor cell line As4.1, which expresses renin mRNA. Renin mRNA levels and secretion of active renin were not significantly changed by IL-1beta in native JG cells. Activation of adenylyl cyclase by forskolin increased renin secretion and renin mRNA levels three- and fivefold......, respectively. These stimulatory responses to forskolin were not altered by IL-1beta. In contrast to native JG cells, renin mRNA abundance was markedly suppressed by IL-1beta in As4.1 cells, whereas secretion of active renin and the stability of renin mRNA were not changed. In As4.1 cells forskolin did...... not change renin secretion or renin mRNA abundance in the absence or in the presence of IL-1beta. These findings suggest that IL-1beta has no direct influence on renin secretion and renin mRNA abundance at the level of native JG cells....

  8. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland.

    Science.gov (United States)

    Cabilla, Jimena P; Díaz, María del Carmen; Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2006-09-01

    Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.

  9. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression.

    Science.gov (United States)

    Eraky, Salma M; El-Mesery, Mohamed; El-Karef, Amro; Eissa, Laila A; El-Gayar, Amal M

    2018-05-01

    Lysophosphatidic acid is a lipid mediator that is supposed to be implicated in hepatic fibrosis. Silymarin and caffeine are natural compounds known for their anti-inflammatory and antioxidant effects. Our study aimed to explore the effect of silymarin, caffeine, and their combination on lysophosphatidic acid receptor 1 (LPAR1) pathway in thioacetamide (TAA)-induced hepatic fibrosis. Hepatic fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 200 mg/kg of TAA twice a week for 8 weeks. Silymarin (50 mg/kg), caffeine (50 mg/kg), and their combination (50 mg/kg silymarin + 50 mg/kg caffeine) were orally given to rats every day for 8 weeks along with TAA injection. Liver functions were measured. Histopathological examination of liver tissues was performed using hematoxylin and eosin and Masson's trichrome staining. mRNA expressions of LPAR1, transforming growth factor beta 1 (TGF1), connective tissue growth factor (CTGF), and alpha smooth muscle actin (α-SMA) were measured using RT-PCR. LPAR1 tissue expression was scored using immunohistochemistry. Silymarin, caffeine, and their combination significantly improved liver function. They caused significant decrease in fibrosis and necro-inflammatory scores. Combination of silymain and caffeine caused a significant decrease in the necro-inflammatory score than the single treatment with silymarin or caffeine. In addition, silymarin, caffeine, and their combination significantly decreased hepatic LPAR1, TGF1, CTGF, and α-SMA gene expressions and LPAR1 tissue expression. Silymarin, caffeine, and their combination protect against liver fibrosis through down-regulation of LPAR1, TGF1, and CTGF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    Science.gov (United States)

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  11. Expression of SCM-1alpha/lymphotactin and SCM-1beta in natural killer cells is upregulated by IL-2 and IL-12.

    Science.gov (United States)

    Hennemann, B; Tam, Y K; Tonn, T; Klingemann, H G

    1999-07-01

    Recruitment of lymphocytes is an important feature of the host immune response against pathogens. However, the mechanisms by which lymphocytes are attracted are not yet fully understood. Recently, the cDNA of a lymphocyte-specific chemokine, lymphotactin (Lptn), was isolated from murine and human T cells and was also found to be expressed in murine NK cells and human NK cell clones. This study investigated the influence of interleukin (IL)-2 and IL-12 on the expression of Lptn, also known as SCM (single cysteine motif)-1alpha, and SCM-1beta, a 97% homolog of Lptn, in freshly isolated human NK cells and the human NK cell line NK-92. Northern blot analysis and RT-PCR confirmed that nonactivated human NK cells expressed both genes at low level. After activation with IL-2 or IL-12, the expression of both Lptn and SCM-1beta was upregulated within hours. NK-92 cells maintained in medium supplemented with IL-2 constitutively expressed SCM-1 mRNA. However, after 24 h of IL-2 starvation and subsequent culturing at various IL-2 concentrations, the expression of Lptn/SCM-1alpha was upregulated in a dose-dependent manner, whereas the expression of SCM-1beta remained consistently high. These observations indicate that NK cells, in addition to T lymphocytes, express Lptn/SCM-1alpha and SCM-1beta after cytokine activation. The upregulation of these chemokines in NK cells on activation likely acts to increase the number of effector cells reaching the site of an immune response such as inflammation.

  12. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    Science.gov (United States)

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; PGM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.

  13. The peritoneum is both a source and target of TGF-β in women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Vicky J Young

    Full Text Available Transforming growth factor-β (TGF-β is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGFexpression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas from women without disease (n = 16 and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15 and were analysed for TGFexpression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05 and peritoneal mesothelial cells secrete TGF1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05. The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05 in expression of genes associated with tumorigenesis (MAPK8, CDC6, epithelial-mesenchymal transition (NOTCH1, angiogenesis (ID1, ID3 and neurogenesis (CREB1 in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.

  14. TGF1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-κB/IL-6/MMP-2

    International Nuclear Information System (INIS)

    Binker, Marcelo G.; Binker-Cosen, Andres A.; Gaisano, Herbert Y.; Cosen, Rodica H. de; Cosen-Binker, Laura I.

    2011-01-01

    Research highlights: → Rac1 mediates TGF1-induced SW1990 invasion through MMP-2 secretion and activation. → NADPH-generated ROS act downstream of Rac1 in TGF1-challenged SW1990 cells. → TGF1-stimulated ROS activate NF-κB in SW1990 cells. → NFκB-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF1 induced secretion and activation of the collagenase MMP-2, which was required for TGF1-stimulated invasion. Our results also indicate that signaling events involved in TGF1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  15. Implication of C-type natriuretic peptide-3 signaling in glycosaminoglycan synthesis and chondrocyte hypertrophy during TGF1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kocamaz, Erdogan; Gok, Duygu; Cetinkaya, Ayse; Tufan, A Cevik

    2012-10-01

    This study investigated the involvement of CNP-3, chick homologue for human C-type natriuretic peptide (CNP), in TGF1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells (MSCs). Chondrogenic differentiation of MSCs in pellet cultures was induced by TGF1. Chondrogenic differentiation and glycosaminoglycan synthesis were analyzed on the basis of basic histology, collagen type II expression, and Alcian blue staining. Antibodies against CNP and NPR-B were used to block their function during these processes. Results revealed that expression of CNP-3 and NPR-B in MSCs were regulated by TGF1 in monolayer cultures at mRNA level. In pellet cultures of MSCs, TGF1 successfully induced chondrogenic differentiation and glycosaminoglycan synthesis. Addition of CNP into the TGF1 supplemented chondrogenic differentiation medium further induced the glycosaminoglycan synthesis and hypertrophy of differentiated chondrocytes in these pellets. Pellets induced with TGF1 and treated with antibodies against CNP and NPR-B, did show collagen type II expression, however, Alcian blue staining showing glycosaminoglycan synthesis was significantly suppressed. In conclusion, CNP-3/NPR-B signaling may strongly be involved in synthesis of glycosaminoglycans of the chondrogenic matrix and hypertrophy of differentiated chondrocytes during TGF1 induced chondrogenic differentiation of MSCs.

  16. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  17. The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maria Górska

    2010-06-01

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha, activatory molecules (OX40, 4-1BB and elements of cytotoxicity (granzyme B, perforin 1 were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted.

  18. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1994-01-01

    was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating...

  19. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists

  20. Role of TGF-β signaling in inherited and acquired myopathies

    Directory of Open Access Journals (Sweden)

    Burks Tyesha N

    2011-05-01

    Full Text Available Abstract The transforming growth factor-beta (TGF-β superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF1, mitogen-activated protein kinases (MAPKs, and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.

  1. Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis

    Directory of Open Access Journals (Sweden)

    Ma Xiao-Yang

    2010-10-01

    Full Text Available Abstract Background Peritoneal dissemination is one of the main causes of death in gastric cancer patients. Transforming growth factor-beta1 (TGF1, one of the most potent fibrotic stimuli for mesothelial cells, may play a key role in this processing. The purpose of this study is to elucidate the effects of TGF1 on regulation of gastric cancer adhesion to mesothelial cells. Methods Peritoneal tissues and peritoneal wash fluid were obtained for hematoxylin and eosin staining or ELISA to measure fibrosis and TGF1 levels, respectively. The peritoneal mesothelial cell line, HMrSV5, was used to determine the role of TGF1 in regulation of gastric cancer cell adhesion to mesothelial cells and expression of collagen, fibronectin, and Smad 2/3 by using adhesion assay, western blot, and RT-PCR. Results The data showed that TGF1 treatment was able to induce collagen III and fibronectin expression in the mesothelial cells, which was associated with an increased adhesion ability of gastric cancer cells, but knockdown of minimal sites of cell binding domain of extracellular matrix can partially inhibit these effects. Conclusion Peritoneal fibrosis induced by TGF1 may provide a favorable environment for the dissemination of gastric cancer.

  2. Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats

    DEFF Research Database (Denmark)

    Lehrmann, E; Kiefer, R; Christensen, Thomas

    1998-01-01

    The potentially neurotrophic cytokine transforming growth factor-beta1 (TGF-beta1) is locally expressed following human stroke and experimental ischemic lesions, but the cellular source(s) and profile of induction have so far not been established in experimental focal cerebral ischemia. This stud...

  3. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    Science.gov (United States)

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  4. TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease

    Directory of Open Access Journals (Sweden)

    Sung Il Kim

    2012-06-01

    Full Text Available Transforming growth factor-β (TGF-β is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF1 is connected with the complexity of its cell signaling networks. TGF1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF1, and has been the focus of many previous reviews, importantly TGF1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1, which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF1.

  5. In vivo fluctuation of Tax, Foxp3, CTLA-4, and GITR mRNA expression in CD4(+)CD25(+) T cells of patients with human T-lymphotropic virus type 1-associated myelopathy.

    Science.gov (United States)

    Ramirez, E; Cartier, L; Rodriguez, L; Alberti, C; Valenzuela, M A

    2010-11-01

    HTLV-1 Tax expression exerts an inhibitory effect on the Foxp3 transcription factor in CD4(+)CD25(+) T-regulatory cells (Treg). For a better understanding of the role of Tax mRNA in the gene expression of cellular markers we measured Tax, Foxp3, CTLA-4, GITR, TGF-β, and IL-10 mRNA in Treg cells of 50 patients with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP; 27 women and 23 men; mean age: 56.7 years). The control group consisted of 23 non-infected subjects (12 women and 11 men) with a mean age of 51.3 years. Real-time PCR was used to measure mRNA of Tax proteins and several cellular markers of Treg function. Determinations revealed a high level of Tax mRNA in HAM/TSP (124.35 copies/100 CD4(+)CD25(+) T cells). Foxp3, GITR, and CTLA-4 mRNA levels were lower in HAM/TSP patients (mean ± SD, 22.07 ± 0.78, 9.63 ± 0.36, and 4.54 ± 0.39, respectively) than in non-infected controls (47.15 ± 12.94, 22.14 ± 1.91, and 21.07 ± 2.31). Both groups had similar levels of TGF-β and IL-10. An inverse relationship was found between Tax levels and Foxp3, CTLA-4, and GITR levels. Conversely, there was a direct correlation between levels of Foxp3, GITR, and CTLA-4. Disease severity and evolution time did not correlate with Tax or Foxp3 levels. The present results suggest that Tax and Foxp3 mRNA vary with the same degree of disease severity in HAM/TSP patients. Tax fluctuations may affect CTLA-4 and GITR expression via the Foxp3 pathway, causing virus-induced dysfunction of CD4(+)CD25(+) T cells in HAM/TSP patients.

  6. In vivo fluctuation of Tax, Foxp3, CTLA-4, and GITR mRNA expression in CD4+CD25+ T cells of patients with human T-lymphotropic virus type 1-associated myelopathy

    Directory of Open Access Journals (Sweden)

    E. Ramirez

    2010-11-01

    Full Text Available HTLV-1 Tax expression exerts an inhibitory effect on the Foxp3 transcription factor in CD4+CD25+ T-regulatory cells (Treg. For a better understanding of the role of Tax mRNA in the gene expression of cellular markers we measured Tax, Foxp3, CTLA-4, GITR, TGF-β, and IL-10 mRNA in Treg cells of 50 patients with human T-lymphotropic virus type 1 (HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP; 27 women and 23 men; mean age: 56.7 years. The control group consisted of 23 non-infected subjects (12 women and 11 men with a mean age of 51.3 years. Real-time PCR was used to measure mRNA of Tax proteins and several cellular markers of Treg function. Determinations revealed a high level of Tax mRNA in HAM/TSP (124.35 copies/100 CD4+CD25+ T cells. Foxp3, GITR, and CTLA-4 mRNA levels were lower in HAM/TSP patients (mean ± SD, 22.07 ± 0.78, 9.63 ± 0.36, and 4.54 ± 0.39, respectively than in non-infected controls (47.15 ± 12.94, 22.14 ± 1.91, and 21.07 ± 2.31. Both groups had similar levels of TGF-β and IL-10. An inverse relationship was found between Tax levels and Foxp3, CTLA-4, and GITR levels. Conversely, there was a direct correlation between levels of Foxp3, GITR, and CTLA-4. Disease severity and evolution time did not correlate with Tax or Foxp3 levels. The present results suggest that Tax and Foxp3 mRNA vary with the same degree of disease severity in HAM/TSP patients. Tax fluctuations may affect CTLA-4 and GITR expression via the Foxp3 pathway, causing virus-induced dysfunction of CD4+CD25+ T cells in HAM/TSP patients.

  7. Effect of Negative Pressure Wound Therapy on Cellular Fibronectin and Transforming Growth Factor-β1 Expression in Diabetic Foot Wounds.

    Science.gov (United States)

    Yang, Shao Ling; Zhu, Lv Yun; Han, Rui; Sun, Lei Lei; Dou, Jing Tao

    2017-08-01

    Chronic diabetic foot wounds are a leading cause of amputation, morbidity, and hospitalization for patients with diabetes. Negative-pressure wound therapy (NPWT) can putatively facilitate wound healing, but the underlying mechanisms remain unclear. Cellular fibronectin (cFN) and transforming growth factor-β1 (TGF1) play an important role in wound healing. This prospective randomized controlled trial evaluated the effects of NPWT on the production of cFN and the expression of TGF1 in diabetic foot wounds of patients. From January 2012 to January 2015, 40 patients with diabetic foot wounds were randomly and equally apportioned to receive either NPWT or advanced moist wound therapy (control) for 7 days. Granulation tissue was harvested before and after treatment. Immunohistochemistry and Western blot were performed to evaluate protein levels of cFN and TGF1, and real-time polymerase chain reaction (PCR) to measure corresponding mRNA expressions. NPWT facilitated the expression of cFN and TGF1 in diabetic foot wounds. Immunohistochemical analysis revealed higher levels of cFN and TGF1 in the NPWT group than in the control group. Western blot and real-time PCR analysis further showed that protein and mRNA levels of cFN or TGF1 were higher in the NPWT group than that in the control group ( P diabetic foot ulcers. Level I, randomized controlled study.

  8. Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-beta signaling and perturbation of MAPK signaling

    Czech Academy of Sciences Publication Activity Database

    Kosla, Jan; Dvořáková, Marta; Dvořák, Michal; Čermák, Vladimír

    2013-01-01

    Roč. 92, č. 12 (2013), s. 363-373 ISSN 0171-9335 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : PDGFB * Ha-Ras(G12V) * EGR4 * TGF-beta * Myofibroblast * FOXG1 * Microarrays Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.699, year: 2013

  9. Effects of electromagnetic radiation on morphology and TGF-β3 expression in mouse testicular tissue.

    Science.gov (United States)

    Luo, Yaning; Wang, Xiaowu; Chen, Yongbin; Xu, Shenglong; Ding, Guirong; Shi, Changhong

    2013-08-09

    Exposure to electromagnetic pulses in certain doses may lead to increase in the permeability of the blood testes barrier (BTB) in mice, which in turn affects spermatogenesis, penetration and spermiation. TGF-β3 is a key molecule involved in BTB permeability via regulation of tight junction proteins, and it participates in regulating spermatogenesis, synthesis of steroids and production of the extracellular matrix in testicular tissue. Therefore, it is hypothesized that TGF-β3 plays important roles in electromagnetic pulse (EMP)-induced changes in BTB permeability. In the present study, we carried out whole-body irradiation on mice using EMP of different intensities. No obvious pathological changes or significant increase in apoptosis was detected in testicular tissues after exposure to 100 and 200 pulses of intensity 200kV/m; however, with 400 pulses we observed the degeneration and shrinkage of testicular tissues along with a significant increase in apoptotic rate. Moreover, in the 100- and 200-EMP groups, a non-significant increase in TGF-β3 mRNA and protein expression was observed, whereas in the 400-EMP group a significant increase was observed (P<0.05). These results indicate that increase in the apoptotic rate of testicular tissues and increase in TGF-β3 expression may be one of the mechanisms for EMP-induced increase in BTB permeability in mice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Immunohistochemical Expression of TGF1 and Osteonectin in engineered and Ca(OH2-repaired human pulp tissues

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre CHISINI

    Full Text Available Abstract The aim of the present study was to evaluate the expression of transforming growth factor-β1 (TGF1 and osteonectin (ON in pulp-like tissues developed by tissue engineering and to compare it with the expression of these proteins in pulps treated with Ca(OH2 therapy. Tooth slices were obtained from non-carious human third molars under sterile procedures. The residual periodontal and pulp soft tissues were removed. Empty pulp spaces of the tooth slice were filled with sodium chloride particles (250–425 µm. PLLA solubilized in 5% chloroform was applied over the salt particles. The tooth slice/scaffold (TS/S set was stored overnight and then rinsed thoroughly to wash out the salt. Scaffolds were previously sterilized with ethanol (100–70° and washed with phosphate-buffered saline (PBS. TS/S was treated with 10% EDTA and seeded with dental pulp stem cells (DPSC. Then, TS/S was implanted into the dorsum of immunodeficient mice for 28 days. Human third molars previously treated with Ca(OH2 for 90 days were also evaluated. Samples were prepared and submitted to histological and immunohistochemical (with anti-TGF1, 1:100 and anti-ON, 1:350 analyses. After 28 days, TS/S showed morphological characteristics similar to those observed in dental pulp treated with Ca(OH2. Ca(OH2-treated pulps showed the usual repaired pulp characteristics. In TS/S, newly formed tissues and pre-dentin was colored, which elucidated the expression of TGF1 and ON. Immunohistochemistry staining of Ca(OH2-treated pulps showed the same expression patterns. The extracellular matrix displayed a fibrillar pattern under both conditions. Regenerative events in the pulp seem to follow a similar pattern of TGF1 and ON expression as the repair processes.

  11. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    Science.gov (United States)

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  12. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma.

    Science.gov (United States)

    Lu, You-Wei; Li, Jin; Guo, Wei-Jian

    2010-11-08

    The Polycomb group (PcG) genes are a class of regulators responsible for maintaining homeotic gene expression throughout cell division. PcG expression is deregulated in some types of human cancer. Both Bmi-1 and Mel-18 are of the key PcG proteins. We investigate the expression and clinicopathological roles of Mel-18 and Bmi-1 mRNA in gastric cancer. The expression of Mel-18 and Bmi-1 in a series of 71 gastric cancer tissues and paired normal mucosal tissues distant from the tumorous lesion was assayed by quantitative real time RT-PCR. The correlation between Mel-18 and Bmi-1 mRNA expression, and between Mel-18 or Bmi-1 mRNA level and clinicopathological characteristics were analyzed. Expression of Mel-18 and Bmi-1 genes was variably detected, but overexpression of Bmi-1 mRNA and decreased expression of Mel-18 mRNA were the most frequent alteration. In addition, the expression of Bmi-1 and Mel-18 mRNA inversely correlates in gastric tumors. Moreover, a significant positive correlation between Bmi-1 overexpression and tumor size, depth of invasion, or lymph node metastasis, and a significant negative correlation between Mel-18 low-expression with lymph node metastasis or the clinical stage were observed. Our data suggest that Mel-18 and Bmi-1 may play crucial but opposite roles in gastric cancer. Decreased Mel-18 and increased Bmi-1 mRNA expression was associated with the carcinogenesis and progression of gastric cancer. It is possible to list Bmi-1 and Mel-18 as biomarkers for predicting the prognosis of gastric cancer.

  13. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    Science.gov (United States)

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  14. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Science.gov (United States)

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice.

    Science.gov (United States)

    Hayashi, Hiromitsu; Sakai, Keiko; Baba, Hideo; Sakai, Takao

    2012-05-01

    The matricellular protein, thrombospondin-1 (TSP-1), is prominently expressed during tissue repair. TSP-1 binds to matrix components, proteases, cytokines, and growth factors and activates intracellular signals through its multiple domains. TSP-1 converts latent transforming growth factor-beta1 (TGF1) complexes into their biologically active form. TGF-β plays significant roles in cell-cycle regulation, modulation of differentiation, and induction of apoptosis. Although TGF1 is a major inhibitor of proliferation in cultured hepatocytes, the functional requirement of TGF1 during liver regeneration remains to be defined in vivo. We generated a TSP-1-deficient mouse model of a partial hepatectomy (PH) and explored TSP-1 induction, progression of liver regeneration, and TGF-β-mediated signaling during the repair process after hepatectomy. We show here that TSP-1-mediated TGF1 activation plays an important role in suppressing hepatocyte proliferation. TSP-1 expression was induced in endothelial cells (ECs) as an immediate early gene in response to PH. TSP-1 deficiency resulted in significantly reduced TGF-β/Smad signaling and accelerated hepatocyte proliferation through down-regulation of p21 protein expression. TSP-1 induced in ECs by reactive oxygen species (ROS) modulated TGF-β/Smad signaling and proliferation in hepatocytes in vitro, suggesting that the immediately and transiently produced ROS in the regenerating liver were the responsible factor for TSP-1 induction. We have identified TSP-1 as an inhibitory element in regulating liver regeneration by TGF1 activation. Our work defines TSP-1 as a novel immediate early gene that could be a potential therapeutic target to accelerate liver regeneration. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD.

    Science.gov (United States)

    Tang, Wenxiang; Shen, Zhenyu; Guo, Jiang; Sun, Shenghua

    2016-01-01

    To evaluate differentially expressed long noncoding RNAs (lncRNAs) and the potential role of lncRNA TUG1 in patients with chronic obstructive pulmonary disease (COPD). Total RNA was extracted from both COPD and non-COPD lung tissues, and microarray analysis was performed with 25,628 lncRNA probes and 20,106 mRNA probes. In addition, five up-regulated and five down-regulated lncRNAs were selected for identification using quantitative real-time polymerase chain reaction. COPD cell model was established by transforming growth factor β (TGF-β) treatment. Cell Counting Kit-8 assay was used to detect BEAS-2B and HFL1 cell proliferation after TUG-siRNA transfection with TGF-β treatment. In addition, the expression levels of α-SMA and fibronectin proteins were determined using Western blot in BEAS-2B and HFL1 cells after TUG-siRNA transfection with TGF-β treatment. There were 8,376 (32.7%) differentially expressed lncRNAs and 5,094 (25.3%) differentially expressed mRNAs in COPD lung tissues compared with non-COPD lung tissues. Five of the analyzed lncRNAs (BC038205, BC130595, TUG1, MEG3, and LOC646329) were markedly increased, while five lncRNAs (LOC729178, PLAC2, LOC339529, LINC00229, and SNHG5) were significantly decreased in COPD lung tissues compared with non-COPD lung tissues (n=20) ( ***P TUG1 promotes BEAS-2B and HFL1 cell proliferation after TGF-β treatment through inhibiting the expression levels of α-SMA and fibronectin. Abundant, differentially expressed lncRNAs and mRNAs were identified by microarray analysis and these might play a partial or key role in the diagnosis of patients with COPD. LncRNA TUG1 may become a very important class of biomarker and may act as a potential diagnostic and therapeutic target for patients with COPD.

  17. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Frandsen, Lis; Schjerling, Peter

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta (PGC-1alpha and PGC-1beta) were overexpressed by adenovirus-mediated gene transfer in cultures of primary rat skeletal muscle cells derived from neonatal myoblasts. Effects on muscle fiber type transition and metabolism...... an increase in the mRNA expression of TRB3, a negative regulator of insulin signaling. These results show that both PGC-1alpha and PGC-1beta are involved in the regulation of skeletal muscle fiber transition and metabolism and that they have both overlapping and differing effects....... were studied from days 5 to 22 of culture. PGC-1alpha and PGC-1beta overexpression caused a three- to fourfold increase in mRNA level, a doubling of enzymatic activity of citrate synthase, a slight increase in short-chain acyl-CoA dehydrogenase mRNA, a doubling of the mRNA level, and a 30-50% increase...

  18. CTRP6 inhibits fibrogenesis in TGF1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF1-treated dermal fibroblasts. •CTRP6 inhibits TGF1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF1/Smad3 signaling pathway in dermal fibroblasts.

  19. CTRP6 inhibits fibrogenesis in TGF1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF1-treated dermal fibroblasts. •CTRP6 inhibits TGF1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF1/Smad3 signaling pathway in dermal fibroblasts.

  20. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    BACKGROUND: Interferon (IFN)-beta therapy in multiple sclerosis (MS) has been suggested to promote a deviation from T lymphocyte production of pathogenic Th1 cytokines to less detrimental Th2 cytokines, but this is still controversial. We studied patterns of in vivo blood mononuclear cell (MNC...... of any Th1 or Th2 cytokines. The largest changes in cytokine mRNA levels occurred early (~9-12 h) after an IFN-beta injection. CONCLUSION: We found no evidence of a Th1- or Th2-mRNA-promoting effect of IFN-beta therapy. The therapeutic effect of IFN-beta is more likely attributable to the induction...

  1. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  2. The predisposing effect of TGF1 and serpine-1 on the formation of traumatic deep vein thrombosis: an experimental study in rats

    International Nuclear Information System (INIS)

    Hu Jihong; Wu Xuemei; Li Xingguo; Li Hongkun; Zheng Hongyu; Zhao Xueling; Wang Bing

    2011-01-01

    Objective: To investigate the changes of TGF1 and serpine-1 expression in femoral vein endothelial tissue in the experimental rat models with traumatic deep vein thrombosis (DVT) and to study the effect of expression level on the formation of traumatic deep vein thrombosis. Methods: A total of 60 SD rats were randomly divided into control group (n=10) and experimental group (n=50). Rat model of DVT used in experimental group was established by clamping the femoral vein together with the fixation of the lower extremity with plaster splint. The femoral arteries were dissected at 2.5 and 25 hours after trauma to observe the occurrence of thrombus and its severity. Based on the degree of thrombus formation, the rats in the experimental group was divided into group B (pre-thrombogenesis, 2.5 hours after trauma), group C (thrombogenesis, 25 hours after trauma) and group D (non-thrombogenesis, 25 hours after trauma). Then total RNA was extracted from the local femoral venous tissue. The different expressed genes were screened by adopting a special chip, Rat Genome 2302.0 These gene expressions were further identified by real-time PCR. In addition, these genes were further analyzed by using Pathway technique and other biological information analysis. Results: The results of both gene chip hybridization analysis and real-time PCR showed that the mRNA expressions of both TGF1 and serpine-1 in rat femoral vein endothelial tissue were significantly up-regulated at 2.5 hours after trauma, in addition, the expressions of group B were significantly higher than those of group A and group D (P 0.05). Pathway analysis showed that TGF1 was the epistatic regulatory gene of serpine-1, as it could induce the over-expression of serpine-1, inhibit fibrinolysis and promote thrombosis. Conclusion: The results obtained from the present study indicate that the up-regulated TGF1 and serpine-1 in local femoral venous endothelial tissue may play a crucial role in the formation of

  3. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  4. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts.

    Science.gov (United States)

    Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May

    2015-04-01

    The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.

  5. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function

    International Nuclear Information System (INIS)

    Hattersley, G.; Chambers, T.J.

    1991-01-01

    Transforming growth factor (TGF) beta 1 is a multifunctional cytokine with powerful effects on osteoblastic cells. Its role in the regulation of osteoclast generation and function, however, is unclear. It has been reported both to stimulate and to inhibit resorption in organ culture and to inhibit multinuclear cell formation in bone marrow cultures. We tested the effects of TGF-beta 1 on bone resorption by osteoclasts isolated from neonatal rat long bones. We found potent stimulation of osteoclastic bone resorption, mediated by osteoblastic cells, with an EC50 of 10 pg/ml, considerably lower than that of well-documented osteotropic hormones. Stimulation was not mediated by Swiss mouse 3T3 cells, a nonosteoblastic cell line. TGF-beta 1 strongly inhibited the generation of calcitonin receptor (CTR)-positive cells in mouse bone marrow cultures, but as for isolated osteoclasts, bone resorption per CTR-positive cell was increased. The inhibition of CTR-positive cell formation was associated with suppression of maturation of other bone marrow derivatives and may be related more to the known ability of TGF-beta 1 to suppress the proliferation of primitive hematopoietic cells than to a specific role of TGF-beta 1 in osteoclast generation

  6. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    Science.gov (United States)

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†

    Science.gov (United States)

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore

  8. In situ expression of platelet-derived growth factor (PDGF-beta) during chronic rejection is abolished by retransplantation.

    Science.gov (United States)

    Yang, H C; McElroy, R J; Kreider, J W; Marshall, R L; Martinie, J B; Diamond, J

    1995-07-01

    We have shown that Fischer 344-->Lewis renal allografts (ALLO) develop chronic rejection which is not detected in Lewis-->Lewis isografts (ISO). The progression of chronic rejection in ALLO can be reversed by retransplantation (RE-TX) of kidneys from ALLO back into syngeneic Fischer 344 recipients. The purpose of this study was to assess the in situ expression of PDGF-beta, a cytokine associated with wound injury, in ISO, ALLO, and RE-TX. In situ PDGF-beta mRNA expression in kidney sections was assessed early (8 weeks) and late (16 weeks) during the development of chronic rejection. Kidneys from ALLO were transplanted back into syngeneic Fischer recipients at 12 weeks and evaluated for PDGF-beta expression 12 weeks later. Differences in glomerular staining were graded quantitatively on a minimum of 25 glomeruli per section with grade 0, no positive cells in the glomerulus; grade 1, 1 or 2 positive cells; grade 2, 3 or more positive cells in a segmental distribution; and grade 3, > 4 positive cells of moderate intensity in a diffuse distribution. According to this grading system, glomerular PDGF-beta mRNA expression in isografts (N = 6) at 8 and 16 weeks after transplantation was 0.09 +/- 0.03 and 0.2 +/- 0.04, respectively. In allografts (N = 6), PDGF-beta mRNA was significantly higher (P < .001) for the same time periods, 1.28 +/- 0.6 and 1.89 +/- 0.08, respectively. In situ expression of PDGF in retransplants (N = 6) at 24 weeks, 0.07 +/- 0.02, was significantly diminished (P < .001) at 24 weeks compared to allografts at 8 or 16 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function.

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Yang

    2009-07-01

    Full Text Available The pH and voltage-regulated Slo3 K(+ channel, a homologue of the Ca(2+- and voltage-regulated Slo1 K(+ channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels.To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm.These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.

  10. Temporally and spatially dynamic germ cell niches in Botryllus schlosseri revealed by expression of a TGF-beta family ligand and vasa

    Directory of Open Access Journals (Sweden)

    Adam D. Langenbacher

    2016-04-01

    Full Text Available Abstract Background Germ cells are specified during early development and are responsible for generating gametes in the adult. After germ cells are specified, they typically migrate to a particular niche in the organism where they reside for the remainder of its lifetime. For some model organisms, the specification and migration of germ cells have been extensively studied, but how these events occur in animals that reproduce both sexually and asexually is not well understood. Results We have identified a novel TGF-β family member in Botryllus schlosseri, tgfβ-f, and found that it is expressed by follicle cell progenitors and the differentiated follicle and support cells surrounding the maturing gametes. Using the expression of tgfβ-f and the germ cell marker vasa, we have found that nearly all germ cells in Botryllus are associated with tgfβ-f-expressing follicle progenitors in clusters consisting solely of those two cell types. These clusters were mostly small, consisting of ten or fewer cells, and generally contained between a 2:1 and 1:1 ratio of follicle progenitors to germ cells. Clusters of germ and follicle progenitor cells were primarily localized to niches in the primary and secondary buds, but could also be found in other locations including the vasculature. We analyzed the location of germ cell clusters throughout the asexual life cycle of Botryllus and found that at the stage when germ cells are first detected in the secondary bud niche, a dramatic change in the size and location of germ/follicle cell clusters also occurred. Conclusions Our findings suggest that germ/follicle cell clusters have predictable migratory patterns during the weekly asexual developmental cycle in Botryllus. An increased number of small clusters and the presence of clusters in the vasculature coinciding with the appearance of clusters in the secondary bud suggest that fragmentation of clusters and the migration of smaller clusters through the vasculature

  11. The Cross-talk Between TGF1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification

    DEFF Research Database (Denmark)

    Taipaleenmaki, Hanna; M, Linda; Chen, Li

    2012-01-01

    Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis...... during mesenchymal condensation and chondrocyte proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon the expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF1-induced proliferation of chondroprogenitors...... was associated with decreased Dlk1 expression. This effect was abolished by TGF-β signalling inhibitor SB431542, suggesting regulation of Dlk1/FA1 by TGF1 signalling in chondrogenesis. TGF1-induced Smad phosphorylation and chondrogenesis were significantly increased in Dlk1 (-/-) MEF, while they were blocked...

  12. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis.

    Science.gov (United States)

    Gonzalo-Gil, E; Criado, G; Santiago, B; Dotor, J; Pablos, J L; Galindo, M

    2013-11-01

    The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann-Whitney U-test or one-way analysis of variance (anova) using the Kruskal-Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis. © 2013 British Society for Immunology.

  13. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M

    2002-01-01

    actions on components of the IGF-system. We report that co-treatment with TGF-beta1 and calcitriol resulted in a synergistic increase in IGFBP-3 production, thereby suggesting that the effects of these factors on hMS osteoblast differentiation may involve the observed increase in IGFBP-3....

  14. Roles of TGF-β/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture.

    Science.gov (United States)

    Zhang, Xintao; Ma, Yukun; You, Tian; Tian, Xiaopeng; Zhang, Honglei; Zhu, Qi; Zhang, Wentao

    2015-02-01

    Gluteal muscle contracture (GMC) is a chronic fibrotic disease of gluteal muscles which is characterized by excessive deposition of collagen in the extracellular matrix. Transforming growth factor (TGF)-βs have been shown to play an important role in the progression of GMC. However, the underlying mechanisms are not entirely clear. We sought to explore the expression of TGF-β/Smad pathway proteins and their downstream targets in gluteal muscle contracture disease. The expression levels of collagens type I/III, TGF1, Smad2/3/4/7 and PAI-1 (plasminogen activator inhibitor type 1) in gluteal muscle contraction (GMC) patients were measured using immunohistochemistry, reverse transcription and polymerase chain reaction (RT-PCR) and western blot assays. The expressions of collagens type I/III and TGF1 were significantly increased in the contraction band compared with unaffected muscle. In addition, R-Smad phosphorylation and Smad4 protein expression in the contraction band were also elevated, while the expression of Smad7 was significantly decreased in the fibrotic muscle of the GMC patients compared to the unaffected adjacent muscle. The protein and mRNA levels of PAI-1 were also remarkably increased in the contraction band compared with adjacent muscle. Immunohistochemical analysis also demonstrated that the expression levels of TGF1 and PAI-1 were higher in contraction band than those in the adjacent muscle. Our data confirm the stimulating effects of the TGF-β/Smad pathway in gluteal muscle contracture disease and reveal the internal changes of TGF-β/Smad pathway proteins and their corresponding targets in gluteal muscle contracture patients.

  15. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    Science.gov (United States)

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  16. Heat Shock Protein 70 Negatively Regulates TGF-β-Stimulated VEGF Synthesis via p38 MAP Kinase in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Go Sakai

    2017-11-01

    Full Text Available Background/Aims: We previously demonstrated that transforming growth factor-β (TGF-β stimulates the synthesis of vascular endothelial growth factor (VEGF through the activation of p38 mitogen-activated protein (MAP kinase in osteoblast-like MC3T3-E1 cells. Heat shock protein70 (HSP70 is a ubiquitously expressed molecular chaperone. In the present study, we investigated the involvement of HSP70 in the TGF-β-stimulated VEGF synthesis and the underlying mechanism in these cells. Methods: Culture MC3T3-E1 cells were stimulated by TGF-β. Released VEGF was measured using an ELISA assay. VEGF mRNA level was quantified by RT-PCR. Phosphorylation of each protein kinase was analyzed by Western blotting. Results: VER-155008 and YM-08, both of HSP70 inhibitors, significantly amplified the TGF-β-stimulated VEGF release. In addition, the expression level of VEGF mRNA induced by TGF-β was enhanced by VER-155008. These inhibitors markedly strengthened the TGF-β-induced phosphorylation of p38 MAP kinase. The TGF-β-induced phosphorylation of p38 MAP kinase was amplified in HSP70-knockdown cells. SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by these inhibitors of the TGF-β-induced VEGF release. Conclusion: These results strongly suggest that HSP70 acts as a negative regulator in the TGF-β-stimulated VEGF synthesis in osteoblasts, and that the inhibitory effect of HSP70 is exerted at a point upstream of p38 MAP kinase.

  17. The proto-oncogenic protein TAL1 controls TGF1 signaling through interaction with SMAD3

    Directory of Open Access Journals (Sweden)

    Jean-Michel Terme

    2016-06-01

    Full Text Available TGF1 is involved in many aspects of tissue development and homeostasis including hematopoiesis. The TAL1 transcription factor is also an important player of this latter process and is expressed very early in the myeloid and erythroid lineages. We previously established a link between TGF1 signaling and TAL1 by showing that the cytokine was able to induce its proteolytic degradation by the ubiquitin proteasome pathway. In this manuscript we show that TAL1 interacts with SMAD3 that acts in the pathway downstream of TGF1 association with its receptor. TAL1 expression strengthens the positive or negative effect of SMAD3 on various genes. Both transcription factors activate the inhibitory SMAD7 factor through the E box motif present in its transcriptional promoter. DNA precipitation assays showed that TAL1 present in Jurkat or K562 cells binds to this SMAD binding element in a SMAD3 dependent manner. SMAD3 and TAL1 also inhibit several genes including ID1, hTERT and TGF1 itself. In this latter case TAL1 and SMAD3 can impair the positive effect exerted by E47. Our results indicate that TAL1 expression can modulate TGF1 signaling by interacting with SMAD3 and by increasing its transcriptional properties. They also suggest the existence of a negative feedback loop between TAL1 expression and TGF1 signaling.

  18. TGF1 regulation of estrogen production in mature rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Man-Li Liu

    Full Text Available BACKGROUND: Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF1 is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF1 regulates estradiol (E2 synthesis in adult rat Leydig cells and then to assess the impact of TGF1 on Cx43-based gap junctional intercellular communication (GJIC between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultured Leydig cells were incubated in the presence of recombinant TGF1 and the production of E2 as well as testosterone (T were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP, respectively. Results from this study show that TGF1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF1, and E2 treatment in turn restored the inhibition of TGF1 on GJIC. CONCLUSIONS: Our results indicate, for the first time in adult rat Leydig cells, that TGF1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.

  19. Protein phosphatase magnesium-dependent 1δ (PPM1D mRNA expression is a prognosis marker for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guang-Bing Li

    Full Text Available Protein phosphatase magnesium-dependent 1δ (PPM1D is an oncogene, overexpressed in many solid tumors, including ovarian cancer and breast cancer. The current study examined the expression and the prognostic value of PPM1D mRNA in human hepatocellular carcinoma (HCC.Total RNA was extracted from 86 HCC and paired non-cancerous liver tissues. PPM1D mRNA expression was determined by real-time quantitative reverse transcriptase-polymerase chain reaction (qPCR. Immunohistochemistry assay was used to verify the expression of ppm1d protein in the HCC and non-cancerous liver tissues. HCC patients were grouped according to PPM1D mRNA expression with the average PPM1D mRNA level in non-cancerous liver tissue samples as the cut-off. Correlations between clinicopathologic variables, overall survival and PPM1D mRNA expression were analyzed.PPM1D mRNA was significantly higher in HCC than in the paired non-cancerous tissue (p<0.01. This was confirmed by ppm1d staining. 56 patients were classified as high expression group and the other 30 patients were categorized as low expression group. There were significant differences between the two groups in term of alpha-fetoprotein (α-FP level (p<0.01, tumor size (p<0.01, TNM stage (p<0.01, recurrence incidence (p<0.01 and family history of liver cancer (p<0.01. The current study failed to find significant differences between the two groups in the following clinical characteristics: age, gender, portal vein invasion, lymphnode metastasis, hepatitis B virus (HBV infection and alcohol intake. Survival time of high expression group was significantly shorter than that of low expression group (median survival, 13 months and 32 months, respectively, p<0.01.Up-regulation of PPM1D mRNA was associated with progressive pathological feature and poor prognosis in HCC patients. PPM1D mRNA may serve as a prognostic marker in HCC.

  20. Responses of mRNA expression of PepT1 in small intestine to ...

    African Journals Online (AJOL)

    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was ...

  1. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  2. Eosinophils from Murine Lamina Propria Induce Differentiation of Naïve T Cells into Regulatory T Cells via TGF1 and Retinoic Acid.

    Directory of Open Access Journals (Sweden)

    Hong-Hu Chen

    Full Text Available Treg cells play a crucial role in immune tolerance, but mechanisms that induce Treg cells are poorly understood. We here have described eosinophils in lamina propria (LP that displayed high aldehyde dehydrogenase (ALDH activity, a rate-limiting step during all-trans retinoic acid (ATRA synthesis, and expressed TGF1 mRNA and high levels of ATRA. Co-incubation assay confirmed that LP eosinophils induced the differentiation of naïve T cells into Treg cells. Differentiation promoted by LP eosinophils were inhibited by blocked either TGF1 or ATRA. Peripheral blood (PB eosinophils did not produce ATRA and could not induce Treg differentiation. These data identifies LP eosinophils as effective inducers of Treg cell differentiation through a mechanism dependent on TGF1 and ATRA.

  3. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation.

    Science.gov (United States)

    Beal, Allison M; Ramos-Hernández, Natalia; Riling, Chris R; Nowelsky, Erin A; Oliver, Paula M

    2011-11-13

    Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iT(reg) cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iT(reg) cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1(-/-) cells. We found that Ndfip1 expression was transiently upregulated during iT(reg) cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iT(reg) cell differentiation.

  4. Liver fibrosis in bile duct-ligated rats correlates with increased hepatic IL-17 and TGF-β2 expression.

    Science.gov (United States)

    Zepeda-Morales, Adelaida Sara M; Del Toro-Arreola, Susana; García-Benavides, Leonel; Bastidas-Ramírez, Blanca E; Fafutis-Morris, Mary; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R

    2016-01-01

    BACKGROUND AND RATIONALE FOR THE STUDY: IL-17, TGF1/2 are cytokines involved in the development of kidney, pulmonary and liver fibrosis. However, their expression kinetics in the pathogenesis of cholestatic liver fibrosis have not yet been fully explored. The aim of the study was to analyze the expression of IL-17, RORγt, NKp46, TGF1, and TGF-β2 in the liver of rats with bile duct ligation (BDL). Hepatic IL-17A gene expression analyzed by qRT-PCR showed a dramatic increase of 350 and 10 fold, at 8 and 30 days post BDL, respectively. TGFβ1 and TGFβ2 gene expression significantly increased throughout the whole fibrotic process. At the protein level in liver homogenates, IL-17, TGF1, and RORγt significantly increased at 8 and 30 days after BDL. Interestingly, a significant increase in the protein levels of TGF-β2 and decrease of NKp46 was observed only 30 days after BDL. Unexpectedly, TGF-β2 exhibited stronger signals than TGF1 at the gene expression and protein levels. Histological analysis showed bile duct proliferation and collagen deposition. Our results suggest that pro-fibrogenic cytokines IL-17, TGF1 and, strikingly, TGF-β2 might be important players of liver damage in the pathogenesis of early and advanced experimental cholestatic fibrosis. Th17 cells might represent an important source of IL-17, while NK cell depletion may account for the perpetuation of liver damage in the BDL model.

  5. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF1 with TGF1 kinoids. Two TGF1 kinoid vaccines were prepared by cross-linking TGF1-derived polypeptides (TGF1(25-[41-65] and TGF1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF1 kinoids efficiently elicited the production of high-levels of TGF1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  6. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    International Nuclear Information System (INIS)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-01-01

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP 3 /calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation

  7. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, R. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Fuentes, E.N.; Molina, A. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile)

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  8. Abnormal expression of 11 beta-hydroxysteroid dehydrogenase type 2 in human pituitary adenomas: a prereceptor determinant of pituitary cell proliferation.

    Science.gov (United States)

    Rabbitt, E H; Ayuk, J; Boelaert, K; Sheppard, M C; Hewison, M; Stewart, P M; Gittoes, N J L

    2003-03-20

    The physiological effects of glucocorticoids (GCs) are, at least in part, mediated by inhibition of cell proliferation. Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert cortisol (F) and inactive cortisone (E), and are thus able to modulate GC action at an autocrine level. Previously, we have demonstrated absent expression of 11 beta-HSD2 in normal pituitaries; however, in a small number of pituitary tumors analysed, 11 beta-HSD2 was readily demonstrable. Here we have used real-time RT-PCR to quantify expression of mRNA for 11 beta-HSD1 and 2 in 105 human pituitary tumors and have performed enzyme expression and activity studies in primary pituitary cultures. Overall, pituitary tumors expressed lower levels of 11 beta-HSDl mRNA compared with normals (0.2-fold, Pprotein (mean+/-s.d.)) but no detectable 11 beta-HSDl activity. Proliferation assays showed that addition of glycyrrhetinic acid (an 11 beta-HSD2 inhibitor) resulted in a 30.3+/-7.7% inhibition of cell proliferation. In summary, we describe a switch in expression from 11 beta-HSDl to 11 beta-HSD2 in neoplastic pituitary tissue. We propose that abnormal expression of 11 beta-HSD2 acts as a proproliferative prereceptor determinant of pituitary cell growth, and may provide a novel target for future tumor therapy.

  9. Shenqiwan Ameliorates Renal Fibrosis in Rats by Inhibiting TGF1/Smads Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hongshu Chen

    2017-01-01

    Full Text Available Epithelial-mesenchymal transition (EMT refers to the transition of epithelial cells into mesenchymal cells. Emerging evidence suggests that EMT is a key point in renal interstitial fibrosis (RIF. Traditional Chinese Medicine Shenqiwan (SQW is widely used in clinical treatment of chronic kidney disease, but the underlying mechanism remains unclear. The purpose of this study is to investigate the effect of SQW on renal fibrosis and its association with TGF1/Smads signaling pathway. A rat model of adenine (150 mg/kg was established and intragastrically treated with various concentrations of SQW at dose of 1.5 g/kg, 3 g/kg, and 6 g/kg. Control group and model group were given the same volume of saline. Meanwhile, the positive control group was treated with Enalapril (4 mg/kg. Animals were sacrificed on 21st day after administration. The results showed that SQW could significantly relieve renal pathological damage caused by adenine, increase gene and protein expression of E-cadherin, and decrease the expression of Vimentin in kidney samples. In addition, SQW efficiently inhibited the mRNA and protein expression of p-Smad2/3 by upregulating Smad7. These results suggest that SQW could slow down the progression of renal fibrosis, possibly by inhibiting TGF1/Smads signaling pathway.

  10. INDUCTION OF INTERLEUKIN-1-BETA MESSENGER-RNA AFTER FOCAL CEREBRAL-ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    BUTTINI, M; SAUTER, A; BODDEKE, HWGM

    The expression of interleukin-1beta (IL-1beta) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery

  11. Effect of X-irradiation on the protein expression of P57kip2 and TGF1 in lung cancer cell stain A549

    International Nuclear Information System (INIS)

    Zou Huawei; Tan Yonggang; Zhang Heying

    2008-01-01

    Objective: To analyze the effect of X-irradiation on the proteins expression of p57 kip2 and TGF1 in lung cancer cell stain A549 and its clinical significance. Methods: Lung cancer cell stain A549 was cultivated and cell, protein was extracted at 6,12,24,36 and 48 hours after X-irradiation by different doses(2,4, 8 and 12 Gy). The expression of p57 kip2 and TGF1 proteins were examined by Western blot. Results: The expression of p57 kip2 in lung cancer cell stain A549 was very low before X-irradiation, and increased significantly after irradiation with different doses and reached the peak level at 12 hours after irradiation (P kip2 and TGF1 proteins which increased with certain doses, p57 kip2 and TGF1 could be used to predict the damage degree of cancer cells by X-ray. (authors)

  12. TGF1 of no avail as prognostic marker in lyme disease

    Directory of Open Access Journals (Sweden)

    Julia Schumann

    2014-05-01

    Full Text Available Background. Within the present in vivo study using the wild type mouse strains C3H/HeN and FVB/N it was intended to (1 measure TGF1 expression in the course of lyme disease, (2 examine the potential correlation of TGF1 expression with the clinical outcome of a Borrelia infection (with a focus on lyme arthritis, (3 develop a diagnostic tool based on the endogenous factor TGF1 to predict the progressivity of lyme disease.Findings. In the course of lyme disease there was an increase in the serum content of active TGF1, which became significant 56 days post infection (p < 0.001. The serum concentration of total TGF1 in the course of infection initially decreased then rebounded and subsequently dropped again. Despite considerable individual variations in active TGF1 serum concentrations there were no identifiable dissimilarities in the clinical appearance of the mice. Likewise, no correlation could be seen between the serum content of active TGF1 and the severity of lyme arthritis of tibiotarsal joints of infected mice.Conclusions. The present study clearly shows that TGF1 is of no avail as prognostic marker in lyme disease. Hence, the search for an endogenous predictive factor, which can be determined in an easy and reliable manner, remains open.

  13. Changes in the reproductive function and developmental phenotypes in mice following intramuscular injection of an activin betaA-expressing plasmid

    Directory of Open Access Journals (Sweden)

    Mayo Kelly E

    2008-12-01

    Full Text Available Abstract Background The TGF-beta family protein activin has numerous reported activities with some uncertainty in the reproductive axis and development. The precise roles of activin in in vivo system were investigated using a transient gain of function model. Methods To this end, an expression plasmid, pCMV-rAct, with the activin betaA cDNA fused to the cytomegalovirus promoter, was introduced into muscle of the female adult mice by direct injection. Results Activin betaA mRNA was detected in the muscle by RT-PCR and subsequent Southern blot analysis. Activin betaA was also detected, and western blot analysis revealed a relatively high level of serum activin with correspondingly increased FSH. In the pCMV-rAct-injected female mice, estrus stage within the estrous cycle was extended. Moreover, increased numbers of corpora lutea and a thickened granulosa cell layer with a small antrum in tertiary follicles within the ovary were observed. When injected female mice were mated with males of proven fertility, a subset of embryos died in utero, and most of those that survived exhibited increased body weight. Conclusion Taken together, our data reveal that activin betaA can directly influence the estrous cycle, an integral part of the reproduction in female mice and activin betaA can also influence the embryo development as an endocrine fashion.

  14. TGF-β induces the expression of Nedd4 family-interacting protein 1 (Ndfip1) to silence IL-4 production during iTreg cell differentiation

    Science.gov (United States)

    Beal, Allison M.; Ramos-Hernández, Natalia; Riling, Chris R.; Nowelsky, Erin A.; Oliver, Paula M.

    2011-01-01

    Mice deficient for the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that these animals contain fewer inducible regulatory (iTreg) cells. In vitro, Ndfip1-deficient T cells express normal levels of the transcription factor Foxp3 during the first 48 hours of iTreg cell differentiation, however this cannot be sustained. Abortive Foxp3 expression is because Ndfip1–/– cells produce interleukin 4 (IL-4). We demonstrate that Ndfip1 is transiently unregulated during iTreg cell differentiation in a transforming growth factor-β (TGF-β) dependent manner. Once expressed Ndfip1 promotes Itch-mediated degradation of the transcription factor JunB, thus preventing IL-4 production. Based on these data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation. PMID:22080920

  15. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    Science.gov (United States)

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  16. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  17. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  18. Calreticulin overexpression correlates with integrin-α5 and transforming growth factor-β1 expression in the atria of patients with rheumatic valvular disease and atrial fibrillation.

    Science.gov (United States)

    Zhao, Fei; Zhang, Shijiang; Shao, Yongfeng; Wu, Yanhu; Qin, Jianwei; Chen, Yijiang; Chen, Liang; Gu, Haitao; Wang, Xiaowei; Huang, Chenjun; Zhang, Wei

    2013-10-03

    The aim of this study was to determine whether altered calreticulin expression and distribution contribute to the pathogenesis of atrial fibrillation (AF) associated with valvular heart disease (VHD). AF affects electrophysiological and structural changes that exacerbate AF. Atrial remodeling reportedly underlies AF generation, but the precise mechanism of atrial remodeling in AF remains unclear. Right and left atrial specimens were obtained from 68 patients undergoing valve replacement surgery. The patients were divided into sinus rhythm (SR; n=25), paroxysmal AF (PaAF; n=11), and persistent AF (PeAF; AF lasting >6 months; n=32) groups. Calreticulin, integrin-α5, and transforming growth factor-β1 (TGF1) mRNA and protein expression were measured. We also performed immunoprecipitation for calreticulin with either calcineurin B or integrin-α5. Calreticulin, integrin-α5, and TGF1 mRNA and protein expression were increased in the AF groups, especially in the left atrium in patients with mitral valve disease. Calreticulin interacted with both calcineurin B and integrin-α5. Integrin-α5 expression correlated with TGF1 expression, while calreticulin expression correlated with integrin-α5 and TGF1 expression. Despite similar cardiac function classifications, calreticulin expression was greater in the PeAF group than in the SR group. Calreticulin, integrin-α5, and TGF1 expression was increased in atrial tissue in patients with AF and was related to AF type, suggesting that calreticulin is involved in the pathogenesis of AF in VHD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Role of TGF-β in a mouse model of high turnover renal osteodystrophy.

    Science.gov (United States)

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck

  20. Divergent expression of 11beta-hydroxysteroid dehydrogenase and 11beta-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish.

    Science.gov (United States)

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-05-15

    The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Characterization of DNA polymerase. beta. mRNA: cell-cycle growth response in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zmudzka, B Z; Fornace, A; Collins, J; Wilson, S H

    1988-10-25

    DNA polymerase ..beta.. (..beta..-polymerase) is a housekeeping enzyme involved in DNA repair in vertebrate cells. The authors used a cDNA probe to study abundance of ..beta..-polymerase mRNA in cultured human cells. The mRNA level in synchronized HeLa cells, representing different stages of the cell-cycle, varied only slightly. Contact inhibited fibroblasts AG-1522 contained the same level of mRNA as growing cells. The steady-state level of mRNA in fibroblasts is equivalent to 6 molecules per cell. The results indicate that the ..beta..-polymerase transcript is low abundance and is neither cell-cycles nor growth phase responsive.

  2. Bone Morphogenetic Protein (BMP-4 and BMP-7 regulate differentially Transforming Growth Factor (TGF1 in normal human lung fibroblasts (NHLF

    Directory of Open Access Journals (Sweden)

    Lloyd Clare M

    2010-06-01

    Full Text Available Abstract Background Airway remodelling is thought to be under the control of a complex group of molecules belonging to the Transforming Growth Factor (TGF-superfamily. The Bone Morphogenetic Proteins (BMPs belong to this family and have been shown to regulate fibrosis in kidney and liver diseases. However, the role of BMPs in lung remodelling remains unclear. BMPs may regulate tissue remodelling in asthma by controlling TGF-β-induced profibrotic functions in lung fibroblasts. Methods Cell cultures were exposed to TGF1 alone or in the presence of BMP-4 or BMP-7; control cultures were exposed to medium only. Cell proliferation was assessed by quantification of the incorporation of [3H]-thymidine. The expression of the mRNA encoding collagen type I and IV, tenascin C and fibronectin in normal human lung fibroblasts (NHLF was determined by real-time quantitative PCR and the main results were confirmed by ELISA. Cell differentiation was determined by the analysis of the expression of α-smooth muscle actin (α-SMA by western blot and immunohistochemistry. The effect on matrix metalloproteinase (MMP activity was assessed by zymography. Results We have demonstrated TGF1 induced upregulation of mRNAs encoding the extracellular matrix proteins, tenascin C, fibronectin and collagen type I and IV when compared to unstimulated NHLF, and confirmed these results at the protein level. BMP-4, but not BMP-7, reduced TGF1-induced extracellular matrix protein production. TGF1 induced an increase in the activity of the pro-form of MMP-2 which was inhibited by BMP-7 but not BMP-4. Both BMP-4 and BMP-7 downregulated TGF1-induced MMP-13 release compared to untreated and TGF1-treated cells. TGF1 also induced a myofibroblast-like transformation which was partially inhibited by BMP-7 but not BMP-4. Conclusions Our study suggests that some regulatory properties of BMP-7 may be tissue or cell type specific and unveil a potential regulatory role for

  3. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    Science.gov (United States)

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  4. Nitric oxide signaling pathway regulates potassium chloride cotransporter-1 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, M; Lauf, P K; Adragna, N C

    2001-11-30

    Rat vascular smooth muscle cells (VSMCs) express at least two mRNAs for K-Cl cotransporters (KCC): KCC1 and KCC3. cGMP-dependent protein kinase I regulates KCC3 mRNA expression in these cells. Here, we show evidence implicating the nitric oxide (NO)/cGMP signaling pathway in the expression of KCC1 mRNA, considered to be the major cell volume regulator. VSMCs, expressing soluble guanylyl cyclase (sGC) and PKG-I isoforms showed a time- and concentration-dependent increase in KCC1 mRNA levels after treatment with sodium nitroprusside as demonstrated by semiquantitative RT-PCR. sGC-dependent regulation of KCC1 mRNA expression was confirmed using YC-1, a NO-independent sGC stimulator. The sGC inhibitor LY83583 blocked the effects of sodium nitroprusside and YC-1. Moreover, 8-Br-cGMP increased KCC1 mRNA expression in a concentration- and time-dependent fashion. The 8-Br-cGMP effect was partially blocked by KT5823 but not by actinomycin D. However, actinomycin D and cycloheximide increased basal KCC1 mRNA in an additive manner, suggesting different mechanisms of action for both drugs. These findings suggest that in VSMCs, the NO/cGMP-signaling pathway participates in KCC1 mRNA regulation at the post-transcriptional level.

  5. Regulation of the expression of GARP/latent-TGF1 complexes on mouse T cells and their role in Regulatory T Cell and Th17 differentiation1

    OpenAIRE

    Edwards, Justin P.; Fujii, Hodaka; Zhou, Angela X.; Creemers, John; Unutmaz, Derya; Shevach, Ethan M.

    2013-01-01

    GARP/LRRC32 has previously been defined as a marker of activated human regulatory T-cells (Tregs) that is responsible for surface localization of latent TGF1. We find that GARP and latent TGF1 are also found on mouse Tregs activated via TCR stimulation, but in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on ...

  6. Maternal breast milk transforming growth factor beta and feeding intolerance in preterm infants

    Science.gov (United States)

    Frost, Brandy L.; Jilling, Tamas; Lapin, Brittany; Maheshwari, Akhil; Caplan, Michael S.

    2015-01-01

    Background Feeding intolerance occurs commonly in the NICU. Breast milk contains a large pool of transforming growth factor-beta (TGF-beta). Few studies describe TGF-beta levels in preterm milk, and the relationship to feeding intolerance (FI) remains unexplored. We measured TGF-beta levels in preterm breast milk to investigate a correlation with FI in preterm infants. Methods Prospective observational trial of 100 mother-infant pairs, enrolling infants born below 32 weeks gestation and less than 1500 grams, and mothers who planned to provide breast milk. TGF-beta levels were measured using ELISA. Infant charts were reviewed for outcomes. Results TGF-beta declined postnatally, most elevated in colostrum (p<0.01). TGF-beta 2 levels were higher than TGF-beta 1 at all time points (p<0.01). Colostrum TGF-beta levels correlated inversely with birth weight (p<0.01) and gestational age (p<0.05). One week TGF-beta 2 levels were reduced in growth-restricted infants with FI (p<0.01). Of infants with NEC, TGF-beta 2 levels appeared low, but small sample size precluded meaningful statistical comparisons. Conclusions TGF-beta levels decline temporally in preterm milk. TGF-beta 1 colostrum levels correlate inversely with birth weight and gestational age. TGF-beta 2 may play a role in FI in growth-restricted infants. The relationship of TGF-beta 2 and NEC merits future investigation. PMID:24995914

  7. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD

    Directory of Open Access Journals (Sweden)

    Tang WX

    2016-11-01

    Full Text Available Wenxiang Tang,1 Zhenyu Shen,2 Jiang Guo,2 Shenghua Sun1 1Department of Respiratory Medicine, The Third Xiangya Hospital of Central South University, 2Department of Respiratory Medicine, Xiangtan Central Hospital, Hunan, People’s Republic of China Objective: To evaluate differentially expressed long noncoding RNAs (lncRNAs and the potential role of lncRNA TUG1 in patients with chronic obstructive pulmonary disease (COPD.Methods: Total RNA was extracted from both COPD and non-COPD lung tissues, and microarray analysis was performed with 25,628 lncRNA probes and 20,106 mRNA probes. In addition, five up-regulated and five down-regulated lncRNAs were selected for identification using quantitative real-time polymerase chain reaction. COPD cell model was established by transforming growth factor β (TGF-β treatment. Cell Counting Kit-8 assay was used to detect BEAS-2B and HFL1 cell proliferation after TUG-siRNA transfection with TGF-β treatment. In addition, the expression levels of α-SMA and fibronectin proteins were determined using Western blot in BEAS-2B and HFL1 cells after TUG-siRNA transfection with TGF-β treatment.Results: There were 8,376 (32.7% differentially expressed lncRNAs and 5,094 (25.3% differentially expressed mRNAs in COPD lung tissues compared with non-COPD lung tissues. Five of the analyzed lncRNAs (BC038205, BC130595, TUG1, MEG3, and LOC646329 were markedly increased, while five lncRNAs (LOC729178, PLAC2, LOC339529, LINC00229, and SNHG5 were significantly decreased in COPD lung tissues compared with non-COPD lung tissues (n=20 (***P<0.001. Knockdown of lncRNA TUG1 promotes BEAS-2B and HFL1 cell proliferation after TGF-β treatment through inhibiting the expression levels of α-SMA and fibronectin.Conclusion: Abundant, differentially expressed lncRNAs and mRNAs were identified by microarray analysis and these might play a partial or key role in the diagnosis of patients with COPD. LncRNA TUG1 may become a very important

  8. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Science.gov (United States)

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  9. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available DNA methyltransferase (DNMT is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs. This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP. The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy.We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer.Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for Ca

  10. Connective tissue growth factor mediates TGF1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF1 induces apoptosis of LGSC cells. However, the effect of TGF1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF1 on LGCS.

  11. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    Science.gov (United States)

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  12. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation.

    Science.gov (United States)

    Ni, Xiao Yan; Sui, Hua Xiu; Liu, Yao; Ke, Shi Zhong; Wang, Yi Nan; Gao, Feng Guang

    2012-08-01

    The effects of TGF-β on dendritic cells (DCs) on the tumor microenvironment are not well understood. We report, here, the establishment of an in vitro lung cancer microenvironment by co-incubation of seminaphtharhodafluor (SNARF) labeled Lewis lung cancer (LLC) cells, carboxyfluorescein succinimidyl ester (CFSE) labeled fibroblasts and 4-chloromethyl-7-hydroxycoumarin (CMHC) labeled DCs. Raw 264.7, EL4 and NCI-H446 cells were able to synthesize TGF-β which was determined by flow cyto-metry and western blotting, respectively. Furthermore, TGF-β efficiently increased regulatory T-cell (Treg) expansion and upregulated DC B7H1 and GITRL expression. TGF-β and the co-incubation of LLC cells, fibroblasts with DCs could augment the expression of B7H1 and GITRL molecules of DCs. The data presented here indicate that the B7H1 and GITRL molecules may play an important role in TGF-β-induced Treg expansion of lung cancer microenvironment.

  13. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    Min Li

    2016-01-01

    Full Text Available Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF1 in scleral fibroblasts from form-deprivation myopia (FDM guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC group were cultured. Wnt isoforms, β-catenin, TGF1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF1, which ultimately played a role in scleral remodeling during myopia development.

  14. Emodin attenuates high glucose-induced TGF1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    International Nuclear Information System (INIS)

    Yang, Jie; Zeng, Zhi; Wu, Teng; Yang, Zhicheng; Liu, Bing; Lan, Tian

    2013-01-01

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF1 and FN expression was significantly decreased by emodin. These results demonstrated that emodin suppressed TGF1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF1 and FN

  15. Insulin-like Growth Factor 1 Regulates the Expression of ATP-Binding Cassette Transporter A1 in Pancreatic Beta Cells.

    Science.gov (United States)

    Lyu, J; Imachi, H; Iwama, H; Zhang, H; Murao, K

    2016-05-01

    ATP-binding cassette transporter A1 (ABCA1) in pancreatic beta cells influences insulin secretion and cholesterol homeostasis. The present study investigates whether insulin-like growth factor 1 (IGF-1), which mediates stimulation of ABCA1 gene expression, could also interfere with the phosphatidylinositol 3-kinase (PI3-K) cascade.ABCA1 expression was examined by real-time polymerase chain reaction (PCR), Western blot analysis, and a reporter gene assay in rat insulin-secreting INS-1 cells incubated with IGF-1. The binding of forkhead box O1 (FoxO1) protein to the ABCA1 promoter was assessed by a chromatin immunoprecipitation (ChIP) assay. ABCA1 protein levels increased in response to rising concentrations of IGF-1. Real-time PCR analysis showed a significant increase in ABCA1 mRNA expression. However, both effects were suppressed after silencing the IGF-1 receptor. In parallel with its effect on endogenous ABCA1 mRNA levels, IGF-1 induced the activity of a reporter construct containing the ABCA1 promoter, while it was abrogated by LY294002, a specific inhibitor of PI3-K. Constitutively active Akt stimulated activity of the ABCA1 promoter, and a dominant-negative mutant of Akt or mutagenesis of the FoxO1 response element in the ABCA1 promoter abolished the ability of IGF-1 to stimulate promoter activity. A ChIP assay showed that FoxO1 mediated its transcriptional activity by directly binding to the ABCA1 promoter region. The knockdown of FoxO1 disrupted the effect of IGF-1 on ABCA1 expression. Furthermore, IGF-1 promoted cholesterol efflux and reduced the pancreatic lipotoxicity. These results demonstrate that the PI3-K/Akt/FoxO1 pathway contributes to the regulation of ABCA1 expression in response to IGF-1 stimulation. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneva Soumetz, Federico [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Saenz, Jose F. [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy); Pastorino, Laura; Ruggiero, Carmelina [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Nosi, Daniele [Department of Anatomy, Histology and Forensic Medicine, Bio-photonic Laboratory, University of Florence, viale Morgagni, 85 Firenze, CAP 50134 Florence (Italy); Raiteri, Roberto, E-mail: rr@unige.it [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy)

    2010-03-15

    The transforming growth factor {beta}1 (TGF-{beta}1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-{beta}1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the {beta}1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-{beta}1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the {beta}1 integrin subunit was enhanced by TGF-{beta}1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-{beta}1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  17. Transforming growth factor-beta 1, 2, and 3 can inhibit epithelial tissue outgrowth on smooth and microgrooved substrates.

    NARCIS (Netherlands)

    Walboomers, X.F.; Dalton, B.A.; Evans, M.D.; Steele, J.G.; Jansen, J.A.

    2002-01-01

    In this study, we describe the influence of parallel surface microgrooves, and of TGF-beta, on the outgrowth of corneal epithelial tissue. Microgrooves (depth 1 microm, width 1-10 microm) were made in polystyrene culturing surfaces. These surfaces were left untreated, or loaded with TGF-beta 1, 2,

  18. Differences in TGF1 signaling and clinicopathologic characteristics of histologic subtypes of gastric cancer.

    Science.gov (United States)

    Pak, Kyung Ho; Kim, Dong Hoon; Kim, Hyunki; Lee, Do Hyung; Cheong, Jae-Ho

    2016-02-04

    Aberrant TGF1 signaling is suggested to be involved in gastric carcinogenesis. However, the role of TGF1 in intestinal-type [i-GC] and diffuse-type [d-GC] gastric cancer remains largely unknown. In this study, we evaluated the expression of TGF1 signaling molecules and compared the clinicopathological features of i-GC and d-GC. Patients (n=365, consecutive) who underwent curative gastrectomy for gastric adenocarcinoma in 2005 were enrolled. We performed immunohistochemical staining of TGF1, TGF1 receptor-2 (TβR2), Smad4, p-ERK1/2, TGF-activated kinase (TAK)1, and p-Akt in 68 paraffin-embedded tumor blocks (33 i-GC and 35 d-GC), scored the expression according to the extent of staining, and evaluated differences between the histologic subtypes. Patients with d-GC differed from those with i-GC as follows: younger and more likely to be female; more aggressive stage; higher recurrence rate. The expression of TGF1 and TβR2 was higher in i-GC (P = 0.05 and P Smad4, a representative molecule of the Smad-dependent pathway, was decreased in both subtypes. TAK1 and p-Akt, two major molecules involved in the Smad-independent pathway, were over-expressed (69 ~87% of cases stained), without a statistically significant difference between i-GC and d-GC. Of note, the expression of p-ERK1/2, a Smad-independent pathway, was significantly increased in i-GC (P = 0.008). The clinicopathological characteristics vary in different histologic gastric cancer subtypes. Although TGF1 signaling in gastric cancer cells appears hyper-activated in i-GC compared to d-GC, the Smad-dependent pathway seems down-regulated while the Smad-independent pathway seems up-regulated in both histologic subtypes.

  19. Effect of botulinum toxin type A injection on the expression of substance P, TGF1 and α-SMA in rabbit ear model of hypertrophic scar%A型肉毒毒素对兔耳增生性瘢痕组织中P物质、β1转移生长因子、α平滑肌肌动蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    王琳; 邰宁正; 范志宏

    2009-01-01

    Objective To investigate the effect of botulinum toxin type A injection on the expres-sion of substance P, TGF1 and α-SMA in rabbit ear model of hypertrophic scar. Methods The hyper-trophic sear model was established in 24 Japanese rabbits'ears. The wounds in ventral surface of ear were divided in Group I (lateral wounds) and Group S (medial wounds), 3 wounds each side per ear, totally 72 wounds each group. The wound-healing time and the growth of scar were observed and recorded. On post-wounding day 28, the wounds were created in another 6 rabbits in the same way and the normal skin were harvested as Group C. Likewise, the scar samples in Groups I and S were harvested. The mRNA expression of substance P, TGF1 and α-SMA were detected quantitatively by using real-time PCR and α-SMA was also detected with Western blot. Results No difference between the ratio of healed or infec-tious wounds on post-wounding day 14. The mRNA expression of SP, TGF1 and α-SMA in Group I was significantly lower than Group S, but higher than those in Group C (PI组>C组.结论 BTA注射不延迟创面愈合,并减少了兔耳增生瘢痕中SP、TGF1和α-SMA的mRNA表达,为其治疗增生性瘢痕的临床应用提供了一定的理论依据.

  20. Expression of TGF-β in Fractures Fixed by Nitinol Swan-like Memory Compressive Connectors

    Science.gov (United States)

    Li, M.; Zhang, C. C.; Xu, S. G.; Fu, Q. G.

    2011-07-01

    In this article, the effect of internal fixation of a Nitinol swan-like memory compressive connector (SMC) on the temporal expression of transforming growth factor-β (TGF-β) at fracture sites is evaluated. Specimens were collected from 35 New Zealand rabbits modeled for bilateral humeral fracture fixed with either SMC or stainless dynamic compression plate (DCP). Five rabbits each were killed at day 1, 3, 7, 14, 21, 28, and 56. The local positive staining potency, positive area ratio, and positive index of TGF-β were measured using an immunohistochemistry approach (EnVision) in combination with a computerized image analysis system. TGF-β staining was seen in mesenchymal cells, osteoblasts, chondrocytes, and in the extracellular matrix of fractures fixed in both the SMC and the DCP samples without a significant difference in staining at both the early stages (days 1 and 3) and day 56. A higher TGF-β content was observed in the fractures fixed with SMC when compared to that of DCP from day 7 to 28. As a conclusion, TGF-β is highly expressed in fractures fixed with SMC during chondrogenesis stage and entochondrostosis stage. Finally, the mechanism of how SMC promoting synthesis and secretion of TGF-β in the process of fracture healing has been discussed.

  1. Transforming growth factor-beta and nitrates in epithelial ovarian cancer.

    Science.gov (United States)

    Khalifa, A; Kassim, S K; Ahmed, M I; Fayed, S T

    1999-12-01

    The role of transforming growth factor-beta (TGF-beta) and nitric oxide (NO) in ovarian neoplasia is still not clear. We studied the expression of TGF-beta by enzyme immunoassay, and nitrates (as a stable end product of NO) in 127 ovarian tissues (36 normal, 37 benign, and 54 malignant). Ploidy status and synthetic phase fraction (SPF) were also assessed by flow cytometry. Mean ranks of TGF-beta, nitrate, and SPF were significant among different groups (X2 = 12.01, P = 0.0025, X2 = 67.42, P = 0.000, X2 = 9.06, P = 0.011 respectively). Nitrate mean ranks were significant among different FIGO stages of the disease (X2 = 17.6, P = 0.000). A significant correlation was shown between TGF-beta, and nitrate levels in all tissues (r = 0.24, P = 0.01), as well as in malignant tissues (r = 0.3, P = 0.026). Cutoff values were determined for both TGF-beta (290 pg/mg protein), and nitrates (310 nmole/mg non protein nitrogenous substances). At these cut-offs, nitrates showed a sensitivity of 93% and 84% specificity for malignant versus normal cases, while TGF-beta had 76% sensitivity, and 82.4% specificity for poor versus good outcome. Patients with epithelial ovarian cancer were followed up for a total of 40 months. Survival analysis showed that patients with TGF-beta above the cut-off had worse prognosis (X2 = 12.69, P = 0.004). The present results suggest that malignant transformation of ovarian tissues is associated with increased TGF-beta and NO production. NO level is related to the development and progression of epithelial ovarian cancer, while high levels of TGF-beta could be of prognostic significance.

  2. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  3. Distribution and mRNA Expression of BAMBI in Non-small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shen MIAO

    2009-03-01

    Full Text Available Background and objective BAMBI structure is similar with that of the receptor Ⅰof TGF-β, it broadly participates in the control of TGF-β signaling. The aim of this study is to investigate the expression and its significance of BAMBI in non-small cell lung cancer (NSCLC and explore the relation between BAMBI and clinical and pathological factors of NSCLC. Methods Sixty-three cases with NSCLC and adjacent normal tissue specimens were used for immunohistochemical assay. Thirty-one fresh lung cancer tissue specimens and surrounding normal lung tissue specimens was preserved for RT-PCR in -70 ℃ after quick-frozen in liquid nitrogen immediately. Results The level of BAMBI mRNA in cancer tissues was higher than that in the corresponding adjacent tissues (0.358±0.135 vs 0.249±0.129, with the difference being statistically significant (P =0.003. BAMBI protein expressed mainly in the membrane and the cytoplasm close to the membrane, its expression in the cancer tissue was higher than that in the adjacent tissues, the difference was significant (P <0.01. Expression of BAMBI in the cancer tissue was higher than that in the adjacent tissues, and the expression of BAMBI in adenocarcinoma of lung is higher than that in squamous carcinoma. Conclusion The expressions of BAMBI significantly increase in NSCLC. It might be a common affair in carcinogenesis of NSCLC.

  4. Radiation-induced enteropathy: Molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF1 cascade inhibition

    International Nuclear Information System (INIS)

    Hamama, Saad; Gilbert-Sirieix, Marie; Vozenin, Marie-Catherine; Delanian, Sylvie

    2012-01-01

    Background: Radiation-induced fibrosis is a serious late complication of radiotherapy. Pentoxifylline–vitamin E has proven effective and safe in clinical trials in the treatment of fibrosis, while the molecular mechanism of its activity is yet unexplored. Methods: Ten patients suffering from radiation-induced enteropathy were treated with pentoxifylline–vitamin E combination with SOMA score as the primary endpoint. In parallel, primary smooth muscle cells isolated from intestinal samples isolated from humans with radiation enteropathy were incubated with pentoxifylline, trolox (vit. E hydrophilic analogous) or their combination. Activation of the TGF1/Smad and Rho/ROCK pathways was subsequently investigated using Q-RT-PCR, gene reporter, Western-blot, ELISA and immunohistochemistry. Results: Pentoxifylline–vitamin E combination induces regression of symptoms (SOMA) by −41% and −80% at 6 and 18 months. In vitro, pentoxifylline and trolox synergize to inhibit TGF1 protein and mRNA expression. This inhibitory action is mediated at the transcriptional level and leads to subsequent inhibition of TGF1/Smad targets (Col Iα1, FN1, PAI-1, CTGF), while it has no effect on the Rho/ROCK pathway. Conclusions: The anti-fibrotic effect of combined pentoxifylline–vitamin E is at least in part mediated by inhibition of the TGF1 cascade. It strengthens previous clinical data showing pentoxifylline–vitamin E synergy and supports its use as a first-line treatment of radiation-induced fibrosis.

  5. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  6. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome.

    Science.gov (United States)

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF1 (p tissue. In addition, a strong positive correlation was found between TGF1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. IGF-1R mRNA expression is increased in obese children.

    Science.gov (United States)

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Association of the tagging single nucleotide polymorphisms in transforming growth factor beta-1 gene with hypertension in the Han nationality population in Xinjiang].

    Science.gov (United States)

    Yang, Jian-feng; Shi, Xiao-peng; Zhao, Dan; Deng, Feng-mei; Zhong, Hua; Wang, Gang; Wang, Zhen-huan; Chen, Xiong-ying; He, Fang

    2010-06-01

    Essential hypertension (EH) was a complex disease resulted from the interaction of cumulative effect of multiple genetic and environment factors. The relationship between the genetic polymorphisms in the transforming growth factor-beta1 (TGF-beta1), the blood levels and EH have been investigated, but the conclusions were different. Therefore, we investigate the relationship between the tagging single nucleotide polymorphisms (tSNPs) (rs1800469, rs2241716, rs11466345, rs2241715, rs4803455) in TGF-beta1 gene, blood levels and EH in the Han nationality population in Xinjiang, to clarity the pattern of linkage disequilibrium (LD) and the feature of the structure of haplotype. Based on the case-control study,we selected 732 (365 EH patients,367 controls) Han Chinese population from the Boertonggu countryside of Shawan region in the Xinjiang Uygur Autonomous Region of China by random cluster sampling. After questionnaire and physical examination, we collected blood samples, and the blood levels of TGF-beta1 were quantified using sandwich ELISA. The polymorphisms of TGF-beta1 gene in the study groups were detected with SNaPshot system. The case-control study in a large group was carried out separately for each of the tSNP and followed up by haplotypes analyses to determine the relation between tSNPs of TGF-beta1 gene and EH in the Han population. (1) The frequencies of alleles A, G of rs11466345 of TGF-beta1 gene in EH group and control group were as follows: 69.7%, 30.3%, 74.4%, 25.6%, respectively. It was demonstrated that the G allele of the rs11466345 polymorphism occurred at a significantly higher frequency in EH patients than in healthy controls (30.3% vs. 25.6%, P 0.05). (2)Except the site of rs11466345, the other tSNPs were in strong LD, and no statistical differences were observed in haplotypes distribution in the followup study between case-control groups (P > 0.05). (3) There were no difference of TGF-beta1 levels between the different genotypes and alleles in

  9. Differential expression of PARP1 mRNA in leucocytes of patients ...

    Indian Academy of Sciences (India)

    P. 2011 Differential expression of PARP1 mRNA in leucocytes of patients with Down's syndrome. J. Genet. ... of Alzheimer disease at an earlier age than subjects with- ... family and personal informed consent. .... In effect, they report that.

  10. Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis.

    Directory of Open Access Journals (Sweden)

    Shu-Jui Kuo

    Full Text Available Osteoarthritis (OA is manifested by synovial inflammation and cartilage destruction that is directly linked to synovitis, joint swelling and pain. In the light of the role of synovium in the pathogenesis and the symptoms of OA, synovium-targeted therapy is a promising strategy to mitigate the symptoms and progression of OA. Transforming growth factor beta 1 (TGF1, a secreted homodimeric protein, possesses unique and potent anti-inflammatory and immune-regulatory properties in many cell types. Heme oxygenase 1 (HO-1 is an inducible anti-inflammatory and stress responsive enzyme that has been proven to prevent injuries caused by many diseases. Despite the similar anti-inflammatory profile and their involvement in the pathogenesis of arthritic diseases, no studies have as yet explored the possibility of any association between the expression of TGF1 and HO-1.TGF1-induced HO-1 expression was examined by HO-1 promoter assay, qPCR, and Western blotting. The siRNAs and enzyme inhibitors were utilized to determine the intermediate involved in the signal transduction pathway. We showed that TGF1 stimulated the synthesis of HO-1 in a concentration- and time-dependent manner, which can be mitigated by blockade of the phospholipase (PLCγ/protein kinase C alpha (PKCα pathway. We also showed that the expression of miRNA-519b, which blocks HO-1 transcription, is inhibited by TGF1, and the suppression of miRNA 519b could be reversed via blockade of the PLCγ/PKCα pathway.TGF1 stimulated the expression of HO-1 via activating the PLCγ/PKCα pathway and suppressing the downstream expression of miRNA-519b. These results may shed light on the pathogenesis and treatment of OA.

  11. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    Science.gov (United States)

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  12. Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection.

    Science.gov (United States)

    Veldhuizen, Edwin J A; van Dijk, Albert; Tersteeg, Monique H G; Kalkhove, Stefanie I C; van der Meulen, Jan; Niewold, Theo A; Haagsman, Henk P

    2007-01-01

    Defensins are antimicrobial peptides that play an important role in the innate immune response in the intestine. Up to date, only one beta-defensin (pBD-1), has been described in pig, which was found to be expressed at low levels in the intestine. We set-up a quantitative PCR method to detect the gene expression of pBD-1 and a newly discovered porcine beta-defensin, pBD-2. Expression of pBD-1 mRNA increased from the proximal to the distal part of the intestine whereas pBD-2 expression decreased. The main gene expression sites for pBD-2 were kidney and liver, whereas pBD-1 was mainly expressed in tongue. The porcine small intestinal segment perfusion (SISP) technique was used to investigate effects of Salmonella typhimurium DT104 on intestinal morphology and pBD-1 and pBD-2 mRNA levels in vivo. The early responses were studied 2, 4 and 8 h post-infection in four separate jejunal and ileal segments. Immunohistochemistry showed invasion of the mucosa by Salmonella and changes in intestinal morphology. However, no concomitant changes in expression of either pBD-1 or pBD-2 were observed. We conclude that at least two defensins are differentially expressed in the intestine of pigs, and that expression of both defensins is not altered by S. typhimurium under these conditions.

  13. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    Science.gov (United States)

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  14. Higher TGF-beta With Lower CD124 and TSLP, But No Difference in PAR-2 Expression in Bronchial Biopsy of Bronchial Asthma Patients in Comparison With COPD Patients

    Czech Academy of Sciences Publication Activity Database

    Matěj, R.; Vašáková, M.; Kukal, J.; Šterclová, M.; Olejár, Tomáš

    2014-01-01

    Roč. 22, č. 7 (2014), s. 543-549 ISSN 1541-2016 Institutional support: RVO:67985823 Keywords : bronchial asthma * chronic obstructive pulmonary disease * TGF-beta * TSPL * CD124 * PAR-2 Subject RIV: EC - Immunology Impact factor: 2.012, year: 2014

  15. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF1 and aryl hydrocarbon receptor signaling.

    Science.gov (United States)

    Miret, Noelia; Rico-Leo, Eva; Pontillo, Carolina; Zotta, Elsa; Fernández-Salguero, Pedro; Randi, Andrea

    2017-11-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor β1 (TGF1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05μM HCB induced cell migration and TGF1 signaling, whereas 5μM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5μM) enhanced α-smooth muscle actin expression and decreased TGF-β receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5μM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds. Copyright © 2017. Published by Elsevier Inc.

  16. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ra